Science.gov

Sample records for ii halo motion

  1. A low complexity halo reduction method for motion compensated frame interpolation

    NASA Astrophysics Data System (ADS)

    Han, Rui; Men, Aidong; Gu, Jianping

    2013-03-01

    This paper proposed a low complexity halo reduction method for motion compensated frame interpolation which bases on only two successive frames. An improved forward and backward jointing motion estimation method that features a faster convergence speed is utilized to produce the motion vector fields of the original frames. These motion vector fields are retimed to the to-be-interpolated frame to calculate the motion vector field for interpolation and to get the coarse location of the new exposed areas. Through analyzing the relationship of the adjacent motion vectors, two general equations are generated for the covered and uncovered blocks, and occlusion areas are further refined. Finally, unidirectional interpolation and bi-directional interpolation are combined to avoid the halos and block artifacts. Experimental results show that the proposed algorithm achieves much better image quality than that without halo reduction processing.

  2. Discovery of High Proper-Motion Ancient White Dwarfs: Nearby Massive Compact Halo Objects?

    PubMed

    Ibata; Irwin; Bienaymé; Scholz; Guibert

    2000-03-20

    We present the discovery and spectroscopic identification of two very high proper-motion ancient white dwarf stars, found in a systematic proper-motion survey. Their kinematics and apparent magnitude clearly indicate that they are halo members, while their optical spectra are almost identical to the recently identified cool halo white dwarf WD 0346+246. Canonical stellar halo models predict a white dwarf volume density that is 2 orders of magnitude less than the rho approximately 7x10-4 M middle dot in circle pc-3 inferred from this survey. With the caveat that the sample size is very small, it appears that a significant fraction, approximately 10%, of the local dark matter halo is in the form of very old, cool, white dwarfs. PMID:10702128

  3. Discovery of High Proper-Motion Ancient White Dwarfs: Nearby Massive Compact Halo Objects?

    PubMed

    Ibata; Irwin; Bienaymé; Scholz; Guibert

    2000-03-20

    We present the discovery and spectroscopic identification of two very high proper-motion ancient white dwarf stars, found in a systematic proper-motion survey. Their kinematics and apparent magnitude clearly indicate that they are halo members, while their optical spectra are almost identical to the recently identified cool halo white dwarf WD 0346+246. Canonical stellar halo models predict a white dwarf volume density that is 2 orders of magnitude less than the rho approximately 7x10-4 M middle dot in circle pc-3 inferred from this survey. With the caveat that the sample size is very small, it appears that a significant fraction, approximately 10%, of the local dark matter halo is in the form of very old, cool, white dwarfs.

  4. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    NASA Technical Reports Server (NTRS)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  5. Testing DARKexp against energy and density distributions of Millennium-II halos

    NASA Astrophysics Data System (ADS)

    Nolting, Chris; Williams, Liliya L. R.; Boylan-Kolchin, Michael; Hjorth, Jens

    2016-09-01

    We test the DARKexp model for relaxed, self-gravitating, collisionless systems against equilibrium dark matter halos from the Millennium-II simulation. While limited tests of DARKexp against simulations and observations have been carried out elsewhere, this is the first time the testing is done with a large sample of simulated halos spanning a factor of ~ 50 in mass, and using independent fits to density and energy distributions. We show that DARKexp, a one shape parameter family, provides very good fits to the shapes of density profiles, ρ(r), and differential energy distributions, N(E), of individual simulated halos. The best fit shape parameter phi0 obtained from the two types of fits are correlated, though with scatter. Our most important conclusions come from ρ(r) and N(E) that have been averaged over many halos. These show that the bulk of the deviations between DARKexp and individual Millennium-II halos come from halo-to-halo fluctuations, likely driven by substructure, and other density perturbations. The average ρ(r) and N(E) are quite smooth and follow DARKexp very closely. The only deviation that remains after averaging is small, and located at most bound energies for N(E) and smallest radii for ρ(r). Since the deviation is confined to 3-4 smoothing lengths, and is larger for low mass halos, it is likely due to numerical resolution effects.

  6. UBIQUITOUS TORSIONAL MOTIONS IN TYPE II SPICULES

    SciTech Connect

    De Pontieu, B.; Hansteen, V. H.; Carlsson, M.; Rouppe van der Voort, L. H. M.; Rutten, R. J.; Watanabe, H.

    2012-06-10

    Spicules are long, thin, highly dynamic features that jut out ubiquitously from the solar limb. They dominate the interface between the chromosphere and corona and may provide significant mass and energy to the corona. We use high-quality observations with the Swedish 1 m Solar Telescope to establish that so-called type II spicules are characterized by the simultaneous action of three different types of motion: (1) field-aligned flows of order 50-100 km s{sup -1}, (2) swaying motions of order 15-20 km s{sup -1}, and (3) torsional motions of order 25-30 km s{sup -1}. The first two modes have been studied in detail before, but not the torsional motions. Our analysis of many near-limb and off-limb spectra and narrowband images using multiple spectral lines yields strong evidence that most, if not all, type II spicules undergo large torsional modulation and that these motions, like spicule swaying, represent Alfvenic waves propagating outward at several hundred km s{sup -1}. The combined action of the different motions explains the similar morphology of spicule bushes in the outer red and blue wings of chromospheric lines, and needs to be taken into account when interpreting Doppler motions to derive estimates for field-aligned flows in spicules and determining the Alfvenic wave energy in the solar atmosphere. Our results also suggest that large torsional motion is an ingredient in the production of type II spicules and that spicules play an important role in the transport of helicity through the solar atmosphere.

  7. Ubiquitous Torsional Motions in Type II Spicules

    NASA Astrophysics Data System (ADS)

    De Pontieu, B.; Carlsson, M.; Rouppe van der Voort, L. H. M.; Rutten, R. J.; Hansteen, V. H.; Watanabe, H.

    2012-06-01

    Spicules are long, thin, highly dynamic features that jut out ubiquitously from the solar limb. They dominate the interface between the chromosphere and corona and may provide significant mass and energy to the corona. We use high-quality observations with the Swedish 1 m Solar Telescope to establish that so-called type II spicules are characterized by the simultaneous action of three different types of motion: (1) field-aligned flows of order 50-100 km s-1, (2) swaying motions of order 15-20 km s-1, and (3) torsional motions of order 25-30 km s-1. The first two modes have been studied in detail before, but not the torsional motions. Our analysis of many near-limb and off-limb spectra and narrowband images using multiple spectral lines yields strong evidence that most, if not all, type II spicules undergo large torsional modulation and that these motions, like spicule swaying, represent Alfvénic waves propagating outward at several hundred km s-1. The combined action of the different motions explains the similar morphology of spicule bushes in the outer red and blue wings of chromospheric lines, and needs to be taken into account when interpreting Doppler motions to derive estimates for field-aligned flows in spicules and determining the Alfvénic wave energy in the solar atmosphere. Our results also suggest that large torsional motion is an ingredient in the production of type II spicules and that spicules play an important role in the transport of helicity through the solar atmosphere.

  8. THE SPACE MOTION OF LEO I: THE MASS OF THE MILKY WAY'S DARK MATTER HALO

    SciTech Connect

    Boylan-Kolchin, Michael; Bullock, James S.; Sohn, Sangmo Tony; Van der Marel, Roeland P.; Besla, Gurtina

    2013-05-10

    We combine our Hubble Space Telescope measurement of the proper motion of the Leo I dwarf spheroidal galaxy (presented in a companion paper) with the highest resolution numerical simulations of Galaxy-size dark matter halos in existence to constrain the mass of the Milky Way's dark matter halo (M{sub vir,MW}). Despite Leo I's large Galactocentric space velocity (200 km s{sup -1}) and distance (261 kpc), we show that it is extremely unlikely to be unbound if Galactic satellites are associated with dark matter substructure, as 99.9% of subhalos in the simulations are bound to their host. The observed position and velocity of Leo I strongly disfavor a low-mass Milky Way: if we assume that Leo I is the least bound of the Milky Way's classical satellites, then we find that M{sub vir,MW} > 10{sup 12} M{sub Sun} at 95% confidence for a variety of Bayesian priors on M{sub vir,MW}. In lower mass halos, it is vanishingly rare to find subhalos at 261 kpc moving as fast as Leo I. Should an additional classical satellite be found to be less bound than Leo I, this lower limit on M{sub vir,MW} would increase by 30%. Imposing a mass-weighted {Lambda}CDM prior, we find a median Milky Way virial mass of M{sub vir,MW} = 1.6 Multiplication-Sign 10{sup 12} M{sub Sun }, with a 90% confidence interval of [1.0-2.4] Multiplication-Sign 10{sup 12} M{sub Sun }. We also confirm a strong correlation between subhalo infall time and orbital energy in the simulations and show that proper motions can aid significantly in interpreting the infall times and orbital histories of satellites.

  9. The Space Motion of Leo I: The Mass of the Milky Way's Dark Matter Halo

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Bullock, James S.; Sohn, Sangmo Tony; Besla, Gurtina; van der Marel, Roeland P.

    2013-05-01

    We combine our Hubble Space Telescope measurement of the proper motion of the Leo I dwarf spheroidal galaxy (presented in a companion paper) with the highest resolution numerical simulations of Galaxy-size dark matter halos in existence to constrain the mass of the Milky Way's dark matter halo (M vir, MW). Despite Leo I's large Galactocentric space velocity (200 km s-1) and distance (261 kpc), we show that it is extremely unlikely to be unbound if Galactic satellites are associated with dark matter substructure, as 99.9% of subhalos in the simulations are bound to their host. The observed position and velocity of Leo I strongly disfavor a low-mass Milky Way: if we assume that Leo I is the least bound of the Milky Way's classical satellites, then we find that M vir, MW > 1012 M ⊙ at 95% confidence for a variety of Bayesian priors on M vir, MW. In lower mass halos, it is vanishingly rare to find subhalos at 261 kpc moving as fast as Leo I. Should an additional classical satellite be found to be less bound than Leo I, this lower limit on M vir, MW would increase by 30%. Imposing a mass-weighted ΛCDM prior, we find a median Milky Way virial mass of M vir, MW = 1.6 × 1012 M ⊙, with a 90% confidence interval of [1.0-2.4] × 1012 M ⊙. We also confirm a strong correlation between subhalo infall time and orbital energy in the simulations and show that proper motions can aid significantly in interpreting the infall times and orbital histories of satellites.

  10. The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0

    SciTech Connect

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; Wilkins, Stephen; Feng, Yu; Tucker, Evan; DeGraf, Colin; Liu, Mao -Sheng

    2015-04-24

    We investigate the properties and clustering of halos, galaxies and blackholes to z = 0 in the high resolution hydrodynamical simulation MassiveBlack-II (MBII). MBII evolves a ΛCDM cosmology in a cubical comoving volume Vbox = (100Mpc/h)³. It is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the halos, subhalos and their properties and publicly release our galaxy catalogs to the scientific community. Our analysis of the halo mass function in MBII reveals that baryons have strong effects with changes in the halo abundance of 20–35% below the knee of the mass function (Mhalo 1013.2 M h at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations.

  11. Globular Cluster Orbits from HST Proper Motions: Constraining the Formation and Mass of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Sohn, S. Tony; Van Der Marel, Roeland P.; Deason, Alis J.; Bellini, Andrea; Besla, Gurtina; Watkins, Laura

    2016-06-01

    The globular cluster (GC) system of the Milky Way (MW) provides important information on the MW's present structure and past evolution. GCs in the halo are particularly useful tracers; because of their long dynamical timescales, their orbits retain imprints of their origin or accretion history. Full 3D motions are required to calculate past orbits. While most GCs have known line of sight velocities, accurate proper motion (PM) measurements are currently available for only a few halo GCs. Our goal is to create the first high-quality PM database for halo GCs. We have identified suitable 1st-epoch data in the HST Archive for 20 halo GCs at 10-100 kpc from the Galactic Center. We are in the process of obtaining the necessary 2nd-epoch data to determine absolute PMs of the target GCs through our HST program GO-14235. We will use the same advanced astrometric techniques that allowed us to measure the PMs of M31 and Leo I. Previous studies of the halo GC system based on e.g., stellar populations, metallicities, RR Lyrae properties, and structural properties have revealed a dichotomy between old and young halo GCs. This may reflect distinct formation scenarios (in situ vs. accreted). Orbit calculations based on our PMs will directly test this. The PMs will also yield the best handle yet on the velocity anisotropy profile of any tracer population in the halo. This will resolve the mass-anisotropy degeneracy to provide an improved estimate of the MW mass, which is at present poorly known. In summary, our project will deliver the first accurate PMs for halo GCs, and will significantly increase our understanding of the formation, evolution, and mass of the MW.

  12. STATISTICAL MECHANICS OF COLLISIONLESS ORBITS. II. STRUCTURE OF HALOS

    SciTech Connect

    Williams, Liliya L. R.; Hjorth, Jens E-mail: jens@dark-cosmology.d

    2010-10-10

    In this paper, we present the density, {rho}, velocity dispersion, {sigma}, and {rho}/{sigma}{sup 3} profiles of isotropic systems which have the energy distribution, N({epsilon}) {proportional_to} [exp({phi}{sub 0} - {epsilon}) - 1], derived in Paper I. This distribution, dubbed {sup D}ARKexp{sup ,} is the most probable final state of a collisionless self-gravitating system, which is relaxed in terms of particle energies, but not necessarily in terms of angular momentum. We compare the DARKexp predictions with the results obtained using the extended secondary infall model (ESIM). The ESIM numerical scheme is optimally suited for this purpose because (1) it relaxes only through energy redistribution, leaving shell/particle angular momenta unaltered and (2) being a shell code with radially increasing shell thickness, it has very good mass resolution in the inner halo, where the various theoretical treatments give different predictions. The ESIM halo properties, and especially their energy distributions, are very well fit by DARKexp, implying that the techniques of statistical mechanics can be used to explain the structure of relaxed self-gravitating systems.

  13. Characterizing stellar halo populations II: The age gradient in blue horizontal-branch stars

    NASA Astrophysics Data System (ADS)

    Das, Payel; Williams, Angus; Binney, James

    2016-08-01

    The distribution of Milky Way halo blue horizontal-branch (BHB) stars is examined using action-based extended distribution functions (EDFs) that describe the locations of stars in phase space, metallicity, and age. The parameters of the EDFs are fitted using stars observed in the Sloan Extension for Galactic Understanding and Exploration-II (SEGUE-II) survey that trace the phase-space kinematics and chemistry out to ˜70 kpc. A maximum a posteriori probability (MAP) estimate method and a Markov Chain Monte Carlo method are applied, taking into account the selection function in positions, distance, and metallicity for the survey. The best-fit EDF declines with actions less steeply at actions characteristic of the inner halo than at the larger actions characteristic of the outer halo, and older ages are found at smaller actions than at larger actions. In real space, the radial density profile steepens smoothly from -2 at ˜2 kpc to -4 in the outer halo, with an axis ratio ˜0.7 throughout. There is no indication for rotation in the BHBs, although this is highly uncertain. A moderate level of radial anisotropy is detected, with βs varying from isotropic to between ˜0.1 and ˜0.3 in the outer halo depending on latitude. The BHB data are consistent with an age gradient of -0.03 Gyr kpc-1, with some uncertainty in the distribution of the larger ages. These results are consistent with a scenario in which older, larger systems contribute to the inner halo, whilst the outer halo is primarily comprised of younger, smaller systems.

  14. HALO7D: Investigating the Structure and Accretion History of the Milky Way Stellar Halo with HST Proper Motions and Keck Spectra

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily Clifford; Deason, Alis; Guhathakurta, Puragra; Rockosi, Constance; Kirby, Evan; van der marel, roeland p.; Sohn, Sangmo Tony

    2015-08-01

    The Milky Way (MW) is shrouded in a faint metal-poor stellar halo. Its structure and kinematics provide a unique archaeological record of the MW's formation, past evolution, and accretion history. These data also help us constrain the dark matter mass out to large radii (50 to 100 kpc). However, studies of the MW stellar halo are hindered by observational constraints. Beyond D~10 kpc, our knowledge of the MWhalo is limited to line of sight velocities and rare tracer populations (blue horizontal branch and red giant branch stars). We aim to address these limitations using highly accurate HST-measured proper motions and very deep (8-24 hour integrations) Keck DEIMOS spectroscopy of MW main sequence turn-off stars in the CANDELS fields. By combining these two datasets, we can obtain 6D phase-space information plus chemical abundances for our halo stars. This survey, which will be unique even in the era of Gaia, will vastly improve our understanding of the Milky Way structure, evolution and mass in a way that neither the HST proper motions nor Keck spectroscopy can do on their own.

  15. The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0

    DOE PAGES

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; Wilkins, Stephen; Feng, Yu; Tucker, Evan; DeGraf, Colin; Liu, Mao -Sheng

    2015-04-24

    We investigate the properties and clustering of halos, galaxies and blackholes to z = 0 in the high resolution hydrodynamical simulation MassiveBlack-II (MBII). MBII evolves a ΛCDM cosmology in a cubical comoving volume Vbox = (100Mpc/h)³. It is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the halos, subhalos and their properties and publicly release our galaxy catalogs to the scientific community. Our analysis of the halo mass function in MBII reveals thatmore » baryons have strong effects with changes in the halo abundance of 20–35% below the knee of the mass function (Mhalo 1013.2 M⊙ h at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations.« less

  16. Mapping stellar content to dark matter haloes - II. Halo mass is the main driver of galaxy quenching

    NASA Astrophysics Data System (ADS)

    Zu, Ying; Mandelbaum, Rachel

    2016-04-01

    We develop a simple yet comprehensive method to distinguish the underlying drivers of galaxy quenching, using the clustering and galaxy-galaxy lensing of red and blue galaxies in Sloan Digital Sky Survey. Building on the iHOD framework developed by Zu & Mandelbaum, we consider two quenching scenarios: (1) a `halo' quenching model in which halo mass is the sole driver for turning off star formation in both centrals and satellites; and (2) a `hybrid' quenching model in which the quenched fraction of galaxies depends on their stellar mass, while the satellite quenching has an extra dependence on halo mass. The two best-fitting models describe the red galaxy clustering and lensing equally well, but halo quenching provides significantly better fits to the blue galaxies above 1011 h-2 M⊙. The halo quenching model also correctly predicts the average halo mass of the red and blue centrals, showing excellent agreement with the direct weak lensing measurements of locally brightest galaxies. Models in which quenching is not tied to halo mass, including an age-matching model in which galaxy colour depends on halo age at fixed M*, fail to reproduce the observed halo mass for massive blue centrals. We find similar critical halo masses responsible for the quenching of centrals and satellites (˜1.5 × 1012 h-1 M⊙), hinting at a uniform quenching mechanism for both, e.g. the virial shock heating of infalling gas. The success of the iHOD halo quenching model provides strong evidence that the physical mechanism that quenches star formation in galaxies is tied principally to the masses of their dark matter haloes rather than the properties of their stellar components.

  17. THE SMOOTH Mg II GAS DISTRIBUTION THROUGH THE INTERSTELLAR/EXTRA-PLANAR/HALO INTERFACE

    SciTech Connect

    Kacprzak, Glenn G.; Cooke, Jeff; Ryan-Weber, Emma V.; Churchill, Christopher W.; Nielsen, Nikole M.

    2013-11-01

    We report the first measurements of Mg II absorption systems associated with spectroscopically confirmed z ∼ 0.1 star-forming galaxies at projected distances of D < 6 kpc. We demonstrate that the data are consistent with the well-known anti-correlation between rest-frame Mg II equivalent width, W{sub r} (2796), and impact parameter, D, represented by a single log-linear relation derived by Nielsen et al. (MAGIICAT) that converges to ∼2 Å at D = 0 kpc. Incorporating MAGIICAT, we find that the halo gas covering fraction is unity below D ∼ 25 kpc. We also report that our D < 6 kpc absorbers are consistent with the W{sub r} (2796) distributions of the Milky Way interstellar medium (ISM) and ISM+halo. In addition, quasar sight lines of intermediate redshift galaxies with 6 < D < 25 kpc have an equivalent width distribution similar to that of the Milky Way halo, implying that beyond ∼6 kpc, quasar sight lines are likely probing halo gas and not the ISM. As inferred by the Milky Way and our new data, the gas profiles of galaxies can be fit by a single log-linear W{sub r} (2796)-D relation out to large scales across a variety of gas-phase conditions and is maintained through the halo/extra-planar/ISM interfaces, which is remarkable considering their kinematic complexity. These low-redshift, small impact parameter absorption systems are the first steps to bridge the gap between quasar absorption-line studies and H I observations of the circumgalactic medium.

  18. The first Population II stars formed in externally enriched mini-haloes

    NASA Astrophysics Data System (ADS)

    Smith, Britton D.; Wise, John H.; O'Shea, Brian W.; Norman, Michael L.; Khochfar, Sadegh

    2015-09-01

    We present a simulation of the formation of the earliest Population II stars, starting from cosmological initial conditions and ending when metals created in the first supernovae are incorporated into a collapsing gas cloud. This occurs after a supernova blast-wave collides with a nearby mini-halo, inducing further turbulence that efficiently mixes metals into the dense gas in the centre of the halo. The gas that first collapses has been enriched to a metallicity of Z ˜ 2 × 10-5 Z⊙. Due to the extremely low metallicity, collapse proceeds similarly to metal-free gas until dust cooling becomes efficient at high densities, causing the cloud to fragment into a large number of low-mass objects. This external enrichment mechanism provides a plausible origin for the most metal-poor stars observed, such as SMSS J031300.36-670839.3, that appear to have formed out of gas enriched by a single supernova. This mechanism operates on shorter time-scales than the time for low-mass mini-haloes (M ≤ 5 × 105 M⊙) to recover their gas after experiencing a supernova. As such, metal-enriched stars will likely form first via this channel if the conditions are right for it to occur. We identify a number of other externally enriched haloes that may form stars in this manner. These haloes have metallicities as high as 0.01 Z⊙, suggesting that some members of the first generation of metal-enriched stars may be hiding in plain sight in current stellar surveys.

  19. The MassiveBlack-II simulation: the evolution of haloes and galaxies to z ˜ 0

    NASA Astrophysics Data System (ADS)

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; Wilkins, Stephen; Feng, Yu; Tucker, Evan; DeGraf, Colin; Liu, Mao-Sheng

    2015-06-01

    We investigate the properties of haloes, galaxies and black holes to z = 0 in the high-resolution hydrodynamical simulation MassiveBlack-II (MBII) which evolves a Λ cold dark matter cosmology in a comoving volume Vbox = (100 Mpc h-1)3. MBII is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the MBII data set and publicly release our galaxy catalogues. We find that baryons affect strongly the halo mass function (MF), with 20-33 per cent change in the halo abundance below the knee of the MF (Mhalo < 1013.2 M⊙ h-1 at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations. We study the halo occupation distribution and clustering of galaxies, in particular the evolution and scale dependence of stochasticity and bias finding reasonable agreement with observational data. The shape of the cosmic spectral energy distribution of galaxies in MBII is consistent with observations, but lower in amplitude. The Galaxy stellar mass function (GSMF) function is broadly consistent with observations at z ≥ 2. At z < 2, the population of passive low-mass (M* < 109 M⊙) galaxies in MBII makes the GSMF too steep compared to observations whereas at the high-mass end (M* > 1011 M⊙) galaxies hosting bright AGNs make significant contributions to the GSMF. The quasar bolometric luminosity function is also largely consistent with observations. We note however that more efficient AGN feedback is necessary for the largest, rarest objects/clusters at low redshifts.

  20. Mapping the local galactic halo and an image motion compensation system for the multi-object double spectrograph

    NASA Astrophysics Data System (ADS)

    Marshall, Jennifer L.

    In the first part of this dissertation I describe the results of a photometric and spectroscopic survey of a sample of cool, metal-poor subdwarfs in the solar neighborhood. These metal-poor stars are of interest because, as members of the Galactic halo, they give clues about the history of the Galaxy and its formation mechanisms, and may enable us to study satellites of the Milky Way and the Galactic merger history. A sample of halo subdwarfs have been selected using a reduced proper motion (RPM) diagram. Accurate and precise photometric measurements of 635 stars selected in this manner allow better definition of the RPM diagram and determination of its usefulness as a selection method. Accurate spectrophotometry yields radial velocities of the candidates as well as metallicity and temperature estimates for 288 subdwarfs. Of special interest in this sample are the ten newly discovered extremely metal-poor stars, as well as four carbon-enhanced metal-poor stars. I use these new observations to search the local Galactic halo for structure due to merger remnants and moving groups; there is some evidence for both. I also discuss the metallicity distribution function of the sample and compare it to previous work on this subject. No astronomical observations of any sort are possible without appropriate, well-calibrated instrumentation with which to perform the measurements. In the second part of this dissertation, I describe the Image Motion Compensation System (IMCS) for the Multi-Object Double Spectrograph (MODS), an optical spectrograph for the Large Binocular Telescope. The system performs closed-loop image motion compensation, actively correcting for image motion in the spectrograph's focal plane caused by large scale structural bending due to gravity as well as other effects such as temperature fluctuation and mechanism flexure within the instrument. The system is currently installed in the MODS instrument and controls instrumental flexure to within specifications

  1. Space motions of distant red giants: the disk-halo overlap

    NASA Astrophysics Data System (ADS)

    Flynn, C.; Roeser, S.

    1993-12-01

    We describe a measurement of space velocities for a sample of distant late-type giants, selected to examine the chemical and kinematical properties of the transition between the Galaxy's disk and halo. We derive the three components of the velocity ellipsoid and the galactocentric rotational velocity of the stars as a function of abundance. We confirm the results of Norris et al. (1985) and Morrison et al. (1990), that there are metal weak stars ((Fe/H) less than -1) with 'disk' kinematics. The data support the picture that the disk and halo are very much separate kinematic structures (although overlapping in their abundance distributions) rather than there being a smooth transition from one to the other. We discuss briefly the implications for the formation of the Galaxy.

  2. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements: Evaluation of Aerosol Measurements from SAGE II, HALOE, and Balloonborne Optical Particle Counters

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Deshler, Terry; Moddrea, G. (Technical Monitor)

    2002-01-01

    Stratospheric aerosol measurements from the University of Wyoming balloonborne optical particle counters (OPCs), the Stratospheric Aerosol and Gas Experiment (SAGE) II, and the Halogen Occultation Experiment (HALOE) were compared in the period 1982-2000, when measurements were available. The OPCs measure aerosol size distributions, and HALOE multiwavelength (2.45-5.26 micrometers) extinction measurements can be used to retrieve aerosol size distributions. Aerosol extinctions at the SAGE II wavelengths (0.386-1.02 micrometers) were computed from these size distributions and compared to SAGE II measurements. In addition, surface areas derived from all three experiments were compared. While the overall impression from these results is encouraging, the agreement can change with latitude, altitude, time, and parameter. In the broadest sense, these comparisons fall into two categories: high aerosol loading (volcanic periods) and low aerosol loading (background periods and altitudes above 25 km). When the aerosol amount was low, SAGE II and HALOE extinctions were higher than the OPC estimates, while the SAGE II surface areas were lower than HALOE and the OPCS. Under high loading conditions all three instruments mutually agree to within 50%.

  3. Global Properties of M31's Stellar Halo from the SPLASH Survey. II. Metallicity Profile

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline M.; Kalirai, Jason S.; Guhathakurta, Puragra; Beaton, Rachael L.; Geha, Marla C.; Kirby, Evan N.; Majewski, Steven R.; Patterson, Richard J.; Tollerud, Erik J.; Bullock, James S.; Tanaka, Mikito; Chiba, Masashi

    2014-12-01

    We present the metallicity distribution of red giant branch (RGB) stars in M31's stellar halo, derived from photometric metallicity estimates for over 1500 spectroscopically confirmed RGB halo stars. The stellar sample comes from 38 halo fields observed with the Keck/DEIMOS spectrograph, ranging from 9 to 175 kpc in projected distance from M31's center, and includes 52 confirmed M31 halo stars beyond 100 kpc. While a wide range of metallicities is seen throughout the halo, the metal-rich peak of the metallicity distribution function becomes significantly less prominent with increasing radius. The metallicity profile of M31's stellar halo shows a continuous gradient from 9 to ~100 kpc, with a magnitude of ~ - 0.01 dex kpc-1. The stellar velocity distributions in each field are used to identify stars that are likely associated with tidal debris features. The removal of tidal debris features does not significantly alter the metallicity gradient in M31's halo: a gradient is maintained in fields spanning 10-90 kpc. We analyze the halo metallicity profile, as well as the relative metallicities of stars associated with tidal debris features and the underlying halo population, in the context of current simulations of stellar halo formation. We argue that the large-scale gradient in M31's halo implies M31 accreted at least one relatively massive progenitor in the past, while the field to field variation seen in the metallicity profile indicates that multiple smaller progenitors are likely to have contributed substantially to M31's outer halo. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Global properties of M31's stellar halo from the splash survey. II. Metallicity profile

    SciTech Connect

    Gilbert, Karoline M.; Kalirai, Jason S.; Guhathakurta, Puragra; Geha, Marla C.; Tollerud, Erik J.; Kirby, Evan N.; Bullock, James S.; Tanaka, Mikito; Chiba, Masashi

    2014-12-01

    We present the metallicity distribution of red giant branch (RGB) stars in M31's stellar halo, derived from photometric metallicity estimates for over 1500 spectroscopically confirmed RGB halo stars. The stellar sample comes from 38 halo fields observed with the Keck/DEIMOS spectrograph, ranging from 9 to 175 kpc in projected distance from M31's center, and includes 52 confirmed M31 halo stars beyond 100 kpc. While a wide range of metallicities is seen throughout the halo, the metal-rich peak of the metallicity distribution function becomes significantly less prominent with increasing radius. The metallicity profile of M31's stellar halo shows a continuous gradient from 9 to ∼100 kpc, with a magnitude of ∼ – 0.01 dex kpc{sup –1}. The stellar velocity distributions in each field are used to identify stars that are likely associated with tidal debris features. The removal of tidal debris features does not significantly alter the metallicity gradient in M31's halo: a gradient is maintained in fields spanning 10-90 kpc. We analyze the halo metallicity profile, as well as the relative metallicities of stars associated with tidal debris features and the underlying halo population, in the context of current simulations of stellar halo formation. We argue that the large-scale gradient in M31's halo implies M31 accreted at least one relatively massive progenitor in the past, while the field to field variation seen in the metallicity profile indicates that multiple smaller progenitors are likely to have contributed substantially to M31's outer halo.

  5. THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY

    SciTech Connect

    Zolotov, Adi; Hogg, David W.; Willman, Beth; Brooks, Alyson M.; Shen, Sijing; Wadsley, James E-mail: bwillman@haverford.ed

    2010-09-20

    Fully cosmological, high-resolution N-body+smooth particle hydrodynamic simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback recipe, as well as metal enrichment, metal cooling, and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] and [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [{alpha}/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way and other local L{sup *} galaxies.

  6. A Comparison of HALOE V19 with SAGE II V6.00 Ozone Observations using Trajectory Mapping

    NASA Technical Reports Server (NTRS)

    Morris, Gary A.; Gleason, James F.; Russell, James R., III; Schoeberl, Mark R.; McCormick, M. Patrick; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    We apply trajectory mapping to an eight-year intercomparison of ozone observations from HALOE (V19) and SAGE II (V6.00) for the months March, May, June, September, October, and December from the period December 1991 - October 1999. Our results, which represent the most extensive such intercomparison of these two data sets to date, suggest a root-mean -square difference between the two data sets of greater than 15% below 22 km and of 4 - 12% throughout most of the rest of the stratosphere. In addition, we find a bias with HALOE ozone low relative to SAGE II by 5 - 20% below 22 km between 40degS and 40degN. Biases throughout most of the rest of the stratosphere are nearly nonexistent. Finally, our analysis suggests almost no drift in the bias between the data sets is observed over the period of study. In the course of our study, we also determine that the employment of the Wang-Cunnold criteria is still recommended with the V6.00 SAGE II ozone data. Results with the new versions of the data sets show significant improvement over previous versions, particularly in the elimination of mid-stratospheric biases and the elimination of the previously observed drifts in the biases between the data sets in the lower stratosphere. Since HALOE V19 and V18 ozone are very similar, these changes can likely be attributed to improvements in the SAGE II retrieval.

  7. EXPLORING THE VARIABLE SKY WITH LINEAR. II. HALO STRUCTURE AND SUBSTRUCTURE TRACED BY RR LYRAE STARS TO 30 kpc

    SciTech Connect

    Sesar, Branimir; Ivezic, Zeljko; Morgan, Dylan M.; Becker, Andrew C.; Stuart, J. Scott; Sharma, Sanjib; Palaversa, Lovro; Juric, Mario; Wozniak, Przemyslaw; Oluseyi, Hakeem

    2013-08-01

    We present a sample of {approx}5000 RR Lyrae stars selected from the recalibrated LINEAR data set and detected at heliocentric distances between 5 kpc and 30 kpc over {approx}8000 deg{sup 2} of sky. The coordinates and light curve properties, such as period and Oosterhoff type, are made publicly available. We analyze in detail the light curve properties and Galactic distribution of the subset of {approx}4000 type ab RR Lyrae (RRab) stars, including a search for new halo substructures and the number density distribution as a function of Oosterhoff type. We find evidence for the Oosterhoff dichotomy among field RR Lyrae stars, with the ratio of the type II and I subsamples of about 1:4, but with a weaker separation than for globular cluster stars. The wide sky coverage and depth of this sample allow unique constraints for the number density distribution of halo RRab stars as a function of galactocentric distance: it can be described as an oblate ellipsoid with an axis ratio q = 0.63 and with either a single or a double power law with a power-law index in the range -2 to -3. Consistent with previous studies, we find that the Oosterhoff type II subsample has a steeper number density profile than the Oosterhoff type I subsample. Using the group-finding algorithm EnLink, we detected seven candidate halo groups, only one of which is statistically spurious. Three of these groups are near globular clusters (M53/NGC 5053, M3, M13), and one is near a known halo substructure (Virgo Stellar Stream); the remaining three groups do not seem to be near any known halo substructures or globular clusters and seem to have a higher ratio of Oosterhoff type II to Oosterhoff type I RRab stars than what is found in the halo. The extended morphology and the position (outside the tidal radius) of some of the groups near globular clusters are suggestive of tidal streams possibly originating from globular clusters. Spectroscopic follow-up of detected halo groups is encouraged.

  8. Spin flips - II. Evolution of dark matter halo spin orientation, and its correlation with major mergers

    NASA Astrophysics Data System (ADS)

    Bett, Philip E.; Frenk, Carlos S.

    2016-09-01

    We expand our previous study on the relationship between changes in the orientation of the angular momentum vector of dark matter haloes (`spin flips') and changes in their mass, to cover the full range of halo masses in a simulation cube of length 100 h-1 Mpc. Since strong disturbances to a halo (such as might be indicated by a large change in the spin direction) are likely also to disturb the galaxy evolving within, spin flips could be a mechanism for galaxy morphological transformation without involving major mergers. We find that 35 per cent of haloes have, at some point in their lifetimes, had a spin flip of at least 45° that does not coincide with a major merger. Over 75 per cent of large spin flips coincide with non-major mergers; only a quarter coincide with major mergers. We find a similar picture for changes to the inner halo spin orientation, although here there is an increased likelihood of a flip occurring. Changes in halo angular momentum orientation, and other such measures of halo perturbation, are therefore very important quantities to consider, in addition to halo mergers, when modelling the formation and evolution of galaxies and confronting such models with observations.

  9. Use of HART-II Measured Motion in CFD

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.

    2008-01-01

    This presentation examines the use of HART-II measured rotor blade motion in computational fluid dynamics (CFD). Historically, comprehensive analyses were used for input to acoustic calculations. These analyses focused on lifting line aerodynamics and beam models. However, there is a a need to evolve lifting line aerodynamics to first principles, notably the use of CFD instead of lifting line. The current analysis focuses on CFD and computational structural dynamics (CSD) coupling. Beam models are still very good (CSD is typically from comprehensive analysis), but generally CFD replaced aerodynamics in comprehensive analysis. This presentation examines both CFD and CSD individually and includes predictions using measured motion as well as predictions using measured motion versus coupled motion and calculations of "correct" airloads, noise and vibration.

  10. The Extended GMRT Radio Halo Survey. II. Further results and analysis of the full sample

    NASA Astrophysics Data System (ADS)

    Kale, R.; Venturi, T.; Giacintucci, S.; Dallacasa, D.; Cassano, R.; Brunetti, G.; Cuciti, V.; Macario, G.; Athreya, R.

    2015-07-01

    The intra-cluster medium contains cosmic rays and magnetic fields that are manifested through the large scale synchrotron sources, termed radio haloes, relics, and mini-haloes. The Extended Giant Metrewave Radio Telescope (GMRT) Radio Halo Survey (EGRHS) is an extension of the GMRT Radio Halo Survey (GRHS) designed to search for radio haloes using GMRT 610/235 MHz observations. The GRHS and EGRHS consists of 64 clusters in the redshift range 0.2-0.4 that have an X-ray luminosity larger than 5 × 1044 erg s-1 in the 0.1-2.4 keV band and declination, δ > -31° in the REFLEX and eBCS X-ray cluster catalogues. In this second paper in the series, GMRT 610/235 MHz data on the last batch of 11 galaxy clusters and the statistical analysis of the full sample are presented. A new mini-halo in RX J2129.6+0005 and candidate diffuse sources in Z5247, A2552, and Z1953 have been discovered. A unique feature of this survey are the upper limits on the detections of 1 Mpc sized radio haloes; 4 new are presented here, making a total of 31 in the survey. Of the sample, 58 clusters with adequately sensitive radio information were used to obtain the most accurate occurrence fractions so far. The occurrence fractions of radio haloes, mini-haloes and relics in our sample are ~22%, ~16% and ~5%, respectively. The P1.4 GHz-LX diagrams for the radio haloes and mini-haloes are presented. The morphological estimators - centroid shift (w), concentration parameter (c), and power ratios (P3/P0) derived from the Chandra X-ray images - are used as proxies for the dynamical states of the GRHS and EGRHS clusters. The clusters with radio haloes and mini-haloes occupy distinct quadrants in the c-w, c-P3/P0 and w-P3/P0 planes, corresponding to the more and less morphological disturbance, respectively. The non-detections span both the quadrants. Appendices are available in electronic form at http://www.aanda.org

  11. The GHOSTS survey - II. The diversity of halo colour and metallicity profiles of massive disc galaxies

    NASA Astrophysics Data System (ADS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; Bailin, Jeremy; de Jong, Roelof S.; Holwerda, Benne; Streich, David; Silverstein, Grace

    2016-04-01

    We study the stellar halo colour properties of six nearby massive highly inclined disc galaxies using Hubble space telescope Advanced Camera for Surveys and Wide Field Camera 3 observations in both F606W and F814W filters from the GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disks, and Star clusters) survey. The observed fields probe the stellar outskirts out to projected distances of ˜50-70 kpc from their galactic centre along the minor axis. The 50 per cent completeness levels of the colour-magnitude diagrams are typically at 2 mag below the tip of the red giant branch (RGB). We find that all galaxies have extended stellar haloes out to ˜50 kpc and two out to ˜70 kpc. We determined the halo colour distribution and colour profile for each galaxy using the median colours of stars in the RGB. Within each galaxy, we find variations in the median colours as a function of radius which likely indicates population variations, reflecting that their outskirts were built from several small accreted objects. We find that half of the galaxies (NGC 0891, NGC 4565, and NGC 7814) present a clear negative colour gradient in their haloes, reflecting a declining metallicity; the other have no significant colour or population gradient. In addition, notwithstanding the modest sample size of galaxies, there is no strong correlation between their halo colour/metallicity or gradient with galaxy's properties such as rotational velocity or stellar mass. The diversity in halo colour profiles observed in the GHOSTS galaxies qualitatively supports the predicted galaxy-to-galaxy scatter in halo stellar properties, a consequence of the stochasticity inherent in the assembling history of galaxies.

  12. The MICE Grand Challenge lightcone simulation - II. Halo and galaxy catalogues

    NASA Astrophysics Data System (ADS)

    Crocce, M.; Castander, F. J.; Gaztañaga, E.; Fosalba, P.; Carretero, J.

    2015-10-01

    This is the second in a series of three papers in which we present an end-to-end simulation from the MICE collaboration, the MICE Grand Challenge (MICE-GC) run. The N-body contains about 70 billion dark-matter particles in a (3 h-1 Gpc)3 comoving volume spanning five orders of magnitude in dynamical range. Here, we introduce the halo and galaxy catalogues built upon it, both in a wide (5000 deg2) and deep (z < 1.4) lightcone and in several comoving snapshots. Haloes were resolved down to few 1011 h-1 M⊙. This allowed us to model galaxies down to absolute magnitude Mr < -18.9. We used a new hybrid halo occupation distribution and abundance matching technique for galaxy assignment. The catalogue includes the spectral energy distributions of all galaxies. We describe a variety of halo and galaxy clustering applications. We discuss how mass resolution effects can bias the large-scale two-pt clustering amplitude of poorly resolved haloes at the ≲5 per cent level, and their three-pt correlation function. We find a characteristic scale-dependent bias of ≲6 per cent across the BAO feature for haloes well above M⋆ ˜ 1012 h-1 M⊙ and for luminous red galaxy like galaxies. For haloes well below M⋆ the scale dependence at 100 h-1 Mpc is ≲2 per cent. Lastly, we discuss the validity of the large-scale Kaiser limit across redshift and departures from it towards non-linear scales. We make the current version of the lightcone halo and galaxy catalogue (MICECATv1.0) publicly available through a dedicated web portal to help develop and exploit the new generation of astronomical surveys.

  13. Cosmology with massive neutrinos II: on the universality of the halo mass function and bias

    SciTech Connect

    Castorina, Emanuele; Sefusatti, Emiliano; Sheth, Ravi K.; Villaescusa-Navarro, Francisco; Viel, Matteo E-mail: emiliano.sefusatti@brera.inaf.it E-mail: villaescusa@oats.inaf.it

    2014-02-01

    We use a large suite of N-body simulations to study departures from universality in halo abundances and clustering in cosmologies with non-vanishing neutrino masses. To this end, we study how the halo mass function and halo bias factors depend on the scaling variable σ{sup 2}(M,z), the variance of the initial matter fluctuation field, rather than on halo mass M and redshift z themselves. We show that using the variance of the cold dark matter rather than the total mass field, i.e., σ{sup 2}{sub cdm}(M,z) rather than σ{sup 2}{sub m}(M,z), yields more universal results. Analysis of halo bias yields similar conclusions: when large-scale halo bias is defined with respect to the cold dark matter power spectrum, the result is both more universal, and less scale- or k-dependent. These results are used extensively in Papers I and III of this series.

  14. N-body simulations with generic non-Gaussian initial conditions II: halo bias

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Verde, Licia

    2012-03-01

    We present N-body simulations for generic non-Gaussian initial conditions with the aim of exploring and modelling the scale-dependent halo bias. This effect is evident on very large scales requiring large simulation boxes. In addition, the previously available prescription to implement generic non-Gaussian initial conditions has been improved to keep under control higher-order terms which were spoiling the power spectrum on large scales. We pay particular attention to the differences between physical, inflation-motivated primordial bispectra and their factorizable templates, and to the operational definition of the non-Gaussian halo bias (which has both a scale-dependent and an approximately scale-independent contributions). We find that analytic predictions for both the non-Gaussian halo mass function and halo bias work well once a fudge factor (which was introduced before but still lacks convincing physical explanation) is calibrated on simulations. The halo bias remains therefore an extremely promising tool to probe primordial non-Gaussianity and thus to give insights into the physical mechanism that generated the primordial perturbations. The simulation outputs and tables of the analytic predictions will be made publicly available via the non-Gaussian comparison project web site http://icc.ub.edu/~liciaverde/NGSCP.html.

  15. THE HALO MASS FUNCTION FROM EXCURSION SET THEORY. II. THE DIFFUSING BARRIER

    SciTech Connect

    Maggiore, Michele; Riotto, Antonio

    2010-07-01

    In excursion set theory, the computation of the halo mass function is mapped into a first-passage time process in the presence of a barrier, which in the spherical collapse model is a constant and in the ellipsoidal collapse model is a fixed function of the variance of the smoothed density field. However, N-body simulations show that dark matter halos grow through a mixture of smooth accretion, violent encounters, and fragmentations, and modeling halo collapse as spherical, or even as ellipsoidal, is a significant oversimplification. In addition, the very definition of what is a dark matter halo, both in N-body simulations and observationally, is a difficult problem. We propose that some of the physical complications inherent to a realistic description of halo formation can be included in the excursion set theory framework, at least at an effective level, by taking into account that the critical value for collapse is not a fixed constant {delta}{sub c}, as in the spherical collapse model, nor a fixed function of the variance {sigma} of the smoothed density field, as in the ellipsoidal collapse model, but rather is itself a stochastic variable, whose scatter reflects a number of complicated aspects of the underlying dynamics. Solving the first-passage time problem in the presence of a diffusing barrier we find that the exponential factor in the Press-Schechter mass function changes from exp{l_brace}-{delta}{sup 2}{sub c}/2{sigma}{sup 2{r_brace}} to exp{l_brace}-a{delta}{sup 2}{sub c}/2{sigma}{sup 2{r_brace}}, where a = 1/(1 + D{sub B}) and D{sub B} is the diffusion coefficient of the barrier. The numerical value of D{sub B} , and therefore the corresponding value of a, depends among other things on the algorithm used for identifying halos. We discuss the physical origin of the stochasticity of the barrier and, from recent N-body simulations that studied the properties of the collapse barrier, we deduce a value D{sub B} {approx_equal} 0.25. Our model then predicts a

  16. Dark Matter Halos in Galaxies and Globular Cluster Populations. II. Metallicity and Morphology

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Harris, Gretchen L.; Hudson, Michael J.

    2015-06-01

    An increasing body of data reveals a one-to-one linear correlation between galaxy halo mass and the total mass in its globular cluster (GC) population, {{M}GCS}∼ Mh1.03+/- 0.03, valid over five orders of magnitude. In this paper we explore the nature of this correlation for galaxies of different morphological types and for the subpopulations of metal-poor (blue) and metal-rich (red) GCs. For the subpopulations of different metallicity, we find {{M}GCS}(blue)∼ Mh0.96+/- 0.03 and {{M}GCS}(red)∼ Mh1.21+/- 0.03 with similar scatter. The numerical values of these exponents can be derived from the detailed behavior of the red and blue GC fractions with galaxy mass and provide a self-consistent set of relations. In addition, all morphological types (E, S0, S/Irr) follow the same relation, but with a second-order trend for spiral galaxies to have a slightly higher fraction of metal-rich GCs for a given mass. These results suggest that the amount of gas available for GC formation at high redshift was in nearly direct proportion to the dark matter halo potential, in strong contrast to the markedly nonlinear behavior of total stellar mass versus halo mass. Of the few available theoretical treatments that directly discuss the formation of GCs in a hierarchical-merging framework, we find that the model of Kravtsov & Gnedin best matches these observations. They find that the blue, metal-poor GCs formed in small halos at z\\gt 3 and did so in nearly direct proportion to halo mass. Similar models addressing the formation rate of the red, more metal-rich GCs in the same detail and continuing to lower redshift are still needed for a comprehensive picture.

  17. Chaotic motion and the evolution of morphological components in a time-dependent model of a barred galaxy within a dark matter halo

    NASA Astrophysics Data System (ADS)

    Machado, R. E. G.; Manos, T.

    2016-06-01

    Studies of dynamical stability (chaotic versus regular motion) in galactic dynamics often rely on static analytical models of the total gravitational potential. Potentials based upon self-consistent N-body simulations offer more realistic models, fully incorporating the time-dependent nature of the systems. Here we aim at analysing the fractions of chaotic motion within different morphological components of the galaxy. We wish to investigate how the presence of chaotic orbits evolves with time, and how their spatial distribution is associated with morphological features of the galaxy. We employ a time-dependent analytical potential model that was derived from an N-body simulation of a strongly barred galaxy. With this analytical potential, we may follow the dynamical evolution of ensembles of orbits. Using the Generalized Alignment Index (GALI) chaos detection method, we study the fraction of chaotic orbits, sampling the dynamics of both the stellar disc and of the dark matter halo. Within the stellar disc, the global trend is for chaotic motion to decrease in time, specially in the region of the bar. We scrutinized the different changes of regime during the evolution (orbits that are permanently chaotic, permanently regular, those that begin regular and end chaotic, and those that begin chaotic and end regular), tracing the types of orbits back to their common origins. Within the dark matter halo, chaotic motion also decreases globally in time. The inner halo (r < 5 kpc) is where most chaotic orbits are found and it is the only region where chaotic orbits outnumber regular orbits, in the early evolution.

  18. The clustering of baryonic matter. II: halo model and hydrodynamic simulations

    SciTech Connect

    Fedeli, C.; Semboloni, E.; Velliscig, M.; Daalen, M. Van; Schaye, J.; Hoekstra, H. E-mail: sembolon@strw.leidenuniv.nl E-mail: daalen@strw.leidenuniv.nl E-mail: hoekstra@strw.leidenuniv.nl

    2014-08-01

    We recently developed a generalization of the halo model in order to describe the spatial clustering properties of each mass component in the Universe, including hot gas and stars. In this work we discuss the complementarity of the model with respect to a set of cosmological simulations including hydrodynamics of different kinds. We find that the mass fractions and density profiles measured in the simulations do not always succeed in reproducing the simulated matter power spectra, the reason being that the latter encode information from a much larger range in masses than that accessible to individually resolved structures. In other words, this halo model allows one to extract information on the growth of structures from the spatial clustering of matter, that is complementary with the information coming from the study of individual objects. We also find a number of directions for improvement of the present implementation of the model, depending on the specific application one has in mind. The most relevant one is the necessity for a scale dependence of the bias of the diffuse gas component, which will be interesting to test with future detections of the Warm-Hot Intergalactic Medium. This investigation confirms the possibility to gain information on the physics of galaxy and cluster formation by studying the clustering of mass, and our next work will consist of applying the halo model to use future high-precision cosmic shear surveys to this end.

  19. Ca II and Na I absorption signatures from extraplanar gas in the halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Ben Bekhti, N.; Richter, P.; Westmeier, T.; Murphy, M. T.

    2008-08-01

    Aims: We analyse absorption characteristics and physical conditions of extraplanar intermediate- and high-velocity gas to study the distribution of the neutral and weakly ionised Milky Way halo gas and its relevance for the evolution of the Milky Way and other spiral galaxies. Methods: We combine optical absorption line measurements of Ca II/Na I and 21 cm emission line observations of H I along 103 extragalactic lines of sight towards quasars (QSOs) and active galactic nuclei (AGN). The archival optical spectra were obtained with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope, while the 21 cm H I observations were carried out using the 100-m radio telescope at Effelsberg. Results: The analysis of the UVES spectra shows that single and multi-component Ca II/Na I absorbers at intermediate and high velocities are present in about 35 percent of the sight lines, indicating the presence of neutral extraplanar gas structures. In some cases the Ca II/Na I absorption is connected with H I 21 cm intermediate- or high-velocity gas with H I column densities in the range of 1018 to 1020 cm-2 (i.e., the classical IVCs and HVCs), while other Ca II/Na I absorbers show no associated H I emission. The observed H I line widths vary from Δ vFWHM=3.2 km s-1 to 32.0 km s-1 indicating a range of upper gas temperature limits of 250 K up to about 22 500 K. Conclusions: Our study suggests that the Milky Way halo is filled with a large number of neutral gaseous structures whose high column density tail represents the population of common H I high-velocity clouds seen in 21 cm surveys. The Ca II column density distribution follows a power-law f(N)=CNβ with a slope of β ≈ -1.6, thus comparable to the distribution found for intervening metal-line systems toward QSOs. Many of the statistical and physical properties of the Ca II absorbers resemble those of strong (W_λ 2796>0.3 Å) Mg II absorbing systems observed in the circumgalactic environment of

  20. First validation of SCIAMACHY O3 and NO2 products with collocated measurements from satellite sensors GOME, HALOE and SAGE II

    NASA Astrophysics Data System (ADS)

    Bracher, A.; Weber, M.; Bramstedt, K.; Richter, A.; Rozanov, A.; von Savigny, C.; von Koenig, M.; Burrows, J. P.

    2003-04-01

    Various operational versions and scientific products of ozone and NO2 columns and profiles from SCIAMACHY on ENVISAT are validated by comparison with the space borne instruments Global-Ozone-Monitoring-Experiment (GOME, version 2.7), Halogen Occultation Experiment (HALOE, data version v19) and Stratospheric Aerosol and Gas Experiment II (SAGE II, data version 6.10) in order to assess the level-2 data retrieval accuracy of these selected trace gas products. Coincident measurements are identified by limiting time differences and distance between two observation points. Since there are large amounts of coincident measurements for the comparisons of O3 and NO2 columns from SCIAMACHY and GOME, data are spatially divided into regular latitudinal and longitudinal square grids in order to save computing time. Where both instruments have measurements in the same spatial square grid, the means of the data of each instrument within one grid are compared to each other. For the comparisons of O3 and NO2 profiles columns from SCIAMACHY with HALOE and SAGE II data, collocations were identified where measurements of the two satellite instruments were taken at the same day and using a spatial collocation tolerance which ensures that the tangent point of HALOE or SAGE II is covered by the SCIAMACHY ground pixel. For the comparisons of NO2 profiles, additionally a scaling factor is applied, because NO2 has a strong diurnal variability and the HALOE and SAGE II measurements are performed during local sunrise or sunset.

  1. A MEGACAM SURVEY OF OUTER HALO SATELLITES. II. BLUE STRAGGLERS IN THE LOWEST STELLAR DENSITY SYSTEMS

    SciTech Connect

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla; Cote, Patrick; Stetson, Peter; Simon, Joshua D.; Djorgovski, S. G. E-mail: rmunoz@das.uchile.cl

    2013-09-10

    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed for inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.

  2. Signatures of Kinematic Substructure in the Galactic Stellar Halo

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Spergel, David N.; Madau, Piero

    2015-07-01

    Tidal debris from infalling satellites can leave observable structure in the phase-space distribution of the Galactic halo. Such substructure can be manifest in the spatial and/or velocity distributions of the stars in the halo. This paper focuses on a class of substructure that is purely kinematic in nature, with no accompanying spatial features. To study its properties, we use a simulated stellar halo created by dynamically populating the Via Lactea II high-resolution N-body simulation with stars. A significant fraction of the stars in the inner halo of Via Lactea share a common speed and metallicity, despite the fact that they are spatially diffuse. We argue that this kinematic substructure is a generic feature of tidal debris from older mergers and may explain the detection of radial-velocity substructure in the inner halo made by the Sloan Extension for Galactic Understanding and Exploration. The GAIA satellite, which will provide the proper motions of an unprecedented number of stars, should further characterize the kinematic substructure in the inner halo. Our study of the Via Lactea simulation suggests that the stellar halo can be used to map the speed distribution of the local dark matter (DM) halo, which has important consequences for DM direct-detection experiments.

  3. Deep SDSS optical spectroscopy of distant halo stars. II. Iron, calcium, and magnesium abundances

    NASA Astrophysics Data System (ADS)

    Fernández-Alvar, E.; Allende Prieto, C.; Schlesinger, K. J.; Beers, T. C.; Robin, A. C.; Schneider, D. P.; Lee, Y. S.; Bizyaev, D.; Ebelke, G.; Malanushenko, E.; Malanushenko, V.; Oravetz, D.; Pan, K.; Simmons, A.

    2015-05-01

    Aims: We analyze a sample of 3944 low-resolution (R ~ 2000) optical spectra from the Sloan Digital Sky Survey (SDSS), focusing on stars with effective temperatures 5800 ≤ Teff ≤ 6300 K, and distances from the Milky Way plane in excess of 5 kpc, and determine their abundances of Fe, Ca, and Mg. Methods: We followed the same methodology as in the previous paper in this series, deriving atmospheric parameters by χ2 minimization, but this time we obtained the abundances of individual elements by fitting their associated spectral lines. Distances were calculated from absolute magnitudes obtained by a statistical comparison of our stellar parameters with stellar-evolution models. Results: The observations reveal a decrease in the abundances of iron, calcium, and magnesium at large distances from the Galactic center. The median abundances for the halo stars analyzed are fairly constant up to a Galactocentric distance r ~ 20 kpc, rapidly decrease between r ~ 20 and r ~ 40 kpc, and flatten out to significantly lower values at larger distances, consistent with previous studies. In addition, we examine [Ca/Fe] and [Mg/Fe] as a function of [Fe/H] and Galactocentric distance. Our results show that the most distant parts of the halo show a steeper variation of [Ca/Fe] and [Mg/Fe] with iron. We found that at the range -1.6 < [Fe/H] < -0.4, [Ca/Fe] decreases with distance, in agreement with earlier results based on local stars. However, the opposite trend is apparent for [Mg/Fe]. Our conclusion that the outer regions of the halo are more metal-poor than the inner regions, based on in situ observations of distant stars, agrees with recent results based on inferences from the kinematics of more local stars, and with predictions of recent galaxy formation simulations for galaxies similar to the Milky Way. Table 1 and beginning of Tables 2 and 3 are available in electronic form at http://www.aanda.orgFull Tables 2 and 3 are only available at the CDS via anonymous ftp to http

  4. The bar-halo interaction - II. Secular evolution and the religion of N-body simulations

    NASA Astrophysics Data System (ADS)

    Weinberg, Martin D.; Katz, Neal

    2007-02-01

    This paper explores resonance-driven secular evolution between a bar and dark matter halo using N-body simulations. We make direct comparisons to our analytic theory to demonstrate the great difficulty that an N-body simulation has representing these dynamics for realistic astronomical interactions. In a dark matter halo, the bar's angular momentum is coupled to the central density cusp (if present) by the inner Lindblad resonance. Owing to this angular momentum transfer and self-consistent re-equilibration, strong realistic bars WILL modify the cusp profile, lowering the central densities within about 30 per cent of the bar radius in a few bar orbits. Past results to the contrary may be the result of weak bars or numerical artefacts. The magnitude of the effect depends on many factors and we illustrate the sensitivity of the response to the dark matter profile, the bar shape and mass and the galaxy's evolutionary history. For example, if the bar length is comparable to the size of a central dark matter core, the bar may exchange angular momentum without changing its pattern speed significantly. We emphasize that this apparently simple example of secular evolution is remarkably subtle in detail and conclude that an N-body exploration of any astronomical scenario requires a deep investigation into the underlying dynamical mechanisms for that particular problem to set the necessary requirements for the simulation parameters and method (e.g. particle number and Poisson solver). Simply put, N-body simulations do not divinely reveal truth and hence their results are not infallible. They are unlikely to provide useful insight on their own, particularly for the study of even more complex secular processes such as the production of pseudo-bulges and disc heating.

  5. Ultra-flat galaxies selected from RFGC catalog. II. Orbital estimates of halo masses

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Karachentseva, V. E.; Kudrya, Yu. N.

    2016-04-01

    We used the Revised Flat Galaxy Catalog (RFGC) to select 817 ultra-flat (UF) edge-on disk galaxies with blue and red apparent axial ratios of ( a/ b)B > 10.0 and ( a/ b)R > 8.5. The sample covering the whole sky, except the Milky Way zone, contains 490 UF galaxies with measured radial velocities. Our inspection of the neighboring galaxies around them revealed only 30 companions with radial velocity difference of | ΔV |< 500 kms-1 inside the projected separation of R p < 250 kpc. Wherein, the wider area around the UF galaxy within R p < 750 kpc contains no other neighbors brighter than the UF galaxy itself in the same velocity span. The resulting sample galaxies mostly belong to the morphological types Sc, Scd, Sd. They have a moderate rotation velocity curve amplitude of about 120 km s-1 and a moderate K-band luminosity of about 1010 L ⊙. The median difference of radial velocities of their companions is 87 km s-1, yielding the median orbital mass estimate of about 5 × 1011 M ⊙. Excluding six probable non-isolated pairs, we obtained a typical halo-mass-to-stellar-mass of UF galaxies of about 30, what is almost the same one as in the principal spiral galaxies, like M31 and M81 in the nearest groups. We also note that ultra-flat galaxies look two times less "dusty" than other spirals of the same luminosity.

  6. STELLAR ARCHAEOLOGY IN THE GALACTIC HALO WITH THE ULTRA-FAINT DWARFS. VI. URSA MAJOR II

    SciTech Connect

    Dall'Ora, M.; Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria E-mail: ripepi@na.astro.it E-mail: ilaria@na.astro.it; and others

    2012-06-10

    We present a B, V color-magnitude diagram (CMD) of the Milky Way dwarf satellite Ursa Major II (UMa II), spanning the magnitude range from V {approx} 15 to V {approx} 23.5 mag and extending over an 18 Multiplication-Sign 18 arcmin{sup 2} area centered on the Galaxy. Our photometry goes down to about 2 mag below the Galaxy's main-sequence turnoff that we detected at V {approx} 21.5 mag. We have discovered a bona fide RR Lyrae variable star in UMa II, which we use to estimate a conservative dereddened distance modulus for the galaxy of (m - M){sub 0} = 17.70 {+-} 0.04 {+-} 0.12 mag, where the first error accounts for the uncertainties of the calibrated photometry, and the second reflects our lack of information on the metallicity of the star. The corresponding distance to UMa II is 34.7{sup +0.6}{sub -0.7}({sup +2.0}{sub -1.9}) kpc. Our photometry shows evidence of a spread in the Galaxy's subgiant branch, compatible with a spread in metal abundance in the range between Z = 0.0001 and Z = 0.001. Based on our estimate of the distance, a comparison of the fiducial lines of the Galactic globular clusters M68 and M5 ([Fe/H] = -2.27 {+-} 0.04 dex and -1.33 {+-} 0.02 dex, respectively), with the position on the CMD of spectroscopically confirmed Galaxy members, may suggest the existence of stellar populations of different metal abundance/age in the central region of UMa II.

  7. On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements

    DOE PAGES

    Kovilakam, Mahesh; Deshler, Terry

    2015-08-26

    In situ stratospheric aerosol measurements, from University of Wyoming optical particle counters (OPCs), are compared with Stratospheric Aerosol Gas Experiment (SAGE) II (versions 6.2 and 7.0) and Halogen Occultation Experiment (HALOE) satellite measurements to investigate differences between SAGE II/HALOE-measured extinction and derived surface area and OPC-derived extinction and surface area. Coincident OPC and SAGE II measurements are compared for a volcanic (1991-1996) and nonvolcanic (1997 2005) period. OPC calculated extinctions agree with SAGE II measurements, within instrumental uncertainty, during the volcanic period, but have been a factor of 2 low during the nonvolcanic period. Three systematic errors associated with themore » OPC measurements, anisokineticity, inlet particle evaporation, and counting efficiency, were investigated. An overestimation of the OPC counting efficiency is found to be the major source of systematic error. With this correction OPC calculated extinction increases by 15 30% (30 50%) for the volcanic (nonvolcanic) measurements. These changes significantly improve the comparison with SAGE II and HALOE extinctions in the nonvolcanic cases but slightly degrade the agreement in the volcanic period. These corrections have impacts on OPC-derived surface area density, exacerbating the poor agreement between OPC and SAGE II (version 6.2) surface areas. This disparity is reconciled with SAGE II version 7.0 surface areas. For both the volcanic and nonvolcanic cases these changes in OPC counting efficiency and in the operational SAGE II surface area algorithm leave the derived surface areas from both platforms in significantly better agreement and within the 40% precision of the OPC moment calculations.« less

  8. On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements

    SciTech Connect

    Kovilakam, Mahesh; Deshler, Terry

    2015-08-26

    In situ stratospheric aerosol measurements, from University of Wyoming optical particle counters (OPCs), are compared with Stratospheric Aerosol Gas Experiment (SAGE) II (versions 6.2 and 7.0) and Halogen Occultation Experiment (HALOE) satellite measurements to investigate differences between SAGE II/HALOE-measured extinction and derived surface area and OPC-derived extinction and surface area. Coincident OPC and SAGE II measurements are compared for a volcanic (1991-1996) and nonvolcanic (1997 2005) period. OPC calculated extinctions agree with SAGE II measurements, within instrumental uncertainty, during the volcanic period, but have been a factor of 2 low during the nonvolcanic period. Three systematic errors associated with the OPC measurements, anisokineticity, inlet particle evaporation, and counting efficiency, were investigated. An overestimation of the OPC counting efficiency is found to be the major source of systematic error. With this correction OPC calculated extinction increases by 15 30% (30 50%) for the volcanic (nonvolcanic) measurements. These changes significantly improve the comparison with SAGE II and HALOE extinctions in the nonvolcanic cases but slightly degrade the agreement in the volcanic period. These corrections have impacts on OPC-derived surface area density, exacerbating the poor agreement between OPC and SAGE II (version 6.2) surface areas. This disparity is reconciled with SAGE II version 7.0 surface areas. For both the volcanic and nonvolcanic cases these changes in OPC counting efficiency and in the operational SAGE II surface area algorithm leave the derived surface areas from both platforms in significantly better agreement and within the 40% precision of the OPC moment calculations.

  9. Quaternion regularization and stabilization of perturbed central motion. II

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    1993-04-01

    Generalized regular quaternion equations for the three-dimensional two-body problem in terms of Kustaanheimo-Stiefel variables are obtained within the framework of the quaternion theory of regularizing and stabilizing transformations of the Newtonian equations for perturbed central motion. Regular quaternion equations for perturbed central motion of a material point in a central field with a certain potential Pi are also derived in oscillatory and normal forms. In addition, systems of perturbed central motion equations are obtained which include quaternion equations of perturbed orbit orientations in oscillatory or normal form, and a generalized Binet equation is derived. A comparative analysis of the equations is carried out.

  10. Detecting Triaxiality in the Galactic Dark Matter Halo through Stellar Kinematics. II. Dependence on Nature of Dark Matter and Gravity

    NASA Astrophysics Data System (ADS)

    Rojas-Niño, Armando; Martínez-Medina, Luis A.; Pichardo, Barbara; Valenzuela, Octavio

    2015-05-01

    Recent studies have presented evidence that the Milky Way global potential may be non-spherical. In this case, the assembling process of the Galaxy may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo, potentially originated by orbital resonances. We further investigate such a possibility, now considering potential models further away from ΛCDM halos, like scalar field dark matter halos and Modified Newtonian Dynamics (MOND), and including several other factors that may mimic the emergence and permanence of kinematic groups, such as a spherical and triaxial halo with an embedded disk potential. We find that regardless of the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND-like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.

