Science.gov

Sample records for ii ionization equilibrium

  1. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. II. IONIZATION AND MAGNETIC FIELD

    SciTech Connect

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J.

    2012-07-20

    We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and CN, usually used in Zeeman observations of the line-of-sight magnetic field, have an abundance that decreases toward the center of the core much faster than the density increases. As a result, Zeeman observations tend to sample the outer layers of the core and consistently underestimate the core magnetic field. The degree of ionization follows a complicated dependence on the number density at central densities up to 10{sup 5} cm{sup -3} for magnetic models and 10{sup 6} cm{sup -3} in non-magnetic models. At higher central densities, the scaling approaches a power law with a slope of -0.6 and a normalization which depends on the cosmic-ray ionization rate {zeta} and the temperature T as ({zeta}T){sup 1/2}. The mean molecular weight of ions is systematically lower than the usually assumed value of 20-30, and, at high densities, approaches a value of 3 due to the asymptotic dominance of the H{sup +}{sub 3} ion. This significantly lower value implies that ambipolar diffusion operates faster.

  2. [Good laboratory practice of equilibrium solubility measurement II. Study of pH-dependent solubility of ionizable compounds].

    PubMed

    Völgyi, Gergely; Baka, Edit; Kovács, Márta; Takácsné, Novák Krisztina

    2011-01-01

    In this paper the pH-equilibrium solubility profiles of ionizable drugs are presented. The aim of the present work was to study the validity of the Henderson-Hasselbalch (HH) relationship in the case of structurally diverse weak bases. In the case of monoprotic bases, namely papaverine, promethazine and propafenone the experimental equilibrium solubility data precisely follow the theoretical HH curve until the limit of salt solubility. The common ion effect on salt solubility was found to be significant at low pHs. Deviation from the HH equation in the case of dibasic quetiapine hydrogen fumarate can be easily interpreted with the formation of different salt compositions. The significance of pH control and the effect of the salt form (e.g., fumarate) was also investigated. It is critical that the pKa value and the intrinsic solubility are accurately determined when the HH relationship is used to predict the pH-dependent aqueous solubility of drugs.

  3. Iron ionization and recombination rates and ionization equilibrium

    NASA Technical Reports Server (NTRS)

    Arnaud, M.; Raymond, J.

    1992-01-01

    In the past few years important progress has been made on the knowledge of ionization and recombination rates of iron, an astrophysically abundant heavy element and a major impurity in laboratory fusion devices. We make a critical review of the existing data on ionization and dielectronic recombination and present new computations of radiative recombination rate coefficients of Fe(+14) through Fe(+25) using the photoionization cross sections of Clark et al. (1986). We provide analytical fits to the recommended data (direct ionization and excitation-autoionization cross sections; radiative and dielectronic recombination rate coefficients). Finally we determine the iron ionic fractions at ionization equilibrium and compare them with previous computations as well as with observational data.

  4. Iron ionization and recombination rates and ionization equilibrium

    NASA Technical Reports Server (NTRS)

    Arnaud, M.; Raymond, J.

    1992-01-01

    In the past few years important progress has been made on the knowledge of ionization and recombination rates of iron, an astrophysically abundant heavy element and a major impurity in laboratory fusion devices. We make a critical review of the existing data on ionization and dielectronic recombination and present new computations of radiative recombination rate coefficients of Fe(+14) through Fe(+25) using the photoionization cross sections of Clark et al. (1986). We provide analytical fits to the recommended data (direct ionization and excitation-autoionization cross sections; radiative and dielectronic recombination rate coefficients). Finally we determine the iron ionic fractions at ionization equilibrium and compare them with previous computations as well as with observational data.

  5. Collisional Ionization Equilibrium for Optically Thin Plasmas

    NASA Technical Reports Server (NTRS)

    Bryans, P.; Mitthumsiri, W.; Savin, D. W.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.

    2006-01-01

    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.

  6. Non-equilibrium ionized blast wave

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1974-01-01

    The structure of a cylindrical blast wave with ionization at non-LTE conditions was calculated using equations previously developed by Wu and Fu (1970). The degree of ionization was predicted by a modified Saha equation. Temperature profiles show that the temperature at non-LTE conditions is lower than at LTE near the shock front. This corresponds to a higher degree of ionization for the non-LTE limit, which indicates that the neutral gas absorption is much more efficient at non-LTE than at the LTE limit. The decaying velocity under non-LTE is approximately 15% less than under LTE.

  7. SCREENED COULOMB FORMULATION OF THE IONIZATION EQUILIBRIUM EQUATION OF STATE,

    DTIC Science & Technology

    The ionization equilibrium equation of state (IEEOS) is formulated relative to the numerical solutions of the Schrodinger equation with the complete...for hydrogen and iron, where pressures at high densities and temperature are compared with pressures from the equation of state based upon the Thomas...IEEOS represents a significant improvement over the TFD equation of state . (Author)

  8. Non-Equilibrium Ionization Modeling of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Rimple, Remington; Murphy, Nicholas Arnold; Shen, Chengcai

    2017-01-01

    Coronal Mass Ejections, or CMEs, are solar events that eject plasma and magnetic flux into interplanetary space. Contemporary sources have noted that the onset of CMEs are caused by some instability of the coronal magnetic field, and further allows heating of plasma upon expansion. Additionally, plasma that leaves the lower solar corona does not remain in ionization equilibrium due to the rapid expansion of plasma. We investigate the evolution of charge states of CME plasma using non-equilibrium ionization (NEI) modeling. These NEI models include radiative cooling and serve as baseline studies for special cases where no heat is being added to the plasma. Each of the simulated CMEs have initial conditions characteristic of active regions. Various function inputs, such as initial temperature, density and final velocity, allow us to examine the influence of certain parameters on the charge state evolution. The results of our project show that plasma originating from active regions display charge state evolutions substantially dependent on initial density and temperature. The CMEs starting with higher plasma density often show an abundance of lower charge states above the freeze-in height. Simulations starting from higher temperatures often show abundance peaks at charge states with closed electron shells.

  9. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    SciTech Connect

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit E-mail: mats.carlsson@astro.uio.no

    2016-02-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.

  10. Non-equilibrium Helium Ionization in an MHD Simulation of the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Golding, Thomas Peter; Leenaarts, Jorrit; Carlsson, Mats

    2016-02-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11-18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.

  11. On local ionization equilibrium and disk winds in QSOs

    SciTech Connect

    Pereyra, Nicolas A.

    2014-11-01

    We present theoretical C IV λλ1548,1550 absorption line profiles for QSOs calculated assuming the accretion disk wind (ADW) scenario. The results suggest that the multiple absorption troughs seen in many QSOs may be due to the discontinuities in the ion balance of the wind (caused by X-rays), rather than discontinuities in the density/velocity structure. The profiles are calculated from a 2.5-dimensional time-dependent hydrodynamic simulation of a line-driven disk wind for a typical QSO black hole mass, a typical QSO luminosity, and for a standard Shakura-Sunyaev disk. We include the effects of ionizing X-rays originating from within the inner disk radius by assuming that the wind is shielded from the X-rays from a certain viewing angle up to 90° ({sup e}dge on{sup )}. In the shielded region, we assume constant ionization equilibrium, and thus constant line-force parameters. In the non-shielded region, we assume that both the line-force and the C IV populations are nonexistent. The model can account for P-Cygni absorption troughs (produced at edge on viewing angles), multiple absorption troughs (produced at viewing angles close to the angle that separates the shielded region and the non-shielded region), and for detached absorption troughs (produced at an angle in between the first two absorption line types); that is, the model can account for the general types of broad absorption lines seen in QSOs as a viewing angle effect. The steady nature of ADWs, in turn, may account for the steady nature of the absorption structure observed in multiple-trough broad absorption line QSOs. The model parameters are M {sub bh} = 10{sup 9} M {sub ☉} and L {sub disk} = 10{sup 47} erg s{sup –1}.

  12. On Local Ionization Equilibrium and Disk Winds in QSOs

    NASA Astrophysics Data System (ADS)

    Pereyra, Nicolas A.

    2014-11-01

    We present theoretical C IV λλ1548,1550 absorption line profiles for QSOs calculated assuming the accretion disk wind (ADW) scenario. The results suggest that the multiple absorption troughs seen in many QSOs may be due to the discontinuities in the ion balance of the wind (caused by X-rays), rather than discontinuities in the density/velocity structure. The profiles are calculated from a 2.5-dimensional time-dependent hydrodynamic simulation of a line-driven disk wind for a typical QSO black hole mass, a typical QSO luminosity, and for a standard Shakura-Sunyaev disk. We include the effects of ionizing X-rays originating from within the inner disk radius by assuming that the wind is shielded from the X-rays from a certain viewing angle up to 90° ("edge on"). In the shielded region, we assume constant ionization equilibrium, and thus constant line-force parameters. In the non-shielded region, we assume that both the line-force and the C IV populations are nonexistent. The model can account for P-Cygni absorption troughs (produced at edge on viewing angles), multiple absorption troughs (produced at viewing angles close to the angle that separates the shielded region and the non-shielded region), and for detached absorption troughs (produced at an angle in between the first two absorption line types); that is, the model can account for the general types of broad absorption lines seen in QSOs as a viewing angle effect. The steady nature of ADWs, in turn, may account for the steady nature of the absorption structure observed in multiple-trough broad absorption line QSOs. The model parameters are M bh = 109 M ⊙ and L disk = 1047 erg s-1.

  13. State densities and ionization equilibrium of atoms in dense plasmas

    NASA Astrophysics Data System (ADS)

    Shimamura, Isao; Fujimoto, Takashi

    1990-08-01

    The semiclassical Bohr-Sommerfeld quantization condition is used to derive an approximate analytical expression for the state density of the hydrogen atom in a dense plasma. An ion-sphere model with an infinitely high potential wall is assumed. The expression leads to a universal curve that spans all values of the electron density. The curve is continuous and smooth over the entire energy range, starting from the hydrogenic state density for low-lying bound states and approaching the plane-wave state density in the high-energy limit of the continuum. The number of bound states is approximately proportional to the inverse of the square root of the electron density. Integration of the state density over the Boltzmann distribution of the electronic energy results in an ionization equilibrium relation, leading to modified Saha's equation. The correction factor for this modified equation is a function of both the electron temperature and the electron density, and is expressed as a universal function of the ion coupling parameter.

  14. Non-equilibrium Ionization Modeling of Simulated Pseudostreamers in a Solar Corona Model

    NASA Astrophysics Data System (ADS)

    Shen, Chengcai; Raymond, John C.; Mikić, Zoran; Linker, Jon; Reeves, Katharine K.; Murphy, Nicholas A.

    2015-04-01

    Time-dependent ionization is important for diagnostics of coronal streamers, where the thermodynamic time scale could be shorter than the ionization or recombination time scales, and ions are therefor in non-equilibrium ionization states. In this work, we perform post-processing time-dependent ionization calculations for a three dimensional solar corona and inner heliosphere model from Predictive Sciences Inc. (Mikić & Linker 1999) to analyze the influence of non-equilibrium ionization on emission from coronal streamers. Using the plasma temperature, density, velocity and magnetic field distributions provided by the 3D MHD simulation covering the Whole Sun Month (Carrington rotation CR1913, 1996 August 22 to September 18), we calculate non-equilibrium ionization states in the region around a pseudostreamer. We then obtain the synthetic emissivities with the non-equilibrium ion populations. Under the assumption that the corona is optically thin, we also obtain intensity profiles of several emission lines. We compare our calculations with intensities of Lyman-alpha lines and OVI lines from SOHO/Ultraviolet Coronagraph Spectrometer (UVCS) observations at 14 different heights. The results show that intensity profiles of both Lyman-alpha and OVI lines match well UVCS observations at low heights. At large heights, OVI intensites are higher for non-equilibrium ionization than equilibrium ionization inside this pseudostreamer. The assumption of ionization equilibrium would lead to a underestimate of the OVI intensity by about ten percent at a height of 2 solar radii, and the difference between these two ionization cases increases with height. The intensity ratio of OVI 1032 line to OVI 1037 lines is also obtained for non-equilibrium ionization modeling.

  15. The cosmic dust analyzer: Experimental evaluation of an impact ionization model. [considering thermal equilibrium plasma

    NASA Technical Reports Server (NTRS)

    Friichtenicht, J. F.; Roy, N. L.; Becker, D. G.

    1973-01-01

    A thermal equilibrium plasma model is used to process data from an impact ionization time-of-flight mass spectrometer in order to convert the raw ion data to relative abundances of the elemental constituents of cosmic dust particles.

  16. Determination of equilibrium composition of thermally ionized monoatomic gas under different physical conditions

    NASA Astrophysics Data System (ADS)

    Romanova, M. S.; Rydalevskaya, M. A.

    2017-05-01

    Perfect gas mixtures that result from thermal ionization of spatially and chemically homogeneous monoatomic gases are considered. Equilibrium concentrations of the components of such mixtures are determined using integration over the momentum space and summation with respect to energy levels of the distribution functions that maximize the entropy of system under condition for constancy of the total number of nuclei and electrons. It is demonstrated that such a method allows significant simplification of the calculation of the equilibrium composition for ionized mixtures at different temperatures and makes it possible to study the degree of ionization of gas versus gas density and number in the periodic table of elements.

  17. The equation of state and ionization equilibrium of dense aluminum plasma with conductivity verification

    SciTech Connect

    Wang, Kun; Shi, Zongqian; Shi, Yuanjie; Bai, Jun; Wu, Jian; Jia, Shenli

    2015-06-15

    The equation of state, ionization equilibrium, and conductivity are the most important parameters for investigation of dense plasma. The equation of state is calculated with the non-ideal effects taken into consideration. The electron chemical potential and pressure, which are commonly used thermodynamic quantities, are calculated by the non-ideal free energy and compared with results of a semi-empirical equation of state based on Thomas-Fermi-Kirzhnits model. The lowering of ionization potential, which is a crucial factor in the calculation of non-ideal Saha equation, is settled according to the non-ideal free energy. The full coupled non-ideal Saha equation is applied to describe the ionization equilibrium of dense plasma. The conductivity calculated by the Lee-More-Desjarlais model combined with non-ideal Saha equation is compared with experimental data. It provides a possible approach to verify the accuracy of the equation of state and ionization equilibrium.

  18. NON-EQUILIBRIUM IONIZATION MODELING OF THE CURRENT SHEET IN A SIMULATED SOLAR ERUPTION

    SciTech Connect

    Shen Chengcai; Reeves, Katharine K.; Raymond, John C.; Murphy, Nicholas A.; Ko, Yuan-Kuen; Lin Jun; Mikic, Zoran; Linker, Jon A.

    2013-08-20

    The current sheet that extends from the top of flare loops and connects to an associated flux rope is a common structure in models of coronal mass ejections (CMEs). To understand the observational properties of CME current sheets, we generated predictions from a flare/CME model to be compared with observations. We use a simulation of a large-scale CME current sheet previously reported by Reeves et al. This simulation includes ohmic and coronal heating, thermal conduction, and radiative cooling in the energy equation. Using the results of this simulation, we perform time-dependent ionization calculations of the flow in a CME current sheet and construct two-dimensional spatial distributions of ionic charge states for multiple chemical elements. We use the filter responses from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory and the predicted intensities of emission lines to compute the count rates for each of the AIA bands. The results show differences in the emission line intensities between equilibrium and non-equilibrium ionization. The current sheet plasma is underionized at low heights and overionized at large heights. At low heights in the current sheet, the intensities of the AIA 94 A and 131 A channels are lower for non-equilibrium ionization than for equilibrium ionization. At large heights, these intensities are higher for non-equilibrium ionization than for equilibrium ionization inside the current sheet. The assumption of ionization equilibrium would lead to a significant underestimate of the temperature low in the current sheet and overestimate at larger heights. We also calculate the intensities of ultraviolet lines and predict emission features to be compared with events from the Ultraviolet Coronagraph Spectrometer on the Solar and Heliospheric Observatory, including a low-intensity region around the current sheet corresponding to this model.

  19. Spontaneity and Equilibrium II: Multireaction Systems

    ERIC Educational Resources Information Center

    Raff, Lionel M.

    2014-01-01

    The thermodynamic criteria for spontaneity and equilibrium in multireaction systems are developed and discussed. When N reactions are occurring simultaneously, it is shown that G and A will depend upon N independent reaction coordinates, ?a (a = 1,2, ..., N), in addition to T and p for G or T and V for A. The general criteria for spontaneity and…

  20. Spontaneity and Equilibrium II: Multireaction Systems

    ERIC Educational Resources Information Center

    Raff, Lionel M.

    2014-01-01

    The thermodynamic criteria for spontaneity and equilibrium in multireaction systems are developed and discussed. When N reactions are occurring simultaneously, it is shown that G and A will depend upon N independent reaction coordinates, ?a (a = 1,2, ..., N), in addition to T and p for G or T and V for A. The general criteria for spontaneity and…

  1. H to Zn Ionization Equilibrium for the Non-Maxwellian Electron κ-distributions: Updated Calculations

    NASA Astrophysics Data System (ADS)

    Dzifčáková, E.; Dudík, J.

    2013-05-01

    New data for the calculation of ionization and recombination rates have been published in the past few years, most of which are included in the CHIANTI database. We used these data to calculate collisional ionization and recombination rates for the non-Maxwellian κ-distributions with an enhanced number of particles in the high-energy tail, which have been detected in the solar transition region and the solar wind. Ionization equilibria for elements H to Zn are derived. The κ-distributions significantly influence both the ionization and recombination rates and widen the ion abundance peaks. In comparison with the Maxwellian distribution, the ion abundance peaks can also be shifted to lower or higher temperatures. The updated ionization equilibrium calculations result in large changes for several ions, notably Fe VIII-Fe XIV. The results are supplied in electronic form compatible with the CHIANTI database.

  2. MEMBRANE POTENTIALS IN THE DONNAN EQUILIBRIUM. II

    PubMed Central

    Hitchcock, David I.

    1954-01-01

    Measurements were made of electromotive force in the Donnan equilibrium of systems containing dilute solutions of protein and acid. Removal of the membrane produced a decrease of no more than 2 to 4 mv. in electromotive force, while the membrane potentials, as estimated by the usual arbitrary assumption, were of the order of 12 to 34 mv. Ion ratios, as calculated from analyses for total chloride, were definitely greater than those calculated from the electromotive force of cells with salt bridges, as if there had been combination of some of the chloride ion with protein. PMID:13174778

  3. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    NASA Technical Reports Server (NTRS)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  4. Ionization balance of impurities in turbulent scrape-off layer plasmas I: local ionization-recombination equilibrium

    NASA Astrophysics Data System (ADS)

    Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.

    2015-12-01

    In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.

  5. Helium Ionization in the Diffuse Ionized Gas Surrounding UCH ii Regions

    NASA Astrophysics Data System (ADS)

    Anish Roshi, D.; Churchwell, E.; Anderson, L. D.

    2017-04-01

    We present measurements of the singly ionized helium-to-hydrogen ratio ({n}{{He}+}/{n}{{{H}}+}) toward diffuse gas surrounding three ultracompact H ii (UCH ii) regions: G10.15-0.34, G23.46-0.20, and G29.96-0.02. We observe radio recombination lines of hydrogen and helium near 5 GHz using the GBT to measure the {n}{{He}+}/{n}{{{H}}+} ratio. The measurements are motivated by the low helium ionization observed in the warm ionized medium and in the inner Galaxy diffuse ionized regions. Our data indicate that the helium is not uniformly ionized in the three observed sources. Helium lines are not detected toward a few observed positions in sources G10.15-0.34 and G23.46-0.20, and the upper limits of the {n}{{He}+}/{n}{{{H}}+} ratio obtained are 0.03 and 0.05, respectively. The selected sources harbor stars of type O6 or hotter as indicated by helium line detection toward the bright radio continuum emission from the sources with mean {n}{{He}+}/{n}{{{H}}+} value 0.06 ± 0.02. Our data thus show that helium in diffuse gas located a few parsecs away from the young massive stars embedded in the observed regions is not fully ionized. We investigate the origin of the nonuniform helium ionization and rule out the possibilities (a) that the helium is doubly ionized in the observed regions and (b) that the low {n}{{He}+}/{n}{{{H}}+} values are due to additional hydrogen ionizing radiation produced by accreting low-mass stars. We find that selective absorption of ionizing photons by dust can result in low helium ionization but needs further investigation to develop a self-consistent model for dust in H ii regions.

  6. Helium Ionization in the Diffuse Ionized Gas Surrounding UCH ii Regions

    NASA Astrophysics Data System (ADS)

    Roshi, D. Anish; Churchwell, E.; Anderson, L. D.

    2017-04-01

    We present measurements of the singly ionized helium-to-hydrogen ratio ({n}{{He}+}/{n}{{{H}}+}) toward diffuse gas surrounding three ultracompact H ii (UCH ii) regions: G10.15-0.34, G23.46-0.20, and G29.96-0.02. We observe radio recombination lines of hydrogen and helium near 5 GHz using the GBT to measure the {n}{{He}+}/{n}{{{H}}+} ratio. The measurements are motivated by the low helium ionization observed in the warm ionized medium and in the inner Galaxy diffuse ionized regions. Our data indicate that the helium is not uniformly ionized in the three observed sources. Helium lines are not detected toward a few observed positions in sources G10.15-0.34 and G23.46-0.20, and the upper limits of the {n}{{He}+}/{n}{{{H}}+} ratio obtained are 0.03 and 0.05, respectively. The selected sources harbor stars of type O6 or hotter as indicated by helium line detection toward the bright radio continuum emission from the sources with mean {n}{{He}+}/{n}{{{H}}+} value 0.06 ± 0.02. Our data thus show that helium in diffuse gas located a few parsecs away from the young massive stars embedded in the observed regions is not fully ionized. We investigate the origin of the nonuniform helium ionization and rule out the possibilities (a) that the helium is doubly ionized in the observed regions and (b) that the low {n}{{He}+}/{n}{{{H}}+} values are due to additional hydrogen ionizing radiation produced by accreting low-mass stars. We find that selective absorption of ionizing photons by dust can result in low helium ionization but needs further investigation to develop a self-consistent model for dust in H ii regions.