  11. General-relativistic celestial mechanics. II. Translational equations of motion

    SciTech Connect

    Damour, T. Departement d'Astrophysique Relativiste et de Cosmologie, Observatoire de Paris, Centre National de la Recherche Scientifique, 92195 Meudon CEDEX ); Soffel, M.; Xu, C. )

    1992-02-15

    The translational laws of motion for gravitationally interacting systems of {ital N} arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies are obtained at the first post-Newtonian approximation of general relativity. The derivation uses our recently introduced multi-reference-system method and obtains the translational laws of motion by writing that, in the local center-of-mass frame of each body, relativistic inertial effects combine with post-Newtonian self- and externally generated gravitational forces to produce a global equilibrium (relativistic generalization of d'Alembert's principle). Within the first post-Newtonian approximation (i.e., neglecting terms of order ({ital v}/{ital c}){sup 4} in the equations of motion), our work is the first to obtain complete and explicit results, in the form of infinite series, for the laws of motion of arbitrarily composed and shaped bodies. We first obtain the laws of motion of each body as an infinite series exhibiting the coupling of all the (Blanchet-Damour) post-Newtonian multipole moments of this body to the post-Newtonian tidal moments (recently defined by us) felt by this body. We then give the explicit expression of these tidal moments in terms of post-Newtonian multipole moments of the other bodies.

  12. General-relativistic celestial mechanics. II. Translational equations of motion

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Soffel, Michael; Xu, Chongming

    1992-02-01

    The translational laws of motion for gravitationally interacting systems of N arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies are obtained at the first post-Newtonian approximation of general relativity. The derivation uses our recently introduced multi-reference-system method and obtains the translational laws of motion by writing that, in the local center-of-mass frame of each body, relativistic inertial effects combine with post-Newtonian self- and externally generated gravitational forces to produce a global equilibrium (relativistic generalization of d'Alembert's principle). Within the first post-Newtonian approximation [i.e., neglecting terms of order (v/c)4 in the equations of motion], our work is the first to obtain complete and explicit results, in the form of infinite series, for the laws of motion of arbitrarily composed and shaped bodies. We first obtain the laws of motion of each body as an infinite series exhibiting the coupling of all the (Blanchet-Damour) post-Newtonian multipole moments of this body to the post-Newtonian tidal moments (recently defined by us) felt by this body. We then give the explicit expression of these tidal moments in terms of post-Newtonian multipole moments of the other bodies.

  13. Mathematical aspects of molecular replacement. II. Geometry of motion spaces.

    PubMed

    Chirikjian, Gregory S; Yan, Yan

    2012-03-01

    Molecular replacement (MR) is a well established computational method for phasing in macromolecular crystallography. In MR searches, spaces of motions are explored for determining the appropriate placement of rigid models of macromolecules in crystallographic asymmetric units. In the first paper of this series, it was shown that this space of motions, when endowed with an appropriate composition operator, forms an algebraic structure called a quasigroup. In this second paper, the geometric properties of these MR search spaces are explored and analyzed. This analysis includes the local differential geometry, global geometry and symmetry properties of these spaces.

  14. Artificial neural networks for 3-D motion analysis-Part II: Nonrigid motion.

    PubMed

    Chen, T; Lin, W C; Chen, C T

    1995-01-01

    For pt. I see ibid., p. 1386-93 (1995). An approach applying artificial neural net techniques to 3D nonrigid motion analysis is proposed. The 3D nonrigid motion of the left ventricle of a human heart is examined using biplanar cineangiography data, consisting of 3D coordinates of 30 coronary artery bifurcation points of the left ventricle and the correspondences of these points taken over 10 time instants during the heart cardiac cycle. The motion is decomposed into global rigid motion and a set of local nonrigid deformations which are coupled with the global motion. The global rigid motion can be estimated precisely as a translation vecto and a rotation matrix. Local nonrigid deformation estimation is discussed. A set of neural nets similar in structure and dynamics but different in physical size is proposed to tackle the problem of nonrigidity. These neural networks are interconnected through feedbacks. The activation function of the output layer is selected so that a feedback is involved in the output updating. The constraints are specified to ensure stable and globally consistent estimation. The objective is to find the optimal deformation matrices that satisfy the constraints for all coronary artery bifurcation points of the left ventricle. The proposed neural networks differ from other existing neural network models in their unique structure and dynamics.

  15. EFFECTS OF TUMORS ON INHALED PHARMACOLOGIC DRUGS: II. PARTICLE MOTION

    EPA Science Inventory

    ABSTRACT

    Computer simulations were conducted to describe drug particle motion in human lung bifurcations with tumors. The computations used FIDAP with a Cray T90 supercomputer. The objective was to better understand particle behavior as affected by particle characteristics...

  16. Kull ALE: II. Grid Motion on Unstructured Arbitrary Polyhedral Meshes

    SciTech Connect

    Anninos, P

    2002-02-11

    Several classes of mesh motion algorithms are presented for the remap phase of unstructured mesh ALE codes. The methods range from local shape optimization procedures to more complex variational minimization methods applied to arbitrary unstructured polyhedral meshes necessary for the Kull code.

  17. Dynamic characteristics of peripheral jet ACV. II - Pitching motion

    NASA Astrophysics Data System (ADS)

    Mori, T.; Maeda, H.

    The dynamic pitching characteristics of peripheral jet ACV (Air Cushion Vehicle) which have a stability curtain are investigated analytically and experimentally. The measured values of moment, lift and cushion pressure are compared with numerical results noting applicability to the pitching motion. The response of ACV to the sinusoidal pitching oscillation of the ground is also studied.

  18. The influence of diffuse scattered light. II. Observations of galaxy haloes and thick discs and hosts of blue compact galaxies

    NASA Astrophysics Data System (ADS)

    Sandin, Christer

    2015-05-01

    Studies of deep photometry of galaxies have presented discoveries of excess light in surface-brightness and colour profiles at large radii in the form of diffuse faint haloes and thick discs. In a majority of the cases, it has seemed necessary to use exotic stellar populations or alternative physical solutions to explain the excess. Few studies have carefully scrutinized the role of scattered light in this context. I explore the influence of scattered light on ground-based observations of haloes and thick discs around edge-on galaxies, haloes around face-on disc galaxies, host galaxies around blue compact galaxies (BCGs), and haloes around elliptical galaxies. Surface-brightness structures of all considered types of galaxies are modelled and analysed to compare scattered-light haloes and thick discs with measurements. I simulate the influence of scattered light and accurate sky subtraction on simplified Sérsic-type and face-on disc galaxy models. All galaxy models are convolved with both lower-limit and brighter point spread functions (PSFs); for a few galaxies it was possible to use dedicated PSFs. The results show bright scattered-light haloes and high amounts of red excess at large radii and faint surface brightnesses for nearly all types of galaxies; exceptions are the largest elliptical-type galaxies where the influence of scattered light is smaller. Studies have underestimated the role of scattered light to explain their surface-brightness profiles. My analysis shows surface-brightness profiles that include scattered light that are very similar to and overlap measurements at all radii. The derivation of physical properties of haloes, thick discs, and BCG hosts from diffuse data is misleading since accurate and radially extended PSFs are non-existent. Significantly improved analyses that include new measurements of PSFs are required to study diffuse faint structures further.

  19. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. II. TRACING THE INNER M31 HALO WITH BLUE HORIZONTAL BRANCH STARS

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Rosenfield, Philip; Bell, Eric F.; Guhathakurta, Puragra; Seth, Anil C.; Kalirai, Jason S.; Girardi, Leo E-mail: jd@astro.washington.edu E-mail: philrose@astro.washington.edu E-mail: raja@uco.lick.org E-mail: aseth@astro.utah.edu E-mail: lgirardi@pd.astro.it

    2012-11-01

    We attempt to constrain the shape of M31's inner stellar halo by tracing the surface density of blue horizontal branch (BHB) stars at galactocentric distances ranging from 2 kpc to 35 kpc. Our measurements make use of resolved stellar photometry from a section of the Panchromatic Hubble Andromeda Treasury survey, supplemented by several archival Hubble Space Telescope observations. We find that the ratio of BHB to red giant stars is relatively constant outside of 10 kpc, suggesting that the BHB is as reliable a tracer of the halo population as the red giant branch. In the inner halo, we do not expect BHB stars to be produced by the high-metallicity bulge and disk, making BHB stars a good candidate to be a reliable tracer of the stellar halo to much smaller galactocentric distances. If we assume a power-law profile r {sup -{alpha}} for the two-dimensional (2D) projected surface density BHB distribution, we obtain a high-quality fit with a 2D power-law index of {alpha} = 2.6{sup +0.3} {sub -0.2} outside of 3 kpc, which flattens to {alpha} < 1.2 inside of 3 kpc. This slope is consistent with previous measurements but is anchored to a radial baseline that extends much farther inward. Finally, assuming azimuthal symmetry and a constant mass-to-light ratio, the best-fitting profile yields a total halo stellar mass of 2.1{sup +1.7} {sub -0.4} Multiplication-Sign 10{sup 9} M {sub Sun }. These properties are comparable with both simulations of stellar halo formation by satellite disruption alone and simulations that include some in situ formation of halo stars.

  20. An Unusual Lunar Halo

    ERIC Educational Resources Information Center

    Cardon, Bartley L.

    1977-01-01

    Discusses a photograph of an unusual combination of lunar halos: the 22-degree refraction halo, the circumscribed halo, and a reflection halo. Deduces the form and orientations of the ice crystals responsible for the observed halo features. (MLH)

  1. NIHAO project II: halo shape, phase-space density and velocity distribution of dark matter in galaxy formation simulations

    NASA Astrophysics Data System (ADS)

    Butsky, Iryna; Macciò, Andrea V.; Dutton, Aaron A.; Wang, Liang; Obreja, Aura; Stinson, Greg S.; Penzo, Camilla; Kang, Xi; Keller, Ben W.; Wadsley, James

    2016-10-01

    We use the NIHAO (Numerical Investigation of Hundred Astrophysical Objects) cosmological simulations to study the effects of galaxy formation on key properties of dark matter (DM) haloes. NIHAO consists of ≈90 high-resolution smoothed particle hydrodynamics simulations that include (metal-line) cooling, star formation, and feedback from massive stars and supernovae, and cover a wide stellar and halo mass range: 106 ≲ M*/M⊙ ≲ 1011(109.5 ≲ Mhalo/M⊙ ≲ 1012.5). When compared to DM-only simulations, the NIHAO haloes have similar shapes at the virial radius, Rvir, but are substantially rounder inside ≈0.1Rvir. In NIHAO simulations, c/a increases with halo mass and integrated star formation efficiency, reaching ˜0.8 at the Milky Way mass (compared to 0.5 in DM-only), providing a plausible solution to the long-standing conflict between observations and DM-only simulations. The radial profile of the phase-space Q parameter (ρ/σ3) is best fit with a single power law in DM-only simulations, but shows a flattening within ≈0.1Rvir for NIHAO for total masses M > 1011 M⊙. Finally, the global velocity distribution of DM is similar in both DM-only and NIHAO simulations, but in the solar neighbourhood, NIHAO galaxies deviate substantially from Maxwellian. The distribution is more symmetric, roughly Gaussian, with a peak that shifts to higher velocities for Milky Way mass haloes. We provide the distribution parameters which can be used for predictions for direct DM detection experiments. Our results underline the ability of the galaxy formation processes to modify the properties of DM haloes.

  2. Smart Rehabilitation Devices: Part II – Adaptive Motion Control

    PubMed Central

    Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine

    2008-01-01

    This article presents a study of adaptive motion control of smart versatile rehabilitation devices using MR fluids. The device provides both isometric and isokinetic strength training and is reconfigurable for several human joints. Adaptive controls are developed to regulate resistance force based on the prescription of the therapist. Special consideration has been given to the human–machine interaction in the adaptive control that can modify the behavior of the device to account for strength gains or muscle fatigue of the human subject. PMID:18548131

  3. Connecting apparatus for limited rotary of rectilinear motion (II)

    DOEpatents

    Hardin, Jr., Roy T.; Kurinko, Carl D.

    1981-01-01

    Apparatus for providing connection between two members having relative movement in a horizontal plane in a rotary or linear fashion. The apparatus includes a set of vertical surfaces affixed to each of the members, laterally aligned across a selected vertical gap. A number of cables or hoses, for electrical, hydraulic, or pneumatic connection are arranged between consecutive surfaces in a C-shaped traveling loop, connected through their end portions to the two respective members, so that through a sliding motion portions of the cable are transferred from between one set of surfaces to the other aligned set, across the gap, upon relative motion of the members. A number of flexible devices are affixed to the upper set of surfaces for supporting the upper portion of each looped cable. The apparatus is particularly adaptable to an area having limited lateral clearances and requiring signal level separation between electrical cables, such as found in the rotating plugs and associated equipment of the reactor vessel head of a nuclear reactor.

  4. Effects of tumors on inhaled pharmacologic drugs: II. Particle motion.

    PubMed

    Martonen, T B; Guan, X

    2001-01-01

    Computer simulations were conducted to describe drug particle motion in human lung bifurcations with tumors. The computations used FIDAP with a Cray T90 supercomputer. The objective was to better understand particle behavior as affected by particle characteristics, airflow conditions, and disease-modified airway geometries. The results indicated that increases in particle sizes, breathing intensities and tumor sizes could enhance drug deposition on the tumors. The modeling suggested that targeted drug delivery could be achieved by regulating breathing parameters and designing (selecting physical features of) aerosolized drugs. We present the theoretical work as a step towards improving aerosol therapy protocols. Since modeling describes factors affecting dose, it is complementary to considerations of the molecular aspects of drug formulation and pharmacokinetics.

  5. Anaphase chromatid motion: involvement of type II DNA topoisomerases.

    PubMed Central

    Duplantier, B; Jannink, G; Sikorav, J L

    1995-01-01

    Sister chromatids are topologically intertwined at the onset of anaphase: their segregation during anaphase is known to require strand-passing activity by type II DNA topoisomerase. We propose that the removal of the intertwinings involves at the same time the traction of the mitotic spindle and the activity of topoisomerases. This implies that the velocity of the chromatids is compatible with the kinetic constraints imposed by the enzymatic reaction. We show that the greatest observed velocities (about 0.1 microns s-1) are close to the theoretical upper bound compatible with both the diffusion rate (calculated here within a probabilistic model) and the measured reaction rate of the enzyme. PMID:8534830

  6. INTERPLAY OF THREE KINDS OF MOTION IN THE DISK COUNTERPART OF TYPE II SPICULES: UPFLOW, TRANSVERSAL, AND TORSIONAL MOTIONS

    SciTech Connect

    Sekse, D. H.; Rouppe van der Voort, L.; De Pontieu, B.; Scullion, E.

    2013-05-20

    Recently, it was shown that the complex dynamical behavior of spicules has to be interpreted as the result of simultaneous action of three kinds of motion: (1) field aligned flows, (2) swaying motions, and (3) torsional motions. We use high-quality observations from the CRisp Imaging SpectroPolarimeter at the Swedish 1-m Solar Telescope to investigate signs of these different kinetic modes in spicules on the disk. Earlier, rapid blue-shifted excursions (RBEs), short-lived absorption features in the blue wing of chromospheric spectral lines, were identified as the disk counterpart of type II spicules. Here we report the existence of similar absorption features in the red wing of the Ca II 8542 and H{alpha} lines: rapid redshifted excursions (RREs). RREs are found over the whole solar disk and are located in the same regions as RBEs: in the vicinity of magnetic field concentrations. RREs have similar characteristics as RBEs: they have similar lengths, widths, lifetimes, and average Doppler velocity. The striking similarity of RREs to RBEs implies that RREs are a manifestation of the same physical phenomenon and that spicules harbor motions that can result in a net redshift when observed on-disk. We find that RREs are less abundant than RBEs: the RRE/RBE detection count ratio is about 0.52 at disk center and 0.74 near the limb. We interpret the higher number of RBEs and the decreased imbalance toward the limb as an indication that field-aligned upflows have a significant contribution to the net Dopplershift of the structure. Most RREs and RBEs are observed in isolation, but we find many examples of parallel and touching RRE/RBE pairs which appear to be part of the same spicule. We interpret the existence of these RRE/RBE pairs and the observation that many RREs and RBEs have varying Dopplershift along their width as signs that torsional motion is an important characteristic of spicules. The fact that most RBEs and RREs are observed in isolation agrees with the idea

  7. Measuring the Stellar Halo Velocity Anisotropy With 3D Kinematics

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily C.; Deason, Alis J.; Guhathakurta, Puragra; Rockosi, Constance M.; van der Marel, Roeland P.; Sohn, S. Tony

    2016-08-01

    We present the first measurement of the anisotropy parameter β using 3D kinematic information outside of the solar neighborhood. Our sample consists of 13 Milky Way halo stars with measured proper motions and radial velocities in the line of sight of M31. Proper motions were measured using deep, multi-epoch HST imaging, and radial velocities were measured from Keck II/DEIMOS spectra. We measure β = -0.3-0.9 +0.4, which is consistent with isotropy, and inconsistent with measurements in the solar neighborhood. We suggest that this may be the kinematic signature of a relatively early, massive accretion event, or perhaps several such events.

  8. A FIRST MEASUREMENT OF THE PROPER MOTION OF THE LEO II DWARF SPHEROIDAL GALAXY

    SciTech Connect

    Lepine, Sebastien; Koch, Andreas; Rich, R. Michael; Kuijken, Konrad

    2011-11-10

    We use 14 year baseline images obtained with the Wide Field and Planetary Camera 2 on board the Hubble Space Telescope (HST) to derive a proper motion for one of the Milky Way's most distant dwarf spheroidal companions, Leo II, relative to an extragalactic background reference frame. Astrometric measurements are performed in the effective point-spread function formalism using our own developed code. An astrometric reference grid is defined using 3224 stars that are members of Leo II and brighter than a magnitude of 25 in the F814W band. We identify 17 compact extragalactic sources, for which we measure a systemic proper motion relative to this stellar reference grid. We derive a proper motion [{mu}{sub {alpha},{mu}{delta}}] = [+104 {+-}113,-33 {+-} 151] {mu}as yr{sup -1} for Leo II in the heliocentric reference frame. Though marginally detected, the proper motion yields constraints on the orbit of Leo II. Given a distance of d {approx_equal} 230 kpc and a heliocentric radial velocity v{sub r} = +79 km s{sup -1}, and after subtraction of the solar motion, our measurement indicates a total orbital motion v{sub G} = 266.1 {+-} 128.7 km s{sup -1} in the Galactocentric reference frame, with a radial component v{sub r{sub G}}=21.5{+-}4.3 km s{sup -1} and tangential component v{sub t{sub G}} = 265.2 {+-} 129.4 km s{sup -1}. The small radial component indicates that Leo II either has a low-eccentricity orbit or is currently close to perigalacticon or apogalacticon distance. We see evidence for systematic errors in the astrometry of the extragalactic sources which, while close to being point sources, are slightly resolved in the HST images. We argue that more extensive observations at later epochs will be necessary to better constrain the proper motion of Leo II. We provide a detailed catalog of the stellar and extragalactic sources identified in the HST data which should provide a solid early-epoch reference for future astrometric measurements.

  9. Grains in galactic haloes

    NASA Technical Reports Server (NTRS)

    Ferrara, Andrea; Barsella, Bruno; Ferrini, F.; Greenberg, J. Mayo; Aiello, Santi

    1989-01-01

    Researchers considered the effect of extensive forces on dust grains subjected to the light and matter distribution of a spiral galaxy (Greenberg et al. (1987), Ferrini et al. (1987), Barsella et al (1988). Researchers showed that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. They found, for example, that graphite grains from 20 nm to 250 nm radius are expelled from a typical galaxy, while silicates and other forms of dielectrics, after initial expulsion, may settle in potential minimum within the halo. They discuss only the statistical behavior of the forces for 17 galaxies whose luminosity and matter distribution in the disk, bulge and halo components are reasonably well known. The preliminary results of the study of the motion of a dust grain for NGC 3198 are given.

  10. Sunset-sunrise difference in solar occultation ozone measurements (SAGE II, HALOE, and ACE-FTS) and its relationship to tidal vertical winds

    NASA Astrophysics Data System (ADS)

    Sakazaki, T.; Shiotani, M.; Suzuki, M.; Kinnison, D.; Zawodny, J. M.; McHugh, M.; Walker, K. A.

    2015-01-01

    This paper contains a comprehensive investigation of the sunset-sunrise difference (SSD, i.e., the sunset-minus-sunrise value) of the ozone mixing ratio in the latitude range of 10° S-10° N. SSD values were determined from solar occultation measurements based on data obtained from the Stratospheric Aerosol and Gas Experiment (SAGE) II, the Halogen Occultation Experiment (HALOE), and the Atmospheric Chemistry Experiment-Fourier transform spectrometer (ACE-FTS). The SSD was negative at altitudes of 20-30 km (-0.1 ppmv at 25 km) and positive at 30-50 km (+0.2 ppmv at 40-45 km) for HALOE and ACE-FTS data. SAGE II data also showed a qualitatively similar result, although the SSD in the upper stratosphere was 2 times larger than those derived from the other data sets. On the basis of an analysis of data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and a nudged chemical transport model (the specified dynamics version of the Whole Atmosphere Community Climate Model: SD-WACCM), we conclude that the SSD can be explained by diurnal variations in the ozone concentration, particularly those caused by vertical transport by the atmospheric tidal winds. All data sets showed significant seasonal variations in the SSD; the SSD in the upper stratosphere is greatest from December through February, while that in the lower stratosphere reaches a maximum twice: during the periods March-April and September-October. Based on an analysis of SD-WACCM results, we found that these seasonal variations follow those associated with the tidal vertical winds.

  11. Sunset-sunrise difference in solar occultation ozone measurements (SAGE II, HALOE, and ACE-FTS) and its relationship to tidal vertical winds

    NASA Astrophysics Data System (ADS)

    Sakazaki, T.; Shiotani, M.; Suzuki, M.; Kinnison, D.; Zawodny, J. M.; McHugh, M.; Walker, K. A.

    2014-06-01

    This paper contains a comprehensive investigation of the sunset-sunrise difference (SSD; i.e., the sunset-minus-sunrise value) of the ozone mixing ratio in the latitude range of 10° S-10° N. SSD values were determined from solar occultation measurements based on data obtained from the Stratospheric Aerosol and Gas Experiment (SAGE) II, the Halogen Occultation Experiment (HALOE), and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The SSD was negative at altitudes of 20-30 km (-0.1 ppmv at 25 km) and positive at 30-50 km (+0.2 ppmv at 40-45 km) for HALOE and ACE-FTS data. SAGE II data also showed a qualitatively similar result, although the SSD in the upper stratosphere was two times larger than those derived from the other datasets. On the basis of an analysis of data from the Superconducting Submillimeter Limb Emission Sounder (SMILES), and a nudged chemical-transport model (the Specified Dynamics version of the Whole Atmosphere Community Climate Model: SD-WACCM), we conclude that the SSD can be explained by diurnal variations in the ozone concentration, particularly those caused by vertical transport by the atmospheric tidal winds. All datasets showed significant seasonal variations in the SSD; the SSD in the upper stratosphere is greatest from December through February, while that in the lower stratosphere reaches a maximum twice: during the periods March-April and September-October. Based on an analysis of SD-WACCM results, we found that these seasonal variations follow those associated with the tidal vertical winds.

  12. Halo scale predictions of symmetron modified gravity

    SciTech Connect

    Clampitt, Joseph; Jain, Bhuvnesh; Khoury, Justin E-mail: bjain@physics.upenn.edu

    2012-01-01

    We offer predictions of symmetron modified gravity in the neighborhood of realistic dark matter halos. The predictions for the fifth force are obtained by solving the nonlinear symmetron equation of motion in the spherical NFW approximation. In addition, we compare the three major known screening mechanisms: Vainshtein, Chameleon, and Symmetron around such dark matter halos, emphasizing the significant differences between them and highlighting observational tests which exploit these differences. Finally, we demonstrate the host halo environmental screening effect (''blanket screening'') on smaller satellite halos by solving for the modified forces around a density profile which is the sum of satellite and approximate host components.

  13. The Segue K giant survey. II. A catalog of distance determinations for the Segue K giants in the galactic halo

    SciTech Connect

    Xue, Xiang-Xiang; Rix, Hans-Walter; Ma, Zhibo; Morrison, Heather L.; Harding, Paul; Beers, Timothy C.; Ivans, Inese I.; Jacobson, Heather R.; Johnson, Jennifer; Lee, Young Sun; Lucatello, Sara; Rockosi, Constance M.; Yanny, Brian; Zhao, Gang; Allende Prieto, Carlos

    2014-04-01

    We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g – r){sub 0} color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes, and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25 mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125 kpc from the Galactic center, with 283 stars beyond 50 kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.

  14. The Century Survey Galactic Halo Project. II. Global Properties and the Luminosity Function of Field Blue Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.; Kurtz, Michael J.; Allende Prieto, Carlos; Beers, Timothy C.; Wilhelm, Ronald

    2005-09-01

    We discuss a 175 deg2 spectroscopic survey for blue horizontal branch (BHB) stars in the Galactic halo. We use the Two Micron All Sky Survey (2MASS) and the Sloan Digital Sky Survey (SDSS) to select BHB candidates, and we find that the 2MASS and SDSS color selection is 38% and 50% efficient, respectively, for BHB stars. Our samples include one likely runaway B7 star 6 kpc below the Galactic plane. The global properties of the BHB samples are consistent with membership in the halo population: the median metallicity is [Fe/H]=-1.7, the velocity dispersion is 108 km s-1, and the mean Galactic rotation of the BHB stars 3 kpc<|z|<15 kpc is -4+/-30 km s-1. We discuss the theoretical basis of the Preston, Shectman, and Beers MV-color relation for BHB stars and conclude that the intrinsic shape of the BHB MV-color relation results from the physics of stars on the horizontal branch. We calculate the luminosity function for the field BHB star samples using the maximum likelihood method of Efstathiou and coworkers, which is unbiased by density variations. The field BHB luminosity function exhibits a steep rise at bright luminosities, a peak between 0.8

  15. A SUBSTELLAR COMMON PROPER-MOTION COMPANION TO THE PLEIAD H II 1348

    SciTech Connect

    Geissler, Kerstin; Metchev, Stanimir A.; Pham, Alfonse; Larkin, James E.; McElwain, Michael; Hillenbrand, Lynne A.

    2012-02-10

    We announce the identification of a proper-motion companion to the star H II 1348, a K5 V member of the Pleiades open cluster. The existence of a faint point source 1.''1 away from H II 1348 was previously known from adaptive optics imaging by Bouvier et al. However, because of a high likelihood of background star contamination and in the absence of follow-up astrometry, Bouvier et al. tentatively concluded that the candidate companion was not physically associated with H II 1348. We establish the proper-motion association of the pair from adaptive optics imaging with the Palomar 5 m telescope. Adaptive optics spectroscopy with the integral field spectrograph OSIRIS on the Keck 10 m telescope reveals that the companion has a spectral type of M8 {+-} 1. According to substellar evolution models, the M8 spectral type resides within the substellar mass regime at the age of the Pleiades. The primary itself is a known double-lined spectroscopic binary, which makes the resolved companion, H II 1348B, the least massive and widest component of this hierarchical triple system and the first substellar companion to a stellar primary in the Pleiades.

  16. Adiabatic Halo Formation

    SciTech Connect

    Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G.

    2005-06-08

    In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo formation.

  17. Reionization histories of Milky Way mass halos

    SciTech Connect

    Li, Tony Y.; Wechsler, Risa H.; Abel, Tom; Alvarez, Marcelo A. E-mail: rwechsler@stanford.edu E-mail: malvarez@cita.utoronto.ca

    2014-04-20

    We investigate the connection between the reionization era and the present-day universe by examining the mass reionization histories of z = 0 dark matter halos. In a 600{sup 3} Mpc{sup 3} volume, we combine a dark matter N-body simulation with a three-dimensional seminumerical reionization model. This tags each particle with a reionization redshift, so that individual present-day halos can be connected to their reionization histories and environments. We find that the vast majority of present-day halos with masses larger than ∼ few × 10{sup 11} M {sub ☉} reionize earlier than the rest of the universe. We also find significant halo-to-halo diversity in mass reionization histories, and find that in realistic inhomogeneous models, the material within a given halo is not expected to reionize at the same time. In particular, the scatter in reionization times within individual halos is typically larger than the scatter among halos. From our fiducial reionization model, we find that the typical 68% scatter in reionization times within halos is ∼115 Myr for 10{sup 12±0.25} M {sub ☉} halos, decreasing slightly to ∼95 Myr for 10{sup 15±0.25} M {sub ☉} halos. We find a mild correlation between reionization history and environment: halos with shorter reionization histories are typically in more clustered environments, with the strongest trend on a scale of ∼20 Mpc. Material in Milky Way mass halos with short reionization histories is preferentially reionized in relatively large H II regions, implying reionization mostly by sources external to the progenitors of the present-day halo. We investigate the impact on our results of varying the reionization model parameters, which span a range of reionization scenarios with varying timing and morphology.

  18. Single-Molecule Motions of MHC Class II Rely on Bound Peptides

    PubMed Central

    Kozono, Haruo; Matsushita, Yufuku; Ogawa, Naoki; Kozono, Yuko; Miyabe, Toshihiro; Sekiguchi, Hiroshi; Ichiyanagi, Kouhei; Okimoto, Noriaki; Taiji, Makoto; Kanagawa, Osami; Sasaki, Yuji C.

    2015-01-01

    The major histocompatibility complex (MHC) class II protein can bind peptides of different lengths in the region outside the peptide-binding groove. Peptide-flanking residues (PFRs) contribute to the binding affinity of the peptide for MHC and change the immunogenicity of the peptide/MHC complex with regard to T cell receptor (TCR). The mechanisms underlying these phenomena are currently unknown. The molecular flexibility of the peptide/MHC complex may be an important determinant of the structures recognized by certain T cells. We used single-molecule x-ray analysis (diffracted x-ray tracking (DXT)) and fluorescence anisotropy to investigate these mechanisms. DXT enabled us to monitor the real-time Brownian motion of the peptide/MHC complex and revealed that peptides without PFRs undergo larger rotational motions than peptides with PFRs. Fluorescence anisotropy further revealed that peptides without PFRs exhibit slightly larger motions on the nanosecond timescale. These results demonstrate that peptides without PFRs undergo dynamic motions in the groove of MHC and consequently are able to assume diverse structures that can be recognized by T cells. PMID:25606683

  19. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  20. Polarization of He II films upon the relative motion of the superfluid component and the quantized vortices

    NASA Astrophysics Data System (ADS)

    Adamenko, I. N.; Nemchenko, E. K.

    2016-04-01

    Theoretical study of the electrical activity of the saturated superfluid helium (He II) film upon the relative motion of the normal and superfluid components in the film was performed. The polarization vector due to the dipole moments of the quantized vortex rings in He II in the field of van der Waals forces was calculated taking into account the relative motion of the normal and superfluid components. An explicit analytical expression for the electric potential difference arising upon the relative motion of the normal and superfluid components in a torsional oscillator was derived. The obtained time, temperature and relative velocity dependences of the potential difference were in agreement with the experimental data.

  1. A low cost matching motion estimation sensor based on the NIOS II microprocessor.

    PubMed

    González, Diego; Botella, Guillermo; Meyer-Baese, Uwe; García, Carlos; Sanz, Concepción; Prieto-Matías, Manuel; Tirado, Francisco

    2012-09-27

    This work presents the implementation of a matching-based motion estimation sensor on a Field Programmable Gate Array (FPGA) and NIOS II microprocessor applying a C to Hardware (C2H) acceleration paradigm. The design, which involves several matching algorithms, is mapped using Very Large Scale Integration (VLSI) technology. These algorithms, as well as the hardware implementation, are presented here together with an extensive analysis of the resources needed and the throughput obtained. The developed low-cost system is practical for real-time throughput and reduced power consumption and is useful in robotic applications, such as tracking, navigation using an unmanned vehicle, or as part of a more complex system.

  2. The lithium isotope ratio in Population II halo dwarfs - A proposed test of the late decaying massive particle nucleosynthesis scenario

    NASA Technical Reports Server (NTRS)

    Brown, Lawrence; Schramm, David N.

    1988-01-01

    It is shown that observations of the lithium isotope ratio in high surface temperature Population II stars may be critical to cosmological nucleosynthesis models. In particular, decaying particle scenarios as derived in some supersymmetric models may stand or fall with such observations.

  3. Viscous flux motion in anisotropic type-II superconductors in low fields

    SciTech Connect

    Hao, Zhidong; Clem, J.R. Iowa State Univ. of Science and Technology, Ames, IA . Dept. of Physics)

    1990-01-01

    The Bardeen-Stephen model of viscous flux motion in isotropic Type-II superconductors is extended to the anisotropic case characterized by a phenomenological effective mass tensor m{sub ij}. When the magnetic field is low and the vortex lines are aligned along one of the three principal axes, simple expressions for the viscosity tensor {eta}{sub ij} of the viscous flux motion are obtained as functions of m{sub ij} and the normal state conductivity tensor {sigma}{sub ij} for temperature T close to the critical temperature {Tc}. For the high-temperature oxide superconductors the theory predicts that {eta}{sub b}{sup (a)}:{eta}{sub b}{sup (c)}:{eta}{sub c}{sup (a)} {approx} 1:4{gamma}:3{gamma}{sup 2}, where {eta}{sub i}{sup (j)} is the viscosity for the motion along the i-axis of a vortex parallel to the j-axis and {gamma} = {radical}m{sub c}/m{sub a} is the anisotropy parameter (m{sub i}, i = a,b,c, are the principal values of the mass tensor satisfying m{sub a} {approx} m{sub b} {much lt} m{sub c}). 9 refs., 1 fig.

  4. Halo formation in three-dimensional bunches

    NASA Astrophysics Data System (ADS)

    Gluckstern, R. L.; Fedotov, A. V.; Kurennoy, S.; Ryne, R.

    1998-10-01

    We have constructed, analytically and numerically, a class of self-consistent six-dimensional (6D) phase space stationary distributions. Stationary distributions allow us to study the halo development mechanism without it being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the formation of longitudinal and transverse halos in 3D axisymmetric beam bunches. We find that the longitudinal halo forms first for comparable longitudinal and transverse mismatches because the longitudinal tune depression is more severe than the transverse one for elongated bunches. Of particular importance is the result that, due to the coupling between longitudinal and transverse motion, a longitudinal or transverse halo is observed for a mismatch less than 10% if the mismatch in the other plane is large.

  5. Studying Stellar Halos with Future Facilities

    NASA Astrophysics Data System (ADS)

    Greggio, Laura; Falomo, Renato; Uslenghi, Michela

    2015-08-01

    Stellar halos around galaxies retain fundamental evidence of the processes which lead to their build up. Sophisticated models of galaxy formation in a cosmological context yield quantitative predictions about various observable characteristics, including the amount of substructure, the slope of radial mass profiles and three dimensional shapes, and the properties of the stellar populations in the galaxies halos. The comparison of such models with the observations leads to constraints on the general picture of galaxy formation in the hierarchical Universe, as well as on the physical processes taking place in the halos formation. With the current observing facilities, stellar halos can be effectively probed only for a limited number of nearby galaxies. In this contribution we illustrate the progress which we expect in this field with the future large aperture ground based telescopes (E-ELT and TNT), and with JWST. In particular we adress the following issues: (I) the characterization of the stellar populations in the halos innermost regions and substructures, (ii) the measurement of the halos profiles and shapes , and the halos mass content, (iii) the study of Globular Clusters inhabiting the halos of distant galaxies. In order to assess the expected capabilities of future facilities we present the results of a set of simulated images to evaluate to which level of accuracy it will be possible to probe the halos of distant galaxies.

  6. A Low Cost Matching Motion Estimation Sensor Based on the NIOS II Microprocessor

    PubMed Central

    González, Diego; Botella, Guillermo; Meyer-Baese, Uwe; García, Carlos; Sanz, Concepción; Prieto-Matías, Manuel; Tirado, Francisco

    2012-01-01

    This work presents the implementation of a matching-based motion estimation sensor on a Field Programmable Gate Array (FPGA) and NIOS II microprocessor applying a C to Hardware (C2H) acceleration paradigm. The design, which involves several matching algorithms, is mapped using Very Large Scale Integration (VLSI) technology. These algorithms, as well as the hardware implementation, are presented here together with an extensive analysis of the resources needed and the throughput obtained. The developed low-cost system is practical for real-time throughput and reduced power consumption and is useful in robotic applications, such as tracking, navigation using an unmanned vehicle, or as part of a more complex system. PMID:23201989

  7. Kinematically Detected Halo Streams

    NASA Astrophysics Data System (ADS)

    Smith, Martin C.

    Clues to the origins and evolution of our Galaxy can be found in the kinematics of stars around us. Remnants of accreted satellite galaxies produce over-densities in velocity-space, which can remain coherent for much longer than spatial over-densities. This chapter reviews a number of studies that have hunted for these accretion relics, both in the nearby solar-neighborhood and the more-distant stellar halo. Many observational surveys have driven this field forwards, from early work with the Hipparcos mission, to contemporary surveys like RAVE and SDSS. This active field continues to flourish, providing many new discoveries, and will be revolutionized as the Gaia mission delivers precise proper motions for a billion stars in our Galaxy.

  8. Dark-ages reionization and galaxy formation simulation - II. Spin and concentration parameters for dark matter haloes during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Angel, Paul W.; Poole, Gregory B.; Ludlow, Aaron D.; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-06-01

    We use high-resolution N-body simulations to study the concentration and spin parameters of dark matter haloes in the mass range 108 M⊙ h-1 < M < 1011 M⊙ h-1 and redshifts 5 < z < 10, corresponding to the haloes of galaxies thought to be responsible for reionization. We build a subsample of equilibrium haloes and contrast their properties to the full population that also includes unrelaxed systems. Concentrations are calculated by fitting both NFW and Einasto profiles to the spherically averaged density profiles of individual haloes. After removing haloes that are out of equilibrium, we find a z > 5 concentration-mass (c(M)) relation that is almost flat and well described by a simple power law for both NFW and Einasto fits. The intrinsic scatter around the mean relation is Δcvir ˜ 1 (or 20 per cent) at z = 5. We also find that the analytic model proposed by Ludlow et al. reproduces the mass and redshift dependence of halo concentrations. Our best-fitting Einasto shape parameter, α, depends on peak height, ν, in a manner that is accurately described by α = 0.0070ν2 + 0.1839. The distribution of the spin parameter, λ, has a weak dependence on equilibrium state; λ peaks at roughly ˜0.033 for our relaxed sample, and at ˜0.04 for the full population. The spin-virial mass relation has a mild negative correlation at high redshift.

  9. Ground-motion modeling of Hayward fault scenario earthquakes, part II: Simulation of long-period and broadband ground motions

    USGS Publications Warehouse

    Aagaard, Brad T.; Graves, Robert W.; Rodgers, Arthur; Brocher, Thomas M.; Simpson, Robert W.; Dreger, Douglas; Petersson, N. Anders; Larsen, Shawn C.; Ma, Shuo; Jachens, Robert C.

    2010-01-01

    We simulate long-period (T>1.0–2.0 s) and broadband (T>0.1 s) ground motions for 39 scenario earthquakes (Mw 6.7–7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault, we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions, compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area, with about 50% of the urban area experiencing modified Mercalli intensity VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland earthquake and the 2007 Mw 5.45 Alum Rock earthquake show that the U.S. Geological Survey’s Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area for Hayward fault earthquakes, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions for the suite of scenarios exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute much of this difference to the seismic velocity structure in the San Francisco Bay area and how the NGA models account for basin amplification; the NGA relations may underpredict amplification in shallow sedimentary basins. The simulations also suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by increasing the areal extent of rupture directivity with period.

  10. Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions

    SciTech Connect

    Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

    2009-11-04

    We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

  11. Motion as perturbation. II. Development of the method for dosimetric analysis of motion effects with fixed-gantry IMRT

    SciTech Connect

    Nelms, Benjamin E.; Opp, Daniel; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir

    2014-06-15

    Purpose: In this work, the feasibility of implementing a motion-perturbation approach to accurately estimate volumetric dose in the presence of organ motion—previously demonstrated for VMAT-–is studied for static gantry IMRT. The method's accuracy is improved for the voxels that have very low planned dose but acquire appreciable dose due to motion. The study describes the modified algorithm and its experimental validation and provides an example of a clinical application. Methods: A contoured region-of-interest is propagated according to the predefined motion kernel throughout time-resolved 4D phantom dose grids. This timed series of 3D dose grids is produced by the measurement-guided dose reconstruction algorithm, based on an irradiation of a staticARCCHECK (AC) helical dosimeter array (Sun Nuclear Corp., Melbourne, FL). Each moving voxel collects dose over the dynamic simulation. The difference in dose-to-moving voxel vs dose-to-static voxel in-phantom forms the basis of a motion perturbation correction that is applied to the corresponding voxel in the patient dataset. A new method to synchronize the accelerator and dosimeter clocks, applicable to fixed-gantry IMRT, was developed. Refinements to the algorithm account for the excursion of low dose voxels into high dose regions, causing appreciable dose increase due to motion (LDVE correction). For experimental validation, four plans using TG-119 structure sets and objectives were produced using segmented IMRT direct machine parameters optimization in Pinnacle treatment planning system (v. 9.6, Philips Radiation Oncology Systems, Fitchburg, WI). All beams were delivered with the gantry angle of 0°. Each beam was delivered three times: (1) to the static AC centered on the room lasers; (2) to a static phantom containing a MAPCHECK2 (MC2) planar diode array dosimeter (Sun Nuclear); and (3) to the moving MC2 phantom. The motion trajectory was an ellipse in the IEC XY plane, with 3 and 1.5 cm axes. The period was 5

  12. Clinical evaluation of 292 Genesis II posterior stabilized high-flexion total knee arthroplasty: range of motion and predictors.

    PubMed

    Fuchs, Mathijs C H W; Janssen, Rob P A

    2015-01-01

    The primary aim of the study was to evaluate the range of motion and complications after Genesis II total knee arthroplasty with high-flexion tibia insert (TKA-HF). Furthermore, difference in knee flexion between high flexion and standard inserts was compared. The hypothesis was that knee flexion is better after high-flexion TKA. A total of 292 TKA-HF were retrospectively reviewed. Mean follow-up was 24.3 months. The range of motion was compared between TKA-HF (high-flexion group) and a comparable cohort of 86 Genesis II TKA with a standard tibia insert (control group). Surgeries were performed by one experienced knee orthopedic surgeon. Knee flexion in the high-flexion group increased from 114.8° preoperatively to 118.0° postoperatively (P < 0.01). Knee extension in the high-flexion group increased from -4.5° preoperatively to -0.4° after surgery (P < 0.01). Mean knee flexion was 5.52° (± 1.46°) better in the high-flexion group compared with the control group (P < 0.01). Preoperative range of motion, body mass index, diabetes mellitus and patellofemoral pain significantly influenced range of motion. Few complications occurred after TKA-HF. The Genesis II TKA-HF showed good short-term results with limited complications. Knee flexion after Genesis II TKA-HF was better compared with a standard tibia insert.

  13. "Invisible" Galactic Halos.

    ERIC Educational Resources Information Center

    Lugt, Karel Vander

    1993-01-01

    Develops a simple core-halo model of a galaxy that exhibits the main features of observed rotation curves and quantitatively illustrates the need to postulate halos of dark matter. Uses only elementary mechanics. (Author/MVL)

  14. Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events

    SciTech Connect

    Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L

    2007-02-09

    We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  15. SLoWPoKES-II: 100,000 Wide Binaries Identified in SDSS without Proper Motions

    NASA Astrophysics Data System (ADS)

    Dhital, Saurav; West, Andrew A.; Stassun, Keivan G.; Schluns, Kyle J.; Massey, Angela P.

    2015-08-01

    We present the Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES)-II catalog of low-mass visual binaries identified from the Sloan Digital Sky Survey (SDSS) by matching photometric distances. The candidate pairs are vetted by comparing the stellar information. The candidate pairs are vetted by comparing the stellar density at their respective Galactic positions to Monte Carlo realizations of a simulated Milky Way. In this way, we are able to identify large numbers of bona fide wide binaries without the need for proper motions. Here, 105,537 visual binaries with angular separations of ∼1–20″ were identified, each with a probability of chance alignment of ≤5%. This is the largest catalog of bona fide wide binaries to date, and it contains a diversity of systems—in mass, mass ratios, binary separations, metallicity, and evolutionary states—that should facilitate follow-up studies to characterize the properties of M dwarfs and white dwarfs. There is a subtle but definitive suggestion of multiple populations in the physical separation distribution, supporting earlier findings. We suggest that wide binaries are composed of multiple populations, most likely representing different formation modes. There are 141 M7 or later wide binary candidates, representing a seven-fold increase over the number currently known. These binaries are too wide to have been formed via the ejection mechanism. Finally, we found that 6% of spectroscopically confirmed M dwarfs are not included in the SDSS STAR catalog; they are misclassified as extended sources due to the presence of a nearby or partially resolved companion. The SLoWPoKES-II catalog is publicly available to the entire community on the World Wide Web via the Filtergraph data visualization portal.

  16. SLoWPoKES-II: 100,000 WIDE BINARIES IDENTIFIED IN SDSS WITHOUT PROPER MOTIONS

    SciTech Connect

    Dhital, Saurav; West, Andrew A.; Schluns, Kyle J.; Massey, Angela P.; Stassun, Keivan G.

    2015-08-15

    We present the Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES)-II catalog of low-mass visual binaries identified from the Sloan Digital Sky Survey (SDSS) by matching photometric distances. The candidate pairs are vetted by comparing the stellar information. The candidate pairs are vetted by comparing the stellar density at their respective Galactic positions to Monte Carlo realizations of a simulated Milky Way. In this way, we are able to identify large numbers of bona fide wide binaries without the need for proper motions. Here, 105,537 visual binaries with angular separations of ∼1–20″ were identified, each with a probability of chance alignment of ≤5%. This is the largest catalog of bona fide wide binaries to date, and it contains a diversity of systems—in mass, mass ratios, binary separations, metallicity, and evolutionary states—that should facilitate follow-up studies to characterize the properties of M dwarfs and white dwarfs. There is a subtle but definitive suggestion of multiple populations in the physical separation distribution, supporting earlier findings. We suggest that wide binaries are composed of multiple populations, most likely representing different formation modes. There are 141 M7 or later wide binary candidates, representing a seven-fold increase over the number currently known. These binaries are too wide to have been formed via the ejection mechanism. Finally, we found that 6% of spectroscopically confirmed M dwarfs are not included in the SDSS STAR catalog; they are misclassified as extended sources due to the presence of a nearby or partially resolved companion. The SLoWPoKES-II catalog is publicly available to the entire community on the World Wide Web via the Filtergraph data visualization portal.

  17. Photoplethysmograph signal reconstruction based on a novel motion artifact detection-reduction approach. Part II: Motion and noise artifact removal.

    PubMed

    Salehizadeh, S M A; Dao, Duy K; Chong, Jo Woon; McManus, David; Darling, Chad; Mendelson, Yitzhak; Chon, Ki H

    2014-11-01

    We introduce a new method to reconstruct motion and noise artifact (MNA) contaminated photoplethysmogram (PPG) data. A method to detect MNA corrupted data is provided in a companion paper. Our reconstruction algorithm is based on an iterative motion artifact removal (IMAR) approach, which utilizes the singular spectral analysis algorithm to remove MNA artifacts so that the most accurate estimates of uncorrupted heart rates (HRs) and arterial oxygen saturation (SpO2) values recorded by a pulse oximeter can be derived. Using both computer simulations and three different experimental data sets, we show that the proposed IMAR approach can reliably reconstruct MNA corrupted data segments, as the estimated HR and SpO2 values do not significantly deviate from the uncorrupted reference measurements. Comparison of the accuracy of reconstruction of the MNA corrupted data segments between our IMAR approach and the time-domain independent component analysis (TD-ICA) is made for all data sets as the latter method has been shown to provide good performance. For simulated data, there were no significant differences in the reconstructed HR and SpO2 values starting from 10 dB down to -15 dB for both white and colored noise contaminated PPG data using IMAR; for TD-ICA, significant differences were observed starting at 10 dB. Two experimental PPG data sets were created with contrived MNA by having subjects perform random forehead and rapid side-to-side finger movements show that; the performance of the IMAR approach on these data sets was quite accurate as non-significant differences in the reconstructed HR and SpO2 were found compared to non-contaminated reference values, in most subjects. In comparison, the accuracy of the TD-ICA was poor as there were significant differences in reconstructed HR and SpO2 values in most subjects. For non-contrived MNA corrupted PPG data, which were collected with subjects performing walking and stair climbing tasks, the IMAR significantly

  18. Constraining dark matter halo profiles and galaxy formation models using spiral arm morphology. II. Dark and stellar mass concentrations for 13 nearby face-on galaxies

    SciTech Connect

    Seigar, Marc S.; Davis, Benjamin L.; Berrier, Joel; Kennefick, Daniel

    2014-11-01

    We investigate the use of spiral arm pitch angles as a probe of disk galaxy mass profiles. We confirm our previous result that spiral arm pitch angles (P) are well correlated with the rate of shear (S) in disk galaxy rotation curves. We use this correlation to argue that imaging data alone can provide a powerful probe of galactic mass distributions out to large look-back times. We then use a sample of 13 galaxies, with Spitzer 3.6 μm imaging data and observed Hα rotation curves, to demonstrate how an inferred shear rate coupled with a bulge-disk decomposition model and a Tully-Fisher-derived velocity normalization can be used to place constraints on a galaxy's baryon fraction and dark matter halo profile. Finally, we show that there appears to be a trend (albeit a weak correlation) between spiral arm pitch angle and halo concentration. We discuss implications for the suggested link between supermassive black hole (SMBH) mass and dark halo concentration, using pitch angle as a proxy for SMBH mass.

  19. Constraining Dark Matter Halo Profiles and Galaxy Formation Models Using Spiral Arm Morphology. II. Dark and Stellar Mass Concentrations for 13 Nearby Face-on Galaxies

    NASA Astrophysics Data System (ADS)

    Seigar, Marc S.; Davis, Benjamin L.; Berrier, Joel; Kennefick, Daniel

    2014-11-01

    We investigate the use of spiral arm pitch angles as a probe of disk galaxy mass profiles. We confirm our previous result that spiral arm pitch angles (P) are well correlated with the rate of shear (S) in disk galaxy rotation curves. We use this correlation to argue that imaging data alone can provide a powerful probe of galactic mass distributions out to large look-back times. We then use a sample of 13 galaxies, with Spitzer 3.6 μm imaging data and observed Hα rotation curves, to demonstrate how an inferred shear rate coupled with a bulge-disk decomposition model and a Tully-Fisher-derived velocity normalization can be used to place constraints on a galaxy's baryon fraction and dark matter halo profile. Finally, we show that there appears to be a trend (albeit a weak correlation) between spiral arm pitch angle and halo concentration. We discuss implications for the suggested link between supermassive black hole (SMBH) mass and dark halo concentration, using pitch angle as a proxy for SMBH mass.

  20. Origins of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn V.

    2015-08-01

    This talk will review ideas about the formation of stellar halos. It will include discussion of the observational evidence for stellar populations formed "in situ" (meaning formed in orbits close to their current ones), "kicked-out" (meaning formed in the inner galaxy in orbits unlike their current ones) and "accreted" (meaning formed in a dark matter halo other than the one they currently occupy). The properties of these (and other) populations seen in simulations of stellar halo formation will also be examined.

  1. Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization.

    PubMed

    Raghunath, N; Faber, T L; Suryanarayanan, S; Votaw, J R

    2009-02-01

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. When patient motion is known, deconvolution methods can be used to correct the reconstructed image and reduce motion blur. This paper describes the implementation and optimization of an iterative deconvolution method that uses an ordered subset approach to make it practical and clinically viable. We performed ten separate FDG PET scans using the Hoffman brain phantom and simultaneously measured its motion using the Polaris Vicra tracking system (Northern Digital Inc., Ontario, Canada). The feasibility and effectiveness of the technique was studied by performing scans with different motion and deconvolution parameters. Deconvolution resulted in visually better images and significant improvement as quantified by the Universal Quality Index (UQI) and contrast measures. Finally, the technique was applied to human studies to demonstrate marked improvement. Thus, the deconvolution technique presented here appears promising as a valid alternative to existing motion correction methods for PET. It has the potential for deblurring an image from any modality if the causative motion is known and its effect can be represented in a system matrix.

  2. Prostate Intrafraction Motion Assessed by Simultaneous kV Fluoroscopy at MV Delivery II: Adaptive Strategies

    SciTech Connect

    Adamson, Justus; Wu Qiuwen

    2010-12-01

    Purpose: To investigate potential benefits of adaptive strategies for managing prostate intrafractional uncertainties when interfraction motion is corrected online. Methods and Materials: Prostate intrafraction motion was measured using kV fluoroscopy during MV delivery for 571 fractions from 30 hypofractionated radiotherapy patients. We evaluated trending over treatment course using analysis of variance statistics, and we evaluated the ability to correct patient-specific systematic error and apply patient-specific statistical margins after 2 to 15 fractions to compensate 90% of motion. We also evaluated the ability to classify patients into small- and large-motion subgroups based on the first 2 to 20 fractions using discriminant analysis. Results: No time trend was observed over treatment course, and intrafraction motion was patient specific (p < 0.0001). Systematic error in the first week correlated well with that in subsequent weeks, with correlation coefficients of 0.53, 0.50, and 0.41 in right-left (RL), anterior-posterior (AP), and superior-inferior (SI), respectively. After 5 fractions, the adaptive strategy resulted in average margin reductions of 0.3, 0.7, and 0.7 mm in RL, AP, and SI, respectively, with margins ranging from 1 to 3.2 mm in RL, 2 to 7.0 mm in AP, and 2 to 6.6 mm in SI. By contrast, population margins to include the same percentage of motion were 1.7, 4.0, and 4.1 mm. After 2 and 5 fractions, patients were classified into small- and large-motion groups with {approx}77% and {approx}83% accuracy. Conclusions: Adaptive strategies are feasible and beneficial for intrafraction motion management in prostate cancer online image guidance. Patients may be classified into large- and small-motion groups in early fractions using discriminant analysis.

  3. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse

  4. Light-element abundance variations in the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Grebel, E. K.

    2010-09-01

    We present evidence for the contribution of high-mass globular clusters to the stellar halo of the Galaxy. Using SDSS-II/SEGUE spectra of over 1900 G- and K-type halo giants, we identify for the first time a subset of stars with CN bandstrengths significantly larger, and CH bandstrengths lower, than the majority of halo field stars, at fixed temperature and metallicity. Since CN bandstrength inhomogeneity and the usual attendant abundance variations are presently understood as a result of star formation in globular clusters, we interpret this subset of halo giants as a result of globular cluster dissolution into the Galactic halo. We find that 2.5% of our sample is CN-strong, and can infer based on recent models of globular cluster evolution that the fraction of halo field stars initially formed within globular clusters may be as large as 50%.

  5. SOFTWARE REVIEW: Multimedia Motion II. CD-ROM and Teacher's Guide

    NASA Astrophysics Data System (ADS)

    Scaife, Jon A.

    2000-05-01

    expect. This is an issue that is in the teacher's hands; the package is flexible enough to accommodate a wide range of learning aims. Audio clips are brief and to the point, with both female and male speakers. The commentary goes beyond the descriptive, raising interesting questions and issues and setting challenges for the user. The optional screen text is pitched at A-level. Video clips can be viewed at full screen, which is a big improvement over the first edition. There are some new clips and a few omissions from the first edition; further CDs of movie data are planned. Clips may be played forwards or backwards at various speeds using a scroll bar. This allows close control and analysis, which is useful for critical events in which changes are rapid, such as collisions. Printing of data and graphs is straightforward and the results are clear. Unlike the first edition, Multimedia Motion II only gives direct support to graphs with time as the abscissa. For graphs such as v(x) versus v(y), however, it is a simple matter to save the data directly into Excel or another spreadsheet. I encountered only one snag in using the CD: if I forgot to save my data before moving to a new clip I could not recover it. This failing could be mine, but I did try hard. The Teacher's Guide contains photocopiable worksheets and detailed discussion and graphs of the video clips. For each clip there is a section of `useful data and formulae'. The guide is not a necessity for using the CD-ROM but it would be a very handy A-level teaching resource, allowing the option of independent use by students. It is accompanied by a floppy disc containing sets of experimental data for the video clips, a useful option for quick demonstrations. In addition, the guide explains the interesting and creative option of making your own movie sequences from videotape, though access to a video card would be needed to do this. Imagine the motivational value of students recording themselves playing various sports, or

  6. Spectroscopic study of globular clusters in the halo of M31 with the Xinglong 2.16 m telescope II: dynamics, metallicity and age

    NASA Astrophysics Data System (ADS)

    Fan, Zhou; Huang, Ya-Fang; Li, Jin-Zeng; Zhou, Xu; Ma, Jun; Zhao, Yong-Heng

    2012-07-01

    In Paper I, we performed spectroscopic observations on 11 confirmed globular clusters (GCs) in M31 with the Xinglong 2.16 m telescope. We mainly focused on the fitting method and the metallicity gradient for the M31 GC sample. Here, we analyze and further discuss the dynamics, metallicity and age, and their distributions, as well as the relationships between these parameters. In our work, eight more confirmed GCs in the halo of M31 were observed, most of which lack previous spectroscopic information. These star clusters are located far from the galactic center at a projected radius of ~ 14 to ~ 117 kpc, which is more spatially extended than that in the previous work. Firstly, we measured the Lick absorption-line indices and the radial velocities. Then the ages and metallicity values of [Fe/H] and [α/Fe] were fitted by comparing the observed spectral feature indices and the Single Stellar Population model of Thomas et al. in the Cassisi and Padova stellar evolutionary tracks, respectively. Our results show that most of the star clusters in our sample are older than 10 Gyr except B290, which is ~ 5.5 Gyr, and most of them are metal-poor with metallicity [Fe/H] < -1, suggesting that these clusters were born at the early stage of the galaxy's formation. We find that the metallicity gradient for the outer halo clusters with rp > 25 kpc may have an insignificant slope of -0.005 ± 0.005 dex kpc-1 and if the outliers G001 and H11 are excluded, the slope does not change significantly, with a value of -0.002 ± 0.003 dex kpc-1. We also find that the metallicity is not a function of age for the GCs with age < 7 Gyr, but for the old GCs with age > 7 Gyr, there seems to be a trend that the older ones have lower metallicity. Additionally, we plot metallicity distributions with the largest sample of M31 GCs so far and show the bimodality is not significant, and the number of metal-poor and metal-rich groups becomes comparable. The spatial distributions show that the metal

  7. The shape of the invisible halo: N-body simulations on parallel supercomputers

    SciTech Connect

    Warren, M.S.; Zurek, W.H. ); Quinn, P.J. . Mount Stromlo and Siding Spring Observatories); Salmon, J.K. )

    1990-01-01

    We study the shapes of halos and the relationship to their angular momentum content by means of N-body (N {approximately} 10{sup 6}) simulations. Results indicate that in relaxed halos with no apparent substructure: (i) the shape and orientation of the isodensity contours tends to persist throughout the virialised portion of the halo; (ii) most ({approx}70%) of the halos are prolate; (iii) the approximate direction of the angular momentum vector tends to persist throughout the halo; (iv) for spherical shells centered on the core of the halo the magnitude of the specific angular momentum is approximately proportional to their radius; (v) the shortest axis of the ellipsoid which approximates the shape of the halo tends to align with the rotation axis of the halo. This tendency is strongest in the fastest rotating halos. 13 refs., 4 figs.

  8. The theory of asynchronous relative motion II: universal and regular solutions

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Peláez, Jesús

    2016-09-01

    Two fully regular and universal solutions to the problem of spacecraft relative motion are derived from the Sperling-Burdet (SB) and the Kustaanheimo-Stiefel (KS) regularizations. There are no singularities in the resulting solutions, and their form is not affected by the type of reference orbit (circular, elliptic, parabolic, or hyperbolic). In addition, the solutions to the problem are given in compact tensorial expressions and directly referred to the initial state vector of the leader spacecraft. The SB and KS formulations introduce a fictitious time by means of the Sundman transformation. Because of using an alternative independent variable, the solutions are built based on the theory of asynchronous relative motion. This technique simplifies the required derivations. Closed-form expressions of the partial derivatives of orbital motion with respect to the initial state are provided explicitly. Numerical experiments show that the performance of a given representation of the dynamics depends strongly on the time transformation, whereas it is virtually independent from the choice of variables to parameterize orbital motion. In the circular and elliptic cases, the linear solutions coincide exactly with the results obtained with the Clohessy-Wiltshire and Yamanaka-Ankersen state-transition matrices. Examples of relative orbits about parabolic and hyperbolic reference orbits are also presented. Finally, the theory of asynchronous relative motion provides a simple mechanism to introduce nonlinearities in the solution, improving its accuracy.

  9. Perturbation method for classical spinning particle motion. II. Vaidya space-time

    NASA Astrophysics Data System (ADS)

    Singh, Dinesh

    2008-11-01

    This paper describes an application of the Mathisson-Papapetrou-Dixon (MPD) equations in analytic perturbation form to the case of circular motion around a radially accreting or radiating black hole described by the Vaidya metric. Based on the formalism presented earlier, this paper explores the effects of mass accretion or loss of the central body on the overall dynamics of the orbiting spinning particle. This includes changes to its squared mass and spin magnitude due to the classical analog of radiative corrections from spin-curvature coupling. Various quantitative consequences are explored when considering orbital motion near the black hole’s event horizon. An analysis on the orbital stability properties due to spin-curvature interactions is examined briefly, with conclusions in general agreement with previous work performed for the case of circular motion around a Kerr black hole.

  10. Halo velocity bias

    NASA Astrophysics Data System (ADS)

    Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex; Riotto, Antonio

    2014-11-01

    It has been recently shown that any halo velocity bias present in the initial conditions does not decay to unity, in agreement with predictions from peak theory. However, this is at odds with the standard formalism based on the coupled-fluids approximation for the coevolution of dark matter and halos. Starting from conservation laws in phase space, we discuss why the fluid momentum conservation equation for the biased tracers needs to be modified in accordance with the change advocated in Baldauf et al. Our findings indicate that a correct description of the halo properties should properly take into account peak constraints when starting from the Vlasov-Boltzmann equation.

  11. Third-epoch Magellanic Cloud proper motions. II. The large Magellanic Cloud rotation field in three dimensions

    SciTech Connect

    Van der Marel, Roeland P.; Kallivayalil, Nitya

    2014-02-01

    We present the first detailed assessment of the large-scale rotation of any galaxy based on full three-dimensional velocity measurements. We do this for the LMC by combining our Hubble Space Telescope average proper motion (PM) measurements for stars in 22 fields, with existing line-of-sight (LOS) velocity measurements for 6790 individual stars. We interpret these data with a model of circular rotation in a flat disk. The PM and LOS data paint a consistent picture of the LMC rotation, and their combination yields several new insights. The PM data imply a stellar dynamical center that coincides with the H I dynamical center, and a rotation curve amplitude consistent with that inferred from LOS velocity studies. The implied disk viewing angles agree with the range of values found in the literature, but continue to indicate variations with stellar population and/or radius. Young (red supergiant) stars rotate faster than old (red and asymptotic giant branch) stars due to asymmetric drift. Outside the central region, the circular velocity is approximately flat at V {sub circ} = 91.7 ± 18.8 km s{sup –1}. This is consistent with the baryonic Tully-Fisher relation and implies an enclosed mass M(8.7 kpc) = (1.7 ± 0.7) × 10{sup 10} M {sub ☉}. The virial mass is larger, depending on the full extent of the LMC's dark halo. The tidal radius is 22.3 ± 5.2 kpc (24.°0 ± 5.°6). Combination of the PM and LOS data yields kinematic distance estimates for the LMC, but these are not yet competitive with other methods.

  12. Hα kinematics of S4G spiral galaxies - II. Data description and non-circular motions

    NASA Astrophysics Data System (ADS)

    Erroz-Ferrer, Santiago; Knapen, Johan H.; Leaman, Ryan; Cisternas, Mauricio; Font, Joan; Beckman, John E.; Sheth, Kartik; Muñoz-Mateos, Juan Carlos; Díaz-García, Simón; Bosma, Albert; Athanassoula, E.; Elmegreen, Bruce G.; Ho, Luis C.; Kim, Taehyun; Laurikainen, Eija; Martinez-Valpuesta, Inma; Meidt, Sharon E.; Salo, Heikki

    2015-07-01

    We present a kinematical study of 29 spiral galaxies included in the Spitzer Survey of Stellar Structure in Galaxies, using Hα Fabry-Perot (FP) data obtained with the Galaxy Hα Fabry-Perot System instrument at the William Herschel Telescope in La Palma, complemented with images in the R band and in Hα. The primary goal is to study the evolution and properties of the main structural components of galaxies through the kinematical analysis of the FP data, complemented with studies of morphology, star formation and mass distribution. In this paper we describe how the FP data have been obtained, processed and analysed. We present the resulting moment maps, rotation curves, velocity model maps and residual maps. Images are available in FITS format through the NASA/IPAC Extragalactic Database and the Centre de Données Stellaires. With these data products we study the non-circular motions, in particular those found along the bars and spiral arms. The data indicate that the amplitude of the non-circular motions created by the bar does not correlate with the bar strength indicators. The amplitude of those non-circular motions in the spiral arms does not correlate with either arm class or star formation rate along the spiral arms. This implies that the presence and the magnitude of the streaming motions in the arms is a local phenomenon.

  13. Constants and Pseudo-Constants of Coupled Beam Motion in the PEP-II Rings

    SciTech Connect

    Decker, F.J.; Colocho, W.S.; Wang, M.H.; Yan, Y.T.; Yocky, G.; /SLAC

    2011-11-01

    Constants of beam motion help as cross checks to analyze beam diagnostics and the modeling procedure. Pseudo-constants, like the betatron mismatch parameter or the coupling parameter det C, are constant till certain elements in the beam line change them. This can be used to visually find the non-desired changes, pinpointing errors compared with the model.