  7. Search for the Non-Equilibrium Ionization State in Merging Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Inoue, Shota; Hayashida, Kiyoshi; Ueda, Shutaro; Nagino, Ryo; Tsunemi, Hiroshi; Koyama, Katsuji

    2015-08-01

    Galaxy clusters are considered that they have evolved by their merging. Many observations of the merging cluster with their shock wave are reported recently (e.g. Akamatsu et al. 2012, PASJ, 64, 67, Bourdin et al. 2013, ApJ, 764, 82). If the shock heats the plasma, the non-equilibrium ionization (NEI) state occurs. Even so, an intracluster medium (ICM) is assumed that it is in collisional ionization equilibrium state, because the timescale of the evolution of galaxy clusters is longer than the timescale that the NEI plasma reaches the equilibrium state. Actually, no observation of the NEI plasma in the ICM is reported. However, for the merging cluster, if its merging timescale is 108 yr, the condition of the NEI state of the ionization parameter (net <1013 s/cm3) is filled in the ICM with the electron density of ~10-3 /cm3. In fact, numerical simulation of the merging cluster shows that the NEI state in the ICM occurs due to the shock heating (e.g. Akahori & Yoshikawa 2010, PASJ, 62, 335). Our purpose is to detect the NEI plasma in the merging cluster, to estimate its timescale from the shock heating quantitatively by ionization parameter to reveal the cluster evolution.From this point, we have analyzed the ionization state of the merging cluster, Abell 754. We used the Suzaku observation data and measured the ratio of the intensities of He-like Fe and H-like Fe lines. As a result, we find that the temperature in the cluster increases from southeast to northwest along the direction of merging. Furthermore, at the specific region with highest temperature (kT = 13.3+1.41-1.14 keV), we find the plasma with ionization parameter, net = 6.98+14.57-3.92 x1011 s/cm3. Its timescale estimated by the ionization parameter is 7.7~54.4 Myr in 90% confidence level. We conclude that the plasma in this region is NEI state due to the recent shock heating. The Ionization state in the ICM can provide a physically meaningful way to estimate the phase and/or timescale of the merging

  8. Non-equilibrium chemistry and cooling in the diffuse interstellar medium - II. Shielded gas

    NASA Astrophysics Data System (ADS)

    Richings, A. J.; Schaye, J.; Oppenheimer, B. D.

    2014-08-01

    We extend the non-equilibrium model for the chemical and thermal evolution of diffuse interstellar gas presented in Richings et al. to account for shielding from the UV radiation field. We attenuate the photochemical rates by dust and by gas, including absorption by H I, H2, He I, He II and CO where appropriate. We then use this model to investigate the dominant cooling and heating processes in interstellar gas as it becomes shielded from the UV radiation. We consider a one-dimensional plane-parallel slab of gas irradiated by the interstellar radiation field, either at constant density and temperature or in thermal and pressure equilibrium. The dominant thermal processes tend to form three distinct regions in the clouds. At low column densities, cooling is dominated by ionized metals such as Si II, Fe II, Fe III and C II, which are balanced by photoheating, primarily from H I. Once the hydrogen-ionizing radiation becomes attenuated by neutral hydrogen, photoelectric dust heating dominates, while C II becomes dominant for cooling. Finally, dust shielding triggers the formation of CO and suppresses photoelectric heating. The dominant coolants in this fully shielded region are H2 and CO. The column density of the H I-H2 transition predicted by our model is lower at higher density (or at higher pressure for gas clouds in pressure equilibrium) and at higher metallicity, in agreement with previous photodissociation region models. We also compare the H I-H2 transition in our model to two prescriptions for molecular hydrogen formation that have been implemented in hydrodynamic simulations.

  9. INFLUENCE OF ELECTRON-IMPACT MULTIPLE IONIZATION ON EQUILIBRIUM AND DYNAMIC CHARGE STATE DISTRIBUTIONS: A CASE STUDY USING IRON

    SciTech Connect

    Hahn, M.; Savin, D. W.

    2015-02-10

    We describe the influence of electron-impact multiple ionization (EIMI) on the ionization balance of collisionally ionized plasmas. Previous ionization balance calculations have largely neglected EIMI. Here, EIMI cross-section data are incorporated into calculations of both equilibrium and non-equilibrium charge-state distributions (CSDs). For equilibrium CSDs, we find that EIMI has only a small effect and can usually be ignored. However, for non-equilibrium plasmas the influence of EIMI can be important. In particular, we find that for plasmas in which the temperature oscillates there are significant differences in the CSD when including versus neglecting EIMI. These results have implications for modeling and spectroscopy of impulsively heated plasmas, such as nanoflare heating of the solar corona.

  10. Effective temperature of ionizing stars of extragalactic H II regions

    NASA Astrophysics Data System (ADS)

    Dors, O. L.; Hägele, G. F.; Cardaci, M. V.; Krabbe, A. C.

    2017-04-01

    The effective temperature (Teff) of the radiation field of the ionizing star(s) of a large sample of extragalactic H II regions was estimated using the R = log([O II] (λλ3726 + 29)/[O III] λ5007) index. We used a grid of photoionization models to calibrate the Teff-R relation finding that it has a strong dependence with the ionizing parameter, while it shows a weak direct dependence with the metallicity (variations in Z imply variations in U) of both the stellar atmosphere of the ionizing star and the gas phase of the H II region. Since the R index varies slightly with the Teff for values larger than 40 kK, the R index can be used to derive the Teff in the 30-40 kK range. A large fraction of the ionization parameter variation is due to differences in the temperature of the ionizing stars and then the use of the (relatively) low Teff dependent S2 = [S II] (λλ6717 + 31)/Hα emission-line ratio to derive the ionization parameter is preferable over others in the literature. We propose linear metallicity dependent relationships between S2 and U. Teff and metallicity estimations for a sample of 865 H II regions, whose emission-line intensities were compiled from the literature, do not show any Teff-Z correlation. On the other hand, it seems to be hints of the presence of an anticorrelation between Teff-U. We found that the majority of the studied H II regions (˜87 per cent) present Teff values in the range between 37 and 40 kK, with an average value of 38.5(±1) kK. We also studied the variation of Teff as a function of the galactocentric distance for 14 spiral galaxies. Our results are in agreement with the idea of the existence of positive Teff gradients along the disc of spiral galaxies.

  11. Theoretical and Experimental Research of Capabilities of MHD Technology to Control Gas Flow with Non-Equilibrium Ionization

    DTIC Science & Technology

    2007-11-02

    experimental research of capabilities of using of MHD technology to control gas flow with non-equilibrium ionization. Cold gas flows will be considered, where...and MHD generator will be developed. Requirements to ionizer, MHD generator and flow parameters at which self- sustained operational mode of ionizer and...MHD generator is realized will be formulated. Possibilities of using of MHD control in gas-dynamical systems will be considered. Traditional use of

  12. Analyses on the Ionization Instability of Non-Equilibrium Seeded Plasma in an MHD Generator

    NASA Astrophysics Data System (ADS)

    Le, Chi Kien

    2016-06-01

    Recently, closed cycle magnetohydrodynamic power generation system research has been focused on improving the isentropic efficiency and the enthalpy extraction ratio. By reducing the cross-section area ratio of the disk magnetohydrodynamic generator, it is believed that a high isentropic efficiency can be achieved with the same enthalpy extraction. In this study, the result relating to a plasma state which takes into account the ionization instability of non-equilibrium seeded plasma is added to the theoretical prediction of the relationship between enthalpy extraction and isentropic efficiency. As a result, the electron temperature which reaches the seed complete ionization state without the growth of ionization instability can be realized at a relatively high seed fraction condition. However, the upper limit of the power generation performance is suggested to remain lower than the value expected in the low seed fraction condition. It is also suggested that a higher power generation performance may be obtained by implementing the electron temperature range which reaches the seed complete ionization state at a low seed fraction.

  13. Effect of neutrino rest mass on ionization equilibrium freeze-out

    DOE PAGES

    Grohs, Evan Bradley; Fuller, George M.; Kishimoto, Chad T.; ...

    2015-12-23

    We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Ultimately, though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.

  14. Effect of neutrino rest mass on ionization equilibrium freeze-out

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Fuller, G. M.; Kishimoto, C. T.; Paris, M. W.

    2015-12-01

    We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.

  15. Effect of neutrino rest mass on ionization equilibrium freeze-out

    SciTech Connect

    Grohs, Evan Bradley; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W.

    2015-12-23

    We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Ultimately, though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.

  16. X-ray evidence for electron-ion equilibrium and ionization nonequilibrium in young supernova remnants

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Smith, B. W.

    1979-01-01

    The A-2 spectroscopy experiment on HEAO 1 detected X-ray emission up to 25 keV from the supernova remnants Cas A and Tycho. The spectra must include continuum components with effective temperature equivalent or 10 to the 8th power K which could arise from optically thin plasmas in the collisionless shock fronts. This is the first indication of electron-ion temperature equilibrium in the expanding shell of young remnants. Measurements of the equivalent widths of the K alpha and K beta iron line blends in Cas A, show that their ratio is not compatible with the measured X-ray temperature in the collisional ionization equilibrium model. The search for hard X-ray pulsars in both remnants was unsuccessful.

  17. Equilibrium and Redox Kinetics of Copper(II)-Thiourea Complexes.

    PubMed

    Doona, Christopher J.; Stanbury, David M.

    1996-05-22

    Stopped-flow spectrophotometric measurements identify and determine equilibrium data for thiourea (tu) complexes of copper(II) formed in aqueous solution. In excess Cu(II), the complex ion [Cu(tu)](2+) has a stability constant beta(1) = 2.3 +/- 0.1 M(-)(1) and molar absorptivity at 340 nm of epsilon(1) = (4.0 +/- 0.2) x 10(3) M(-)(1) cm(-)(1) at 25.0 degrees C, 2.48 mM HClO(4), and &mgr; = 464 mM (NaClO(4)). The fast reduction of Cu(II) by excess tu obeys the rate law -d[Cu(II)]/dt = k'[Cu(II)](2)[tu](7) with a value for the ninth-order rate constant k' = (1.60 +/- 0.18) x 10(14) M(-)(8) s(-)(1), which derives from a rate-determining step involving the bimolecular decomposition of two complexed Cu(II) species. Copper(II) catalyzes the reduction of hexachloroiridate(IV) by tu according to the rate law -d[IrCl(6)(2)(-)]/dt = (k(2,unc)[tu](2) + k(1,cat) [tu](5)[Cu(II)])[IrCl(6)(2)(-)]. Least-squares analysis yields values of k(2,unc) and k(1,cat) equaling 385 +/- 4 M(-)(2) s(-)(1) and (3.7 +/- 0.1) x 10(13) M(-)(6) s(-)(1), respectively, at &mgr; = 115 mM (NaClO(4)). The corresponding mechanism has a rate-determining step that involves the oxidation of [Cu(II)(tu)(5)](2+) by [IrCl(6)](2)(-) rather than the bimolecular reaction of two cupric-tu complexes.

  18. Ionization Front Instabilities in Primordial H II Regions

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel; Norman, Michael L.

    2008-02-01

    Radiative cooling by metals in shocked gas mediates the formation of ionization front instabilities in the galaxy today that are responsible for a variety of phenomena in the interstellar medium, from the morphologies of nebulae to triggered star formation in molecular clouds. An important question in early reionization and chemical enrichment of the intergalactic medium is whether such instabilities arose in the H II regions of the first stars and primeval galaxies, which were devoid of metals. We present three-dimensional numerical simulations that reveal both shadow and thin-shell instabilities readily formed in primordial gas. We find that the hard UV spectra of Population III stars broadened primordial ionization fronts, causing H2 formation capable of inciting violent thin-shell instabilities in D-type fronts, even in the presence of intense Lyman-Werner flux. The high postfront gas temperatures associated with He ionization sustained and exacerbated shadow instabilities, unaided by molecular hydrogen cooling. Our models indicate that metals eclipsed H2 cooling in I-front instabilities at modest concentrations, from 1 × 10-3 to 1 × 10-2 Z⊙. We conclude that ionization front instabilities were prominent in the H II regions of the first stars and galaxies, influencing the escape of ionizing radiation and metals into the early universe.

  19. Metals in the circumgalactic medium are out of ionization equilibrium due to fluctuating active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Segers, Marijke C.; Oppenheimer, Benjamin D.; Schaye, Joop; Richings, Alexander J.

    2017-10-01

    We study the effect of a fluctuating active galactic nucleus (AGN) on the abundance of circumgalactic O vi in galaxies selected from the Evolution and Assembly of GaLaxies and their Environments simulations. We follow the time-variable O vi abundance in post-processing around four galaxies - two at z = 0.1 with stellar masses of M* ∼ 1010 M⊙ and M* ∼ 1011 M⊙, and two at z = 3 with similar stellar masses - out to impact parameters of twice their virial radii, implementing a fluctuating central source of ionizing radiation. Due to delayed recombination, the AGN leave significant 'AGN proximity zone fossils' around all four galaxies, where O vi and other metal ions are out of ionization equilibrium for several megayears after the AGN fade. The column density of O vi is typically enhanced by ≈0.3-1.0 dex at impact parameters within 0.3Rvir, and by ≈0.06-0.2 dex at 2Rvir, thereby also enhancing the covering fraction of O vi above a given column density threshold. The fossil effect tends to increase with increasing AGN luminosity, and towards shorter AGN lifetimes and larger AGN duty cycle fractions. In the limit of short AGN lifetimes, the effect converges to that of a continuous AGN with a luminosity of (fduty/100 per cent) times the AGN luminosity. We also find significant fossil effects for other metal ions, where low-ionization state ions are decreased (Si iv, C iv at z = 3) and high-ionization state ions are increased (C iv at z = 0.1, Ne viii, Mg x). Using observationally motivated AGN parameters, we predict AGN proximity zone fossils to be ubiquitous around M* ∼ 1010-11 M⊙ galaxies, and to affect observations of metals in the circumgalactic medium at both low and high redshifts.

  20. Relaxation from Steady States Far from Equilibrium and the Persistence of Anomalous Shock Behavior in Weakly Ionized Gases

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Auslender, Aaron H.

    1999-01-01

    The decay of anomalous effects on shock waves in weakly ionized gases following plasma generator extinction has been measured in the anticipation that the decay time must correlate well with the relaxation time of the mechanism responsible for the anomalous effects. When the relaxation times cannot be measured directly, they are inferred theoretically, usually assuming that the initial state is nearly in thermal equilibrium. In this paper, it is demonstrated that relaxation from any steady state far from equilibrium, including the state of a weakly ionized gas, can proceed much more slowly than arguments based on relaxation from near equilibrium states might suggest. This result justifies a more careful analysis of the relaxation times in weakly ionized gases and suggests that although the experimental measurements of relaxation times did not lead to an unambiguous conclusion, this approach to understanding the anomalous effects may warrant further investigation.

  1. Observed departures from LTE ionization equilibrium in late-type giants

    NASA Technical Reports Server (NTRS)

    Ramsey, L. W.

    1977-01-01

    Photoelectric scans of the Ca I line at 6572 A and the forbidden Ca II transition at 7323 A are studied in the K giant alpha Tau, the M supergiant alpha Ori, and the M giants beta And, alpha Cet, mu Gem, and beta Peg. The relative strengths of these lines are shown to be indicative of the ratio of the relative number densities of the neutral and ionized species in the photosphere. The analysis indicates an overionization relative to LTE in qualitative agreement with the theoretical calculations of Auman and Woodrow for the K and M giants. The M supergiant alpha Ori exhibits a large overionization relative to LTE.

  2. Observed departures from LTE ionization equilibrium in late-type giants

    NASA Technical Reports Server (NTRS)

    Ramsey, L. W.

    1977-01-01

    Photoelectric scans of the Ca I line at 6572 A and the forbidden Ca II transition at 7323 A are studied in the K giant alpha Tau, the M supergiant alpha Ori, and the M giants beta And, alpha Cet, mu Gem, and beta Peg. The relative strengths of these lines are shown to be indicative of the ratio of the relative number densities of the neutral and ionized species in the photosphere. The analysis indicates an overionization relative to LTE in qualitative agreement with the theoretical calculations of Auman and Woodrow for the K and M giants. The M supergiant alpha Ori exhibits a large overionization relative to LTE.

  3. Temperature dependence of the lumirhodopsin I-lumirhodopsin II equilibrium.

    PubMed

    Szundi, Istvan; Epps, Jacqueline; Lewis, James W; Kliger, David S

    2010-07-20

    Time-resolved absorbance measurements, over a spectral range from 300 to 700 nm, were made at delays from 1 micros to 2 ms after photoexcitation of bovine rhodopsin in hypotonically washed membrane suspensions over a range of temperature from 10 to 35 degrees C. The purpose was to better understand the reversibility of the Lumi I-Lumi II process that immediately precedes Schiff base deprotonation in the activation of rhodopsin under physiological conditions. To prevent artifacts due to rotation of rhodopsin and its photoproducts in the membrane, probe light in the time-resolved absorbance studies was polarized at the magic angle (54.7 degrees) relative to the excitation laser polarization axis. The difference spectrum associated with the Lumi I to Lumi II reaction was found to have larger amplitude at 10 degrees C compared to higher temperatures, suggesting that a significant back-reaction exists for this process and that an equilibrated mixture forms. The equilibrium favors Lumi I entropically, and van't Hoff plot curvature shows the reaction enthalpy depends on temperature. The results suggest that Lumi II changes its interaction with the membrane in a temperature-dependent way, possibly binding a membrane lipid more strongly at lower temperatures (compared to its precursor). To elucidate the origin of the time-resolved absorbance changes, linear dichroism measurements were also made at 20 degrees C. The time constant for protein rotation in the membrane was found to be identical to the time constant for the Lumi I-Lumi II process, which is consistent with a common microscopic origin. We conclude that Lumi II (the last protonated Schiff base photointermediate under physiological conditions) is the first photointermediate whose properties depend on the protein-lipid environment.

  4. Non-equilibrium ionization modeling of the Local Bubble. I. Tracing Civ, Nv, and Ovi ions

    NASA Astrophysics Data System (ADS)

    de Avillez, M. A.; Breitschwerdt, D.

    2012-03-01

    Aims: We present the first high-resolution non-equilibrium ionization simulation of the joint evolution of the Local Bubble (LB) and Loop I superbubbles in the turbulent supernova-driven interstellar medium (ISM). The time variation and spatial distribution of the Li-like ions Civ, Nv, and Ovi inside the LB are studied in detail. Methods: This work uses the parallel adaptive mesh refinement code EAF-PAMR coupled to the newly developed atomic and molecular plasma emission module E(A+M)PEC, featuring the time-dependent calculation of the ionization structure of H through Fe, using the latest revision of solar abundances. The finest AMR resolution is 1 pc within a grid that covers a representative patch of the Galactic disk (with an area of 1 kpc2 in the midplane) and halo (extending up to 10 kpc above and below the midplane). Results: The evolution age of the LB is derived by the match between the simulated and observed absorption features of the Li-like ions Civ, Nv, and Ovi. The modeled LB current evolution time is bracketed between 0.5 and 0.8 Myr since the last supernova reheated the cavity in order to have N(Ovi) < 8 × 1012 cm-2, log [N(Civ)/N(Ovi)] < -0.9 and log [N(Nv)/N(Ovi)] < -1 inside the simulated LB cavity, as found in Copernicus, IUE, GHRS-IST and FUSE observations.

  5. Testing a Dynamical Equilibrium Model of the Extraplanar Diffuse Ionized Gas in NGC 891

    NASA Astrophysics Data System (ADS)

    Boettcher, Erin; Zweibel, Ellen G.; Gallagher, J. S., III; Benjamin, Robert A.

    2016-12-01

    The observed scale heights of extraplanar diffuse ionized gas (eDIG) layers exceed their thermal scale heights by a factor of a few in the Milky Way and other nearby edge-on disk galaxies. Here, we test a dynamical equilibrium model of the eDIG layer in NGC 891, where we ask whether the thermal, turbulent, magnetic field, and cosmic-ray pressure gradients are sufficient to support the layer. In optical emission-line spectroscopy from the SparsePak integral field unit on the WIYN 3.5 m telescope, the Hα emission in position-velocity space suggests that the eDIG is found in a ring between galactocentric radii of {R}\\min ≤slant R≤slant 8 {kpc}, where {R}\\min ≥slant 2 {kpc}. We find that the thermal ({σ }{th}=11 km s-1) and turbulent ({σ }{turb}=25 km s-1) velocity dispersions are insufficient to satisfy the hydrostatic equilibrium equation given an exponential electron scale height of {h}z=1.0 {kpc}. Using a literature analysis of radio continuum observations from the CHANG-ES survey, we demonstrate that the magnetic field and cosmic-ray pressure gradients are sufficient to stably support the gas at R≥slant 8 kpc if the cosmic rays are sufficiently coupled to the system ({γ }{cr}=1.45). Thus, a stable dynamical equilibrium model is viable only if the eDIG is found in a thin ring around R = 8 kpc, and nonequilibrium models such as a galactic fountain flow are of interest for further study.

  6. Resistance patterns between cis-diamminedichloroplatinum(II) and ionizing radiation

    SciTech Connect

    De Pooter, C.M.; Scalliet, P.G.; Elst, H.J.; Huybrechts, J.J.; Gheuens, E.E.; Van Oosterom, A.T.; Fichtinger-Schepman, A.M.; De Bruijn, E.A. )

    1991-09-01

    Cross-resistance between cis-diamminedichloroplatinum(II) (CDDP) and radiation resistance has been suggested from clinical and experimental data. To determine whether cross-resistance patterns between both cytotoxic approaches exist, resistance against CDDP and ionizing radiation was induced separately in human ovarian cancer cells in a cross-over design. Subsequently sensitivity changes were determined for both treatment modalities. CDDP resistance was induced previously, and resistant cells were grown at three different levels of CDDP:0 ng/ml; 250 ng/ml; and 500 ng/ml. Resistance with resistance factor (RF) 3.4 to 5.1 proved to be stable, since withdrawal of CDDP pressure for at least 6 mo did not alter resistance patterns. CDDP-resistant cells also demonstrated stable resistance against ionizing radiation, with RF ranging from 1.7 to 2.0. The resistance patterns could not be explained by differences in growth kinetics and DNA content. Resistance to ionizing radiation was induced in the same human ovarian cancer cells as used for CDDP resistance studies. Exposure with 1.5 Gy of intermittent irradiation during 6 mo, at time intervals of 48 h, resulted in cells which were able to grow under chronic ionizing radiation pressure. RF was 2.0; the resistance was lost after 6 mo of culturing without ionizing radiation pressure. With intermittent radiation doses of 0.5 and 1.0 Gy, no significant resistance could be induced. Cells intermittently exposed to 0.5, 1.0, and 1.5 Gy during 6 mo demonstrated increased sensitivity to CDDP, with 0.22 less than RF less than 0.43. Increased sensitivity was associated with proportionally increased formation of the platinum-DNA adducts.

  7. On the Chermnykh-Like Problems: II. The Equilibrium Points

    NASA Astrophysics Data System (ADS)

    Yeh, Li-Chin; Jiang, Ing-Guey

    2006-12-01

    Motivated by Papadakis (2005a, b), we study a Chermnykh-like problem, in which an additional gravitational potential from the belt is included. In addition to the usual five equilibrium points (three collinear and two triangular points), there are some new equilibrium points for this system. We studied the conditions for the existence of these new equilibrium points both analytically and numerically.

  8. Superconfiguration accounting approach versus average-atom model in local-thermodynamic-equilibrium highly ionized plasmas.

    PubMed

    Faussurier, G

    1999-06-01

    Statistical methods of describing and simulating complex ionized plasmas requires the development of reliable and computationally tractable models. In that spirit, we propose the screened-hydrogenic average atom, augmented with corrections resulting from fluctuations of the occupation probabilities around the mean-field equilibrium, as an approximation to calculate the grand potential and related statistical properties. Our main objective is to check the validity of this approach by comparing its predictions with those given by the superconfiguration accounting method. The latter is well-suited to this purpose. In effect, this method makes it possible to go beyond the mean-field model by using nonperturbative, analytic, and systematic techniques. Besides, it allows us to establish the relationship between the detailed configuration accounting and the average-atom methods. To our knowledge, this is the first time that the superconfiguration description has been used in this context. Finally, this study is also the occasion for presenting a powerful technique from analytic number theory to calculate superconfiguration averaged quantities.

  9. Soft x-ray spectra and collisional ionization equilibrium of iron ions with data upgrade of electron-ion collisions

    NASA Astrophysics Data System (ADS)

    Liang, G. Y.; Wei, H. G.; Zhao, G.; Zhong, J. Y.

    2016-06-01

    Line emissivities and ionic fraction in (non-)equilibrium are crucial for understanding the x-ray and extreme ultraviolet (EUV) spectra. These emission originate from electron-impact excitations for a level population of highly charged ions in coronal-like plasma. Recently, a large amount of excitation data was generated within the R-matrix framework by the computational atomic physics community, especially the UK APAP network. These data take resonances in electron-ion collisions into account appropriately, which enhances the effective excitation rates and also the line emissivities in x-ray and EUV regions. For ionization equilibrium data, the earlier compilation by Mazzotta et al (1998 Astron. Astrophys. Supp. Ser. 133 403) was used extensively by the astronomical community until the update by Bryans et al (2006 Astrophys. J. Supp. Ser. 167 343), as well as the compilation of Dere (2007 Astron. Astrophys. 466 771) for electron-impact ionization rates. In past years, many experimental measurements have been performed of highly charged iron ions in heavy-ion storage ring facilities. In this work, we will investigate the line emissivities and ionization equilibrium of highly charged iron ions by using recent theoretical or experimental data of electron-impact excitations and ionizations.

  10. Weak Acid Ionization Constants and the Determination of Weak Acid-Weak Base Reaction Equilibrium Constants in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca

    2013-01-01

    A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…

  11. Weak Acid Ionization Constants and the Determination of Weak Acid-Weak Base Reaction Equilibrium Constants in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca

    2013-01-01

    A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…

  12. Effects of Mg II and Ca II ionization on ab-initio solar chromosphere models

    NASA Technical Reports Server (NTRS)

    Rammacher, W.; Cuntz, M.

    1991-01-01

    Acoustically heated solar chromosphere models are computed considering radiation damping by (non-LTE) emission from H(-) and by Mg II and Ca II emission lines. The radiative transfer equations for the Mg II k and Ca II K emission lines are solved using the core-saturation method with complete redistribution. The Mg II k and Ca II K cooling rates are compared with the VAL model C. Several substantial improvements over the work of Ulmschneider et al. (1987) are included. It is found that the rapid temperature rises caused by the ionization of Mg II are not formed in the middle chromosphere, but occur at larger atmospheric heights. These models represent the temperature structure of the 'real' solar chromosphere much better. This result is a major precondition for the study of ab-initio models for solar flux tubes based on MHD wave propagation and also for ab-initio models for the solar transition layer.

  13. Effects of Mg II and Ca II ionization on ab-initio solar chromosphere models

    NASA Technical Reports Server (NTRS)

    Rammacher, W.; Cuntz, M.

    1991-01-01

    Acoustically heated solar chromosphere models are computed considering radiation damping by (non-LTE) emission from H(-) and by Mg II and Ca II emission lines. The radiative transfer equations for the Mg II k and Ca II K emission lines are solved using the core-saturation method with complete redistribution. The Mg II k and Ca II K cooling rates are compared with the VAL model C. Several substantial improvements over the work of Ulmschneider et al. (1987) are included. It is found that the rapid temperature rises caused by the ionization of Mg II are not formed in the middle chromosphere, but occur at larger atmospheric heights. These models represent the temperature structure of the 'real' solar chromosphere much better. This result is a major precondition for the study of ab-initio models for solar flux tubes based on MHD wave propagation and also for ab-initio models for the solar transition layer.

  14. INSTABILITY OF MAGNETIZED IONIZATION FRONTS SURROUNDING H II REGIONS

    SciTech Connect

    Kim, Jeong-Gyu; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2014-12-20

    An ionization front (IF) surrounding an H II region is a sharp interface where a cold neutral gas makes the transition to a warm ionized phase by absorbing UV photons from central stars. We investigate the instability of a plane-parallel D-type IF threaded by parallel magnetic fields, by neglecting the effects of recombination within the ionized gas. We find that weak D-type IFs always have the post-IF magnetosonic Mach number M{sub M2}≤1. For such fronts, magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor α by a factor of 1 + 1/(2β{sub 1}) compared to the unmagnetized case, with β{sub 1} denoting the plasma beta in the pre-IF region. IFs become unstable to distortional perturbations owing to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber, as well as the upstream flow speed, and approximately to α{sup 1/2}. The IF instability is stabilized by gas compressibility and becomes completely quenched when the front is D-critical. The instability is also stabilized by magnetic pressure when the perturbations propagate in the direction perpendicular to the fields. When the perturbations propagate in the direction parallel to the fields, on the other hand, it is magnetic tension that reduces the growth rate, completely suppressing the instability when M{sub M2}{sup 2}<2/(2β{sub 1}−1). When the front experiences an acceleration, the IF instability cooperates with the Rayleigh-Taylor instability to make the front more unstable.

  15. Dielectronic recombination rates, ionization equilibrium, and radiative emission rates for Mn ions in low-density high-temperature plasmas

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.; Davis, J.

    1983-01-01

    The analysis of optically-thin far-ultraviolet and X-ray emission lines of multiply-charged ions is one of the basic methods for determining the temperatures and densities of laboratory and astrophysical plasmas. In addition, the energy balance in these plasmas can be significantly influenced by the emission of radiation from relatively low concentrations of multiple-charged atomic ions. Because the populations of the excited levels are expected to depart substantially from their local thermodynamic equilibrium values a detailed treatment of the elementary collisional and radiative processes must be employed in order to predict the emission line intensities. In this investigation the authors present the results of calculations based on a corona equilibrium model in which a detailed evaluation is made of the dielectronic recombination rate coefficients. The ionization and autoionization following inner-shell electron excitation from each ground state are balanced by direct radiative and dielectronic recombination. The spectral line intensities emitted by the low-lying excited states, which are assumed to undergo spontaneous radiative decay in times that are short compared with the collision time, are evaluated in terms of the corona ionization equilibrium distributions of the ground states and their electron-impact excitation states.

  16. Hall instability of a weakly ionized, rotating disk with equilibrium pressure stratification and thermal loss

    SciTech Connect

    Bora, Madhurjya P.; Buzar Baruah, Manasi

    2011-01-15

    A linear stability analysis of a thin rotating Keplerian disk is presented in the framework of Hall-magnetohydrodynamics with equilibrium pressure stratification and radiative cooling. Anisotropic pressure is considered in view of a stronger axial magnetic field. The analysis is relevant in studying the stability of protoplanetary disks. It has been shown that the equilibrium pressure stratification determines the growth rate of the Hall instability. With radiative loss, the thermal modes are affected by the Hall mode and the classical instability conditions.

  17. Statistical equilibrium in simple exchange games II. The redistribution game

    NASA Astrophysics Data System (ADS)

    Garibaldi, U.; Scalas, E.; Viarengo, P.

    2007-11-01

    We propose a simple stochastic exchange game mimicking taxation and redistribution. There are g agents and n coins; taxation is modeled by randomly extracting some coins; then, these coins are redistributed to agents following Polya's scheme. The individual wealth equilibrium distribution for the resulting Markov chain is the multivariate symmetric Polya distribution. In the continuum limit, the wealth distribution converges to a Gamma distribution, whose form factor is just the initial redistribution weight. The relationship between this taxation-and-redistribution scheme and other simple conservative stochastic exchange games (such as the BDY game) is discussed.

  18. Optimization of Electrospray Ionization by Statistical Design of Experiments and Response Surface Methodology: Protein-Ligand Equilibrium Dissociation Constant Determinations

    NASA Astrophysics Data System (ADS)

    Pedro, Liliana; Van Voorhis, Wesley C.; Quinn, Ronald J.

    2016-09-01

    Electrospray ionization mass spectrometry (ESI-MS) binding studies between proteins and ligands under native conditions require that instrumental ESI source conditions are optimized if relative solution-phase equilibrium concentrations between the protein-ligand complex and free protein are to be retained. Instrumental ESI source conditions that simultaneously maximize the relative ionization efficiency of the protein-ligand complex over free protein and minimize the protein-ligand complex dissociation during the ESI process and the transfer from atmospheric pressure to vacuum are generally specific for each protein-ligand system and should be established when an accurate equilibrium dissociation constant (KD) is to be determined via titration. In this paper, a straightforward and systematic approach for ESI source optimization is presented. The method uses statistical design of experiments (DOE) in conjunction with response surface methodology (RSM) and is demonstrated for the complexes between Plasmodium vivax guanylate kinase ( PvGK) and two ligands: 5'-guanosine monophosphate (GMP) and 5'-guanosine diphosphate (GDP). It was verified that even though the ligands are structurally similar, the most appropriate ESI conditions for KD determination by titration are different for each.

  19. Optimization of Electrospray Ionization by Statistical Design of Experiments and Response Surface Methodology: Protein-Ligand Equilibrium Dissociation Constant Determinations.

    PubMed

    Pedro, Liliana; Van Voorhis, Wesley C; Quinn, Ronald J

    2016-09-01

    Electrospray ionization mass spectrometry (ESI-MS) binding studies between proteins and ligands under native conditions require that instrumental ESI source conditions are optimized if relative solution-phase equilibrium concentrations between the protein-ligand complex and free protein are to be retained. Instrumental ESI source conditions that simultaneously maximize the relative ionization efficiency of the protein-ligand complex over free protein and minimize the protein-ligand complex dissociation during the ESI process and the transfer from atmospheric pressure to vacuum are generally specific for each protein-ligand system and should be established when an accurate equilibrium dissociation constant (KD) is to be determined via titration. In this paper, a straightforward and systematic approach for ESI source optimization is presented. The method uses statistical design of experiments (DOE) in conjunction with response surface methodology (RSM) and is demonstrated for the complexes between Plasmodium vivax guanylate kinase (PvGK) and two ligands: 5'-guanosine monophosphate (GMP) and 5'-guanosine diphosphate (GDP). It was verified that even though the ligands are structurally similar, the most appropriate ESI conditions for KD determination by titration are different for each. Graphical Abstract ᅟ.

  20. Simulating 3D Stellar Winds and Diffuse X-ray Emissions from Gases in Non-equilibrium Ionization State

    NASA Astrophysics Data System (ADS)

    Long, Min; Sun, Wei; Niu, Shu; Zhou, Xin; Ji, Li

    2017-08-01

    We investigate the physical properties of stellar winds launched in super stellar clusters (SSCs). Chandra observations have detected the presence of diffuse X-ray emission caused by hot gas from such winds in SSCs, and provide the best probe for understanding interactions between the stellar winds and the complex nursery regions. However, the details of the origin of cluster winds, the mass and energy ejection, the formation of diffuse X-ray emission, the fraction of winds contribution to the distribution of diffuse X-ray emission still remain unclear. We developed a multiphysics hydrodynamic model including self-gravity, head conduction and performed 3D simulations with an unprecedented grid resolution due to adaptive mesh refinement (AMR) capability in a case study of NGC 3603, as a supplement to the analysis of the archived 500 ks Chandra observations. The synthetic emission will be computed by assuming the gas in a non-equilibrium ionization (NEI) state indicated by Chandra observation, not coronal ionization equilibrium (CIE) that most works assumed, by using a customized NEI calculation module based on AtomDB. The results will be compared to the Chandra observations.

  1. Thermal equilibrium/disequilibrium features in the excited-state temperature of atomic helium in MAP-II divertor simulator

    NASA Astrophysics Data System (ADS)

    Kado, S.

    2015-08-01

    Doppler-Stark spectrometry and laser Thomson scattering diagnostics for helium plasmas were applied to the MAP-II (material and plasma) steady-state linear divertor simulator at the University of Tokyo. In recombining plasmas, as the volumetric recombination proceeded, atomic, ionic and electron temperatures converged to the same values, which indicated the achievement of thermal equilibrium. On the other hand, in ionizing plasmas, in addition to the collisional heating of bulk atoms, excess heating of atoms in the high principal quantum number states (above Griem's boundary) was observed. This disequilibrium feature can be attributed to the presence of two prevailing conditions: that the characteristic time of the charge-exchange process of the atoms with ions in the system became shorter than the lifetime of the excited atoms spent above Griem's boundary, and that the population influx from above Griem's boundary is considerably larger than that from below the boundary.

  2. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. II. DUST-INDUCED COLLISIONAL IONIZATION

    SciTech Connect

    Helling, Ch.; Jardine, M.; Mokler, F.

    2011-08-10

    Observations have shown that continuous radio emission and also sporadic H{alpha} and X-ray emission are prominent in singular, low-mass objects later than spectral class M. These activity signatures are interpreted as being caused by coupling of an ionized atmosphere to the stellar magnetic field. What remains a puzzle, however, is the mechanism by which such a cool atmosphere can produce the necessary level of ionization. At these low temperatures, thermal gas processes are insufficient, but the formation of clouds sets in. Cloud particles can act as seeds for electron avalanches in streamers that ionize the ambient gas, and can lead to lightning and indirectly to magnetic field coupling, a combination of processes also expected for protoplanetary disks. However, the precondition is that the cloud particles are charged. We use results from DRIFT-PHOENIX model atmospheres to investigate collisional processes that can lead to the ionization of dust grains inside clouds. We show that ionization by turbulence-induced dust-dust collisions is the most efficient kinetic process. The efficiency is highest in the inner cloud where particles grow quickly and, hence, the dust-to-gas ratio is high. Dust-dust collisions alone are not sufficient to improve the magnetic coupling of the atmosphere inside the cloud layers, but the charges supplied either on grains or within the gas phase as separated electrons can trigger secondary nonlinear processes. Cosmic rays are likely to increase the global level of ionization, but their influence decreases if a strong, large-scale magnetic field is present as on brown dwarfs. We suggest that although thermal gas ionization declines in objects across the fully convective boundary, dust charging by collisional processes can play an important role in the lowest mass objects. The onset of atmospheric dust may therefore correlate with the anomalous X-ray and radio emission in atmospheres that are cool, but charged more than expected by pure

  3. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS. II

    SciTech Connect

    Hansen, Brad M. S.

    2012-09-20

    We present a new empirical calibration of equilibrium tidal theory for extrasolar planet systems, extending a prior study by incorporating detailed physical models for the internal structure of planets and host stars. The resulting strength of the stellar tide produces a coupling that is strong enough to reorient the spins of some host stars without causing catastrophic orbital evolution, thereby potentially explaining the observed trend in alignment between stellar spin and planetary orbital angular momentum. By isolating the sample whose spins should not have been altered in this model, we also show evidence for two different processes that contribute to the population of planets with short orbital periods. We apply our results to estimate the remaining lifetimes for short-period planets, examine the survival of planets around evolving stars, and determine the limits for circularization of planets with highly eccentric orbits. Our analysis suggests that the survival of circularized planets is strongly affected by the amount of heat dissipated, which is often large enough to lead to runaway orbital inflation and Roche lobe overflow.

  4. Prompt ionization in the CRIT II barium releases. [Critical Ionization Tests

    NASA Technical Reports Server (NTRS)

    Torbert, R. B.; Kletzing, C. A.; Liou, K.; Rau, D.

    1992-01-01

    Observations of electron and ion distributions inside a fast neutral barium jet in the ionosphere show significant fluxes within 4 km of release, presumably related to beam plasma instability processes involved in the Critical Ionization Velocity (CIV) effect. Electron fluxes exceeding 5 x 10 exp 12/sq cm-str-sec-keV were responsible for ionizing both the streaming barium and ambient oxygen. Resulting ion fluxes seem to be consistent with 1-2 percent ionization of the fast barium, as reported by optical observations, although the extended spatial distribution of the optically observed ions is difficult to reconcile with the in situ observations. When the perpendicular velocity of the neutrals falls below critical values, these processes shut off. Although these observations resemble the earlier Porcupine experimental results (Haerendel, 1982), theoretical understanding of the differences between these data and that of earlier negative experiments is still lacking.

  5. Single-photon double ionization of H2 away from equilibrium: A showcase of two-center electron interference

    NASA Astrophysics Data System (ADS)

    Serov, Vladislav V.; Ivanov, I. A.; Kheifets, A. S.

    2012-08-01

    We demonstrate the effect of two-center interference on single-photon double ionization [double photoionization (DPI)] of the aligned H2 molecule when it shrinks or expands from the equilibrium internuclear distance. This interference affects the first stage of the DPI process in which the primary photoelectron is ejected predominantly along the polarization axis of light and its geometrical interference factor is most sensitive to the internuclear distance in the parallel (Σ) orientation of the internuclear and polarization axes. This effect is responsible for strong modification of the DPI amplitude in the parallel orientation while the corresponding amplitude for the perpendicular (Π) orientation is rather insensitive to the internuclear distance. The combination of these two factors explains the profound kinetic energy release effect on the fully differential cross sections of DPI of H2.

  6. Prompt ionization in the CRIT II barium releases

    NASA Astrophysics Data System (ADS)

    Torbert, R. B.; Kletzing, C. A.; Liou, K.; Rau, D.

    1992-05-01

    Observations of electron and ion distributions inside a fast neutral barium jet in the ionosphere show significant fluxes within 4 km of release, presumably related to beam plasma instability processes involved in the Critical Ionization Velocity (CIV) effect. Electron fluxes exceeding 5 x 10 exp 12/sq cm-str-sec-keV were responsible for ionizing both the streaming barium and ambient oxygen. Resulting ion fluxes seem to be consistent with 1-2 percent ionization of the fast barium, as reported by optical observations, although the extended spatial distribution of the optically observed ions is difficult to reconcile with the in situ observations. When the perpendicular velocity of the neutrals falls below critical values, these processes shut off. Although these observations resemble the earlier Porcupine experimental results (Haerendel, 1982), theoretical understanding of the differences between these data and that of earlier negative experiments is still lacking.

  7. Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria

    PubMed Central

    Kappler, A.; Johnson, C.M.; Crosby, H.A.; Beard, B.L.; Newman, D.K.

    2010-01-01

    Iron isotope fractionations produced during chemical and biological Fe(II) oxidation are sensitive to the proportions and nature of dissolved and solid-phase Fe species present, as well as the extent of isotopic exchange between precipitates and aqueous Fe. Iron isotopes therefore potentially constrain the mechanisms and pathways of Fe redox transformations in modern and ancient environments. In the present study, we followed in batch experiments Fe isotope fractionations between Fe(II)aq and Fe(III) oxide/hydroxide precipitates produced by the Fe(III) mineral encrusting, nitrate-reducing, Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Isotopic fractionation in 56Fe/54Fe approached that expected for equilibrium conditions, assuming an equilibrium Δ56FeFe(OH)3 – Fe(II)aq fractionation factor of +3.0 ‰. Previous studies have shown that Fe(II) oxidation by this Acidovorax strain occurs in the periplasm, and we propose that Fe isotope equilibrium is maintained through redox cycling via coupled electron and atom exchange between Fe(II)aq and Fe(III) precipitates in the contained environment of the periplasm. In addition to the apparent equilibrium isotopic fractionation, these experiments also record the kinetic effects of initial rapid oxidation, and possible phase transformations of the Fe(III) precipitates. Attainment of Fe isotope equilibrium between Fe(III) oxide/hydroxide precipitates and Fe(II)aq by neutrophilic, Fe(II)-oxidizing bacteria or through abiologic Fe(II)aq oxidation is generally not expected or observed, because the poor solubility of their metabolic product, i.e. Fe(III), usually leads to rapid precipitation of Fe(III) minerals, and hence expression of a kinetic fractionation upon precipitation; in the absence of redox cycling between Fe(II)aq and precipitate, kinetic isotope fractionations are likely to be retained. These results highlight the distinct Fe isotope fractionations that are produced by different pathways of biological and

  8. Calculation of equilibrium binding constants and cooperativity of Cu(II) mixed solvated complexes formation.

    PubMed

    Kudrev, A G

    2012-11-15

    A new extension of matrix approach is proposed to calculate the equilibrium constants of coordinated solvent substitution in a metal ion first salvation shell in the mixed solvent system. The proposed method allows reducing the number of independent variables, necessary to calculate the fractions of species in solution. The equilibrium model of MeCN substitution with DMF and DMSO in the presence of Cu(II) ion for the assessment of structure of intermediate species is presented and verified. The distribution diagrams of Cu(II) species in mixed organic solvents have been analyzed using the modified matrix method. The intrinsic equilibrium constants K of the first solvent molecule replacement in the Cu(II) coordination shell and the correction for the mutual influence between the solvent molecules as ligands in the successive complex formation (cooperativity parameter w) in acetonitrile solution have been calculated from the fitting procedure. It is shown that anticooperative substitution of MeCN by donor ligands in the first coordination shell of the Cu(II) ion is always governed by the change of coordination number during the stepwise process.

  9. Ion flotation of cadmium(II) and zinc(II) in the presence of proton-ionizable lariat ethers.

    PubMed

    Ulewicz, Malgorzata; Walkowiak, Wladyslaw; Jang, Youngchan; Kim, Jong Seung; Bartsch, Richard A

    2003-05-15

    Competitive flotation of Cd(II) and Zn(II) from very dilute aqueous solutions by proton-ionizable lariat ethers in the presence of nonylphenol nona(ethylene glycol) ether as a nonionic foaming agent is reported. Influences of structural variation within the collector (identity of the pendent acidic group and lipophilicity), concentration of the collector, and pH of the aqueous solution are assessed. A monoethyl lariat ether phosphonic acid collector is found to exhibit high Cd(II)/Zn(II) flotation selectivity under certain conditions.

  10. Equilibrium and kinetics of copper(II) biosorption by Myriophyllum spicatum L.

    PubMed

    Yan, Chang-zhou; Wang, Sheng-rui; Zeng, A-yan; Jin, Xiang-can; Xu, Qiu-jin; Zhao, Jing-zhu

    2005-01-01

    The potential use of Myriophyllum spicatum L. biomass as a biosorbent for the removal of copper(II) from aqueous solution was investigated in laboratory condition. The sorption experiments were undertaken to obtain copper(II) biosorption properties of M. spicatum L., i.e. equilibrium time, the maximum capacity, and rate constants. Copper(II) biosorption was fast and equilibrium was attained within 35 min at initial copper(II) concentration of 6 mg/L. Different isotherm models including the Langmuir, Freundlich, Temkin and Redlich-Peterson model, were used to investigate the sorption capacity and isotherm. These models showed an excellent match with the experimental data except for the Freundlich model. According to the Langmuir coefficients, the maximum sorption capacity of copper onto M. spicatum L. was 10.80 mg/g. The kinetics of copper(II) sorption was also analysed and rate constants were derived. It was found that the overall sorption process was best described by the pseudo second-order equation, and that intraparticle diffusion was not the rate determining step. The results of this study showed that M. spicatum L. can be considered as useful vehicles for the removal and recovery of copper(II) from aqueous solutions.