  14. Kinematic imprint of clumpy disk formation on halo objects

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki

    2013-02-01

    Context. Clumpy disk galaxies in the distant universe, at redshift of z ≳ 1, have been observed to host several giant clumps in their disks. They are thought to correspond to early formative stages of disk galaxies. On the other hand, halo objects, such as old globular clusters and halo stars, are likely to consist of the oldest stars in a galaxy (age ≳ 10 Gyr), clumpy disk formation can thus be presumed to take place in a pre-existing halo system. Aims: Giant clumps orbit in the same direction in a premature disk and are so massive that they may be expected to interact gravitationally with halo objects and exercise influence on the kinematic state of the halo. Accordingly, I scrutinize the possibility that the clumps leave a kinematic imprint of the clumpy disk formation on a halo system. Methods: I perform a restricted N-body calculation with a toy model to study the kinematic influence on a halo by orbital motions of clumps and the dependence of the results on masses (mass loss), number, and orbital radii of the clumps. Results: I show that halo objects can catch clump motions and acquire disky rotation in a dynamical friction time scale of the clumps, ~0.5 Gyr. The influence of clumps is limited within a region around the disk, while the halo system shows vertical gradients of net rotation velocity and orbital eccentricity. The significance of the kinematic influence strongly depends on the clump masses; the lower limit of postulated clump mass would be ~5 × 108 M⊙. The result also depends on whether the clumps are subjected to rapid mass loss or not, which is an open question under debate in recent studies. The existence of such massive clumps is not unrealistic. I therefore suggest that the imprints of past clumpy disk formation could remain in current galactic halos.

  15. AHF: AMIGA'S HALO FINDER

    SciTech Connect

    Knollmann, Steffen R.; Knebe, Alexander

    2009-06-15

    Cosmological simulations are the key tool for investigating the different processes involved in the formation of the universe from small initial density perturbations to galaxies and clusters of galaxies observed today. The identification and analysis of bound objects, halos, is one of the most important steps in drawing useful physical information from simulations. In the advent of larger and larger simulations, a reliable and parallel halo finder, able to cope with the ever-increasing data files, is a must. In this work we present the freely available MPI parallel halo finder AHF. We provide a description of the algorithm and the strategy followed to handle large simulation data. We also describe the parameters a user may choose in order to influence the process of halo finding, as well as pointing out which parameters are crucial to ensure untainted results from the parallel approach. Furthermore, we demonstrate the ability of AHF to scale to high-resolution simulations.

  16. Halo vest instrumentation

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Krag, Martin

    1996-05-01

    The halo vest is a head and neck immobilization system that is often used on patients that are recovering from cervical trauma or surgery. The halo vest system consists of a rigid halo that is firmly attached to the skull, an upright support structure for stabilization and immobilization, and a torso-enveloping vest. The main purpose of this study was to measure the forces that are carried by the halo-vest structure as the subject undergoes various activities of daily living and external loading for different vest designs. A tethered strain gage load cell based instrumentation system was used to take these load measurements on ten different subjects. Three different halo-vest systems were evaluated. The primary difference between the vests was the amount of torso coverage and the use of shoulder straps. The loads were measured, analyzed and used to compare the vests and to create a model of halo-vest-neck mechanics. Future applications of this technology to standalone data logging, pin-load measuring and biofeedback applications are discussed.

  17. Evolutionary models of halo stars with rotation. II - Effects of metallicity on lithium depletion, and possible implications for the primordial lithium abundance

    NASA Technical Reports Server (NTRS)

    Pinsonneault, M. H.; Deliyannis, Constantine P.; Demarque, P.

    1992-01-01

    Models of metal-poor stars with rotation were computed and their lithium depletion was compared with observations of halo stars. The models that have turn-off ages compatible with the observations have a nearly flat Li-T(eff) relationship in the region of the Spite lithium 'plateau'. Depending on the initial angular momentum, the models have a depletion factor ranging between a factor of 5 and a factor of 10 at fixed T(eff), implying a maximum initial lithium abundance of 3.1. Both the dispersion and the overall depletion factor are much smaller for metal-poor models than for solar metallicity ones. The factors that determine lithium depletion in rotational models are discussed and the different depletion patterns in solar metallicity and metal-poor models are traced to differences in their structure and evolution. The dependence of the lithium depletion on age, mass, initial angular momentum, and metallicity is also discussed. The dispersion predicted from these models is not inconsistent with the observations.

  18. Absorption by halo gas in the direction of M13

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Savage, B. D.

    1983-01-01

    A high velocity cloud in the direction 1 = 59 degrees, b = 41 degrees is detected in absorption at approximately -80 km/s in high dispersion IUE spectra of the blue star Barnard 29 in the globular cluster M13. The cloud is also seen in the H I 21 cm emission data of Kerr and Knapp (1972). Its radial velocity agrees with Giovanelli's data (1980, 1981) for high velocity clouds seen in this general direction of the sky. The cloud's motion is incompatible with the suggestions that neutral halo gas corotates with disk gas. The motion could be explained if neutral halo gas rotates more slowly than disk gas with increasing distance from the galactic plane. Because of our very limited understanding of the actual motions of halo gas, the scale height of this gas is best derived from plots of N sin b versus z for galactic and extragalactic stars.

  19. UC Berkeley Seismic Guidelines, Appendix II: Ground Motion Time Histories for the UC Berkeley Campus

    SciTech Connect

    Authors, Various

    2003-06-03

    Three sets of ten time histories each were developed to represent the ground motions for each of the three return periods. All of the time histories are provided as pairs of fault-normal and fault-parallel components. The ground motion time histories are provided in two forms: unmodified, and spectrally modified to match the probabilistic response spectra. The unmodified time histories can be scaled to match the probabilistic response spectra at a specified period, such as the first mode period of the structure being analyzed, while leaving the shape of the response spectrum unmodified. This approach preserves the particular characteristics of the individual time history, together with the peaks and troughs of its response spectrum. These individual characteristics are modified in the spectrally matched time histories, resulting in a suite of ten time histories (for a given return period) that all have the same response spectrum for a given component (fault normal or fault parallel) that follows the smooth shape of the probabilistic response spectrum.

  20. UC Berkeley Seismic Guidelines, Appendix II: Ground Motion TimeHistories for the UC Berkeley Campus

    SciTech Connect

    Various

    2003-06-03

    Three sets of ten time histories each were developed to represent the ground motions for each of the three return periods. All of the time histories are provided as pairs of fault-normal and fault-parallel components. The ground motion time histories are provided in two forms: unmodified, and spectrally modified to match the probabilistic response spectra. The unmodified time histories can be scaled to match the probabilistic response spectra at a specified period, such as the first mode period of the structure being analyzed, while leaving the shape of the response spectrum unmodified. This approach preserves the particular characteristics of the individual time history, together with the peaks and troughs of its response spectrum. These individual characteristics are modified in the spectrally matched time histories, resulting in a suite of ten time histories (for a given return period) that all have the same response spectrum for a given component (fault normal or fault parallel) that follows the smooth shape of the probabilistic response spectrum.

  1. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications.

    PubMed

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-21

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by

  2. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications

    NASA Astrophysics Data System (ADS)

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-01

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by

  3. On the assembly history of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Li, Yun; Mo, H. J.; van den Bosch, Frank C.; Lin, W. P.

    2007-08-01

    We study the mass assembly history (MAH) of dark matter haloes. We compare MAHs obtained using (i) merger trees constructed with the extended Press-Schechter (EPS) formalism, (ii) numerical simulations and (iii) the Lagrangian perturbation code PINOCCHIO. We show that the PINOCCHIO MAHs are in excellent agreement with those obtained using numerical simulations, while the EPS formalism predicts MAHs that occur too late. PINOCCHIO, which is much less CPU intensive than N-body simulation, can be run on a simple personal computer, and does not require any labour intensive post-simulation analysis, therefore provides a unique and powerful tool to investigate the growth history of dark matter haloes. Using a suite of 55 PINOCCHIO simulations, with 2563 particles each, we study the MAHs of 12924 cold dark matter (CDM) haloes in a ΛCDM concordance cosmology. This is by far the largest set of haloes used for any such analysis. For each MAH we derive four different formation redshifts, which characterize different epochs during the assembly history of a dark matter halo. We show that haloes less massive than the characteristic non-linear mass scale establish their potential wells much before they acquire most of their mass. The time when a halo reaches its maximum virial velocity roughly divides its mass assembly into two phases, a fast-accretion phase which is dominated by major mergers, and a slow-accretion phase dominated by minor mergers. Each halo experiences about 3 +/- 2 major mergers since its main progenitor had a mass equal to 1 per cent of the final halo mass. This major merger statistic is found to be virtually independent of halo mass. However, the average redshift at which these major mergers occur is strongly mass dependent, with more massive haloes experiencing their major mergers later.

  4. Scaling behaviors and novel creep motion of ac-driven flux lines in type II superconductor with random point pins

    NASA Astrophysics Data System (ADS)

    Cao, Wei-Ping; Luo, Meng-Bo; Hu, Xiao

    2012-01-01

    We performed Langevin dynamics simulations for the ac-driven flux lines in a type II superconductor with random point-like pinning centers. Scaling properties of flux-line velocity with respect to an instantaneous driving force of small frequency and around the critical dc depinning force are revealed successfully, which provides precise estimates on dynamic critical exponents. From the scaling function, we derive a creep law associated with activation by regular shaking. The effective energy barrier vanishes at the critical dc depinning point in a square-root way when the instantaneous driving force increases. The frequency plays a similar role to temperature in conventional creep motions, but in a nontrivial way governed by the critical exponents. We have also performed systematic finite-size scaling analysis for flux-line velocity in transient processes with dc driving, which provide estimates on critical exponents in good agreement with those derived with ac driving. The scaling law is checked successfully.

  5. Milky Way halo gas kinematics

    NASA Technical Reports Server (NTRS)

    Danly, L.

    1986-01-01

    Measurements of high resolution, short wavelength absorption data taken by IUE toward high latitude O and B stars are presented in a discussion of the large scale kinematic properties of Milky Way Halo gas. An analysis of these data demonstrates that: (1) the obsrved absorption widths (FWHM) of Si II are very large, ranging up to 150 Km/s for the most distant halo star; this is much larger than is generally appreciated from optical data; (2) the absorption is observed to be systematically negative in radial velocity, indicating that cool material is, on the whole, flowing toward the disk of the galaxy; (3) there is some evidence for asymmetry between the northern and southern galactic hemispheres, in accordance with the HI 21 cm data toward the galactic poles; (4) low column density gas with highly negative radial LSR velocity (V less than -70 km/s) can be found toward stars beyond 1-3 kpc in the northern galactic hemisphere in all four quadrants of galactic longitude; and (5) only the profiles toward stars in the direction of known high velocity HI features show a clear two component structure.

  6. Origins of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn V.

    2016-08-01

    This contribution reviews ideas about the origins of stellar halos. It includes discussion of the theoretical understanding of and observational evidence for stellar populations formed ``in situ'' (meaning formed in orbits close to their current ones), ``kicked-out'' (meaning formed in the inner galaxy in orbits unlike their current ones) and ``accreted'' (meaning formed in a dark matter halo other than the one they currently occupy). At this point there is general agreement that a significant fraction of any stellar halo population is likely ``accreted''. There is modest evidence for the presence of a ``kicked-out'' population around both the Milky Way and M31. Our theoretical understanding of and the observational evidence for an ``in situ'' population are less clear.

  7. Stochastic Evolution of Halo Spin

    NASA Astrophysics Data System (ADS)

    Kim, Juhan

    2015-08-01

    We will introduce an excursion set model for the evolution of halo spin from cosmological N-body simulations. A stochastic differential equation is derived from the definition of halo spin and the distribution of angular momentum changes are measured from simulations. The log-normal distribution of halo spin is found to be a natural consequence of the stochastic differential equation and the resulting spin distribution is found be a function of local environments, halo mass, and redshift.

  8. The role of binaries in the enrichment of the early Galactic halo. II. Carbon-enhanced metal-poor stars: CEMP-no stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Placco, V. M.; Yoon, J.; Buchhave, L. A.

    2016-02-01

    Context. The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon; these are the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Aims: Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Methods: High-resolution, low S/N spectra of the stars were obtained at roughly monthly intervals over a time span of up to eight years with the FIES spectrograph at the Nordic Optical Telescope. Radial velocities of ~100 m s-1 precision were determined by cross-correlation after each observing night, allowing immediate, systematic follow-up of any variable object. Results: Most programme stars exhibit no statistically significant radial-velocity variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2000 days and normal eccentricity; the binary frequency for the sample is 17 ± 9%. The single stars mostly belong to the recently identified low-C band, while the binaries have higher absolute carbon abundances. Conclusions: We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic interstellar

  9. The Outer Halo -- Halo Origins and Mass of the Galaxy

    NASA Astrophysics Data System (ADS)

    Morrison, Heather; Arabadjis, John; Dohm-Palmer, Robbie; Freeman, Ken; Harding, Paul; Mateo, Mario; Norris, John; Olszewski, Ed; Sneden, Chris

    2000-02-01

    Through our detection of distant halo stars, we are now well placed to map the regions of the Galactic halo where previously only satellite galaxies and a few globular clusters were known. Mapping this region is crucial for answering questions like: How and over what timescales was the Milky Way's stellar halo assembled? What is the total mass and shape of its dark halo? The Sagittarius dwarf has demonstrated that at least some of the stellar halo was accreted. But, HOW MUCH of the halo was accreted? Our previous efforts have proven that the Washington photometric system, in conjuction with spectroscopy, is capable of efficiently and unambiguously identifying halo stars out to 100 kpc or more. We require followup spectroscopy to map velocity substructure, which is more likely visible in the outer halo because of the long dynamical timescales, and to identify the rare objects in the extreme outer halo which will constrain the shape and size of its dark halo. We are applying for 4m/RCSP time at both CTIO and KPNO to observe faint outer-halo giant and BHB candidates.

  10. An improved catalog of halo wide binary candidates

    SciTech Connect

    Allen, Christine; Monroy-Rodríguez, Miguel A.

    2014-08-01

    We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé and Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio and Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150 of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ∼ a {sup –1} (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).

  11. An Improved Catalog of Halo Wide Binary Candidates

    NASA Astrophysics Data System (ADS)

    Allen, Christine; Monroy-Rodríguez, Miguel A.

    2014-08-01

    We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé & Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio & Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150 of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ~ a -1 (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).

  12. Part I - Viscous evolution of point vortex equilibria Part II - Effects of body elasticity on stability of fish motion

    NASA Astrophysics Data System (ADS)

    Jing, Fangxu

    2011-12-01

    Vortex dynamics and solid-fluid interactions are two of the most important and most studied topics in fluid dynamics for their relevance to a wide range of applications from geophysical flows to locomotion in moving fluids. In this work, we investigate two problems in two parts: Part I studies the viscous evolution of point vortex equilibria; Part II studies the effects of body elasticity on the passive stability of submerged bodies. In Part I, we describe the viscous evolution of point vortex configurations that, in the absence of viscosity, are in a state of fixed or relative equilibrium. In particular, we examine four cases, three of them correspond to relative equilibria in the inviscid point vortex model and one corresponds to a fixed equilibrium. Our goal is to elucidate the dominant transient dynamical features of the flow. A multi-Gaussian "core growing" type of model is typically used in high fidelity numerical simulations, but we propose to implement it as a low-order model for the flow field. We show that all four configurations immediately begin to rotate unsteadily. We then examine in detail the qualitative and quantitative evolution of the structures as they evolve, and for each case show the sequence of topological bifurcations that occur both in a fixed reference frame, and in an appropriately chosen rotating reference frame. Comparisons between the cases help to reveal different features of the viscous evolution for short and intermediate time scales of vortex structures. We examine the dynamical evolution of passive particles in the viscously evolving flows and interpret it in relation to the evolving streamline patterns. Although the low-order multi-Gaussian model does not exactly coincide with the Navier-Stokes solution, the two results show remarkable resemblances in many aspects. In Part II, we examine the effects of body geometry and elasticity on the passive stability of motion in a perfect fluid. Our main motivation is to understand the

  13. INVESTIGATION OF HALO FORMATION IN CONTINUOUS BEAMS USING WEIGHTED POLYNOMIAL EXPANSIONS AND PERTURBATIONAL ANALYSIS

    SciTech Connect

    C. ALLEN

    2000-08-01

    We consider halo formation in continuous beams oscillating at natural modes by inspecting particle trajectories. Trajectory equations containing field nonlinearities are derived from a weighted polynomial expansion. We then use perturbational techniques to further analyze particle motion.

  14. The formation of the smooth halo component

    NASA Astrophysics Data System (ADS)

    Peñarrubia, Jorge

    2016-08-01

    The detection and characterization of debris in the integral-of-motion space is a promising avenue to uncover the hierarchical formation of the Milky Way. Yet, the fact that the integrals do not remain constant during the assembly process adds considerable complexity to this approach. Indeed, in time-dependent potentials tidal substructures tend to be effaced from the integral-of-motion space through an orbital diffusion process, which naturally leads to the formation of a `smooth' stellar halo. In this talk I will introduce a new probability theory that describes the evolution of collisionless systems subject to a time-dependent potential. The new theory can be used to reconstruct the hierarchical assembly of our Galaxy through modelling the observed distribution of accreted stars in the integral-of-motion space.

  15. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a

  16. Hierarchical Formation of Dark Matter Halos near the Cutoff Scale and Their Impact on Indirect Detections

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tomoaki

    2015-08-01

    The smallest dark matter halos are formed first in the early universe. We present results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. In the largest simulation, the motions of 40963 particles in comoving boxes of side lengths 400 pc and 200 pc were followed. The particle masses were 3.4 Χ 10-11 M⊙ and 4.3 Χ 10-12 M⊙, ensuring that halos at the cutoff scale were represented by ˜30,000 and ˜230,000 particles, respectively. We found that the central density cusp is much steeper in these halos than in larger halos (dwarf-galaxy-sized to cluster-sized halos), and scales as ρ ∝ r(-1.5—1.3). The cusp slope gradually becomes shallower as the halo mass increases. The slope of halos 50 times more massive than the smallest halo is approximately -1.3. No strong correlation exists between inner slope and the collapse epoch. The cusp slope of halos above the cutoff scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60—70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Such halos could still exist in the present universe with the same steep density profiles. Strongly depending on the subhalo mass function and the adopted concentration model, the steeper inner cusps of halos near the cutoff scale enhance the annihilation luminosity of a Milky Way sized halo between 12 to 67%.

  17. Melanocyte halo explained.

    PubMed

    Tata, M; Sidhu, G S

    1994-01-01

    Electron microscopic examination was performed of skin biopsy specimens processed for electron microscopy directly after formaldehyde fixation, after retrieval from paraffin blocks, and as for paraffin embedding but with retrieval after clearing with xylene, the last step before paraffin infiltration. The halos surrounding melanocytes in the epidermis are a retraction artifact that develops during paraffin infiltration of the tissue. It is proposed that this artifact is related to the high temperature of the paraffin bath. PMID:8066827

  18. Detection of ultraviolet halos around highly inclined galaxies

    SciTech Connect

    Hodges-Kluck, Edmund; Bregman, Joel N.

    2014-07-10

    We report the discovery of diffuse ultraviolet light around late-type galaxies out to 5-20 kpc from the midplane using Swift and GALEX images. The emission is consistent with the stellar outskirts in the early-type galaxies but not in the late-type galaxies, where the emission is quite blue and consistent with a reflection nebula powered by light escaping from the galaxy and scattering off dust in the halo. Our results agree with expectations from halo dust discovered in extinction by Ménard et al. to within a few kpc of the disk and imply a comparable amount of hot and cold gas in galaxy halos (a few× 10{sup 8} M{sub ☉} within 20 kpc) if the dust resides primarily in Mg II absorbers. The results also highlight the potential of UV photometry to study individual galaxy halos.

  19. Contributions of Platform Motion to Simulator Training Effectiveness: Study II--Aerobatics. Interim Report for Period March 1976-November 1977.

    ERIC Educational Resources Information Center

    Martin, Elizabeth L.; Waag, Wayne L.

    A transfer-of-training design was used to evaluate the contributions of simulator training with synergistic six-degrees-of-freedom platform motion to aerobatic skills acquisition in the novice pilot. Thirty-six undergraduate pilot trainees were randomly assigned to one of three treatment groups: motion, no-motion, and control. Those in the control…

  20. Meridional motions of sunspots from 1947.9 to 1985.0. II - Latitude motions dependent on SPOT type and phase of the activity cycle

    NASA Astrophysics Data System (ADS)

    Lustig, G.; Hanslmeier, A.

    1987-01-01

    The dependence of the meridional motions of sunspots on sunspot-type and phase in the solar activity cycle for the time interval 1947.9-1985.0 is examined; this was done also with the sunspot data from the solar-observatory Kanzelhoehe. For the total time interval, investigations for each cycle were carried out only for the elder or long lasting G, H, and J sunspot groups and distinctions between similar sunspot types AB, C, D, EF, GHJ (Zuerich-classification). The meridional motions about the different activity maxima were also examined. In all investigations in the period from 1947.9 to 1985.0 a tendency to a southdrift can be observed on both hemispheres of the sun, but the mean meridional motions are between the error-bars not very significantly different from zero.

  1. The motion of the earth-moon system in modern tabular ephemerides. II - Inertial motion, mean longitude of the sun, and general precession in longitude

    NASA Technical Reports Server (NTRS)

    Stumpff, P.; Lieske, J. H.

    1984-01-01

    Properties of astronomical time scales (ET and UT) are considered, with particular emphasis on correctly determining of-date longitude as the sum of inertial mean longitude of the sun relative to the mean equinox of a fixed epoch (1950.0), and the general precession in longitude accumulated since the epoch. The inertial mean longitude and motion (relative to the mean equinox) are derived from tabular ephemerides such as the Jet Propulsion Laboratories' DE 102 and DE 96, by comparisons with subroutines based on Newcomb's perturbation theory. An unresolved inconsistency of approximately 1 second per century among the mean inertial motion of DE 102, IAU precession speed (1976), and the classical Newcomb of-date mean motion is found. Interpretation difficulties arising from the use of different systems of Ephemeris Time are also discussed.

  2. The kinematics of Milky Way halo gas. I - Observations of low-ionization species

    NASA Technical Reports Server (NTRS)

    Danly, Laura

    1989-01-01

    Ultraviolet interstellar line day observed with the IUE toward 70 halo stars and four extragalactic sight lines are analyzed in a study of the large-scale kinematic properties of the Milky Way halo gas. The motions of the low-ionization gas is focused on. Large systematic velocities are found, and a pronounced asymmetry in the absorption characteristics of halo gas toward the Galactic poles is indicated. In the north, substantial amounts of material are falling toward the disk at velocities up to about 120 km/s in the most extreme case. Toward the south, low-ionization material shows no extreme or systematic motions.

  3. Stellar halos around Local Group galaxies

    NASA Astrophysics Data System (ADS)

    McConnachie, Alan W.

    2016-08-01

    The Local Group is now home to 102 known galaxies and candidates, with many new faint galaxies continuing to be discovered. The total stellar mass range spanned by this population covers a factor of close to a billion, from the faintest systems with stellar masses of order a few thousand to the Milky Way and Andromeda, with stellar masses of order 1011 M ⊙. Here, I discuss the evidence for stellar halos surrounding Local Group galaxies spanning from dwarf scales (with the case of the Andromeda II dwarf spheroidal), though to intermediate mass systems (M33) and finishing with M31. Evidence of extended stellar populations and merging is seen across the luminosity function, indicating that the processes that lead to halo formation are common at all mass scales.

  4. Halo Star Lithium Depletion

    SciTech Connect

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-12-10

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  5. The very wide-field gzK Galaxy Survey - II. The relationship between star-forming galaxies at z ˜ 2 and their host haloes based upon HOD modelling

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shogo; Kashikawa, Nobunari; Hamana, Takashi; Toshikawa, Jun; Onoue, Masafusa

    2016-05-01

    We present the results of an halo occupation distribution (HOD) analysis of star-forming galaxies at z ˜ 2. We obtained high-quality angular correlation functions based on a large sgzK sample, which enabled us to carry out the HOD analysis. The mean halo mass and the HOD mass parameters are found to increase monotonically with increasing K-band magnitude, suggesting that more luminous galaxies reside in more massive dark haloes. The luminosity dependence of the HOD mass parameters was found to be the same as in the local Universe; however, the masses were larger than in the local Universe over all ranges of magnitude. This implies that galaxies at z ˜ 2 tend to form in more massive dark haloes than in the local Universe, a process known as downsizing. By analysing the dark halo mass evolution using the extended Press-Schechter formalism and the number evolution of satellite galaxies in a dark halo, we find that faint Lyman break galaxies at z ˜ 4 could evolve into the faintest sgzKs (22.0 < K ≤ 23.0) at z ˜ 2 and into the Milky-Way-like galaxies or elliptical galaxies in the local Universe, whereas the most luminous sgzKs (18.0 ≤ K ≤ 21.0) could evolve into the most massive systems in the local Universe. The stellar-to-halo mass ratio (SHMR) of the sgzKs was found to be consistent with the prediction of the model, except that the SHMR of the faintest sgzKs was smaller than the prediction at z ˜ 2. This discrepancy may be explained by the confinement of our samples to star-forming galaxies.

  6. Ground-motion modeling of the 1906 San Francisco Earthquake, part II: Ground-motion estimates for the 1906 earthquake and scenario events

    USGS Publications Warehouse

    Aagaard, B.T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; McCandless, K.; Nilsson, S.; Petersson, N.A.; Rodgers, A.; Sjogreen, B.; Zoback, M.L.

    2008-01-01

    We estimate the ground motions produce by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  7. Halo-substituted thiosemicarbazones and their copper(II), nickel(II) complexes: Detailed spectroscopic characterization and study of antitumour activity against HepG2 human hepatoblastoma cells

    NASA Astrophysics Data System (ADS)

    Jagadeesh, M.; Kalangi, Suresh K.; Sivarama Krishna, L.; Reddy, A. Varada

    2014-01-01

    Copper(II) and nickel(II) complexes of two different halogen substituted thiosemicarbazone ligands were synthesized. The ligands 3,4-difluoroacetophenone thiosemicarbazone (1) and 2-bromo-4'-chloroacetophenone thiosemicarbazone (2) were characterized and confirmed spectroscopically by FT-IR, FT-Raman, UV-vis and fluorescence spectral analysis, while the respective copper(II) complexes [Cu(C9H9N3F2S)2Cl2] (1a), [Cu(C9H9N3ClBrS)2Cl2] (2a) and nickel(II) complexes [Ni(C9H9N3F2S)2] (1b), [Ni(C9H9N3ClBrS)2] (2b) were characterized by FT-IR, UV-vis and electron paramagnetic spectroscopy (EPR). The EPR spectra of the Cu(II) complexes provided the rhombic octahedral and axial symmetry of the complexes 1a and 2a respectively. For the complex 1a, the g values calculated as g1 = 2.1228, g2 = 2.0706 and g3 = 2.001 between 2900 and 3300 G. While for the complex 2a, a set of two resonance absorptions were observed. The synthesized compounds were tested for antitumor activity and showed that the ability to kill liver cancer cells significantly. Out of all the synthesized compounds, copper(II) complexes 1a and 2a showed high cytotoxic effect on liver cancer cells with 67.51% and 42.77% of cytotoxicity respectively at 100 μM.

  8. Theory of motion for monopole-dipole singularities of classical Yang-Mills-Higgs fields. II. Approximation scheme and equations of motion

    NASA Astrophysics Data System (ADS)

    Drechsler, Wolfgang; Havas, Peter; Rosenblum, Arnold

    1984-02-01

    In the preceding paper, the laws of motion were established for classical particles with spin which are monopole-dipole singularities of Yang-Mills-Higgs fields. In this paper, a systematic approximation scheme is developed for solving the coupled nonlinear field equations in any order and for determining the corresponding equations of motion. In zeroth order the potentials are taken as the usual Liénard-Wiechert and Bhabha-Harish-Chandra potentials (generalized to isospace); in this order the solutions are necessarily Abelian, since the isovector describing the charge is constant. The regularization necessary to obtain expressions finite on the world lines of the particles is achieved by the method of Riesz potentials. All fields are taken as retarded and are expressed in integral form. Omitting dipole interactions, the integrals for the various terms are carried out as far as possible for general motions, including radiation-reaction terms. In first order, the charge isovectors are no longer necessarily constant; thus the solutions are not necessarily Abelian, and it is possible for charge to be radiated away. The cases of time-symmetric field theory and of an action-at-a-distance formulation of the theory are discussed in an appendix.

  9. Very Metal-poor Outer-halo Stars with Round Orbits

    NASA Astrophysics Data System (ADS)

    Hattori, Kohei; Yoshii, Yuzuru; Beers, Timothy C.; Carollo, Daniela; Lee, Young Sun

    2013-01-01

    The orbital motions of halo stars in the Milky Way reflect the orbital motions of the progenitor systems in which they formed, making it possible to trace the mass-assembly history of the Galaxy. Direct measurement of three-dimensional velocities, based on accurate proper motions and line-of-sight velocities, has revealed that the majority of halo stars in the inner-halo region move in eccentric orbits. However, our understanding of the motions of distant, in situ halo-star samples is still limited, due to the lack of accurate proper motions for these stars. Here we explore a model-independent analysis of the line-of-sight velocities and spatial distribution of a recent sample of 1865 carefully selected halo blue horizontal-branch (BHB) stars within 30 kpc of the Galactic center. We find that the mean rotational velocity of the very metal-poor ([Fe/H] < -2.0) BHB stars significantly lags behind that of the relatively more metal-rich ([Fe/H] > -2.0) BHB stars. We also find that the relatively more metal-rich BHB stars are dominated by stars with eccentric orbits, as previously observed for other stellar samples in the inner-halo region. By contrast, the very metal-poor BHB stars are dominated by stars on rounder, lower-eccentricity orbits. Our results indicate that the motion of the progenitor systems of the Milky Way that contributed to the stellar populations found within 30 kpc correlates directly with their metal abundance, which may be related to their physical properties such as gas fractions. These results are consistent with the existence of an inner/outer halo structure for the halo system, as advocated by Carollo et al.

  10. VERY METAL-POOR OUTER-HALO STARS WITH ROUND ORBITS

    SciTech Connect

    Hattori, Kohei; Yoshii, Yuzuru; Beers, Timothy C.; Carollo, Daniela; Lee, Young Sun

    2013-01-20

    The orbital motions of halo stars in the Milky Way reflect the orbital motions of the progenitor systems in which they formed, making it possible to trace the mass-assembly history of the Galaxy. Direct measurement of three-dimensional velocities, based on accurate proper motions and line-of-sight velocities, has revealed that the majority of halo stars in the inner-halo region move in eccentric orbits. However, our understanding of the motions of distant, in situ halo-star samples is still limited, due to the lack of accurate proper motions for these stars. Here we explore a model-independent analysis of the line-of-sight velocities and spatial distribution of a recent sample of 1865 carefully selected halo blue horizontal-branch (BHB) stars within 30 kpc of the Galactic center. We find that the mean rotational velocity of the very metal-poor ([Fe/H] < -2.0) BHB stars significantly lags behind that of the relatively more metal-rich ([Fe/H] > -2.0) BHB stars. We also find that the relatively more metal-rich BHB stars are dominated by stars with eccentric orbits, as previously observed for other stellar samples in the inner-halo region. By contrast, the very metal-poor BHB stars are dominated by stars on rounder, lower-eccentricity orbits. Our results indicate that the motion of the progenitor systems of the Milky Way that contributed to the stellar populations found within 30 kpc correlates directly with their metal abundance, which may be related to their physical properties such as gas fractions. These results are consistent with the existence of an inner/outer halo structure for the halo system, as advocated by Carollo et al.

  11. Are Halo CMEs special events?

    NASA Astrophysics Data System (ADS)

    Lara, A.; Xie, H.; Mendoza, E.

    2005-12-01

    We re-visit the properties of wide coronal mass ejections (CMEs) called halo CMEs. Using the large LASCO/SOHO CMEs data set, from 1996 to 2004, we examine the statistical properties of (partial and full) halo CMEs and compare with the same properties of ``normal'' width (lower than 120°) CMEs, we found that halo CMEs have different properties than ``normal'' CMEs which can not be explained by the current geometric interpretation of halos, as CMEs traveling in the Sun Earth direction. We found that the CME width distribution is formed by, at least, three different populations. Two gaussians one narrow and one medium centered at ~17° and ~38°, respectively. It is highly probable, that the narrow population corresponds to ``true'' observed widths, whereas the medium width population is the product of projection effects. The number of wider CMEs (80° < W < 210°) decreases as a power law. After this width, i. e. partial and full halo CMEs, do not follow any particular distribution. This lack of regularity, may be due to the small number of such events. In particular, we found that the number of observed full halo CMEs is lower than the expected. The CME speed follows a log-normal distribution, except for the very low speed CME population, wich follows a gaussian distribution centered at ~100 km/s and probably is due to projection effects. When the CMEs are dividing by width into no, partial and full halo groups we found that the peak of the distributions are shifted towards higher speeds, ~300, ~400 and ~600 km/s for no, partial and full halo CMEs. This confirms that halo CMEs tend to be high speed CMEs. We introduce a new observational CME parameter: the final observed distance (FOD) which is the highest point, inside the coronograph field of view, where the CME can be distinguished from the background. In other words, the highest CME altitude measured. The FOD for no halo CMEs decreases exponentialy from ~5 to ~30 Ro˙ in the LASCO field of view. On the other

  12. Unusual halo nevi--darkening rather than lightening of the central nevus.

    PubMed

    Huynh, P M; Lazova, R; Bolognia, J L

    2001-01-01

    Although the classic halo nevus is a brown nevus with a surrounding rim of depigmentation, i.e. a stage I halo nevus, these nevi can have several clinical stages. The central nevus may lose its pigmentation and appear pink with a surrounding halo (stage II), the central papule may disappear leading to a circular area of depigmentation (stage III) or the depigmented area may repigment (stage IV), leaving no trace of its prior existence. Herein we describe an unusual phenomenon--darkening of the central nevus rather than lightening--following the appearance of the halo phenomenon. An 18-year-old boy who had multiple atypical nevi developed multiple halo nevi beginning at the age of 12 years. Following the appearance of the peripheral halos, 2 of his nevi that were originally solid medium brown in color darkened and the hyperpigmentation had a reticulated pattern with perifollicular sparing. One possible explanation is a postinflammatory hyperpigmentation induced by the infiltrating lymphocytes.

  13. Scaling Limit Analysis of Borromean Halos

    NASA Astrophysics Data System (ADS)

    Souza, L. A.; Bellotti, F. F.; Frederico, T.; Yamashita, M. T.; Tomio, Lauro

    2016-05-01

    The analysis of the core recoil momentum distribution of neutron-rich isotopes of light exotic nuclei is performed within a model of halo nuclei described by a core and two neutrons dominated by the s-wave channel. We adopt the renormalized three-body model with a zero-range force, which accounts for the Efimov physics. This model is applicable to nuclei with large two-neutron halos compared to the core size, and a neutron-core scattering length larger than the interaction range. The halo wave function in momentum space is obtained by using as inputs the two-neutron separation energy and the energies of the singlet neutron-neutron and neutron-core virtual states. Within our model, we obtain the momentum probability densities for the Borromean exotic nuclei Lithium-11 (^{11}Li), Berylium-14 (^{14}Be) and Carbon-22 (^{22}C). A fair reproduction of the experimental data was obtained in the case of the core recoil momentum distribution of ^{11}Li and ^{14}Be, without free parameters. By extending the model to ^{22}C, the combined analysis of the core momentum distribution and matter radius suggest (i) a ^{21}C virtual state well below 1 MeV; (ii) an overestimation of the extracted matter ^{22}C radius; and (iii) a two-neutron separation energy between 100 and 400 keV.

  14. Approach to photorealistic halo simulations.

    PubMed

    Gedzelman, Stanley David

    2011-10-01

    A multiple-scattering Monte Carlo model that can produce near-photographic quality images is developed and used to simulate several dramatic halo displays. The model atmosphere contains an absorbing ozone layer plus two clear, molecular air layers with Rayleigh scattering surrounding a cloud layer and an atmospheric boundary layer with aerosol particles subject to Lorentz-Mie scattering. Halos are produced by right hexagonal or pyramidal crystals that reflect and refract according to geometric optics without diffraction, although "junk" crystals with a pronounced forward-scattering peak but no halo peaks may be included to simulate typical, faint halos. Model parameters include ozone height and content, surface and cloud pressure, cloud optical thickness, crystal shapes, orientations and abundances, atmospheric turbidity, aerosol radius, and albedo. Beams for each wavelength are sorted into small bins as halo beams if they have been scattered once only by a single crystal and otherwise as sky beams, which are smoothed and combined with the halo beams to produce images. Multiple scattering generally vitiates halos, but extremely rare halos, such as Kern's arc, can be produced if a significant fraction of crystals in optically thick clouds have identical shapes and are highly oriented. Albedo is a model by-product with potential value in climate studies.

  15. HALOE test and evaluation software

    NASA Technical Reports Server (NTRS)

    Edmonds, W.; Natarajan, S.

    1987-01-01

    Computer programming, system development and analysis efforts during this contract were carried out in support of the Halogen Occultation Experiment (HALOE) at NASA/Langley. Support in the major areas of data acquisition and monitoring, data reduction and system development are described along with a brief explanation of the HALOE project. Documented listings of major software are located in the appendix.

  16. Halo-independent direct detection analyses without mass assumptions

    SciTech Connect

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m{sub χ}−σ{sub n} plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v{sub min}−g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v{sub min} to nuclear recoil momentum (p{sub R}), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-til-tilde(p{sub R}). The entire family of conventional halo-independent g-tilde(v{sub min}) plots for all DM masses are directly found from the single h-tilde(p{sub R}) plot through a simple rescaling of axes. By considering results in h-tilde(p{sub R}) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde(v{sub min}) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  17. Halo-independent direct detection analyses without mass assumptions

    DOE PAGES

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the mχ – σn plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the vmin – g~ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from vmin to nuclear recoil momentum (pR),more » the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call tilde h(pR). The entire family of conventional halo-independent tilde g~(vmin) plots for all DM masses are directly found from the single tilde h~(pR) plot through a simple rescaling of axes. By considering results in tildeh~(pR) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple tilde g~(vmin) plots for different DM masses. As a result, we conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.« less

  18. Halo-independent direct detection analyses without mass assumptions

    SciTech Connect

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew E-mail: pjfox@fnal.gov E-mail: matthew.mccullough@cern.ch

    2015-10-01

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m{sub χ}−σ{sub n} plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v{sub min}− g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v{sub min} to nuclear recoil momentum (p{sub R}), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-tilde (p{sub R}). The entire family of conventional halo-independent g-tilde (v{sub min}) plots for all DM masses are directly found from the single h-tilde (p{sub R}) plot through a simple rescaling of axes. By considering results in h-tilde (p{sub R}) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde (v{sub min}) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  19. Halo-independent direct detection analyses without mass assumptions

    SciTech Connect

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the mχ – σn plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the vmin – g~ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from vmin to nuclear recoil momentum (pR), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call tilde h(pR). The entire family of conventional halo-independent tilde g~(vmin) plots for all DM masses are directly found from the single tilde h~(pR) plot through a simple rescaling of axes. By considering results in tildeh~(pR) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple tilde g~(vmin) plots for different DM masses. As a result, we conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  20. Simulating the carbon footprint of galactic haloes

    NASA Astrophysics Data System (ADS)

    Bird, Simeon; Rubin, Kate H. R.; Suresh, Joshua; Hernquist, Lars

    2016-10-01

    We compare simulations, including the Illustris simulations, to observations of C IV and C II absorption at z = 2-4. These are the C IV column density distribution function in the column density range 1012-1015 cm-2, the C IV equivalent width distribution at 0.1-2 Å, and the covering fractions and equivalent widths of C IV1548 Å and C II 1337 Å around damped Lyman α systems (DLAs). In the context of the feedback models that we investigate, all C IV observations favour the use of more energetic wind models, which are better able to enrich the gas surrounding haloes. We propose two ways to achieve this: an increased wind velocity and an increase in wind thermal energy. However, even our most energetic wind models do not produce enough absorbers with C IV equivalent width >0.6 Å, which in our simulations are associated with the most massive haloes. All simulations are in reasonable agreement with the C II covering fraction and equivalent widths around damped Lyman α absorbers, although there is a moderate deficit in one bin 10-100 kpc from the DLA. Finally, we show that the C IV in our simulations is predominantly photoionized.

  1. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    NASA Technical Reports Server (NTRS)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  2. THE CASE FOR THE DUAL HALO OF THE MILKY WAY

    SciTech Connect

    Beers, Timothy C.; Lee, Young Sun; Carollo, Daniela; Norris, John E.; Freeman, Ken C. E-mail: lee@pa.msu.edu E-mail: jen@mso.anu.edu.au; and others

    2012-02-10

    Carollo et al. have recently resolved the stellar population of the Milky Way halo into at least two distinct components, an inner halo and an outer halo. This result has been criticized by Schoenrich et al., who claim that the retrograde signature associated with the outer halo is due to the adoption of faulty distances. We refute this claim, and demonstrate that the Schoenrich et al. photometric distances are themselves flawed because they adopted an incorrect main-sequence absolute magnitude relationship from the work of Ivezic et al. When compared to the recommended relation from Ivezic et al., which is tied to a Milky Way globular cluster distance scale and accounts for age and metallicity effects, the relation adopted by Schoenrich et al. yields up to 18% shorter distances for stars near the main-sequence turnoff (TO). Use of the correct relationship yields agreement between the distances assigned by Carollo et al. and Ivezic et al. for low-metallicity dwarfs to within 6%-10%. Schoenrich et al. also point out that intermediate-gravity stars (3.5 {<=}log g < 4.0) with colors redder than the TO region are likely misclassified, with which we concur. We implement a new procedure to reassign luminosity classifications for the TO stars that require it. New derivations of the rotational behavior demonstrate that the retrograde signature and high velocity dispersion of the outer-halo population remain. We summarize additional lines of evidence for a dual halo, including a test of the retrograde signature based on proper motions alone, and conclude that the preponderance of evidence strongly rejects the single-halo interpretation.

  3. Isotropic at the Break? 3D Kinematics of Milky Way Halo Stars in the Foreground of M31

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily C.; Deason, Alis J.; Guhathakurta, Puragra; Rockosi, Constance M.; van der Marel, Roeland P.; Toloba, Elisa; Gilbert, Karoline M.; Sohn, Sangmo Tony; Dorman, Claire E.

    2016-03-01

    We present the line-of-sight (LOS) velocities for 13 distant main sequence Milky Way halo stars with published proper motions (PMs). The PMs were measured using long baseline (5-7 years) multi-epoch Hubble Space Telescope/Advanced Camera for Surveys photometry, and the LOS velocities were extracted from deep (5-6 hr integrations) Keck II/DEIMOS spectra. We estimate the parameters of the velocity ellipsoid of the stellar halo using a Markov chain Monte Carlo ensembler sampler method. The velocity second moments in the directions of the Galactic (l, b, LOS) coordinate system are {< {v}l2> }1/2={138}-26+43 km s-1, {< {v}b2> }1/2={88}-17+28 {\\text{km s}}-1, and {< {v}{{LOS}}2> }1/2={91}-14+27 {\\text{km s}}-1. We use these ellipsoid parameters to constrain the velocity anisotropy of the stellar halo. Ours is the first measurement of the anisotropy parameter β using 3D kinematics outside of the solar neighborhood. We find β =-{0.3}-0.9+0.4, consistent with isotropy and lower than solar neighborhood β measurements by 2σ (βSN ˜ 0.5-0.7). We identify two stars in our sample that are likely members of the known TriAnd substructure, and excluding these objects from our sample increases our estimate of the anisotropy to β ={0.1}-1.0+0.4, which is still lower than solar neighborhood measurements by 1σ. The potential decrease in β with Galactocentric radius is inconsistent with theoretical predictions, though consistent with recent observational studies, and may indicate the presence of large, shell-type structure (or structures) at r ˜ 25 kpc. The methods described in this paper will be applied to a much larger sample of stars with 3D kinematics observed through the ongoing HALO7D program.

  4. Halo traction device.

    PubMed

    Manthey, D E

    1994-08-01

    A thorough understanding of the underlying diseases and of the halo pin traction device will allow for appropriate treatment of complications. Consultation or referral to the neurosurgeon is advised to prevent serious sequelae. The following points should be remembered: 1. Pins should only be tightened during the first 24-hour period after application. 2. Pin infection is treated by local wound care in most cases. 3. CT scan cannot completely exclude the presence of an abscess secondary to artifact, but MRI may be compatible with the newer devices. 4. Pin penetration of the inner table of the skull requires admission. 5. Any suspected loss of alignment or reduction of the cervical spine requires C-spine immobilization. 5. Nasotracheal or fiberoptic intubation or emergent cricothyroidotomy should be used if orotracheal intubation proves difficult due to the device. 7. The anterior portion of the vest is removable for cardiopulmonary resuscitation without compromising the stability of the device. PMID:8062799

  5. Blue straggler star populations in globular clusters - II. Proper-motion cleaned HST catalogues of BSSs in 38 Galactic GCs

    NASA Astrophysics Data System (ADS)

    Simunovic, Mirko; Puzia, Thomas H.

    2016-11-01

    We present new blue straggler star (BSS) catalogues in 38 Milky Way globular clusters (GCs) based on multipassband and multi-epoch treasury survey data from the Hubble Space Telescope. We measure precise astrometry and relative proper motions of stars in all target clusters and performed a subsequent cluster membership selection. We study the accuracy of our proper-motion measurements using estimates of central velocity dispersions and find very good agreement with previous studies in the literature. Finally, we present a homogeneous BSS selection method, that expands the classic BSS selection parameter space to more evolved BSS evolutionary stages. We apply this method to the proper-motion cleaned GC star catalogues in order to define proper-motion cleaned BSS catalogues in all 38 GCs, which we make publicly available to enable further study and follow-up observations.

  6. A strip search for new very wide halo binaries

    NASA Astrophysics Data System (ADS)

    Quinn, D. P.; Smith, M. C.

    2009-12-01

    We report on a search for new wide halo binary stars in Sloan Digital Sky Survey (SDSS) Stripe 82. A list of new halo wide binary candidates which satisfy common proper motion and photometric constraints is provided. The projected separations of the sample lie between 0.007 and 0.25 pc. Although the sample is not large enough to improve constraints on dark matter in the halo, we find the wide binary angular separation function is broadly consistent with past work. We discuss the significance of the new sample for a number of astrophysical applications, including as a testbed for ideas about wide binary formation. For the subset of candidates which have radial velocity information, we make use of integrals of motion to investigate one such scheme in which the origin of Galactic wide binaries is associated with the accretion/disruption of stellar systems in the Galaxy. Additional spectroscopic observations of these candidate binaries will strengthen their usefulness in many of these respects. Based on our search experience in Stripe 82 we estimate that the upcoming Pan-STARRS survey will increase the sample size of wide halo binaries by over an order of magnitude.

  7. SAGE II

    Atmospheric Science Data Center

    2016-02-16

    ... of stratospheric aerosols, ozone, nitrogen dioxide, water vapor and cloud occurrence by mapping vertical profiles and calculating ... (i.e. MLS and SAGE III versus HALOE) Fixed various bugs Details are in the  SAGE II V7.00 Release Notes .   ...

  8. The surface density of haloes

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Lee, Xi-Guo

    We study the correlation between the central surface density and the core radius of the dark matter haloes of galaxies and clusters of galaxies. We find that the surface density within the halo characteristic radius r* is not a universal quantity as claimed by some authors (e.g., Milgrom 2009), but it correlates with several physical quantities (e.g., the halo mass M200, and the magnitude MB). The slope of the surface density-mass relation is 0.18 ± 0.05, leaving small room to the possibility of a constant surface density. Finally, we compare the results with MOND predictions.

  9. Design of Natural Loose Formation Flying around Halo Orbits

    NASA Astrophysics Data System (ADS)

    Simanjuntak, Triwanto; Nakamiya, Masaki; Kawakatsu, Yasuhiro

    Two spacecraft or more are assumed to be in a state of loose formation flying around a collinear Lagrangian point in the Sun-Earth circular restricted three-body problem (CR3BP) system. The orbit reference of choice for the leader is a halo orbit, and the followers are assumed to follow nearby and be constrained either geometrically or in size. This type of formation could be useful in the future for constructing space ports, space telescopes, astronomical spacecraft requiring sun shields and, with greater numbers, spacecraft swarm missions. The formation design method is constructed by firstly seeking the local coordinate system from the monodromy matrix through extraction of the independent bases that span the space of the halo orbit. To nullify diverging and converging motion, we confine the relative motion to within the periodic subspaces. We observe two modes of relative motion within these subspaces, long-term and short-term motion. In this study, we approximate the long-term motion by deriving a discrete formulation of independent directions based on the eigenvectors of the monodromy matrix, while for the short-term motion we approximate the fundamental set solutions using Fourier series and additional linear functions. Since the size of the formation discussed is significantly smaller than that of the halo orbit, the formation design method can fundamentally be stated as a process of linearly combining these approximations to achieve the desired formation. Consequently, use of this approach transforms formation design from a differential equation problem into an algebraic one, and furthermore enables the long-term and short-term motion design problems to be handled either jointly or separately. A set of design examples is presented to demonstrate the validity of the design method.

  10. Halo model and halo properties in Galileon gravity cosmologies

    SciTech Connect

    Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Lombriser, Lucas; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: llo@roe.ac.uk E-mail: silvia.pascoli@durham.ac.uk

    2014-04-01

    We investigate the performance of semi-analytical modelling of large-scale structure in Galileon gravity cosmologies using results from N-body simulations. We focus on the Cubic and Quartic Galileon models that provide a reasonable fit to CMB, SNIa and BAO data. We demonstrate that the Sheth-Tormen mass function and linear halo bias can be calibrated to provide a very good fit to our simulation results. We also find that the halo concentration-mass relation is well fitted by a power law. The nonlinear matter power spectrum computed in the halo model approach is found to be inaccurate in the mildly nonlinear regime, but captures reasonably well the effects of the Vainshtein screening mechanism on small scales. In the Cubic model, the screening mechanism hides essentially all of the effects of the fifth force inside haloes. In the case of the Quartic model, the screening mechanism leaves behind residual modifications to gravity, which make the effective gravitational strength time-varying and smaller than the standard value. Compared to normal gravity, this causes a deficiency of massive haloes and leads to a weaker matter clustering on small scales. For both models, we show that there are realistic halo occupation distributions of Luminous Red Galaxies that can match both the observed large-scale clustering amplitude and the number density of these galaxies.

  11. Towards a self-consistent halo model for the nonlinear large-scale structure

    NASA Astrophysics Data System (ADS)

    Schmidt, Fabian

    2016-03-01

    The halo model is a theoretically and empirically well-motivated framework for predicting the statistics of the nonlinear matter distribution in the Universe. However, current incarnations of the halo model suffer from two major deficiencies: (i) they do not enforce the stress-energy conservation of matter; (ii) they are not guaranteed to recover exact perturbation theory results on large scales. Here, we provide a formulation of the halo model (EHM) that remedies both drawbacks in a consistent way, while attempting to maintain the predictivity of the approach. In the formulation presented here, mass and momentum conservation are guaranteed on large scales, and results of the perturbation theory and the effective field theory can, in principle, be matched to any desired order on large scales. We find that a key ingredient in the halo model power spectrum is the halo stochasticity covariance, which has been studied to a much lesser extent than other ingredients such as mass function, bias, and profiles of halos. As written here, this approach still does not describe the transition regime between perturbation theory and halo scales realistically, which is left as an open problem. We also show explicitly that, when implemented consistently, halo model predictions do not depend on any properties of low-mass halos that are smaller than the scales of interest.

  12. Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Totten, E. J.; Irwin, M. J.

    1996-04-01

    A byproduct of the APM high redshift quasar survey (Irwin et al. 1991) was the discovery of ~ 20 distant (20-100kpc) cool AGB carbon stars (all N-type) at high Galactic latitude. In August we used the INT+IDS to survey the rest of the high latitude SGC sky visible from La Palma and found 10 more similar carbon stars. Before this work there were only a handful of published faint high latitude cool carbon stars known (eg. Margon et al., 1984, Mould et al., 1985) and there has been speculation as to their origin (eg. Sanduleak, 1980, van den Bergh & Lafontaine, 1984). Intermediate age carbon stars (3 -- 7 Gyrs) seem unlikely to have formed in the halo in isolation from other star forming regions so how did they get there ? One possiblity that we are investigating, is that they arise from either the disruption of tidally captured dSph galaxies or are a manifestion of the long sought after optical component of the Magellanic Stream. Lack of proper motion rules out the possibility of them being dwarf carbon stars (eg. Warren et al., 1992); indeed no N-type carbon stars have been found to be dwarf carbon stars. Our optical spectroscopy confirms their carbon star type (they are indistinguishable from cool AGB carbon stars in nearby dwarf galaxies) and hence probable large distances. We are extending our survey to the NGC region, obtaining radial velocities and good S:N fluxed spectra for all the carbon stars. This will enable us to investigate their kinematics, true spatial distribution and hence their origin. Even, in the event that these objects are somehow an integral part of the Galactic halo, then their velocities and large distances will enable direct studies of the velocity ellipsoid and rotation of the outer halo (eg. Green et al., 1994).

  13. The Outer Halo Metallicity Distribution

    NASA Astrophysics Data System (ADS)

    MA, ZHIBO; Morrison, H.; Harding, P.; Xue, X.; Rix, H.; Rockosi, C.; Johnson, J.; Lee, Y.; Cudworth, K.

    2012-01-01

    We present a new determination of the metallicity distribution function in the Milky Way halo, based on an in situ sample of more than 5000 K giants from SDSS/SEGUE. We have also measured the metallicity gradient in the halo, using our sample which stretches from 5 kpc to more than 100 kpc from the galactic center. The halo metallicity gradient has been a controversial topic in recent studies, but our in-situ study overcomes the problems caused in these studies by their extrapolations from local samples to the distant halo. We also describe our extensive checks of the log g and [Fe/H] measurements from the SEGUE Stellar Parameters pipeline, using globular and open cluster stars and SEGUE stars with follow-up high-resolution analysis. In addition, we present a new Bayesian estimate of distances to the K giants, which avoids the distance bias introduced by the red giant branch luminosity function.

  14. Supernumerary ice-crystal halos?

    PubMed

    Berry, M V

    1994-07-20

    Geometric-optics singularities in the intensity profiles of refraction halos formed by randomly oriented ice crystals are softened by diffraction and decorated with fine supernumerary fringes. If the crystals have a fixed symmetry axis (as in parhelia), the geometric singularity is a square-root divergence, as in the rainbow. However, the universal curve that describes diffraction is different from the rainbow's Airy function, with weak maxima (supernumerary fringes) on the geometrically dark region inside the halo (and even fainter fringes outside); these are much smaller than their counterparts on the light side of rainbows. If the crystals have no preferred orientation (as in the 22° halo), the geometric singularity is a step. In this case the universal diffraction function has no maxima, and its supernumeraries are shoulders rather than maxima. The low contrast of the fringes is probably the main reason why supernumerary halos are rarely if ever seen. PMID:20935824

  15. Halo Formation in 3-D Bunches with Self-Consistent Stationary Distributions

    NASA Astrophysics Data System (ADS)

    Fedotov, A. V.; Gluckstern, R. L.; Kurennoy, S. S.; Ryne, R. D.

    1998-04-01

    We have constructed, analytically and numerically, a new class of self-consistent 6-D phase space stationary distributions. The beam is then mismatched longitudinally and/or transversely, and we explore the formation of longitudinal and transverse halos in 3-D axisymmetric beam bunches. The longitudinal phase space clearly shows the typical "peanut" diagram observed in 2-D calculations. We find that the longitudinal halo forms first for comparable longitudinal and transverse mismatches because the longitudinal tune depression is more severe than the transverse one for elongated bunches. Of particular importance is the coupling between longitudinal and transverse motion and its effect on halo formation.

  16. A Gravitational Double-scattering Mechanism for Generating High-velocity Objects during Halo Mergers

    NASA Astrophysics Data System (ADS)

    Samsing, Johan

    2015-02-01

    We present a dynamical model that describes how halo particles can receive a significant energy kick from the merger between their own host halo and a target halo. This could provide a possible explanation for some high-velocity objects, including extended systems like globular clusters (GCs). In the model we especially introduce a double-scattering mechanism, where a halo particle receives a significant part of its total energy kick by first undergoing a gravitational deflection by the target halo and subsequently by its original host halo. This generates an energy kick that is due to the relative velocity between the halos during the deflections. We derive analytically the total kick energy of the particle, which is composed of energy from the double-scattering mechanism and tidal fields, as a function of its position in its original host halo just before merger. In the case of a 1:10 merger, we find that the presented mechanisms can easily generate particles with a velocity approximately two times the virial velocity of the target halo. This motivates us to suggest that the high velocity of the recently discovered GC HVGC-1 can be explained by a head-on halo merger. Finally, we illustrate the orbital evolution of high-velocity particles outside the virial sphere of the target halo by solving the equation of motion in an expanding universe. We find a sweet spot around a scale factor of 0.3-0.5 for ejecting particles into large orbits, which can easily reach beyond approximately five virial radii.

  17. A GRAVITATIONAL DOUBLE-SCATTERING MECHANISM FOR GENERATING HIGH-VELOCITY OBJECTS DURING HALO MERGERS

    SciTech Connect

    Samsing, Johan

    2015-02-01

    We present a dynamical model that describes how halo particles can receive a significant energy kick from the merger between their own host halo and a target halo. This could provide a possible explanation for some high-velocity objects, including extended systems like globular clusters (GCs). In the model we especially introduce a double-scattering mechanism, where a halo particle receives a significant part of its total energy kick by first undergoing a gravitational deflection by the target halo and subsequently by its original host halo. This generates an energy kick that is due to the relative velocity between the halos during the deflections. We derive analytically the total kick energy of the particle, which is composed of energy from the double-scattering mechanism and tidal fields, as a function of its position in its original host halo just before merger. In the case of a 1:10 merger, we find that the presented mechanisms can easily generate particles with a velocity approximately two times the virial velocity of the target halo. This motivates us to suggest that the high velocity of the recently discovered GC HVGC-1 can be explained by a head-on halo merger. Finally, we illustrate the orbital evolution of high-velocity particles outside the virial sphere of the target halo by solving the equation of motion in an expanding universe. We find a sweet spot around a scale factor of 0.3-0.5 for ejecting particles into large orbits, which can easily reach beyond approximately five virial radii.

  18. Scale dependence of halo and galaxy bias: Effects in real space

    NASA Astrophysics Data System (ADS)

    Smith, Robert E.; Scoccimarro, Román; Sheth, Ravi K.

    2007-03-01

    We examine the scale dependence of dark matter halo and galaxy clustering on very large scales (0.01halo bias. We pursue a two line offensive: high-resolution numerical simulations are used to establish some old and some new results, and an analytic model is developed to understand their origins. Our simulations show: (i) that the z=0 dark matter power spectrum is suppressed relative to linear theory by ˜5% on scales 0.05ii) that, indeed, halo bias is nonlinear over the scales we probe and that the scale dependence is a strong function of halo mass. High mass haloes show no suppression of power on scales k<0.07[hMpc-1], and only show amplification on smaller scales, whereas low mass haloes show strong, ˜5% 10%, suppression over the range 0.05haloes, which circumvents the thorny issue of shot-noise correction. The halo-halo power spectrum, however, is highly sensitive to the shot-noise correction; we show that halo exclusion effects make this sub-Poissonian and a new correction is presented. Our results have special relevance for studies of the baryon acoustic oscillation features in the halo power spectra. Nonlinear mode-mode coupling: (i) damps these features on progressively larger scales as halo mass increases; (ii) produces small shifts in the positions of the peaks and troughs which depend on halo mass. We show that these effects on halo clustering are important over the redshift range relevant to such studies (0halo model.” The halo-halo clustering term is propagated into the nonlinear regime using “1-loop” perturbation theory and a nonlinear halo bias model. Galaxies are then

  19. The Making of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    1999-02-01

    The VLT Watches a Dissolving Stellar Cluster A group of ESO astronomers [1] has used new observations, obtained with the first 8.2-m VLT Unit Telescope (UT1) during the "Science Verification" programme, to show that a globular cluster in the Milky Way galaxy is "evaporating" and has already lost its faintest stars. This is the first observational result of its kind and has important implications for future studies. It may be explained by a gradual loss of such stars from the cluster into the Milky Way halo, a roughly spherical region around the much flatter, spiral structure in which most of the stars and nebulae are located. The new result lends strong support to current theories about the evolution of the structure of this halo and also provides insights into the formation of the galaxy in which we live. Globular clusters and the halo of the Milky Way The stars that we observe in the halo of the Milky Way represent only a small fraction of the total mass in this region. Investigations of the motions of stars in our Galaxy have shown that this halo must harbour much more matter, which is hidden from our view. The same phenomenon has been observed in other galaxies, and astronomers refer to it as "dark matter". It is at this moment not known what this matter consists of. The brightest objects in the halo are the globular clusters . They are large groupings of stars that were formed together in the very early evolutionary phases of the Milky Way, some 12,000 - 14,000 million years ago. This happened soon after the moment when the first structures emerged in the large cloud of primordial hydrogen in which our Galaxy was born. A popular scenario describes the first build-up of galactic structure, i.e. of stars and gas, as when normal matter began to collect inside the dark-matter halo, due to its strong gravitational attraction. The globular clusters were most probably the first denizens of this protogalaxy . It is believed that the Milky Way Galaxy subsequently

  20. GCN: a gaseous Galactic halo stream?

    NASA Astrophysics Data System (ADS)

    Jin, Shoko

    2010-10-01

    We show that a string of HI clouds that form part of the high-velocity cloud complex known as GCN is a probable gaseous stream extending over more than 50° in the Galactic halo. The radial velocity gradient along the stream is used to deduce transverse velocities as a function of distance, enabling a family of orbits to be computed. We find that a direction of motion towards the Galactic disc coupled with a mid-stream distance of ~20kpc provides a good match to the observed sky positions and radial velocities of the HI clouds comprising the stream. With an estimated mass of 105Msolar, its progenitor is likely to be a dwarf galaxy. However, no stellar counterpart has been found amongst the currently known Galactic dwarf spheroidal galaxies or stellar streams and the exact origin of the stream is therefore currently unknown.

  1. Biomechanics of the Sensor–Tissue Interface—Effects of Motion, Pressure, and Design on Sensor Performance and Foreign Body Response—Part II: Examples and Application

    PubMed Central

    Helton, Kristen L; Ratner, Buddy D; Wisniewski, Natalie A

    2011-01-01

    This article is the second part of a two-part review in which we explore the biomechanics of the sensor–tissue interface as an important aspect of continuous glucose sensor biocompatibility. Part I, featured in this issue of Journal of Diabetes Science and Technology, describes a theoretical framework of how biomechanical factors such as motion and pressure (typically micromotion and micropressure) affect tissue physiology around a sensor and in turn, impact sensor performance. Here in Part II, a literature review is presented that summarizes examples of motion or pressure affecting sensor performance. Data are presented that show how both acute and chronic forces can impact continuous glucose monitor signals. Also presented are potential strategies for countering the ill effects of motion and pressure on glucose sensors. Improved engineering and optimized chemical biocompatibility have advanced sensor design and function, but we believe that mechanical biocompatibility, a rarely considered factor, must also be optimized in order to achieve an accurate, long-term, implantable sensor. PMID:21722579

  2. A statistical study of the orientation, motion, and thicknesses of density and electric field structures observed by Cluster~II above the auroral accleration region

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Bonnell, J. W.; Mozer, F. S.; Andre, M.; Eriksson, A.; Vaivads, A.; Pedersen, A.; Lindqvist, P.; Laakso, H.

    2003-12-01

    We present the results of a statistical study of the properties of electric field and density structures observed by the Cluster~II spacecraft above the auroral acceleration region. Of particular emphasis is the orientation, motion, and thicknesses of time stationary structures. The multi-point electric field and density measurements from the Cluster~II constellation are used to estimate the direction and propagation speed of structures in the electric fields and plasma density (as inferred from spacecraft floating potential measurements), as well as to quantify the thicknesses of those structures. These spatial structures propagate transverse to the magnetic field at speeds of ˜10 km/s and are characterized by thicknesses that range from a few hundred kilometers to a few thousand kilometers in extent. Thus with these observations we are probing the high-altitude potential and density structures that are associated with relatively fast (1 km/s) proper motions of fairly large scale (10-100 km) features in the auroral zone. The variation in the properties of these spatial structures with other parameters that characterize the auroral zone, such as altitude, local time, invariant latitude, and geomagnetic activity will also be discussed.

  3. Grains in galactic haloes.

    NASA Astrophysics Data System (ADS)

    Ferrara, A.; Barsella, B.; Ferrini, F.; Greenberg, J. M.; Aiello, S.

    1989-12-01

    The authors considered the effect of extensive forces on dust grains subjected to the light and matter distribution of the spiral galaxy NGC 3198. They have shown that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. The authors present here the preliminary results of the study of the motion of a dust grain for NGC 3198.

  4. Rotation of tokamak halo currents

    SciTech Connect

    Boozer, Allen H.

    2012-05-15

    During tokamak disruptions, halo currents, which can be tenths of the total plasma current, can flow at the plasma edge along the magnetic field lines that intercept the chamber walls. Non-axisymmetric halo currents are required to maintain force balance as the plasma kinks when the edge safety factor drops to about two in a vertical displacement event. The plasma quickly assumes a definite toroidal velocity v{sub a}(r) with respect to that of the magnetic kink, v{sub k}, where v{sub a}(r) is set by the radial electric field required for ambipolarity. The plasma velocity, v{sub pl}=v{sub a}+v{sub k}, near the edge is influenced by the interaction with neutrals and with the potential in the halo required for quasi-neutrality on open magnetic field lines, and the plasma velocity in the core is influenced by external error fields. When plasma effects dominate magnetic locking, the magnetic kink should rotate at a diamagnetic speed of either the edge or the core. If the magnetic field lines of the halo plasma intercept the wall at locations of very different electrical conductivity, the toroidal rotation of the halo currents can intermittently stall at wall locations of high conductivity. Such stalling is seen in experiments. The toroidal phase difference between the stalled halo currents and the kink, which is expected to rotate smoothly, must satisfy {delta}{phi}<{+-}{pi}/2. A concern cited by ITER engineers is that the time varying force of the rotating halo could substantially increase the disruption loads on in-vessel components.

  5. Halo modelling in chameleon theories

    SciTech Connect

    Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu E-mail: kazuya.koyama@port.ac.uk

    2014-03-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.

  6. Galactic Halos of Hydrogen

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows two companion galaxies, NGC 4625 (top) and NGC 4618 (bottom), and their surrounding cocoons of cool hydrogen gas (purple). The huge set of spiral arms on NGC 4625 (blue) was discovered by the ultraviolet eyes of NASA's Galaxy Evolution Explorer. Though these arms are nearly invisible when viewed in optical light, they glow brightly in ultraviolet. This is because they are bustling with hot, newborn stars that radiate primarily ultraviolet light.