  11. Equation of state for a partially ionized gas. II.

    PubMed

    Baker, George A

    2003-11-01

    The derivation of equations of state for fluid phases of a partially ionized gas or plasma is addressed from a fundamental point of view. A spherical cellular model is deduced for the hot curve limit (or ideal Fermi gas). Next the Coulomb interactions are added to the spherical cellular model for general ionic charge Z. Then an independent electron model within a Z electron cell plus several many-body effects are employed. Numerical examples of the theory for several elements (H, Li, N, Na, K, Ni, Rb, Pd, Cs, and Er) are reported. These results reduce in various limits of temperature and density to the expected behavior. They display electron, localization-delocalization phase transitions of liquid-gas character. In the higher Z elements, a second possible critical point has been found. The critical pressure, electron density and temperature for the lower-density critical points seem to obey power laws as a function of Z.

  12. Equilibrium mercury isotope fractionation between dissolved Hg(II) species and thiol-bound Hg.

    PubMed

    Wiederhold, Jan G; Cramer, Christopher J; Daniel, Kelly; Infante, Ivan; Bourdon, Bernard; Kretzschmar, Ruben

    2010-06-01

    Stable Hg isotope ratios provide a new tool to trace environmental Hg cycling. Thiols (-SH) are the dominant Hg-binding groups in natural organic matter. Here, we report experimental and computational results on equilibrium Hg isotope fractionation between dissolved Hg(II) species and thiol-bound Hg. Hg(II) chloride and nitrate solutions were equilibrated in parallel batches with varying amounts of thiol resin resulting in different fractions of thiol-bound and free Hg. Mercury isotope ratios in both fractions were analyzed by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). Theoretical equilibrium Hg isotope effects by mass-dependent fractionation (MDF) and nuclear volume fractionation (NVF) were calculated for 14 relevant Hg(II) species. The experimental data revealed that thiol-bound Hg was enriched in light Hg isotopes by 0.53 per thousand and 0.62 per thousand (delta(202)Hg) relative to HgCl(2) and Hg(OH)(2), respectively. The computational results were in excellent agreement with the experimental data indicating that a combination of MDF and NVF was responsible for the observed Hg isotope fractionation. Small mass-independent fractionation (MIF) effects (<0.1 per thousand) were observed representing one of the first experimental evidences for MIF of Hg isotopes by NVF. Our results indicate that significant equilibrium Hg isotope fractionation can occur without redox transition, and that NVF must be considered in addition to MDF to explain Hg isotope variations.

  13. Biosorption of nickel(II) from aqueous solution by brown algae: equilibrium, dynamic and thermodynamic studies.

    PubMed

    Pahlavanzadeh, H; Keshtkar, A R; Safdari, J; Abadi, Z

    2010-03-15

    The biosorption characteristics of nickel(II) ions using the brown algae (Cystoseria indica, Nizmuddinia zanardini, Sargassum glaucescens and Padina australis) were investigated. Experimental parameters affecting the biosorption process such as pH level, contact time, initial metal concentration and temperature were studied. The equilibrium data fitted very well to the Langmuir adsorption model in the concentration range of nickel(II) ions and at all the temperatures studied. Evaluation of the experimental data in terms of biosorption dynamics showed that the biosorption of nickel(II) onto algal biomass followed the pseudo-second-order dynamics well. The calculated thermodynamic parameters (Delta G degrees, Delta H degrees and DeltaS degrees) showed that the biosorption of nickel(II) ions were feasible, spontaneous and endothermic at the temperature ranges of 293-313 K.

  14. Equilibrium studies of cobalt(II) extraction with 2-pyridineketoxime from mixed sulphate/chloride solution.

    PubMed

    Wieszczycka, Karolina; Krupa, Marta; Wojciechowska, Aleksandra; Wojciechowska, Irmina; Olszanowski, Andrzej

    In present paper the equilibrium of cobalt extraction with 1-(2-pyridyl)tridecan-1-one oxime from the chloride/sulphate solutions was studied. The presented results indicated that extraction depends on a number of process variables, including the pH, metal and Cl(-) concentration in the aqueous feed, and concentration of the oxime in the organic phase. The created cobalt-complexes with the 2-pyridine ketoxime were stable and only concentrated HCl was found to be a suitable stripping agent for coordinated metal. The separation of Co(II) from Zn(II), Ni(II) and Cu(II) was also studied, but the selective recovery of the metals was possible using the multi-stage stripping process.

  15. Accurate energy levels for singly ionized platinum (Pt II)

    NASA Technical Reports Server (NTRS)

    Reader, Joseph; Acquista, Nicolo; Sansonetti, Craig J.; Engleman, Rolf, Jr.

    1988-01-01

    New observations of the spectrum of Pt II have been made with hollow-cathode lamps. The region from 1032 to 4101 A was observed photographically with a 10.7-m normal-incidence spectrograph. The region from 2245 to 5223 A was observed with a Fourier-transform spectrometer. Wavelength measurements were made for 558 lines. The uncertainties vary from 0.0005 to 0.004 A. From these measurements and three parity-forbidden transitions in the infrared, accurate values were determined for 28 even and 72 odd energy levels of Pt II.

  16. A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF He II REIONIZATION

    SciTech Connect

    Faucher-Giguere, Claude-Andre; Lidz, Adam; Zaldarriaga, Matias; Hernquist, Lars

    2009-10-01

    The ionizing background determines the ionization balance and the thermodynamics of the cosmic gas. It is therefore a fundamental ingredient to theoretical and empirical studies of both the intergalactic medium (IGM) and galaxy formation. We present here a new calculation of its spectrum that satisfies the empirical constraints we recently obtained by combining state-of-the-art luminosity functions and intergalactic opacity measurements. In our preferred model, star-forming galaxies and quasars each contribute substantially to the H I ionizing field at z < 3, with galaxies rapidly overtaking quasars at higher redshifts as quasars become rarer. In addition to our fiducial model, we explore the physical dependences of the calculated background and clarify how recombination emission contributes to the ionization rates. We find that recombinations do not simply boost the ionization rates by the number of re-emitted ionizing photons as many of these rapidly redshift below the ionization edges and have a distribution of energies. A simple analytic model that captures the main effects seen in our numerical radiative transfer calculations is given. Finally, we discuss the effects of He II reionization by quasars on both the spectrum of the ionizing background and on the thermal history of the IGM. In regions that have yet to be reionized, the spectrum is expected to be almost completely suppressed immediately above 54.4 eV, while a background of higher energy ({approx}>0.5 keV) photons permeates the entire universe owing to the frequency dependence of the photoionization cross section. We provide an analytical model of the heat input during He II reionization and its effects on the temperature-density relation.

  17. Numerical Analysis of Threshold between Laser-Supported Detonation and Combustion Wave Using Thermal Non-Equilibrium and Multi-Charged Ionization Model

    NASA Astrophysics Data System (ADS)

    Shiraishi, Hiroyuki; Kumagai, Yuya

    Laser-supported Detonation (LSD), which is one type of Laser-supported Plasma (LSP), is an important phenomenon because it can generate high pressures and temperatures for laser absorption. In this study, using thermal-non-equilibrium model, we numerically simulate LSPs, which are categorized as either LSDs or laser-supported combustion-waves (LSCs). For the analysis model, a two-temperature (heavy particle and electron-temperature) model has been used because the electronic mode excites first in laser absorption and a thermal non-equilibrium state easily arises. In the numerical analysis of the LSDs, laser absorption models are particularly important. Therefore, a multi-charged ionization model is considered to evaluate precisely the propagation and the structure transition of the LSD waves in the proximity of the LSC-LSD threshold. In the new model, the transition of the LSD construction near the threshold, which is indicated by the ionization delay length, becomes more practical.

  18. Equilibrium and kinetic modelling of cadmium (II) biosorption by Dried Biomass Aphanothece sp. from aqueous phase

    NASA Astrophysics Data System (ADS)

    Awalina; Harimawan, A.; Haryani, G. S.; Setiadi, T.

    2017-05-01

    The Biosorption of cadmium (II) ions on dried biomass of Aphanothece sp.which previously grown in a photobioreactor system with atmospheric carbon dioxide fed input, was studied in a batch system with respect to initial pH, biomass concentration, contact time, and temperature. The biomass exhibited the highest cadmium (II) uptake capacity at 30ºC, initial pH of 8.0±0.2 in 60 minute and initial cadmium (II) ion concentration of 7.76 mg/L. Maximum biosorption capacities were 16.47 mg/g, 54.95 mg/g and 119.05 mg/g at range of initial cadmium (II) 0.96-3.63 mg/L, 1.99-8.10 mg/L and 6.48-54.38 mg/L, respectively. Uptake kinetics follows the pseudo-second order model while equilibrium is best described by Langmuir isotherm model. Isotherms have been used to determine thermodynamic parameter process (free energy change, enthalpy change and entropy change). FTIR analysis of microalgae biomass revealed the presence of amino acids, carboxyl, hydroxyl, sulfhydryl and carbonyl groups, which are responsible for biosorption of metal ions. During repeated sorption/desorption cycles, the ratio of Cd (II) desorption to biosorption decreased from 81% (at first cycle) to only 27% (at the third cycle). Nevertheless, due to its higher biosorption capability than other adsorbent, Aphanothece sp appears to be a good biosorbent for removing metal Cd (II) ions from aqueous phase.

  19. Removal of Pb(II) using the modified lawny grass: mechanism, kinetics, equilibrium and thermodynamic studies.

    PubMed

    Lu, Dandan; Cao, Qilin; Cao, Xiuju; Luo, Fang

    2009-07-15

    A series of new chemical-modified lawny grass adsorbents were prepared and the feasibility of absorbents to remove Pb(II) ion from aqueous solution was examined. The absorbents were characterized by FTIR spectra and elemental analysis. Kinetics, equilibrium, thermodynamics, column adsorption and mechanism were studied. The optimum pH is in the range of 5.0-5.8 for all adsorbents. The sorption system follows pseudo-second-order kinetic model and equilibrium time is obtained after 60 min. The maximum adsorption capacities obtained from Langmuir-Freundlich model are 1.55 and 1.26 mol/kg by using 1 CG and 0.6 CG (lawny grass modified by 1 mol/L or 0.6 mol/L citric acid, respectively). Thermodynamic parameters such as Delta G, Delta H and DeltaS are evaluated for the adsorption process. The results indicates that the adsorption of Pb(II) is spontaneous and endothermic. The breakthrough point is achieved at 100 BV (bed volume) by a column of 0.6 CG. Desorption of Pb(II) and regeneration of the column is achieved by 0.1 mol/L HCl elution. After 3 adsorption/desorption cycles, the breakthrough point remains around 100 BV, which shows that grass adsorbent is regenerated easily and used repeatedly. Above results indicates that lawny grass have a good potential for removal of lead from dilute aqueous solution in the future.

  20. Kinetic theory of transport processes in partially ionized reactive plasma, II: Electron transport properties

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-11-01

    The previously obtained in (Zhdanov and Stepanenko, 2016) general transport equations for partially ionized reactive plasma are employed for analysis of electron transport properties in molecular and atomic plasmas. We account for both elastic and inelastic interaction channels of electrons with atoms and molecules of plasma and also the processes of electron impact ionization of neutral particles and three-body ion-electron recombination. The system of scalar transport equations for electrons is discussed and the expressions for non-equilibrium corrections to electron ionization and recombination rates and the diagonal part of the electron pressure tensor are derived. Special attention is paid to analysis of electron energy relaxation during collisions with plasma particles having internal degrees of freedom and the expression for the electron coefficient of inelastic energy losses is deduced. We also derive the expressions for electron vector and tensorial transport fluxes and the corresponding transport coefficients for partially ionized reactive plasma, which represent a generalization of the well-known results obtained by Devoto (1967). The results of numerical evaluation of contribution from electron inelastic collisions with neutral particles to electron transport properties are presented for a series of molecular and atomic gases.

  1. [Ne III]/[O II] as an ionization parameter diagnostic in star-forming galaxies

    SciTech Connect

    Levesque, Emily M.; Richardson, Mark L. A.

    2014-01-01

    We present our parameterizations of the log([Ne III]λ3869/[O II]λ3727) (Ne3O2) and log([O III]λ5007/[O II]λ3727) (O3O2) ratios as diagnostics of ionization parameter in star-forming galaxies. Our calibrations are based on the Starburst99/Mappings III photoionization models, which extend up to the extremely high values of ionization parameter found in high-redshift galaxies. While similar calibrations have been presented previously for O3O2, this is the first such calibration of Ne3O2. We illustrate the tight correlation between these two ratios for star-forming galaxies and discuss the underlying physics that dictates their very similar evolution. Based on this work, we propose the Ne3O2 ratio as a new and useful diagnostic of ionization parameter for star-forming galaxies. Given the Ne3O2 ratio's relative insensitivity to reddening, this ratio is particularly valuable for use with galaxies that have uncertain amounts of extinction. The short wavelengths of the Ne3O2 ratio can also be applied out to very high redshifts, extending studies of galaxies' ionization parameters out to z ∼ 1.6 with optical spectroscopy and z ∼ 5.2 with ground-based near-infrared spectra.

  2. EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II)

    SciTech Connect

    Sansonetti, Craig J.; Nave, Gillian

    2014-08-01

    We have made new observations of the spectrum of singly ionized chromium (Cr II) in the region 2850-37900 Å with the National Institute of Standards and Technology 2 m Fourier transform spectrometer. These data extend our previously reported observations in the near-ultra-violet region. We present a comprehensive list of more than 5300 Cr II lines classified as transitions among 456 even and 457 odd levels, 179 of which are newly located in this work. Using highly excited levels of the 3d {sup 4}({sup 5} D)5g, 3d {sup 4}({sup 5} D)6g, and 3d {sup 4}({sup 5}D)6h configurations, we derive an improved ionization energy of 132971.02 ± 0.12 cm{sup –1} (16.486305 ± 0.000015 eV)

  3. Extended Analysis of the Spectrum of Singly Ionized Chromium (Cr II)

    NASA Astrophysics Data System (ADS)

    Sansonetti, Craig J.; Nave, Gillian

    2014-08-01

    We have made new observations of the spectrum of singly ionized chromium (Cr II) in the region 2850-37900 Å with the National Institute of Standards and Technology 2 m Fourier transform spectrometer. These data extend our previously reported observations in the near-ultra-violet region. We present a comprehensive list of more than 5300 Cr II lines classified as transitions among 456 even and 457 odd levels, 179 of which are newly located in this work. Using highly excited levels of the 3d 4(5 D)5g, 3d 4(5 D)6g, and 3d 4(5D)6h configurations, we derive an improved ionization energy of 132971.02 ± 0.12 cm-1 (16.486305 ± 0.000015 eV).

  4. Numerical Analysis on Non-Equilibrium Mechanism of Laser-Supported Detonation Wave Using Multiply-Charged Ionization

    NASA Astrophysics Data System (ADS)

    Shiraishi, Hiroyuki

    2006-05-01

    Laser-Supported Detonation (LSD), one type of Laser-Supported Plasma (LSP), is considered as the most important phenomena because it can generate high pressure and high temperature for laser absorption. In this study, I have numerically simulated the 1-D LSD waves propagating through a helium gas, in which Multiply-charged ionization model is considered for describing an accurate ionization process.

  5. Numerical Analysis on Non-Equilibrium Mechanism of Laser-Supported Detonation Wave Using Multiply-Charged Ionization

    SciTech Connect

    Shiraishi, Hiroyuki

    2006-05-02

    Laser-Supported Detonation (LSD), one type of Laser-Supported Plasma (LSP), is considered as the most important phenomena because it can generate high pressure and high temperature for laser absorption. In this study, I have numerically simulated the 1-D LSD waves propagating through a helium gas, in which Multiply-charged ionization model is considered for describing an accurate ionization process.

  6. On the use of different dielectric constants for computing individual and pairwise terms in poisson-boltzmann studies of protein ionization equilibrium.

    PubMed

    Teixeira, Vitor H; Cunha, Carlos A; Machuqueiro, Miguel; Oliveira, A Sofia F; Victor, Bruno L; Soares, Cláudio M; Baptista, António M

    2005-08-04

    Poisson-Boltzmann (PB) models are a fast and common tool for studying electrostatic processes in proteins, particularly their ionization equilibrium (protonation and/or reduction), often yielding quite good results when compared with more detailed models. Yet, they are conceptually very simple and necessarily approximate, their empirical character being most evident when it comes to the choice of the dielectric constant assigned to the protein region. The present study analyzes several factors affecting the ability of PB-based methods to model protein ionization equilibrium. We give particular attention to a suggestion made by Warshel and co-workers (e.g., Sham et al. J. Phys. Chem. B 1997, 101, 4458) of using different protein dielectric constants for computing the individual (site) and the pairwise (site-site) terms of the ionization free energies. Our prediction of pK(a) values for several proteins indicates that no advantage is obtained by such a procedure, even for sites that are buried and/or display large pK(a) shifts relative to the solution values. In particular, the present methodology gives the best predictions using a dielectric constant around 20, for shifted/buried and nonshifted/exposed sites alike. The similarities and differences between the PB model and Warshel's PDLD/S model are discussed, as well as the reasons behind their apparently discrepant results. The present PB model is shown to predict also good reduction potentials in redox proteins.

  7. Lithium abundances of halo dwarfs based on excitation temperatures. II. Non-local thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Hosford, A.; García Pérez, A. E.; Collet, R.; Ryan, S. G.; Norris, J. E.; Olive, K. A.

    2010-02-01

    .72 dex inferred from WMAP + BBN. We discuss the effects of collisions on trends of7Li abundances with [Fe/H] and Teff, as well as the NLTE effects on the determination of log g through ionization equilibrium, which imply a collisional scaling factor SH > 1 for collisions between Fe and H atoms.

  8. The N (II) 205 micron line in M82: The warm ionized medium

    NASA Technical Reports Server (NTRS)

    Petuchowski, S. J.; Bennett, C. L.; Haas, Michael R.; Erickson, Edwin F.; Lord, Steven D.; Rubin, Robert H.; Colgan, Sean W. J.; Hollenbach, D. J.

    1994-01-01

    Detection of the 205 micrometer fine structure line of N II in the nearby starburst galaxy M82 is reported. The intensity wihin a 54 sec Full width at Half Maximum (FWHM) beam is (7.1 +/- 1.2) x 10(exp -19) W cm(exp -2). The ratio of the intensity of the recently detected 122 micrometer line to that of the 2.5 micrometer lines is = (4.2) (sup =1.6) (sub -1.2), significantly larger than the corresponding Galactic value of 1.6 +/- 0.3, reflecting higher electron densities within the central 850 pc of M82 in comparison to the Cosmic Background Explorer (COBE) Galactic average. The 2.5 micrometer line profile is consistent with other far-infrared fine-structure line profiles observed in M82. The observations are interpreted in the context of a two-component model of the ionized medium in M82. We find that a component of density as low as approximately 50 cm(exp -3) can comprise up to 70% of the total mass of warm ionized gas within the beam. The balance of the ionized mass is comprised of a component of density approximately greater than 100 cm(exp -3). A model is explored in which the dneser ionized medium constitute the boundaries of neutral surfaces which border the expanding hot plasma from the nuclear region.

  9. Dielectronic recombination rates, ionization equilibrium, and radiative emission rates for calcium and nickel ions in low-density high-temperature plasmas

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.; Davis, J.; Rogerson, J. E.; Blaha, M.; Cain, J.; Davis, M.

    1980-01-01

    The total dielectronic recombination rates for Ca and Ni ions were calculated taking into account autoionization to excited states of the recombining ion and stabilizing radiative transitions of the recombining electron. Radiative transitions of the recombining ion are found to be the dominant stabilizing processes, and the relative importance of Delta n = 0 and Delta n not equal to 0 transitions in the relevant temperature region is determined for each ion. The relative importance of the Delta n = 0 and Delta n not equal to 0 contributions is significantly altered for some ions by the inclusion of autoionization to excited levels. The relative abundance of the various ionization stages has been determined by using a corona equilibrium model in which collisional ionization and inner-shell excitation followed by autoionization are balanced by direct radiative and dielectronic recombination.

  10. Improved DNA equilibrium binding affinity determinations of platinum(II) complexes using synchrotron radiation circular dichroism.

    PubMed

    Ang, Dale L; Jones, Nykola C; Stootman, Frank; Ghadirian, Bahman; Aldrich-Wright, Janice R

    2015-06-21

    The binding affinity of a series of square planar platinum(II) compounds of the type [Pt(A(L))(I(L))](2+), where A(L) is 1,2-diaminoethane and I(L) are 1,10-phenanthroline (phen), 4-methyl-1,10-phenanthroline (4Mephen), 5-methyl-1,10-phenanthroline (5Mephen), 4,7-dimethyl-1,10-phenanthroline (47Me2phen), 5,6-dimethyl-1,10-phenanthroline (56Me2phen) or 3,4,7,8-tetramethyl-1,10-phenanthroline (3478Me4phen) has been reinvestigated using Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The additional peaks exhibited considerably greater intensity than those observed between 200 and 400 nm affording additional binding affinity determinations. In addition, the authors have reviewed the various mathematical approaches used to estimate equilibrium binding constants and thereby demonstrate that their mathematical approach, implemented with Wolfram Mathematica, has merit over other methods.

  11. Equilibrium between radiation and matter for classical relativistic multiperiodic systems. II. Study of radiative equilibrium with Rayleigh-Jeans radiation

    NASA Astrophysics Data System (ADS)

    Blanco, R.; Pesquera, L.; Santos, E.

    1984-05-01

    We continue the study of the problem of equilibrium between radiation and classical relativistic systems begun previously

    [Phys. Rev. D 27, 1254 (1983)]
    . We consider the emission and absorption of energy by a relativistic pointlike particle immersed in a Rayleigh-Jeans radiation field. The particle is acted upon by a force which, if alone, would produce a multiply periodic motion. It is shown that radiative balance at each frequency holds. A discussion is given of the results reported in both papers.

  12. Energy levels of neutral and singly ionized berkelium, /sup 249/Bk I and II

    SciTech Connect

    Worden, E.F.; Conway, J.G.; Blaise, J.