    The vibrant spiral arms are also quite lengthy, stretching out to a distance four times the size of the galaxy's core. They are part of the largest ultraviolet galactic disk discovered so far.

    Astronomers do not know why NGC 4625 grew arms while NGC 4618 did not. The purple nebulosity shown here illustrates that hydrogen gas - an ingredient of star formation - is diffusely distributed around both galaxies. This means that other unknown factors led to the development of the arms of NGC 4625.

    Located 31 million light-years away in the constellation Canes Venatici, NGC 4625 is the closest galaxy ever seen with such a young halo of arms. It is slightly smaller than our Milky Way, both in size and mass. However, the fact that this galaxy's disk is forming stars very actively suggests that it might evolve into a more massive and mature galaxy resembling our own.

    The image is composed of ultraviolet, visible-light and radio data, from the Galaxy Evolution Explorer, the California Institute of Technology's Digitized Sky Survey, and the Westerbork Synthesis Radio Telescope, the Netherlands, respectively. Near-ultraviolet light is colored green; far-ultraviolet light is colored blue; and optical light is colored red. Radio emissions are colored purple.

  7. VISITORS FROM THE HALO: 11 Gyr OLD WHITE DWARFS IN THE SOLAR NEIGHBORHOOD

    SciTech Connect

    Kilic, Mukremin; Brown, Warren R.; McLeod, B.; Munn, Jeffrey A.; Harris, Hugh C.; Williams, Kurtis A.; DeGennaro, Steven; Kowalski, P. M.; Von Hippel, Ted; Jeffery, Elizabeth J.

    2010-05-20

    We report the discovery of three nearby old halo white dwarf (WD) candidates in the Sloan Digital Sky Survey (SDSS), including two stars in a common proper motion binary system. These candidates are selected from our 2800deg{sup 2} proper motion survey on the Bok and U.S. Naval Observatory Flagstaff Station 1.3 m telescopes, and they display proper motions of 0.''4-0.''5 yr{sup -1}. Follow-up MMT spectroscopy and near-infrared photometry demonstrate that all three objects are hydrogen-dominated atmosphere WDs with T {sub eff} {approx} 3700-4100 K. For average mass WDs, these temperature estimates correspond to cooling ages of 9-10 Gyr, distances of 70-80 pc, and tangential velocities of 140-200 km s{sup -1}. Based on the UVW space velocities, we conclude that they most likely belong to the halo. Furthermore, the combined main-sequence and WD cooling ages are 10-11 Gyr. Along with SDSS J1102+4113, they are the oldest field WDs currently known. These three stars represent only a small fraction of the halo WD candidates in our proper motion survey, and they demonstrate that deep imaging surveys like the Pan-STARRS and Large Synoptic Survey Telescope should find many old thick disk and halo WDs that can be used to constrain the age of the Galactic thick disk and halo.

  8. A Numerical Study of Hurricane Erin (2001). Part II; Shear and the Organization of Eyewall Vertical Motion

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Wu, Liguang

    2006-01-01

    A high-resolution numerical simulation of Hurricane Erin (2001) is used to examine the organization of vertical motion in the eyewall and how that organization responds to a large and rapid increase in the environmental vertical wind shear and subsequent decrease in shear. During the early intensification period, prior to the onset of significant shear, the upward motion in the eyewall was concentrated in small-scale convective updrafts that formed in association with regions of concentrated vorticity (herein termed mesovortices) with no preferred formation region in the eyewall. Asymmetric flow within the eye was weak. As the shear increased, an azimuthal wavenumber 1 asymmetry in storm structure developed with updrafts tending to form on the downshear to downshear-left side of the eyewall. Continued intensification of the shear led to increasing wavenumber 1 asymmetry, large vortex tilt, and a change in eyewall structure and vertical motion organization. During this time, the eyewall structure was dominated by a vortex couplet with a cyclonic (anticyclonic) vortex on the downtilt-left (downtilt-right) side of the eyewall and strong asymmetric flow across the eye that led to strong mixing of eyewall vorticity into the eye. Upward motion was concentrated over an azimuthally broader region on the downtilt side of the eyewall, upstream of the cyclonic vortex, where low-level environmental inflow converged with the asymmetric outflow from the eye. As the shear diminished, the vortex tilt and wavenumber 1 asymmetry decreased, while the organization of updrafts trended back toward that seen during the weak shear period.

  9. The 3-D motion of the centre of gravity of the human body during level walking. II. Lower limb amputees.

    PubMed

    Tesio, L; Lanzi, D; Detrembleur, C

    1998-03-01

    OBJECTIVE: To analyse the motion of the centre of gravity (CG) of the body during gait in unilateral lower limb amputees with good kinematic patterns. DESIGN: Three transtibial (below-knee, BK) and four transfemoral (above-knee, AK) amputees were required to perform successive walks over a 2.4 m long force plate, at freely chosen cadence and speed. BACKGROUND: In previous studies it has been shown that in unilateral lower limb amputee gait, the motion of the CG can be more asymmetric than might be suspected from kinematic analysis. METHODS: The mechanical energy changes of the CG due to its motion in the vertical, forward and lateral direction were measured. Gait speed ranged 0.75-1.32 m s(-1) in the different subjects. This allowed calculation of (a) the positive work done by muscles to maintain the motion of the CG with respect to the ground ('external' work, W(ext)) and (b) the amount of the pendulum-like, energy-saving transfer between gravitational potential energy and kinetic energy of the CG during each step (percent recovery, R). Step length and vertical displacement of the CG were also measured. RESULTS: The recorded variables were kept within the normal limits, calculated in a previous work, when an average was made of the steps performed on the prosthetic (P) and on the normal (N) limb. Asymmetries were found, however, between the P and the N step. In BK amputees, the P step R was 5% greater and W(ext) was 21% lower than in the N step; in AK amputees, in the P step R was 54% greater and W(ext) was 66% lower than in the N step. Asymmetries were also found in the relative magnitude of the external work provided by each lower limb during the single stance as compared with the double stance: a marked deficit of work occurred at the P to N transition. PMID:11415775

  10. Building Halos by Digesting Satellites

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    We think galactic halos are built through the addition of material from the smaller subhalos of satellites digested by their hosts. Though most of the stars in Milky-Way-mass halos were probably formed in situ, many were instead accumulated over time, as orbiting dwarf galaxies were torn apart and their stars flung throughout the host galaxy. A recent set of simulations has examined this brutal formation process.In the authors simulations, a subhalo first falls into the host halo. At this point, it can either survive to present day as a satellite galaxy, or it can be destroyed, its stars scattering throughout the host halo. [Deason et al. 2016]Subhalo FateThere are many open questions about the growth of Milky-Way-mass halos from the accretion of subhalos. Which subhalos are torn apart and accreted, and which ones survive intact? Are more small or large subhalos accreted? Does subhalo accretion affect the host galaxys metallicity? And what can we learn from all of this about the Milky Ways formation history?In a recently published study, a team of scientists from Stanford University and SLAC National Accelerator Laboratory set out to answer these questions using a suite of 45 zoom-in simulations of Milky-Way-mass halos. Led by Alis Deason, the team tracked the accretion history of these 45 test galaxies to determine how their halos were built.Piecing Together HistoryDeason and collaborators reach several new and interesting conclusions based on the outcomes of their simulations.Average accreted stellar mass from destroyed dwarfs for each host halo, as a function of the time of the last major accretion event. More stellar mass is accreted in more recent accretion events. [Deason et al. 2016]Most of the stellar mass accreted by the Milky-Way-mass halos typically comes from only one or two destroyed dwarfs. The accreted dwarfs are usually low-mass if they were accreted early on in the simulation (i.e., in the early universe), and high-mass if they were accreted

  11. Project ECHO: Electronic Communications from Halo Orbit

    NASA Technical Reports Server (NTRS)

    Borrelli, Jason; Cooley, Bryan; Debole, Marcy; Hrivnak, Lance; Nielsen, Kenneth; Sangmeister, Gary; Wolfe, Matthew

    1994-01-01

    The design of a communications relay to provide constant access between the Earth and the far side of the Moon is presented. Placement of the relay in a halo orbit about the L2 Earth-Moon Lagrange point allows the satellite to maintain constant simultaneous communication between Earth and scientific payloads on the far side of the Moon. The requirements of NASA's Discovery-class missions adopted and modified for this design are: total project cost should not exceed $150 million excluding launch costs, launch must be provided by Delta-class vehicle, and the satellite should maintain an operational lifetime of 10 to 15 years. The spacecraft will follow a transfer trajectory to the L2 point, after launch by a Delta II 7925 vehicle in 1999. Low-level thrust is used for injection into a stationkeeping-free halo orbit once the spacecraft reaches the L2 point. The shape of this halo orbit is highly elliptical with the maximum excursion from the L2 point being 35000 km. A spun section and despun section connected through a bearing and power transfer assembly (BAPTA) compose the structure of the spacecraft. Communications equipment is placed on the despun section to provide for a stationary dual parabolic offset-feed array antenna system. The dual system is necessary to provide communications coverage during portions of maximum excursion on the halo orbit. Transmissions to the NASA Deep Space Network 34 m antenna include six channels (color video, two voice, scientific data from lunar payloads, satellite housekeeping and telemetry and uplinked commands) using the S- and X-bands. Four radioisotope thermoelectric generators (RTG's) provide a total of 1360 W to power onboard systems and any two of the four Hughes 13 cm ion thrusters at once. Output of the ion thrusters is approximately 17.8 mN each with xenon as the propellant. Presence of torques generated by solar pressure on the antenna dish require the addition of a 'skirt' extending from the spun section of the satellite

  12. Project ECHO: Electronic Communications from Halo Orbit

    NASA Astrophysics Data System (ADS)

    Borrelli, Jason; Cooley, Bryan; Debole, Marcy; Hrivnak, Lance; Nielsen, Kenneth; Sangmeister, Gary; Wolfe, Matthew

    The design of a communications relay to provide constant access between the Earth and the far side of the Moon is presented. Placement of the relay in a halo orbit about the L2 Earth-Moon Lagrange point allows the satellite to maintain constant simultaneous communication between Earth and scientific payloads on the far side of the Moon. The requirements of NASA's Discovery-class missions adopted and modified for this design are: total project cost should not exceed $150 million excluding launch costs, launch must be provided by Delta-class vehicle, and the satellite should maintain an operational lifetime of 10 to 15 years. The spacecraft will follow a transfer trajectory to the L2 point, after launch by a Delta II 7925 vehicle in 1999. Low-level thrust is used for injection into a stationkeeping-free halo orbit once the spacecraft reaches the L2 point. The shape of this halo orbit is highly elliptical with the maximum excursion from the L2 point being 35000 km. A spun section and despun section connected through a bearing and power transfer assembly (BAPTA) compose the structure of the spacecraft. Communications equipment is placed on the despun section to provide for a stationary dual parabolic offset-feed array antenna system. The dual system is necessary to provide communications coverage during portions of maximum excursion on the halo orbit. Transmissions to the NASA Deep Space Network 34 m antenna include six channels (color video, two voice, scientific data from lunar payloads, satellite housekeeping and telemetry and uplinked commands) using the S- and X-bands. Four radioisotope thermoelectric generators (RTG's) provide a total of 1360 W to power onboard systems and any two of the four Hughes 13 cm ion thrusters at once. Output of the ion thrusters is approximately 17.8 mN each with xenon as the propellant. Presence of torques generated by solar pressure on the antenna dish require the addition of a 'skirt' extending from the spun section of the satellite

  13. Detection of turbulent coherent motions in a forest canopy part II: Time-scales and conditional averages

    NASA Astrophysics Data System (ADS)

    Collineau, Serge; Brunet, Yves

    1993-10-01

    Turbulent exchanges between plant canopies and the atmosphere are known to be strongly affected by intermittent coherent motions, which appear on time traces of turbulent variables as periodic, large-amplitude excursions from the mean. Detecting these features requires objective and powerful signal analysis techniques. We investigate here the possibilities offered by the recently developed wavelet transform, presented in a companion paper. For this purpose, a set of data acquired in a 13.5 m high pine forest in southwestern France was used, which provided time series of wind velocities and air temperature recorded at two levels simultaneously, under moderately unstable conditions. Firstly, a duration scale of the active part of coherent motions was estimated from the wavelet variance. Then, we focused on the detection itself of large-scale features; several wavelet functions were tested, and the results compared with those obtained from more classical conditional sampling methods such as VITA and WAG. A mean time interval Δ=1.8 h/u * ( h being the canopy height and u * the friction velocity) between contiguous coherent motions was obtained. The features extracted from the various traces and ensemble-averaged over 30 min periods appeared very similar throughout the four hours of data studied. They provided a dynamic description of the ejection-sweep process, readily observable at both levels. An alternate Reynolds decomposition of the instantaneous turbulent fields, using the conditionally averaged signals, allowed the relative importance of large- and small-scale contributions to momentum and heat fluxes to be estimated. The results were found to be in good agreement with comparable studies.

  14. The Galactic Halo and CDM

    NASA Astrophysics Data System (ADS)

    Merrifield, M. R.

    2004-07-01

    This paper reviews the available information on the central density distribution and shape of the Milky Way's halo. At present, there is no strong evidence that the Milky Way's halo properties conflict with the predictions of cold dark matter (CDM): a primordial central power law cusp can be accommodated by the observations, and the current constraints on flattening are also consistent with the predictions of the theory. If you want to pick a fight with CDM, then the Milky Way is probably not the place to do it.

  15. Accretion in the galactic halo

    NASA Astrophysics Data System (ADS)

    Stephens, Alex Courtney

    2000-10-01

    The Milky Way disk is enveloped in a diffuse, dynamically-hot collection of stars and star clusters collectively known as the ``stellar halo''. Photometric and chemical analyses suggest that these stars are ancient fossils of the galaxy formation epoch. Yet, little is known about the origin of this trace population. Is this system merely a vestige of the initial burst of star formation within the decoupled proto-Galaxy, or is it the detritus of cannibalized satellite galaxies? In an attempt to unravel the history of the Milky Way's stellar halo, I performed a detailed spectroscopic analysis of 55 metal-poor stars possessing ``extreme'' kinematic properties. It is thought that stars on orbits that either penetrate the remote halo or exhibit large retrograde velocities could have been associated with assimilated (or ``accreted'') dwarf galaxies. The hallmark of an accreted halo star is presumed to be a deficiency (compared with normal stars) of the α-elements (O, Mg, Si, Ca, Ti) with respect to iron, a consequence of sporadic bursts of star formation within the diminutive galaxies. Abundances for a select group of light metals (Li, Na, Mg, Si, Ca, Ti), iron-peak nuclides (Cr, Fe, Ni), and neutron-capture elements (Y, Ba) were calculated using line-strengths measured from high-resolution, high signal-to-noise spectral observations collected with the Keck I 10-m and KPNO 4-m telescopes. The abundances extracted from the spectra reveal: (1)The vast majority of outer halo stars possess supersolar [α/Fe] > 0.0) ratios. (2)The [α/Fe] ratio appears to decrease with increasing metallicity. (3)The outer halo stars have lower ratios of [α/Fe] than inner halo stars at a given metallicity. (4)At the largest metallicities, there is a large spread in the observed [α/Fe] ratios. (5)[α/Fe] anti-correlates with RAPO. (6)Only one star (BD+80° 245) exhibits the peculiar abundances expected of an assimilated star. The general conclusion extracted from these data is that the

  16. Simulation of halo particles with Simpsons

    NASA Astrophysics Data System (ADS)

    Machida, Shinji

    2003-12-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle.

  17. Ages, chemistry, and type 1A supernovae: Clues to the formation of the galactic stellar halo

    NASA Technical Reports Server (NTRS)

    Smecker-Hane, Tammy A.; Wyse, Rosemary F. G.

    1993-01-01

    We endeavor to resolve two conflicting constraints on the duration of the formation of the Galactic stellar halo - 2-3 Gyr age differences in halo stars, and the time scale inferred from the observed constant values of chemical element abundance ratios characteristic of enrichment by Type II supernovae - by investigating the time scale for the onset of Type Ia supernovae (SNIa) in the currently favored progenitor model - mergers of carbon and oxygen white dwarfs (CO WDs).

  18. Umbrella motion of the methyl cation, radical, and anion molecules. II. Effects of temperature on time dependent inversion dynamics

    NASA Astrophysics Data System (ADS)

    Ragni, Mirco; Bitencourt, Ana Carla P.; Prudente, Frederico V.; Barreto, Patricia R. P.; Posati, Tamara

    2016-03-01

    The main purpose of the present work is to characterize the umbrella inversion motion of the CH- 3, CH3 and CH- 3 molecules as a function of the environmental conditions. In particular, for the three investigated species we have studied how temperature affects times for umbrella inversion modes and their propagation velocity. These data are used to predict the statistical behavior of the reactions involving the AB3 like molecules and to relate the umbrella potential with the rate constants. The second aspect of this study concerns the molecular distribution charges as a function of the umbrella opening angle and of the total charge. The results have been used to calculate the induced electric field on a probe charge located at a given position perpendicular to the plane of the hydrogen atoms which is the most relevant for the reaction. Obtained values are presented as a function of the umbrella opening angle.

  19. Stochastic Model of the Spin Distribution of Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Kim, Juhan; Choi, Yun-Young; Kim, Sungsoo S.; Lee, Jeong-Eun

    2015-09-01

    We employ a stochastic approach to probing the origin of the log-normal distributions of halo spin in N-body simulations. After analyzing spin evolution in halo merging trees, it was found that a spin change can be characterized by a stochastic random walk of angular momentum. Also, spin distributions generated by random walks are fairly consistent with those directly obtained from N-body simulations. We derived a stochastic differential equation from a widely used spin definition and measured the probability distributions of the derived angular momentum change from a massive set of halo merging trees. The roles of major merging and accretion are also statistically analyzed in evolving spin distributions. Several factors (local environment, halo mass, merging mass ratio, and redshift) are found to influence the angular momentum change. The spin distributions generated in the mean-field or void regions tend to shift slightly to a higher spin value compared with simulated spin distributions, which seems to be caused by the correlated random walks. We verified the assumption of randomness in the angular momentum change observed in the N-body simulation and detected several degrees of correlation between walks, which may provide a clue for the discrepancies between the simulated and generated spin distributions in the voids. However, the generated spin distributions in the group and cluster regions successfully match the simulated spin distribution. We also demonstrated that the log-normality of the spin distribution is a natural consequence of the stochastic differential equation of the halo spin, which is well described by the Geometric Brownian Motion model.

  20. STOCHASTIC MODEL OF THE SPIN DISTRIBUTION OF DARK MATTER HALOS

    SciTech Connect

    Kim, Juhan; Choi, Yun-Young; Kim, Sungsoo S.; Lee, Jeong-Eun

    2015-09-15

    We employ a stochastic approach to probing the origin of the log-normal distributions of halo spin in N-body simulations. After analyzing spin evolution in halo merging trees, it was found that a spin change can be characterized by a stochastic random walk of angular momentum. Also, spin distributions generated by random walks are fairly consistent with those directly obtained from N-body simulations. We derived a stochastic differential equation from a widely used spin definition and measured the probability distributions of the derived angular momentum change from a massive set of halo merging trees. The roles of major merging and accretion are also statistically analyzed in evolving spin distributions. Several factors (local environment, halo mass, merging mass ratio, and redshift) are found to influence the angular momentum change. The spin distributions generated in the mean-field or void regions tend to shift slightly to a higher spin value compared with simulated spin distributions, which seems to be caused by the correlated random walks. We verified the assumption of randomness in the angular momentum change observed in the N-body simulation and detected several degrees of correlation between walks, which may provide a clue for the discrepancies between the simulated and generated spin distributions in the voids. However, the generated spin distributions in the group and cluster regions successfully match the simulated spin distribution. We also demonstrated that the log-normality of the spin distribution is a natural consequence of the stochastic differential equation of the halo spin, which is well described by the Geometric Brownian Motion model.

  1. HALO ORBITS IN COSMOLOGICAL DISK GALAXIES: TRACERS OF FORMATION HISTORY

    SciTech Connect

    Valluri, Monica; Debattista, Victor P.; Stinson, Gregory S.; Bailin, Jeremy; Quinn, Thomas R.; Couchman, H. M. P.; Wadsley, James

    2013-04-10

    We analyze the orbits of stars and dark matter particles in the halo of a disk galaxy formed in a cosmological hydrodynamical simulation. The halo is oblate within the inner {approx}20 kpc and triaxial beyond this radius. About 43% of orbits are short axis tubes-the rest belong to orbit families that characterize triaxial potentials (boxes, long-axis tubes and chaotic orbits), but their shapes are close to axisymmetric. We find no evidence that the self-consistent distribution function of the nearly oblate inner halo is comprised primarily of axisymmetric short-axis tube orbits. Orbits of all families and both types of particles are highly eccentric, with mean eccentricity {approx}> 0.6. We find that randomly selected samples of halo stars show no substructure in 'integrals of motion' space. However, individual accretion events can clearly be identified in plots of metallicity versus formation time. Dynamically young tidal debris is found primarily on a single type of orbit. However, stars associated with older satellites become chaotically mixed during the formation process (possibly due to scattering by the central bulge and disk, and baryonic processes), and appear on all four types of orbits. We find that the tidal debris in cosmological hydrodynamical simulations experiences significantly more chaotic evolution than in collisionless simulations, making it much harder to identify individual progenitors using phase space coordinates alone. However, by combining information on stellar ages and chemical abundances with the orbital properties of halo stars in the underlying self-consistent potential, the identification of progenitors is likely to be possible.

  2. Visibility of halos and rainbows.

    PubMed

    Gedzelman, S D

    1980-09-15

    A theory for the visibility of halos and rainbows is presented. The light reaching the observer's eye from the direction of the halo or rainbow is assumed to consist of two parts: (1) a beam of singly scattered sunlight (or moonlight) from a cloud of ice crystals or a rainswath, which, in turn, has suffered depletion by scattering or absorption in its passage to the observer, and (2) the general background brightness. The model is able to account for several long-known qualitative observations concerning halos, namely, that the brightest halos are produced by optically thin cirrostratus clouds (i.e., for which the cloud optical depth tau(c), halo is visible much more frequently than the bottom. (This is shown to result in good part from extinction by the turbid atmosphere.) With the rainbow the brightness of the beam increases monotonically with the optical depth tau(R) of the sunlit part of the rainswath, but the increase is quite small for tau(R) >/=1. On the other hand, the brightness of the background increases more rapidly with tau(R) for tau(R)> 1 so that the rainbow appears most easily visible for tau(R) less, similar1. This implies that the most easily visible rainbows are produced by light or moderate showers rather than heavy downpours. Finally, suggestions are made for applying the theory to other atmospheric optical phenomena, such as coronas and glories.

  3. Visibility of halos and rainbows.

    PubMed

    Gedzelman, S D

    1980-09-15

    A theory for the visibility of halos and rainbows is presented. The light reaching the observer's eye from the direction of the halo or rainbow is assumed to consist of two parts: (1) a beam of singly scattered sunlight (or moonlight) from a cloud of ice crystals or a rainswath, which, in turn, has suffered depletion by scattering or absorption in its passage to the observer, and (2) the general background brightness. The model is able to account for several long-known qualitative observations concerning halos, namely, that the brightest halos are produced by optically thin cirrostratus clouds (i.e., for which the cloud optical depth tau(c), halo is visible much more frequently than the bottom. (This is shown to result in good part from extinction by the turbid atmosphere.) With the rainbow the brightness of the beam increases monotonically with the optical depth tau(R) of the sunlit part of the rainswath, but the increase is quite small for tau(R) >/=1. On the other hand, the brightness of the background increases more rapidly with tau(R) for tau(R)> 1 so that the rainbow appears most easily visible for tau(R) less, similar1. This implies that the most easily visible rainbows are produced by light or moderate showers rather than heavy downpours. Finally, suggestions are made for applying the theory to other atmospheric optical phenomena, such as coronas and glories. PMID:20234562

  4. Molecular Spin Crossover in Slow Motion: Light-Induced Spin-State Transitions in Trigonal Prismatic Iron(II) Complexes.

    PubMed

    Stock, Philipp; Deck, Eva; Hohnstein, Silvia; Korzekwa, Jana; Meyer, Karsten; Heinemann, Frank W; Breher, Frank; Hörner, Gerald

    2016-06-01

    A straightforward access is provided to iron(II) complexes showing exceedingly slow spin-state interconversion by utilizing trigonal-prismatic directing ligands (L(n)) of the extended-tripod type. A detailed analysis of the interrelations between complex structure (X-ray diffraction, density functional theory) and electronic character (SQUID magnetometry, Mössbauer spectroscopy, UV/vis spectroscopy) of the iron(II) center in mononuclear complexes [FeL(n)] reveals spin crossover to occur along a coupled breathing/torsion reaction coordinate, shuttling the complex between the octahedral low-spin state and the trigonal-prismatic high-spin state along Bailar's trigonal twist pathway. We associate both the long spin-state lifetimes in the millisecond domain close to room temperature and the substantial barriers against thermal scrambling (Ea ≈ 33 kJ mol(-1), from Arrhenius analysis) with stereochemical constraints. In particular, the topology of the κ(6)N ligands controls the temporary and structural dynamics during spin crossover. PMID:27159332

  5. A Study of The Orientation, Motion, and Thicknesses of Electric Field and Density Structures Observed By Cluster Ii In The High Altitude Auroral Zone

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Bonnell, J.; Mozer, F. S.; Andre, M.; Eriksson, A.; Vaivads, A.; Pedersen, A.; Lindqvist, P.-A.; Laakso, H.

    The high-altitude auroral region constitutes an integral part of the auroral zone elec- trodynamic system. The high-altitude perpendicular flows and the electric fields as- sociated with those flows are the drivers for the low-altitude flows and mid-altitude acceleration processes that occur in the auroral zone. We present observations of elec- tric field and density structures observed by the Cluster II spacecraft above the auroral acceleration region. Although intense electric fields and density structures associated with auroral arcs can change significantly in time, we found examples of remark- ably stationary structures in the plasmasheet and the plasmasheet-lobe boundary. The multi-point electric field and density measurements from the Cluster II constellation is used to estimate the direction and speed of propagation of structures in the elec- tric fields and plasma density (as inferred from spacecraft floating potential measure- ments), as well as to quantify the thicknesses of those structures. The spatial structures are propagating at speeds of 10 km/s and are characterized by thicknesses that range from a few hundred kilometers to a few thousand kilometers in extent. Thus with these observations we are probing the high-altitude potential and density structures that are associated with relatively fast (1 km/s) proper motion of fairly large scale (10-100 km) features in the auroral zone.

  6. Recovery of the poisoned topoisomerase II for DNA religation: coordinated motion of the cleavage core revealed with the microsecond atomistic simulation

    PubMed Central

    Huang, Nan-Lan; Lin, Jung-Hsin

    2015-01-01

    Type II topoisomerases resolve topological problems of DNA double helices by passing one duplex through the reversible double-stranded break they generated on another duplex. Despite the wealth of information in the cleaving operation, molecular understanding of the enzymatic DNA ligation remains elusive. Topoisomerase poisons are widely used in anti-cancer and anti-bacterial therapy and have been employed to entrap the intermediates of topoisomerase IIβ with religatable DNA substrate. We removed drug molecules from the structure and conducted molecular dynamics simulations to investigate the enzyme-mediated DNA religation. The drug-unbound intermediate displayed transitions toward the resealing-compliant configuration: closing distance between the cleaved DNA termini, B-to-A transformation of the double helix, and restoration of the metal-binding motif. By mapping the contact configurations and the correlated motions between enzyme and DNA, we identified the indispensable role of the linker preceding winged helix domain (WHD) in coordinating the movements of TOPRIM, the nucleotide-binding motifs, and the bound DNA substrate during gate closure. We observed a nearly vectorial transition in the recovery of the enzyme and identified the previously uncharacterized roles of Asn508 and Arg677 in DNA rejoining. Our findings delineate the dynamic mechanism of the DNA religation conducted by type II topoisomerases. PMID:26150421

  7. Brown dwarfs as dark galactic halos

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Walker, Terry P.

    1990-01-01

    The possibility that the dark matter in galactic halos can consist of brown dwarf stars is considered. The radiative signature for such halos consisting solely of brown dwarfs is calculated, and the allowed range of brown dwarf masses, the initial mass function (IMF), the stellar properties, and the density distribution of the galactic halo are discussed. The prediction emission from the halo is compared with existing observations. It is found that, for any IMF of brown dwarfs below the deuterium burning limit, brown dwarf halos are consistent with observations. Brown dwarf halos cannot, however, explain the recently observed near-IR background. It is shown that future satellite missions will either detect brown dwarf halos or place tight constraints on the allowed range of the IMF.

  8. Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. II. Experimental investigation

    NASA Astrophysics Data System (ADS)

    Bouscasse, B.; Colagrossi, A.; Souto-Iglesias, A.; Cercos-Pita, J. L.

    2014-03-01

    In Paper I of this series [B. Bouscasse, A. Colagrossi, A. Souto-Iglesias, and J. L. C. Pita, "Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. I. Theoretical formulation and numerical investigation," Phys. Fluids 26, 033103 (2014)], a theoretical and numerical model for a driven pendulum filled with liquid was developed. The system was analyzed in the framework of tuned liquid dampers and hybrid mass liquid dampers (HMLD) theory. In this paper, in order to measure the energy dissipation resulting from shallow water sloshing, an experimental investigation is conducted. Accurate evaluations of energy transfers are obtained through the recorded kinematics of the system. A set of experiments is conducted with three different liquids: water, sunflower oil, and glycerine. Coherently with the results of Paper I, the energy dissipation obtained when the tank is filled with water can mainly be explained by the breaking waves. For all three liquids, the effects of varying the external excitation amplitude are discussed.

  9. Clouds Dominate the Galactic Halo

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Using the exquisite sensitivity of the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT), astronomer Jay Lockman of the National Radio Astronomy Observatory (NRAO) in Green Bank, W. Va., has produced the best cross-section ever of the Milky Way Galaxy's diffuse halo of hydrogen gas. This image confirms the presence of discrete hydrogen clouds in the halo, and could help astronomers understand the origin and evolution of the rarefied atmosphere that surrounds our Galaxy. Lockman presented his findings at the American Astronomical Society meeting in Seattle, WA. Hydrogen Clouds Graphic Artist's Rendering of the Milky Way (background) with insert showing GBT image of cross-section of neutral atomic Hydrogen Credit: Kirk Woellert/National Science Foundation Patricia Smiley, NRAO. "The first observations with the Green Bank Telescope suggested that the hydrogen in the lower halo, the transition zone between the Milky Way and intergalactic space, is very clumpy," said Lockman. "The latest data confirm these results and show that instead of trailing away smoothly from the Galactic plane, a significant fraction of the hydrogen gas in the halo is concentrated in discrete clouds. There are even some filaments." Beyond the star-filled disk of the Milky Way, there exists an extensive yet diffuse halo of hydrogen gas. For years, astronomers have speculated about the origin and structure of this gas. "Even the existence of neutral hydrogen in the halo has been somewhat of a puzzle," Lockman remarked. "Unlike the Earth's atmosphere, which is hot enough to hold itself up against the force of gravity, the hydrogen in the halo is too cool to support itself against the gravitational pull of the Milky Way." Lockman points out that some additional factor has to be involved to get neutral hydrogen to such large distances from the Galactic plane. "This force could be cosmic rays, a supersonic wind, the blast waves from supernovae, or something we have not thought of

  10. A population of relic intermediate-mass black holes in the halo of the Milky Way

    SciTech Connect

    Rashkov, Valery; Madau, Piero

    2014-01-10

    If 'seed' central black holes were common in the subgalactic building blocks that merged to form present-day massive galaxies, then relic intermediate-mass black holes (IMBHs) should be present in the Galactic bulge and halo. We use a particle tagging technique to dynamically populate the N-body Via Lactea II high-resolution simulation with black holes, and assess the size, properties, and detectability of the leftover population. The method assigns a black hole to the most tightly bound central particle of each subhalo at infall according to an extrapolation of the M {sub BH}-σ{sub *} relation, and self-consistently follows the accretion and disruption of Milky Way progenitor dwarfs and their holes in a cosmological 'live' host from high redshift to today. We show that, depending on the minimum stellar velocity dispersion, σ {sub m}, below which central black holes are assumed to be increasingly rare, as many as ∼2000 (σ {sub m} = 3 km s{sup –1}) or as few as ∼70 (σ {sub m} = 12 km s{sup –1}) IMBHs may be left wandering in the halo of the Milky Way today. The fraction of IMBHs forced from their hosts by gravitational recoil is ≲ 20%. We identify two main Galactic subpopulations, 'naked' IMBHs, whose host subhalos were totally destroyed after infall, and 'clothed' IMBHs residing in dark matter satellites that survived tidal stripping. Naked IMBHs typically constitute 40%-50% of the total and are more centrally concentrated. We show that, in the σ {sub m} = 12 km s{sup –1} scenario, the clusters of tightly bound stars that should accompany naked IMBHs would be fainter than m{sub V} = 16 mag, spatially resolvable, and have proper motions of 0.1-10 mas yr{sup –1}. Their detection may provide an observational tool to constrain the formation history of massive black holes in the early universe.

  11. The Crab Halo

    NASA Astrophysics Data System (ADS)

    Lundqvist, Peter

    2011-10-01

    The Crab Nebula, along with its central pulsar and its explosive originin SN 1054, plays a crucial role in our understanding of the linkbetween supernovae and pulsar formation and activity.Yet, there are fundamental uncertainties in the nature of the event thathave not been settled in more than two decades of investigation.The observed mass in the nebula and pulsar is nearly half of theexpected initial stellar mass and the observed energy {much of whichmay come from the central pulsar} is only a fewpercent of the typical supernova energy.An attractive solution to this ``missing mass'' problem is that this massis in a high velocity envelope around the observed Crab Nebula.The envelope would have most of the energy of the explosion {roughly 10^{51} ergs}, bringing the energy up to that typical of a Type II supernova. The fact that the Crab filaments have a measured acceleration and show no deceleration at the outer edge is consistent with this hypothesis. The lack of an interaction region created by the fast shell can be attributed to a very low density around the supernova. We propose to search for the fast shell by taking a COS spectrum of the Crab pulsar in the region of the C IV 1550 line. We have carried out time-dependent ionization calculations that show that this line should produce a detectable broad, blueshifted absorption if the shell is present.

  12. Numerical simulation of sprites halo

    NASA Astrophysics Data System (ADS)

    Bochkov, E. I.; Babich, L. P.; Kutsyk, I. M.

    2014-03-01

    In the framework of C. Wilson's hypothesis substantiating a possibility of electric discharge development in the Earth's atmosphere at high altitudes above thunderclouds, numerical simulations were executed of the discharge exciting the sprite halo with realistic variations of thundercloud dipole moment transferred to the ground by positive lightning discharge. For various values of time and altitude, at which the avalanche-to-streamer transition occurs, optical radiation was calculated in the 1 P, 2 P, and 1 N bands of the nitrogen molecule and Meinel's band of the N{2/+} ion. The calculated brightness and space-time evolution of the luminescence are consistent with the data of the field observations of the halo luminescence.

  13. Beam breakup with longitudinal halo

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.

    1991-01-01

    We have developed an analytical model of cumulative beam breakup in linear accelerators that predicts the displacement of particles between bunches. Beam breakup is assumed to be caused by a periodic current consisting of an infinite bunch train. The particles in the halo do not contribute to the breakup but experience the deflecting fields and are displaced by them. Under certain circumstances, the displacement of particles in the halo can be considerably larger than that of the bunches. This may have important consequences for the design of high-current cw accelerators where even a small flux of particles striking components of the accelerator cannot be tolerated because of activation. 11 refs., 2 figs.

  14. Column density profiles of multiphase gaseous haloes

    NASA Astrophysics Data System (ADS)

    Liang, Cameron J.; Kravtsov, Andrey V.; Agertz, Oscar

    2016-05-01

    We analyse circumgalactic medium (CGM) in a suite of high-resolution cosmological re-simulations of a Milky Way size galaxy and show that CGM properties are quite sensitive to details of star formation-feedback loop modelling. The simulation that produces a realistic late-type galaxy, fails to reproduce existing observations of the CGM. In contrast, simulation that does not produce a realistic galaxy has the predicted CGM in better agreement with observations. This illustrates that properties of galaxies and properties of their CGM provide strong complementary constraints on the processes governing galaxy formation. Our simulations predict that column density profiles of ions are well described by an exponential function of projected distance d: N ∝ e^{-d/h_s}. Simulations thus indicate that the sharp drop in absorber detections at larger distances in observations does not correspond to a `boundary' of an ion, but reflects the underlying steep exponential column density profile. Furthermore, we find that ionization energy of ions is tightly correlated with the scaleheight hs: h_s ∝ E_ion^{0.74}. At z ≈ 0, warm gas traced by low-ionization species (e.g. Mg II and C IV) has hs ≈ 0.03 - 0.07Rvir, while higher ionization species (O VI and Ne VIII) have hs ≈ 0.32 - 0.45Rvir. Finally, the scaleheights of ions in our simulations evolve slower than the virial radius for z ≤ 2, but similarly to the halo scale radius, rs. Thus, we suggest that the column density profiles of galaxies at different redshifts should be scaled by rs rather than the halo virial radius.

  15. THE BROWN DWARF KINEMATICS PROJECT. II. DETAILS ON NINE WIDE COMMON PROPER MOTION VERY LOW MASS COMPANIONS TO NEARBY STARS ,

    SciTech Connect

    Faherty, Jacqueline K.; Shara, Michael M.; Burgasser, Adam J.; West, Andrew A.; Bochanski, John J.; Cruz, Kelle L.; Walter, Frederick M.

    2010-01-15

    We report on nine wide common proper motion systems containing late-type M, L, or T companions. We confirm six previously reported companions, and identify three new systems. The ages of these systems are determined using diagnostics for both stellar primaries and low-mass secondaries and masses for the secondaries are inferred using evolutionary models. Of our three new discoveries, the M3+T6.5 pair G 204-39 and SDSS J1758+4633 has an age constrained to 0.5-1.5 Gyr making the secondary a potentially useful brown dwarf benchmark. The G5+L4 pair G 200-28 and SDSS J1416+5006 has a projected separation of {approx}25,000 AU making it one of the widest and lowest binding energy systems known to date. The system containing NLTT 2274 and SDSS J0041+1341 is an older M4+L0 (>4.5 Gyr) pair which shows H{alpha} activity in the secondary but not the primary making it a useful tracer of age/mass/activity trends. Two of the nine systems have discrepant component ages that emerge from stellar or ultracool diagnostics indicating possible shortcomings in our understanding of the age diagnostics of stars and brown dwarfs. We find a resolved binary frequency for widely separated (>100 AU) low-mass companions (i.e., at least a triple system) which is at least twice the frequency found for the field ultracool dwarf population. The ratio of triples to binaries and quadruples to binaries is also high for this sample: 3:5 and 1:4, respectively, compared to 8 pc sample values of 1:4 and 1:26. The additional components in these wide companion systems indicates a formation mechanism that requires a third or fourth component to maintain gravitational stability or facilitate the exchange of angular momentum. The binding energies for the nine multiples discussed in this text are among the lowest known for wide low-mass systems, suggesting that weakly bound, low-to-intermediate mass (0.2 M {sub sun} < M {sub tot}< 1.0 M {sub sun}) multiples can form and survive to exist in the field (1-8 Gyr)

  16. The Brown Dwarf Kinematics Project. II. Details on Nine Wide Common Proper Motion Very Low Mass Companions to Nearby Stars

    NASA Astrophysics Data System (ADS)

    Faherty, Jacqueline K.; Burgasser, Adam J.; West, Andrew A.; Bochanski, John J.; Cruz, Kelle L.; Shara, Michael M.; Walter, Frederick M.

    2010-01-01

    We report on nine wide common proper motion systems containing late-type M, L, or T companions. We confirm six previously reported companions, and identify three new systems. The ages of these systems are determined using diagnostics for both stellar primaries and low-mass secondaries and masses for the secondaries are inferred using evolutionary models. Of our three new discoveries, the M3+T6.5 pair G 204-39 and SDSS J1758+4633 has an age constrained to 0.5-1.5 Gyr making the secondary a potentially useful brown dwarf benchmark. The G5+L4 pair G 200-28 and SDSS J1416+5006 has a projected separation of ~25,000 AU making it one of the widest and lowest binding energy systems known to date. The system containing NLTT 2274 and SDSS J0041+1341 is an older M4+L0 (>4.5 Gyr) pair which shows Hα activity in the secondary but not the primary making it a useful tracer of age/mass/activity trends. Two of the nine systems have discrepant component ages that emerge from stellar or ultracool diagnostics indicating possible shortcomings in our understanding of the age diagnostics of stars and brown dwarfs. We find a resolved binary frequency for widely separated (>100 AU) low-mass companions (i.e., at least a triple system) which is at least twice the frequency found for the field ultracool dwarf population. The ratio of triples to binaries and quadruples to binaries is also high for this sample: 3:5 and 1:4, respectively, compared to 8 pc sample values of 1:4 and 1:26. The additional components in these wide companion systems indicates a formation mechanism that requires a third or fourth component to maintain gravitational stability or facilitate the exchange of angular momentum. The binding energies for the nine multiples discussed in this text are among the lowest known for wide low-mass systems, suggesting that weakly bound, low-to-intermediate mass (0.2 M sun < M tot< 1.0 M sun) multiples can form and survive to exist in the field (1-8 Gyr). This paper includes data

  17. The Anemic Stellar Halo of M101

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.

  18. Halo ion trap mass spectrometer.

    PubMed

    Austin, Daniel E; Wang, Miao; Tolley, Samuel E; Maas, Jeffrey D; Hawkins, Aaron R; Rockwood, Alan L; Tolley, H Dennis; Lee, Edgar D; Lee, Milton L

    2007-04-01

    We describe a novel radio frequency ion trap mass analyzer based on toroidal trapping geometry and microfabrication technology. The device, called the halo ion trap, consists of two parallel ceramic plates, the facing surfaces of which are imprinted with sets of concentric ring electrodes. Radii of the imprinted rings range from 5 to 12 mm, and the spacing between the plates is 4 mm. Unlike conventional ion traps, in which hyperbolic metal electrodes establish equipotential boundary conditions, electric fields in the halo ion trap are established by applying different radio frequency potentials to each ring. The potential on each ring can be independently optimized to provide the best trapping field. The halo ion trap features an open structure, allowing easy access for in situ ionization. The toroidal geometry provides a large trapping and analyzing volume, increasing the number of ions that can be stored and reducing the effects of space-charge on mass analysis. Preliminary mass spectra show resolution (m/Deltam) of 60-75 when the trap is operated at 1.9 MHz and 500 Vp-p. PMID:17335180

  19. The CMS Beam Halo Monitor electronics

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Dabrowski, A. E.; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D. P.; Stifter, K.

    2016-02-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data.

  20. THE CONTRIBUTION OF HALOS WITH DIFFERENT MASS RATIOS TO THE OVERALL GROWTH OF CLUSTER-SIZED HALOS

    SciTech Connect

    Lemze, Doron; Ford, Holland C.; Medezinski, Elinor; Postman, Marc; Koekemoer, Anton; Genel, Shy; Balestra, Italo; Nonino, Mario; Biviano, Andrea; Kelson, Daniel; Voit, G. Mark; Mercurio, Amata; Umetsu, Keiichi; Sand, David; Meneghetti, Massimo; Melchior, Peter; Newman, Andrew B.; Bhatti, Waqas A.; and others

    2013-10-20

    We provide a new observational test for a key prediction of the ΛCDM cosmological model: the contributions of mergers with different halo-to-main-cluster mass ratios to cluster-sized halo growth. We perform this test by dynamically analyzing 7 galaxy clusters, spanning the redshift range 0.13 < z{sub c} < 0.45 and caustic mass range 0.4-1.5 10{sup 15} h{sub 0.73}{sup -1} M{sub ☉}, with an average of 293 spectroscopically confirmed bound galaxies to each cluster. The large radial coverage (a few virial radii), which covers the whole infall region, with a high number of spectroscopically identified galaxies enables this new study. For each cluster, we identify bound galaxies. Out of these galaxies, we identify infalling and accreted halos and estimate their masses and their dynamical states. Using the estimated masses, we derive the contribution of different mass ratios to cluster-sized halo growth. For mass ratios between ∼0.2 and ∼0.7, we find a ∼1σ agreement with ΛCDM expectations based on the Millennium simulations I and II. At low mass ratios, ∼< 0.2, our derived contribution is underestimated since the detection efficiency decreases at low masses, ∼2 × 10{sup 14} h{sub 0.73}{sup -1} M{sub ☉}. At large mass ratios, ∼> 0.7, we do not detect halos probably because our sample, which was chosen to be quite X-ray relaxed, is biased against large mass ratios. Therefore, at large mass ratios, the derived contribution is also underestimated.

  1. Are halo coronal mass ejections special events?

    NASA Astrophysics Data System (ADS)

    Lara, Alejandro; Gopalswamy, Nat; Xie, Hong; Mendoza-Torres, Eduardo; PéRez-EríQuez, RomáN.; Michalek, Gregory

    2006-06-01

    We revisited the properties of wide coronal mass ejections (CMEs) called halo CMEs. Using the large LASCO/SOHO CMEs data set, from 1996 to 2004, we examined the statistical properties of (partial and full) halo CMEs and compare with the same properties of "normal" width (lower than 120°) CMEs. We found that halo CMEs have different properties than "normal" CMEs, which cannot be explained merely by the current geometric interpretation that they are seen as halos because they are traveling in the Sun Earth direction. We found that the CME width distribution is formed by, at least, three different populations: Two gaussians: a narrow and a medium distribution centered at ˜17° and ˜38°, respectively; the narrow population most likely corresponds to the "true" observed widths, whereas the medium width population is the product of projection effects. The third distribution corresponds to wider CMEs (80° < W < 210°) which behaves as a power law. Partial and full halo CMEs wider than these do not follow any particular distribution. This lack of regularity may be due to the small number of such events. In particular, we found (and test by a statistical approach) that the number of observed full halo CMEs is lower than expected. The CME speed follows a log-normal distribution, except for the very low speed CME population, which follows a gaussian distribution centered at ˜100 km/s and is probably due to projection effects. When the CMEs are divided by width into nonhalo, partial halo, and full halo, we found that the peaks of the distributions are shifted toward higher speeds, ˜300, ˜400 and ˜600 km/s for nonhalo, partial halo, and full halo CMEs, respectively. This confirms that halo CMEs tend to be high speed CMEs. The acceleration of full halo CMEs tends to be more negative compared with nonhalo and partial halo CMEs. We introduce a new observational CME parameter: The final observed distance (FOD), i.e., the highest point within the coronograph field of view

  2. Pionic fusion study of the 6He halo

    NASA Astrophysics Data System (ADS)

    Andersson, M.; Bargholtz, Chr.; Fransson, Kj.; Fumero, E.; Gerén, L.; Holmberg, L.; Lindh, K.; Mårtensson, L.; Sitnikova, I.; Tegnér, P.-E.; Weiss, G.; Wilhelmsen, K.

    2006-11-01

    The halo nucleus 6He has been studied in a pionic fusion experiment at the CELSIUS ring in Uppsala. The aim of the experiment was to investigate, in particular, the high-momentum part of the halo wave function by measuring the differential cross section for the 4He(d, 6He) π reaction 0.6, 1.2 and 5.0 MeV above threshold in the centre-of-mass frame. The 6He ions were detected in a ΔE-E solid-state detector telescope inserted into the ring vacuum. The result for the total cross section is, respectively, 22(1), 38(1) and 57(9) nb with a common systematic uncertainty of ±35%. The differential cross section is clearly anisotropic: [{dσ}/{dΩ}(0°)-{dσ}/{dΩ}(180°)]/[{dσ}/{dΩ}(0°)+{dσ}/{dΩ}(180°)]=-0.25(5), -0.29(5) and -0.35(15) at the same three energies. The preferred direction of emission for the pion is parallel to the momentum of the 4He ion in the initial state. In terms of a simple model for the reaction the results depend sensitively on the state of motion of the centre of mass of the halo relative to that of the core.

  3. Magnetized galactic haloes and velocity lags

    NASA Astrophysics Data System (ADS)

    Henriksen, R. N.; Irwin, J. A.

    2016-06-01

    We present an analytic model of a magnetized galactic halo surrounding a Mestel gravitating disc. The magnetic field is taken to be in energy equipartition with the pressure dominant rotating halo gas (not with the cosmic rays), and the whole system is in a steady state. A more flexible `anisotropic equipartition' model is also explored. A definite pressure law is required to maintain the equilibrium, but the halo density is constant. The velocity/magnetic system is scale-free. The objective is to find the rotational velocity lag in such a halo. The magnetic field is not force-free so that angular momentum may be transported from the halo to the intergalactic medium. We find that the `X'-shaped structure observed for halo magnetic fields can be obtained together with a simple analytic formula for the rate of decline of the velocity with height z. The formula also predicts the change in lag with radius, r.

  4. CT "halo sign" in pulmonary tuberculoma.

    PubMed

    Gaeta, M; Volta, S; Stroscio, S; Romeo, P; Pandolfo, I

    1992-01-01

    The CT halo sign has been described as the CT finding of a low-attenuation zone surrounding a pulmonary nodule. It is an early clue to the diagnosis of invasive pulmonary aspergillosis. We describe a case of CT halo sign associated with a pulmonary tuberculoma. Therefore, we think that a diagnosis other than invasive pulmonary aspergillosis should be considered in the presence of the CT halo sign in immunocompetent patients.

  5. Halotools: Galaxy-Halo connection models

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew; Tollerud, Erik; Robitaille, Thomas; Droettboom, Michael; Zentner, Andrew; Bray, Erik; Craig, Matt; Bradley, Larry; Barbary, Kyle; Deil, Christoph; Tan, Kevin; Becker, Matthew R.; More, Surhud; Günther, Hans Moritz; Sipocz, Brigitta

    2016-04-01

    Halotools builds and tests models of the galaxy-halo connection and analyzes catalogs of dark matter halos. The core functions of the package include fast generation of synthetic galaxy populations using HODs, abundance matching, and related methods; efficient algorithms for calculating galaxy clustering, lensing, z-space distortions, and other astronomical statistics; a modular, object-oriented framework for designing galaxy evolution models; and end-to-end support for reducing halo catalogs and caching them as hdf5 files.

  6. The baryon halo of the milky way: A fossil record of its formation

    PubMed

    Bland-Hawthorn; Freeman

    2000-01-01

    Astronomers believe that the baryon (stellar) halo of the Milky Way retains a fossil imprint of how it was formed. But a vast literature shows that the struggle to interpret the observations within a consistent framework continues. The evidence indicates that the halo has built up through a process of accretion and merging over billions of years, which is still going on at a low level. Future satellite missions to derive three-dimensional space motions and heavy element (metal) abundances for a billion stars will disentangle the existing web and elucidate how galaxies like our own came into existence.

  7. Haloes seen in UVIS reflectance

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Bradley, E. T.; Colwell, J. E.; Sremcevic, M.

    2012-12-01

    UVIS SOI reflectance spectra show bright 'haloes' around the locations of some of the strongest resonances in Saturn's A ring (Esposito etal 2005). UV spectra constrain the size and composition of the icy ring particles (Bradley etal 2010, 2012). We investigate the Janus 4:3, 5:3, 6:5 and Mimas 5:3 inner Lindblad resonances as well as at the Mimas 5:3 vertical resonance (bending wave location). Models of ring particle regolith evolution (Elliott and Esposito 2010) indicate the deeper regolith is made of older and purer ice. The strong resonances can cause streamline crowding (Lewis and Stewart 2005) which damps the interparticle velocity, allowing temporary clumps to grow, which in turn increase the velocity, eroding the clumps and releasing smaller particles and regolith (see the predator-prey model of Esposito etal 2012). This cyclic behavior, driven by the resonant perturbation from the moon, can yield collision velocities at particular azimuths greater than 1m/sec, sufficient to erode the aggregates (Blum 2006), exposing older, purer materials. Thus, the radial location of the strongest resonances can be where we find both large aggregates and disrupted fragments, in a balance maintained by the periodic moon forcing. If this stirring exposes older, and purer ice, the velocity threshold for eroding the aggregates can explain why only the strongest Lindblad resonances show haloes. Diffusion can explain the morphology of these haloes, although they are not well-resolved spatially by UVIS. Spectra determine the relative contributions of particle size and purity at these locations, for comparison to estimates from the regolith evolution models.

  8. Motion Sickness

    MedlinePlus

    ... people traveling by car, train, airplanes and especially boats. Motion sickness can start suddenly, with a queasy ... motion sickness. For example, down below on a boat, your inner ear senses motion, but your eyes ...

  9. THE PSEUDO-EVOLUTION OF HALO MASS

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud

    2013-03-20

    A dark matter halo is commonly defined as a spherical overdensity of matter with respect to a reference density, such as the critical density or the mean matter density of the universe. Such definitions can lead to a spurious pseudo-evolution of halo mass simply due to redshift evolution of the reference density, even if its physical density profile remains constant over time. We estimate the amount of such pseudo-evolution of mass between z = 1 and 0 for halos identified in a large N-body simulation, and show that it accounts for almost the entire mass evolution of the majority of halos with M{sub 200{rho}-bar} Less-Than-Or-Equivalent-To 10{sup 12} h{sup -1} M{sub Sun} and can be a significant fraction of the apparent mass growth even for cluster-sized halos. We estimate the magnitude of the pseudo-evolution assuming that halo density profiles remain static in physical coordinates, and show that this simple model predicts the pseudo-evolution of halos identified in numerical simulations to good accuracy, albeit with significant scatter. We discuss the impact of pseudo-evolution on the evolution of the halo mass function and show that the non-evolution of the low-mass end of the halo mass function is the result of a fortuitous cancellation between pseudo-evolution and the absorption of small halos into larger hosts. We also show that the evolution of the low-mass end of the concentration-mass relation observed in simulations is almost entirely due to the pseudo-evolution of mass. Finally, we discuss the implications of our results for the interpretation of the evolution of various scaling relations between the observable properties of galaxies and galaxy clusters and their halo masses.

  10. Alignments between galaxies, satellite systems and haloes

    NASA Astrophysics Data System (ADS)

    Shao, Shi; Cautun, Marius; Frenk, Carlos S.; Gao, Liang; Crain, Robert A.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2016-08-01

    The spatial distribution of the satellite populations of the Milky Way and Andromeda are puzzling in that they are nearly perpendicular to the discs of their central galaxies. To understand the origin of such configurations we study the alignment of the central galaxy, satellite system and dark matter halo in the largest of the `Evolution and Assembly of GaLaxies and their Environments' (EAGLE) simulation. We find that centrals and their satellite systems tend to be well aligned with their haloes, with a median misalignment angle of 33° in both cases. While the centrals are better aligned with the inner 10 kpc halo, the satellite systems are better aligned with the entire halo indicating that satellites preferentially trace the outer halo. The central-satellite alignment is weak (median misalignment angle of 52°) and we find that around 20 per cent of systems have a misalignment angle larger than 78°, which is the value for the Milky Way. The central-satellite alignment is a consequence of the tendency of both components to align with the dark matter halo. As a consequence, when the central is parallel to the satellite system, it also tends to be parallel to the halo. In contrast, if the central is perpendicular to the satellite system, as in the case of the Milky Way and Andromeda, then the central-halo alignment is much weaker. Dispersion-dominated (spheroidal) centrals have a stronger alignment with both their halo and their satellites than rotation-dominated (disc) centrals. We also found that the halo, the central galaxy and the satellite system tend to be aligned with the surrounding large-scale distribution of matter, with the halo being the better aligned of the three.

  11. The Making of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    1999-02-01

    The VLT Watches a Dissolving Stellar Cluster A group of ESO astronomers [1] has used new observations, obtained with the first 8.2-m VLT Unit Telescope (UT1) during the "Science Verification" programme, to show that a globular cluster in the Milky Way galaxy is "evaporating" and has already lost its faintest stars. This is the first observational result of its kind and has important implications for future studies. It may be explained by a gradual loss of such stars from the cluster into the Milky Way halo, a roughly spherical region around the much flatter, spiral structure in which most of the stars and nebulae are located. The new result lends strong support to current theories about the evolution of the structure of this halo and also provides insights into the formation of the galaxy in which we live. Globular clusters and the halo of the Milky Way The stars that we observe in the halo of the Milky Way represent only a small fraction of the total mass in this region. Investigations of the motions of stars in our Galaxy have shown that this halo must harbour much more matter, which is hidden from our view. The same phenomenon has been observed in other galaxies, and astronomers refer to it as "dark matter". It is at this moment not known what this matter consists of. The brightest objects in the halo are the globular clusters . They are large groupings of stars that were formed together in the very early evolutionary phases of the Milky Way, some 12,000 - 14,000 million years ago. This happened soon after the moment when the first structures emerged in the large cloud of primordial hydrogen in which our Galaxy was born. A popular scenario describes the first build-up of galactic structure, i.e. of stars and gas, as when normal matter began to collect inside the dark-matter halo, due to its strong gravitational attraction. The globular clusters were most probably the first denizens of this protogalaxy . It is believed that the Milky Way Galaxy subsequently

  12. Solar Sail Halo Orbits at the Sun Earth Artificial L1 Point

    NASA Astrophysics Data System (ADS)

    Baoyin, Hexi; McInnes, Colin R.

    2006-02-01

    Halo orbits for solar sails at artificial Sun Earth L1 points are investigated by a third order approximate solution. Two families of halo orbits are explored as defined by the sail attitude. Case I: the sail normal is directed along the Sun-sail line. Case II: the sail normal is directed along the Sun Earth line. In both cases the minimum amplitude of a halo orbit increases as the lightness number of the solar sail increases. The effect of the z-direction amplitude on x- or y-direction amplitude is also investigated and the results show that the effect is relatively small. In case I, the orbit period increases as the sail lightness number increases, while in case II, as the lightness number increases, the orbit period increases first and then decreases after the lightness number exceeds ~0.01.

  13. The Extended GMRT Radio Halo Survey. I. New upper limits on radio halos and mini-halos

    NASA Astrophysics Data System (ADS)

    Kale, R.; Venturi, T.; Giacintucci, S.; Dallacasa, D.; Cassano, R.; Brunetti, G.; Macario, G.; Athreya, R.

    2013-09-01

    Context. A fraction of galaxy clusters host diffuse radio sources called radio halos, radio relics and mini-halos. These are associated with the relativistic electrons and magnetic fields present on ~Mpc scales in the intra-cluster medium. Aims: We aim to carry out a systematic radio survey of all luminous galaxy clusters selected from the REFLEX and eBCS X-ray catalogues with the Giant Metrewave Radio Telescope, to understand the statistical properties of the diffuse radio emission in galaxy clusters. Methods: We present the sample and first results from the Extended GMRT Radio Halo Survey (EGRHS), which is an extension of the GMRT Radio Halo Survey (GRHS, Venturi et al. 2007, 2008). Analysis of radio data at 610/ 235/ 325 MHz on 12 galaxy clusters are presented. Results: We report the detection of a newly discovered mini-halo in the cluster RX J1532.9+3021 at 610 MHz. The presence of a small-scale relic (~200 kpc) is suspected in the cluster Z348. We do not detect cluster-scale diffuse emission in 11 clusters. Robust upper limits on the detection of radio halo of size of 1 Mpc are determined. We also present upper limits on the detections of mini-halos in a sub-sample of cool-core clusters. The upper limits for radio halos and mini-halos are plotted in the radio power- X-ray luminosity plane and the correlations are discussed. Diffuse extended emission that is not related to the target clusters, but detected as by-products in the sensitive images of two of the cluster fields (A689 and RX J0439.0+0715) is also reported. Conclusions: Based on the information about the presence of radio halos (or upper limits), available on 48 clusters out of the total sample of 67 clusters (EGRHS+GRHS), we find that 23 ± 7% of the clusters host radio halos. The radio halo fraction rises to 31 ± 11%, when only the clusters with X-ray luminosities >8 × 1044 erg s-1 are considered. Mini-halos are found in ~50% of cool-core clusters. A qualitative examination of the X-ray images of

  14. Rotational signature of the Milky Way stellar halo

    NASA Astrophysics Data System (ADS)

    Fermani, Francesco; Schönrich, Ralph

    2013-07-01

    We measure the rotation of the Milky Way stellar halo on two samples of blue horizontal branch (BHB) field halo stars from the Sloan Digital Sky Survey (SDSS) with four different methods. The two samples comprise 1582 and 2563 stars, respectively, and reach out to ˜50 kpc in galactocentric distance. Two of the methods to measure rotation rely exclusively on line-of-sight (l.o.s.) velocities, namely the popular double power-law model and a direct estimate of the de-projected l.o.s. velocity. The other two techniques use the full 3D motions: the radial velocity based rotation estimator of Schönrich et al. and a simple 3D azimuthal velocity mean. In this context we (a) critique the popular model and (b) assess the reliability of the estimators. All four methods agree on a weakly prograde or non-rotating halo. Further, we observe no duality in the rotation of sub-samples with different metallicities or at different radii. We trace the rotation gradient across metallicity measured by Deason et al. on a similar sample of BHB stars back to the inclusion of regions in the apparent magnitude-surface gravity plane known to be contaminated. In the spectroscopically selected sample of Xue et al., we flag ˜500 hot metal-poor stars for their peculiar kinematics w.r.t. to both their cooler metal-poor counterparts and the metal-rich stars in the same sample. They show a seemingly retrograde behaviour in l.o.s. velocities, which is not confirmed by the 3D estimators. Their anomalous vertical motion hints at either a pipeline problem or a stream-like component rather than a smooth retrograde population.

  15. STAR FORMATION HISTORY OF THE MILKY WAY HALO TRACED BY THE OOSTERHOFF DICHOTOMY AMONG GLOBULAR CLUSTERS

    SciTech Connect

    Jang, Sohee; Lee, Young-Wook

    2015-06-22

    In our recent investigation of the Oosterhoff dichotomy in the multiple population paradigm, we have suggested that the RR Lyrae variables in the globular clusters (GCs) of Oosterhoff groups I, II, and III are produced mostly by first, second, and third generation stars (G1, G2, and G3), respectively. Here we show, for the first time, that the observed dichotomies in the inner and outer halo GCs can be naturally reproduced when these models are extended to all metallicity regimes, while maintaining reasonable agreements in the horizontal-branch type versus [Fe/H] correlations. In order to achieve this, however, specific star formation histories are required for the inner and outer halos. In the inner halo GCs, the star formation commenced and ceased earlier with a relatively short formation timescale between the subpopulations (∼0.5 Gyr), while in the outer halo, the formation of G1 was delayed by ∼0.8 Gyr with a more extended timescale between G1 and G2 (∼1.4 Gyr). This is consistent with the dual origin of the Milky Way halo. Despite the difference in detail, our models show that the Oosterhoff period groups observed in both outer and inner halo GCs are all manifestations of the “population-shift” effect within the instability strip, for which the origin can be traced back to the two or three discrete episodes of star formation in GCs.

  16. Evolution of Dwarf Spheroidal Satellites in the Common Surface-density Dark Halos

    NASA Astrophysics Data System (ADS)

    Okayasu, Yusuke; Chiba, Masashi

    2016-08-01

    We investigate the growth histories of dark matter halos associated with dwarf satellites in Local Group galaxies and the resultant evolution of the baryonic component. Our model is based on the recently proposed property that the mean surface density of a dark halo inside a radius at maximum circular velocity {V}{{\\max }} is universal over a large range of {V}{{\\max }}. Given that a surface density of 20 M ⊙ pc-2 well explains dwarf satellites in the Milky Way and Andromeda, we find that the evolution of the dark halo in this common surface-density scale is characterized by the rapid increase of the halo mass assembled by the redshift {z}{{TT}} of the tidal truncation by its host halo, at early epochs of {z}{{TT}}≳ 6 or {V}{{\\max }}≲ 22 km s-1. This mass growth of the halo is slow at lower {z}{{TT}} or larger {V}{{\\max }}. Taking into account the baryon content in this dark halo evolution, under the influence of the ionizing background radiation, we find that the dwarf satellites are divided into roughly two families: those with {V}{{\\max }}≲ 22 km s-1 having high star formation efficiency and those with larger {V}{{\\max }} having less efficient star formation. This semianalytical model is in agreement with the high-resolution numerical simulation for galaxy formation and with the observed star formation histories for Fornax and Leo II. This suggests that the evolution of a dark halo may play a key role in understanding star formation histories in dwarf satellites.

  17. Smooth halos in the cosmic web

    NASA Astrophysics Data System (ADS)

    Gaite, José

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ``smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  18. Smooth halos in the cosmic web

    SciTech Connect

    Gaite, José

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  19. The Magellanic Stream and the Density of Coronal Gas in the Galactic Halo.

    PubMed

    Murali

    2000-02-01

    The properties of the Magellanic Stream constrain the density of coronal gas in the distant Galactic halo. We show that motion through ambient gas can strongly heat Stream clouds, driving mass loss and causing evaporation. If the ambient gas density is too high, then evaporation occurs on unreasonably short timescales. Since heating dominates drag, tidal stripping appears to be responsible for producing the Stream. Requiring the survival of the cloud MS IV for 500 Myr sets an upper limit on the halo gas density of nh<10-5 cm -3 at 50 kpc, roughly a factor of 10 lower than that estimated from the drag model of Moore & Davis. Implications for models of the evolution of gas in galaxy halos are discussed.

  20. THE RESOLVED STELLAR HALO OF NGC 253

    SciTech Connect

    Bailin, Jeremy; Bell, Eric F.; Chappell, Samantha N.; Radburn-Smith, David J.; De Jong, Roelof S.

    2011-07-20

    We have obtained Magellan/IMACS and Hubble Space Telescope (HST)/Advanced Camera for Surveys imaging data that resolve red giant branch stars in the stellar halo of the starburst galaxy NGC 253. The HST data cover a small area, and allow us to accurately interpret the ground-based data, which cover 30% of the halo to a distance of 30 kpc, allowing us to make detailed quantitative measurements of the global properties and structure of a stellar halo outside of the Local Group. The geometry of the halo is significantly flattened in the same sense as the disk, with a projected axis ratio of b/a {approx} 0.35 {+-} 0.1. The total stellar mass of the halo is estimated to be M{sub halo} {approx} (2.5 {+-} 1.5) x 10{sup 9} M{sub sun}, or 6% of the total stellar mass of the galaxy, and has a projected radial dependence that follows a power law of index -2.8 {+-} 0.6, corresponding to a three-dimensional power-law index of {approx} - 4. The total luminosity and profile shape that we measure for NGC 253 are somewhat larger and steeper than the equivalent values for the Milky Way and M31, but are well within the scatter of model predictions for the properties of stellar halos built up in a cosmological context. Structure within the halo is seen at a variety of scales: there is small kpc-scale density variation and a large shelf-like feature near the middle of the field. The techniques that have been developed will be essential for quantitatively comparing our upcoming larger sample of observed stellar halos to models of halo formation.