    1987-09-01

    Energy-level analyses of the observed emission spectrum of berkelium have yielded 179 odd and 186 even levels of neutral berkelium Bk I, and 42 odd and 117 even levels of singly ionized berkelium Bk II. The levels are tabulated with the J value, the g value, the configuration and hyperfine constants A and B, and the width given for many of the levels. The ground states of Bk I and Bk II are (Rn)5f/sup 9/7s/sup 2/ /sup 6/H/sup 0//sub 15/2/ and (Rn)5f/sup 9/7s /sup 7/H/sup 0//sub 8/, respectively. A table lists the lowest level of each identified electronic configuration of Bk I and Bk II.

  13. Charge exchange contamination of CRIT-II barium CIV experiment. [critical ionization velocity in ionosphere

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Meyerott, R. E.; Rairden, R. L.

    1991-01-01

    Experiments have been recently performed which attempted to confirm critical ionization velocity (CIV) ionization by deploying chemicals at high velocity in the ionosphere. Specifically, the CRIT-II rocket performed a barium release in the ionosphere, where observations of Ba(+) resonant emissions following the release are believed to have resulted from the CIV process. Calculations are presented which suggest a significant fraction (if not all) of the Ba(+) observed likely resulted from charge exchange with the thermosphere ions and not through CIV processes. The results presented here are pertinent to other CIV experiments performed in the ionosphere. It is recommended that laboratory measurements should be made of the charge exchange cross section between O(+) and Ba as well as other metal vapors used in CIV experiments.

  14. Biosorption of Cu(II) by immobilized microalgae using silica: kinetic, equilibrium, and thermodynamic study.

    PubMed

    Lee, Hongkyun; Shim, Eunjung; Yun, Hyun-Shik; Park, Young-Tae; Kim, Dohyeong; Ji, Min-Kyu; Kim, Chi-Kyung; Shin, Won-Sik; Choi, Jaeyoung

    2016-01-01

    Immobilized microalgae using silica (IMS) from Micractinium reisseri KGE33 was synthesized through a sol-gel reaction. Green algal waste biomass, the residue of M. reisseri KGE33 after oil extraction, was used as the biomaterial. The adsorption of Cu(II) on IMS was tested in batch experiments with varying algal doses, pH, contact times, initial Cu(II) concentrations, and temperatures. Three types of IMSs (IMS 14, 70, and 100) were synthesized according to different algal doses. The removal efficiency of Cu(II) in the aqueous phase was in the following order: IMS 14 (77.0%) < IMS 70 (83.3%) < IMS 100 (87.1%) at pH 5. The point of zero charge (PZC) value of IMS100 was 4.5, and the optimum pH for Cu(II) adsorption was 5. Equilibrium data were described using a Langmuir isotherm model. The Langmuir model maximum Cu(II) adsorption capacity (q m) increased with the algal dose in the following order: IMS 100 (1.710 mg g(-1)) > IMS 70 (1.548 mg g(-1)) > IMS 14 (1.282 mg g(-1)). The pseudo-second-order equation fitted the kinetics data well, and the value of the second-order rate constant increased with increasing algal dose. Gibbs free energies (ΔG°) were negative within the temperature range studied, which indicates that the adsorption process was spontaneous. The negative value of enthalpy (ΔH°) again indicates the exothermic nature of the adsorption process. In addition, SEM-energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses of the IMS surface reveal that the algal biomass on IMS is the main site for Cu(II) binding. This study shows that immobilized microalgae using silica, a synthesized biosorbent, can be used as a cost-effective sorbent for Cu(II) removal from the aqueous phase.

  15. Octahedral-tetrahedral equilibrium and solvent exchange of cobalt(II) ions in primary alkylamines.

    PubMed

    Aizawa, Sen-ichi; Funahashi, Shigenobu

    2002-08-26

    The enthalpy differences (Delta H degrees ) of the equilibrium between the octahedral and tetrahedral solvated cobalt(II) complexes were obtained in some primary alkylamines such as propylamine (pa, 36.1 +/- 2.3 kJ mol(-1)), n-hexylamine (ha, 34.9 +/- 1.0 kJ mol(-1)), 2-methoxyethylamine (meea, 44.8 +/- 3.1 kJ mol(-1)), and benzylamine (ba, 50.1 +/- 3.6 kJ mol(-1)) by the spectrophotometric method. The differences in the energy levels between the two geometries of the cobalt(II) complexes in the spherically symmetric field (Delta E(spher)) were estimated from the values of Delta H degrees by offsetting the ligand field stabilization energies. It was indicated that the value of Delta E(spher) is the decisive factor in determining the value of Delta H degrees and is largely dependent on the electronic repulsion between the d-electrons and the donor atoms and the interelectronic repulsion in the d orbitals. The comparison between activation enthalpies (Delta H(++)) for the solvent exchange reactions of octahedral cobalt(II) ions in pa and meea revealed that the unexpectedly large rate constant and small Delta H(++) in pa are attributed to the strong electronic repulsion in the ground state and removal of the electronic repulsion in the dissociative transition state, which can give the small Delta E(spher) between the ground and transition states. Differences in the solvent exchange rates and the DeltaH(++) values of the octahedral metal(II) ions in some other solvents are discussed in connection with the electronic repulsive factors.

  16. Prediction of equilibrium parameters of adsorption of lead (II) ions onto diatomite

    NASA Astrophysics Data System (ADS)

    Salman, Taylan; Ardalı, Yüksel; Gamze Turan, N.

    2013-04-01

    Heavy metals from industrial wastewaters are one of the most important environmental issues to be solved today. Due to their toxicity and nonbiodegradable nature, heavy metals cause environmental and public health problems. Various techniques have been developed to remove heavy metals from aqueous solutions. These include chemical precipitation, reverse osmosis, ion Exchange and adsorption. Among them, adsorption is considered to be a particularly competitive and effective process for the removal of heavy metals from aqueous solutions. There is growing interest in using low cost, commercially available materials for the adsorption of heavy metals. Diatomite is a siliceous sedimentary rock having an amorphous form of silica (SiO2. nH2O) containing a small amount of microcrystalline material. It has unique combination of physical and chemical properties such as high porosity, high permeability, small particle size, large surface area, and low thermal conductivity. In addition, it is available in Turkey and in various locations around the world. Therefore, diatomite has been successfully used as adsorbent for the removal of heavy metals. The aim of the study is to investigate the adsorption properties of diatomite. The equilibrium adsorption data were applied to the Langmuir, Freundlich and Dubinin-Radushkevic (D-R) isotherm models. Adsorption experiments were performed under batch process, using Pb (II) initial concentration, pH of solution and contact time as variables. The results demonstrated that the adsorption of Pb (II) was strongly dependent on pH of solution. The effect of pH on adsorption of Pb(II) on diatomite was conducted by varying pH from 2 to 12 at 20 oC. In the pH range of 2.0-4.0, the adsorption percentage increases slightly as the pH increasing. At pH>4, the adsorption percentage decreases with increasing pH because hydrolysis product and the precipitation begin to play an important role in the sorption of Pb (II). At pH4, the maximum adsorption

  17. CAN THE LYMAN CONTINUUM LEAKED OUT OF H II REGIONS EXPLAIN DIFFUSE IONIZED GAS?

    SciTech Connect

    Seon, Kwang-Il

    2009-09-20

    We present an attempt to explain the diffuse Halpha emission of a face-on galaxy M 51 with the 'standard' photoionization model, in which the Lyman continuum (Lyc) escaping from H II regions propagates large distances into the diffuse interstellar medium (ISM). The diffuse Halpha emission of M 51 is analyzed using thin slab models and exponential disk models in the context of the 'on-the-spot' approximation. The scale height of the ionized gas needed to explain the diffuse Halpha emission with the scenario is found to be of the order of {approx}1-2 kpc, consistent with those of our Galaxy and edge-on galaxies. The model also provides a vertical profile, when the galaxy is viewed edge-on, consisting of two-exponential components. However, it is found that an incredibly low absorption coefficient of kappa{sub 0} {approx} 0.4-0.8 kpc{sup -1} at the galactic plane, or, equivalently, an effective cross section as low as sigma{sub eff} {approx} 10{sup -5} of the photoionization cross section at 912 A is required to allow the stellar Lyc photons to travel through the H I disk. Such a low absorption coefficient is out of accord with the properties of the ISM. Furthermore, we found that even the model that has the diffuse ionized gas (DIG) phase only and no H I gas phase shows highly concentrated Halpha emissions around H II regions, and can account for only {approx}<26% of the Halpha luminosity of the DIG. This result places a strong constraint on the ionizing source of the DIG. We also report that the Halpha intensity distribution functions not only of the DIG, but also of H II regions in M 51, appear to be lognormal.

  18. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell.

    PubMed

    Sekar, M; Sakthi, V; Rengaraj, S

    2004-11-15

    Removal of lead from aqueous solutions by adsorption onto coconut-shell carbon was investigated. Batch adsorption experiments were performed to find out the effective lead removal at different metal ion concentrations. Adsorption of Pb2+ ion was strongly affected by pH. The coconut-shell carbon (CSC) exhibited the highest lead adsorption capacity at pH 4.5. Isotherms for the adsorption of lead on CSC were developed and the equilibrium data fitted well to the Langmuir, Freundlich, and Tempkin isotherm models. At pH 4.5, the maximum lead adsorption capacity of CSC estimated with the Langmuir model was 26.50 mg g(-1) adsorbent. Energy of activation (Ea) and thermodynamic parameters such as DeltaG, DeltaH, and DeltaS were evaluated by applying the Arrhenius and van't Hoff equations. The thermodynamics of Pb(II) on CSC indicates the spontaneous and endothermic nature of adsorption. Quantitative desorption of Pb(II) from CSC was found to be 75% which facilitates the sorption of metal by ion exchange.

  19. Anomalously slow cyanide binding to Glycera dibranchiata monomer methemoglobin component II: Implication for the equilibrium constant

    SciTech Connect

    Mintorovitch, J.; Satterlee, J.D. )

    1988-10-18

    In comparison to sperm whale metmyoglobin, metleghemoglobin {alpha}, methemoglobins, and heme peroxidases, the purified Glycera dibranchiata monomer methemoglobin component II exhibits anomalously slow cyanide ligation kinetics. For the component II monomer methemoglobin this reaction has been studied under pseudo-first-order conditions at pH 6.0, 7.0, 8.0, and 9.0, employing 100-250-fold mole excesses of potassium cyanide at each pH. The analysis shows that the concentration-independent bimolecular rate constant is small in comparison to those of the other heme proteins. Furthermore, the results show that the dissociation rate is extremely slow. Separation of the bimolecular rate constant into contributions from k{sub CN{sup {minus}}} (the rate constant for CN{sup {minus}} binding) and from k{sub HCN} (the rate constant for HCN binding) shows that the former is approximately 90 times greater. These results indicate that cyanide ligation reactions are not instantaneous for this protein, which is important for those attempting to study the ligand-binding equilibria. From the results presented here the authors estimate that the actual equilibrium dissociation constant (K{sub D}) for cyanide binding to this G. dibranchiata monomer methemoglobin has a numerical upper limit that is at least 2 orders of magnitude smaller than the value reported before the kinetic results were known.

  20. COMPREHENSIVE OBSERVATIONS OF THE ULTRAVIOLET SPECTRUM AND IMPROVED ENERGY LEVELS FOR SINGLY IONIZED CHROMIUM (Cr II)

    SciTech Connect

    Sansonetti, Craig J.; Nave, Gillian; Reader, Joseph; Kerber, Florian

    2012-10-15

    We report new observations of the spectrum of singly ionized chromium (Cr II) in the region 1142-3954 A. The spectra were recorded with the National Institute of Standards and Technology 10.7 m normal-incidence vacuum spectrograph and FT700 vacuum ultraviolet Fourier transform spectrometer. More than 3600 lines are classified as transitions among 283 even and 368 odd levels. The new spectral data are used to re-optimize the energy levels, reducing their uncertainties by a typical factor of 20.

  1. Comprehensive Observations of the Ultraviolet Spectrum and Improved Energy Levels for Singly Ionized Chromium (Cr II)

    NASA Astrophysics Data System (ADS)

    Sansonetti, Craig J.; Nave, Gillian; Reader, Joseph; Kerber, Florian

    2012-10-01

    We report new observations of the spectrum of singly ionized chromium (Cr II) in the region 1142-3954 Å. The spectra were recorded with the National Institute of Standards and Technology 10.7 m normal-incidence vacuum spectrograph and FT700 vacuum ultraviolet Fourier transform spectrometer. More than 3600 lines are classified as transitions among 283 even and 368 odd levels. The new spectral data are used to re-optimize the energy levels, reducing their uncertainties by a typical factor of 20.

  2. Observations of M33 H II Regions: the Ne/S ratio, metallicity, and ionization variations

    NASA Astrophysics Data System (ADS)

    Rubin, R. H.; Simpson, J. P.; McNabb, I. A.; Brunner, G.; Colgan, S. W. J.; Dufour, R. J.; Pauldrach, A. W. A.; Browne, A. D.; Zhang, R.; Csongradi, E. J.

    2009-01-01

    We have observed emission lines of [S IV] 10.51, H(7--6) 12.37, [Ne II] 12.81, [Ne III] 15.56, and [S III] 18.71 μm in a number of extragalactic H II regions with the Spitzer Space Telescope. A previous paper presented our data and analysis for the substantially face-on spiral galaxy M83. Here we report our results for the local group spiral galaxy M33. The nebulae selected cover a wide range of galactocentric radii (R_G). The observations were made with the Infrared Spectrograph with the short wavelength, high resolution module. The above set of five lines is observed cospatially, thus permitting a reliable comparison of the fluxes. From the measured fluxes, we determine the ionic abundance ratios including Ne++/Ne^+, S3+/S++, and S++/Ne^+ and find that there is a correlation of increasingly higher ionization with larger R_G. By sampling the dominant ionization states of Ne (Ne^+, Ne++) and S (S++, S3+) for H II regions, we can estimate the Ne/H, S/H, and Ne/S ratios. We find that there is a decrease in metallicity with increasing R_G. There is no apparent variation in the Ne/S ratio with R_G. Unlike our previous similar study of M83, where we conjectured that this ratio was an upper limit, for M33 the derived ratios are likely a robust indication of Ne/S. This occurs because the H II regions have lower metallicity and higher ionization than those in M83. Both Ne and S are primary elements produced in α-chain reactions, following C and O burning in stars, making their yields depend very little on the stellar metallicity. Thus, it is expected that Ne/S remains relatively constant throughout a galaxy. The median (average) Ne/S ratio derived for H II regions in M33 is 16.3 (16.9), just slightly higher than the Orion Nebula value of 14.3. These values are in sharp contrast with the much lower ``canonical", but controversial, solar value of ˜5. A recent nucleosynthesis, galactic chemical evolution model predicts a Ne/S abundance of ˜9. Our observations may also be

  3. Ionizing feedback from massive stars in massive clusters - II. Disruption of bound clusters by photoionization

    NASA Astrophysics Data System (ADS)

    Dale, J. E.; Ercolano, B.; Bonnell, I. A.

    2012-07-01

    We present a smoothed particle hydrodynamics parameter study of the dynamical effect of photoionization from O-type stars on star-forming clouds of a range of masses and sizes during the time window before supernovae explode. Our model clouds all have the same degree of turbulent support initially, the ratio of turbulent kinetic energy to gravitational potential energy being set to Ekin/|Epot|= 0.7. We allow the clouds to form stars and study the dynamical effects of the ionizing radiation from the massive stars or clusters born within them. We find that dense filamentary structures and accretion flows limit the quantities of gas that can be ionized, particularly in the higher density clusters. More importantly, the higher escape velocities in our more massive (106 M⊙) clouds prevent the H II regions from sweeping up and expelling significant quantities of gas, so that the most massive clouds are largely dynamically unaffected by ionizing feedback. However, feedback has a profound effect on the lower density 104 and 105 M⊙ clouds in our study, creating vast evacuated bubbles and expelling tens of per cent of the neutral gas in the 3-Myr time-scale before the first supernovae are expected to detonate, resulting in clouds highly porous to both photons and supernova ejecta.

  4. The Ionization Equilibrium of Optically Thick Argon Z-Pinch Plasmas for Electron Temperatures between 25 and 65 eV.

    DTIC Science & Technology

    2014-09-26

    reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP " Ioni;ation equilibrium Argon plasma Gamble -Il generator Collisional pumping...highly attractive due to the large gain lengths (up to 4 cm) and immense energies (-1 MJ) available to couple to the plasma. The Gamble -II device at...previously observed1 5. These results suggest that Gamble -II would be an excellent device to test lasing concepts on a Z-pinch. Argon, stripped to the neon

  5. Scaling of the equilibrium magnetization in the mixed state of type-II superconductors

    NASA Astrophysics Data System (ADS)

    Landau, I. L.; Ott, H. R.

    2005-04-01

    We discuss the analysis of mixed-state magnetization data of type-II superconductors using a recently developed scaling procedure. It is based on the fact that, if the Ginzburg-Landau parameter κ does not depend on temperature, the magnetic susceptibility χ(H,T) is a universal function of H/Hc2(T), leading to a simple relation between magnetizations at different temperatures. Although this scaling procedure does not provide absolute values of the upper critical field Hc2(T), its temperature variation can be established rather accurately. This provides an opportunity to validate theoretical models that are usually employed for the evaluation of Hc2(T) from equilibrium magnetization data. In the second part of the paper we apply this scaling procedure for a discussion of the notorious first order phase transition in the mixed state of high-Tc superconductors. Our analysis, based on experimental magnetization data available in the literature, shows that the shift of the magnetization accross the transition may adopt either sign, depending on the particular chosen sample. We argue that this observation is inconsistent with the interpretation that this transition always represents the melting transition of the vortex lattice.

  6. A non-local thermodynamical equilibrium line formation for neutral and singly ionized titanium in model atmospheres of reference A-K stars

    NASA Astrophysics Data System (ADS)

    Sitnova, T. M.; Mashonkina, L. I.; Ryabchikova, T. A.

    2016-09-01

    We construct a model atom for Ti I-II using more than 3600 measured and predicted energy levels of Ti I and 1800 energy levels of Ti II, and quantum mechanical photoionization cross-sections. Non-local thermodynamical equilibrium (NLTE) line formation for Ti I and Ti II is treated through a wide range of spectral types from A to K, including metal-poor stars with [Fe/H] down to -2.6 dex. NLTE leads to weakened Ti I lines and positive abundance corrections. The magnitude of NLTE corrections is smaller compared to the literature data for FGK atmospheres. NLTE leads to strengthened Ti II lines and negative NLTE abundance corrections. For the first time, we have performed NLTE calculations for Ti I-II in the 6500 ≤ Teff ≤ 13 000 K range. For four A-type stars, we derived in LTE an abundance discrepancy of up to 0.22 dex between Ti I and Ti II, which vanishes in NLTE. For four other A-B stars, with only Ti II lines observed, NLTE leads to a decrease of line-to-line scatter. An efficiency of inelastic Ti I + H I collisions was estimated from an analysis of Ti I and Ti II lines in 17 cool stars with -2.6 ≤ [Fe/H] ≤ 0.0. Consistent NLTE abundances from Ti I and Ti II were obtained by applying classical Drawinian rates for the stars with log g ≥ 4.1, and neglecting inelastic collisions with H I for the very metal-poor (VMP) giant HD 122563. For the VMP turn-off stars ([Fe/H] ≤ -2 and log g ≤ 4.1), we obtained the positive abundance difference Ti I-II already in LTE, which increases in NLTE. Accurate collisional data for Ti I and Ti II are necessary to help solve this problem.

  7. Validity of Saha's equation of thermal ionization for negatively charged spherical particles in complex plasmas in thermal equilibrium

    SciTech Connect

    Sodha, M. S.; Mishra, S. K.

    2011-04-15

    The authors have discussed the validity of Saha's equation for the charging of negatively charged spherical particles in a complex plasma in thermal equilibrium, even when the tunneling of the electrons, through the potential energy barrier surrounding the particle is considered. It is seen that the validity requires the probability of tunneling of an electron through the potential energy barrier surrounding the particle to be independent of the direction (inside to outside and vice versa) or in other words the Born's approximation should be valid.

  8. Complexation of malic acid with cadmium(II) probed by electrospray ionization mass spectrometry.

    PubMed

    Jaklová Dytrtová, Jana; Jakl, Michal; Schröder, Detlef

    2012-02-15

    Electrospray ionization was used as a technique for the characterization of the interactions between cadmium(II) ions and malic acid (1) in aqueous solution. Particular attention was paid to the nature of the species formed, which generally correspond to complexes of CdX(+) cations with neutral malic acid, where X either is the counterion of the metal salt used as a precursor (i.e. X=Cl, I) or corresponds to singly deprotonated malic acid. In pure water solutions, also highly coordinated complexes [Cd(1-H)(1)(2)](+) and [CdCl(1)(2)](+) were detected, whereas the most abundant complexes detected in a sample of soil solution were: [Cd(1-H)(1)](+) and [CdCl(1)](+). With respect to possible application in environmental analysis, the effects of (i) metal salts present in solution, (ii) modest mineralization, and (iii) the matrices of real soil solutions were probed. While the presence of other metals leads to additional complexes, the characteristic species containing both cadmium(II) and malic acid can still be detected with good sensitivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Critically Evaluated Energy Levels, Spectral Lines, Transition Probabilities, and Intensities of Singly Ionized Vanadium (V ii)

    NASA Astrophysics Data System (ADS)

    Saloman, Edward B.; Kramida, Alexander

    2017-08-01

    The energy levels, observed spectral lines, and transition probabilities of singly ionized vanadium, V ii, have been compiled. The experimentally derived energy levels belong to the configurations 3d 4, 3d 3 ns (n = 4, 5, 6), 3d 3 np, and 3d 3 nd (n = 4, 5), 3d 34f, 3d 24s 2, and 3d 24s4p. Also included are values for some forbidden lines that may be of interest to the astrophysical community. Experimental Landé g-factors and leading percentages for the levels are included when available, as well as Ritz wavelengths calculated from the energy levels. Wavelengths and transition probabilities are reported for 3568 and 1896 transitions, respectively. From the list of observed wavelengths, 407 energy levels are determined. The observed intensities, normalized to a common scale, are provided. From the newly optimized energy levels, a revised value for the ionization energy is derived, 118,030(60) cm-1, corresponding to 14.634(7) eV. This is 130 cm-1 higher than the previously recommended value from Iglesias et al.

  10. Equilibrium II: Acids and Bases. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P3.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the application of equilibrium principles to equilibria involving weak acids and bases, including buffer solutions and indicators. Level one uses Le Chatelier's…

  11. Equilibrium II: Acids and Bases. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P3.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the application of equilibrium principles to equilibria involving weak acids and bases, including buffer solutions and indicators. Level one uses Le Chatelier's…

  12. Temperature lapse rates at restricted thermodynamic equilibrium. Part II: Saturated air and further discussions

    NASA Astrophysics Data System (ADS)

    Björnbom, Pehr

    2016-03-01

    In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.

  13. H II Region Ionization of the Interstellar Medium: A Case Study of NGC 7538

    NASA Astrophysics Data System (ADS)

    Luisi, Matteo; Anderson, L. D.; Balser, Dana S.; Bania, T. M.; Wenger, Trey V.

    2016-06-01

    Using data from the Green Bank Telescope, we analyze the radio continuum (free-free) and radio recombination line (RRL) emission of the compact H ii region NGC 7538 (Sharpless 158). We detect extended radio continuum and hydrogen RRL emission beyond the photodissociation region (PDR) toward the north and east, but a sharp decrease in emission toward the south and west. This indicates that a non-uniform PDR morphology is affecting the amount of radiation “leaking” through the PDR. The strongest carbon RRL emission is found in the western PDR that appears to be dense. We compute a leaking fraction f R = 15 ± 5% of the radio continuum emission measured in the plane of the sky which represents a lower limit when accounting for the three-dimensional geometry of the region. We detect an average {}4{{{He}}}+/{{{H}}}+ abundance ratio by number of 0.088 ± 0.003 inside the H ii region and a decrease in this ratio with increasing distance from the region beyond the PDR. Using Herschel Space Observatory data, we show that small dust temperature enhancements to the north and east of NGC 7538 coincide with extended radio emission, but that the dust temperature enhancements are mostly contained within a second PDR to the east. Unlike the giant H ii region W43, the radiation leaking from NGC 7538 seems to only affect the local ambient medium. This suggests that giant H ii regions may have a large effect in maintaining the ionization of the interstellar medium.

  14. A Study of the Complexation of Mercury(II) with Dicysteinyl Tetrapeptides by Electrospray Ionization Mass Spectrometry.

    PubMed

    Mazlo, Johanna; Ngu-Schwemlein, Maria

    2016-01-08

    In this study we evaluated a method for the characterization of complexes, formed in different relative ratios of mercury(II) to dicysteinyl tetrapeptide, by electrospray ionization orbitrap mass spectrometry. This strategy is based on previous successful characterization of mercury-dicysteinyl complexes involving tripeptides by utilizing mass spectrometry among other techniques. Mercury(II) chloride and a dicysteinyl tetrapeptide were incubated in a degassed buffered medium at varying stoichiometric ratios. The complexes formed were subsequently analyzed on an electrospray mass spectrometer consisting of a hybrid linear ion- and orbi- trap mass analyzer. The electrospray ionization mass spectrometry (ESI-MS) spectra were acquired in the positive mode and the observed peaks were then analyzed for distinct mercury isotopic distribution patterns and associated monoisotopic peak. This work demonstrates that an accurate stoichiometry of mercury and peptide in the complexes formed under specified electrospray ionization conditions can be determined by using high resolution ESI MS based on distinct mercury isotopic distribution patterns.

  15. Analytical solution of the tokamak equilibrium. II. The free-boundary case

    NASA Astrophysics Data System (ADS)

    Ludwig, G. O.

    2017-09-01

    The free-boundary tokamak equilibrium problem is investigated by a surface current equivalence method applied on the plasma boundary. In addition, use is made of a spectral representation for the internal plasma flux surfaces as presented in Paper I [G. O. Ludwig, Phys. Plasma 24, 092502 (2017)]. The surface current distribution is determined by the Cauchy condition imposed by the external equilibrium coils on the plasma boundary. A self-consistent approximate analytic equilibrium is calculated for an up-down asymmetric configuration of the plasma contained by a simplified set of poloidal field coils representing an ITER-like tokamak.

  16. Experimental determination of equilibrium constant for the complexing reaction of nitric oxide with hexamminecobalt(II) in aqueous solution.

    PubMed

    Mao, Yan-Peng; Chen, Hua; Long, Xiang-Li; Xiao, Wen-de; Li, Wei; Yuan, Wei-Kang

    2009-02-15

    Ammonia solution can be used to scrub NO from the flue gases by adding soluble cobalt(II) salts into the aqueous ammonia solutions. The hexamminecobalt(II), Co(NH3)6(2+), formed by ammonia binding with Co2+ is the active constituent of eliminating NO from the flue gas streams. The hexamminecobalt(II) can combine with NO to form a complex. For the development of this process, the data of the equilibrium constants for the coordination between NO and Co(NH3)6(2+)over a range of temperature is very important. Therefore, a series of experiments were performed in a bubble column to investigate the chemical equilibrium. The equilibrium constant was determined in the temperature range of 30.0-80.0 degrees C under atmospheric pressure at pH 9.14. All experimental data fit the following equation well: [see text] where the enthalpy and entropy are DeltaH degrees = - (44.559 +/- 2.329)kJ mol(-1) and DeltaS degrees = - (109.50 +/- 7.126) J K(-1)mol(-1), respectively.

  17. Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Lasheen, Mohamed R.; Ammar, Nabila S.; Ibrahim, Hanan S.

    2012-02-01

    Waste materials from industries such as food processing may act as cost effective and efficient biosorbents to remove toxic contaminants from wastewater. This study aimed to establish an optimized condition and closed loop application of processed orange peel for metals removal. A comparative study of the adsorption capacity of the chemically modified orange peel was performed against environmentally problematic metal ions, namely, Cd 2+, Cu 2+ and Pb 2+, from aqueous solutions. Chemically modified orange peel (MOP) showed a significantly higher metal uptake capacity compared to original orange peel (OP). Fourier Transform Infrared (FTIR) Spectra of peel showed that the carboxylic group peak shifted from 1637 to 1644 cm -1 after Pb (II) ions binding, indicated the involvement of carboxyl groups in Pb(II) ions binding. The metals uptake by MOP was rapid and the equilibrium time was 30 min at constant temperature and pH. Sorption kinetics followed a second-order model. The mechanism of metal sorption by MOP gave good fits for Freundlich and Langmuir models. Desorption of metals and regeneration of the biosorbent was attained simultaneously by acid elution. Even after four cycles of adsorption-elution, the adsorption capacity was regained completely and adsorption efficiency of metal was maintained at around 90%.

  18. Statistical equilibrium in cometary C2. II - Swan/Phillips band ratios

    NASA Technical Reports Server (NTRS)

    Swamy, K. S. K.; Odell, C. R.

    1979-01-01

    Statistical equilibrium calculations have been made for both the triplet and ground state singlets for C2 in comets, using the exchange rate as a free parameter. The predictions of the results are consistent with optical observations and may be tested definitively by accurate observations of the Phillips and Swan band ratios. Comparison with the one reported observation indicates compatibility with a low exchange rate and resonance fluorescence statistical equilibrium.

  19. Improved accuracy of low affinity protein-ligand equilibrium dissociation constants directly determined by electrospray ionization mass spectrometry.

    PubMed

    Jaquillard, Lucie; Saab, Fabienne; Schoentgen, Françoise; Cadene, Martine

    2012-05-01

    There is continued interest in the determination by ESI-MS of equilibrium dissociation constants (K(D)) that accurately reflect the affinity of a protein-ligand complex in solution. Issues in the measurement of K(D) are compounded in the case of low affinity complexes. Here we present a K(D) measurement method and corresponding mathematical model dealing with both gas-phase dissociation (GPD) and aggregation. To this end, a rational mathematical correction of GPD (f(sat)) is combined with the development of an experimental protocol to deal with gas-phase aggregation. A guide to apply the method to noncovalent protein-ligand systems according to their kinetic behavior is provided. The approach is validated by comparing the K(D) values determined by this method with in-solution K(D) literature values. The influence of the type of molecular interactions and instrumental setup on f(sat) is examined as a first step towards a fine dissection of factors affecting GPD. The method can be reliably applied to a wide array of low affinity systems without the need for a reference ligand or protein.

  20. A numerical model of non-equilibrium thermal plasmas. II. Governing equations

    SciTech Connect

    Li HePing; Zhang XiaoNing; Xia Weidong

    2013-03-15

    Governing equations and the corresponding physical properties of the plasmas are both prerequisites for studying the fundamental processes in a non-equilibrium thermal plasma system numerically. In this paper, a kinetic derivation of the governing equations used for describing the complicated thermo-electro-magneto-hydrodynamic-chemical coupling effects in non-equilibrium thermal plasmas is presented. This derivation, which is achieved using the Chapman-Enskog method, is completely consistent with the theory of the transport properties reported in the previous paper by the same authors. It is shown, based on this self-consistent theory, that the definitions of the specific heat at constant pressure and the reactive thermal conductivity of two-temperature plasmas are not necessary. The governing equations can be reduced to their counterparts under local thermodynamic equilibrium (LTE) and local chemical equilibrium (LCE) conditions. The general method for the determination of the boundary conditions of the solved variables is also discussed briefly. The two papers establish a self-consistent physical-mathematical model that describes the complicated physical and chemical processes in a thermal plasma system for the cases both in LTE or LCE conditions and under non-equilibrium conditions.

  1. Rapid adsorption of copper(II) and lead(II) by rice straw/Fe₃O₄ nanocomposite: optimization, equilibrium isotherms, and adsorption kinetics study.

    PubMed

    Khandanlou, Roshanak; Ahmad, Mansor B; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles.

  2. Rapid Adsorption of Copper(II) and Lead(II) by Rice Straw/Fe3O4 Nanocomposite: Optimization, Equilibrium Isotherms, and Adsorption Kinetics Study

    PubMed Central

    Khandanlou, Roshanak; Ahmad, Mansor B.; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles. PMID:25815470

  3. The Ionization Structure of Sharpless 2-264: Multiwavelength Observations of the λ Ori H II Region

    NASA Astrophysics Data System (ADS)

    Sahan, M.; Haffner, L. M.

    2016-06-01

    We present velocity-resolved maps taken with the Wisconsin H-Alpha Mapper (WHAM) in Hα, [S ii] λ 6716, and [N ii] λ 6583 around the well-known O8 III star λ Ori A (HD 36861) ({\\ell }=185^\\circ to 205^\\circ ,b=-24^\\circ to -1^\\circ ). The integrated intensity ({v}{{LSR}}=-80 to +80 km s-1), {I}{{H}α }, within WHAM’s one-degree beams varies from ˜190 R near the center to ˜10 R on the periphery of the nebula where it becomes comparable to foreground and/or background emission in this complex region. Intensity ratios for [N ii]/Hα and [S ii]/Hα average 0.28 and 0.35, respectively. In both ratios, higher values are found preferentially at larger radii from λ Ori, although the behavior of [N ii]/Hα is complicated near the edges of the nebula. The [S ii]/[N ii] intensity ratio ranges from ˜0.5 to ˜1.0, with the value increasing toward larger radii (and lower Hα intensities). Variations of the [S ii]/Hα, [N ii]/Hα, and [S ii]/[N ii] line ratios in this diffuse region show some similar trends to those seen in the warm ionized medium (WIM) but with generally lower metal-line ratios. As with the WIM, the trends are driven by changes in the underlying physical parameters, most notably the ionization states and gas temperature. To investigate which cause might be dominant in this region, we use these extremely high signal-to-noise observations to construct a map of temperature and non-thermal velocity throughout the nebula. Using the line widths of Hα and [S ii], we separate thermal and non-thermal components and find spatial trends of these parameters within the nebula. Ion temperatures range between 4000 and 8000 K throughout the nebula. The non-thermal velocity map reveals a decrease in velocity from about 10 to 5 km s-1 from the center to the edge of the lower half of the H ii region. In addition to using the widths as a measure of temperature, we also use the variation in [N ii]/Hα to estimate electron temperature. The results obtained from this

  4. Equilibrium and kinetic studies on biosorption of Pb(II) by common edible macrofungi: a comparative study.

    PubMed

    Jiang, Yuan; Hao, Ruixia; Yang, Shiqin

    2016-04-01

    In this work, we studied the natural bioaccumulation and biosorption of Pb(II) in several common edible macrofungi. The macrofungi include the following species: Lentinus edodes, Pleurotus eryngii, Flammulina velutipes, Hypsizygus marmoreus, and Agrocybe cylindracea. The present analysis of Pb(II) revealed distinct capabilities of metal accumulation among individual species. Moreover, the natural concentrations of lead did not reach a health risk level when cultivated in uncontaminated soil. In the biosorption experiment by edible macrofungi, we found that the equilibrium data of living sporocarp (P. eryngii and H. marmoreus) and the homogenate of L. edodes and F. velutipes fit the Freundlich model well. Other data samples exhibited a better fit to the Langmuir model. The edible macrofungi showed a higher lead removal capacity than did other biosorbents. Furthermore, the pseudo-second-order kinetics model exhibited the best fit to the biosorption processes. The effectiveness of edible macrofungi as biosorbents for Pb(II) was confirmed.

  5. Ionization equilibrium at the transition from valence-band to acceptor-band migration of holes in boron-doped diamond

    SciTech Connect

    Poklonski, N. A. Vyrko, S. A.; Poklonskaya, O. N.; Kovalev, A. I.; Zabrodskii, A. G.

    2016-06-28

    A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator–metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atoms with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature T{sub j} is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature T{sub j}, the concentration of “free” holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3T{sub j}/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to T{sub j} hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (−1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p-type diamond with

  6. Ionization equilibrium at the transition from valence-band to acceptor-band migration of holes in boron-doped diamond

    NASA Astrophysics Data System (ADS)

    Poklonski, N. A.; Vyrko, S. A.; Poklonskaya, O. N.; Kovalev, A. I.; Zabrodskii, A. G.

    2016-06-01

    A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator-metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atoms with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature Tj is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature Tj, the concentration of "free" holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3Tj/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to Tj hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (-1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p-type diamond with boron atom concentrations in the

  7. Lead(II)-catalyzed oxidation of guanine in solution studied with electrospray ionization mass spectrometry.

    PubMed

    Banu, Laura; Blagojevic, Voislav; Bohme, Diethard K

    2012-10-04

    The oxidation of guanine was investigated in water/methanol solution both in the absence and in the presence of Pb(II) with a variable temperature reactor coupled to a tandem mass spectrometer that allowed signature ions of solution reagents and products to be monitored by electrospray ionization (ESI). Two different oxidizing agents were employed, one strong (peroxymonosulfuric acid) and one weaker (hydrogen peroxide). Peroxymonosulfuric acid was observed to oxidize guanine rapidly at room temperature, k(app) > 10(-2) s(-1), whether in the absence or in the presence of Pb(II), to produce spiroiminohydantoin. Guanine did not show measurable oxidation by hydrogen peroxide in the absence of Pb(II) at concentrations of H(2)O(2) up to 1 M at temperatures up to 333 K (k(app) < 3 × 10(-8) s(-1) at 298 K), but in the presence of Pb(II), it was observed to produce both 5-carboxamido-5-formamido-2-iminohydantoin (2-Ih) and imidazolone (Iz) in a ratio of 2.3 ± 0.1 with a total rate enhancement of more than 4 × 10(3). The activation energy was measured to be 82 ± 11 kJ mol(-1) and is more than 120 kJ mol(-1) lower than that for the uncatalyzed oxidation with hydrogen peroxide measured to be at least 208 ± 26 kJ mol(-1). An activation energy of 113 ± 9 kJ mol(-1) has been reported by Bruskov et al. (Nucleic Acids Res.2002, 30, 1354) for the heat-induced oxidation by hydrogen peroxide of guanine embedded as guanosine in DNA which leads to the production of 8-oxo-7,8-dihydro-guanine (8-oxo-Gua). The atomic lead dication lowers the activation energy by activating the hydrogen peroxide oxidant, possibly by O-O bond activation, and by directing the oxidation, possibly through coordination to the functional groups adjacent to the carbon C5: the C6 carbonyl group and the N7 nitrogen. The coupling of tandem mass spectrometry (MS(2)) with a simple variable temperature reactor by ESI proved to be very effective for measuring reaction kinetics and activation energies in solution

  8. Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase.

    PubMed

    Gupta, V K; Rastogi, A

    2008-05-01

    The biosorption of cadmium(II) ions on Oedogonium sp. is studied in a batch system with respect to initial pH, algal dose, contact time and the temperature. The algal biomass exhibited the highest cadmium(II) uptake capacity at 25 degrees C, at the initial pH value of 5.0 in 55 min and at the initial cadmium(II) ion concentration of 200 mg L(-1). Biosorption capacity decreased from 88.9 to 80.4 mg g(-1) with an increase in temperature from 25 to 45 degrees C at this initial cadmium(II) concentration. Uptake kinetics follows the pseudo-second-order model and equilibrium is well described by Langmuir isotherm. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change, enthalpy change and entropy change. FTIR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which are responsible for biosorption of metal ions. Acid pretreatments did not substantially increase metal sorption capacity but alkali like NaOH pretreatment slightly enhanced the metal removal ability of the biomass. During repeated sorption/desorption cycles at the end of fifth cycle, Cd(II) sorption decreased by 18%, with 15-20% loss of biomass. Nevertheless, Oedogonium sp. appears to be a good sorbent for removing metal Cd(II) from aqueous phase.

  9. Equilibrium gas flow computations. II - An analysis of numerical formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel; Liu, Yen

    1988-01-01

    Modern numerical techniques employing properties of flux Jacobian matrices are extended to general, equilibrium gas laws. Generalizations of the Beam-Warming scheme, Steger-Warming and van Leer flux-vector splittings, and Roe's approximate Riemann solver are presented for three-dimensional, time-varying grids. The approximations inherent in previous generalizations are discussed.

  10. Equilibrium gas flow computations. II - An analysis of numerical formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel; Liu, Yen

    1988-01-01

    Modern numerical techniques employing properties of flux Jacobian matrices are extended to general, equilibrium gas laws. Generalizations of the Beam-Warming scheme, Steger-Warming and van Leer flux-vector splittings, and Roe's approximate Riemann solver are presented for three-dimensional, time-varying grids. The approximations inherent in previous generalizations are discussed.

  11. Pb(II) adsorption by a novel activated carbon - alginate composite material. A kinetic and equilibrium study.

    PubMed

    Cataldo, Salvatore; Gianguzza, Antonio; Milea, Demetrio; Muratore, Nicola; Pettignano, Alberto

    2016-11-01

    The adsorption capacity of an activated carbon - calcium alginate composite material (ACAA-Ca) has been tested with the aim of developing a new and more efficient adsorbent material to remove Pb(II) ion from aqueous solution. The study was carried out at pH=5, in NaCl medium and in the ionic strength range 0.1-0.75molL(-1). Differential Pulse Anodic Stripping Voltammetry (DP-ASV) technique was used to check the amount of Pb(II) ion removed during kinetic and equilibrium experiments. Different kinetic (pseudo first order, pseudo second order and Vermuelen) and equilibrium (Langmuir and Freundlich) models were used to fit experimental data, and were statistically compared. Calcium alginate (AA-Ca) improves the adsorption capacity (qm) of active carbon (AC) in the ACAA-Ca adsorbent material (e.g., qm=15.7 and 10.5mgg(-1) at I=0.25molL(-1), for ACAA-Ca and AC, respectively). SEM-EDX and thermogravimetric (TGA) measurements were carried out in order to characterize the composite material. The results of the speciation study on the Pb(II) solution and of the characterization of the ACAA-Ca and of the pristine AA-Ca and AC were evaluated in order to explain the specific contribution of AC and AA-Ca to the adsorption of the metal ion. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Non-Maxwellian velocity distribution functions associated with steep temperature gradients in the solar transition region. Paper 2: The effect of non-Maxwellian electron distribution functions on ionization equilibrium calculations for carbon, nitrogen and oxygen

    NASA Technical Reports Server (NTRS)

    Roussel-Dupre, R.

    1979-01-01

    Non-Maxwellian electron velocity distribution functions, previously computed for Dupree's model of the solar transition region are used to calculate ionization rates for ions of carbon, nitrogen, and oxygen. Ionization equilibrium populations for these ions are then computed and compared with similar calculations assuming Maxwellian distribution functions for the electrons. The results show that the ion populations change (compared to the values computed with a Maxwellian) in some cases by several orders of magnitude depending on the ion and its temperature of formation.

  13. Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: kinetic and equilibrium studies.

    PubMed

    Tuzen, Mustafa; Sari, Ahmet; Mendil, Durali; Soylak, Mustafa

    2009-09-30

    The potential use of the lichen biomass (Xanthoparmelia conspersa) to remove mercury(II) ions from aqueous solution by biosorption was evaluated using the batch method. Effects of pH, contact time, biomass concentration and temperature on the removal of Hg(II) ions were studied. The Langmuir isotherm models defined the equilibrium data precisely compared to Freundlich model and the maximum biosorption capacity obtained was 82.8 mg g(-1). From the D-R isotherm model, the mean free energy was calculated as 9.5 kJ mol(-1). It shows that the biosorption of Hg(II) ions onto X. conspersa biomass was taken place by chemical ion-exchange. Experimental data were also performed to the pseudo-first-order and pseudo-second-order kinetic models. The results indicated that the biosorption of Hg(II) on the lichen biomass followed well the second-order kinetics. Thermodynamic parameters, DeltaG(o), DeltaH(o) and DeltaS(o) indicated the Hg(II) sorption to be exothermic and spontaneous with decreased randomness at the solid-solution interface. Furthermore, the lichen biomass could be regenerated using 1M HCl, with up to 85% recovery, which allowed the reuse of the biomass in ten biosorption-desorption cycles without any considerable loss of biosorptive removal capacity.

  14. Constraining the escape fraction of ionizing photons from H ii regions within NGC 300: A concept paper

    NASA Astrophysics Data System (ADS)

    Niederhofer, F.; Hilker, M.; Bastian, N.; Ercolano, B.

    2016-07-01

    Using broadband photometry from the Hubble Space Telescope in combination with Very Large Telescope narrowband Hα observations of the nearby spiral galaxy NGC 300, we explore a method for estimating the escape fractions of hydrogen-ionizing photons from H ii regions within this galaxy. Our goal in this concept study is to evaluate the spectral types of the most massive stars using the broadband data and estimating their ionizing photon output with the help of stellar atmosphere models. A comparison with the Hα flux that gives the amount of ionized gas in the H ii region provides a measure of the escape fraction of ionizing photons from that region. We performed some tests with a number of synthetic young clusters with varying parameters to assess the reliability of the method. However, we found that the derived stellar spectral types and consequently the expected ionizing photon luminosity of a region is highly uncertain. The tests also show that on one hand we tended to overestimate the integrated photon output of a region for young ages and low numbers of stars, and on the other hand we mostly underestimated the combined ionizing luminosity for a large stellar number and older cluster ages. We conclude that the proposed method of using stellar broadband photometry to infer the leakage of ionizing photons from H ii regions is highly uncertain and dominated by the errors of the resulting stellar spectral types. Therefore this method is not suitable. Stellar spectra are needed to reliably determine the stellar types and escape fractions. Studies to this end have been carried out for the Magellanic Clouds. Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).Based on observations made with ESO telescopes

  15. Equilibrium and kinetic modelling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2006-01-01

    In this study an industrial algal waste from agar extraction has been used as an inexpensive and effective biosorbent for cadmium (II) removal from aqueous solutions. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction. Equilibrium data follow both Langmuir and Redlich-Peterson models. The parameters of Langmuir equilibrium model are q(max)=18.0 mgg(-1), b=0.19 mgl(-1) and q(max)=9.7 mgg(-1), b=0.16 mgl(-1), respectively for Gelidium and the algal waste. Kinetic experiments were conducted at initial Cd(II) concentrations in the range 6-91 mgl(-1). Data were fitted to pseudo-first- and second-order Lagergren models. For an initial Cd(II) concentration of 91 mgl(-1) the parameters of the pseudo-first-order Lagergren model are k(1,ads)=0.17 and 0.87 min(-1); q(eq)=16.3 and 8.7 mgg(-1), respectively, for Gelidium and algal waste. Kinetic constants vary with the initial metal concentration. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model. The model successfully predicts Cd(II) concentration profiles and provides significant insights on the biosorbents performance. The homogeneous diffusivity, D(h), is in the range 0.5-2.2 x10(-8) and 2.1-10.4 x10(-8)cm(2)s(-1), respectively, for Gelidium and algal waste.