  1. 40 CFR 721.10157 - Benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl- (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... generically as benzeneethanol,halo-,halocycloalkyl-,hydrazinealkyl (PMN P-05-775) is subject to reporting....125 (a), (b), (c), (d), (e), (f), (g), (h), and (k) are applicable to manufacturers, importers, and...)(i), (g)(3)(ii), (g)(4) (resulting in receiving stream levels exceeding 0.1 parts per billion...

  2. The stability of stellar discs in Milky Way-sized dark matter haloes

    NASA Astrophysics Data System (ADS)

    Yurin, Denis; Springel, Volker

    2015-09-01

    We employ an improved methodology to insert live stellar discs into high-resolution dark matter simulations of Milky Way-sized haloes, allowing us to investigate the fate of thin stellar discs in the tumultuous environment of cold dark matter structures. We study a set of eight different haloes, drawn from the Aquarius simulation project, in which stellar discs are adiabatically grown with a prescribed structure, and then allowed to self-consistently evolve. The initial velocity distribution is set-up in very good equilibrium with the help of the GALIC code. We find that the residual triaxiality of the haloes leads to significant disc tumbling, qualitatively confirming earlier work. We show that the disc turning motion is unaffected by structural properties of the galaxies such as the presence or absence of a bulge or bar. In typical Milky Way-sized dark matter haloes, we expect an average turning of the discs by about 40°between z = 1 and 0, over the course of 7.6 Gyr. We also investigate the impact of the discs on substructures, and conversely, the disc heating rate caused by the dark matter halo substructures. The presence of discs reduces the central subhalo abundance by a about a factor of 2, due to an increased evaporation rate by gravitational shocks from disc passages. We find that substructures are important for heating the outer parts of stellar discs but do not appear to significantly affect their inner parts.

  3. Method to rapidly tune the halo spoilers of the tevatron muon beam

    SciTech Connect

    Ojeda, Y.; Scott, B.; Malensek, A.; Morfin, J.G.

    1986-09-01

    An active shield has been constructed which forms a sharp magnetic edge around the central core of useful muons and sweeps the envelope of halo muons (those that enter the aperture of an experiment without having passed through the momentum tagging system) radially away from beam center. Two types of halo scrapers have been employed in this shield: conventional toroidal magnets and a newly developed magnetic element called ''mupipe''. The mupipes have eight degrees of motion, so attempting to tune the mupipe system by systematic measurements over the full range of each coordinate would be impractical. An algorithm was formulated to take a small set of measured values and from them predict the required positions of the two sections of mupipe to obtain maximum beam and minimum halo. The algorithm measures the muon and halo yields at a representative subset of coordinated, employs a fitting program to find a functional form for the yields in terms of the coorinated, and maximizes that function in terms of the coordinates. The algorithm was tested by applying a Monte Carlo program to predict the halo and muon yield for a given orientation of the two movable sections of mupipe. (LEW)

  4. New cluster members and halo stars of the Galactic globular cluster NGC 1851

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2015-10-01

    NGC 1851 is an intriguing Galactic globular cluster, with multiple stellar evolutionary sequences, light and heavy element abundance variations and indications of a surrounding stellar halo. We present the first results of a spectroscopic study of red giant stars within and outside of the tidal radius of this cluster. Our results identify nine probable new cluster members (inside the tidal radius) with heliocentric radial velocities consistent with that of NGC 1851. We also identify, based on their radial velocities, four probable extratidal cluster halo stars at distances up to ˜3.1 times the tidal radius, which are supportive of previous findings that NGC 1851 is surrounded by an extended stellar halo. Proper motions were available for 12 of these 13 stars and all are consistent with that of NGC 1851. Apart from the cluster members and cluster halo stars, our observed radial velocity distribution agrees with the expected distribution from a Besançon disc/N-body stellar halo Milky Way model generated by the GALAXIA code, suggesting that no other structures at different radial velocities are present in our field. The metallicities of these stars are estimated using equivalent width measurements of the near-infrared calcium triplet absorption lines and are found, within the limitations of this method, to be consistent with that of NGC 1851. In addition we recover 110 red giant cluster members from previous studies based on their radial velocities and identify three stars with unusually high radial velocities.

  5. Ophthalmic halo reduced lenses design

    NASA Astrophysics Data System (ADS)

    Limon, Ofer; Zalevsky, Zeev

    2015-05-01

    The halo effect is a very problematic visual artifact occurring in extended depth of focus or multi-focal ophthalmic lenses such as e.g. intra-ocular (after cataract surgery) or contact lenses when used in dark illumination conditions. This artifact is generated due to surface structures added on top of those lenses in order to increase their depth of focus or to realize multiple focal lengths. In this paper we present novel solution that can resolve this major problem of ophthalmic lenses. The proposed solution involves modification to the surface structure that realizes the extended depth of focus. Our solution is fabricated and numerically and experimentally validated also in preliminary in-vivo trials.

  6. The Abundance of Deuterium in the Warm Neutral Medium of the Lower Galactic Halo

    NASA Astrophysics Data System (ADS)

    Savage, Blair D.; Lehner, Nicolas; Fox, Andrew; Wakker, Bart; Sembach, Kenneth

    2007-04-01

    We use high-resolution ultraviolet spectra to obtain Milky Way interstellar column densities of H I, D I, O I, S II, Fe II, and P II toward the QSO HE 0226-4110 in the Galactic direction l=253.4deg and b=-65.77deg. We obtain D/H=21+8-6 ppm from an analysis of the strong damped Lyα line of H I and the weak higher Lyman series absorption of D I. Correcting for a small amount of foreground contamination from D and H in the Local Bubble we obtain D/H=22+8-6 for the warm neutral medium of the lower Galactic halo. The medium sampled has [O/H]=0.12+0.41-0.20 and [Fe/H]=-1.01+0.10-0.09. This suggests the abundances in the gas in the halo toward HE 0226-4110 are not affected by the infall of low-metallicity gas and that the gas originates in the disk and is elevated into the halo by energetic processes that erode but do not totally destroy the dust grains. We compare our result to measured values of D/H in other astrophysical sites. The value we measure in the halo gas is consistent with the hypothesis that for many Galactic disk lines of sight D is incorporated into dust. The high average value of D/H=23.1+/-2.4(1 σ) ppm measured along five sight lines through disk gas in the solar neighborhood is similar to D/H in the lower Galactic halo. These disk and halo observations imply the abundance of deuterium in the Galaxy has only been reduced by a factor of 1.12+/-0.13 since its formation. In contrast, current galactic chemical evolution models predict the astration reduction factor should be in the range from 1.39 to 1.83.

  7. NUBEAM developments and 3d halo modeling

    NASA Astrophysics Data System (ADS)

    Gorelenkova, M. V.; Medley, S. S.; Kaye, S. M.

    2012-10-01

    Recent developments related to the 3D halo model in NUBEAM code are described. To have a reliable halo neutral source for diagnostic simulation, the TRANSP/NUBEAM code has been enhanced with full implementation of ADAS atomic physic ground state and excited state data for hydrogenic beams and mixed species plasma targets. The ADAS codes and database provide the density and temperature dependence of the atomic data, and the collective nature of the state excitation process. To be able to populate 3D halo output with sufficient statistical resolution, the capability to control the statistics of fast ion CX modeling and for thermal halo launch has been added to NUBEAM. The 3D halo neutral model is based on modification and extension of the ``beam in box'' aligned 3d Cartesian grid that includes the neutral beam itself, 3D fast neutral densities due to CX of partially slowed down fast ions in the beam halo region, 3D thermal neutral densities due to CX deposition and fast neutral recapture source. More details on the 3D halo simulation design will be presented.

  8. Subsuns, Bottlinger's rings, and elliptical halos.

    PubMed

    Lynch, D K; Gedzelman, S D; Fraser, A B

    1994-07-20

    Subsuns, Bottlinger's rings, and elliptical halos are simulated by the use of a Monte Carlo model; reflection of sunlight from almost horizontal ice crystals is assumed. Subsuns are circular or elliptical spots seen at the specular reflection point when one flies over cirrus or cirrostratus clouds. Bottlinger's rings are rare, almost elliptical rings centered about the subsun. Elliptical halos are small rings of light centered around the Sun or the Moon that rarely occur with other halo phenomena. Subsuns and Bottlinger's rings can be explained by reflection from a single crystal, whereas elliptical halos require reflection from two separate crystals. All three phenomena are colorless and vertically elongated with an eccentricity that increases with increasing solar zenith angle. For several cases of Bottlinger's rings the simulations are compared with density scans of photographs. Clouds that consist of large swinging or gyrating plates and dendritic crystals, which form near -15 °C, seem the most likely ca didates to produce the rings and elliptical halos. Meteorological evidence is presented that supports these conditions for elliptical halos. Simulations suggest that the most distinct elliptical halos may be produced by hybrid clouds that contain both horizontal and gyrating crystals.

  9. HALO7D: Disentangling the Milky Way Accretion History with Observations in 7 Dimensions

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily C.; Deason, Alis; Guhathakurta, Puragra; Rockosi, Constance M.; Van Der Marel, Roeland P.; Sohn, S. Tony; HSTPROMO, HALO7D

    2016-01-01

    The Milky Way (MW) is shrouded in a faint metal-poor stellar halo. Its structure and kinematics provide a unique archaeological record of the MW's formation, past evolution, and accretion history. These data also help us constrain the dark matter mass out to large radii (50 to 100 kpc). However, studies of the MW stellar halo are hindered by observational constraints. Beyond D~10 kpc, our knowledge of the MW halo is limited to line of sight velocities and rare tracer populations (blue horizontal branch and red giant branch stars). We aim to address these limitations using highly accurate HST-measured proper motions and very deep (8-24 hour integrations) Keck DEIMOS spectroscopy of MW main sequence turn-off stars in the CANDELS fields. By combining these two datasets, we can obtain 6D phase-space information plus chemical abundances (7 "Dimensions") for our halo stars. This survey, which will be unique even in the era of Gaia, will vastly improve our understanding of the Milky Way structure, evolution and mass in a way that neither the HST proper motions nor Keck spectroscopy can do on their own.

  10. THE DUAL ORIGIN OF STELLAR HALOS

    SciTech Connect

    Zolotov, Adi; Hogg, David W.; Willman, Beth; Brooks, Alyson M.; Brook, Chris B.; Stinson, Greg E-mail: bwillman@haverford.edu

    2009-09-10

    We investigate the formation of the stellar halos of four simulated disk galaxies using high-resolution, cosmological SPH + N-body simulations. These simulations include a self-consistent treatment of all the major physical processes involved in galaxy formation. The simulated galaxies presented here each have a total mass of {approx}10{sup 12} M{sub sun}, but span a range of merger histories. These simulations allow us to study the competing importance of in situ star formation (stars formed in the primary galaxy) and accretion of stars from subhalos in the building of stellar halos in a {lambda}CDM universe. All four simulated galaxies are surrounded by a stellar halo, whose inner regions (r < 20 kpc) contain both accreted stars, and an in situ stellar population. The outer regions of the galaxies' halos were assembled through pure accretion and disruption of satellites. Most of the in situ halo stars formed at high redshift out of smoothly accreted cold gas in the inner 1 kpc of the galaxies' potential wells, possibly as part of their primordial disks. These stars were displaced from their central locations into the halos through a succession of major mergers. We find that the two galaxies with recently quiescent merger histories have a higher fraction of in situ stars ({approx}20%-50%) in their inner halos than the two galaxies with many recent mergers ({approx}5%-10% in situ fraction). Observational studies concentrating on stellar populations in the inner halo of the Milky Way will be the most affected by the presence of in situ stars with halo kinematics, as we find that their existence in the inner few tens of kpc is a generic feature of galaxy formation.

  11. Symmetry in halo displays and symmetry in halo-making crystals.

    PubMed

    Können, Gunther P

    2003-01-20

    The relation between the symmetry in halo displays and crystal symmetry is investigated for halo displays that are generated by ensembles of crystals. It is found that, regardless of the symmetry of the constituent crystals, such displays are always left-right (L-R) symmetric if the crystals are formed from the surrounding vapor. L-R symmetry of a halo display implies here that the cross sections for formation of a halo arc on the left-hand side of the solar vertical and its right-hand side mirror image are equal. This property leaves room for two types of halo display only: a full symmetric one (mmm-symmetric), and a partial symmetric one (mm2-symmetric) in which halo constituents lack their counterparts on the other side of the parhelic circle. A partial symmetric display can occur only for point halos. Its occurrence implies that a number of symmetry elements are not present in the shape of the halo-making crystals. These elements are a center of inversion, any rotatory-inversion axis that is parallel to the crystal spin axis P, a mirror plane perpendicular to the P axis, and a twofold rotation axis perpendicular to the P axis. A simple conceptual method is presented to reconstruct possible shapes of the halo-generating crystals from the halos in the display. The method is illustrated in two examples. Halos that may occur on the Saturnian satellite Titan are discussed. The possibilities for the Huygens probe to detect these halos during its descent through the Titan clouds in 2005 are detailed. PMID:12570252

  12. Symmetry in halo displays and symmetry in halo-making crystals.

    PubMed

    Können, Gunther P

    2003-01-20

    The relation between the symmetry in halo displays and crystal symmetry is investigated for halo displays that are generated by ensembles of crystals. It is found that, regardless of the symmetry of the constituent crystals, such displays are always left-right (L-R) symmetric if the crystals are formed from the surrounding vapor. L-R symmetry of a halo display implies here that the cross sections for formation of a halo arc on the left-hand side of the solar vertical and its right-hand side mirror image are equal. This property leaves room for two types of halo display only: a full symmetric one (mmm-symmetric), and a partial symmetric one (mm2-symmetric) in which halo constituents lack their counterparts on the other side of the parhelic circle. A partial symmetric display can occur only for point halos. Its occurrence implies that a number of symmetry elements are not present in the shape of the halo-making crystals. These elements are a center of inversion, any rotatory-inversion axis that is parallel to the crystal spin axis P, a mirror plane perpendicular to the P axis, and a twofold rotation axis perpendicular to the P axis. A simple conceptual method is presented to reconstruct possible shapes of the halo-generating crystals from the halos in the display. The method is illustrated in two examples. Halos that may occur on the Saturnian satellite Titan are discussed. The possibilities for the Huygens probe to detect these halos during its descent through the Titan clouds in 2005 are detailed.

  13. New Signatures of the Milky Way Formation in the Local Halo and Inner-halo Streamers in the Era of Gaia

    NASA Astrophysics Data System (ADS)

    Re Fiorentin, Paola; Lattanzi, Mario G.; Spagna, Alessandro; Curir, Anna

    2015-10-01

    We explore the vicinity of the Milky Way through the use of spectrophotometric data from the Sloan Digital Sky Survey and high-quality proper motions derived from multi-epoch positions extracted from the Guide Star Catalog II database. In order to identify and characterize streams as relics of the Milky Way formation, we start with classifying, selecting, and studying 2417 subdwarfs with [{Fe}/{{H}}] \\lt -1.5 up to 3 kpc away from the Sun as tracers of the local halo system. Then, through phase-space analysis, we find statistical evidence of five discrete kinematic overdensities among 67 of the fastest-moving stars and compare them to high-resolution N-body simulations of the interaction between a Milky Way-like galaxy and orbiting dwarf galaxies with four representative cases of merging histories. The observed overdensities can be interpreted as fossil substructures consisting of streamers torn from their progenitors; such progenitors appear to be satellites on prograde and retrograde orbits on different inclinations. In particular, of the five detected overdensities, two appear to be associated, yielding 21 additional main-sequence members, with the stream of Helmi et al. that our analysis confirms is on a high-inclination prograde orbit. The three newly identified kinematic groups could be associated with the retrograde streams detected by Dinescu and Kepley et al.; whatever their origin, the progenitor(s) would be on retrograde orbit(s) and inclination(s) within the range 10^\\circ \\div60^\\circ . Finally, we use our simulations to investigate the impact of observational errors and compare the current picture to the promising prospect of highly improved data expected from the Gaia mission.

  14. Observations of 6.7 GHz methanol masers with East-Asian VLBI Network. II. Internal proper motion measurement in G006.79-00.25

    NASA Astrophysics Data System (ADS)

    Sugiyama, Koichiro; Fujisawa, Kenta; Hachisuka, Kazuya; Yonekura, Yoshinori; Motogi, Kazuhito; Sawada-Satoh, Satoko; Matsumoto, Naoko; Hirano, Daiki; Hayashi, Kyonosuke; Kobayashi, Hideyuki; Kawaguchi, Noriyuki; Shibata, Katsunori M.; Honma, Mareki; Hirota, Tomoya; Murata, Yasuhiro; Doi, Akihiro; Ogawa, Hideo; Kimura, Kimihiro; Niinuma, Kotaro; Chen, Xi; Xia, Bo; Li, Bin; Sorai, Kazuo; Momose, Munetake; Saito, Yu; Takaba, Hiroshi; Omodaka, Toshihiro; Kim, Kee-Tae; Shen, Zhiqiang

    2016-10-01

    We detected internal proper motions of the methanol maser features at 6.7 GHz in a high-mass star-forming region G006.79-00.25 with the East-Asian VLBI Network. The spatial distribution of the maser features shows an elliptical morphology. The internal proper motions of 17 methanol maser features relative to the barycenter of the features were measured. The amplitude of the internal motions ranged from 1.30 to 10.25 km s-1. Most of the internal proper motions of the maser features seem to point counterclockwise along the elliptical morphology of the maser features. We applied the disk model, which includes both rotating and expanding components, to the observed positions, l.o.s. velocities, and proper motions. The derived rotation, expansion, and systemic velocities are +3^{+2}_{-2}, +6^{+2}_{-2}, and +21^{+2}_{-2}km s-1, respectively, at the radius of 1260 au on the disk with a position angle of the semi-major axis of - 140° and an inclination of 60°. The derived rotating motion suggests that the methanol maser emissions showing the elliptical spatial morphology possibly trace the rotating disk. The derived expanding motion might be caused by the magnetic-centrifugal wind on the disk, which was estimated on the basis of the typical magnetic field strength at emitting zones of a methanol maser.

  15. Genesis Halo Orbit Station Keeping Design

    NASA Technical Reports Server (NTRS)

    Lo, M.; Williams, K.; Wilson, R.; Howell, K.; Barden, B.

    2000-01-01

    As the fifth mission of NASA's Directory Program, Genesis is designed to collect solar wind samples for approximately two years in a halo orbit near the Sun-Earth L(sub 1) Lagrange point for return to the Earth.

  16. The Gaseous Halo of NGC 891

    NASA Astrophysics Data System (ADS)

    Hodges-Kluck, Edmund

    2014-08-01

    The halos of disk galaxies contain a substantial mass of diffuse gas whose properties (temperature, density, structure, and metallicity) are important to understanding how the intergalactic medium was enriched and the long-term star-formation potential of the galaxy. However, we still do not know whether most of the halo material was expelled from the galaxy in a 'galactic fountain' or is fresh infall from the circum/intergalactic medium. NGC 891 is a nearby (D=10 Mpc), edge-on Milky Way analog whose halo has been intensively studied. I will present our recent work in the X-ray and UV bands aimed at trying to determine the origin of the hot and cool components of the halo gas by measuring their metal content, and discuss whether results from NGC 891 can be generalized to other galaxies.

  17. Solar Back-sided Halo CME

    NASA Video Gallery

    The Sun erupted with several CMEs (coronal mass ejections) during a period just over a day (Nov. 8-9, 2012), the largest of which was a halo CME. This CME appears to have originated from an active ...

  18. Dark matter particles in the galactic halo

    SciTech Connect

    Bernabei, R. Belli, P.; Montecchia, F.; Nozzoli, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, J. M.; Sheng, X. D.; Ye, Z. P.

    2009-12-15

    Arguments on the investigation of the DarkMatter particles in the galactic halo are addressed. Recent results obtained by exploiting the annual modulation signature are summarized and the perspectives are discussed.

  19. Dark matter particles in the galactic halo

    NASA Astrophysics Data System (ADS)

    Bernabei, R.; Belli, P.; Montecchia, F.; Nozzoli, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, J. M.; Sheng, X. D.; Ye, Z. P.

    2009-12-01

    Arguments on the investigation of the DarkMatter particles in the galactic halo are addressed. Recent results obtained by exploiting the annual modulation signature are summarized and the perspectives are discussed.

  20. Simulating rainbows and halos in color.

    PubMed

    Gedzelman, S D

    1994-07-20

    Geometric optics rainbows and ice-crystal halos that include some effects of a Rayleigh-scattering atmosphere and a cloud of finite optical thickness are simulated in color by the use of a Monte Carlo approach. PMID:20935829

  1. The dark matter distribution function and halo thermalization from the Eddington equation in galaxies

    NASA Astrophysics Data System (ADS)

    de Vega, H. J.; Sanchez, N. G.

    2016-05-01

    We find the distribution function f(E) for dark matter (DM) halos in galaxies and the corresponding equation of state from the (empirical) DM density profiles derived from observations. We solve for DM in galaxies the analogous of the Eddington equation originally used for the gas of stars in globular clusters. The observed density profiles are a good realistic starting point and the distribution functions derived from them are realistic. We do not make any assumption about the DM nature, the methods developed here apply to any DM kind, though all results are consistent with warm dark matter (WDM). With these methods we find: (i) Cored density profiles behaving quadratically for small distances ρ(r)= r → 0ρ(0) ‑ Kr2 produce distribution functions which are finite and positive at the halo center while cusped density profiles always produce divergent distribution functions at the center. (ii) Cored density profiles produce approximate thermal Boltzmann distribution functions for r ≲ 3rh where rh is the halo radius. (iii) Analytic expressions for the dispersion velocity and the pressure are derived yielding at each halo point an ideal DM gas equation of state with local temperature T(r) ≡ mv2(r)/3. T(r) turns out to be constant in the same region where the distribution function is thermal and exhibits the same temperature within the percent. The self-gravitating DM gas can thermalize despite being collisionless because it is an ergodic system. (iv) The DM halo can be consistently considered at local thermal equilibrium with: (a) a constant temperature T(r) = T0 for r ≲ 3rh, (b) a space dependent temperature T(r) for 3rh < r ≲ Rvirial, which slowly decreases with r. That is, the DM halo is realistically a collisionless self-gravitating thermal gas for r ≲ Rvirial. (v) T(r) outside the halo radius nicely follows the decrease of the circular velocity squared.

  2. The mass of spiral galaxy halos

    NASA Technical Reports Server (NTRS)

    Zaritsky, Dennis

    1992-01-01

    A discussion is presented of previous and current work on the determination of the mass distribution of spiral galaxy halos. The two most common tools utilized to determine the mass of spiral galaxies, i.e., companion galaxies and rotation curves are discussed. The most recent research of companion galaxies, which probes the potential to larger distances and utilizes more accurate dynamic modeling, demonstrates that isolated late-type galaxies do have very large dark-matter halos.

  3. The renal halo sign in pancreatitis

    SciTech Connect

    Susman, N.; Hammerman, A.M.; Cohen, E.

    1982-02-01

    Three cases of pancreatitis are presented in which the diagnosis can be suggested by the appearance of a distinct radiolucent halo about the left kidney on the plain radiograph of the abdomen. This halo is produced by apparent enhancement of the perirenal fat by an adjacent retroperitoneal exudate in the left anterior pararenal space, as demonstrated by subsequent abdominal computed tomographic scans. Although striking in appearance, the sign may be ignored if its significance is not understood.

  4. On physical scales of dark matter halos

    SciTech Connect

    Zemp, Marcel

    2014-09-10

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.

  5. Atmospheric Test Models and Numerical Experiments for the Simulation of the Global Distribution of Weather Data Transponders II. Vertical Transponder Motion Considerations

    SciTech Connect

    Grossman, A.; Errico, R.M.

    1999-11-29

    The vertical motion of constant density atmospheric balloons has been considered via an equation of motion for the vertical displacement of a balloon, due to vertical air motion, which can be numerically solved for balloon positions. Initial calculations are made for a constant density atmosphere. Various vertical wind models with relatively large amplitudes are applied to the model to determine how tightly the balloons are coupled to the reference level and the time scale for the balloons to change to the wind driven reference altitude. A surface launch of a balloon to a 6 km reference altitude is modeled using a detailed atmospheric pressure-density-temperature profile in the equation of motion. The results show the balloons to be relatively tightly coupled ({approx} 50-100 m) to the reference altitude.

  6. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    SciTech Connect

    Lee, Jounghun; Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  7. RR Lyrae to understand the Galactic halo

    NASA Astrophysics Data System (ADS)

    Fiorentino, Giuliana

    2016-08-01

    We present recent results obtained using old variable RR Lyrae stars on the Galactic halo structure and its connection with nearby dwarf galaxies. We compare the period and period-amplitude distributions for a sizeable sample of fundamental mode RR Lyrae stars (RRab) in dwarf spheroidals (~1300 stars) with those in the Galactic halo (~16'000 stars) and globular clusters (~1000 stars). RRab in dwarfs -as observed today- do not appear to follow the pulsation properties shown by those in the Galactic halo, nor they have the same properties as RRab in globulars. Thanks to the OGLE experiment we extended our comparison to massive metal-rich satellites like the dwarf irregular Large Magellanic Cloud (LMC) and the Sagittarius (Sgr) dwarf spheroidal. These massive and more metal-rich stellar systems likely have contributed to the Galactic halo formation more than classical dwarf spheroidals. Finally, exploiting the intrinsic nature of RR Lyrae as distance indicators we were able to study the period and period amplitude distributions of RRab within the Halo. It turned out that the inner and the outer Halo do show a difference that may suggest a different formation scenario (in situ vs accreted).

  8. ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS

    SciTech Connect

    Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Juerg; Wadsley, James; Moustakas, Leonidas A.

    2013-05-20

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with {approx}70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by {lambda} {approx} 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  9. Beam halo studies in LEHIPA DTL

    NASA Astrophysics Data System (ADS)

    Roy, S.; Pande, R.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.

    2015-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA) project at Bhabha Atomic Research Centre (BARC) consists of a 20 MeV, 30 mA proton linac. The accelerator comprises of a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV Drift Tube Linac (DTL). In such high intensity accelerators, beam halos are of concern as they not only cause an increase in emittance, but also lead to beam loss and radio activation. We have studied the effect of beam mismatch at the DTL input on halo formation and propagation. The particle core model is used to excite the three envelope eigen modes; the quadrupole mode, the fast mode and the slow mode by giving input beam mismatch. These modes get damped as the beam progresses through the DTL. The damping mechanism is clearly Landau damping and leads to increase in rms emittance of the beam. The evolution of these modes and the corresponding increase in beam emittance and maximum beam extent, as the beam propagates through the DTL, has been studied for different space charge tunes. The halo parameter based on the definition of Allen and Wangler has been calculated. It is seen that beam halos are very important for LEHIPA DTL, even at 20 MeV and leads to emittance and beam size increase and also to beam loss in some cases. The longitudinal halo is present even without mismatch and transverse halos arise in the presence of beam mismatch.

  10. Bringing the Galaxy's dark halo to life

    NASA Astrophysics Data System (ADS)

    Piffl, T.; Penoyre, Z.; Binney, J.

    2015-07-01

    We present a new method to construct fully self-consistent equilibrium models of multicomponent disc galaxies similar to the Milky Way. We define distribution functions for the stellar disc and dark halo that depend on phase-space position only through action coordinates. We then use an iterative approach to find the corresponding gravitational potential. We study the adiabatic response of the initially spherical dark halo to the introduction of the baryonic component and find that the halo flattens in its inner regions with final minor-major axis ratios q = 0.75-0.95. The extent of the flattening depends on the velocity structure of the halo particles with radially biased models exhibiting a stronger response. In this latter case, which is according to cosmological simulations the most likely one, the new density structure resembles a `dark disc' superimposed on a spherical halo. We discuss the implications of these results for our recent estimate of the local dark matter (DM) density. The velocity distribution of the DM particles near the Sun is very non-Gaussian. All three principal velocity dispersions are boosted as the halo contracts, and at low velocities a plateau develops in the distribution of vz. For models similar to a state-of-the-art Galaxy model, we find velocity dispersions around 180 km s-1 for vz and the tangential velocity, vϕ, and 150-205 km s-1 for the in-plane radial velocity, vR, depending on the anisotropy of the model.

  11. Carbon-enhanced metal-poor stars: CEMP-s and CEMP-no subclasses in the halo system of the Milky Way

    SciTech Connect

    Carollo, Daniela; Freeman, Ken; Beers, Timothy C.; Placco, Vinicius M.; Tumlinson, Jason; Martell, Sarah L. E-mail: kcf@mso.anu.edu.au E-mail: vplacco@gemini.edu E-mail: smartell@aao.gov.au

    2014-06-20

    We explore the kinematics and orbital properties of a sample of 323 very metal-poor stars in the halo system of the Milky Way, selected from the high-resolution spectroscopic follow-up studies of Aoki et al. and Yong et al. The combined sample contains a significant fraction of carbon-enhanced metal-poor (CEMP) stars (22% or 29%, depending on whether a strict or relaxed criterion is applied for this definition). Barium abundances (or upper limits) are available for the great majority of the CEMP stars, allowing for their separation into the CEMP-s and CEMP-no subclasses. A new method to assign membership to the inner- and outer-halo populations of the Milky Way is developed, making use of the integrals of motion, and applied to determine the relative fractions of CEMP stars in these two subclasses for each halo component. Although limited by small-number statistics, the data suggest that the inner halo of the Milky Way exhibits a somewhat higher relative number of CEMP-s stars than CEMP-no stars (57% versus 43%), while the outer halo possesses a clearly higher fraction of CEMP-no stars than CEMP-s stars (70% versus 30%). Although larger samples of CEMP stars with known Ba abundances are required, this result suggests that the dominant progenitors of CEMP stars in the two halo components were different; massive stars for the outer halo, and intermediate-mass stars in the case of the inner halo.

  12. Highly ionized interstellar gas located in the Galactic disk and halo

    SciTech Connect

    Savage, B.D.; Massa, D.

    1987-03-01

    High-resolution IUE absorption line spectra have been obtained for 40 distant stars in order to study the distribution of interstellar H I, Si IV, C IV, and N V in the Galactic disk and lower halo. Respective midplane densities of 2 x 10 to the -9th, 7 x 10 to the -9th, and 3 x 10 to the -9th are found for Si IV, C IV, and Ni V. Both column density and velocity data indicate that the highly ionized gas (HIG) is considerably more extended in directions away from the Galactic plane than is H I or Si II. The absorption-line velocities for the halo HIG are consistent with the notion that halo gas in the inner Galaxy rotates more slowly than gas in the underlying disk. The derived column densities suggest an exponential scale height for the HIG of about 3 kpc; however, a simple exponential distribution is a poor representation of the distribution of the gas. It is concluded that a full explanation of the origin of the halo HIG will probably require a blending of ideas from the Galactic fountain and the photoionized halo models. 75 references.

  13. Techniques for the measurement of disruption halo currents in the National Spherical Torus Experiment

    DOE PAGES

    Gerhardt, S. P.; Fredrickson, E.; Guttadora, L.; Kaita, R.; Kugel, H.; Menard, J.; Takahashi, H.

    2011-10-06

    This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments. The measurements are based on three techniques: (i) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (ii) the direct measurement of halo currents into specially instrument tiles, and (iii) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peakingmore » factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems is shown.« less

  14. [α/Fe] ABUNDANCES OF FOUR OUTER M31 HALO STARS

    SciTech Connect

    Vargas, Luis C.; Geha, Marla; Tollerud, Erik J.; Gilbert, Karoline M.; Kirby, Evan N.; Guhathakurta, Puragra

    2014-12-10

    We present alpha element to iron abundance ratios, [α/Fe], for four stars in the outer stellar halo of the Andromeda Galaxy (M31). The stars were identified as high-likelihood field halo stars by Gilbert et al. and lie at projected distances between 70 and 140 kpc from M31's center. These are the first alpha abundances measured for a halo star in a galaxy beyond the Milky Way. The stars range in metallicity between [Fe/H] = –2.2 and [Fe/H] = –1.4. The sample's average [α/Fe] ratio is +0.20 ± 0.20. The best-fit average value is elevated above solar, which is consistent with rapid chemical enrichment from Type II supernovae. The mean [α/Fe] ratio of our M31 outer halo sample agrees (within the uncertainties) with that of Milky Way inner/outer halo stars that have a comparable range of [Fe/H].

  15. Techniques for the measurement of disruption halo currents in the National Spherical Torus Experiment

    SciTech Connect

    Gerhardt, S. P.; Fredrickson, E.; Guttadora, L.; Kaita, R.; Kugel, H.; Menard, J.; Takahashi, H.

    2011-10-06

    This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments. The measurements are based on three techniques: (i) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (ii) the direct measurement of halo currents into specially instrument tiles, and (iii) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peaking factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems is shown.

  16. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  17. LONGITUDINAL MISMATCH IN SCL AS A SOURCE OF BEAM HALO.

    SciTech Connect

    RUGGIERO,A.G.

    2003-06-19

    An advantage of a proton Super-conducting Linac (SCL) is that RF cavities can be operated independently, allowing easier beam transport: and acceleration. But cavities are to be separated by drifts long enough to avoid they couple to each other. Moreover, cavities are placed in cryostats that include inactive insertions for cold-warm transitions; and interspersed are warm insertions for magnets and other devices. The SCL is then an alternating sequence of accelerating elements and drifts. No periodicity is present, and the longitudinal motion is not adiabatic. This has the consequence that the beam bunch ellipse will tumble, dilute and create a halo in the momentum plane because of inherent nonlinearities. When this is coupled to longitudinal space-charge forces, it may cause beam loss with latent activation of the accelerator components.

  18. Simulating Halos with the Caterpillar Project

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The Caterpillar Project is a beautiful series of high-resolution cosmological simulations. The goal of this project is to examine the evolution of dark-matter halos like the Milky Ways, to learn about how galaxies like ours formed. This immense computational project is still in progress, but the Caterpillar team is already providing a look at some of its first results.Lessons from Dark-Matter HalosWhy simulate the dark-matter halos of galaxies? Observationally, the formation history of our galaxy is encoded in galactic fossil record clues, like the tidal debris from disrupted satellite galaxies in the outer reaches of our galaxy, or chemical abundance patterns throughout our galactic disk and stellar halo.But to interpret this information in a way that lets us learn about our galaxys history, we need to first test galaxy formation and evolution scenarios via cosmological simulations. Then we can compare the end result of these simulations to what we observe today.This figure illustrates the difference that mass resolution makes. In the left panel, the mass resolution is 1.5*10^7 solar masses per particle. In the right panel, the mass resolution is 3*10^4 solar masses per particle [Griffen et al. 2016]A Computational ChallengeDue to how computationally expensive such simulations are, previous N-body simulations of the growth of Milky-Way-like halos have consisted of only one or a few halos each. But in order to establish a statistical understanding of how galaxy halos form and find out whether the Milky Ways halo is typical or unusual! it is necessary to simulate a larger number of halos.In addition, in order to accurately follow the formation and evolution of substructure within the dark-matter halos, these simulations must be able to resolve the smallest dwarf galaxies, which are around a million solar masses. This requires an extremely high mass resolution, which adds to the computational expense of the simulation.First OutcomesThese are the challenges faced by

  19. HaloSat- A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    We propose to develop, build, and fly HaloSat, a CubeSat capable of measuring the oxygen line emission from the hot Galactic halo. A dedicated CubeSat enables an instrument design and observing strategy to maximize the halo signal while minimizing foregrounds from solar wind charge exchange interactions within the solar system. We will use HaloSat to map the distribution of hot gas in the Milky Way and determine whether it fills an extended, and thus massive halo, or whether the halo is compact, and thus does not contribute significantly to the total mass of the Milky Way. HaloSat can be accomplished at modest cost using a CubeSat, a novel platform for space astrophysics missions. We will use a commercially available CubeSat bus and commercially available X-ray detectors to reduce development risk and minimize overall mission cost. HaloSat builds on the initiatives of GSFC/Wallops Flight Facility (WFF) in the development of CubeSats for low cost access to space and relies on the technical expertise of WFF personnel for spacecraft and mission design and operations. The team, from University of Iowa (UI), GSFC, Johns Hopkins, and CNRS (France), contains experts in X-ray detector development and data analysis and the astrophysics of hot plasmas and Galactic structure. The UI team will include a number of junior researchers (undergraduates, graduate students, and a postdoc) and help train them for future leadership roles on NASA space flight missions.

  20. GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY

    SciTech Connect

    Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi; Busha, Michael T.; Klypin, Anatoly A.; Primack, Joel R. E-mail: rwechsler@stanford.edu

    2013-01-20

    We present a new algorithm for generating merger trees and halo catalogs which explicitly ensures consistency of halo properties (mass, position, and velocity) across time steps. Our algorithm has demonstrated the ability to improve both the completeness (through detecting and inserting otherwise missing halos) and purity (through detecting and removing spurious objects) of both merger trees and halo catalogs. In addition, our method is able to robustly measure the self-consistency of halo finders; it is the first to directly measure the uncertainties in halo positions, halo velocities, and the halo mass function for a given halo finder based on consistency between snapshots in cosmological simulations. We use this algorithm to generate merger trees for two large simulations (Bolshoi and Consuelo) and evaluate two halo finders (ROCKSTAR and BDM). We find that both the ROCKSTAR and BDM halo finders track halos extremely well; in both, the number of halos which do not have physically consistent progenitors is at the 1%-2% level across all halo masses. Our code is publicly available at http://code.google.com/p/consistent-trees. Our trees and catalogs are publicly available at http://hipacc.ucsc.edu/Bolshoi/.

  1. Part I. Fuel-motion diagnostics in support of fast-reactor safety experiments. Part II. Fission product detection system in support of fast reactor safety experiments

    SciTech Connect

    Devolpi, A.; Doerner, R.C.; Fink, C.L.; Regis, J.P.; Rhodes, E.A.; Stanford, G.S.; Braid, T.H.; Boyar, R.E.

    1986-05-01

    In all destructive fast-reactor safety experiments at TREAT, fuel motion and cladding failure have been monitored by the fast-neutron/gamma-ray hodoscope, providing experimental results that are directly applicable to design, modeling, and validation in fast-reactor safety. Hodoscope contributions to the safety program can be considered to fall into several groupings: pre-failure fuel motion, cladding failure, post-failure fuel motion, steel blockages, pretest and posttest radiography, axial-power-profile variations, and power-coupling monitoring. High-quality results in fuel motion have been achieved, and motion sequences have been reconstructed in qualitative and quantitative visual forms. A collimated detection system has been used to observe fission products in the upper regions of a test loop in the TREAT reactor. Particular regions of the loop are targeted through any of five channels in a rotatable assembly in a horizontal hole through the biological shield. A well-type neutron detector, optimized for delayed neutrons, and two GeLi gamma ray spectrometers have been used in several experiments. Data are presented showing a time history of the transport of Dn emitters, of gamma spectra identifying volatile fission products deposited as aerosols, and of fission gas isotopes released from the coolant.

  2. The properties of warm dark matter haloes

    NASA Astrophysics Data System (ADS)

    Lovell, Mark R.; Frenk, Carlos S.; Eke, Vincent R.; Jenkins, Adrian; Gao, Liang; Theuns, Tom

    2014-03-01

    Well-motivated elementary particle candidates for the dark matter, such as the sterile neutrino, behave as warm dark matter (WDM). For particle masses of the order of a keV, free streaming produces a cutoff in the linear fluctuation power spectrum at a scale corresponding to dwarf galaxies. We investigate the abundance and structure of WDM haloes and subhaloes on these scales using high resolution cosmological N-body simulations of galactic haloes of mass similar to the Milky Way's. On scales larger than the free-streaming cutoff, the initial conditions have the same power spectrum and phases as one of the cold dark matter (CDM) haloes previously simulated by Springel et al. as part of the Virgo consortium Aquarius project. We have simulated four haloes with WDM particle masses in the range 1.5-2.3 keV and, for one case, we have carried out further simulations at varying resolution. N-body simulations in which the power spectrum cutoff is resolved are known to undergo artificial fragmentation in filaments producing spurious clumps which, for small masses (<107 M⊙ in our case) outnumber genuine haloes. We have developed a robust algorithm to identify these spurious objects and remove them from our halo catalogues. We find that the WDM subhalo mass function is suppressed by well over an order magnitude relative to the CDM case for masses <109 M⊙. Requiring that there should be at least as many subhaloes as there are observed satellites in the Milky Way leads to a conservative lower limit to the (thermal equivalent) WDM particle mass of ˜ 1.5 keV. WDM haloes and subhaloes have cuspy density distributions that are well described by Navarro-Frenk-White or Einasto profiles. Their central densities are lower for lower WDM particle masses and none of the models we have considered suffering from the `too big to fail' problem recently highlighted by Boylan-Kolchin et al.

  3. HaloSat - A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2016-04-01

    Observations of the nearby universe fail to locate about half of the normal matter (baryons) observed in the early universe. The missing baryons may be in hot galactic halos. HaloSat is a CubeSat designed to map oxygen line emission (O VII and O VIII) around the Milky Way in order to constrain the mass and spatial distribution of hot gas in the halo. HaloSat has a grasp competitive with current X-ray observatories. Its observing program will be optimized to minimize contributions from solar wind charge exchange (SWCX) emission that limit the accuracy of current measurements. We will describe the HaloSat mission concept, progress towards its implementation, and plans for archiving and distribution of the data.

  4. The Milky Way, the Galactic Halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2016-08-01

    The Milky Way, ``our'' Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the Gaia mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams and substructures in the Galactic halo. The data indicate that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To study these features requires exquisite, deep photometry and spectroscopy. These observations illustrate how galaxy halos are still growing, and sometimes can be used to ``time'' the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  5. Metallicity and Kinematics of M31's Outer Stellar Halo from a Keck Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Reitzel, David B.; Guhathakurta, Puragra

    2002-07-01

    We present first results from a spectroscopic survey designed to examine the metallicity and kinematics of individual red giant branch stars in the outer halo of the Andromeda spiral galaxy (M31). This study is based on multislit spectroscopy with the Keck II 10 m telescope and Low Resolution Imaging Spectrograph of the Ca II near-infrared triplet in 99 M31 halo candidates in a field at R=19 kpc on the southeast minor axis with brightnesses from 20halo red giants from foreground Milky Way dwarf stars, faint compact background galaxies, and M31 disk giants. The observed distribution of radial velocities is well fitted by an equal mix of foreground Milky Way dwarf stars, drawn from a standard Galactic model and with velocities v<~0 km s-1, and M31 halo giants represented by a Gaussian of width σM31v~150 km s-1 centered on its systemic velocity of vM31sys~-300 km s-1. A secure sample of 29 M31 red giant stars is identified on the basis of radial velocity (v<-220 km s-1) and, in the case of four intermediate-velocity stars (-160II absorption-line strength and a photometric estimate based on fitting model stellar isochrones to an object's location in a (B-I, I) color-magnitude diagram. The [Fe/H] distribution of M31 halo giants has an rms spread of at least 0.6 dex and spans the >~2 dex range over which the abundance measurement methods are calibrated. The mean/median metallicity of the M31 halo is about <[Fe/H]>=-1.9 to -1.1 dex (depending on the details of metallicity calibration and sample selection) and possibly higher: the high-metallicity end of the distribution is poorly constrained by our data since the selection function for the secure M31 sample excludes over 80% of the giants in solar/supersolar metallicity range. Possible reasons are

  6. Low-Velocity Halo Clouds

    NASA Astrophysics Data System (ADS)

    Peek, J. E. G.; Heiles, Carl; Putman, M. E.; Douglas, Kevin

    2009-02-01

    Models that reproduce the observed high-velocity clouds (HVCs) also predict clouds at lower radial velocities that may easily be confused with Galactic disk (|z|< 1 kpc) gas. We describe the first search for these low-velocity halo clouds (LVHCs) using Infrared Astronomical Satellite (IRAS) data and the initial data from the Galactic Arecibo L-band Feed Array survey in H I. The technique is based upon the expectation that such clouds should, like HVCs, have very limited infrared (IR) thermal dust emission as compared to their H I column density. We describe our "displacement-map" technique for robustly determining the dust-to-gas ratio (DGR) of clouds and the associated errors that take into account the significant scatter in the IR flux from the Galactic disk gas. We find that there exist lower-velocity clouds that have extremely low DGRs, consistent with being in the Galactic halo—candidate LVHCs. We also confirm the lack of dust in many HVCs with the notable exception of complex M, which we consider to be the first detection of dust in HVCs. We do not confirm the previously reported detection of dust in complex C. In addition, we find that most intermediate- and low-velocity clouds that are part of the Galactic disk have a higher 60 μm/100 μm flux ratio than is typically seen in Galactic H I, which is consistent with a previously proposed picture in which fast-moving Galactic clouds have smaller, hotter dust grains.

  7. Why are halo coronal mass ejections faster?

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-Min; Guo, Yang; Chen, Peng-Fei; Ding, Ming-De; Fang, Cheng

    2010-05-01

    Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs that clearly display loop-shaped frontal loops. The observational results show a strong tendency that slower CMEs are weaker in white-light intensity. Then, we perform a Monte Carlo simulation of 20000 artificial limb CMEs that have an average velocity of ~523 km s-1. The Thomson scattering of these events is calculated when they are assumed to be observed as limb and halo events, respectively. It is found that the white-light intensity of many slow CMEs becomes remarkably reduced when they turn from being viewed as a limb event to being viewed as a halo event. When the intensity is below the background solar wind fluctuation, it is assumed that they would be missed by coronagraphs. The average velocity of “detectable" halo CMEs is ~922 km s-1 very close to the observed value. This also indicates that wider events are more likely to be recorded. The results soundly suggest that the higher average velocity of halo CMEs is due to that a majority of slow events and some of narrow fast events carrying less material are so faint that they are blended with the solar wind fluctuations, and therefore are not observed.

  8. A UNIVERSAL MODEL FOR HALO CONCENTRATIONS

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.

    2015-01-20

    We present a numerical study of dark matter halo concentrations in ΛCDM and self-similar cosmologies. We show that the relation between concentration, c, and peak height, ν, exhibits the smallest deviations from universality if halo masses are defined with respect to the critical density of the universe. These deviations can be explained by the residual dependence of concentration on the local slope of the matter power spectrum, n, which affects both the normalization and shape of the c-ν relation. In particular, there is no well-defined floor in the concentration values. Instead, the minimum concentration depends on redshift: at fixed ν, halos at higher z experience steeper slopes n, and thus have lower minimum concentrations. We show that the concentrations in our simulations can be accurately described by a universal seven-parameter function of only ν and n. This model matches our ΛCDM results to ≲ 5% accuracy up to z = 6, and matches scale-free Ω{sub m} = 1 models to ≲ 15%. The model also reproduces the low concentration values of Earth-mass halos at z ≈ 30, and thus correctly extrapolates over 16 orders of magnitude in halo mass. The predictions of our model differ significantly from all models previously proposed in the literature at high masses and redshifts. Our model is in excellent agreement with recent lensing measurements of cluster concentrations.

  9. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. II. Experiment

    SciTech Connect

    Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas; McWalter, Emily J.; Gold, Garry E.; Fahrig, Rebecca; Pal, Saikat; Beaupré, Gary S.

    2014-06-15

    Purpose: A C-arm CT system has been shown to be capable of scanning a single cadaver leg under loaded conditions by virtue of its highly flexible acquisition trajectories. In Part I of this study, using the 4D XCAT-based numerical simulation, the authors predicted that the involuntary motion in the lower body of subjects in weight-bearing positions would seriously degrade image quality and the authors suggested three motion compensation methods by which the reconstructions could be corrected to provide diagnostic image quality. Here, the authors demonstrate that a flat-panel angiography system is appropriate for scanning both legs of subjectsin vivo under weight-bearing conditions and further evaluate the three motion-correction algorithms using in vivo data. Methods: The geometry of a C-arm CT system for a horizontal scan trajectory was calibrated using the PDS-2 phantom. The authors acquired images of two healthy volunteers while lying supine on a table, standing, and squatting at several knee flexion angles. In order to identify the involuntary motion of the lower body, nine 1-mm-diameter tantalum fiducial markers were attached around the knee. The static mean marker position in 3D, a reference for motion compensation, was estimated by back-projecting detected markers in multiple projections using calibrated projection matrices and identifying the intersection points in 3D of the back-projected rays. Motion was corrected using three different methods (described in detail previously): (1) 2D projection shifting, (2) 2D deformable projection warping, and (3) 3D rigid body warping. For quantitative image quality analysis, SSIM indices for the three methods were compared using the supine data as a ground truth. Results: A 2D Euclidean distance-based metric of subjects’ motion ranged from 0.85 mm (±0.49 mm) to 3.82 mm (±2.91 mm) (corresponding to 2.76 to 12.41 pixels) resulting in severe motion artifacts in 3D reconstructions. Shifting in 2D, 2D warping, and 3D

  10. Motion sickness.

    PubMed

    Golding, J F

    2016-01-01

    Over 2000 years ago the Greek physician Hippocrates wrote, "sailing on the sea proves that motion disorders the body." Indeed, the word "nausea" derives from the Greek root word naus, hence "nautical," meaning a ship. The primary signs and symptoms of motion sickness are nausea and vomiting. Motion sickness can be provoked by a wide variety of transport environments, including land, sea, air, and space. The recent introduction of new visual technologies may expose more of the population to visually induced motion sickness. This chapter describes the signs and symptoms of motion sickness and different types of provocative stimuli. The "how" of motion sickness (i.e., the mechanism) is generally accepted to involve sensory conflict, for which the evidence is reviewed. New observations concern the identification of putative "sensory conflict" neurons and the underlying brain mechanisms. But what reason or purpose does motion sickness serve, if any? This is the "why" of motion sickness, which is analyzed from both evolutionary and nonfunctional maladaptive theoretic perspectives. Individual differences in susceptibility are great in the normal population and predictors are reviewed. Motion sickness susceptibility also varies dramatically between special groups of patients, including those with different types of vestibular disease and in migraineurs. Finally, the efficacy and relative advantages and disadvantages of various behavioral and pharmacologic countermeasures are evaluated. PMID:27638085

  11. Brownian motion

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    1985-02-01

    Brownian motion, the doubly random motion of small particles suspended in a liquid due to molecular collisions, and its implications and applications in the history of modern science are discussed. Topics examined include probabilistic phenomena, the kinetic theory of gases, Einstein's atomic theory of Brownian motion, particle displacement, diffusion measurements, the determination of the mass of the atom and of Avogadro's number, the statistical mechanics of thermodynamics, nonequilibrium systems, Langevin's equation of motion, time-reversed evolution, mathematical analogies, and applications in economics and radio navigation. Diagrams and drawings are provided.

  12. New Halo White Dwarf Candidates in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Dame, Kyra; Gianninas, A.; Kilic, Mukremin; Munn, Jeffrey A.; Brown, Warren R.; Williams, Kurtis A.; von Hippel, Ted; Harris, Hugh C.

    2016-08-01

    We present optical spectroscopy and near-infrared photometry of 57 faint (g = 19 - 22) high proper motion white dwarfs identified through repeat imaging of ≈3100 square degrees of the Sloan Digital Sky Survey footprint by Munn et al. (2014). We use ugriz and JH photometry to perform a model atmosphere analysis, and identify ten ultracool white dwarfs with Teff < 4000 K, including the coolest pure H atmosphere white dwarf currently known, J1657+2638, with Teff = 3550 ± 100K. The majority of the objects with cooling ages larger than 9 Gyr display thick disc kinematics and constrain the age of the thick disc to ≥11 Gyr. There are four white dwarfs in our sample with large tangential velocities (vtan > 120 km s-1) and UVW velocities that are more consistent with the halo than the Galactic disc. For typical 0.6M⊙ white dwarfs, the cooling ages for these halo candidates range from 2.3 to 8.5 Gyr. However, the total main-sequence + white dwarf cooling ages of these stars would be consistent with the Galactic halo if they are slightly undermassive. Given the magnitude limits of the current large scale surveys, many of the coolest and oldest white dwarfs remain undiscovered in the solar neighborhood, but upcoming surveys such as GAIA and the Large Synoptic Survey Telescope (LSST) should find many of these elusive thick disc and halo white dwarfs.

  13. A magnetohydrodynamic model of the M87 jet. II. Self-consistent quad-shock jet model for optical relativistic motions and particle acceleration

    SciTech Connect

    Nakamura, Masanori

    2014-04-20

    We describe a new paradigm for understanding both relativistic motions and particle acceleration in the M87 jet: a magnetically dominated relativistic flow that naturally produces four relativistic magnetohydrodynamic (MHD) shocks (forward/reverse fast and slow modes). We apply this model to a set of optical super- and subluminal motions discovered by Biretta and coworkers with the Hubble Space Telescope during 1994-1998. The model concept consists of ejection of a single relativistic Poynting jet, which possesses a coherent helical (poloidal + toroidal) magnetic component, at the remarkably flaring point HST-1. We are able to reproduce quantitatively proper motions of components seen in the optical observations of HST-1 with the same model we used previously to describe similar features in radio very long baseline interferometry observations in 2005-2006. This indicates that the quad relativistic MHD shock model can be applied generally to recurring pairs of super/subluminal knots ejected from the upstream edge of the HST-1 complex as observed from radio to optical wavelengths, with forward/reverse fast-mode MHD shocks then responsible for observed moving features. Moreover, we identify such intrinsic properties as the shock compression ratio, degree of magnetization, and magnetic obliquity and show that they are suitable to mediate diffusive shock acceleration of relativistic particles via the first-order Fermi process. We suggest that relativistic MHD shocks in Poynting-flux-dominated helical jets may play a role in explaining observed emission and proper motions in many active galactic nuclei.

  14. The scale-dependence of halo assembly bias

    NASA Astrophysics Data System (ADS)

    Sunayama, Tomomi; Hearin, Andrew P.; Padmanabhan, Nikhil; Leauthaud, Alexie

    2016-05-01

    The two-point clustering of dark matter haloes is influenced by halo properties besides mass, a phenomenon referred to as halo assembly bias. Using the depth of the gravitational potential well, Vmax, as our secondary halo property, in this paper, we present the first study of the scale-dependence of assembly bias. In the large-scale linear regime, r ≥ 10 h-1 Mpc, our findings are in keeping with previous results. In particular, at the low-mass end (haloes with high Vmax show stronger large-scale clustering relative to haloes with low Vmax of the same mass; this trend weakens and reverses for Mvir ≳ Mcoll. In the non-linear regime, assembly bias in low-mass haloes exhibits a pronounced scale-dependent `bump' at 500 kpc h-1-5 Mpc h-1. This feature weakens and eventually vanishes for haloes of higher mass. We show that this scale-dependent signature can primarily be attributed to a special subpopulation of ejected haloes, defined as present-day host haloes that were previously members of a higher mass halo at some point in their past history. A corollary of our results is that galaxy clustering on scales of r ˜ 1-2 Mpc h-1 can be impacted by up to ˜15 per cent by the choice of the halo property used in the halo model, even for stellar mass-limited samples.

  15. Imaging and Spectroscopy of the Multiphase Halo of NGC 4631

    NASA Astrophysics Data System (ADS)

    Martin, Christopher; Kern, Brian

    2001-07-01

    We have performed narrowband imaging of NGC 4631 in the [O III] 5007 and Hα lines, and long-slit spectroscopy using the Low-Resolution Imaging Spectrograph at the W. M. Keck Observatory. Hα and [O III] λ5007 are detected far from the disk, with the highest [O III]/Hα ratios coincident with the soft X-ray emission. Spectroscopy reveals that the ionization is higher than that of the Milky Way diffuse ionized gas (DIG), with an average ratio [O III]/Hβ~1, rising to 6 in one region. We use the Balmer decrement to probe extinction in the halo. Extinction appears as high as 5 kpc above the disk. Distinct smaller scale variations of [O III], Hβ, and [S II] indicate that we are viewing multiple zones with distinct ionization conditions along the line of sight, in some cases separated by dust. This suggests that the gas has multiple phases and that the ionization may be much higher in some zones. A model using photoionized clouds reproduces the average trends in the line ratios. The inferred densities and pressures are high for halo gas but consistent with observations of other phases that may be colocated with this gas. A combination of high- and low-ionization gas is best for explaining the majority of the fluctuations. The high-ionization phase could be in shocks, but the velocity resolution is not adequate to prove or reject this possibility. Gas at 6×105 K discovered by ROSAT by Wang and colleagues in 1995 could be a source of radiatively cooling gas. We present a new model of optical line emission from cooling clouds and compare it to the data. We show that it can produce part or all of the observed [O III] and fluctuations, may generate part or all of the EDIG gas itself, and may contribute to the photoionization of the upper halo. Our most important conclusions are that the halo is complex and multicomponent and that average line-of-sight line ratios alone cannot be used to determine the ionization conditions. Based on observations obtained at the W. H. Keck

  16. Halo cold dark matter and microlensing

    SciTech Connect

    Gates, Evalyn; Turner, Michael S.

    1993-12-01

    There is good evidence that most of the baryons in the Universe are dark and some evidence that most of the matter in the Universe is nonbaryonic with cold dark matter (cdm) being a promising possibility. We discuss expectations for the abundance of baryons and cdm in the halo of our galaxy and locally. We show that in plausible cdm models the local density of cdm is at least $10^{-25}\\gcmm3$. We also discuss what one can learn about the the local cdm density from microlensing of stars in the LMC by dark stars in the halo and, based upon a suite of reasonable two-component halo models, conclude that microlensing is not a sensitive probe of the local cdm density.

  17. THE EFFECTS OF HALO-TO-HALO VARIATION ON SUBSTRUCTURE LENSING

    SciTech Connect

    Chen, Jacqueline; Koushiappas, Savvas M.; Zentner, Andrew R. E-mail: koushiappas@brown.edu

    2011-11-10

    We explore the halo-to-halo variation of dark matter (DM) substructure in galaxy-sized DM halos, focusing on its implications for strongly gravitational lensed systems. We find that the median value for projected substructure mass fractions within projected radii of 3% of the host halo virial radius is approximately f{sub sub} Almost-Equal-To 0.25%, but that the variance is large with a 95 percentile range of 0 {<=} f{sub sub} {<=} 1%. We quantify possible effects of substructure on quadruply imaged lens systems using the cusp relation and the simple statistic, R{sub cusp}. We estimate that the probability of obtaining the large values of the R{sub cusp} which have been observed from substructure effects is roughly {approx}10{sup -3} to {approx}10{sup -2}. We consider a variety of possible correlations between host halo properties and substructure properties in order to probe possible sample biases. In particular, low-concentration host DM halos have more large substructures and give rise to large values of R{sub cusp} more often. However, there is no known observational bias that would drive observed quadruply imaged quasars to be produced by low-concentration lens halos. Finally, we show that the substructure mass fraction is a relatively reliable predictor of the value of R{sub cusp}.

  18. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    PubMed

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy

    2014-12-31

    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.

  19. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    PubMed

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy

    2014-12-31

    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars. PMID:25615301

  20. Rockstar: Phase-space halo finder

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Wechsler, Risa; Wu, Hao-Yi

    2012-10-01

    Rockstar (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement) identifies dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure. Our method is massively parallel (up to 10^5 CPUs) and runs on the largest current simulations (>10^10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). Rockstar offers significant improvement in substructure recovery as compared to several other halo finders.

  1. The dark halo of the milky Way

    PubMed

    Alcock

    2000-01-01

    Most of the matter in the Milky Way is invisible to astronomers. Precise numbers are elusive, but it appears that the dark component is 20 times as massive as the visible disk of stars and gas. This dark matter is distributed in space differently than the stars, forming a vast, diffuse halo, more spherical than disklike, which occupies more than 1000 times the volume of the disk of stars. The composition of this dark halo is unknown, but it may comprise a mixture of ancient, degenerate dwarf stars and exotic, hypothetical elementary particles.

  2. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  3. The Shape of Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Olling, Robert Paul

    1995-01-01

    After reviewing our current knowledge of dark matter (DM) in spiral galaxies (Chapter 1), I present a new method of deriving the shape of these dark halos (Chapter 2). Such information, if obtained for a large number of systems, can provide important boundary conditions for theories of the formation of galaxies (Chapter 5). The halo-shape determination method relies on the comparison of model predictions of the thickness of the gas layer with observations of this flaring. Calculating the model gas layer widths from the observed gaseous velocity dispersion and the potential due to the total mass distribution of the galaxy we learn the following: (a) beyond the optical disk the thickness of the gas layer is sensitive to the shape of the DM halo, (b) the thickness of the gas layer is proportional to the ratio of the gaseous velocity dispersion and the rotation speed, (c) the self-gravity of the gas contributes significantly to the vertical force, (d) the derived shape of the DM halo is independent of the dark matter's radial density distribution, and is independent of the mass-to-light ratio of the stellar disk (f). In Chapter 3 I present a new method (usable for inclinations larger than 60^circ) to determine the thickness of the gas layer of spiral galaxies from high resolution H sc I observations. I use VLA H sc I observations of the almost edge-on Scd galaxy NGC 4244 to determine the gaseous velocity dispersion, and the flaring and rotation curves. From the Keplerian decline of the rotation curve beyond the stellar disks it follows that the dark-to-luminous mass ratio is at most two and a half. Combining the model predictions for the radial variation of the thickness of the gas layer with the measured flaring curve I find that the dark matter halo of NGC 4244 is highly flattened. The best fit occurs for a halo with an E8 shape (with a mass one-eight of an E0 halo), while the uncertainty (E5-E9) is dominated by the errors in the gaseous velocity dispersion: a round

  4. Halo phenomena modified by multiple scattering.

    NASA Astrophysics Data System (ADS)

    Takano, Y.; Kuo-Nan, Liou

    1990-05-01

    Halo phenomena produced by horizontally oriented plate and column ice crystals are computed. Owing to the effect of multiple scattering, a number of optical features, in addition to the well-known halos and arcs caused by single scattering, can be produced in the sky. These include the parhelia, the anthelion, the uniform and white parhelic circle, and the uniform and white circumzenithal circle in the case of horizontally oriented plates. The anthelion is a result of double scattering that involves horizontally oriented columns that produce the Parry arc. The optical phenomena identified in the present study are compared with those of previous research and discussed.

  5. Enhanced subbarrier fusion for proton halo nuclei

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Lay, J. A.; Vitturi, A.

    2014-02-01

    In this Brief Report we use a simple model to describe the dynamical effects of break-up processes in the subbarrier fusion involving weakly bound nuclei. We model two similar cases involving either a neutron or a proton halo nucleus, both schematically coupled to the break-up channels. We find that the decrease of the Coulomb barrier in the proton break-up channel leads, ceteris paribus, to a larger enhancement of the subbarrier fusion probabilities with respect to the neutron halo case.

  6. Complex artificial halos for the classroom

    NASA Astrophysics Data System (ADS)

    Selmke, Markus; Selmke, Sarah

    2016-07-01

    Halos represent a common and imposing atmospheric optics phenomenon whose displays are caused by tiny air-borne ice crystals. Their variety stems from a certain set of orientation classes to which these crystals belong. We present a robust and inexpensive device, made of modular components, that allows for the replication of most of these orientation classes in the laboratory. Under the illumination of light, the corresponding artificial halo counterparts emerge. The mechanical realization of this device allows a thorough understanding and demonstration of these beautiful atmospheric optics phenomena.

  7. ORIGAMI: Delineating Halos using Phase-Space Folds

    NASA Astrophysics Data System (ADS)

    Falck, Bridget

    2012-01-01

    We discuss the ORIGAMI halo-finding algorithm which identifies halo particles as those that have undergone shell crossing, providing a dynamical definition of halo boundaries that is independent of density. ORIGAMI identifies halo particles by tagging them according to whether they have crossed paths with their initial neighbors along 3 orthogonal axes. Additionally, particles that have crossed paths along 2, 1, or 0 axes roughly correspond to filaments, walls, and voids respectively. We compare this method to a standard Friends of Friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  8. HALO-TO-HALO SIMILARITY AND SCATTER IN THE VELOCITY DISTRIBUTION OF DARK MATTER

    SciTech Connect

    Mao, Yao-Yuan; Strigari, Louis E.; Wechsler, Risa H.; Hahn, Oliver; Wu, Hao-Yi

    2013-02-10

    We examine the velocity distribution function (VDF) in dark matter halos from Milky Way to cluster mass scales. We identify an empirical model for the VDF with a wider peak and a steeper tail than a Maxwell-Boltzmann distribution, and discuss physical explanations. We quantify sources of scatter in the VDF of cosmological halos and their implication for direct detection of dark matter. Given modern simulations and observations, we find that the most significant uncertainty in the VDF of the Milky Way arises from the unknown radial position of the solar system relative to the dark matter halo scale radius.

  9. Collisional redistribution of radiation. II - The effects of degeneracy on the equations of motion for the density matrix. III - The equation of motion for the correlation function and the scattered spectrum

    NASA Technical Reports Server (NTRS)

    Burnett, K.; Cooper, J.

    1980-01-01

    The effect of correlations between an absorber atom and perturbers in the binary-collision approximation are applied to degenerate atomic systems. A generalized absorption profile which specifies the final state of the atom after an absorption event is related to the total intensities of Rayleigh scattering and fluorescence from the atom. It is suggested that additional dynamical information to that obtainable from ordinary absorption experiments is required in order to describe redistributed atomic radiation. The scattering of monochromatic radiation by a degenerate atom is computed in a binary-collision approximation; an equation of motion is derived for the correlation function which is valid outside the quantum-regression regime. Solutions are given for the weak-field conditions in terms of generalized absorption and emission profiles that depend on the indices of the atomic multipoles.

  10. Ultraviolet Properties of Halo Coronal Mass Ejections: Doppler Shifts, Angles, Shocks, and Bulk Morphology

    NASA Astrophysics Data System (ADS)

    Ciaravella, A.; Raymond, J. C.; Kahler, S. W.

    2006-11-01

    We present UV spectral information for 22 halo or partial halo CMEs observed by UVCS. The CME fronts show broad line profiles, while the line intensities are comparable to the background corona. The Doppler shifts of the front material are generally small, showing that the motion of gas in the fronts is mostly transverse to the line of sight. This indicates that, at least in halo CMEs, the fronts generally correspond to coronal plasma swept up by a shock or compression wave, rather than plasma carried outward by magnetic loops. This favors an ice cream cone (or a spherical shell) model, as opposed to an expanding arcade of loops. We use the line widths to discriminate between shock heating and bulk expansion. Of 14 cases where we detected the CME front, the line broadening in 7 cases can be attributed to shock heating, while in 3 cases it is the line-of-sight component of the CME expansion. For the CME cores we determine the angles between the motion and the plane of the sky, along with the actual heliocentric distances, in order to provide quantitative estimates of projection effects.