  16. The magnetic, basal, and radiative-equilibrium components in Mount Wilson Ca II H + K fluxes

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Dobson, Andrea K.; Radick, Richard R.

    1989-01-01

    Mount Wilson Ca II H + K flux measurements of cool dwarf stars are analyzed and compared with stellar Mg II h + k fluxes, variability amplitudes, rotation rates, and solar data. It is concluded that the Mount Wilson Ca II H + K fluxes comprise three principal parts: (1) a photospheric contribution in the line wings, (2) a basal chromospheric component that appears to be unrelated to stellar magnetic activity and is, therefore, possibly nonmagnetic in origin, and (3) a chromospheric component which is associated with magnetically active regions and the (quiet and active) network. The basal chromosphere appears to cover the entire surface of magnetically inactive stars. The basal Ca II H + K flux density for solar-type stars equals the average emission observed in the centers of solar supergranulation cells, where the magnetic flux density is small.

  17. The magnetic, basal, and radiative-equilibrium components in Mount Wilson Ca II H + K fluxes

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Dobson, Andrea K.; Radick, Richard R.

    1989-01-01

    Mount Wilson Ca II H + K flux measurements of cool dwarf stars are analyzed and compared with stellar Mg II h + k fluxes, variability amplitudes, rotation rates, and solar data. It is concluded that the Mount Wilson Ca II H + K fluxes comprise three principal parts: (1) a photospheric contribution in the line wings, (2) a basal chromospheric component that appears to be unrelated to stellar magnetic activity and is, therefore, possibly nonmagnetic in origin, and (3) a chromospheric component which is associated with magnetically active regions and the (quiet and active) network. The basal chromosphere appears to cover the entire surface of magnetically inactive stars. The basal Ca II H + K flux density for solar-type stars equals the average emission observed in the centers of solar supergranulation cells, where the magnetic flux density is small.

  18. The magnetic, basal, and radiative-equilibrium components in Mount Wilson Ca II H + K fluxes

    SciTech Connect

    Schrijver, C.J.; Dobson, A.K.; Radick, R.R.; Joint Institute for Laboratory Astrophysics, Boulder, CO )

    1989-06-01

    Mount Wilson Ca II H + K flux measurements of cool dwarf stars are analyzed and compared with stellar Mg II h + k fluxes, variability amplitudes, rotation rates, and solar data. It is concluded that the Mount Wilson Ca II H + K fluxes comprise three principal parts: (1) a photospheric contribution in the line wings, (2) a basal chromospheric component that appears to be unrelated to stellar magnetic activity and is, therefore, possibly nonmagnetic in origin, and (3) a chromospheric component which is associated with magnetically active regions and the (quiet and active) network. The basal chromosphere appears to cover the entire surface of magnetically inactive stars. The basal Ca II H + K flux density for solar-type stars equals the average emission observed in the centers of solar supergranulation cells, where the magnetic flux density is small. 27 refs.

  19. Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: kinetic, equilibrium and thermodynamic study.

    PubMed

    Kul, Ali Riza; Koyuncu, Hülya

    2010-07-15

    In this study, the adsorption kinetics, equilibrium and thermodynamics of Pb(II) ions on native (NB) and acid activated (AAB) bentonites were examined. The specific surface areas, pore size and pore-size distributions of the samples were fully characterized. The adsorption efficiency of Pb(II) onto the NB and AAB was increased with increasing temperature. The kinetics of adsorption of Pb(II) ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 16.51 and 13.66 kJ mol(-1) for NB and AAB, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin-Redushkevich (D-R) isotherm equations at different temperatures. R(L) separation factor for Langmuir and the n value for Freundlich isotherm show that Pb(II) ions are favorably adsorbed by NB and AAB. Thermodynamic quantities such as Gibbs free energy (DeltaG), the enthalpy (DeltaH) and the entropy change of sorption (DeltaS) were determined as about -5.06, 10.29 and 0.017 kJ mol(-1) K(-1), respectively for AAB. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously.

  20. Chemical Processes in Protoplanetary Disks. II. On the Importance of Photochemistry and X-Ray Ionization

    NASA Astrophysics Data System (ADS)

    Walsh, Catherine; Nomura, Hideko; Millar, T. J.; Aikawa, Yuri

    2012-03-01

    We investigate the impact of photochemistry and X-ray ionization on the molecular composition of, and ionization fraction in, a protoplanetary disk surrounding a typical T Tauri star. We use a sophisticated physical model, which includes a robust treatment of the radiative transfer of UV and X-ray radiation, and calculate the time-dependent chemical structure using a comprehensive chemical network. In previous work, we approximated the photochemistry and X-ray ionization; here, we recalculate the photoreaction rates using the explicit UV wavelength spectrum and wavelength-dependent reaction cross sections. We recalculate the X-ray ionization rate using our explicit elemental composition and X-ray energy spectrum. We find that photochemistry has a larger influence on the molecular composition than X-ray ionization. Observable molecules sensitive to the photorates include OH, HCO+, N2H+, H2O, CO2, and CH3OH. The only molecule significantly affected by the X-ray ionization is N2H+, indicating that it is safe to adopt existing approximations of the X-ray ionization rate in typical T Tauri star-disk systems. The recalculation of the photorates increases the abundances of neutral molecules in the outer disk, highlighting the importance of taking into account the shape of the UV spectrum in protoplanetary disks. A recalculation of the photoreaction rates also affects the gas-phase chemistry due to the adjustment of the H/H2 and C+/C ratios. The disk ionization fraction is not significantly affected by the methods adopted to calculate the photochemistry and X-ray ionization. We determine that there is a probable "dead zone" where accretion is suppressed, present in a layer, Z/R <~ 0.1-0.2, in the disk midplane, within R ≈ 200 AU.

  1. CHEMICAL PROCESSES IN PROTOPLANETARY DISKS. II. ON THE IMPORTANCE OF PHOTOCHEMISTRY AND X-RAY IONIZATION

    SciTech Connect

    Walsh, Catherine; Millar, T. J.; Nomura, Hideko; Aikawa, Yuri

    2012-03-10

    We investigate the impact of photochemistry and X-ray ionization on the molecular composition of, and ionization fraction in, a protoplanetary disk surrounding a typical T Tauri star. We use a sophisticated physical model, which includes a robust treatment of the radiative transfer of UV and X-ray radiation, and calculate the time-dependent chemical structure using a comprehensive chemical network. In previous work, we approximated the photochemistry and X-ray ionization; here, we recalculate the photoreaction rates using the explicit UV wavelength spectrum and wavelength-dependent reaction cross sections. We recalculate the X-ray ionization rate using our explicit elemental composition and X-ray energy spectrum. We find that photochemistry has a larger influence on the molecular composition than X-ray ionization. Observable molecules sensitive to the photorates include OH, HCO{sup +}, N{sub 2}H{sup +}, H{sub 2}O, CO{sub 2}, and CH{sub 3}OH. The only molecule significantly affected by the X-ray ionization is N{sub 2}H{sup +}, indicating that it is safe to adopt existing approximations of the X-ray ionization rate in typical T Tauri star-disk systems. The recalculation of the photorates increases the abundances of neutral molecules in the outer disk, highlighting the importance of taking into account the shape of the UV spectrum in protoplanetary disks. A recalculation of the photoreaction rates also affects the gas-phase chemistry due to the adjustment of the H/H{sub 2} and C{sup +}/C ratios. The disk ionization fraction is not significantly affected by the methods adopted to calculate the photochemistry and X-ray ionization. We determine that there is a probable 'dead zone' where accretion is suppressed, present in a layer, Z/R {approx}< 0.1-0.2, in the disk midplane, within R Almost-Equal-To 200 AU.

  2. Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass.

    PubMed

    Sari, Ahmet; Tuzen, Mustafa

    2009-05-30

    The biosorption characteristics of Pb(II) and Cd(II) ions from aqueous solution using the macrofungus (Amanita rubescens) biomass were investigated as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by A. rubescens biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The maximum biosorption capacity of A. rubescens for Pb(II) and Cd(II) was found to be 38.4 and 27.3mg/g, respectively, at optimum conditions of pH 5.0, contact time of 30min, biomass dosage of 4 g/L, and temperature of 20 degrees C. The metal ions were desorbed from A. rubescens using both 1M HCl and 1M HNO(3). The recovery for both metal ions was found to be higher than 90%. The high stability of A. rubescens permitted ten times of adsorption-elution process along the studies without a decrease about 10% in recovery of both metal ions. The mean free energy values evaluated from the D-R model indicated that the biosorption of Pb(II) and Cd(II) onto A. rubescens biomass was taken place by chemical ion-exchange. The calculated thermodynamic parameters, DeltaG degrees , DeltaH degrees and DeltaS degrees showed that the biosorption of Pb(II) and Cd(II) ions onto A. rubescens biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both Pb(II) and Cd(II) followed well pseudo-second-order kinetics. Based on all results, It can be also concluded that it can be evaluated as an alternative biosorbent to treatment wastewater containing Pb(II) and Cd(II) ions, since A. rubescens is low-cost biomass and has a considerable high biosorption capacity.

  3. Approximate but accurate quantum dynamics from the Mori formalism. II. Equilibrium time correlation functions

    NASA Astrophysics Data System (ADS)

    Montoya-Castillo, Andrés; Reichman, David R.

    2017-02-01

    The ability to efficiently and accurately calculate equilibrium time correlation functions of many-body condensed phase quantum systems is one of the outstanding problems in theoretical chemistry. The Nakajima-Zwanzig-Mori formalism coupled to the self-consistent solution of the memory kernel has recently proven to be highly successful for the computation of nonequilibrium dynamical averages. Here, we extend this formalism to treat symmetrized equilibrium time correlation functions for the spin-boson model. Following the first paper in this series [A. Montoya-Castillo and D. R. Reichman, J. Chem. Phys. 144, 184104 (2016)], we use a Dyson-type expansion of the projected propagator to obtain a self-consistent solution for the memory kernel that requires only the calculation of normally evolved auxiliary kernels. We employ the approximate mean-field Ehrenfest method to demonstrate the feasibility of this approach. Via comparison with numerically exact results for the correlation function Cz z(t ) =Re ⟨σz(0 ) σz(t ) ⟩ , we show that the current scheme affords remarkable boosts in accuracy and efficiency over bare Ehrenfest dynamics. We further explore the sensitivity of the resulting dynamics to the choice of kernel closures and the accuracy of the initial canonical density operator.

  4. Magnetohydrostatic Equilibrium. II. Three-dimensional Multiple Open Magnetic Flux Tubes in the Stratified Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Gent, F. A.; Fedun, V.; Erdélyi, R.

    2014-07-01

    A system of multiple open magnetic flux tubes spanning the solar photosphere and lower corona is modeled analytically, within a realistic stratified atmosphere subject to solar gravity. This extends results for a single magnetic flux tube in magnetohydrostatic equilibrium, described in Gent et al. Self-similar magnetic flux tubes are combined to form magnetic structures, which are consistent with high-resolution observations. The observational evidence supports the existence of strands of open flux tubes and loops persisting in a relatively steady state. Self-similar magnetic flux tubes, for which an analytic solution to the plasma density and pressure distribution is possible, are combined. We calculate the appropriate balancing forces, applying to the equations of momentum and energy conservation to preserve equilibrium. Multiplex flux tube configurations are observed to remain relatively stable for up to a day or more, and it is our aim to apply our model as the background condition for numerical studies of energy transport mechanisms from the solar surface to the corona. We apply magnetic field strength, plasma density, pressure, and temperature distributions consistent with observational and theoretical estimates for the lower solar atmosphere. Although each flux tube is identical in construction apart from the location of the radial axis, combinations can be applied to generate a non-axisymmetric magnetic field with multiple non-uniform flux tubes. This is a considerable step forward in modeling the realistic magnetized three-dimensional equilibria of the solar atmosphere.

  5. Interfacial colloidal sedimentation equilibrium. II. Closure-based density functional theory.

    PubMed

    Lu, Mingqing; Bevan, Michael A; Ford, David M

    2007-10-28

    In Part I [R. E. Beckham and M. A. Bevan, J. Chem. Phys. 127, 164708 (2007)], results were presented for the sedimentation equilibrium of concentrated colloidal dispersions using confocal scanning laser microscopy experiments, Monte Carlo (MC) simulations, and a local density approximation perturbation theory. In this paper, we extended the modeling effort on those systems to include nonlocal density functional theory (DFT), which is capable of predicting the microstructure of the sediment at length scales comparable to the colloidal particle dimension. Specifically, we use a closure-based DFT formulation to predict interfacial colloidal sedimentation equilibrium density profiles. The colloid-colloid and colloid-surface interactions were modeled with DLVO screened electrostatic potentials using parameters taken directly from the experimental work. The DFT profiles were compared to the experimental and MC results from Part I. Good agreement was found for relatively dilute interfacial colloidal fluids, but agreement was less satisfactory as interfacial layering became more pronounced for conditions approaching the onset of interfacial crystallization. We also applied DFT in an inverse sense using the measured colloid density profile to extract the underlying colloid-surface potential; this can be thought of as a microscopic analog to the well-known procedure of using the macroscopic (coarse-grained) density profile to extract the osmotic equation of state. For the dilute interfacial fluid, the inverse DFT calculations reproduced the true colloid-surface potential to within 0.5kT at all elevations.

  6. Approximate but accurate quantum dynamics from the Mori formalism. II. Equilibrium time correlation functions.

    PubMed

    Montoya-Castillo, Andrés; Reichman, David R

    2017-02-28

    The ability to efficiently and accurately calculate equilibrium time correlation functions of many-body condensed phase quantum systems is one of the outstanding problems in theoretical chemistry. The Nakajima-Zwanzig-Mori formalism coupled to the self-consistent solution of the memory kernel has recently proven to be highly successful for the computation of nonequilibrium dynamical averages. Here, we extend this formalism to treat symmetrized equilibrium time correlation functions for the spin-boson model. Following the first paper in this series [A. Montoya-Castillo and D. R. Reichman, J. Chem. Phys. 144, 184104 (2016)], we use a Dyson-type expansion of the projected propagator to obtain a self-consistent solution for the memory kernel that requires only the calculation of normally evolved auxiliary kernels. We employ the approximate mean-field Ehrenfest method to demonstrate the feasibility of this approach. Via comparison with numerically exact results for the correlation function Czz(t)=Re⟨σz(0)σz(t)⟩, we show that the current scheme affords remarkable boosts in accuracy and efficiency over bare Ehrenfest dynamics. We further explore the sensitivity of the resulting dynamics to the choice of kernel closures and the accuracy of the initial canonical density operator.

  7. Magnetohydrostatic equilibrium. II. Three-dimensional multiple open magnetic flux tubes in the stratified solar atmosphere

    SciTech Connect

    Gent, F. A.; Erdélyi, R.; Fedun, V.

    2014-07-01

    A system of multiple open magnetic flux tubes spanning the solar photosphere and lower corona is modeled analytically, within a realistic stratified atmosphere subject to solar gravity. This extends results for a single magnetic flux tube in magnetohydrostatic equilibrium, described in Gent et al. Self-similar magnetic flux tubes are combined to form magnetic structures, which are consistent with high-resolution observations. The observational evidence supports the existence of strands of open flux tubes and loops persisting in a relatively steady state. Self-similar magnetic flux tubes, for which an analytic solution to the plasma density and pressure distribution is possible, are combined. We calculate the appropriate balancing forces, applying to the equations of momentum and energy conservation to preserve equilibrium. Multiplex flux tube configurations are observed to remain relatively stable for up to a day or more, and it is our aim to apply our model as the background condition for numerical studies of energy transport mechanisms from the solar surface to the corona. We apply magnetic field strength, plasma density, pressure, and temperature distributions consistent with observational and theoretical estimates for the lower solar atmosphere. Although each flux tube is identical in construction apart from the location of the radial axis, combinations can be applied to generate a non-axisymmetric magnetic field with multiple non-uniform flux tubes. This is a considerable step forward in modeling the realistic magnetized three-dimensional equilibria of the solar atmosphere.

  8. Batch sorption dynamics, kinetics and equilibrium studies of Cr(VI), Ni(II) and Cu(II) from aqueous phase using agricultural residues

    NASA Astrophysics Data System (ADS)

    Kaur, Rajvinder; Singh, Joginder; Khare, Rajshree; Cameotra, Swaranjit Singh; Ali, Amjad

    2013-03-01

    In the present study, the agricultural residues viz., Syzygium cumini and Populus deltoides leaves powder have been used for the biosorption of Cu(II), Ni(II), and Cr(VI) from aqueous solutions. FTIR and SEM analysis of the biosorbents were performed to explore the type of functional groups available for metal binding and to study the surface morphology. Various physico-chemical parameters such as pH, adsorbent dosage, initial metal ion concentration, and equilibrium contact time were studied. Thermodynamic studies were carried out and the results demonstrated the spontaneous and endothermic nature of the biosorption process. The equilibrium data were tested using four isotherm models—Langmuir, Freundlich, Temkin and Dubinin-Radushkevich and the maximum biosorption capacities were evaluated. The Pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models were applied to study the reaction kinetics with pseudo-second order model giving the best fit ( R 2 = 0.99) to the experimental data.

  9. Kinetic, equilibrium and thermodynamic studies for the removal of lead (II) and copper (II) ions from aqueous solutions by nanocrystalline TiO

    NASA Astrophysics Data System (ADS)

    Rashidi, Fatemeh; Sarabi, Reza Sadeghi; Ghasemi, Zinab; Seif, Ahmad

    2010-12-01

    Titanium dioxide nanocrystallites were synthesized as adsorbents through the hydrolysis of titanium tetrachloride as the precursor in hydrochloric acid. The product was analyzed by XRD, BET and SEM-EDX; analysis indicated that the particles were a mixture of 86.8% rutile and 13.2% anatase TiO 2 with spherical shapes. The adsorption of Pb (II) and Cu (II) metal ions from aqueous solution onto nano- TiO 2 were investigated with variations in pH, contact time, initial metal ion concentration and temperature. The kinetics, adsorption isotherm and adsorption thermodynamics of the heavy metals were studied. The kinetics data were analyzed by the pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models; the best correlation coefficients were obtained for the pseudo-second order kinetic model. The adsorption results obtained from equilibrium experiments were analyzed by Freundlich, Langmuir, Temkin and Dubinin-Radushkevich isotherms with the Freundlich isotherm giving the best fitting isotherm to the equilibrium data. The thermodynamic parameters ( ΔG°, ΔH° and ΔS°) were calculated and it was found that the adsorption process is spontaneous and endothermic and is favored at higher temperature.

  10. BAT AGN spectroscopic survey-II. X-ray emission and high-ionization optical emission lines

    NASA Astrophysics Data System (ADS)

    Berney, Simon; Koss, Michael; Trakhtenbrot, Benny; Ricci, Claudio; Lamperti, Isabella; Schawinski, Kevin; Baloković, Mislav; Crenshaw, D. Michael; Fischer, Travis; Gehrels, Neil; Harrison, Fiona; Hashimoto, Yasuhiro; Ichikawa, Kohei; Mushotzky, Richard; Oh, Kyuseok; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro; Veilleux, Sylvain; Winter, Lisa

    2015-12-01

    We investigate the relationship between X-ray and optical line emission in 340 nearby (z ≃ 0.04) AGN selected above 10 keV using Swift BAT. We find a weak correlation between the extinction corrected [O III] and hard X-ray luminosity (L_[O III]^{int} ∝ L_{14-195}) with a large scatter (RPear = 0.64, σ = 0.62 dex) and a similarly large scatter with the intrinsic 2-10 keV to [O III] luminosities (RPear = 0.63, σ = 0.63 dex). Correlations of the hard X-ray fluxes with the fluxes of high-ionization narrow lines ([O III], He II, [Ne III] and [Ne V]) are not significantly better than with the low-ionization lines (H α, [S II]). Factors like obscuration or physical slit size are not found to be a significant part of the large scatter. In contrast, the optical emission lines show much better correlations with each other (σ = 0.3 dex) than with the X-ray flux. The inherent large scatter questions the common usage of narrow emission lines as AGN bolometric luminosity indicators and suggests that other issues such as geometrical differences in the scattering of the ionized gas or long-term AGN variability are important.

  11. Partial equilibrium approximations in apoptosis. II. The death-inducing signaling complex subsystem.

    PubMed

    Huang, Ya-Jing; Hong, Liu; Yong, Wen-An

    2015-12-01

    This paper is a continuation of our previous work (Huang and Yong, 2013) for simplifying the Fas signaling-induced apoptotic pathway identified by Hua et al. (2005) for human tumor T cells. The previous paper studied the downstream intracelluar-signaling subsystem, while the present one is concerned with the upstream death-inducing signaling complex (DISC) subsystem. Under the assumption that the bind of Fas-associated death domains and FLICE-inhibitory proteins to the DISC is much faster than that of the initiator procaspases, we greatly simplify the upstream subsystem from 35 reactions with 26 species to 6 reactions with 9 species by adopting the classical and recently justified partial equilibrium approximation method. Numerical simulations show that the simplified model is in an excellent agreement with the original model. Most importantly, the simplified model clearly reveals the key reactants and dominated pathways in the Fas signaling process, and thus provides new insights into the apoptosis.

  12. Removal of mercury(II) from aqueous solution using moss (Drepanocladus revolvens) biomass: equilibrium, thermodynamic and kinetic studies.

    PubMed

    Sari, Ahmet; Tuzen, Mustafa

    2009-11-15

    The equilibrium, thermodynamics and kinetics of the biosorption of Hg(II) onto moss (Drepanocladus revolvens) biomass from aqueous solution were investigated. Optimum experimental parameters were determined to be pH 5.5, contact time 60min, biomass concentration 4 g L(-1) of solution, and temperature 20 degrees C. From the Langmuir model the maximum biosorption capacity of the moss biomass was found to be 94.4 mg g(-1). The mean free energy value (10.2 kJ mol(-1)) evaluated by using the Dubinin-Radushkevich (D-R) model indicated that the biosorption of mercury ions onto D. revolvens was taken place by chemical ion-exchange. The kinetic studies indicated that the biosorption process of mercury ions followed well pseudo-second-order model. The calculated thermodynamic parameters (DeltaG degrees , DeltaS degrees , DeltaH degrees ) showed the biosorption to be exothermic and spontaneous with decreased randomness at the solid-solution interface. The recovery of the Hg(II) from D. revolvens biomass was found to be 99% using 1M HCl. It was concluded that the D. revolvens biomass can be used as biosorbent for the treatment of wastewaters containing Hg(II) ions.