  11. Magnetic resonance imaging of patients wearing a surgical traction halo.

    PubMed

    Hua, J; Fox, R A

    1996-01-01

    Magnetic resonance images of patients wearing a surgical halo may have unacceptable artifacts if the halo has a conductive loop structure. This study shows that the observed artifacts are predominantly due to eddy currents generated in the halo by switching field gradients, and that these artifacts can be substantially reduced by adjusting the phase encoding direction in MRI sequences so that it is parallel to the axis of the halo. PMID:8851441

  12. Calculation of broadband time histories of ground motion, Part II: Kinematic and dynamic modeling using theoretical Green's functions and comparison with the 1994 northridge earthquake

    USGS Publications Warehouse

    Hartzell, S.; Guatteri, Mariagiovanna; Mai, P.M.; Liu, P.-C.; Fisk, M. R.

    2005-01-01

    In the evolution of methods for calculating synthetic time histories of ground motion for postulated earthquakes, kinematic source models have dominated to date because of their ease of application. Dynamic models, however, which incorporate a physical relationship between important faulting parameters of stress drop, slip, rupture velocity, and rise time, are becoming more accessible. This article compares a class of kinematic models based on the summation of a fractal distribution of subevent sizes with a dynamic model based on the slip-weakening friction law. Kinematic modeling is done for the frequency band 0.2 to 10.0. Hz, dynamic models are calculated from 0.2 to 2.0. Hz. The strong motion data set for the 1994 Northridge earthquake is used to evaluate and compare the synthetic time histories. Source models are propagated to the far field by convolution with 1D and 3D theoretical Green’s functions. In addition, the kinematic model is used to evaluate the importance of propagation path effects: velocity structure, scattering, and nonlinearity. At present, the kinematic model gives a better broadband fit to the Northridge ground motion than the simple slip-weakening dynamic model. In general, the dynamic model overpredicts rise times and produces insufficient shorter-period energy. Within the context of the slip-weakening model, the Northridge ground motion requires a short slip-weakening distance, on the order of 0.15 m or less. A more complex dynamic model including rate weakening or one that allows shorter rise times near the hypocenter may fit the data better.

  13. r-Process Elements as Tracers of Enrichment Processes in the Early Halo

    NASA Astrophysics Data System (ADS)

    Andersen, Johannes; Nordström, Birgitta; Hansen, Terese T.

    2016-08-01

    Significant minorities of extremely metal-poor (EMP) halo stars exhibit dramatic excesses of neutron capture elements. The standard scenario for their origin is mass transfer and dilution in binary systems, but requires them to be binaries. If not, these excesses must have been implanted in them from birth by processes that are not included in current models of SN II chemical enrichment. The binary population of such EMP subgroups is a test of this scenario.

  14. Search for and analysis of radioactive halos in lunar material

    NASA Technical Reports Server (NTRS)

    Gentry, R. V.

    1976-01-01

    The lunar halo search was conducted because halos in terrestrial minerals serve as pointers to localized radioactivity, and make possible analytical studies on the problems of isotopic dating and mode of crystallization of the host mineral. Ancillary studies were conducted on terrestrial halos and on certain samples of special origin such as tektites and meteorites.

  15. The Constant Error of the Halo in Educational Outcomes Research.

    ERIC Educational Resources Information Center

    Pike, Gary R.

    1999-01-01

    Research suggests correlations between student gains and college experiences may be an artifact of halo effect. A study examined whether halo error underlies students' self-reported gains, significance of the error, and its effect on the relationship between college experiences and educational outcomes. Results confirm halo error may be an…

  16. Alignments of galaxies and halos in hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Pahwa, Isha; Libeskind, Noam I.

    2016-10-01

    We use a 200 h -1Mpc cosmological hydrodynamical simulation to examine the alignments of galaxies with respect to the host halo. We do separate study for the different components of the halo, such as stars, gas and dark matter. We show that angular momentum of gas is more aligned with the angular momentum of host halo compared with the stellar component.

  17. Frontal Plane Motion of the Pelvis and Hip during Gait Stance Discriminates Children with Diplegia Levels I and II of the GMFCS.

    PubMed

    Kirkwood, Renata Noce; Franco, Rosa de Lourdes Lima Dias; Furtado, Sheyla Cavalcanti; Barela, Ana Maria Forti; Deluzio, Kevin John; Mancini, Marisa Cotta

    2012-01-01

    Objective. To determine if gait waveform could discriminate children with diplegic cerebral palsy of the GMFCS levels I and II. Patients. Twenty-two children with diplegia, 11 classified as level I and 11 as level II of the GMFCS, aged 7 to 12 years. Methods. Gait kinematics included angular displacement of the pelvis and lower limb joints during the stance phase. Principal components (PCs) analyses followed by discriminant analysis were conducted. Results. PC1s of the pelvis and hip in the frontal plane differ significantly between groups and captured 80.5% and 86.1% of the variance, respectively. PC1s captured the magnitude of the pelvic obliquity and hip adduction angle during the stance phase. Children GMFCS level II walked with reduced pelvic obliquity and hip adduction angles, and these variables could discriminate the groups with a cross-validation of 95.5%. Conclusion. Reduced pelvic obliquity and hip adduction were observed between children GMFCS level II compared to level I. These results could help the classification process of mild-to-moderate children with diplegia. In addition, it highlights the importance of rehabilitation programs designed to improve pelvic and hip mobility in the frontal plane of diplegic cerebral palsy children level II of the GMFCS.

  18. Spatially resolved velocity maps of halo gas around two intermediate-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen; Gauthier, Jean-René; Sharon, Keren; Johnson, Sean D.; Nair, Preethi; Liang, Cameron J.

    2014-02-01

    Absorption-line spectroscopy of multiply-lensed QSOs near a known foreground galaxy provides a unique opportunity to go beyond the traditional one-dimensional application of QSO probes and establish a crude three-dimensional map of halo gas around the galaxy that records the line-of-sight velocity field at different locations in the gaseous halo. Two intermediate-redshift galaxies are targeted in the field around the quadruply-lensed QSO HE 0435-1223 at redshift z = 1.689, and absorption spectroscopy along each of the lensed QSOs is carried out in the vicinities of these galaxies. One galaxy is a typical, star-forming L* galaxy at z = 0.4188 and projected distance of ρ = 50 kpc from the lensing galaxy. The other is a super-L* barred spiral at z = 0.7818 and ρ = 33 kpc. Combining known orientations of the quadruply-lensed QSO to the two foreground galaxies with the observed Mg II λλ2796, 2803 absorption profiles along individual QSO sightlines has for the first time led to spatially resolved kinematics of tenuous halo gas on scales of 5-10 kpc at z > 0.2. A Mg II absorber is detected in every sightline observed through the haloes of the two galaxies, and the recorded absorber strength is typical of what is seen in previous close QSO-galaxy pair studies. While the multisightline study confirms the unity covering fraction of Mg II absorbing gas at ρ < 50 kpc from star-forming discs, the galaxies also present two contrasting examples of complex halo gas kinematics. Different models, including a rotating disc, collimated outflows and gaseous streams from either accretion or tidal/ram-pressure stripping, are considered for comparisons with the absorption-line observations, and infalling streams/stripped gas of width ≳10 kpc are found to best describe the observed gas kinematics across multiple sightlines. In addition, the observed velocity dispersion between different sightlines offers a crude estimate of turbulence in the Mg II absorbing halo gas. The

  19. GAS CONDENSATION IN THE GALACTIC HALO

    SciTech Connect

    Joung, M. Ryan; Bryan, Greg L.; Putman, Mary E.

    2012-02-01

    Using adaptive mesh refinement (AMR) hydrodynamic simulations of vertically stratified hot halo gas, we examine the conditions under which clouds can form and condense out of the hot halo medium to potentially fuel star formation in the gaseous disk. We find that halo clouds do not develop from linear isobaric perturbations. This is a regime where the cooling time is longer than the Brunt-Vaeisaelae time, confirming previous linear analysis. We extend the analysis into the nonlinear regime by considering mildly or strongly nonlinear perturbations with overdensities up to 100, also varying the initial height, the cloud size, and the metallicity of the gas. Here, the result depends on the ratio of cooling time to the time required to accelerate the cloud to the sound speed (similar to the dynamical time). If the ratio exceeds a critical value near unity, the cloud is accelerated without further cooling and gets disrupted by Kelvin-Helmholtz and/or Rayleigh-Taylor instabilities. If it is less than the critical value, the cloud cools and condenses before disruption. Accreting gas with overdensities of 10-20 is expected to be marginally unstable; the cooling fraction will depend on the metallicity, the size of the incoming cloud, and the distance to the galaxy. Locally enhanced overdensities within cold streams have a higher likelihood of cooling out. Our results have implications on the evolution of clouds seeded by cold accretion that are barely resolved in current cosmological hydrodynamic simulations and absorption line systems detected in galaxy halos.

  20. The Hot Gaseous Halos of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Bregman, J.

    2016-06-01

    In the Milky Way, absorption and emission line measurements of O VII and O VIII show that the halo environment is dominated by a nearly spherical halo of temperature 2 × 10^6 K, metallicity of 0.3-0.5 solar, and with a density decreasing as r^{-3/2}. The mass of the hot gas, estimated through extrapolation to the virial radius, is comparable to the stellar mass, but does not account for the missing mass. The Milky Way hot halo appears to be rotating at about 180 km/s, which is consistent with model expectations, depending on the time of infall. Around massive spiral galaxies, hot halos are seen in emission out to about 70 kpc in the best cases. These show similar gas density laws and metallicities in the range 0.1-0.5 solar. The gas mass is comparable to the stellar mass, but does not account for the missing baryons within the virial radius. If the density law can be extrapolated to about three virial radii, the missing baryons would be accounted for.

  1. THE STELLAR METALLICITY DISTRIBUTION FUNCTION OF THE GALACTIC HALO FROM SDSS PHOTOMETRY

    SciTech Connect

    An, Deokkeun; Beers, Timothy C.; Johnson, Jennifer A.; Pinsonneault, Marc H.; Lee, Young Sun; Bovy, Jo; Ivezic, Zeljko; Carollo, Daniela; Newby, Matthew

    2013-01-20

    We explore the stellar metallicity distribution function of the Galactic halo based on SDSS ugriz photometry. A set of stellar isochrones is calibrated using observations of several star clusters and validated by comparisons with medium-resolution spectroscopic values over a wide range of metal abundance. We estimate distances and metallicities for individual main-sequence stars in the multiply scanned SDSS Stripe 82, at heliocentric distances in the range 5-8 kpc and |b| > 35 Degree-Sign , and find that the in situ photometric metallicity distribution has a shape that matches that of the kinematically selected local halo stars from Ryan and Norris. We also examine independent kinematic information from proper-motion measurements for high Galactic latitude stars in our sample. We find that stars with retrograde rotation in the rest frame of the Galaxy are generally more metal poor than those exhibiting prograde rotation, which is consistent with earlier arguments by Carollo et al. that the halo system comprises at least two spatially overlapping components with differing metallicity, kinematics, and spatial distributions. The observed photometric metallicity distribution and that of Ryan and Norris can be described by a simple chemical evolution model by Hartwick (or by a single Gaussian distribution); however, the suggestive metallicity-kinematic correlation contradicts the basic assumption in this model that the Milky Way halo consists primarily of a single stellar population. When the observed metallicity distribution is deconvolved using two Gaussian components with peaks at [Fe/H] Almost-Equal-To -1.7 and -2.3, the metal-poor component accounts for {approx}20%-35% of the entire halo population in this distance range.

  2. The Stellar Metallicity Distribution Function of the Galactic Halo from SDSS Photometry

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Beers, Timothy C.; Johnson, Jennifer A.; Pinsonneault, Marc H.; Lee, Young Sun; Bovy, Jo; Ivezić, Željko; Carollo, Daniela; Newby, Matthew

    2013-01-01

    We explore the stellar metallicity distribution function of the Galactic halo based on SDSS ugriz photometry. A set of stellar isochrones is calibrated using observations of several star clusters and validated by comparisons with medium-resolution spectroscopic values over a wide range of metal abundance. We estimate distances and metallicities for individual main-sequence stars in the multiply scanned SDSS Stripe 82, at heliocentric distances in the range 5-8 kpc and |b| > 35°, and find that the in situ photometric metallicity distribution has a shape that matches that of the kinematically selected local halo stars from Ryan & Norris. We also examine independent kinematic information from proper-motion measurements for high Galactic latitude stars in our sample. We find that stars with retrograde rotation in the rest frame of the Galaxy are generally more metal poor than those exhibiting prograde rotation, which is consistent with earlier arguments by Carollo et al. that the halo system comprises at least two spatially overlapping components with differing metallicity, kinematics, and spatial distributions. The observed photometric metallicity distribution and that of Ryan & Norris can be described by a simple chemical evolution model by Hartwick (or by a single Gaussian distribution); however, the suggestive metallicity-kinematic correlation contradicts the basic assumption in this model that the Milky Way halo consists primarily of a single stellar population. When the observed metallicity distribution is deconvolved using two Gaussian components with peaks at [Fe/H] ≈ -1.7 and -2.3, the metal-poor component accounts for ~20%-35% of the entire halo population in this distance range.

  3. Mapping Dark Matter Halos with Stellar Kinematics

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy; Gebhardt, K.; Greene, J. E.; Graves, G.

    2013-07-01

    Galaxies of all sizes form and evolve in the centers of dark matter halos. As these halos constitute the large majority of the total mass of a galaxy, dark matter certainly plays a central role in the galaxy's formation and evolution. Yet despite our understanding of the importance of dark matter, observations of the extent and shape of dark matter halos have been slow in coming. The paucity of data is particularly acute in elliptical galaxies. Happily, concerted effort over the past several years by a number of groups has been shedding light on the dark matter halos around galaxies over a wide range in mass. The development of new instrumentation and large surveys, coupled with the tantalizing evidence for a direct detection of dark matter from the AMS experiment, has brought on a golden age in the study of galactic scale dark matter halos. I report on results using extended stellar kinematics from integrated light to dynamically model massive elliptical galaxies in the local universe. I use the integral field power of the Mitchell Spectrograph to explore the kinematics of stars to large radii (R > 2.5 r_e). Once the line-of-sight stellar kinematics are measured, I employ orbit-based, axisymmetric dynamical modeling to explore a range of dark matter halo parameterizations. Globular cluster kinematics at even larger radii are used to further constrain the dynamical models. The dynamical models also return information on the anisotropy of the stars which help to further illuminate the primary formation mechanisms of the galaxy. Specifically, I will show dynamical modeling results for the first and second rank galaxies in the Virgo Cluster, M49 and M87. Although similar in total luminosity and ellipticity, these two galaxies show evidence for different dark matter halo shapes, baryon to dark matter fractions, and stellar anisotropy profiles. Moreover, the stellar velocity dispersion at large radii in M87 is significantly higher than the globular clusters at the same

  4. THE HALO OCCUPATION DISTRIBUTION OF SDSS QUASARS

    SciTech Connect

    Richardson, Jonathan; Chatterjee, Suchetana; Nagai, Daisuke; Zheng Zheng; Shen Yue

    2012-08-10

    We present an estimate of the projected two-point correlation function (2PCF) of quasars in the Sloan Digital Sky Survey (SDSS) over the full range of one- and two-halo scales, 0.02 h{sup -1} Mpc < r{sub p} < 120 h{sup -1} Mpc. This was achieved by combining data from SDSS DR7 on large scales and Hennawi et al. (with appropriate statistical corrections) on small scales. Our combined clustering sample is the largest spectroscopic quasar clustering sample to date, containing {approx}48, 000 quasars in the redshift range 0.4 {approx}< z {approx}< 2.5 with median redshift 1.4. We interpret these precise 2PCF measurements within the halo occupation distribution (HOD) framework and constrain the occupation functions of central and satellite quasars in dark matter halos. In order to explain the small-scale clustering, the HOD modeling requires that a small fraction of z {approx} 1.4 quasars, f{sub sat} = (7.4 {+-} 1.4) Multiplication-Sign 10{sup -4}, be satellites in dark matter halos. At z {approx} 1.4, the median masses of the host halos of central and satellite quasars are constrained to be M{sub cen} = 4.1{sup +0.3}{sub -0.4} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun} and M{sub sat} = 3.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 14} h{sup -1} M{sub Sun }, respectively. To investigate the redshift evolution of the quasar-halo relationship, we also perform HOD modeling of the projected 2PCF measured by Shen et al. for SDSS quasars with median redshift 3.2. We find tentative evidence for an increase in the mass scale of quasar host halos-the inferred median mass of halos hosting central quasars at z {approx} 3.2 is M{sub cen} = 14.1{sup +5.8}{sub -6.9} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun }. The cutoff profiles of the mean occupation functions of central quasars reveal that quasar luminosity is more tightly correlated with halo mass at higher redshifts. The average quasar duty cycle around the median host halo mass is inferred to be f{sub q

  5. The Milky Way, the Galactic halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2015-08-01

    The Milky Way, "our" Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the GAIA mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams in the Galactic halo. The data tell us that most of the Galactic bulge formed from the disk, and that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To see these features requires exquisite data - mostly very deep photometry, but some halo substructures have also been found with kinematic data. These observations illustrate how galaxy halos are still growing, and sometimes can be used to "time" the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  6. The Impact of Theoretical Uncertainties in the Halo Mass Function and Halo

    SciTech Connect

    Wu, Hao-Yi; Zentner, Andrew R.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC /Pittsburgh U. /KIPAC, Menlo Park /SLAC

    2010-06-04

    We study the impact of theoretical uncertainty in the dark matter halo mass function and halo bias on dark energy constraints from imminent galaxy cluster surveys. We find that for an optical cluster survey like the Dark Energy Survey, the accuracy required on the predicted halo mass function to make it an insignificant source of error on dark energy parameters is {approx}1%. The analogous requirement on the predicted halo bias is less stringent ({approx}5%), particularly if the observable-mass distribution can be well constrained by other means. These requirements depend upon survey area but are relatively insensitive to survey depth. The most stringent requirements are likely to come from a survey over a significant fraction of the sky that aims to observe clusters down to relatively low mass, M{sub th}{approx} 10{sup 13.7} h{sup -1} M{sub sun}; for such a survey, the mass function and halo bias must be predicted to accuracies of {approx}0.5% and {approx}1%, respectively. These accuracies represent a limit on the practical need to calibrate ever more accurate halo mass and bias functions. We find that improving predictions for the mass function in the low-redshift and low-mass regimes is the most effective way to improve dark energy constraints.

  7. On the shoulders of giants: properties of the stellar halo and the Milky Way mass distribution

    SciTech Connect

    Kafle, Prajwal Raj; Sharma, Sanjib; Lewis, Geraint F.; Bland-Hawthorn, Joss

    2014-10-10

    Halo stars orbit within the potential of the Milky Way, and hence their kinematics can be used to understand the underlying mass distribution. However, the inferred mass distribution depends sensitively on assumptions made on the density and the velocity anisotropy profiles of the tracer population. Also, there is a degeneracy between the parameters of the halo and those of the disk or bulge. Most previous attempts that use halo stars have made arbitrary assumptions about these. In this paper, we decompose the Galaxy into three major components—a bulge, a Miyamoto-Nagai disk, and a Navarro-Frenk-White dark matter halo - and then model the kinematic data of the halo blue horizontal branch and K-giant stars from the Sloan Extension for Galactic Understanding and Exploration. Additionally, we use the gas terminal velocity curve and the Sgr A* proper motion. With the distance of the Sun from the center of the Galaxy R {sub ☉} = 8.5 kpc, our kinematic analysis reveals that the density of the stellar halo has a break at 17.2{sub −1.0}{sup +1.1} kpc and an exponential cutoff in the outer parts starting at 97.7{sub −15.8}{sup +15.6} kpc. Also, we find that the tracer velocity anisotropy is radially biased with β {sub s} = 0.4 ± 0.2 in the outer halo. We measure halo virial mass M {sub vir} to be 0.80{sub −0.16}{sup +0.31}×10{sup 12} M{sub ⊙}, concentration c to be 21.1{sub −8.3}{sup +14.8}, disk mass to be 0.95{sub −0.30}{sup +0.24}×10{sup 11} M{sub ⊙}, disk scale length to be 4.9{sub −0.4}{sup +0.4} kpc, and bulge mass to be 0.91{sub −0.38}{sup +0.31}×10{sup 10} M{sub ⊙}. The halo mass is found to be small, and this has important consequences. The giant stars reveal that the outermost halo stars have low velocity dispersion, but interestingly this suggests a truncation of the stellar halo density rather than a small overall mass of the Galaxy. Our estimates of local escape velocity v{sub esc}=550.9{sub −22.1}{sup +32.4} km s{sup −1} and

  8. Comparing halo bias from abundance and clustering

    NASA Astrophysics Data System (ADS)

    Hoffmann, K.; Bel, J.; Gaztañaga, E.

    2015-06-01

    We model the abundance of haloes in the ˜(3 Gpc h-1)3 volume of the MICE Grand Challenge simulation by fitting the universal mass function with an improved Jackknife error covariance estimator that matches theory predictions. We present unifying relations between different fitting models and new predictions for linear (b1) and non-linear (c2 and c3) halo clustering bias. Different mass function fits show strong variations in their performance when including the low mass range (Mh ≲ 3 × 1012 M⊙ h-1) in the analysis. Together with fits from the literature, we find an overall variation in the amplitudes of around 10 per cent in the low mass and up to 50 per cent in the high mass (galaxy cluster) range (Mh > 1014 M⊙ h-1). These variations propagate into a 10 per cent change in b1 predictions and a 50 per cent change in c2 or c3. Despite these strong variations, we find universal relations between b1 and c2 or c3 for which we provide simple fits. Excluding low-mass haloes, different models fitted with reasonable goodness in this analysis, show per cent level agreement in their b1 predictions, but are systematically 5-10 per cent lower than the bias directly measured with two-point halo-mass clustering. This result confirms previous findings derived from smaller volumes (and smaller masses). Inaccuracies in the bias predictions lead to 5-10 per cent errors in growth measurements. They also affect any halo occupation distribution fitting or (cluster) mass calibration from clustering measurements.

  9. Dark Matter Halos with VIRUS-P

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy; Gebhardt, K.

    2010-05-01

    We present new, two-dimensional stellar kinematic data on several of the most massive galaxies in the local universe. These data were taken with the integral field spectrograph, VIRUS-P, and extend to unprecedented radial distances. Once robust stellar kinematics are in hand, we run orbit-based axisymmetric dynamical models in order to constrain the stellar mass-to-light ratio and dark matter halo parameters. We have run a large set of dynamical models on the second rank galaxy in the Virgo cluster, M87, and find clear evidence for a massive dark matter halo. The two-dimensional stellar kinematics for several of our other targets, all first and second rank galaxies, are also presented. Dark matter halos are known to dominate the mass profile of elliptical galaxies somewhere between one to two effective radii, yet due to the low surface brightness at these radial distances, determining stellar dynamics is technologically challenging. To overcome this, constraints on the dark matter halo are often made with planetary nebulae or globular clusters at large radii. However, as results from different groups have returned contradictory results, it remains unclear whether different dynamical tracers always follow the stellar kinematics. Due to VIRUS-P's large field of view and on-sky fiber diameter, we are able to determine stellar kinematics at radial distances that overlap with other dynamical tracers. Understanding what the dynamics of stars, planetary nebula and globular clusters tell us about both the extent of the dark matter halo profile and the formation histories of the largest elliptical galaxies is a primary science driver for this work.

  10. PEEK-Halo effect in interbody fusion.

    PubMed

    Phan, Kevin; Hogan, Jarred A; Assem, Yusuf; Mobbs, Ralph J

    2016-02-01

    Recent developments have seen poly[aryl-ether-ether-ketone] (PEEK) being increasingly used in vertebral body fusion. More novel approaches to improve PEEK have included the introduction of titanium-PEEK (Ti-PEEK) composites and coatings. This paper aims to describe a potential complication of PEEK based implants relating to poorer integration with the surrounding bone, producing a "PEEK-Halo" effect which is not seen in Ti-PEEK composite implants. We present images from two patients undergoing anterior lumbar interbody fusion (ALIF). The first patient underwent an L5/S1 ALIF using a PEEK implant whilst the second patient underwent L4/L5 ALIF using a Ti-PEEK composite implant. Evidence of osseointegration was sought using CT imaging and confirmed using histological preparations of a sheep tibia model. The PEEK-Halo effect is demonstrated by a halo effect between the PEEK implant and the bone graft on CT imaging. This phenomenon is secondary to poor osseointegration of PEEK implants. The PEEK-Halo effect was not demonstrated in the second patient who received a Ti-PEEK composite graft. Histological analysis of graft/bone interface surfaces in PEEK versus Ti-PEEK implants in a sheep model further confirmed poorer osseointegration of the PEEK implant. In conclusion, the PEEK-Halo effect is seen secondary to minimal osseointegration of PEEK at the adjacent vertebral endplate following a PEEK implant insertion. This effect is not seen with Ti-PEEK implants, and may support the role of titanium in improving the bone-implant interface of PEEK substrates. PMID:26474500

  11. Near-parabolic comets observed in 2006-2010 - II. Their past and future motion under the influence of the Galaxy field and known nearby stars

    NASA Astrophysics Data System (ADS)

    Dybczyński, Piotr A.; Królikowska, Małgorzata

    2015-03-01

    In the first part of this research we extensively investigated and carefully determined osculating, original (when entering Solar system) and future (when leaving it), orbits of 22 near-parabolic comets with small perihelion distance (qosc < 3.1 au), discovered in years 2006-2010. Here, we continue this research with a detailed study of their past and future motion during previous and next orbital periods under the perturbing action of our Galactic environment. At all stages of our dynamical study, we precisely propagate in time the observational uncertainties of cometary orbits. For the first time in our calculations, we fully take into account individual perturbations from all known stars or stellar systems that closely (less than 3.5 pc) approach the Sun during the cometary motion in the investigated time interval of several million years. This is done by means of a direct numerical integration of the N-body system comprising of a comet, the Sun and 90 potential stellar perturbers. We show a full review of various examples of individual stellar action on cometary motion. We conclude that perturbations from all known stars or stellar systems do not change the overall picture of the past orbit evolution of long-period comets. Their future motion might be seriously perturbed during the predicted close approach of Gliese 710 star but we do not observe significant energy changes. The importance of stellar perturbations is tested on the whole sample of 108 comets investigated by us so far and our previous results, obtained with only Galactic perturbations included, are fully confirmed. We present how our results can be used to discriminate between dynamically new and old near-parabolic comets and discuss the relevance of the so-called Jupiter-Saturn barrier phenomenon. Finally, we show how the Oort spike in the 1/a-distribution of near-parabolic comets is built from both dynamically new and old comets. We also point out that C/2007 W1 seems to be the first serious

  12. On the origins of the diffuse Hα emission: ionized gas or dust-scattered Hα halos?

    NASA Astrophysics Data System (ADS)

    Seon, Kwang-Il; Witt, Adolf N.

    2015-03-01

    We find that the dust-scattering origin of the diffuse Hα emission cannot be ruled out. As opposed to the previous contention, the expected dust-scattered Hα halos surrounding H II regions are, in fact, in good agreement with the observed Hα morphology. We calculate an extensive set of photoionization models by varying elemental abundances, ionizing stellar types, and clumpiness of the interstellar medium (ISM) and find that the observed line ratios of [S II]/Hα, [N II]/Hα, and He I λ5876/Hα in the diffuse ISM accord well with the dust-scattered halos around H II regions, which are photoionized by late O- and/or early B-type stars. We also demonstrate that the Hα absorption feature in the underlying continuum from the dust-scattered starlight (``diffuse galactic light'') and unresolved stars is able to substantially increase the [S II]/Hα and [N II]/Hα line ratios in the diffuse ISM.

  13. The First Billion Years project: dark matter haloes going from contraction to expansion and back again

    NASA Astrophysics Data System (ADS)

    Davis, Andrew J.; Khochfar, Sadegh; Dalla Vecchia, Claudio

    2014-09-01

    We study the effect of baryons on the inner dark matter profile of the first galaxies using the First Billion Years simulation between z = 16 and 6 before secular evolution sets in. Using a large statistical sample from two simulations of the same volume and cosmological initial conditions, one with and one without baryons, we are able to directly compare haloes with their baryon-free counterparts, allowing a detailed study of the modifications to the dark matter density profile due to the presence of baryons during the first billion years of galaxy formation. For each of the ≈5000 haloes in our sample (3 × 107 M⊙ ≤ Mtot ≤ 5 × 109 M⊙), we quantify the impact of the baryons using η, defined as the ratio of dark matter mass enclosed in 100 pc in the baryonic run to its counterpart without baryons. During this epoch of rapid growth of galaxies, we find that many haloes of these first galaxies show an enhancement of dark matter in the halo centre compared to the baryon-free simulation, while many others show a deficit. We find that the mean value of η is close to unity, but there is a large dispersion, with a standard deviation of 0.677. The enhancement is cyclical in time and tracks the star formation cycle of the galaxy; as gas falls to the centre and forms stars, the dark matter moves in as well. Supernova (SN) feedback then removes the gas, and the dark matter again responds to the changing potential. We study three physical models relating the motion of baryons to that of the dark matter: adiabatic contraction, dynamical friction, and rapid outflows. We find that dynamical friction plays only a very minor role, while adiabatic contraction and the rapid outflows due to feedback describe well the enhancement (or decrement) of dark matter. For haloes which show significant decrements of dark matter in the core, we find that to remove the dark matter requires an energy input between 1051 and 1053 erg. For our SN feedback proscription, this requires as a

  14. Disc and halo kinematic populations from HIPPARCOS and Geneva-Copenhagen surveys of the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Cubarsi, R.; Alcobé, S.; Vidojević, S.; Ninković, S.

    2010-02-01

    Discontinuities in the local velocity distribution associated with stellar populations are studied using the Maximum Entropy of the Mixture Probability from HIerarchical Segregation (MEMPHIS) improved statistical method, by combining a sampling parameter, an optimisation of the mixture approach, and a maximisation of the partition entropy for the constituent populations of the stellar sample. The sampling parameter is associated with isolating integrals of the stellar motion and is used to build a hierarchical family of subsamples. We provide an accurate characterisation of the entropy graph, in which a local maximum of entropy takes place simultaneously with a local minimum of the χ^2 error. By analysing different sampling parameters, the method is applied to samples from the HIPPARCOS and Geneva-Copenhagen survey (GCS) to determine the kinematic parameters and the stellar population mixture of the thin disc, thick disc, and halo. The sampling parameter P=|(U,V,W)|, which is the absolute heliocentric velocity, allows us to build an optimal subsample containing both thin and thick disc stars, omitting most of the halo population. The sampling parameter P=|W|, which is absolute perpendicular velocity, allows us to create an optimal subsample of all disc and halo stars, although it does not allow an optimal differentiation of thin and thick discs. Other sampling parameters, such as P=|(U,W)| or P=|V|, are found to provide less information about the populations. By comparing both samples, HIPPARCOS provides more accurate estimates for the thick disc and halo, and GCS for the total disc. In particular, the radial velocity dispersion of the halo fits perfectly into the empirical Titius-Bode-like law σU = 6.6 (4/3)3n+2, previously proposed for discrete kinematical components, where the values n=0,1,2,3 represent early-type stars, thin disc, thick disc, and halo populations, respectively. The kinematic parameters are used to segregate thin disc, thick disc, and halo

  15. Characteristic time for halo current growth and rotation

    SciTech Connect

    Boozer, Allen H.

    2015-10-15

    A halo current flows for part of its path through the plasma edge and for part through the chamber walls and during tokamak disruptions can be as large as tenths of the plasma current. The primary interest in halo currents is the large force that they can exert on machine components particularly if the toriodal rotation of the halo current resonates with a natural oscillation frequency of the tokamak device. Halo currents arise when required to slow down the growth of a kink that is too unstable to be stabilized by the chamber walls. The width of the current channel in the halo plasma is comparable to the amplitude of the kink, and the halo current grows linearly, not exponentially, in time. The current density in the halo is comparable to that of the main plasma body. The rocket force due to plasma flowing out of the halo and recombining on the chamber walls can cause the non-axisymmetric magnetic structure produced by the kink to rotate toroidally at a speed comparable to the halo speed of sound. Gerhardt's observations of the halo current in NSTX shot 141 687 [Nucl. Fusion 53, 023005 (2013)] illustrate many features of the theory of halo currents and are discussed as a summary of the theory.

  16. Halo mass distribution reconstruction across the cosmic web

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Prada, Francisco; Yepes, Gustavo; Tao, Charling

    2015-08-01

    We study the relation between halo mass and its environment from a probabilistic perspective. We find that halo mass depends not only on local dark matter density, but also on non-local quantities such as the cosmic web environment and the halo-exclusion effect. Given these accurate relations, we have developed the HADRON-code (Halo mAss Distribution ReconstructiON), a technique which permits us to assign halo masses to a distribution of haloes in three-dimensional space. This can be applied to the fast production of mock galaxy catalogues, by assigning halo masses, and reproducing accurately the bias for different mass cuts. The resulting clustering of the halo populations agree well with that drawn from the BigMultiDark N-body simulation: the power spectra are within 1σ up to scales of k = 0.2 h Mpc-1, when using augmented Lagrangian perturbation theory based mock catalogues. Only the most massive haloes show a larger deviation. For these, we find evidence of the halo-exclusion effect. A clear improvement is achieved when assigning the highest masses to haloes with a minimum distance separation. We also compute the two- and three-point correlation functions, and find an excellent agreement with N-body results. Our work represents a quantitative application of the cosmic web classification. It can have further interesting applications in the multitracer analysis of the large-scale structure for future galaxy surveys.

  17. Tidal effects and the environment dependence of halo assembly

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Porciani, Cristiano; Dekel, Avishai; Carollo, C. Marcella

    2009-10-01

    We explore a possible origin for the puzzling anti-correlation between the formation epoch of galactic dark-matter haloes and their environment density. This correlation has been revealed from cosmological N-body simulations and is in conflict with the extended Press-Schechter model of halo clustering. Using similar simulations, we first quantify the straightforward association of an early formation epoch with a reduced mass-growth rate at late times. We then find that a primary driver of suppressed growth, by accretion and mergers, is tidal effects dominated by a neighbouring massive halo. The tidal effects range from a slowdown of the assembly of haloes due to the shear along the large-scale filaments that feed the massive halo to actual mass loss in haloes that pass through the massive halo. Using the restricted three-body problem, we show that haloes are prone to tidal mass loss within 1.5 virial radii of a larger halo. Our results suggest that the dependence of the formation epoch on environment density is a secondary effect induced by the enhanced density of haloes in filaments near massive haloes where the tides are strong. Our measures of assembly rate are particularly correlated with the tidal field at high redshifts z ~ 1.

  18. Dynamics of the Disruption Halo Current Toroidal Asymmetry in NSTX

    SciTech Connect

    S.P. Gerhardt

    2012-09-27

    This paper describes the dynamics of disruption halo current non-axisymmetries in the lower divertor of the National Spherical Torus Experiment [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While. The halo currents typically have a strongly asymmetric structure where they enter the divertor floor, and this asymmetry has been observed to complete up to 7 toroidal revolutions over the duration of the halo current pulse. However, the rotation speed and toroidal extend of the asymmetry can vary significantly during the pulse. The rotation speed, halo current pulse duration, and total number of revolutions tend to be smaller in cases with large halo currents. The halo current pattern is observed to become toroidally symmetric at the end of the halo current pulse. It is proposed that this symmeterization is due to the loss of most or all of the closed field line geometry in the final phase of the vertical displacement event.

  19. ORIGAMI: Delineating Halos Using Phase-space Folds

    NASA Astrophysics Data System (ADS)

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.

    2012-08-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  20. ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS

    SciTech Connect

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.

    2012-08-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  1. The Structure of Dark Matter Halos in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    1995-07-01

    Recent observations indicate that dark matter halos have flat central density profiles. Cosmological simulations with nonbaryonic dark matter, however, predict self-similar halos with central density cusps. This contradiction has lead to the conclusion that dark matter must be baryonic. Here it is shown that the dark matter halos of dwarf spiral galaxies represent a one-parameter family with self-similar density profiles. The observed global halo parameters are coupled with each other through simple scaling relations which can be explained by the standard cold dark matter model if one assumes that all the halos formed from density fluctuations with the same primordial amplitude. We find that the finite central halo densities correlate with the other global parameters. This result rules out scenarios where the flat halo cores formed subsequently through violent dynamical processes in the baryonic component. These cores instead provide important information on the origin and nature of dark matter in dwarf galaxies.

  2. Precise halo orbit design and optimal transfer to halo orbits from earth using differential evolution

    NASA Astrophysics Data System (ADS)

    Nath, Pranav; Ramanan, R. V.

    2016-01-01

    The mission design to a halo orbit around the libration points from Earth involves two important steps. In the first step, we design a halo orbit for a specified size and in the second step, we obtain an optimal transfer trajectory design to the halo orbit from an Earth parking orbit. Conventionally, the preliminary design for these steps is obtained using higher order analytical solution and the dynamical systems theory respectively. Refinements of the design are carried out using gradient based methods such as differential correction and pseudo arc length continuation method under the of circular restricted three body model. In this paper, alternative single level schemes are developed for both of these steps based on differential evolution, an evolutionary optimization technique. The differential evolution based scheme for halo orbit design produces precise halo orbit design avoiding the refinement steps. Further, in this approach, prior knowledge of higher order analytical solutions for the halo orbit design is not needed. The differential evolution based scheme for the transfer trajectory, identifies the precise location on the halo orbit that needs minimum energy for insertion and avoids exploration of multiple points. The need of a close guess is removed because the present scheme operates on a set of bounds for the unknowns. The constraint on the closest approach altitude from Earth is handled through objective function. The use of these schemes as the design and analysis tools within the of circular restricted three body model is demonstrated through case studies for missions to the first libration point of Sun-Earth system.

  3. Seismic Safety Margins Research Program, Phase I. Project II: seismic input. Compilation, assessment and expansion of the strong earthquake ground motion data base

    SciTech Connect

    Crouse, C B; Hileman, J A; Turner, B E; Martin, G R

    1980-04-01

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms, (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications.

  4. Linking the Halo to its Surroundings

    NASA Astrophysics Data System (ADS)

    Arimoto, N.

    The Galactic halo is unlikely built up from galaxy populations similar to the dwarf spheroidal galaxies (dSph's) in the Local Group, but it is possible that the halo was formed by accreted dwarf galaxies that had much larger mass and higher star formation rates such as the Saggitarius dSph. Cosmological simulations show that dSph galaxies formed via hierarchical clustering of numerous smaller building blocks. Stars formed at the galaxy centre tend to form from metal-rich infall gas, which builds up the metallicity gradients. Infalling gas has larger rotational velocity and smaller velocity dispersion due to the dissipative processes, resulting the two distinct old stellar populations of different chemical and kinematic properties, which are recently discovered in the Sculptor dSph galaxy.

  5. Dark-Matter Halos of Tenuous Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    A series of recent deep-imaging surveys has revealed dozens of lurking ultra-diffuse galaxies (UDGs) in nearby galaxy clusters. A new study provides key information to help us understand the origins of these faint giants.What are UDGs?There are three main possibilities for how UDGs galaxies with the sizes of giants, but luminosities no brighter than those of dwarfs formed:They are tidal dwarfs, created in galactic collisions when streams of matter were pulled away from the parent galaxies and halos to form dwarfs.They are descended from normal galaxies and were then altered by tidal interactions with the galaxy cluster.They are ancient remnant systems large galaxies whose gas was swept away, putting an early halt to star formation. The gas removal did not, however, affect their large dark matter halos, which permitted them to survive in the cluster environment.The key to differentiating between these options is to obtain mass measurements for the UDGs how large are their dark matter halos? In a recent study led by Michael Beasley (Institute of Astrophysics of the Canary Islands, University of La Laguna), a team of astronomers has determined a clever approach for measuring these galaxies masses: examine their globular clusters.Masses from Globular ClustersVCC 1287s mass measurements put it outside of the usual halo-mass vs. stellar-mass relationships for nearby galaxies: it has a significantly higher halo mass than is normal, given its stellar mass. [Adapted from Beasley et al. 2016]Beasley and collaborators selected one UDG, VCC 1287, from the Virgo galaxy cluster, and they obtained spectra of the globular clusters around it using the OSIRIS spectrograph on the Great Canary Telescope. They then determined VCC 1287s total halo mass in two ways: first by using the dynamics of the globular clusters, and then by relying on a relation between total globular cluster mass and halo mass.The two masses they found are in good agreement with each other; both are around 80

  6. Cool Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Gigoyan, K. S.

    2016-06-01

    In this paper we report current status of search and study for Faint High Latitude Carbon Stars (FHLCs). Data for more than 1800 spectroscopically confirmed FHLCs are known, which are found thanks to objective prism surveys and photometric selections. More than half of the detected objects belongs to group of dwarf Carbon (dC) stars. Many-sided investigations based on modern astrophysical databases are necessary to study the space distribution of different groups of the FHLC stars and their possible origin in the Halo of our Galaxy. We report about the selection of FHLCs by the spectroscopic surveys: First Byurakan Survey (FBS), Hamburg/ESO Survey (HES), LAMOST Pilot Survey and SDSS, as well as by photometric selection: APM Survey for Cool Carbon Stars in the Galactic Halo, SDSS and 2MASS JHK colours.

  7. The Formation of Dark Matter Halos and High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Genel, Shy

    2011-03-01

    In the concordance ΛCDMcosmological model, galaxies form in the centers of dark matter halos and merge with one another following the mergers of their host halos. Thus, we set out to quantify the growth mechanisms of dark matter halos. For this purpose, we analyze several large N-body simulations of the growth of cosmic structure. We devise a novel merger tree construction algorithm that properly takes into account halo fragmentations. We find that the merger rate evolves rapidly with redshift but depends weakly on mass, and that the proportions between mergers of different mass ratios, e.g.major and minor mergers, are universal. We also show that the merger rate per progenitor halo (related to future mergers and to galaxy pair counting) is smaller than that per descendant halo (related to past mergers and galaxy disturbed morphplogies), and that their redshift and mass dependencies are different. We find that only ~60%of the mass accreted onto halos arrives in mergers that are resolved in our simulations. Moreover, the functional form of the merger rate suggests that the merger contribution saturates at that value. Using full particle histories, we confirm that smoothly-accreted particles make a significant fraction of dark matter halos. This has important implications for the smoothness of gas accretion. Disk galaxies at z~2are rapidly star-forming, but show regular rotation, indicating little merger activity. We use a large dark matter simulation to show that even non-merging z~2 halos grow fast enough to explain observed high star-formation rates. We also follow those halos to z=0, finding that many do not undergo major mergers at all. The z~2disks also show high velocity dispersions and irregular clumpy morphologies. We run "zoom-in" cosmological hydrodynamical simulations focusing on the formation of individual z~2 galaxies. We find that the clumpy morphologies are a result of gravitational instability, where the high random motions make the (turbulent

  8. Spherical collapse in Galileon gravity: fifth force solutions, halo mass function and halo bias

    SciTech Connect

    Barreira, Alexandre; Li, Baojiu; Baugh, Carlton M.; Pascoli, Silvia E-mail: liqb@mail.ihep.ac.cn E-mail: silvia.pascoli@durham.ac.uk

    2013-11-01

    We study spherical collapse in the Quartic and Quintic Covariant Galileon gravity models within the framework of the excursion set formalism. We derive the nonlinear spherically symmetric equations in the quasi-static and weak-field limits, focusing on model parameters that fit current CMB, SNIa and BAO data. We demonstrate that the equations of the Quintic model do not admit physical solutions of the fifth force in high density regions, which prevents the study of structure formation in this model. For the Quartic model, we show that the effective gravitational strength deviates from the standard value at late times (z∼<1), becoming larger if the density is low, but smaller if the density is high. This shows that the Vainshtein mechanism at high densities is not enough to screen all of the modifications of gravity. This makes halos that collapse at z∼<1 feel an overall weaker gravity, which suppresses halo formation. However, the matter density in the Quartic model is higher than in standard ΛCDM, which boosts structure formation and dominates over the effect of the weaker gravity. In the Quartic model there is a significant overabundance of high-mass halos relative to ΛCDM. Dark matter halos are also less biased than in ΛCDM, with the difference increasing appreciably with halo mass. However, our results suggest that the bias may not be small enough to fully reconcile the predicted matter power spectrum with LRG clustering data.

  9. Halo abundances within the cosmic web

    NASA Astrophysics Data System (ADS)

    Alonso, D.; Eardley, E.; Peacock, J. A.

    2015-03-01

    We investigate the dependence of the mass function of dark-matter haloes on their environment within the cosmic web of large-scale structure. A dependence of the halo mass function on large-scale mean density is a standard element of cosmological theory, allowing mass-dependent biasing to be understood via the peak-background split. On the assumption of a Gaussian density field, this analysis can be extended to ask how the mass function depends on the geometrical environment: clusters, filaments, sheets and voids, as classified via the tidal tensor (the Hessian matrix of the gravitational potential). In linear theory, the problem can be solved exactly, and the result is attractively simple: the conditional mass function has no explicit dependence on the local tidal field, and is a function only of the local density on the filtering scale used to define the tidal tensor. There is nevertheless a strong implicit predicted dependence on geometrical environment, because the local density couples statistically to the derivatives of the potential. We compute the predictions of this model and study the limits of their validity by comparing them to results deduced empirically from N-body simulations. We have verified that, to a good approximation, the abundance of haloes in different environments depends only on their densities, and not on their tidal structure. In this sense we find relative differences between halo abundances in different environments with the same density which are smaller than ˜13 per cent. Furthermore, for sufficiently large filtering scales, the agreement with the theoretical prediction is good, although there are important deviations from the Gaussian prediction at small, non-linear scales. We discuss how to obtain improved predictions in this regime, using the `effective-universe' approach.

  10. The Halo B2B Studio

    NASA Astrophysics Data System (ADS)

    Gorzynski, Mark; Derocher, Mike; Mitchell, April Slayden

    Research underway at Hewlett-Packard on remote communication resulted in the identification of three important components typically missing in existing systems. These missing components are: group nonverbal communication capabilities, high-resolution interactive data capabilities, and global services. Here we discuss some of the design elements in these three areas as part of the Halo program at HP, a remote communication system shown to be effective to end-users.

  11. Dynamic Colloidal Stabilization by Nanoparticle Halos

    NASA Astrophysics Data System (ADS)

    Karanikas, S.; Louis, A. A.

    2004-12-01

    We explore the conditions under which colloids can be stabilized by the addition of smaller particles. The largest repulsive barriers between colloids occur when the added particles repel each other with soft interactions, leading to an accumulation near the colloid surfaces. At lower densities these layers of mobile particles (nanoparticle halos) result in stabilization, but when too many are added, the interactions become attractive again. We systematically study these effects—accumulation repulsion, reentrant attraction, and bridging—by accurate integral equation techniques.

  12. THE SPHERICALIZATION OF DARK MATTER HALOS BY GALAXY DISKS

    SciTech Connect

    Kazantzidis, Stelios; Abadi, Mario G.; Navarro, Julio F. E-mail: mario@oac.uncor.ed

    2010-09-01

    Cosmological simulations indicate that cold dark matter (CDM) halos should be triaxial. Validating this theoretical prediction is, however, less than straightforward because the assembly of galaxies is expected to modify halo shapes and to render them more axisymmetric. We use a suite of N-body simulations to quantitatively investigate the effect of the growth of a central disk galaxy on the shape of triaxial dark matter halos. In most circumstances, the halo responds to the presence of the disk by becoming more spherical. The net effect depends weakly on the timescale of the disk assembly but noticeably on the orientation of the disk relative to the halo principal axes, and it is maximal when the disk symmetry axis is aligned with the major axis of the halo. The effect depends most sensitively on the overall gravitational importance of the disk. Our results indicate that exponential disks whose contribution peaks at less than {approx}50% of their circular velocity are unable to noticeably modify the shape of the gravitational potential of their surrounding halos. Many dwarf and low surface brightness galaxies are expected to be in this regime, and therefore their detailed kinematics could be used to probe halo triaxiality, one of the basic predictions of the CDM paradigm. We argue that the complex disk kinematics of the dwarf galaxy NGC 2976 might be the reflection of a triaxial halo. Such signatures of halo triaxiality should be common in galaxies where the luminous component is subdominant.

  13. ASSEMBLY BIAS AND THE DYNAMICAL STRUCTURE OF DARK MATTER HALOS

    SciTech Connect

    Faltenbacher, Andreas; White, Simon D. M.

    2010-01-01

    Based on the Millennium Simulation we examine assembly bias for the halo properties: shape, triaxiality, concentration, spin, shape of the velocity ellipsoid, and velocity anisotropy. For consistency, we determine all these properties using the same set of particles, namely all gravitationally self-bound particles belonging to the most massive substructure of a given friends-of-friends halo. We confirm that near-spherical and high-spin halos show enhanced clustering. The opposite is true for strongly aspherical and low-spin halos. Further, below the typical collapse mass, M{sub *}, more concentrated halos show stronger clustering, whereas less concentrated halos are less clustered which is reversed for masses above M{sub *}. Going beyond earlier work we show that: (1) oblate halos are more strongly clustered than prolate ones; (2) the dependence of clustering on the shape of the velocity ellipsoid coincides with that of the real-space shape, although the signal is stronger; (3) halos with weak velocity anisotropy are more clustered, whereas radially anisotropic halos are more weakly clustered; (4) for all highly clustered subsets we find systematically less radially biased velocity anisotropy profiles. These findings indicate that the velocity structure of halos is tightly correlated with environment.

  14. Is the Milky Way's hot halo convectively unstable?

    SciTech Connect

    Henley, David B.; Shelton, Robin L.

    2014-03-20

    We investigate the convective stability of two popular types of model of the gas distribution in the hot Galactic halo. We first consider models in which the halo density and temperature decrease exponentially with height above the disk. These halo models were created to account for the fact that, on some sight lines, the halo's X-ray emission lines and absorption lines yield different temperatures, implying that the halo is non-isothermal. We show that the hot gas in these exponential models is convectively unstable if γ < 3/2, where γ is the ratio of the temperature and density scale heights. Using published measurements of γ and its uncertainty, we use Bayes' theorem to infer posterior probability distributions for γ, and hence the probability that the halo is convectively unstable for different sight lines. We find that, if these exponential models are good descriptions of the hot halo gas, at least in the first few kiloparsecs from the plane, the hot halo is reasonably likely to be convectively unstable on two of the three sight lines for which scale height information is available. We also consider more extended models of the halo. While isothermal halo models are convectively stable if the density decreases with distance from the Galaxy, a model of an extended adiabatic halo in hydrostatic equilibrium with the Galaxy's dark matter is on the boundary between stability and instability. However, we find that radiative cooling may perturb this model in the direction of convective instability. If the Galactic halo is indeed convectively unstable, this would argue in favor of supernova activity in the Galactic disk contributing to the heating of the hot halo gas.

  15. Is the Milky Way's Hot Halo Convectively Unstable?

    NASA Astrophysics Data System (ADS)

    Henley, David B.; Shelton, Robin L.

    2014-03-01

    We investigate the convective stability of two popular types of model of the gas distribution in the hot Galactic halo. We first consider models in which the halo density and temperature decrease exponentially with height above the disk. These halo models were created to account for the fact that, on some sight lines, the halo's X-ray emission lines and absorption lines yield different temperatures, implying that the halo is non-isothermal. We show that the hot gas in these exponential models is convectively unstable if γ < 3/2, where γ is the ratio of the temperature and density scale heights. Using published measurements of γ and its uncertainty, we use Bayes' theorem to infer posterior probability distributions for γ, and hence the probability that the halo is convectively unstable for different sight lines. We find that, if these exponential models are good descriptions of the hot halo gas, at least in the first few kiloparsecs from the plane, the hot halo is reasonably likely to be convectively unstable on two of the three sight lines for which scale height information is available. We also consider more extended models of the halo. While isothermal halo models are convectively stable if the density decreases with distance from the Galaxy, a model of an extended adiabatic halo in hydrostatic equilibrium with the Galaxy's dark matter is on the boundary between stability and instability. However, we find that radiative cooling may perturb this model in the direction of convective instability. If the Galactic halo is indeed convectively unstable, this would argue in favor of supernova activity in the Galactic disk contributing to the heating of the hot halo gas.

  16. Remapping simulated halo catalogues in redshift space

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Peacock, J. A.

    2014-12-01

    We discuss the extension to redshift space of a rescaling algorithm, designed to alter the effective cosmology of a pre-existing simulated particle distribution or catalogue of dark matter haloes. The rescaling approach was initially developed by Angulo & White and was adapted and applied to halo catalogues in real space in our previous work. This algorithm requires no information other than the initial and target cosmological parameters, and it contains no tuned parameters. It is shown here that the rescaling method also works well in redshift space, and that the rescaled simulations can reproduce the growth rate of cosmological density fluctuations appropriate for the target cosmology. Even when rescaling a grossly non-standard model with Λ = 0 and zero baryons, the redshift-space power spectrum of standard Λ cold dark matter can be reproduced to about 5 per cent error for k < 0.2 h Mpc-1. The ratio of quadrupole-to-monopole power spectra remains correct to the same tolerance up to k = 1 h Mpc-1, provided that the input halo catalogue contains measured internal velocity dispersions.

  17. Constraining the halo mass function with observations

    NASA Astrophysics Data System (ADS)

    Castro, Tiago; Marra, Valerio; Quartin, Miguel

    2016-08-01

    The abundances of dark matter halos in the universe are described by the halo mass function (HMF). It enters most cosmological analyses and parametrizes how the linear growth of primordial perturbations is connected to these abundances. Interestingly, this connection can be made approximately cosmology independent. This made it possible to map in detail its near-universal behavior through large-scale simulations. However, such simulations may suffer from systematic effects, especially if baryonic physics is included. In this paper we ask how well observations can constrain directly the HMF. The observables we consider are galaxy cluster number counts, galaxy cluster power spectrum and lensing of type Ia supernovae. Our results show that DES is capable of putting the first meaningful constraints on the HMF, while both Euclid and J-PAS can give stronger constraints, comparable to the ones from state-of-the-art simulations. We also find that an independent measurement of cluster masses is even more important for measuring the HMF than for constraining the cosmological parameters, and can vastly improve the determination of the halo mass function. Measuring the HMF could thus be used to cross-check simulations and their implementation of baryon physics. It could even, if deviations cannot be accounted for, hint at new physics.

  18. Connecting the cosmic web to the spin of dark haloes: implications for galaxy formation

    NASA Astrophysics Data System (ADS)

    Codis, Sandrine; Pichon, Christophe; Devriendt, Julien; Slyz, Adrianne; Pogosyan, Dmitry; Dubois, Yohan; Sousbie, Thierry

    2012-12-01

    We investigate the alignment of the spin of dark matter haloes relative (i) to the surrounding large-scale filamentary structure, and (ii) to the tidal tensor eigenvectors using the Horizon 4π dark matter simulation which resolves over 43 million dark matter haloes at redshift zero. We detect a clear mass transition: the spin of dark matter haloes above a critical mass M0s≈5(±1)×1012 M tends to be perpendicular to the closest large-scale filament (with an excess probability of up to 12 per cent), and aligned with the intermediate axis of the tidal tensor (with an excess probability of up to 40 per cent), whereas the spin of low-mass haloes is more likely to be aligned with the closest filament (with an excess probability of up to 15 per cent). Furthermore, this critical mass is redshift-dependent, scaling as M crit s(z)≈M0s(1+z)-γs with γs = 2.5 ± 0.2. A similar fit for the redshift evolution of the tidal tensor transition mass yields M0t≈8(±2)×1012 M and γt = 3 ± 0.3. This critical mass also varies weakly with the scale defining filaments. We propose an interpretation of this signal in terms of large-scale cosmic flows. In this picture, most low-mass haloes are formed through the winding of flows embedded in misaligned walls; hence, they acquire a spin parallel to the axis of the resulting filaments forming at the intersection of these walls. On the other hand, more massive haloes are typically the products of later mergers along such filaments, and thus they acquire a spin perpendicular to this direction when their orbital angular momentum is converted into spin. We show that this scenario is consistent with both measured excess probabilities of alignment with respect to the eigendirections of the tidal tensor, and halo merger histories. On a more qualitative level, it also seems compatible with 3D visualization of the structure of the cosmic web as traced by 'smoothed' dark matter simulations or gas tracer particles. Finally, it provides extra

  19. Studying 10Be and 11Be Halo States through the (p,d) Single-Neutron Transfer Reaction

    NASA Astrophysics Data System (ADS)

    Kuhn, Keri; Sarazin, Fred; (Pcb)2 Collaboration; Tigress Collaboration

    2015-10-01

    One-neutron transfer reactions are being used to study single-particle neutron states in nuclei. For one-neutron halo nuclei, such as 11Be, the (p,d) reaction enables the removal of the halo neutron or of one of the core neutrons. This way, it is possible to simultaneously study the halo wavefunction of the 11Be ground-state but also a possible excited halo state in 10Be. The 11Be(p, d)10Be transfer reaction at 10 MeV/nucleon is being investigated at the TRIUMF-ISAC II facility with the Printed Circuit Board Based Charged Particle ((PCB)2) array inside the TRIUMF ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS). The ground state and first excited state of 10Be can be directly identified using deuteron identification and kinematics from the charged particle array, while the four excited states in10Be around 6 MeV, including the suspected halo state (2- state), are identified using coincident gamma rays from TIGRESS with the identified deuterons. Angular distributions for the 10Be populated states will be shown along with their FRESCO fits. This work is partially supported by the US Department of Energy through Grant/Contract No. DE-FG03-93ER40789 (Colorado School of Mines).

  20. What's Motion Sickness?

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes What's Motion Sickness? KidsHealth > For Kids > What's Motion Sickness? Print ... motion sickness might get even worse. continue Avoiding Motion Sickness To avoid motion sickness: Put your best ...

  1. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  2. DARK MATTER CORES IN THE FORNAX AND SCULPTOR DWARF GALAXIES: JOINING HALO ASSEMBLY AND DETAILED STAR FORMATION HISTORIES

    SciTech Connect

    Amorisco, N. C.; Zavala, J.; De Boer, T. J. L.

    2014-02-20

    We combine the detailed star formation histories of the Fornax and Sculptor dwarf spheroidals with the mass assembly history of their dark matter (DM) halo progenitors to estimate if the energy deposited by Type II supernovae (SNe II) is sufficient to create a substantial DM core. Assuming the efficiency of energy injection of the SNe II into DM particles is ε{sub gc} = 0.05, we find that a single early episode, z ≳ z {sub infall}, that combines the energy of all SNe II due to explode over 0.5 Gyr is sufficient to create a core of several hundred parsecs in both Sculptor and Fornax. Therefore, our results suggest that it is energetically plausible to form cores in cold dark matter (CDM) halos via early episodic gas outflows triggered by SNe II. Furthermore, based on CDM merger rates and phase-space density considerations, we argue that the probability of a subsequent complete regeneration of the cusp is small for a substantial fraction of dwarf-size halos.

  3. Beryllium in the Galactic halo - Surface abundances from standard, diffusive, and rotational stellar evolution, and implications

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Pinsonneault, Marc H.

    1990-01-01

    The recently observed upper limits to the beryllium abundances in population II stars are much lower than population I detections. This difference reflects an intrinsic difference in the initial abundances and is not caused by different degrees of depletion driven by stellar evolution processes from similar initial abundances. Evolutionary sequences of models from the early premain sequence to beyond the turnoff that correspond to halo dwarfs with Fe/H abundances of -1.3, -2.3, and -3.3 are constructed, and standard, diffusive, and rotational mechanisms are used to estimate a maximal possible beryllium depletion. Halo star models in the T(eff) range 6000 to 5000 K might be rotationally depleted by a factor of 1.5-2, and the total depletion should be no more than (conservatively) a factor of 3. Implications for cosmology, cosmic-ray theory, and Galactic chemical evolution are discussed.

  4. New kinematic models for Pacific-North America Motion from 3 Ma to Present, II: Evidence for a “Baja California Shear Zone”

    NASA Astrophysics Data System (ADS)

    Dixon, Timothy; Farina, Fred; DeMets, Charles; Suarez-Vidal, Francisco; Fletcher, John; Marquez-Azua, Bertha; Miller, Meghan; Sanchez, Osvaldo; Umhoefer, Paul

    2000-12-01

    We use new models for present-day Pacific-North America motion to evaluate the tectonics of offshore regions west of the Californias. Vandenburg in coastal Alta California moves at the Pacific plate velocity within uncertainties (˜1 mm/yr) after correcting for strain accumulation on the San Andreas and San Gregorio-Hosgri faults with a model that includes a viscoelastic lower crust. Modeled and measured velocities at coastal sites in Baja California south of the Agua Blanca fault, a region that most previous models consider Pacific plate, differ by 3-8 mm/yr, with coastal sites moving slower that the Pacific plate. We interpret these discrepancies in terms of strain accumulation on known on-shore faults, combined with right lateral slip at a rate of 3-4 mm/yr on additional faults offshore peninsular Baja California in the Pacific. Offshore seismicity, offset Quaternary features along the west coast of Baja California, and a discrepancy between the magnetically determined spreading rate in the Gulf Rise and the total plate rate from a geological model provide independent evidence for a “Baja California shear zone.”

  5. Strong Quantum Coupling Between O-H+-O Stretch and Flanking Group Motions in (CH_3OH)_2H^+ Part II: Tuning the Coupling via Isotopologues

    NASA Astrophysics Data System (ADS)

    Tan, Jake Acedera; Kuo, Jer-Lai

    2016-06-01

    The vibrational coupling between O-H+-O/O-D+-O stretch and flanking group motions were explored in the following isotopologues: (CH_3OH)_2H^+, (CD_3OH)_2H^+, (CH_3OD)_2D^+, and (CD_3OD)_2D^+. At present only measurements for (CH_3OH)_2H^+ are available in the literature. Reduced-dimensional calculations were performed by solving several vibrational Schrödinger equations using the method of Discrete Variable Representation (DVR) with harmonic oscillator as basis. Both potential and dipole moment surfaces were constructed at MP2/aug-cc-pVDZ by scanning along normal modes corresponding to: 1) O-H+-O/O-D+-O stretch, 2) out-of-phase C-O stretch, 3) in-plane CH_3/CD_3 rock, 4) out-of-plane CH_3/CD_3 rock, and 5) O-O stretch. It was found that vibrational states for isotopologues corresponding to O-H+-O are more mixed than that of the O-D+-O. Lastly, we proposed tentative assignments for the simulated spectrum and hope that experimental measurements will be available in the near future. J.R. Roscioli, L.R. McCunn and M.A. Johnson. Science 2007, 316, 249 T.D. Fridgen, L. Macaleese, T.B McMahon, J. Lemaire and P. Maitre. Phys. Chem. Chem. Phys. 2006, 8, 955-966

  6. Synoptic interpretation of measurements from HALOE

    NASA Technical Reports Server (NTRS)

    Bithell, M.; Gray, L. J.; Harries, J. E.; Russell, J. M., III; Tuck, A. F.

    1994-01-01

    The degree to which the Southern Hemisphere polar vortex is isolated against horizontal (isentropic) mixing is investigated using data from the Halogen Occultation Experiment (HALOE), U.K. Meteorological Office (UKMO) potential vorticity (PV), and contour advection diagnostics. Measurements of methane and water vapor taken by HALOE during a disturbed period in the Southern Hemisphere springtime (21 September - 15 October 1992) are interpreted in light of the prevailing synoptic meteorology. Daily fields of winds and PV are shown to be essential in the interpretation of the data. A climatological high pressure region is responsible for a distorted vortex, and a substantial 'vortex stripping' event is present, associated with the early stages of vortex breakdown. This leads to significant temporal, zonal, and altitudinal variations in the distribution of tracers. The authors point out the difficulties this presents for the interpretation of solar occultation data, especially with regard to the use of zonal average time series. Longitude-height methane distributions from two days during the period are examined. Both days show substantial variations in abundance around a latitude circle. In particular, the authors investigate HALOE measurements at 77 deg S on 15 October 1992, which indicate an abundance of methane in the height region 600-2000 K (approximately 30-1 mb) that is more typical of midlatitude air. Similar distributions, observed in the 1991 HALOE data, have previously been interpreted as evidence for the penetration of midlatitude air into the vortex. Gradients of potential vorticity and contour advection diagnositcs are employed to examine whether the UKMO winds are consistent with this hypothesis in 1992. Although midlatitude air is able to penetrate poleward of the main jet core by advection processes alone, an essentially intact inner core of vortex air remains, which does not mix to any great extent with air from lower latitudes. The authors show that

  7. The Halo of NGC 2438 scrutinized

    NASA Astrophysics Data System (ADS)

    Oettl, Silvia; Kimeswenger, Stefan

    2015-08-01

    Haloes and multiple shells around planetary nebulae trace the mass-loss history of the central star. The haloes provide us with information about abundances, ionization or kinematics. Detailed investigations of these haloes can be used to study the evolution of the old stellar population in our galaxy and beyond.Different observations show structures in the haloes like radial rays, blisters and rings (e.g., Ramos-Larios et al. 2012, MNRAS 423, 3753 or Matsuura et al. 2009, ApJ, 700, 1067). The origin of these features has been associated with ionization shadows (Balick 2004, AJ, 127, 2262). They can be observed in regions, where dense knots are opaque to stellar ionizing photons. In this regions we can see leaking UV photons.In this work, we present a detailed investigation of the multiple shell PN NGC 2438. We derive a complete data set of the main nebula. This allows us to analize the physical conditions from photoionization models, such as temperature, density and ionization, and clumping.Data from ESO (3.6m telescope - EFOSC1 - direct imaging and long slit spectroscopy) and from SAAO (spectroscopic observations using a small slit) were available. These data were supplemented by imaging data from the HST archive and by archival VLA observations. The low-excitation species are found to be dominated by clumps. The emission line ratios show no evidence for shocks. We find the shell in ionization equilibrium: a significant amount of UV radiation infiltrates the inner nebula. Thus the shell still seems to be ionized.The photoionization code CLOUDY was used to model the nebular properties and to derive a more accurate distance and ionized mass. The model supports the hypothesis that photoionization is the dominant process in this nebula, far out into the shell.If we want to use extragalactic planetary nebulae as probes of the old stellar population, we need to assess the potential impact of a halo on the evolution. Also the connection of observations and models must

  8. Recent Results from SPLASH: Chemical Abundances and Kinematics of Andromeda's Stellar Halo

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline M.; Beaton, Rachael; Dorman, Claire

    2016-08-01

    Large scale surveys of Andromeda's resolved stellar populations have revolutionized our view of this galaxy over the past decade. The combination of large-scale, contiguous photometric surveys and pointed spectroscopic surveys has been particularly powerful for discovering substructure and disentangling the structural components of Andromeda. The SPLASH (Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo) survey consists of broad- and narrow-band imaging and spectroscopy of red giant branch stars in lines of sight ranging in distance from 2 kpc to more than 200 kpc from Andromeda's center. The SPLASH data reveal a power-law surface brightness profile extending to at least two-thirds of Andromeda's virial radius (Gilbert et al. 2012), a metallicity gradient extending to at least 100 kpc from Andromeda's center (Gilbert et al. 2014), and evidence of a significant population of heated disk stars in Andromeda's inner halo (Dorman et al. 2013). We are also using the velocity distribution of halo stars to measure the tangential motion of Andromeda (Beaton et al., in prep).

  9. H I IN LOCAL GROUP DWARF GALAXIES AND STRIPPING BY THE GALACTIC HALO

    SciTech Connect

    Grcevich, Jana; Putman, Mary E E-mail: mputman@astro.columbia.edu

    2009-05-01

    We examine the H I content and environment of all of the Local Group dwarf galaxies (M {sub tot} < 10{sup 10} M {sub sun}), including the numerous newly discovered satellites of the Milky Way and M31. All of the new dwarfs, with the exception of Leo T, have no detected H I. The majority of dwarf galaxies within {approx}270 kpc of the Milky Way or Andromeda are undetected in H I (<10{sup 4} M {sub sun} for Milky Way dwarfs), while those further than {approx}270 kpc are predominantly detected with masses {approx}10{sup 5} to 10{sup 8} M {sub sun}. Analytical ram-pressure arguments combined with velocities obtained via proper motion studies allow for an estimate of the halo density of the Milky Way at several distances. This halo density is constrained to be greater than 2x 10{sup -4}-3 x 10{sup -4} cm{sup -3} out to distances of at least 70 kpc. This is broadly consistent with theoretical models of the diffuse gas in a Milky Way-like halo and is consistent with this component hosting a large fraction of a galaxy's baryons. Accounting for completeness in the dwarf galaxy count, gasless dwarf galaxies could have provided at most 2.1 x 10{sup 8} M {sub sun} of H I gas to the Milky Way, which suggests that most of our Galaxy's star formation fuel does not come from accreted small satellites in the current era.

  10. On the origin of excess cool gas in quasar host haloes

    NASA Astrophysics Data System (ADS)

    Johnson, Sean D.; Chen, Hsiao-Wen; Mulchaey, John S.

    2015-09-01

    Previous observations of quasar host haloes at z ≈ 2 have uncovered large quantities of cool gas that exceed what is found around inactive galaxies of both lower and higher masses. To better understand the source of this excess cool gas, we compiled an exhaustive sample of 195 quasars at z ≈ 1 with constraints on chemically enriched, cool gas traced by Mg II absorption in background quasar spectra from the Sloan Digital Sky Survey. This quasar sample spans a broad range of luminosities from Lbol = 1044.4 to 1046.8 erg s-1 and allows an investigation of whether halo gas properties are connected with quasar properties. We find a strong correlation between luminosity and cool gas covering fraction. In particular, low-luminosity quasars exhibit a mean gas covering fraction comparable to inactive galaxies of similar masses, but more luminous quasars exhibit excess cool gas approaching what is reported previously at z ≈ 2. Moreover, 30-40 per cent of the Mg II absorption occurs at radial velocities of |Δv| > 300 km s-1 from the quasar, inconsistent with gas bound to a typical quasar host halo. The large velocity offsets and observed luminosity dependence of the cool gas near quasars can be explained if the gas arises from: (1) neighbouring haloes correlated through large-scale structure at Mpc scales, (2) feedback from luminous quasars or (3) debris from the mergers thought to trigger luminous quasars. The first of these scenarios is in tension with the lack of correlation between quasar luminosity and clustering while the latter two make distinct predictions that can be tested with additional observations.

  11. Resolved Stellar Halos of M87 and NGC 5128

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.; Harris, William; Flynn, Chris; Blakeslee, John P.; Valtonen, Mauri

    2015-08-01

    We search halo fields of two giant elliptical galaxies: M87, using HST images at 10 kpc from the center, and NGC 5128 (Cen A), using VIMOS VLT images at 65 kpc from the center and archival HST data from 8 to 38 kpc from the center. We resolve thousands of red-giant-branch stars in these stellar halo fields using V and I filters, and, in addition, measure the metallicity using stellar isochrones. In Cen A, we find that the density of metal-rich and metal-poor halo stars falls off with the same slope in the de Vaucouleurs' law profile, from the inner halo of 8 kpc out to 70 kpc, with no sign of a transition to dominance by metal-poor stars. We also find that the metallicity distribution of the inner stellar halo of M87 is most similar to that of NGC 5128's inner stellar halo.

  12. Major mergers going Notts: challenges for modern halo finders

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Knebe, Alexander; Pearce, Frazer R.; Elahi, Pascal; Han, Jiaxin; Lux, Hanni; Mao, Yao-Yuan; Muldrew, Stuart I.; Potter, Doug; Srisawat, Chaichalit

    2015-12-01

    Merging haloes with similar masses (i.e. major mergers) pose significant challenges for halo finders. We compare five halo-finding algorithms' (AHF, HBT, ROCKSTAR, SUBFIND, and VELOCIRAPTOR) recovery of halo properties for both isolated and cosmological major mergers. We find that halo positions and velocities are often robust, but mass biases exist for every technique. The algorithms also show strong disagreement in the prevalence and duration of major mergers, especially at high redshifts (z > 1). This raises significant uncertainties for theoretical models that require major mergers for, e.g. galaxy morphology changes, size changes, or black hole growth, as well as for finding Bullet Cluster analogues. All finders not using temporal information also show host halo and subhalo relationship swaps over successive timesteps, requiring careful merger tree construction to avoid problematic mass accretion histories. We suggest that future algorithms should combine phase-space and temporal information to avoid the issues presented.

  13. Distribution function approach to redshift space distortions. Part III: halos and galaxies

    SciTech Connect

    Okumura, Teppei; Seljak, Uroš; Desjacques, Vincent E-mail: useljak@berkeley.edu

    2012-11-01

    It was recently shown that the power spectrum in redshift space can be written as a sum of cross-power spectra between number weighted velocity moments, of which the lowest are density and momentum density. We investigate numerically the properties of these power spectra for simulated galaxies and dark matter halos and compare them to the dark matter power spectra, generalizing the concept of the bias in density-density power spectra. Because all of the quantities are number weighted this approach is well defined even for sparse systems such as massive halos. This contrasts to the previous approaches to RSD where velocity correlations have been explored, but velocity field is a poorly defined concept for sparse systems. We find that the number density weighting leads to a strong scale dependence of the bias terms for momentum density auto-correlation and cross-correlation with density. This trend becomes more significant for the more biased halos and leads to an enhancement of RSD power relative to the linear theory. Fingers-of-god effects, which in this formalism come from the correlations of the higher order moments beyond the momentum density, lead to smoothing of the power spectrum and can reduce this enhancement of power from the scale dependent bias, but are relatively small for halos with no small scale velocity dispersion. In comparison, for a more realistic galaxy sample with satellites the small scale velocity dispersion generated by satellite motions inside the halos leads to a larger power suppression on small scales, but this depends on the satellite fraction and on the details of how the satellites are distributed inside the halo. We investigate several statistics such as the two-dimensional power spectrum P(k,μ), where μ is the angle between the Fourier mode and line of sight, its multipole moments, its powers of μ{sup 2}, and configuration space statistics. Overall we find that the nonlinear effects in realistic galaxy samples such as luminous

  14. Rotation curves of ultralight BEC dark matter halos with rotation

    NASA Astrophysics Data System (ADS)

    Guzmán, F. S.; Lora-Clavijo, F. D.

    2015-03-01

    We study the rotation curves of ultralight BEC dark matter halos. These halos are long lived solutions of initially rotating BEC fluctuations. In order to study the implications of the rotation characterizing these long-lived configurations we consider the particular case of a boson mass and no self-interaction. We find that these halos successfully fit samples of rotation curves of LSB galaxies.

  15. Data-Parallel Halo Finder Operator in PISTON

    SciTech Connect

    Widanagamaachchi, W. N.

    2012-08-01

    PISTON is a portable framework which supports the development of visualization and analysis operators using a platform-independent, data-parallel programming model. Operators such as isosurface, cut-surface and threshold have been implemented in this framework, with the exact same operator code achieving good parallel performance on different architectures. An important analysis operator in cosmology is the halo finder. A halo is a cluster of particles and is considered a common feature of interest found in cosmology data. As the number of cosmological simulations carried out in the recent past has increased, the resultant data of these simulations and the required analysis tasks have increased as well. As a consequence, there is a need to develop scalable and efficient tools to carry out the needed analysis. Therefore, we are currently implementing a halo finder operator using PISTON. Researchers have developed a wide variety of techniques to identify halos in raw particle data. The most basic algorithm is the friend-of-friends (FOF) halo finder, where the particles are clustered based on two parameters: linking length and halo size. In a FOF halo finder, all particles which lie within the linking length are considered as one halo and the halos are filtered based on the halo size parameter. A naive implementation of a FOF halo finder compares each and every particle pair, requiring O(n{sup 2}) operations. Our data-parallel halo finder operator uses a balanced k-d tree to reduce this number of operations in the average case, and implements the algorithm using only the data-parallel primitives in order to achieve portability and performance.

  16. Quark matter as dark matter in modeling galactic halo

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Kuhfittig, P. K. F.; Amin, Ruhul; Mandal, Gurudas; Ray, Saibal; Islam, Nasarul

    2012-08-01

    Considering the flat rotation curves as input and treating the matter content in the galactic halo region as quark matter, we have found out a background spacetime metric for the region of the galactic halo. We obtain fairly general conditions that ensure that gravity in the halo region is attractive. We also investigate the stability of circular orbits, along with a different role for quark matter. Bag-model quark matter meeting these conditions therefore provides a suitable model for dark matter.

  17. Squeezing the halo bispectrum: a test of bias models

    NASA Astrophysics Data System (ADS)

    Moradinezhad Dizgah, Azadeh; Chan, Kwan Chuen; Noreña, Jorge; Biagetti, Matteo; Desjacques, Vincent

    2016-09-01

    We study the halo-matter cross bispectrum in the presence of primordial non-Gaussianity of the local type. We restrict ourselves to the squeezed limit, for which the calculation are straightforward, and perform the measurements in the initial conditions of N-body simulations, to mitigate the contamination induced by nonlinear gravitational evolution. Interestingly, the halo-matter cross bispectrum is not trivial even in this simple limit as it is strongly sensitive to the scale-dependence of the quadratic and third-order halo bias. Therefore, it can be used to test biasing prescriptions. We consider three different prescription for halo clustering: excursion set peaks (ESP), local bias and a model in which the halo bias parameters are explicitly derived from a peak-background split. In all cases, the model parameters are fully constrained with statistics other than the cross bispectrum. We measure the cross bispectrum involving one halo fluctuation field and two mass overdensity fields for various halo masses and collapse redshifts. We find that the ESP is in reasonably good agreement with the numerical data, while the other alternatives we consider fail in various cases. This suggests that the scale-dependence of halo bias also is a crucial ingredient to the squeezed limit of the halo bispectrum.

  18. X-ray halos as diagnostics of interstellar grains

    SciTech Connect

    Mathis, J.S.; Lee, C.-W. )

    1991-08-01

    Interstellar grains scatter X-rays from point sources into an observable halo surrounding the source image. Attention is presently given to the scattering of various grain-size distributions, both for halos around point sources and the cases of a source occulted by the moon. The limitations associated with using the X-ray halo to ascertain the size distribution of grains. The distribution of dust along the line-of-sight is noted to affect the inner part of the halo, rendering it more peaked toward the central point source if the dust is concentrated near the source. 30 refs.

  19. Two stellar components in the halo of the Milky Way.

    PubMed

    Carollo, Daniela; Beers, Timothy C; Lee, Young Sun; Chiba, Masashi; Norris, John E; Wilhelm, Ronald; Sivarani, Thirupathi; Marsteller, Brian; Munn, Jeffrey A; Bailer-Jones, Coryn A L; Fiorentin, Paola Re; York, Donald G

    2007-12-13

    The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, and this information can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components--an inner and an outer halo--that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). The inner halo has a modest net prograde rotation, whereas the outer halo exhibits a net retrograde rotation and a peak metallicity one-third that of the inner halo. These properties indicate that the individual halo components probably formed in fundamentally different ways, through successive dissipational (inner) and dissipationless (outer) mergers and tidal disruption of proto-Galactic clumps.

  20. [Motion sickness].

    PubMed

    Taillemite, J P; Devaulx, P; Bousquet, F

    1997-01-01

    Motion sickness is a general term covering sea-sickness, car-sickness, air-sickness, and space-sickness. Symptoms can occur when a person is exposed to unfamiliar movement whether real or simulated. Despite progress in the technology and comfort of modern transportation (planes, boats, and overland vehicles), a great number of travelers still experience motion sickness. Bouts are characterized by an initial phase of mild discomfort followed by neurologic and gastro-intestinal manifestations. The delay in onset depends on specific circumstances and individual susceptibility. Attacks are precipitated by conflicting sensory, visual, and vestibular signals but the underlying mechanism is unclear. Most medications used for prevention and treatment (e.g. anticholinergics and antihistamines) induce unwanted sedation. Furthermore no one drug is completely effective or preventive under all conditions.

  1. COMPOSITION OF LOW-REDSHIFT HALO GAS

    SciTech Connect

    Cen Renyue

    2013-06-20

    Halo gas in low-z (z < 0.5) {>=}0.1 L{sub *} galaxies in high-resolution, large-scale cosmological hydrodynamic simulations is examined with respect to three components: cold, warm, and hot with temperatures of <10{sup 5}, 10{sup 5-6}, and >10{sup 6} K, respectively. Utilizing O VI {lambda}{lambda}1032, 1038 absorption lines, the warm component is compared to observations, and agreement is found with respect to the galaxy-O VI line correlation, the ratio of the O VI line incidence rate in blue to red galaxies, and the amount of O VI mass in star-forming galaxies. A detailed account of the sources of warm halo gas (stellar feedback heating, gravitational shock heating, and accretion from the intergalactic medium), inflowing and outflowing warm halo gas metallicity disparities, and their dependencies on galaxy types and environment is also presented. With the warm component securely anchored, our simulations make the following additional predictions. First, cold gas is the primary component in inner regions with its mass comprising 50% of all gas within galactocentric radius r = (30, 150) kpc in (red, blue) galaxies. Second, at r > (30, 200) kpc in (red, blue) galaxies the hot component becomes the majority. Third, the warm component is a perpetual minority, with its contribution peaking at {approx}30% at r = 100-300 kpc in blue galaxies and never exceeding 5% in red galaxies. The significant amount of cold gas in low-z early-type galaxies, which was found in simulations and in agreement with recent observations (Thom et al.), is intriguing, as is the dominance of hot gas at large radii in blue galaxies.

  2. Characterizing stellar halo populations - I. An extended distribution function for halo K giants

    NASA Astrophysics Data System (ADS)

    Das, Payel; Binney, James

    2016-08-01

    We fit an extended distribution function (EDF) to K giants in the Sloan Extension for Galactic Understanding and Exploration survey. These stars are detected to radii ˜80 kpc and span a wide range in [Fe/H]. Our EDF, which depends on [Fe/H] in addition to actions, encodes the entanglement of metallicity with dynamics within the Galaxy's stellar halo. Our maximum-likelihood fit of the EDF to the data allows us to model the survey's selection function. The density profile of the K giants steepens with radius from a slope ˜-2 to ˜-4 at large radii. The halo's axis ratio increases with radius from 0.7 to almost unity. The metal-rich stars are more tightly confined in action space than the metal-poor stars and form a more flattened structure. A weak metallicity gradient ˜-0.001 dex kpc-1, a small gradient in the dispersion in [Fe/H] of ˜0.001 dex kpc-1, and a higher degree of radial anisotropy in metal-richer stars result. Lognormal components with peaks at ˜-1.5 and ˜-2.3 are required to capture the overall metallicity distribution, suggestive of the existence of two populations of K giants. The spherical anisotropy parameter varies between 0.3 in the inner halo to isotropic in the outer halo. If the Sagittarius stream is included, a very similar model is found but with a stronger degree of radial anisotropy throughout.

  3. Using Phun to Study "Perpetual Motion" Machines

    ERIC Educational Resources Information Center

    Kores, Jaroslav

    2012-01-01

    The concept of "perpetual motion" has a long history. The Indian astronomer and mathematician Bhaskara II (12th century) was the first person to describe a perpetual motion (PM) machine. An example of a 13th-century PM machine is shown in Fig. 1. Although the law of conservation of energy clearly implies the impossibility of PM construction, over…

  4. Universal properties of dark matter halos.

    PubMed

    Boyarsky, A; Neronov, A; Ruchayskiy, O; Tkachev, I

    2010-05-14

    We discuss the universal relation between density and size of observed dark matter halos that was recently shown to hold on a wide range of scales, from dwarf galaxies to galaxy clusters. Predictions of cold dark matter (ΛCDM) N-body simulations are consistent with this relation. We demonstrate that this property of ΛCDM can be understood analytically in the secondary infall model. Qualitative understanding given by this model provides a new way to predict which deviations from ΛCDM or large-scale modifications of gravity can affect universal behavior and, therefore, to constrain them observationally. PMID:20866958

  5. Halos of unified dark matter scalar field

    SciTech Connect

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino E-mail: nicola.bartolo@pd.infn.it

    2008-05-15

    We investigate the static and spherically symmetric solutions of Einstein's equations for a scalar field with a non-canonical kinetic term, assumed to provide both the dark matter and dark energy components of the Universe. In particular, we give a prescription to obtain solutions (dark halos) whose rotation curve v{sub c}(r) is in good agreement with observational data. We show that there exist suitable scalar field Lagrangians that allow us to describe the cosmological background evolution and the static solutions with a single dark fluid.

  6. Invariant mass spectroscopy of halo nuclei

    SciTech Connect

    Nakamura, Takashi

    2008-11-11

    We have applied the invariant mass spectroscopy to explore the low-lying exited states of halo nuclei at intermediate energies around 70 MeV/nucleon at RIKEN. As examples, we show here the results of Coulomb breakup study for {sup 11}Li using the Pb target, as well as breakup reactions of {sup 14}Be with p and C targets. The former study revealed a strong Coulomb breakup cross section reflecting the large enhancement of E1 strength at low excitation energies (soft E1 excitation). The latter revealed the observation of the first 2{sup +} state in {sup 14}Be.

  7. Splashback in accreting dark matter halos

    SciTech Connect

    Adhikari, Susmita; Dalal, Neal; Chamberlain, Robert T. E-mail: dalaln@illinois.edu

    2014-11-01

    Recent work has shown that density profiles in the outskirts of dark matter halos can become extremely steep over a narrow range of radius. This behavior is produced by splashback material on its first apocentric passage after accretion. We show that the location of this splashback feature may be understood quite simply, from first principles. We present a simple model, based on spherical collapse, that accurately predicts the location of splashback without any free parameters. The important quantities that determine the splashback radius are accretion rate and redshift.

  8. Resolving the stellar halos of six massive disk galaxies beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; de Jong, Roelof S.; Bailin, Jeremy; Holwerda, Benne; Streich, David

    2016-08-01

    Models of galaxy formation in a hierarchical universe predict substantial scatter in the halo-to-halo stellar properties, owing to stochasticity in galaxies' merger histories. Currently, only few detailed observations of stellar halos are available, mainly for the Milky Way and M31. We present the stellar halo color/metallicity and density profiles of red giant branch stars out to ~60 kpc along the minor axis of six massive nearby Milky Way-like galaxies beyond the Local Group from the Galaxy Halos, Outer disks, Substructure, Thick disks and Star clusters (GHOSTS) HST survey. This enlargement of the sample of galaxies with observations of stellar halo properties is needed to understand the range of possible halo properties, i.e. not only the mean properties but also the halo-to-halo scatter, what a `typical' halo looks like, and how similar the Milky Way halo is to other halos beyond the Local Group.

  9. The formation of massive black holes in z ˜ 30 dark matter haloes with large baryonic streaming velocities

    NASA Astrophysics Data System (ADS)

    Tanaka, Takamitsu L.; Li, Miao

    2014-03-01

    The origins of the ˜109 M⊙ quasar supermassive black holes (BHs) at redshifts z > 6 remain a theoretical puzzle. One possibility is that they grew from ˜105 M⊙ BHs formed in the `direct collapse' of pristine, atomic-cooling (temperatures ≳ 8000 K; PAC) gas that did not fragment to form ordinary stars due to a lack of molecular hydrogen and metals. We propose that baryonic streaming - the relic relative motion of gas with respect to dark matter from cosmological recombination - provides a natural mechanism for establishing the conditions necessary for direct collapse. This effect delays the formation of the first stars by inhibiting the infall of gas into dark matter haloes; streaming velocities more than twice the root-mean-square value could forestall star formation until halo virial temperatures ≳ 8000 K. The resulting PAC gas can proceed to form massive BHs by any of the mechanisms proposed in the literature to induce direct collapse in the absence of an ultraviolet background. This scenario produces haloes containing PAC gas at a characteristic redshift z ˜ 30. It can explain the abundance of the most luminous quasars at z ≈ 6, regardless of whether direct collapse occurs in nearly all or less than 1 per cent of PAC haloes.

  10. Radio halos in future surveys in the radio continuum

    NASA Astrophysics Data System (ADS)

    Cassano, R.; Brunetti, G.; Norris, R. P.; Röttgering, H. J. A.; Johnston-Hollitt, M.; Trasatti, M.

    2012-12-01

    Aims: Giant radio halos are Mpc-scale synchrotron sources detected in a significant fraction of massive and merging galaxy clusters. The statistical properties of radio halos can be used to discriminate among various models for the origin of non-thermal particles in galaxy clusters. Therefore, theoretical predictions are important as new radio telescopes are about to begin to survey the sky at low and high frequencies with unprecedented sensitivity. Methods: We carry out Monte Carlo simulations to model the formation and evolution of radio halos in a cosmological framework and extend previous calculations based on the hypothesis of turbulent-acceleration. We adopt a phenomenological approach by assuming that radio halos are either generated in turbulent merging clusters, or are purely hadronic sources generated in more relaxed clusters, "off-state" halos. Results: The models predict that the luminosity function of radio halos at high radio luminosities is dominated by the contribution of halos generated in turbulent clusters. The generation of these halos becomes less efficient in less massive systems causing a flattening of the luminosity function at lower radio luminosities, as also pointed out in previous studies. However, we find that potentially this can be more than compensated for by the intervening contribution of "off-state" halos that dominate at lower radio luminosities. We derive the expected number of halos to explore the potential of the EMU+WODAN surveys that will be carried out with ASKAP and Aperitif, respectively, in the near future. By restricting to clusters at redshifts ≤ 0.6, we show that the planned EMU+WODAN surveys at 1.4 GHz have the potential to detect up to about 200 new radio halos, increasing their number by one order of magnitude. A fraction of these sources will be "off-state" halos that should be found at flux level f1.4 ≤ 10 mJy, presently accessible only to deep pointed observations. We also explore the synergy between surveys

  11. The assembly bias of dark matter haloes to higher orders

    NASA Astrophysics Data System (ADS)

    Angulo, R. E.; Baugh, C. M.; Lacey, C. G.

    2008-06-01

    We use an extremely large volume (2.4h-3Gpc3), high-resolution N-body simulation to measure the higher order clustering of dark matter haloes as a function of mass and internal structure. As a result of the large simulation volume and the use of a novel `cross-moment' counts-in-cells technique which suppresses discreteness noise, we are able to measure the clustering of haloes corresponding to rarer peaks than was possible in previous studies; the rarest haloes for which we measure the variance are 100 times more clustered than the dark matter. We are able to extract, for the first time, halo bias parameters from linear up to fourth order. For all orders measured, we find that the bias parameters are a strong function of mass for haloes more massive than the characteristic mass M*. Currently, no theoretical model is able to reproduce this mass dependence closely. We find that the bias parameters also depend on the internal structure of the halo up to fourth order. For haloes more massive than M*, we find that the more concentrated haloes are more weakly clustered than the less concentrated ones. We see no dependence of clustering on concentration for haloes with masses M < M* this is contrary to the trend reported in the literature when segregating haloes by their formation time. Our results are insensitive to whether haloes are labelled by the total mass returned by the friends-of-friends group finder or by the mass of the most massive substructure. This implies that our conclusions are not an artefact of the particular choice of group finding algorithm. Our results will provide important input to theoretical models of galaxy clustering.

  12. The Prevalence of the 22 deg Halo in Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Diedenhoven, vanBastiaan

    2014-01-01

    Halos at 22 deg from the sun attributed to randomly-orientated, pristine hexagonal crystals are frequently observed through ice clouds. These frequent sightings of halos formed by pristine crystals pose an apparent inconsistency with the dominance of distorted, nonpristine ice crystals indicated by in situ and remote sensing data. Furthermore, the 46 deg halo, which is associated with pristine hexagonal crystals as well, is observed far less frequently than the 22 deg halo. Considering that plausible mechanisms that could cause crystal distortion such as aggregation, sublimation, riming and collisions are stochastic processes that likely lead to distributions of crystals with varying distortion levels, here the presence of the 22 deg and 46 deg halo features in phase functions of mixtures of pristine and distorted hexagonal ice crystals is examined. We conclude that the 22 deg halo feature is generally present if the contribution by pristine crystals to the total scattering cross section is greater than only about 10% in the case of compact particles or columns, and greater than about 40% for plates. The 46 deg halo feature is present only if the mean distortion level is low and the contribution of pristine crystals to the total scattering cross section is above about 20%, 50% and 70%, in the case of compact crystals, plates and columns, respectively. These results indicate that frequent sightings of 22 deg halos are not inconsistent with the observed dominance of distorted, non-pristine ice crystals. Furthermore, the low mean distortion levels and large contributions by pristine crystals needed to produce the 461 halo features provide a potential explanation of the common sighting of the 22 deg halo without any detectable 46 deg halo.

  13. A weak gravitational lensing recalibration of the scaling relations linking the gas properties of dark haloes to their mass

    NASA Astrophysics Data System (ADS)

    Wang, Wenting; White, Simon D. M.; Mandelbaum, Rachel; Henriques, Bruno; Anderson, Michael E.; Han, Jiaxin

    2016-03-01

    We use weak gravitational lensing to measure mean mass profiles around locally brightest galaxies (LBGs). These are selected from the Seventh Data Release of the Sloan Digital Sky Survey spectroscopic and photometric catalogues to be brighter than any neighbour projected within 1.0 Mpc and differing in redshift by <1000 km s-1. Most (>83 per cent) are expected to be the central galaxies of their dark matter haloes. Previous stacking analyses have used this LBG sample to measure mean Sunyaev-Zeldovich flux and mean X-ray luminosity as a function of LBG stellar mass. In both cases, a simulation of the formation of the galaxy population was used to estimate effective halo mass for LBGs of given stellar mass, allowing the derivation of scaling relations between the gas properties of haloes and their mass. By comparing results from a variety of simulations to our lensing data, we show that this procedure has significant model dependence reflecting: (i) the failure of any given simulation to reproduce observed galaxy abundances exactly; (ii) a dependence on the cosmology underlying the simulation; and (iii) a dependence on the details of how galaxies populate haloes. We use our lensing results to recalibrate the scaling relations, eliminating most of this model dependence and explicitly accounting both for residual modelling uncertainties and for observational uncertainties in the lensing results. The resulting scaling relations link the mean gas properties of dark haloes to their mass over an unprecedentedly wide range, 1012.5 < M500/M⊙ < 1014.5, and should fairly and robustly represent the full halo population.

  14. Formation Rates of Population III Stars and Chemical Enrichment of Halos during the Reionization Era

    NASA Astrophysics Data System (ADS)

    Trenti, Michele; Stiavelli, Massimo

    2009-04-01

    The first stars in the universe formed out of pristine primordial gas clouds that were radiatively cooled to a few hundreds of degrees kelvin either via molecular or atomic (Lyman-α) hydrogen lines. This primordial mode of star formation was eventually quenched once radiative and/or chemical (metal enrichment) feedbacks marked the transition to Population II stars. In this paper, we present a model for the formation rate of Population III stars based on Press-Schechter modeling coupled with analytical recipes for gas cooling and radiative feedback. Our model also includes a novel treatment for metal pollution based on self-enrichment due to a previous episode of Population III star formation in progenitor halos. With this model, we derive the star formation history of Population III stars, their contribution to the reionization of the universe and the time of the transition from Population III star formation in minihalos (M ≈ 106 M sun, cooled via molecular hydrogen) to that in more massive halos (M gsim 2 × 107 M sun, where atomic hydrogen cooling is also possible). We consider a grid of models highlighting the impact of varying the values for the free parameters used, such as star formation and feedback efficiency. The most critical factor is the assumption that only one Population III star is formed in a halo. In this scenario, metal-free stars contribute only to a minor fraction of the total number of photons required to reionize the universe. In addition, metal-free star formation is primarily located in minihalos, and chemically enriched halos become the dominant locus of star formation very early in the life of the universe—at redshift z ≈ 25—even assuming a modest fraction (0.5%) of enriched gas converted in stars. If instead multiple metal-free stars are allowed to form out of a single halo, then there is an overall boost of Population III star formation, with a consequent significant contribution to the reionizing radiation budget. In addition

  15. A Ly{alpha} HALO AROUND A QUASAR AT REDSHIFT z = 6.4

    SciTech Connect

    Willott, Chris J.; Chet, Savironi; Hutchings, John B.; Bergeron, Jacqueline

    2011-12-15

    We present long-slit spectroscopic data that reveal extended Ly{alpha} emission around the z = 6.417 radio-quiet quasar CFHQS J2329-0301. The Ly{alpha} emission is extended over 15 kpc and has a luminosity of >8 Multiplication-Sign 10{sup 36} W, comparable to the most luminous Ly{alpha} halos known. The emission has complex kinematics, in part due to foreground absorption, which only partly covers the extended nebula. The velocity ranges from -500 km s{sup -1} to +500 km s{sup -1}, with a peak remarkably close to the systemic velocity identified by broad Mg II emission of the quasar. There is no evidence for infall or outflow of the halo gas. We speculate that the Ly{alpha} emission mechanism is recombination after quasar photoionization of gas sitting within a high-mass dark matter halo. The immense Ly{alpha} luminosity indicates a higher covering factor of cold gas compared with typical radio-quiet quasars at lower redshift.

  16. Milky Way mass and potential recovery using tidal streams in a realistic halo

    SciTech Connect

    Bonaca, Ana; Geha, Marla; Küpper, Andreas H. W.; Johnston, Kathryn V.; Diemand, Jürg; Hogg, David W.

    2014-11-01

    We present a new method for determining the Galactic gravitational potential based on forward modeling of tidal stellar streams. We use this method to test the performance of smooth and static analytic potentials in representing realistic dark matter halos, which have substructure and are continually evolving by accretion. Our FAST-FORWARD method uses a Markov Chain Monte Carlo algorithm to compare, in six-dimensional phase space, an 'observed' stream to models created in trial analytic potentials. We analyze a large sample of streams that evolved in the Via Lactea II (VL2) simulation, which represents a realistic Galactic halo potential. The recovered potential parameters are in agreement with the best fit to the global, present-day VL2 potential. However, merely assuming an analytic potential limits the dark matter halo mass measurement to an accuracy of 5%-20%, depending on the choice of analytic parameterization. Collectively, the mass estimates using streams from our sample reach this fundamental limit, but individually they can be highly biased. Individual streams can both under- and overestimate the mass, and the bias is progressively worse for those with smaller perigalacticons, motivating the search for tidal streams at galactocentric distances larger than 70 kpc. We estimate that the assumption of a static and smooth dark matter potential in modeling of the GD-1- and Pal5-like streams introduces an error of up to 50% in the Milky Way mass estimates.

  17. Assessing compatibility of direct detection data: halo-independent global likelihood analyses

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Witte, Samuel J.

    2016-10-01

    We present two different halo-independent methods to assess the compatibility of several direct dark matter detection data sets for a given dark matter model using a global likelihood consisting of at least one extended likelihood and an arbitrary number of Gaussian or Poisson likelihoods. In the first method we find the global best fit halo function (we prove that it is a unique piecewise constant function with a number of down steps smaller than or equal to a maximum number that we compute) and construct a two-sided pointwise confidence band at any desired confidence level, which can then be compared with those derived from the extended likelihood alone to assess the joint compatibility of the data. In the second method we define a ``constrained parameter goodness-of-fit'' test statistic, whose p-value we then use to define a ``plausibility region'' (e.g. where p >= 10%). For any halo function not entirely contained within the plausibility region, the level of compatibility of the data is very low (e.g. p < 10%). We illustrate these methods by applying them to CDMS-II-Si and SuperCDMS data, assuming dark matter particles with elastic spin-independent isospin-conserving interactions or exothermic spin-independent isospin-violating interactions.

  18. HALOE Algorithm Improvements for Upper Tropospheric Sounding

    NASA Technical Reports Server (NTRS)

    Thompson, Robert E.

    2001-01-01

    This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth UARS Science Investigator Program entitled "HALOE Algorithm Improvements for Upper Tropospheric Sounding." The goal of this effort is to develop and implement major inversion and processing improvements that will extend HALOE measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multichannel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.

  19. Detecting Halo Substructure in the Gaia Era

    NASA Astrophysics Data System (ADS)

    Mateu, C.; Aguilar, L.; Bruzual, G.; Brown, A.; Valenzuela, O.; Carigi, L.; Velázquez, H.; Hernández, F.

    2014-06-01

    The observational data expected to come from the Gaia astrometric mission represent an unrivaled opportunity to search for tidal streams using all-sky full phase-space information for nearly a billion stars in our Galaxy. In this contribution we will describe the Modified Great Circle Cell Count (mGC3) method devised for the detection of stellar streams in the galactic halo. This method is based on the GC3 method originally devised by Johnston, Hernquist, & Bolte (1996), modified to include velocity information in order to enhance the contrast of stream signatures with respect to the galactic halo background. We present our results on the efficiency of mGC3, tested by embedding tidal streams from N-body simulations in a mock Gaia catalogue of the galactic background, which includes a realistic realization of the photometric and kinematic properties, errors and completeness limits. We investigate mGC3's efficiency as a function of initial satellite luminosity, star formation history and orbital parameters and find that satellites in the range 10^8-10^9 L_⊙ can be recovered for streams as dynamically old as ~10 Gyr and up to galactocentric distances of ~40 kpc. For some combinations of dynamical ages and orbits, tidal streams with luminosities down to 4-5×10^7 L_⊙ can be recovered.

  20. HALOE Algorithm Improvements for Upper Tropospheric Sounding

    NASA Technical Reports Server (NTRS)

    Thompson, Robert Earl; McHugh, Martin J.; Gordley, Larry L.; Hervig, Mark E.; Russell, James M., III; Douglass, Anne (Technical Monitor)

    2001-01-01

    This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth Upper Atmospheric Research Satellite (UARS) Science Investigator Program entitled 'HALOE Algorithm Improvements for Upper Tropospheric Sounding.' The goal of this effort is to develop and implement major inversion and processing improvements that will extend Halogen Occultation Experiment (HALOE) measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multichannel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.

  1. HALOE Algorithm Improvements for Upper Tropospheric Sounding

    NASA Technical Reports Server (NTRS)

    McHugh, Martin J.; Gordley, Larry L.; Russell, James M., III; Hervig, Mark E.

    1999-01-01

    This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth UARS Science Investigator Program entitled "HALOE Algorithm Improvements for Upper Tropospheric Soundings." The goal of this effort is to develop and implement major inversion and processing improvements that will extend HALOE measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first-year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multi-channel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.

  2. Halogen Occultation Experiment (HALOE) optical filter characterization

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1989-01-01

    The Halogen Occultation Experiment (HALOE) is a solar occultation experiment that will fly on the Upper Atmosphere Research Satellite to measure mixing ratio profiles of O3, H2O, NO2, NO, CH4, HCl, and HF. The inversion of the HALOE data will be critically dependent on a detailed knowledge of eight optical filters. A filter characterization program was undertaken to measure in-band transmissions, out-of-band transmissions, in-band transmission shifts with temperature, reflectivities, and age stability. Fourier Transform Infrared Spectrometers were used to perform measurements over the spectral interval 400/cm to 6300/cm (25 micrometers to 1.6 micrometers). Very high precision (0.1 percent T) in-band measurements and very high resolution (0.0001 percent T) out-of-band measurements have been made. The measurements revealed several conventional leaks at 0.01 percent transmission and greatly enhanced (1,000) leaks to the 2-element filters when placed in a Fabry-Perot cavity. Filter throughput changes by 5 percent for a 25 C change in filter temperature.

  3. MACHO (MAssive Compact Halo Objects) Data

    DOE Data Explorer

    The primary aim of the MACHO Project is to test the hypothesis that a significant fraction of the dark matter in the halo of the Milky Way is made up of objects like brown dwarfs or planets: these objects have come to be known as MACHOs, for MAssive Compact Halo Objects. The signature of these objects is the occasional amplification of the light from extragalactic stars by the gravitational lens effect. The amplification can be large, but events are extremely rare: it is necessary to monitor photometrically several million stars for a period of years in order to obtain a useful detection rate. For this purpose MACHO has a two channel system that employs eight CCDs, mounted on the 50 inch telescope at Mt. Stromlo. The high data rate (several GBytes per night) is accommodated by custom electronics and on-line data reduction. The Project has taken more than 27,000 images with this system since June 1992. Analysis of a subset of these data has yielded databases containing light curves in two colors for 8 million stars in the LMC and 10 million in the bulge of the Milky Way. A search for microlensing has turned up four candidates toward the Large Magellanic Cloud and 45 toward the Galactic Bulge. The web page for data provides links to MACHO Project data portals and various specialized interfaces for viewing or searching the data. (Specialized Interface)

  4. Frost halos from supercooled water droplets

    PubMed Central

    Jung, Stefan; Tiwari, Manish K.; Poulikakos, Dimos

    2012-01-01

    Water freezing on solid surfaces is ubiquitous in nature. Even though icing/frosting impairs the performance and safety in many processes, its mechanism remains inadequately understood. Changing atmospheric conditions, surface properties, the complexity of icing physics, and the unorthodox behavior of water are the primary factors that make icing and frost formation intriguing and difficult to predict. In addition to its unquestioned scientific and practical importance, unraveling the frosting mechanism under different conditions is a prerequisite to develop “icephobic” surfaces, which may avoid ice formation and contamination. In this work we demonstrate that evaporation from a freezing supercooled sessile droplet, which starts explosively due to the sudden latent heat released upon recalescent freezing, generates a condensation halo around the droplet, which crystallizes and drastically affects the surface behavior. The process involves simultaneous multiple phase transitions and may also spread icing by initiating sequential freezing of neighboring droplets in the form of a domino effect and frost propagation. Experiments under controlled humidity conditions using substrates differing up to three orders of magnitude in thermal conductivity establish that a delicate balance between heat diffusion and vapor transport determines the final expanse of the frozen condensate halo, which, in turn, controls frost formation and propagation. PMID:23012410

  5. HALOE Algorithm Improvements for Upper Tropospheric Soundings

    NASA Technical Reports Server (NTRS)

    Thompson, Robert E.; Douglass, Anne (Technical Monitor)

    2000-01-01

    This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth UARS Science Investigator Program entitled "HALOE Algorithm Improvements for Upper Tropospheric Sounding." The goal of this effort is to develop and implement major inversion and processing improvements that will extend HALOE measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multichannel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.

  6. Inhomogeneous chemical enrichment in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kobayashi, Chiaki

    2016-08-01

    In a galaxy, chemical enrichment takes place in an inhomogeneous fashion, and the Galactic Halo is one of the places where the inhomogeneous effects are imprinted and can be constrained from observations. I show this using my chemodynamical simulations of Milky Way type galaxies. The scatter in the elemental abundances originate from radial migration, merging/accretion of satellite galaxies, local variation of star formation and chemical enrichment, and intrinsic variation of nucleosynthesis yields. In the simulated galaxies, there is no strong age-metallicity relation. This means that the most metal-poor stars are not always the oldest stars, and can be formed in chemically unevolved clouds at later times. The long-lifetime sources of chemical enrichment such as asymptotic giant branch stars or neutron star mergers can contribute at low metallicities. The intrinsic variation of yields are important in the early Universe or metal-poor systems such as in the Galactic halo. The carbon enhancement of extremely metal-poor (EMP) stars can be best explained by faint supernovae, the low [α/Fe] ratios in some EMP stars naturally arise from low-mass (~ 13 - 15M ⊙) supernovae, and finally, the [α/Fe] knee in dwarf spheroidal galaxies can be produced by subclasses of Type Ia supernovae such as SN 2002cx-like objects and sub-Chandrasekhar mass explosions.

  7. Stellar Streams in the Andromeda Halo

    NASA Astrophysics Data System (ADS)

    Fardal, Mark A.; PAndAS Collaboration

    2011-05-01

    The PAndAS survey detects RGB and AGB stars in our neighbor galaxy M31, out to 150 kpc from the galaxy center with an extension to M33. Maps of this survey display a spectacular collection of stellar streams extending tens to hundreds of kpc in length. Many of these streams overlap with each other or with M31's central regions, making it difficult to disentangle the different streams. I discuss what is currently known about the nature, origin, significance, and eventual fate of these stellar streams. Photometric observations from the PAndAS survey and follow-up work constrain the metallicity, age, luminosity, and stellar mass of the stellar population. I discuss scenarios for how some of these streams formed, while for others their origin remains a mystery. I present observationally constrained numerical simulations for the formation of some of the streams. The streams also are probes of the mass profile and lumpiness of M31's dark matter halo. Spectroscopic samples are used to constrain M31's halo mass at large radius.

  8. Halo abundance matching: accuracy and conditions for numerical convergence

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Prada, Francisco; Yepes, Gustavo; Heß, Steffen; Gottlöber, Stefan

    2015-03-01

    Accurate predictions of the abundance and clustering of dark matter haloes play a key role in testing the standard cosmological model. Here, we investigate the accuracy of one of the leading methods of connecting the simulated dark matter haloes with observed galaxies- the halo abundance matching (HAM) technique. We show how to choose the optimal values of the mass and force resolution in large volume N-body simulations so that they provide accurate estimates for correlation functions and circular velocities for haloes and their subhaloes - crucial ingredients of the HAM method. At the 10 per cent accuracy, results converge for ˜50 particles for haloes and ˜150 particles for progenitors of subhaloes. In order to achieve this level of accuracy a number of conditions should be satisfied. The force resolution for the smallest resolved (sub)haloes should be in the range (0.1-0.3)rs, where rs is the scale radius of (sub)haloes. The number of particles for progenitors of subhaloes should be ˜150. We also demonstrate that the two-body scattering plays a minor role for the accuracy of N-body simulations thanks to the relatively small number of crossing-times of dark matter in haloes, and the limited force resolution of cosmological simulations.

  9. SECULAR DAMPING OF STELLAR BARS IN SPINNING DARK MATTER HALOS

    SciTech Connect

    Long, Stacy; Shlosman, Isaac; Heller, Clayton

    2014-03-01

    We demonstrate using numerical simulations of isolated galaxies that growth of stellar bars in spinning dark matter halos is heavily suppressed in the secular phase of evolution. In a representative set of models, we show that for values of the cosmological spin parameter λ ≳ 0.03, bar growth (in strength and size) becomes increasingly quenched. Furthermore, the slowdown of the bar pattern speed weakens considerably with increasing λ until it ceases completely. The terminal structure of the bars is affected as well, including extent and shape of their boxy/peanut bulges. The essence of this effect lies in the modified angular momentum exchange between the disk and the halo facilitated by the bar. For the first time we have demonstrated that a dark matter halo can emit and not purely absorb angular momentum. Although the halo as a whole is not found to emit, the net transfer of angular momentum from the disk to the halo is significantly reduced or completely eliminated. The paradigm shift implies that the accepted view that disks serve as sources of angular momentum and halos serve as sinks must be revised. Halos with λ ≳ 0.03 are expected to form a substantial fraction, based on the lognormal distribution of λ. The dependence of secular bar evolution on halo spin, therefore, implies profound corollaries for the cosmological evolution of galactic disks.

  10. The Cosmogrid Simulation: Statistical Properties of Small Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tomoaki; Rieder, Steven; Makino, Junichiro; Portegies Zwart, Simon; Groen, Derek; Nitadori, Keigo; de Laat, Cees; McMillan, Stephen; Hiraki, Kei; Harfst, Stefan

    2013-04-01

    We present the results of the "Cosmogrid" cosmological N-body simulation suites based on the concordance LCDM model. The Cosmogrid simulation was performed in a 30 Mpc box with 20483 particles. The mass of each particle is 1.28 × 105 M ⊙, which is sufficient to resolve ultra-faint dwarfs. We found that the halo mass function shows good agreement with the Sheth & Tormen fitting function down to ~107 M ⊙. We have analyzed the spherically averaged density profiles of the three most massive halos which are of galaxy group size and contain at least 170 million particles. The slopes of these density profiles become shallower than -1 at the innermost radius. We also find a clear correlation of halo concentration with mass. The mass dependence of the concentration parameter cannot be expressed by a single power law, however a simple model based on the Press-Schechter theory proposed by Navarro et al. gives reasonable agreement with this dependence. The spin parameter does not show a correlation with the halo mass. The probability distribution functions for both concentration and spin are well fitted by the log-normal distribution for halos with the masses larger than ~108 M ⊙. The subhalo abundance depends on the halo mass. Galaxy-sized halos have 50% more subhalos than ~1011 M ⊙ halos have.

  11. DM haloes in the fifth-force cosmology

    SciTech Connect

    Hellwing, Wojciech A.; Juszkiewicz, Roman; Cautun, Marius; Knebe, Alexander; Knollmann, Steffen E-mail: cautun@astro.rug.nl

    2013-10-01

    We investigate how long-range scalar interactions affect the properties of dark matter haloes. For doing so we employ the ReBEL model which implements an additional interaction between dark matter particles. On the phenomenological level this is equivalent to a modification of gravity. We analyse the differences between five ReBEL models and ΛCDM using a series of high resolution cosmological simulations. Emphasis is placed on investigating how halo properties change in the presence of a fifth force. We report that the density profile of ReBEL haloes is well described by the NFW profile but with mean concentrations from 5% to a few times higher than the standard ΛCDM value. We also find a slight increase of the halo spin for haloes more massive than 5 × 10{sup 11}M{sub ☉}, reflecting a higher rotational support of those haloes due to scalar forces. In addition, the dark matter haloes in our models are more spherical than their counterparts in ΛCDM. The ReBEL haloes are also more virialised, with a large difference from ΛCDM for strong fifth forces and a much smaller change for weak scalar interactions.

  12. Molecular bond effects in the fusion of halo nuclei

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Balantekin, A. B.

    1993-09-01

    We consider the effect of the long tail of the neutron distribution in the fusion of halo nuclei. We show that for relative separations on the order of the halo size, the exchange of the valence neutrons between the two nuclei is responsible for an effective attractive potential which decreases the Coulomb barrier and increases the fusion cross sections dramatically.

  13. The prolate dark matter halo of the Andromeda galaxy

    SciTech Connect

    Hayashi, Kohei; Chiba, Masashi E-mail: chiba@astr.tohoku.ac.jp

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  14. Investigating Halo and Ceiling Effects in Student Evaluations of Instruction

    ERIC Educational Resources Information Center

    Keeley, Jared W.; English, Taylor; Irons, Jessica; Henslee, Amber M.

    2013-01-01

    Many measurement biases affect student evaluations of instruction (SEIs). However, two have been relatively understudied: halo effects and ceiling/floor effects. This study examined these effects in two ways. To examine the halo effect, using a videotaped lecture, we manipulated specific teacher behaviors to be "good" or "bad"…

  15. Halo-Independent Comparison of Direct Dark Matter Detection Data

    DOE PAGES

    Del Nobile, Eugenio

    2014-01-01

    We review the halo-independent formalism that allows comparing data from different direct dark matter detection experiments without making assumptions on the properties of the dark matter halo. We apply this method to spin-independent WIMP-nuclei interactions, for both isospin-conserving and isospin-violating couplings, and to WIMPs interacting through an anomalous magnetic moment.

  16. Predicted space motions for hypervelocity and runaway stars: proper motions and radial velocities for the Gaia Era

    SciTech Connect

    Kenyon, Scott J.; Brown, Warren R.; Geller, Margaret J.; Bromley, Benjamin C. E-mail: wbrown@cfa.harvard.edu E-mail: bromley@physics.utah.edu

    2014-10-01

    We predict the distinctive three-dimensional space motions of hypervelocity stars (HVSs) and runaway stars moving in a realistic Galactic potential. For nearby stars with distances less than 10 kpc, unbound stars are rare; proper motions alone rarely isolate bound HVSs and runaways from indigenous halo stars. At large distances of 20-100 kpc, unbound HVSs are much more common than runaways; radial velocities easily distinguish both from indigenous halo stars. Comparisons of the predictions with existing observations are encouraging. Although the models fail to match observations of solar-type HVS candidates from SEGUE, they agree well with data for B-type HVS and runaways from other surveys. Complete samples of g ≲ 20 stars with Gaia should provide clear tests of formation models for HVSs and runaways and will enable accurate probes of the shape of the Galactic potential.

  17. SUBSTRUCTURE IN THE STELLAR HALOS OF THE AQUARIUS SIMULATIONS

    SciTech Connect

    Helmi, Amina; Cooper, A. P.; Cole, S.; Frenk, C. S.; White, S. D. M.; Navarro, J. F.

    2011-05-20

    We characterize the substructure in the simulated stellar halos of Cooper et al. which were formed by the disruption of satellite galaxies within the cosmological N-body simulations of galactic halos of the Aquarius project. These stellar halos exhibit a wealth of tidal features: broad overdensities and very narrow faint streams akin to those observed around the Milky Way. The substructures are distributed anisotropically on the sky, a characteristic that should become apparent in the next generation of photometric surveys. The normalized RMS of the density of stars on the sky appears to be systematically larger for our halos compared with the value estimated for the Milky Way from main-sequence turnoff stars in the Sloan Digital Sky Survey. We show that this is likely to be due in part to contamination by faint QSOs and redder main-sequence stars, and might suggest that {approx}10% of the Milky Way halo stars have formed in situ.

  18. The Effects of Angular Momentum on Halo Profiles

    NASA Astrophysics Data System (ADS)

    Lentz, Erik W.; Quinn, Thomas R.; Rosenberg, Leslie J.

    2016-05-01

    The near universality of DM halo density profiles provided by N-body simulations proved to be robust against changes in total mass density, power spectrum, and some forms of initial velocity dispersion. Here we study the effects of coherently spinning up an isolated DM-only progenitor on halo structure. Halos with spins within several standard deviations of the simulated mean (λ ≲ 0.20) produce profiles with negligible deviations from the universal form. Only when the spin becomes quite large (λ ≳ 0.20) do departures become evident. The angular momentum distribution also exhibits a near universal form, which is also independent of halo spin up to λ ≲ 0.20. A correlation between these epidemic profiles and the presence of a strong bar in the virialized halo is also observed. These bar structures bear resemblance to the radial orbit instability in the rotationless limit.

  19. STATISTICS OF DARK MATTER HALOS FROM THE EXCURSION SET APPROACH

    SciTech Connect

    Lapi, A.; Salucci, P.; Danese, L.

    2013-08-01

    We exploit the excursion set approach in integral formulation to derive novel, accurate analytic approximations of the unconditional and conditional first crossing distributions for random walks with uncorrelated steps and general shapes of the moving barrier; we find the corresponding approximations of the unconditional and conditional halo mass functions for cold dark matter (DM) power spectra to represent very well the outcomes of state-of-the-art cosmological N-body simulations. In addition, we apply these results to derive, and confront with simulations, other quantities of interest in halo statistics, including the rates of halo formation and creation, the average halo growth history, and the halo bias. Finally, we discuss how our approach and main results change when considering random walks with correlated instead of uncorrelated steps, and warm instead of cold DM power spectra.

  20. Reversed halo sign in pneumocystis pneumonia: a case report

    PubMed Central

    2010-01-01

    Background The reversed halo sign may sometimes be seen in patients with cryptogenic organizing pneumonia, but is rarely associated with other diseases. Case presentation We present a case study of a 32-year-old male patient with acquired immunodeficiency syndrome, who had previously been treated with chemotherapy for non-Hodgkin's lymphoma. A chest X-ray showed bilateral patchy infiltrates. High-resolution computed tomography revealed the reversed halo sign in both upper lobes. The patient was diagnosed with pneumocystis pneumonia, which was successfully treated with sulfamethoxazole trimethoprim; the reversed halo sign disappeared, leaving cystic lesions. Cases such as this one are rare, but show that the reversed halo sign may occur in patients who do not have cryptogenic organizing pneumonia. Conclusion Physicians can avoid making an incorrect diagnosis and prescribing the wrong treatment by carefully evaluating all clinical criteria rather than assuming that the reversed halo sign only occurs with cryptogenic organizing pneumonia. PMID:21092271

  1. The Origin of the Metal-Poor Common Proper Motion Pair HD 134439/134440: Insights from New Elemental Abundances

    NASA Astrophysics Data System (ADS)

    Chen, Yu; King, Jeremy R.; Boesgaard, Ann M.

    2014-11-01

    The low [α/Fe] ratio in the metal-poor ([Fe/H] ~ -1.50) common proper motion pair HD 134439 and HD 134440 has been variously attributed to chemical evolution in an extragalactic environment with an irregular star formation history, planetesimal accretion, and formation in an environment with an unusually high dust-to-gas ratio. We explore these various putative origins using CNO, Be, Ag, and Eu abundances derived from high-resolution near-UV Keck/HIRES spectroscopy. While we confirm a previously suggested correlation between elemental abundance ratios and condensation temperature at the 95% confidence level, these ratios lie within the continuum of values manifested by extant dSph data. We argue that the most plausible origin of our stars' distinctive abundance distribution relative to the Galactic halo field is formation in an environment chemically dominated by products of Type II SN of low progenitor mass; such a progenitor mass bias has been previously suggested as an explanation of low α-element ratios of dSph stars. The proper motion pair's heavy-to-light n-capture element ratio, which is >=0.3-0.5 dex lower than in the Galactic halo field and dSph stars, is discussed in the context of the truncated r-process, phenomenological n-capture production models, and α-rich freezeout in a high neutron excess environment; the latter simultaneously provides an attractive explanation of the difference in [Ca, Ti/O, Mg, Si] ratio in HD 134439/134440 compared to in situ dSph stars.

  2. Probing the Galactic halo along the 3C 273 sight line using IUE

    NASA Technical Reports Server (NTRS)

    Burks, Geoffrey S.; York, Donald G.; Blades, J. C.; Bohlin, Ralph C.; Wamsteker, Willem

    1991-01-01

    High-resolution spectra of the QSO 3C 273 were obtained in 1989 and added to two spectra recorded in 1982. The coadded spectra represent 600,000 s of integration at a resolution of 30 km/s from 1200 to 2000 A. The line of sight passes through the Virgo Cluster the entire halo of the Milky Way, at Galactic latitude b = 64 deg, and foreground X-ray-emitting material from local disturbed gas. The observed equivalent width of Galactic C IV is greater than the equivalent width of C II, a situation that is uncommon in local gas but is often found in QSO absorption line systems. The lines of C IV, Al III, and Si IV may arise in an extended halo or may be associated with local disturbed gas in a radio loop. The remaining detected species (H I, C II, Si II) arise predominately from the local gas. Most of the gas is probably within 5 kpc, but no firm conclusion is reached. Possible detection of interstellar absorption due to the Virgo Cluster is discussed.

  3. Contributions to the Galactic Halo from In-Situ, Kicked-Out, and Accreted Stars

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson; Johnston, Kathryn V.; Cunha, Katia; Smith, Verne; Majewski, Steven

    2015-08-01

    The chemical and kinematical properties of stars in the Galactic halo provide a means to study the formation history of the Milky Way. Stars formed within a satellite galaxy will bear the imprint of their host dark matter subhalo: star formation is less efficient in less massive protogalactic clumps, so we should observe a specific pattern in [Fe/H] as a function of α-elements and slow/rapid neutron capture elements that reflects this efficiency. Due to their formation in Type II supernovae, α-elements probe the relative timescale of formation for populations of stars. The addition of s- and r-process elements gives a more complete evolutionary picture of the Galaxy. The yields of s- and r-process elements, which are synthesized in Type II supernovae and thermally pulsating AGB stars, respectively, are coupled to the Fe seed nuclei present in the formation site; thus, neutron capture element yields vary with metallicity and provide further constraints on the subhalo’s star formation history.We will report chemical abundances for a sample of 109 M giants in the nearby halo of the Milky Way. The stars were selected for high-resolution spectroscopy based upon their radial velocities: the radial velocities vary significantly from those expected for stars moving on uniform circular orbits in the Galactic disk. Thus, we expect a sample dominated by halo stars. Abundances are derived for α-elements and neutron capture elements. By analyzing the multi-dimensional abundance space, the formation site of the halo giants can be assessed. Of particular interest are a class of stars that form in situ, deep in the Milky Way’s gravitational potential well, but are “kicked out” of the disk into the halo due to a perturbation event. A kicked-out population has recently been identified in Andromeda. N-body simulations predict a range in the percentage of stars belonging to the kicked-out disk population in galaxies. We will present our results within the context of

  4. Abundances of D, O, and other species towards the Halo Star HD 93521

    NASA Astrophysics Data System (ADS)

    Kruk, J. W.; Oliveira, C.; Sembach, K. R.; Savage, B. D.

    2006-06-01

    FUSE spectra of the halo star HD 93521 have been analyzed to determine column densities of D I, O I, N I, Ar I, Fe II, and H2 in the intermediate velocity cloud (IVC) along the line of sight. Combining these results with those from GHRS and ground-based spectra provides a comprehensive inventory of abundances in the IVC. We find a relatively high value for D/H (17.4 ppm), near solar abundances and low depletions for refractory elements, and a very low molecular fraction.

  5. VizieR Online Data Catalog: Halo red giants from the SEGUE survey (Martell+, 2011)

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smolinski, J. P.; Beers, T. C.; Grebel, E. K.

    2011-09-01

    Table 1 lists SDSS identifiers, astrometry and photometry, stellar parameters and survey name for 2519 stars observed as part of the SDSS-II/SEGUE-1 and SDSS-III/SEGUE-2 surveys. The stars in this table were selected as red giants with halo-like metallicities (-1.8<[Fe/H]<-1.0) and reasonably clean spectra (mean S/N per pixel between 4000 and 4100A greater than 15). Table 3 lists SDSS identifiers, CN and CH bandstrength indices, CN bandstrength class, absolute r magnitudes, heliocentric and Galactocentric distances, and survey name, for the same stars as in Table 1. (2 data files).

  6. Zooming in on accretion - I. The structure of halo gas

    NASA Astrophysics Data System (ADS)

    Nelson, Dylan; Genel, Shy; Pillepich, Annalisa; Vogelsberger, Mark; Springel, Volker; Hernquist, Lars

    2016-08-01

    We study the properties of gas in and around 1012 M⊙ haloes at z = 2 using a suite of high-resolution cosmological hydrodynamic `zoom' simulations. We quantify the thermal and dynamical structure of these gaseous reservoirs in terms of their mean radial distributions and angular variability along different sightlines. With each halo simulated at three levels of increasing resolution, the highest reaching a baryon mass resolution of ˜10 000 solar masses, we study the interface between filamentary inflow and the quasi-static hot halo atmosphere. We highlight the discrepancy between the spatial resolution available in the halo gas as opposed to within the galaxy itself, and find that stream morphologies become increasingly complex at higher resolution, with large coherent flows revealing density and temperature structure at progressively smaller scales. Moreover, multiple gas components co-exist at the same radius within the halo, making radially averaged analyses misleading. This is particularly true where the hot, quasi-static, high entropy halo atmosphere interacts with cold, rapidly inflowing, low entropy accretion. Haloes at this mass have a well-defined virial shock, associated with a sharp jump in temperature and entropy at ≳ 1.25 rvir. The presence, radius, and radial width of this boundary feature, however, vary not only from halo to halo, but also as a function of angular direction, covering roughly ˜75 per cent of the 4π sphere. We investigate the process of gas virialization as imprinted in the halo structure, and discuss different modes for the accretion of gas from the intergalactic medium.

  7. Binary white dwarfs in the halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    2014-09-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolution of low-metallicity halo stars at distances up to ~3 kpc using the binary population synthesis code SeBa. We use two different white dwarf cooling models to predict the present-day luminosities of halo white dwarfs. We determine the white dwarf luminosity functions (WDLFs) for eight different halo models and compare these with the observed halo WDLF of white dwarfs in the SuperCOSMOS Sky Survey. Furthermore, we predict the properties of binary white dwarfs in the halo and determine the number of halo white dwarfs that is expected to be observed with the Gaia satellite. Results: By comparing the WDLFs, we find that a standard IMF matches the observations more accurately than a top-heavy one, but the difference with a bottom-heavy IMF is small. A burst of star formation 13 Gyr ago fits slightly better than a star formation burst 10 Gyr ago and also slightly better than continuous star formation 10-13 Gyr ago. Gaia will be the first instument to constrain the bright end of the field halo WDLF, where contributions from binary WDs are considerable. Many of these will have He cores, of which a handful have atypical surface gravities (log g < 6) and reach luminosities log (L/L⊙) > 0 in our standard model for WD cooling. These so called pre-WDs, if observed, can help us to constrain white dwarf cooling models and might teach us something about the fraction of halo stars that reside in binaries. Appendices are available in electronic form at http://www.aanda.org

  8. Mapping the Galactic Halo. I. The ``Spaghetti'' Survey

    NASA Astrophysics Data System (ADS)

    Morrison, Heather L.; Mateo, Mario; Olszewski, Edward W.; Harding, Paul; Dohm-Palmer, R. C.; Freeman, Kenneth C.; Norris, John E.; Morita, Miwa

    2000-05-01

    We describe a major survey of the Milky Way halo designed to test for kinematic substructure caused by destruction of accreted satellites. We use the Washington photometric system to identify halo stars efficiently for spectroscopic follow-up. Tracers include halo giants (detectable out to more than 100 kpc), blue horizontal-branch (BHB) stars, halo stars near the main-sequence turnoff, and the ``blue metal-poor stars'' of Preston, Beers, & Shectman. We demonstrate the success of our survey by showing spectra of stars we have identified in all these categories, including giants as distant as 75 kpc. We discuss the problem of identifying the most distant halo giants. In particular, extremely metal-poor halo K dwarfs are present in approximately equal numbers to the distant giants for V>18, and we show that our method will distinguish reliably between these two groups of metal-poor stars. We plan to survey 100 deg2 at high Galactic latitude and expect to increase the numbers of known halo giants, BHB stars, and turnoff stars by more than an order of magnitude. In addition to the strong test that this large sample will provide for the question, Was the Milky Way halo accreted from satellite galaxies? we will improve the accuracy of mass measurements of the Milky Way beyond 50 kpc via the kinematics of the many distant giants and BHB stars we find. We show that one of our first data sets constrains the halo density law over Galactocentric radii of 5-20 kpc and z-heights of 2-15 kpc. The data support a flattened power-law halo with b/a of 0.6 and exponent -3.0. More complex models with a varying axial ratio may be needed with a larger data set.

  9. ON THE ORIGINS OF THE DIFFUSE H{alpha} EMISSION: IONIZED GAS OR DUST-SCATTERED H{alpha} HALOS?

    SciTech Connect

    Seon, Kwang-Il; Witt, Adolf N.

    2012-10-20

    It is known that the diffuse H{alpha} emission outside of bright H II regions not only are very extended, but also can occur in distinct patches or filaments far from H II regions, and the line ratios of [S II] {lambda}6716/H{alpha} and [N II] {lambda}6583/H{alpha} observed far from bright H II regions are generally higher than those in the H II regions. These observations have been regarded as evidence against the dust-scattering origin of the diffuse H{alpha} emission (including other optical lines), and the effect of dust scattering has been neglected in studies on the diffuse H{alpha} emission. In this paper, we reexamine the arguments against dust scattering and find that the dust-scattering origin of the diffuse H{alpha} emission cannot be ruled out. As opposed to the previous contention, the expected dust-scattered H{alpha} halos surrounding H II regions are, in fact, in good agreement with the observed H{alpha} morphology. We calculate an extensive set of photoionization models by varying elemental abundances, ionizing stellar types, and clumpiness of the interstellar medium (ISM) and find that the observed line ratios of [S II]/H{alpha}, [N II]/H{alpha}, and He I {lambda}5876/H{alpha} in the diffuse ISM accord well with the dust-scattered halos around H II regions, which are photoionized by late O- and/or early B-type stars. We also demonstrate that the H{alpha} absorption feature in the underlying continuum from the dust-scattered starlight ({sup d}iffuse galactic light{sup )} and unresolved stars is able to substantially increase the [S II]/H{alpha} and [N II]/H{alpha} line ratios in the diffuse ISM.

  10. Gas phase abundances and conditions along the sight line to the low-halo, inner galaxy star HD 167756

    NASA Technical Reports Server (NTRS)

    Cardelli, Jason A.; Sembach, Kenneth R.; Savage, Blair D.

    1995-01-01

    We present high-resolution (3.5 km/s) Goddard High Resolution Spectrograph (GHRS) measurements of the Mg II, Si II, Cr II, Fe II, and Zn II lines toward HD 167756, a low-latitude halo star at a distance of 4 kpc in the direction l = 351.5 deg, b = -12.3 and at a Galactic altitude of z = -0.85 kpc. Supplemental Na I, Ca II, and H I data are also presented for comparison with the UV lines. Our analysis centers on converting the observed absoprtion-line data into measures of the apparent column density per unit velocity. N(sub a)(v), over the velocity range -25 less than or = v(sub lsr) less than 30 km/s for each species observed. We use these N(sub a)(v) profiles to construct logarithmic abundance ratios of Mg II, Si II, Cr II, Fe II, and Ca II relative to Zn II, normalized to solar abundances, as a function of velocity. Compared to Zn, these species show an underabundance relative to their solar values, with the largest underabundances occurring in the v(sub lsr) approximately equals 5 km/s component(s), for which we find logarithmic abundances A(sub Si/Zn) greater than -0.38, A(Mg/Zn) = -0.82, A(sub Cr/Zn) = -1.18, and A(sub Fe/Zn) greater than 1.40 dex. We show that ionization effects, abundance gradients, or intrinsic abundance variability cannot be significant sources for the underabundances observed. The most likely explanation is gas phase depletion of elements onto dust grains. Comparisons with the gas phase abundances along other diffuse, warm gas sight lines, like the halo sight line to HD 93521, support this interpretation as do the derived physical properties of the sight line.

  11. Motion Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  12. Cosmological shock waves: clues to the formation history of haloes

    NASA Astrophysics Data System (ADS)

    Planelles, Susana; Quilis, Vicent

    2013-01-01

    Shock waves developed during the formation and evolution of cosmic structures are key features encoding crucial information on the hierarchical formation of the Universe. We present the analysis of an Eulerian adaptive mesh refinement hydrodynamical and N-body simulation in a Λ cold dark matter cosmology especially focused on the study of cosmological shock waves. The combination of a shock-capturing algorithm together with the use of a halo finder allows us to study the morphological structures of the shock patterns, the statistical properties of shocked cells and the correlations between the cosmological shock waves appearing at different scales and the properties of the haloes harbouring them. According to their localization with respect to the population of haloes in the simulation, shocks can be split into two broad classes: internal weak shocks related with evolutionary events within haloes and external strong shocks associated with large-scale events. The shocks' segregation according to their characteristic sizes is also visible in the shock distribution function. This function contains information on the abundances and strength of the different shocks, and it can be fitted by a double power law with a break in the slope around a Mach number of 20. We introduce a generalized scaling relation that correlates the average Mach numbers within the virial radius of haloes and their virial masses. In this plane, Mach number-virial mass, two well-differentiated regimes appear. Haloes occupy different areas of such plane according to their early evolutionary histories: those haloes with a relatively quiet evolution have an almost constant Mach number independently of their masses, whereas haloes undergoing significant merger events very early in their evolution show a linear dependence on their masses. At high redshift, the distribution of haloes in this plane forms an L-like pattern that evolves with time, bending the vertical branch towards the horizontal one. We

  13. THE OVERDENSITY AND MASSES OF THE FRIENDS-OF-FRIENDS HALOS AND UNIVERSALITY OF HALO MASS FUNCTION

    SciTech Connect

    More, Surhud; Kravtsov, Andrey V.; Dalal, Neal; Gottloeber, Stefan

    2011-07-01

    The friends-of-friends algorithm (hereafter FOF) is a percolation algorithm which is routinely used to identify dark matter halos from N-body simulations. We use results from percolation theory to show that the boundary of FOF halos does not correspond to a single density threshold but to a range of densities close to a critical value that depends upon the linking length parameter, b. We show that for the commonly used choice of b = 0.2, this critical density is equal to 81.62 times the mean matter density. Consequently, halos identified by the FOF algorithm enclose an average overdensity which depends on their density profile (concentration) and therefore changes with halo mass, contrary to the popular belief that the average overdensity is {approx}180. We derive an analytical expression for the overdensity as a function of the linking length parameter b and the concentration of the halo. Results of tests carried out using simulated and actual FOF halos identified in cosmological simulations show excellent agreement with our analytical prediction. We also find that the mass of the halo that the FOF algorithm selects crucially depends upon mass resolution. We find a percolation-theory-motivated formula that is able to accurately correct for the dependence on number of particles for the mock realizations of spherical and triaxial Navarro-Frenk-White halos. However, we show that this correction breaks down when applied to the real cosmological FOF halos due to the presence of substructures. Given that abundance of substructure depends on redshift and cosmology, we expect that the resolution effects due to substructure on the FOF mass and halo mass function will also depend on redshift and cosmology and will be difficult to correct for in general. Finally, we discuss the implications of our results for the universality of the mass function.

  14. WSRT HI imaging of candidate gas-bearing dark matter halos in the Local Group

    NASA Astrophysics Data System (ADS)

    Adams, Elizabeth A.; Oosterloo, Tom; Cannon, John M.; Giovanelli, Riccardo; Haynes, Martha P.

    2016-01-01

    A long standing problem in cosmology is the mismatch between the number of low mass dark matter halos predicted by simulations and the number of low mass galaxies observed in the Local Group. We recently presented a set of isolated ultra-compact high velocity clouds (UCHVCs) identified within the dataset of the Arecibo Legacy Fast ALFA (ALFALFA) HI line survey that are consistent with representing low mass gas-bearing dark matter halos within the Local Group (Adams+ 2013). At distances of ~1 Mpc, the UCHVCs have HI masses of ~10^5 Msun and indicative dynamical masses of ~10^7 Msun. The HI diameters of the UCHVCs range from 4' to 20', or 1 to 6 kpc at a distance of 1 Mpc. We have selected the most compact and isolated UCHVCs with the highest average column densities as representing the best galaxy candidates. These systems have been observed with the Westerbork Synthesis Radio Telescope (WSRT) to enable higher spatial resolution studies of the HI distribution. From these data, the sources break into two clear categories. Two of the sources maintain a smooth HI morphology at higher resolution, show a velocity gradient and have the highest peak column densities of the sample, indicating they are good candidates to represent gas in dark matter halos. In fact, one of these sources, AGC 198606, has a tentative stellar counterpart detection (Janesh+ 2015). Nine of the sources break into clumps at higher angular resolution, show no ordered velocity motion, and have significantly lower peak column densities, indicating they are likely Galactic halo HI clouds. One source straddles the two categories with a relatively smooth HI morphology and some evidence for ordered velocity motion while having a lower peak column density. These observations show that higher resolution HI data is a good way to address the galaxy hypothesis for isolated HI clouds, and future HI surveys with phased-array feeds on interferometers, such as Apertif, will be able to directly detect and

  15. Probing the galactic disk and halo. 1: The NGC 3783 sight line

    NASA Technical Reports Server (NTRS)

    Lu, Limin; Savage, Blair D.; Sembach, Kenneth R.

    1994-01-01

    We report a study of Galactic disk and halo absorption toward the Seyfert galaxy NGC 3783 which has Galactic coordinates l = 287.46 and b = +22.95. The data were obtained with the Goddard High Resolution Spectrograph operating at medium resolution with the Large Science Aperture, which produces a line spread function having a sharp core (full width at half maximum (FWHM) approximately 20 km/s) and broad wings extending to +/- 70 km/s. Ion species detected in absorption near zero LSR velocity include C IV and N V for high ions, and C I, Mg II, Si II, and S II for low ions. Absorption from a high-velocity cloud (HVC) at a velocity of +240 km/s along the sight line is also detected in the ion species of S II, Si II, and probably C I. This is the first reported case where S II and C I absorption has been detected in a HVC. The S II lines are especially useful since metal abundance estimates based on S are largely unaffected by dust grains. The study is aided by the availability of 21 cm emission data.

  16. M31AGES: Studying the intermediate-aged populations in the satellites, smooth halo, and substructure of Andromeda

    NASA Astrophysics Data System (ADS)

    Hamren, Katherine; Beaton, Rachael; Guhathakurta, Puragra; Majewski, Steven R.; M31AGES Survey Team

    2016-01-01

    Recent large-scale surveys of M31 have enabled the study of its satellites, smooth halo, and substructure in exquisite detail. In particular, the Spectroscopic Landscape of Andromeda's Stellar Halo (SPLASH) survey has obtained moderate resolution optical spectra with the DEIMOS spectrograph on the Keck II/10-m telescope, and optical photometry from various ground-based telescopes. These data have been used to map the kinematics and metallicity distributions in the dSphs and dEs, detect and characterize substructure, and study the large-scale radial surface brightness and metallicity profiles of the "smooth" halo. Notwithstanding this progress [or] In spite of these advances, there are a number of outstanding questions that cannot be answered with these data alone, including the fraction of the halo that was formed in situ vs by accretion, and the degeneracy between massive early accretion events and less massiverecent accretion events. The M31 Asymptotic Giant Extended Survey (M31AGES) aims to address these questions by using NIR photometry to identify intermediate-age AGB stars in the satellites, streams, and smoothhalo of M31. We present the details of the observations (now completed), the plan for public release of data products, and preliminary results.

  17. Solitonic axion condensates modeling dark matter halos

    SciTech Connect

    Castañeda Valle, David Mielke, Eckehard W.

    2013-09-15

    Instead of fluid type dark matter (DM), axion-like scalar fields with a periodic self-interaction or some truncations of it are analyzed as a model of galaxy halos. It is probed if such cold Bose–Einstein type condensates could provide a viable soliton type interpretation of the DM ‘bullets’ observed by means of gravitational lensing in merging galaxy clusters. We study solitary waves for two self-interacting potentials in the relativistic Klein–Gordon equation, mainly in lower dimensions, and visualize the approximately shape-invariant collisions of two ‘lump’ type solitons. -- Highlights: •An axion model of dark matter is considered. •Collision of axion type solitons are studied in a two dimensional toy model. •Relations to dark matter collisions in galaxy clusters are proposed.

  18. The Stellar Halos of Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, Jenny E.; Murphy, Jeremy D.; Comerford, Julia M.; Gebhardt, Karl; Adams, Joshua J.

    2012-05-01

    We use the Mitchell Spectrograph (formerly VIRUS-P) on the McDonald Observatory 2.7 m Harlan J. Smith Telescope to search for the chemical signatures of massive elliptical galaxy assembly. The Mitchell Spectrograph is an integral-field spectrograph with a uniquely wide field of view (107'' × 107''), allowing us to achieve remarkably high signal-to-noise ratios of ~20-70 pixel-1 in radial bins of 2-2.5 times the effective radii of the eight galaxies in our sample. Focusing on a sample of massive elliptical galaxies with stellar velocity dispersions σ* > 150 km s-1, we study the radial dependence in the equivalent widths (EW) of key metal absorption lines. By twice the effective radius, the Mgb EWs have dropped by ~50%, and only a weak correlation between σ* and Mgb EW remains. The Mgb EWs at large radii are comparable to those seen in the centers of elliptical galaxies that are ~ an order of magnitude less massive. We find that the well-known metallicity gradients often observed within an effective radius continue smoothly to 2.5 Re , while the abundance ratio gradients remain flat. Much like the halo of the Milky Way, the stellar halos of our galaxies have low metallicities and high α-abundance ratios, as expected for very old stars formed in small stellar systems. Our observations support a picture in which the outer parts of massive elliptical galaxies are built by the accretion of much smaller systems whose star formation history was truncated at early times.

  19. The outer haloes of massive, elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Das, Payel; Gerhard, Ortwin; de Lorenzi, Flavio; McNeil, Emily; Churazov, Eugene; Coccato, Lodovico

    2010-11-01

    The outer haloes of massive elliptical galaxies are dark-matter dominated regions where stellar orbits have longer dynamical timescales than the central regions and therefore better preserve their formation history. Dynamical models out to large radii suffer from a degeneracy between mass and orbital structure, as the outer kinematics are unable to resolve higher moments of the line-of-sight velocity distribution. We mitigate this degeneracy for a sample of quiescent, massive, nearby ellipticals by determining their mass distributions independently using a non-parametric method on X-ray observations of the surrounding hot interstellar medium. We then create dynamical models using photometric and kinematic constraints consisting of integral-eld, long-slit and planetary nebulae (PNe) data extending to ~50 kpc. The rst two galaxies of our sample, NGC 5846 and NGC 1399, were found to have very shallow pro jected light distributions with a power law index of ~1.5 and a dark matter content of 70-80% at 50 kpc. Spherical Jeans models of the data show that, in the outer haloes of both galaxies, the pro jected velocity dispersions are almost inde- pendent of the anisotropy and that the PNe prefer the lower end of the range of mass distributions consistent with the X-ray data. Using the N-body code NMAGIC, we cre- ated axisymmetric models of NGC 5846 using the individual PNe radial velocities in a likelihood method and found them to be more constraining than the binned velocity dispersions. Characterising the orbital structure in terms of spherically averaged proles of the velocity dispersions we nd σψ > σr > σθ.

  20. Optimal linear reconstruction of dark matter from halo catalogues

    DOE PAGES

    Cai, Yan -Chuan; Bernstein, Gary; Sheth, Ravi K.

    2011-04-01

    The dark matter lumps (or "halos") that contain galaxies have locations in the Universe that are to some extent random with respect to the overall matter distributions. We investigate how best to estimate the total matter distribution from the locations of the halos. We derive the weight function w(M) to apply to dark-matter haloes that minimizes the stochasticity between the weighted halo distribution and its underlying mass density field. The optimal w(M) depends on the range of masses of halos being used. While the standard biased-Poisson model of the halo distribution predicts that bias weighting is optimal, the simple factmore » that the mass is comprised of haloes implies that the optimal w(M) will be a mixture of mass-weighting and bias-weighting. In N-body simulations, the Poisson estimator is up to 15× noisier than the optimal. Optimal weighting could make cosmological tests based on the matter power spectrum or cross-correlations much more powerful and/or cost effective.« less

  1. Discovery of solar system-size halos around young stars

    NASA Technical Reports Server (NTRS)

    Beckwith, S.; Skrutskie, M. F.; Zuckerman, B.; Dyck, H. M.

    1984-01-01

    Near-infrared speckle interferometric observations of five pre-main-sequence stars reveal a core-halo structure around two of these stars: HL Tau and R Mon. The halo light distribution is shown to arise from scattered light from small circumstellar particles. Halo sizes of 320 x 200 AU (alpha x delta FWHM) and 1300 x 1300 AU are deduced for HL Tau and R Mon, respectively, and the halo light is substantially bluer than the stellar light. The minimum mass of small particles in the scattering regions is comparable to the earth's mass in HL Tau and ten times greater in R Mon. Mass loss from the stars is almost certainly insufficient to produce the halo matter. The halos probably consist of relatively slowly moving matter bound gravitationally to the stars. From the size and mass of the circumstellar matter, it appears likely that these halos are in the early stage in the formation of planet-forming disks around the young stars.

  2. Historic halo displays as weather indicator: Criteria and examples

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Dagmar L.; Neuhäuser, Ralph

    2016-04-01

    There are numerous celestial signs reported in historic records, many of them refer to atmospheric ("sub-lunar") phenomena, such as ice halos and aurorae. In an interdisciplinary collaboration between astrophysics and cultural astronomy, we noticed that celestial observations including meteorological phenomena are often misinterpreted, mostly due to missing genuine criteria: especially ice crystal halos were recorded frequently in past centuries for religious reasons, but are mistaken nowadays often for other phenomena like aurorae. Ice halo displays yield clear information on humidity and temperature in certain atmospheric layers, and thereby indicate certain weather patterns. Ancient so-called rain makers used halo observations for weather forecast; e.g., a connection between certain halo displays and rain a few day later is statistically significant. Ice halos exist around sun and moon and are reported for both (they can stay for several days): many near, middle, and far eastern records from day- and night-time include such observations with high frequency. (Partly based on publications on halos by D.L. Neuhäuser & R. Neuhäuser, available at http://www.astro.uni-jena.de/index.php/terra-astronomy.html)

  3. Optimal linear reconstruction of dark matter from halo catalogues

    SciTech Connect

    Cai, Yan -Chuan; Bernstein, Gary; Sheth, Ravi K.

    2011-04-01

    The dark matter lumps (or "halos") that contain galaxies have locations in the Universe that are to some extent random with respect to the overall matter distributions. We investigate how best to estimate the total matter distribution from the locations of the halos. We derive the weight function w(M) to apply to dark-matter haloes that minimizes the stochasticity between the weighted halo distribution and its underlying mass density field. The optimal w(M) depends on the range of masses of halos being used. While the standard biased-Poisson model of the halo distribution predicts that bias weighting is optimal, the simple fact that the mass is comprised of haloes implies that the optimal w(M) will be a mixture of mass-weighting and bias-weighting. In N-body simulations, the Poisson estimator is up to 15× noisier than the optimal. Optimal weighting could make cosmological tests based on the matter power spectrum or cross-correlations much more powerful and/or cost effective.

  4. Characterization of Polar Mesospheric Clouds Using Infrared Measurements From HALOE

    NASA Technical Reports Server (NTRS)

    Hervig, Mark E.

    2002-01-01

    Measurements from the Halogen Occultation Experiment (HALOE) revealed the infrared signature of polar mesospheric clouds (PMCs), for the first time, HALOE PMC observations at eight wavelengths (2.45 - 10 microns) show remarkable agreement with model PMC spectra based on ice particle extinction, and thus provide the first confirmation that water ice is the primary component of PMCs. Because PMCs respond to changes in temperature and water vapor, they are considered an indicator of global climate change. We propose to further the understanding of PMCs using a decade of infrared measurements form HALOE. This effort will characterize PMC spectral properties, extinction profiles, and size distributions. Using this information, HALOE measurements will be used to make simultaneous retrievals of H2O, O3, and temperature, in the presence of PMCs. The simultaneous retrievals of particle properties, H2O, O3, and temperature will be used with HALOE NO data to provide a significant step forward in the knowledge of PMC characteristics and formation conditions. We will challenge fundamental theories of PMC formation, and investigate changes in PMC properties and related conditions over the length of the HALOE measurement record. HALOE has been operating without flaw since it was launched on October 11, 1991. Consequently, ten southern and ten northern PMC seasons have been observed thus far, providing a wealth of data for the study of PMCs and related parameters.

  5. Characterization of Polar Mesospheric Clouds Using Infrared Measurements from HALOE

    NASA Technical Reports Server (NTRS)

    Hervig, Mark E.

    2002-01-01

    Measurements from the Halogen Occultation Experiment (HALOE) revealed the infrared signature of polar mesospheric clouds (PMCs), for the first time, HALOE PMC observations at eight wavelengths (2.45 - 10 microns) show remarkable agreement with model PMC spectra based on ice particle extinction, and thus provide the first confirmation that water ice is the primary component of PMCs. Because PMCs respond to changes in temperature and water vapor, they are considered an indicator of global climate change. We propose to further the understanding of PMCs using a decade of infrared measurements form HALOE. This effort will characterize PMC spectral properties, extinction profiles, and size distributions. Using this information, HALOE measurements will be used to make simultaneous retrievals of H2O3, and temperature, in the presence of PMCs. The simultaneous retrievals of particle properties, H2O3, and temperature will be used with HALOE NO data to provide a significant step forward in the knowledge of PMC characteristics and formation conditions. We will challenge fundamental theories of PMC formation, and investigate changes in PMC properties and related conditions over the length of the HALOE measurement record. HALOE has been operating without flaw since it was launched on October 11, 1991. Consequently, ten southern and ten northern PMC seasons have been observed thus far, providing a wealth of data for the study of PMC and related parameters.

  6. Bar formation and evolution in disc galaxies with gas and a triaxial halo: morphology, bar strength and halo properties

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.; Machado, Rubens E. G.; Rodionov, S. A.

    2013-03-01

    We follow the formation and evolution of bars in N-body simulations of disc galaxies with gas and/or a triaxial halo. We find that both the relative gas fraction and the halo shape play a major role in the formation and evolution of the bar. In gas-rich simulations, the disc stays near-axisymmetric much longer than in gas-poor ones, and, when the bar starts growing, it does so at a much slower rate. Because of these two effects combined, large-scale bars form much later in gas-rich than in gas-poor discs. This can explain the observation that bars are in place earlier in massive red disc galaxies than in blue spirals. We also find that the morphological characteristics in the bar region are strongly influenced by the gas fraction. In particular, the bar at the end of the simulation is much weaker in gas-rich cases. The quality of our simulations is such as to allow us to discuss the question of bar longevity because the resonances are well resolved and the number of gas particles is sufficient to describe the gas flow adequately. In no case did we find a bar which was destroyed. Halo triaxiality has a dual influence on bar strength. In the very early stages of the simulation it induces bar formation to start earlier. On the other hand, during the later, secular evolution phase, triaxial haloes lead to considerably less increase of the bar strength than spherical ones. The shape of the halo evolves considerably with time. We confirm previous results of gas-less simulations that find that the inner part of an initially spherical halo can become elongated and develop a halo bar. However we also show that, on the contrary, in gas-rich simulations, the inner parts of an initially triaxial halo can become rounder with time. The main body of initially triaxial haloes evolves towards sphericity, but in initially strongly triaxial cases it stops well short of becoming spherical. Part of the angular momentum absorbed by the halo generates considerable rotation of the halo

  7. THE GROWTH OF GALAXY STELLAR MASS WITHIN DARK MATTER HALOS

    SciTech Connect

    Zehavi, Idit; Patiri, Santiago; Zheng Zheng

    2012-02-20

    We study the evolution of stellar mass in galaxies as a function of host halo mass, using the 'MPA' and 'Durham' semi-analytic models, implemented on the Millennium Run simulation. For both models, the stellar mass of the central galaxies increases rapidly with halo mass at the low-mass end and more slowly in halos of larger masses at the three redshifts probed (z {approx} 0, 1, 2). About 45% of the stellar mass in central galaxies in present-day halos less massive than {approx}10{sup 12} h{sup -1} M{sub Sun} is already in place at z {approx} 1, and this fraction increases to {approx}65% for more massive halos. The baryon conversion efficiency into stars has a peaked distribution with halo mass, and the peak location shifts toward lower mass from z {approx} 1 to z {approx} 0. The stellar mass in low-mass halos grows mostly by star formation since z {approx} 1, while in high-mass halos most of the stellar mass is assembled by mergers, reminiscent of 'downsizing'. We compare our findings to empirical results from the Sloan Digital Sky Survey and DEEP2 surveys utilizing galaxy clustering measurements to study galaxy evolution. The theoretical predictions are in qualitative agreement with these phenomenological results, but there are large discrepancies. The most significant one concerns the number of stars already in place in the progenitor galaxies at z {approx} 1, which is about a factor of two larger in both semi-analytic models. We demonstrate that methods studying galaxy evolution from the galaxy-halo connection are powerful in constraining theoretical models and can guide future efforts of modeling galaxy evolution. Conversely, semi-analytic models serve an important role in improving such methods.

  8. A New Model for Dark Matter Halos Hosting Quasars

    NASA Astrophysics Data System (ADS)

    Cen, Renyue; Safarzadeh, Mohammadtaher

    2015-01-01

    A new model for quasar-hosting dark matter halos, meeting two physical conditions, is put forth. First, significant interactions are taken into consideration to trigger quasar activities. Second, satellites in very massive halos at low redshift are removed from consideration due to their deficiency in cold gas. We analyze the Millennium Simulation to find halos that meet these two conditions and simultaneously match two-point auto-correlation functions of quasars and cross-correlation functions between quasars and galaxies at z = 0.5-3.2. The masses of the quasar hosts found decrease with decreasing redshift, with the mass thresholds being [(2-5) × 1012, (2-5) × 1011, (1-3) × 1011] M ⊙ for median luminosities of ~[1046, 1046, 1045] erg s-1 at z = (3.2, 1.4, 0.53), respectively, an order of magnitude lower than those inferred based on halo occupation distribution modeling. In this model, quasar hosts are primarily massive central halos at z >= 2-3 but increasingly dominated by lower mass satellite halos experiencing major interactions toward lower redshift. However, below z = 1, satellite halos in groups more massive than ~2 × 1013 M ⊙ do not host quasars. Whether for central or satellite halos, imposing the condition of significant interactions substantially boosts the clustering strength compared to the total population with the same mass cut. The inferred lifetimes of quasars at z = 0.5-3.2 of 3-30 Myr are in agreement with observations. Quasars at z ~ 2 would be hosted by halos of mass ~5 × 1011 M ⊙ in this model, compared to ~3 × 1012 M ⊙ previously thought, which would help reconcile with the observed, otherwise puzzling high covering fractions for Lyman limit systems around quasars.

  9. The halo model in a massive neutrino cosmology

    SciTech Connect

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo E-mail: villaescusa@oats.inaf.it

    2014-12-01

    We provide a quantitative analysis of the halo model in the context of massive neutrino cosmologies. We discuss all the ingredients necessary to model the non-linear matter and cold dark matter power spectra and compare with the results of N-body simulations that incorporate massive neutrinos. Our neutrino halo model is able to capture the non-linear behavior of matter clustering with a ∼20% accuracy up to very non-linear scales of k = 10 h/Mpc (which would be affected by baryon physics). The largest discrepancies arise in the range k = 0.5 – 1 h/Mpc where the 1-halo and 2-halo terms are comparable and are present also in a massless neutrino cosmology. However, at scales k < 0.2 h/Mpc our neutrino halo model agrees with the results of N-body simulations at the level of 8% for total neutrino masses of < 0.3 eV. We also model the neutrino non-linear density field as a sum of a linear and clustered component and predict the neutrino power spectrum and the cold dark matter-neutrino cross-power spectrum up to k = 1 h/Mpc with ∼30% accuracy. For masses below 0.15 eV the neutrino halo model captures the neutrino induced suppression, casted in terms of matter power ratios between massive and massless scenarios, with a 2% agreement with the results of N-body/neutrino simulations. Finally, we provide a simple application of the halo model: the computation of the clustering of galaxies, in massless and massive neutrinos cosmologies, using a simple Halo Occupation Distribution scheme and our halo model extension.

  10. Connecting Galaxies, Halos, and Star Formation Rates Across Cosmic Time

    SciTech Connect

    Conroy, Charlie; Wechsler, Risa H.

    2008-06-02

    A simple, observationally-motivated model is presented for understanding how halo masses, galaxy stellar masses, and star formation rates are related, and how these relations evolve with time. The relation between halo mass and galaxy stellar mass is determined by matching the observed spatial abundance of galaxies to the expected spatial abundance of halos at multiple epochs--i.e. more massive galaxies are assigned to more massive halos at each epoch. This 'abundance matching' technique has been shown previously to reproduce the observed luminosity- and scale-dependence of galaxy clustering over a range of epochs. Halos at different epochs are connected by halo mass accretion histories estimated from N-body simulations. The halo-galaxy connection at fixed epochs in conjunction with the connection between halos across time provides a connection between observed galaxies across time. With approximations for the impact of merging and accretion on the growth of galaxies, one can then directly infer the star formation histories of galaxies as a function of stellar and halo mass. This model is tuned to match both the observed evolution of the stellar mass function and the normalization of the observed star formation rate--stellar mass relation to z {approx} 1. The data demands, for example, that the star formation rate density is dominated by galaxies with M{sub star} {approx} 10{sup 10.0-10.5} M{sub {circle_dot}} from 0 < z < 1, and that such galaxies over these epochs reside in halos with M{sub vir} {approx} 10{sup 11.5-12.5} M{sub {circle_dot}}. The star formation rate--halo mass relation is approximately Gaussian over the range 0 < z < 1 with a mildly evolving mean and normalization. This model is then used to shed light on a number of issues, including (1) a clarification of 'downsizing', (2) the lack of a sharp characteristic halo mass at which star formation is truncated, and (3) the dominance of star formation over merging to the stellar build-up of galaxies

  11. Testing gravity using the environmental dependence of dark matter halos.

    PubMed

    Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2011-08-12

    In this Letter, we investigate the environmental dependence of dark matter halos in theories which attempt to explain the accelerated expansion of the Universe by modifying general relativity (GR). Using high-resolution N-body simulations in f(R) gravity models which recover GR in dense environments by virtue of the chameleon mechanism, we find a significant difference, which depends on the environment, between the lensing and dynamical masses of dark matter halos. This environmental dependence of the halo properties can be used as a smoking gun to test GR observationally. PMID:21902382

  12. Halo Stream candidates in the LAMOST DR2

    NASA Astrophysics Data System (ADS)

    Zhao, Jingkun

    2015-08-01

    We have detected eight stellar halo stream candidates in the solar neighborhood using a sample including 64,819 FGK metal-poor ([Fe/H] < -0.7) dwarfs extracted from the cross-match among the LAMOST DR2, WISE, 2MASS and PPMXL catalogues. With the strategy of halo stream detection in Klement et al, several significant ‘phase-space overdensi- ties” of stars on very similar orbits are identified. Three structures are known previously. Five new halo stream candidates are also found. The kinematics and metallicity of these stream candidates are then analyzed. Detailed element abundance are needed to better know the ori-gin of these streams.

  13. DUST-SCATTERED ULTRAVIOLET HALOS AROUND BRIGHT STARS

    SciTech Connect

    Murthy, Jayant; Henry, Richard Conn

    2011-06-10

    We have discovered ultraviolet (UV) halos extending as far as 5 deg. around four (of six) bright UV stars using data from the Galaxy Evolution Explorer satellite. These halos are due to scattering of the starlight from nearby thin, foreground dust clouds. We have placed limits of 0.58 {+-} 0.12 and 0.72 {+-} 0.06 on the phase function asymmetry factor (g) in the FUV (1521 A) and NUV (2320 A) bands, respectively. We suggest that these halos are a common feature around bright stars and may be used to explore the scattering function of interstellar grains at small angles.

  14. Halo current diagnostic system of experimental advanced superconducting tokamak

    SciTech Connect

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P. Wang, Y.; Xiao, B. J.; Granetz, R. S.

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  15. ENVIRONMENT DEPENDENCE OF DARK MATTER HALOS IN SYMMETRON MODIFIED GRAVITY

    SciTech Connect

    Winther, Hans A.; Mota, David F.; Li Baojiu

    2012-09-10

    We investigate the environment dependence of dark matter halos in the symmetron modified gravity scenario. The symmetron is one of three known mechanisms for screening a fifth force and thereby recovering general relativity in dense environments. The effectiveness of the screening depends on both the mass of the object and the environment it lies in. Using high-resolution N-body simulations we find a significant difference, which depends on the halo's mass and environment, between the lensing and dynamical masses of dark matter halos similar to the f(R) modified gravity. The symmetron can however yield stronger signatures due to a freedom in the strength of coupling to matter.

  16. High-velocity pulsars in the galactic halo

    SciTech Connect

    Eichler, D. ); Silk, J. )

    1992-08-14

    A common origin is proposed for high-velocity pulsars and for gamma-ray bursters. This source is a subdominant population of neutron stars that are in a spatially extended halo around our galaxy. Theoretical speculations and especially recent observations suggest the possible existence of a halo population of neutron stars. Specifically, recent reports of diskward-moving, high-latitude pulsars and of a nearly isotropic distribution of gamma-ray bursters motivate the authors to propose a source of neutron stars in the halo. They suggest that neutron stars could form by mergers of white dwarfs.

  17. Halo current diagnostic system of experimental advanced superconducting tokamak.

    PubMed

    Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  18. Stability and Halo Formation in Axisymmetric Intense Beams.

    NASA Astrophysics Data System (ADS)

    Gluckstern, Robert L.; Kurennoy, Sergey S.

    1996-05-01

    Beam stability and halo formation in high-intensity axisymmetric 2D beams in a uniform focusing channel are analyzed using particle-in-cell simulations. The tune depression - mismatch space is explored for the uniform distribution of the particle transverse phase space density (K-V), as well as for more realistic ones (in particular, the water-bag distribution), to determine the stability limits and halo parameters. The numerical results obtained are compared and show an agreement with the predictions of the analytical model for halo formation developed earlier.(R.L. Gluckstern, Phys. Rev. Lett., 73), 1247 (1994).

  19. Stability and Halo Formation in Axisymmetric Intense Beams.

    NASA Astrophysics Data System (ADS)

    Gluckstern, Robert L.; Kurennoy, Sergey S.

    1997-05-01

    Beam stability and halo formation in high-intensity axisymmetric 2D beams in a uniform focusing channel are analyzed using particle-in-cell simulations. The tune depression - mismatch space is explored for the uniform distribution of the particle transverse phase space density (Kapchinsky-Vladimirsky), as well as for more realistic ones (in particular, the water-bag distribution), to determine the stability limits and halo parameters. The numerical results obtained are compared and show an agreement with the predictions of the analytical model for halo formation developed earlier (R.L. Gluckstern, Phys. Rev. Lett., 73), 1247 (1994)..

  20. Stellar halos: a rosetta stone for galaxy formation and cosmology

    NASA Astrophysics Data System (ADS)

    Inglis Read, Justin

    2015-08-01

    Stellar halos make up about a percent of the total stellar mass in galaxies. Yet their old age and long phase mixing times make them living fossil records of galactic history. In this talk, I review the latest simulations of structure formation in our standard Lambda Cold Dark Matter cosmology. I discuss the latest predictions for stellar halos and the relationship between the stellar halo light and the underlying dark matter. Finally, I discuss how these simulations compare to observations of the Milky Way and Andromeda and, ultimately, what this means for our cosmological model and the formation history of the Galaxy.

  1. Dark Matter Halos:. Shapes, the Substructure Crisis, and Indirect Detection

    NASA Astrophysics Data System (ADS)

    Zentner, A. R.; Koushiappas, S. M.; Kazantzidis, S.

    2005-04-01

    In this proceeding, we review three recent results. First, we show that halos formed in simulations with gas cooling are significantly rounder than halos formed in dissipationless N-body simulations. The increase in principle axis ratios is ~ 0.2 - 0.4 in the inner halo and remains significant at large radii. Second, we discuss the CDM substructure crisis and demonstrate the sensitivity of the crisis to the spectrum of primordial density fluctuations on small scales. Third, we assess the ability of experiments like VERITAS and GLAST to detect γ-rays from neutralino dark matter annihilation in dark subhalos about the MW.

  2. Dark matter annihilation and decay from non-spherical dark halos in galactic dwarf satellites

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Ichikawa, Koji; Matsumoto, Shigeki; Ibe, Masahiro; Ishigaki, Miho N.; Sugai, Hajime

    2016-09-01

    The dwarf spheroidal galaxies (dSphs) in the Milky Way are the primary targets in the indirect searches for particle dark matter. To set robust constraints on candidate dark matter particles, understanding the dark halo structure of these systems is of substantial importance. In this paper, we first evaluate the astrophysical factors for dark matter annihilation and decay for 24 dSphs, taking into account a non-spherical dark halo, using generalized axisymmetric mass models based on axisymmetric Jeans equations. First, from a fitting analysis of the most recent kinematic data available, our axisymmetric mass models are a much better fit than previous spherical ones, thus, our work should be the most realistic and reliable estimator for astrophysical factors. Secondly, we find that among analysed dSphs, the ultra-faint dwarf galaxies Triangulum II and Ursa Major II are the most promising but large uncertain targets for dark matter annihilation while the classical dSph Draco is the most robust and detectable target for dark matter decay. It is also found that the non-sphericity of luminous and dark components influences the estimate of astrophysical factors, even though these factors largely depend on the sample size, the prior range of parameters and the spatial extent of the dark halo. Moreover, owing to these effects, the constraints on the dark matter annihilation cross-section are more conservative than those of previous spherical works. These results are important for optimizing and designing dark matter searches in current and future multi-messenger observations by space and ground-based telescopes.

  3. The Magnetized Galactic Wind and Synchrotron Halo of the Starburst Dwarf Galaxy IC 10

    NASA Astrophysics Data System (ADS)

    Chyży, Krzysztof T.; Drzazga, Robert T.; Beck, Rainer; Urbanik, Marek; Heesen, Volker; Bomans, Dominik J.

    2016-03-01

    We aim to explore whether strong magnetic fields can be effectively generated in low-mass dwarf galaxies and, if so, whether such fields can be affected by galactic outflows and spread out into the intergalactic medium (IGM). We performed a radio continuum polarimetry study of IC 10, the nearest starbursting dwarf galaxy, using a combination of multifrequency interferometric (VLA) and single-dish (Effelsberg) observations. VLA observations at 1.43 GHz reveal an extensive and almost spherical radio halo of IC 10 in total intensity, extending twice more than the infrared-emitting galactic disk. The halo is magnetized with a magnetic field strength of 7 μG in the outermost parts. Locally, the magnetic field reaches about 29 μ {{G}} in H ii complexes, becomes more ordered, and weakens to 22 μ {{G}} in the synchrotron superbubble and to 7-10 μG within H i holes. At the higher frequency of 4.86 GHz, we found a large-scale magnetic field structure of X-shaped morphology, similar to that observed in several edge-on spiral galaxies. The X-shaped magnetic structure can be caused by the galactic wind, advecting magnetic fields injected into the interstellar medium by stellar winds and supernova explosions. The radio continuum scale heights at 1.43 GHz indicate the bulk speed of cosmic-ray electrons outflowing from H ii complexes of about 60 km s-1, exceeding the escape velocity of 40 km s-1. Hence, the magnetized galactic wind in IC 10 inflates the extensive radio halo visible at 1.43 GHz and can seed the IGM with both random and ordered magnetic fields. These are signatures of intense material feedback onto the IGM, expected to be prevalent in the protogalaxies of the early universe.

  4. Matter, Motion, and Man, Volume II.

    ERIC Educational Resources Information Center

    Montag, Betty Jo

    Volume Two of the three-volume experimental program in general science attempts to provide preparation for the new approaches in biology, chemistry, and physics and to give those who will not continue in science a realistic way of understanding themselves, the world, and the role of science in society. Chapters on classification, heredity, light,…

  5. HaloSat: A CubeSat to Map the Distribution of Baryonic Matter in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Miles, Drew M.

    2016-04-01

    Approximately half of predicted baryonic matter in the Milky Way remains unidentified. One possible explanation for the location of this missing matter is in an extended Galactic halo. HaloSat is a CubeSat that aims to constrain the mass and distribution of the halo’s baryonic matter by obtaining an all-sky map of O VII and O VIII emission in the hot gas associated with the halo of the Milky Way. HaloSat offers an improvement in the quality of measurements of oxygen line emission over existing X-ray observatories and an observation plan dedicated to mapping the hot gas in the Galactic halo. In addition to the missing baryon problem, HaloSat will assign a portion of its observations to the solar wind charge exchange (SWCX) in order to calibrate models of SCWX emission. We present here the current status of HaloSat and the progression of instrument development in anticipation of a 2018 launch.

  6. Using accurate phase space coordinates of ~100,00 halo field stars to constrain the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Valluri, Monica

    2015-08-01

    The current cosmological paradigm predicts that dark matter halos are triaxial overall, but oblate in regions where baryons dominate. However recent measurements of the shape of the Milky Way dark matter halo find it to be very triaxial with a shape and orientation that are significantly at odds with theoretical predictions. The ESA’s Gaia satellite will soon map the entire Milky Way giving us six phase-space coordinates, ages and abundances for hundreds of thousands of halo stars. I will report progress on a new code based on the Schwarzschild orbit superposition method and orbital frequency mapping, to determine the global shape of the Milky Way's dark matter halo using field stars from Gaia. This technique will simultaneously yield the self-consistent phase-space distribution function of the stellar halo in the inner 20-30kpc region. Detailed analysis of correlations between the chemical abundances, ages and orbits of halo stars in this distribution function will enable us to extract clues to the formation history of the Milky Way that are encoded in orbital properties of halo stars.

  7. Auditory motion affects visual biological motion processing.

    PubMed

    Brooks, A; van der Zwan, R; Billard, A; Petreska, B; Clarke, S; Blanke, O

    2007-02-01

    The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of

  8. Dynamical Family Properties and Dark Halo Scaling Relations of Giant Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin; Kronawitter, Andi; Saglia, R. P.; Bender, Ralf

    2001-04-01

    Based on a uniform dynamical analysis of the line-profile shapes of 21 mostly luminous, slowly rotating, and nearly round elliptical galaxies, we have investigated the dynamical family relations and dark halo properties of ellipticals. Our results include: (i) The circular velocity curves (CVCs) of elliptical galaxies are flat to within ~=10% for R>~0.2Re. (ii) Most ellipticals are moderately radially anisotropic; their dynamical structure is surprisingly uniform. (iii) Elliptical galaxies follow a Tully-Fisher (TF) relation with marginally shallower slope than spiral galaxies, and vmaxc~=300 km s-1 for an L*B galaxy. At given circular velocity, they are ~1 mag fainter in B and ~0.6 mag in R and appear to have slightly lower baryonic mass than spirals, even for the maximum M/LB allowed by the kinematics. (iv) The luminosity dependence of M/LB indicated by the tilt of the fundamental plane (FP) is confirmed. The tilt of the FP is not caused by dynamical or photometric nonhomology, although the latter might influence the slope of M/L versus L. It can also not be due only to an increasing dark matter fraction with L for the range of IMF currently discussed. It is, however, consistent with stellar population models based on published metallicities and ages. The main driver is therefore probably metallicity, and a secondary population effect is needed to explain the K-band tilt. (v) These results make it likely that elliptical galaxies have nearly maximal M/LB (minimal halos). (vi) Despite the uniformly flat CVCs, there is a spread in the luminous to dark matter ratio and in cumulative M/LB(r). Some galaxies have no indication for dark matter within 2Re, whereas for others we obtain local M/LB-values of 20-30 at 2Re. (vii) In models with maximum stellar mass, the dark matter contributes ~10%-40% of the mass within Re. Equal interior mass of dark and luminous matter is predicted at ~2-4Re. (viii) Even in these maximum stellar mass models, the halo core densities and

  9. r-Process abundances in metal-poor Galactic halo stars

    NASA Astrophysics Data System (ADS)

    Siqueira-Mello, C.; Barbuy, B.; Spite, M.; Spite, F.; Caffau, E.; Hill, V.; Wanajo, S.; François, P.; Bonifacio, P.; Cayrel, R.

    The site of the r-process is not completely defined, and several models try to explain the origin of the trans-Fe elements. Observed abundances are the best clues to bring some light to this multiplicity of possible mechanisms, and the extremely metal-poor (EMP) Galactic halo stars have a special role in this problem. In this contribution we present the solution of a long-standing problem about the origin of the heavy elements in the metal-poor halo subgiant star HD 140283, and its correlation with the Truran's theory. Next, we describe the results obtained with the EMP r-II star CS 31082-001 in the frame of the ESO Large Program ``First Stars''. Using STIS/HST observations we provide abundances for elements never presented before in this stars, making CS 31082-001 the most complete r-II object studied, with a total of 37 detections of neutron-capture elements. Finally, we present the results obtained from a sample of seven r-I stars, showing how those objects can help us solving the heavy elements problem. Conclusions are also described.

  10. Evolution of the halo family in the radial solar sail circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Verrier, Patricia; Waters, Thomas; Sieber, Jan

    2014-12-01

    We present a detailed investigation of the dramatic changes that occur in the halo family when radiation pressure is introduced into the Sun-Earth circular restricted three-body problem (CRTBP). This photo-gravitational CRTBP can be used to model the motion of a solar sail orientated perpendicular to the Sun-line. The problem is then parameterized by the sail lightness number, the ratio of solar radiation pressure acceleration to solar gravitational acceleration. Using boundary-value problem numerical continuation methods and the AUTO software package (Doedel et al. in Int J Bifurc Chaos 1:493-520, 1991) the families can be fully mapped out as the parameter is increased. Interestingly, the emergence of a branch point in the retrograde satellite family around the Earth at acts to split the halo family into two new families. As radiation pressure is further increased one of these new families subsequently merges with another non-planar family at , resulting in a third new family. The linear stability of the families changes rapidly at low values of , with several small regions of neutral stability appearing and disappearing. By using existing methods within AUTO to continue branch points and period-doubling bifurcations, and deriving a new boundary-value problem formulation to continue the folds and Krein collisions, we track bifurcations and changes in the linear stability of the families in the parameter and provide a comprehensive overview of the halo family in the presence of radiation pressure. The results demonstrate that even at small values of there is significant difference to the classical CRTBP, providing opportunity for novel solar sail trajectories. Further, we also find that the branch points between families in the solar sail CRTBP provide a simple means of generating certain families in the classical case.

  11. The Evolution of Gas Clouds Falling in the Magnetic Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kwak, Kyujin; Shelton, R. L.

    2007-12-01

    In the Galactic fountain scenario, supernovae and/or super bubbles propel material into the Galactic halo. As the material cools, it condenses into clouds. By using the 3-D magneto-hydrodynamic simulations, we modeled and studied the dynamical evolution of these gas clouds. In our simulations, we assume that the gas clouds have already formed in the process of the Galactic fountain and start to fall from the stationary state. We considered various magnetic field configurations of the Galactic halo given the current uncertainties. We also investigated how the evolution of the gas clouds is affected by the different initial masses of the gas clouds. A gas cloud is more likely to reach close to the Galactic plane and maintain its original shape if the cloud's initial density is high and if the component of the magnetic field that is parallel to the cloud's motion is strong while the component that is perpendicular is weak. With more realistic magnetic field configurations (combinations of parallel and perpendicular magnetic fields, and nonuniform magnetic field strength), the gas cloud falls down along the magnetic field lines with the morphology as a result of the combined effect of the parallel and perpendicular magnetic field lines. Among the various morphologies that developed during the dynamical evolution, a worm or filament shaped cloud is formed when the perpendicular component of the magnetic field is strong and dominant. Comparing the cloud morphologies and column densities from our simulations with those of observations (such as high and intermediate velocity clouds, HVCs and IVCs) would provide better information about the magnetic field of the Galactic halo together with the mass of the cloud.

  12. Effective Dark Matter Halo Catalog in f(R) Gravity.

    PubMed

    He, Jian-Hua; Hawken, Adam J; Li, Baojiu; Guzzo, Luigi

    2015-08-14

    We introduce the idea of an effective dark matter halo catalog in f(R) gravity, which is built using the effective density field. Using a suite of high resolution N-body simulations, we find that the dynamical properties of halos, such as the distribution of density, velocity dispersion, specific angular momentum and spin, in the effective catalog of f(R) gravity closely mimic those in the cold dark matter model with a cosmological constant (ΛCDM). Thus, when using effective halos, an f(R) model can be viewed as a ΛCDM model. This effective catalog therefore provides a convenient way for studying the baryonic physics, the galaxy halo occupation distribution and even semianalytical galaxy formation in f(R) cosmologies. PMID:26317711

  13. ADP study of the structure of the IUE halo

    NASA Technical Reports Server (NTRS)

    Massa, Derck

    1992-01-01

    Results of a two year ADP study of gas in the Galactic halo are presented. This is partly a summary of 2 papers which were published in referred journals and partly a discussion of work currently underway.

  14. Building Blocks of the Milky Way's Stellar Halo

    NASA Astrophysics Data System (ADS)

    van Oirschot, Pim; Starkenburg, Else; Helmi, Amina; Nelemans, Gijs

    2016-08-01

    We study the assembly history of the stellar halo of Milky Way-like galaxies using the six high-resolution Aquarius dark matter simulations combined with the Munich-Groningen semi-analytic galaxy formation model. Our goal is to understand the stellar population contents of the building blocks of the Milky Way halo, including their star formation histories and chemical evolution, as well as their internal dynamical properties. We are also interested in how they relate or are different from the surviving satellite population. Finally, we will use our models to compare to observations of halo stars in an attempt to reconstruct the assembly history of the Milky Way's stellar halo itself.

  15. Visibility of stars, halos, and rainbows during solar eclipses.

    PubMed

    Können, Gunther P; Hinz, Claudia

    2008-12-01

    The visibility of stars, planets, diffraction coronas, halos, and rainbows during the partial and total phases of a solar eclipse is studied. The limiting magnitude during various stages of the partial phase is presented. The sky radiance during totality with respect to noneclipse conditions is revisited and found to be typically 1/4000. The corresponding limiting magnitude is +3.5. At totality, the signal-to-background ratio of diffraction coronas, halos, and rainbows has dropped by a factor of 250. It is found that diffraction coronas around the totally eclipsed Sun may nevertheless occur. Analyses of lunar halo observations during twilight indicate that bright halo displays may also persist during totality. Rainbows during totality seem impossible. PMID:19037334

  16. Halo formation and evolution: unification of structure and physical properties

    NASA Astrophysics Data System (ADS)

    Ernest, Allan D.; Collins, Matthew P.

    2016-08-01

    The assembly of matter in the universe proliferates a wide variety of halo structures, often with enigmatic consequences. Giant spiral galaxies, for example, contain both dark matter and hot gas, while dwarf spheroidal galaxies, with weaker gravity, contain much larger fractions of dark matter, but little gas. Globular clusters, superficially resembling these dwarf spheroidals, have little or no dark matter. Halo temperatures are also puzzling: hot cluster halos contain cooler galaxy halos; dwarf galaxies have no hot gas at all despite their similar internal processes. Another mystery is the origin of the gas that galaxies require to maintain their measured star formation rates (SFRs). We outline how gravitational quantum theory solves these problems, and enables baryons to function as weakly-interacting-massive-particles (WIMPs) in Lambda Cold Dark Matter (LCDM) theory. Significantly, these dark-baryon ensembles may also be consistent with primordial nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropies.

  17. Visibility of stars, halos, and rainbows during solar eclipses.

    PubMed

    Können, Gunther P; Hinz, Claudia

    2008-12-01

    The visibility of stars, planets, diffraction coronas, halos, and rainbows during the partial and total phases of a solar eclipse is studied. The limiting magnitude during various stages of the partial phase is presented. The sky radiance during totality with respect to noneclipse conditions is revisited and found to be typically 1/4000. The corresponding limiting magnitude is +3.5. At totality, the signal-to-background ratio of diffraction coronas, halos, and rainbows has dropped by a factor of 250. It is found that diffraction coronas around the totally eclipsed Sun may nevertheless occur. Analyses of lunar halo observations during twilight indicate that bright halo displays may also persist during totality. Rainbows during totality seem impossible.

  18. EFFECT OF DARK MATTER HALO SUBSTRUCTURES ON GALAXY ROTATION CURVES

    SciTech Connect

    Roy, Nirupam

    2010-11-01

    In this paper, the effect of halo substructures on galaxy rotation curves is investigated using a simple model of dark matter clustering. A dark matter halo density profile is developed based only on the scale-free nature of clustering that leads to a statistically self-similar distribution of the substructures at the galactic scale. A semi-analytical method is used to derive rotation curves for such a clumpy dark matter density profile. It is found that the halo substructures significantly affect the galaxy velocity field. Based on the fractal geometry of the halo, this self-consistent model predicts a Navarro-Frenk-White-like rotation curve and a scale-free power spectrum of the rotation velocity fluctuations.

  19. Spontaneous Involution of Congenital Melanocytic Nevus With Halo Phenomenon.

    PubMed

    Lee, Noo Ri; Chung, Hee-Chul; Hong, Hannah; Lee, Jin Wook; Ahn, Sung Ku

    2015-12-01

    Congenital melanocytic nevus (CMN) is a neural crest-derived hamartoma, which appear at or soon after birth. CMN has a dynamic course and may show variable changes over time, including spontaneous involution. Spontaneous involution of CMN is a rare phenomenon and is often reported in association with halo phenomenon or vitiligo. The mechanism of halo phenomenon is yet to be investigated but is suggested to be a destruction of melanocytes by immune responses of cytotoxic T cells or IgM autoantibodies. Here, the authors report an interesting case of spontaneously regressed medium-sized CMN with halo phenomenon and without vitiligo, which provides evidence that cytotoxic T cells account for the halo formation and pigmentary regression of CMN.

  20. Effective Dark Matter Halo Catalog in f(R) Gravity.

    PubMed

    He, Jian-Hua; Hawken, Adam J; Li, Baojiu; Guzzo, Luigi

    2015-08-14

    We introduce the idea of an effective dark matter halo catalog in f(R) gravity, which is built using the effective density field. Using a suite of high resolution N-body simulations, we find that the dynamical properties of halos, such as the distribution of density, velocity dispersion, specific angular momentum and spin, in the effective catalog of f(R) gravity closely mimic those in the cold dark matter model with a cosmological constant (ΛCDM). Thus, when using effective halos, an f(R) model can be viewed as a ΛCDM model. This effective catalog therefore provides a convenient way for studying the baryonic physics, the galaxy halo occupation distribution and even semianalytical galaxy formation in f(R) cosmologies.

  1. Summary of the 2014 Beam-Halo Monitoring Workshop

    SciTech Connect

    Fisher, Alan

    2015-09-25

    Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurements with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.

  2. Halo performance on low light level image intensifiers

    NASA Astrophysics Data System (ADS)

    Cui, Dongxu; Ren, Ling; Chang, Benkang; Shi, Feng; Shi, Jifang; Qian, Yunsheng; Wang, Honggang; Zhang, Junju

    To analyze the formation mechanism of the halo on low light level image intensifiers and the influencing factors on the halo size, a halo tester has been designed. Under the illumination between 10-2 lx and 10-4 lx, we use the tester to collect a 0.1922 mm hole image directly with CoolSNAPK4 charge-coupled device (CCD) in a darkroom. The practical measurement result shows that the amplification ratio is 343.4. Then we put the super second and third generation image intensifiers after the hole, and the halo sizes of the hole images on the screens are determined as 0.2388 and 0.5533 mm respectively. The results are helpful to improve the quality of the low light level image intensifiers.

  3. Halo sign on indium-111 leukocyte scan in gangrenous cholecystitis

    SciTech Connect

    Bauman, J.M.; Boykin, M.; Hartshorne, M.F.; Cawthon, M.A.; Landry, A.J.

    1986-02-01

    A 56-year-old man with a long history of Crohn's disease was evaluated by In-111 labeled leukocyte scanning. A halo of leukocyte activity was seen around the gallbladder fossa. A gangrenous gallbladder was removed at surgery.

  4. Lithium in halo stars from standard stellar evolution

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre; Kawaler, Steven D.

    1990-01-01

    A grid has been constructed of theoretical evolution sequences of models for low-metallicity stars from the premain-sequence to the giant branch phases. The grid is used to study the history of surface Li abundance during standard stellar evolution. The Li-7 observations of halo stars by Spite and Spite (1982) and subsequent observations are synthesized to separate the halo stars by age. The theory of surface Li abundance is illustrated by following the evolution of a reference halo star model from the contracting fully convective premain sequence to the giant branch phase. The theoretical models are compared with observed Li abundances. The results show that the halo star lithium abundances can be explained in the context of standard stellar evolution theory using completely standard assumptions and physics.

  5. Revisiting Scaling Relations for Giant Radio Halos in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Cassano, R.; Ettori, S.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Venturi, T.; Kale, R.; Dolag, K.; Markevitch, Maxim L.

    2013-01-01

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R(sub 500) as P(sub 1.4) approx. L(2.1+/-0.2) - 500). Our bigger and more homogenous sample confirms that the X-ray luminous (L(sub 500) > 5 × 10(exp 44) erg/s)) clusters branch into two populations-radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P(sub 1.4) scales with the cluster integrated SZ signal within R(sub 500), measured by Planck, as P(sub 1.4) approx. Y(2.05+/-0.28) - 500), in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that "SZ-luminous" Y(sub 500) > 6×10(exp -5) Mpc(exp 2) clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle acceleration.

  6. Orientations of Bright Galaxies within their Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa G.

    2013-07-01

    Few constraints exist on the ways in which large, bright galaxies are embedded within their dark matter halos. Understanding the relationships between visible galaxies and their invisible dark matter halos is, however, important for many applications, including measurements of halo shapes from weak lensing and intrinsic alignments of galaxies. A key component of the galaxy-halo relationship is the degree to which mass and light are aligned and, hence, whether the observed major axes of bright galaxies are aligned with the major axes of their dark matter halos. Here I will show that the locations of satellite galaxies in the Sloan Digital Sky Survey (SDSS) can be used to constrain the orientations of the primary galaxies within their dark matter halos. In particular, the dependence of satellite galaxy location on the colors and stellar masses of the primaries can only be reproduced if elliptical and disk primaries are embedded within their halos in different ways: the principal axes of the luminous ellipticals are well-aligned with the principal axes of their dark matter halos, while the luminous disks are oriented such that the angular momentum of the disk is well-aligned with the net angular momentum of the dark matter halo. The latter induces a significant misalignment of mass and light in disk primaries. This has implications for the use of galaxy-galaxy lensing to measure halo shapes. If the dark matter halos are non-spherical, then the resulting anisotropic galaxy-galaxy lensing signal is likely to be detected only around elliptical lenses, not disk lenses. I will show that a preliminary analysis of the anisotropic galaxy-galaxy lensing signal in the SDSS supports this hypothesis. This analysis differs from previous galaxy-galaxy lensing studies in the SDSS in that the lenses are sufficiently isolated that they, themselves, will not have been lensed by any other objects along the line of sight. This insures that the observed major axes of the lens galaxies are

  7. REVISITING SCALING RELATIONS FOR GIANT RADIO HALOS IN GALAXY CLUSTERS

    SciTech Connect

    Cassano, R.; Brunetti, G.; Venturi, T.; Kale, R.; Pratt, G. W.; Markevitch, M.

    2013-11-10

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R{sub 500} as P{sub 1.4}∼L{sup 2.1±0.2}{sub 500}. Our bigger and more homogenous sample confirms that the X-ray luminous (L{sub 500} > 5 × 10{sup 44} erg s{sup –1}) clusters branch into two populations—radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P{sub 1.4} scales with the cluster integrated SZ signal within R{sub 500}, measured by Planck, as P{sub 1.4}∼Y{sup 2.05±0.28}{sub 500}, in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that 'SZ-luminous' Y{sub 500} > 6 × 10{sup –5} Mpc{sup 2} clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle

  8. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  9. Evolution of a Halo Coronal Mass Ejection of March 09, 2012 Associated with EUV Waves

    NASA Astrophysics Data System (ADS)

    Fernandes, F. C. R.; Sampaio, L. S.; Cunha-Silva, R. D.

    2016-04-01

    In this work we analyse the evolution of a halo coronal mass ejection (CME) observed on March 09, 2012, exhibiting a velocity of 950 ms-1. The EUV images recorded by the Extreme Ultraviolet Imager (EUVI), aboard STEREO show evidence of a shockwave produced by the expansion of the CME. The event was also associated with an M.6 class X-ray solar flare, starting at 03:22 UT, peaking at 03:53 UT and ending at 04:18 UT. Type II radio emission was also recorded in the metric wavelength (100-250 MHz) by e-Callisto spectrographs. The following spectrum-temporal parameters of type II burst were estimated: starting frequency of (220 ± 5) MHz, ending frequency of (170 ± 5) MHz, frequency bandwidth of 34.3 MHz and starting and ending time of about 03:41:51 UT and 03:46:49 UT, respectively.

  10. An 80-kpc Lyα halo around a high-redshift type-2 quasi-stellar object

    NASA Astrophysics Data System (ADS)

    Smith, D. J. B.; Jarvis, M. J.; Simpson, C.; Martínez-Sansigre, A.

    2009-02-01

    We announce the discovery of an extended emission-line region associated with a high-redshift type-2 quasi-stellar object (QSO). The halo, which was discovered in our new wide-field narrow-band survey, resides at z = 2.85 in the Spitzer First Look Survey region and is extended over ~80 kpc. Deep very long baseline interferometry (VLBI) observations imply that approximately 50 per cent of the radio emission is extended on scales >200pc. The inferred active galactic nuclei (AGN) luminosity is sufficient to ionize the extended halo, and the optical emission is consistent with being triggered coevally with the radio source. The Lyα halo is as luminous as those found around high-redshift radio galaxies; however, the active nucleus is several orders of magnitude less luminous at radio wavelengths than those Fanarof-Riley type II (FRIIs) more commonly associated with extended emission-line regions. AMS05 appears to be a high-redshift analogue to the radio-quiet quasar E1821+643 which is core dominated, but which also exhibits extended Fanarof-Riley type I (FRI)-like structure and contains an optically powerful AGN. We also find evidence for more quiescent kinematics in the Lyα emission line in the outer regions of the halo, reminiscent of the haloes around the more powerful FRIIs. The optical to mid-infrared spectral energy distribution is well described by a combination of an obscured QSO (Lbol ~ 3.4 +/- 0.2 × 1013Lsolar) and a 1.4 Gyr old simple stellar population with mass ~3.9 +/- 0.3 × 1011Msolar.

  11. Vaporization in comets - The icy grain halo of Comet West

    NASA Technical Reports Server (NTRS)

    Ahearn, M. F.; Cowan, J. J.

    1980-01-01

    The variation with heliocentric distance of the production rates of various species in Comet West (1975n = 1976 VI) is explained with a cometary model consisting of a CO2 dominated nucleus plus a halo of icy grains of H2O or clathrate hydrate. It is concluded that the parents of CN and C3 are released primarily from the nucleus but that the parent of C2 is released primarily from the halo of icy grains.

  12. Halo and space charge issues in the SNS Ring

    SciTech Connect

    Fedotov, A.V.; Abell, D.T.; Beebe-Wang, J.; Lee, Y.Y.; Malitsky, N.; Wei, J.; Gluckstern, R.L.

    2000-06-30

    The latest designs for high-intensity proton rings require minimizing beam-induced radioactivation of the vacuum chamber. Although the tune depression in the ring is much smaller than in high-intensity linacs, space-charge contributions to halo formation and, hence, beam loss may be significant. This paper reviews our current understanding of halo formation issues for the Spallation Neutron Source (SNS) accumulator ring.

  13. Point-Defect Haloing in Curved Nematic Films

    NASA Astrophysics Data System (ADS)

    Isaku Hasegawa,; Hiroyuki Shima,

    2010-07-01

    We investigate a correlation between the point disclination energies and the surface curvature modulation of nematic liquid crystal membranes with a Gaussian bump geometry. The correlation causes point disclinations to feel an attractive force that confines them to an annulus region, resulting in a halo distribution around the top of the bump. The halo formation is a direct consequence of the nonzero Gaussian curvature of the bump that affects preferable configurations of liquid crystal molecules around the disclination core.

  14. Flattened halos in a nontopological soliton model of dark matter

    NASA Astrophysics Data System (ADS)

    Mielke, Eckehard W.; Peralta, Humberto H.

    2004-12-01

    Soliton type solutions of a scalar model with a Φ6 self-interaction are analyzed for their density profiles as toy model of dark matter halos. We construct exact solutions with nontrivial ellipticity due to angular momentum and propose a “nonlinear superposition” of round and flattened halos in order to improve the scaling relations and the correspondence of the predicted rotation curves to the empirical Burkert fit.

  15. Galaxy disruption in a halo of dark matter.

    PubMed

    Forbes, Duncan A; Beasley, Michael A; Bekki, Kenji; Brodie, Jean P; Strader, Jay

    2003-08-29

    The relics of disrupted satellite galaxies have been found around the Milky Way and Andromeda, but direct evidence of a satellite galaxy in the early stages of disruption has remained elusive. We have discovered a dwarf satellite galaxy in the process of being torn apart by gravitational tidal forces as it merges with a larger galaxy's dark matter halo. Our results illustrate the morphological transformation of dwarf galaxies by tidal interaction and the continued buildup of galaxy halos.

  16. One dark matter mystery: halos in the cosmic web

    NASA Astrophysics Data System (ADS)

    Gaite, Jose

    2015-01-01

    The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted.

  17. STELLAR POPULATION VARIATIONS IN THE MILKY WAY's STELLAR HALO

    SciTech Connect

    Bell, Eric F.; Xue Xiangxiang; Rix, Hans-Walter; Ruhland, Christine; Hogg, David W.

    2010-12-15

    If the stellar halos of disk galaxies are built up from the disruption of dwarf galaxies, models predict highly structured variations in the stellar populations within these halos. We test this prediction by studying the ratio of blue horizontal branch stars (BHB stars; more abundant in old, metal-poor populations) to main-sequence turn-off stars (MSTO stars; a feature of all populations) in the stellar halo of the Milky Way using data from the Sloan Digital Sky Survey. We develop and apply an improved technique to select BHB stars using ugr color information alone, yielding a sample of {approx}9000 g < 18 candidates where {approx}70% of them are BHB stars. We map the BHB/MSTO ratio across {approx}1/4 of the sky at the distance resolution permitted by the absolute magnitude distribution of MSTO stars. We find large variations of the BHB/MSTO star ratio in the stellar halo. Previously identified, stream-like halo structures have distinctive BHB/MSTO ratios, indicating different ages/metallicities. Some halo features, e.g., the low-latitude structure, appear to be almost completely devoid of BHB stars, whereas other structures appear to be rich in BHB stars. The Sagittarius tidal stream shows an apparent variation in the BHB/MSTO ratio along its extent, which we interpret in terms of population gradients within the progenitor dwarf galaxy. Our detection of coherent stellar population variations between different stellar halo substructures provides yet more support to cosmologically motivated models for stellar halo growth.

  18. The SEGUE K Giant Survey. III. Quantifying Galactic Halo Substructure

    NASA Astrophysics Data System (ADS)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo; Rockosi, Constance; Starkenburg, Else; Xue, Xiang Xiang; Rix, Hans-Walter; Harding, Paul; Beers, Timothy C.; Johnson, Jennifer; Lee, Young Sun; Schneider, Donald P.

    2016-01-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (˜33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.

  19. Non-Gaussianity and Excursion Set Theory: Halo Bias

    SciTech Connect

    Adshead, Peter; Baxter, Eric J.; Dodelson, Scott; Lidz, Adam

    2012-09-01

    We study the impact of primordial non-Gaussianity generated during inflation on the bias of halos using excursion set theory. We recapture the familiar result that the bias scales as $k^{-2}$ on large scales for local type non-Gaussianity but explicitly identify the approximations that go into this conclusion and the corrections to it. We solve the more complicated problem of non-spherical halos, for which the collapse threshold is scale dependent.

  20. Solar flares associated coronal mass ejections in case of type II radio bursts

    NASA Astrophysics Data System (ADS)

    Bhatt, Beena; Prasad, Lalan; Chandra, Harish; Garia, Suman

    2016-08-01

    We have statistically studied 220 events from 1996 to 2008 (i.e. solar cycle 23). Two set of flare-CME is examined one with Deca-hectometric (DH) type II and other without DH type II radio burst. Out of 220 events 135 (flare-halo CME) are accompanied with DH type II radio burst and 85 are without DH type II radio burst. Statistical analysis is performed to examine the distribution of solar flare-halo CME around the solar disk and to investigate the relationship between solar flare and halo CME parameters in case of with and without DH type II radio burst. In our analysis we have observed that: (i) 10-20° latitudinal belt is more effective than the other belts for DH type II and without DH type II radio burst. In this belt, the southern region is more effective in case of DH type II radio burst, whereas in case of without DH type II radio burst dominance exits in the northern region. (ii) 0-10° longitudinal belt is more effective than the other belts for DH type II radio burst and without DH type II radio burst. In this belt, the western region is more effective in case of DH type II radio burst, while in case of without DH type II radio burst dominance exits in the eastern region. (iii) Mean speed of halo CMEs (1382 km/s) with DH type II radio burst is more than the mean speed of halo CMEs (775 km/s) without DH type II radio burst. (iv) Maximum number of M-class flares is found in both the cases. (v) Average speed of halo CMEs in each class accompanied with DH type II radio burst is higher than the average speed of halo CMEs in each class without DH type II radio burst. (vi) Average speed of halo CMEs, associated with X-class flares, is greater than the other class of solar flares in both the cases.