  13. Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: a kinetic and equilibrium study.

    PubMed

    Caliskan, Necla; Kul, Ali Riza; Alkan, Salih; Sogut, Eda Gokirmak; Alacabey, Ihsan

    2011-10-15

    The removal of Zn(II) ions from aqueous solution was studied using natural and MnO(2) modified diatomite samples at different temperatures. The linear Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption equations were applied to describe the equilibrium isotherms. From the D-R model, the mean adsorption energy was calculated as >8 kJ mol(-1), indicating that the adsorption of Zn(II) onto diatomite and Mn-diatomite was physically carried out. In addition, the pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to determine the kinetic data. The experimental data were well fitted by the pseudo-second-order kinetic model. Thermodynamic parameters such as the enthalpy (ΔH(0)), Gibbs' free energy (ΔG(0)) and entropy (ΔS(0)) were calculated for natural and MnO(2) modified diatomite. These values showed that the adsorption of Zn(II) ions onto diatomite samples was controlled by a physical mechanism and occurred spontaneously. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Microscopic Conductivity of Lattice Fermions at Equilibrium. Part II: Interacting Particles

    NASA Astrophysics Data System (ADS)

    Bru, Jean-Bernard; de Siqueira Pedra, Walter

    2016-01-01

    We apply Lieb-Robinson bounds for multi-commutators we recently derived (Bru and de Siqueira Pedra, Lieb-Robinson bounds for multi-commutators and applications to response theory, 2015) to study the (possibly non-linear) response of interacting fermions at thermal equilibrium to perturbations of the external electromagnetic field. This analysis leads to an extension of the results for quasi-free fermions of (Bru et al. Commun Pure Appl Math 68(6):964-1013, 2015; Bru et al. J Math Phys 56:051901-1-051901-51, 2015) to fermion systems on the lattice with short-range interactions. More precisely, we investigate entropy production and charge transport properties of non-autonomous C*-dynamical systems associated with interacting lattice fermions within bounded static potentials and in presence of an electric field that is time and space dependent. We verify the 1st law of thermodynamics for the heat production of the system under consideration. In linear response theory, the latter is related with Ohm and Joule's laws. These laws are proven here to hold at the microscopic scale, uniformly with respect to the size of the (microscopic) region where the electric field is applied. An important outcome is the extension of the notion of conductivity measures to interacting fermions.

  15. Fluids with competing interactions. II. Validating a free energy model for equilibrium cluster size

    NASA Astrophysics Data System (ADS)

    Bollinger, Jonathan A.; Truskett, Thomas M.

    2016-08-01

    Using computer simulations, we validate a simple free energy model that can be analytically solved to predict the equilibrium size of self-limiting clusters of particles in the fluid state governed by a combination of short-range attractive and long-range repulsive pair potentials. The model is a semi-empirical adaptation and extension of the canonical free energy-based result due to Groenewold and Kegel [J. Phys. Chem. B 105, 11702-11709 (2001)], where we use new computer simulation data to systematically improve the cluster-size scalings with respect to the strengths of the competing interactions driving aggregation. We find that one can adapt a classical nucleation like theory for small energetically frustrated aggregates provided one appropriately accounts for a size-dependent, microscopic energy penalty of interface formation, which requires new scaling arguments. This framework is verified in part by considering the extensive scaling of intracluster bonding, where we uncover a superlinear scaling regime distinct from (and located between) the known regimes for small and large aggregates. We validate our model based on comparisons against approximately 100 different simulated systems comprising compact spherical aggregates with characteristic (terminal) sizes between six and sixty monomers, which correspond to wide ranges in experimentally controllable parameters.

  16. Thermochromic Magnetic Ionic Liquids from Cationic Nickel(II) Complexes Exhibiting Intramolecular Coordination Equilibrium.

    PubMed

    Lan, Xue; Mochida, Tomoyuki; Funasako, Yusuke; Takahashi, Kazuyuki; Sakurai, Takahiro; Ohta, Hitoshi

    2017-01-18

    Among the various thermochromic materials, liquid thermochromic materials are comparatively rare. To produce functional thermochromic liquids, we have designed ionic liquids based on cationic nickel complexes with ether side chains, [Ni(acac)(Me2 NC2 H4 NR(1) R(2) )]Tf2 N ([1]Tf2 N: R(1) =C3 H6 OEt, R(2) =Me; [2]Tf2 N: R(1) =C3 H6 OMe, R(2) =Me; [3]Tf2 N: R(1) =R(2) =C3 H6 OMe), where acac=acetylacetonate and Tf2 N=(F3 CSO2 )2 N(-) . The side chains (R(1) , R(2) ) can moderately coordinate to the metal center, enabling temperature-dependent coordination equilibria in the liquid state. [1]Tf2 N is a liquid at room temperature. [2]Tf2 N is obtained as a solid (Tm =352.7 K) but remains liquid at room temperature after melting. [3]Tf2 N is a solid with a high melting point (Tm =422.3 K). These salts display thermochromism in the liquid state, appearing red at high temperatures and orange, light-blue, or bluish-green at lower temperatures, and exhibiting concomitant changes in their magnetic properties. This phenomenon is based on temperature-dependent equilibrium between a square-planar diamagnetic species and a paramagnetic species with intramolecular ether coordination.

  17. Low-Ionization Emission Regions in Quasars: Gas Properties Probed with Broad O I and Ca II Lines

    NASA Astrophysics Data System (ADS)

    Matsuoka, Y.; Kawara, K.; Oyabu, S.

    2008-01-01

    We have compiled the emission-line fluxes of O I λ8446, O I λ11287, and the near-infrared (IR) Ca II triplet (λ8579) observed in 11 quasars. These lines are considered to emerge from the same gas as do the Fe II lines in the low-ionized portion of the broad emission line region (BELR). The compiled quasars are distributed over wide ranges of redshift (0.06 <= z<= 1.08) and of luminosity (-29.8 <= MB <= - 22.1), thus providing a useful sample to investigate the line-emitting gas properties in various quasar environments. The measured line strengths and velocities, as functions of the quasar properties, are analyzed using photoionization model calculations. We found that the flux ratio between the Ca II triplet and O I λ8446 is hardly dependent on the redshift or luminosity, indicating similar gas densities in the emission region from quasar to quasar. On the other hand, a scatter of the O I λ11287/λ8446 ratios appears to imply the diversity of the ionization parameter. These facts invoke a picture of the line-emitting gases in quasars that have similar densities and are located at regions exposed to various ionizing radiation fluxes. The observed O I line widths are found to be remarkably similar over more than 3 orders of magnitude in luminosity, which indicates a kinematically determined location of the emission region and is in clear contrast to the case of H I lines. We also argue about the dust presence in the emission region since the region is suggested to be located near the dust sublimation point at the outer edge of the BELR.

  18. Testing the recent charge-on-spring type polarizable water models. II. Vapor-liquid equilibrium.

    PubMed

    Kiss, Péter T; Baranyai, András

    2012-11-21

    We studied the vapor-liquid coexistence region of seven molecular models of water. All models use the charge-on-spring (COS) method to express polarization. The studied models were the COS∕G2, COS∕G3 [H. Yu and W. F. van Gunsteren, J. Chem. Phys. 121, 9549 (2004)], the SWM4-DP [G. Lamoureux, A. D. MacKerell, Jr., and B. Roux, J. Chem. Phys. 119, 5185 (2003)], the SWM4-NDP [G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux, and A. D. MacKerell, Jr., Chem. Phys. Lett. 418, 245 (2006)], and three versions of our model, the BKd1, BKd2, and BKd3. The BKd1 is the original Gaussian model [P. T. Kiss, M. Darvas, A. Baranyai, and P. Jedlovszky, J. Chem. Phys. 136, 114706 (2012)] with constant polarization and with a simple exponential repulsion. The BKd2 applies field-dependent polarizability [A. Baranyai and P. T. Kiss, J. Chem. Phys. 135, 234110 (2011)], while the BKd3 model has variable size to approximate the temperature-density (T-ρ) curve of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 137, 194102 (2012)]. We calculated the second virial coefficient, the heat of vaporization, equilibrium vapor pressure, the vapor-liquid coexistence curve, and the surface tension in terms of the temperature. We determined and compared the critical temperatures, densities, and pressures of the models. We concluded that the high temperature slope of the (T-ρ) curve accurately predicts the critical temperature. We found that Gaussian charge distributions have clear advantages over the point charges describing the critical region. It is impossible to describe the vapor-liquid coexistence properties consistently with nonpolarizable models, even if their critical temperature is correct.

  19. Magnetic circular dichroism and cobalt(II) binding equilibrium studies of Escherichia coli methionyl aminopeptidase.

    PubMed

    Larrabee, James A; Leung, Chin Hin; Moore, Rhonda L; Thamrong-nawasawat, Thun; Wessler, Benjamin S H

    2004-10-06

    Equilibrium dialysis of methionyl aminopeptidase from Escherichia coli (EcMetAP) monitored by atomic absorption spectrometry and magnetic circular dichroism (MCD) shows that the enzyme binds up to 1.1 +/- 0.1 equiv of Co(2+) in the metal concentration range likely to be found in vivo. The dissociation constant, K(d), is estimated to be between 2.5 and 4.0 microM. Analysis of the temperature and magnetization behavior of the two major peaks in the MCD spectrum at 495 and 567 nm suggests that these transitions arise from Co(2+) with different ground states. Ligand field calculations using AOMX are used to assign the 495 nm peak to Co(2+) in the 6-coordinate binding site and the 567 nm peak to Co(2+) in the 5-coordinate site. This is further supported by the fact that the binding affinity of the Co(2+) associated with the 567 nm peak is enhanced when the pH is increased from 7.5 to 9.0, consistent with having an imidazole ligand from a histidine amino acid residue. On the basis of the MCD intensities, it is estimated that, when the 5-coordinate site is fully occupied, 0.1 equiv of cobalt is in the 6-coordinate site. Even when the cobalt concentration is very low, there is a small fraction of binuclear sites in EcMetAP formed through cooperative binding between the 5- and 6-coordinate Co(2+) ions. The magnetization behavior of the 6-coordinate Co(2+) MCD peak is consistent with an isolated pseudo-Kramer doublet ground state, suggesting that the cobalt ions in the binuclear sites are not magnetically coupled.

  20. Optical observations on the CRIT-II Critical Ionization Velocity Experiment

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Haerendel, G.; Valenzuela, A.

    1990-01-01

    A rocket borne Critical Ionization Velocity (CIV0 experiment was carried out from Wallops Island at dusk on May 4, 1989. Two barium shaped charges were released below the solar terminator (to prevent photoionization) at altitudes near 400 km. The ambient ionospheric electron density was 50,000/cu cm. The neutral barium jet was directed upward and at an angle of nominally 45 degrees to B which gives approximately 3 x 10 to the 23rd neutrals with super critical velocity. Ions created by a CIV process in the region of the neutral jet would travel up along B into sunlight where they can be detected optically. Well defined ion clouds (max. brightness 750 R) were observed in both releases. An ionization rate of 0.8 percent/sec (125 sec ionization time constant) can account for the observed ion cloud near the release field line, but the ionization rate falls off with increasing distance from the release. It is concluded that a CIV process was present in the neutral jet out to about 50 km from the release, which is significantly further than allowed by current theories.

  1. DYNAMICS OF CORONAL RAIN AND DESCENDING PLASMA BLOBS IN SOLAR PROMINENCES. II. PARTIALLY IONIZED CASE

    SciTech Connect

    Oliver, R.; Soler, R.; Terradas, J.; Zaqarashvili, T. V.

    2016-02-20

    Coronal rain clumps and prominence knots are dense condensations with chromospheric to transition region temperatures that fall down in the much hotter corona. Their typical speeds are in the range 30–150 km s{sup −1} and of the order of 10–30 km s{sup −1}, respectively, i.e., they are considerably smaller than free-fall velocities. These cold blobs contain a mixture of ionized and neutral material that must be dynamically coupled in order to fall together, as observed. We investigate this coupling by means of hydrodynamic simulations in which the coupling arises from the friction between ions and neutrals. The numerical simulations presented here are an extension of those of Oliver et al. to the partially ionized case. We find that, although the relative drift speed between the two species is smaller than 1 m s{sup −1} at the blob center, it is sufficient to produce the forces required to strongly couple charged particles and neutrals. The ionization degree has no discernible effect on the main results of our previous work for a fully ionized plasma: the condensation has an initial acceleration phase followed by a period with roughly constant velocity, and, in addition, the maximum descending speed is clearly correlated with the ratio of initial blob to environment density.

  2. X-ray pre-ionization powered by accretion on the first black holes - II. Cosmological simulations and observational signatures

    NASA Astrophysics Data System (ADS)

    Ricotti, Massimo; Ostriker, Jeremiah P.; Gnedin, Nickolay Y.

    2005-02-01

    We use numerical simulations of a cosmological volume to study the X-ray ionization and heating of the intergalactic medium (IGM) by an early population of accreting black holes (BHs). By considering theoretical limits on the accretion rate and observational constraints from the X-ray background and faint X-ray source counts, we find that the maximum value of the optical depth to Thompson scattering which can be produced using these models is τe~= 0.17, in agreement with previous semi-analytic results. The redshifted soft X-ray background produced by these early sources is important in producing a fully ionized atomic hydrogen in the low-density intergalactic medium before stellar reionization at redshift z~ 6-7. As a result, stellar re-ionization is characterized by an almost instantaneous `overlap phase' of HII regions. The background also produces a second HeII re-ionization at about redshift 3 and maintains the temperature of the IGM at about 10000K even at low redshifts. If the spectral energy distribution of these sources has a non-negligible high-energy power-law component, the luminosity in the soft X-ray band of the `typical' galaxies hosting intermediate-mass accreting BHs is maximum at z~ 15 and is about one or two orders of magnitude below the sensitivity limit of the Chandra Deep Field. We find that about a thousand of these sources may be present per square arcmin of the sky, producing potentially detectable fluctuations. We also estimate that a few rare objects, not present in our small simulated volume, could be luminous enough to be visible in the Chandra Deep Field. The XEUS and Constellation-X satellites will be able to detect more of these sources that, if radio loud, could be used to study the 21-cm forest in absorption. A signature of an early X-ray pre-ionization is the production of secondary cosmic microwave background (CMB) anisotropies on small angular scales (<1arcmin). We find that in these models the power spectrum of temperature

  3. Dwarf galaxies with ionizing radiation feedback. II. Spatially resolved star formation relation

    SciTech Connect

    Kim, Ji-hoon; Krumholz, Mark R.; Wise, John H.; Turk, Matthew J.; Goldbaum, Nathan J.; Abel, Tom

    2013-11-15

    AWe investigate the spatially resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate (SFR). Because we have self-consistently calculated the location of ionized gas, we are able to make simulated, spatially resolved observations of star formation tracers, such as Hα emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3 × 1011 M , we find that the correlation between SFR density (estimated from mock Hα emission) and H2 density shows large scatter, especially at high resolutions of ≲ 75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution and because Hα traces hot gas around star-forming regions and is displaced from the H2 peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces and molecular clouds being dispersed via stellar feedback.

  4. Dwarf galaxies with ionizing radiation feedback. II. Spatially resolved star formation relation

    SciTech Connect

    Kim, Ji-hoon; Krumholz, Mark R.; Goldbaum, Nathan J.; Wise, John H.; Turk, Matthew J.; Abel, Tom

    2013-12-10

    We investigate the spatially resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate (SFR). Because we have self-consistently calculated the location of ionized gas, we are able to make simulated, spatially resolved observations of star formation tracers, such as Hα emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3 × 10{sup 11} M {sub ☉}, we find that the correlation between SFR density (estimated from mock Hα emission) and H{sub 2} density shows large scatter, especially at high resolutions of ≲75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution and because Hα traces hot gas around star-forming regions and is displaced from the H{sub 2} peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces and molecular clouds being dispersed via stellar feedback.

  5. High-resolution autoionizing line spectra of Mg II and Al III in the 160--260-A range emitted from a Penning ionization discharge plasma

    SciTech Connect

    Finkenthal, M.; Litman, A.; Mandelbaum, P.; Stutman, D.; Schwob, J.L.

    1988-08-01

    Spectra of aluminum and magnesium emitted from a Penning ionization discharge have been recorded in the XUV range by 2-m grazing-incidence spectrometer. Autoionizing satellite lines, originating from transitions between core excited levels lying in the continuum and ground or lowest excited states of the Na I-like Al III and Mg II, have been classified. Their implication for ionization cross-section estimates and XUV laser research is discussed.

  6. Kinetic and equilibrium studies for the adsorption process of cadmium(II) and copper(II) onto Pseudomonas aeruginosa using square wave anodic stripping voltammetry method.

    PubMed

    Kong, Bo; Tang, Biyu; Liu, Xiaoying; Zeng, Xiandong; Duan, Haiyan; Luo, Shenglian; Wei, Wanzhi

    2009-08-15

    A novel method for the simultaneous determination of cadmium(II) and copper(II) during the adsorption process onto Pseudomonas aeruginosa was developed. The concentration of the free metal ions was successfully detected by square wave anodic stripping voltammetry (SWASV) on the mercaptoethane sulfonate (MES) modified gold electrode, while the P. aeruginosa was efficiently avoided approaching to the electrode surface by the MES monolayer. And the anodic stripping peaks of Cd(2+) and Cu(2+) appear at -0.13 and 0.34V respectively, at the concentration range of 5-50 microM, the peak currents of SWASV present linear relationships with the concentrations of cadmium and copper respectively. As the determination of Cd(2+) and Cu(2+) was in real time and without pretreatment, the kinetic characteristics of the adsorption process were studied and all the corresponding regression parameters were obtained by fitting the electrochemical experimental data to the pseudo-second-order kinetic model. Moreover, Langmuir and Freundlich models well described the biosorption isotherms. And there were some differences in the amount of metal ion adsorbed at equilibrium (q(e)) and other kinetics parameters when the two ions coexisted were compared with the unaccompanied condition, which were also discussed in this paper. The proposed electrode system provides excellent platform for the simultaneous determination of trace metals in complex biosorption process.

  7. H II Region G46.5-0.2: The Interplay between Ionizing Radiation, Molecular Gas, and Star Formation

    NASA Astrophysics Data System (ADS)

    Paron, S.; Ortega, M. E.; Dubner, G.; Yuan, Jing-Hua; Petriella, A.; Giacani, E.; Zeng Li, Jin; Wu, Yuefang; Liu, Hongli; Huang, Ya Fang; Zhang, Si-Ju

    2015-06-01

    H ii regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing toward the ionizing sources, and cometary globules of dense gas where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic H ii region located at about 4 kpc, is an excellent target for performing this kind of study. Using public molecular data extracted from the Galactic Ring Survey (13CO J = 1-0) and from the James Clerk Maxwell Telescope data archive (12CO, 13CO, C18O J = 3-2, HCO+, and HCN J = 4-3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment, and the young stellar objects (YSOs) placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in the direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission toward its open border. We found that about 10‧ to the southwest of G46 there are some pillar-like features, shining at 8 μm and pointing toward the H ii region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several YSOs likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and another mostly composed of Class I type YSOs located just ahead of the pillar-like features, strongly suggesting an age gradient in the YSO distribution.

  8. H ii REGION G46.5-0.2: THE INTERPLAY BETWEEN IONIZING RADIATION, MOLECULAR GAS, AND STAR FORMATION

    SciTech Connect

    Paron, S.; Ortega, M. E.; Dubner, G.; Petriella, A.; Giacani, E.; Yuan, Jing-Hua; Li, Jin Zeng; Liu, Hongli; Huang, Ya Fang; Zhang, Si-Ju; Wu, Yuefang

    2015-06-15

    H ii regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing toward the ionizing sources, and cometary globules of dense gas where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic H ii region located at about 4 kpc, is an excellent target for performing this kind of study. Using public molecular data extracted from the Galactic Ring Survey ({sup 13}CO J = 1–0) and from the James Clerk Maxwell Telescope data archive ({sup 12}CO, {sup 13}CO, C{sup 18}O J = 3–2, HCO{sup +}, and HCN J = 4–3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment, and the young stellar objects (YSOs) placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in the direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission toward its open border. We found that about 10′ to the southwest of G46 there are some pillar-like features, shining at 8 μm and pointing toward the H ii region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several YSOs likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and another mostly composed of Class I type YSOs located just ahead of the pillar-like features, strongly suggesting an age gradient in the YSO distribution.

  9. FLASH SPECTROSCOPY: EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND <10-DAY-OLD TYPE II SUPERNOVAE

    SciTech Connect

    Khazov, D.; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Ofek, E. O.; Horesh, A.; Kulkarni, S. R.; Kasliwal, M. M.; Cao, Y.; Perley, D.; Arcavi, I.; Howell, D. A.; Sollerman, J.; Sullivan, M.; Filippenko, A. V.; Nugent, P. E.; Cenko, S. B.; Silverman, J. M.; Ebeling, H.; and others

    2016-02-10

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra (“flash spectroscopy”), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as “blue/featureless” (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M{sub R} = −18.2 belong to the FI or BF groups, and that all FI events peaked above M{sub R} = −17.6 mag, significantly brighter than average SNe II.

  10. Flash Spectroscopy: Emission Lines From the Ionized Circumstellar Material Around 10-Day-Old Type II Supernovae

    NASA Technical Reports Server (NTRS)

    Khazov, D.; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Kulkarni, S. R.; Arcavi, I.; Kasliwal, M. M.; Ofek, E. O.; Cao, Y.; hide

    2016-01-01

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (< or =10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M(sub R) = -18.2 belong to the FI or BF groups, and that all FI events peaked above M(sub R) = -17.6 mag, significantly brighter than average SNe II.

  11. Flash Spectroscopy: Emission Lines from the Ionized Circumstellar Material Around <10-Day-Old Type II Supernovae

    SciTech Connect

    Khazov, Daniel; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Kulkarni, S. R.; Arcavi, I.; Kasliwal, M. M.; Ofek, E. O.; Cao, Y.; Perley, D.; Sollerman, J.; Horesh, A.; Sullivan, M.; Filippenko, A. V.; Nugent, P. E.; Howell, D. A.; Cenko, S. B.; Silverman, J. M.; Ebeling, H.; Taddia, F.; Johansson, J.; Laher, R. R.; Surace, J.; Rebbapragada, U. D.; Wozniak, Przemyslaw R.; Matheson, T.

    2016-02-02

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. In this paper, by searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Finally and interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude MR = -18.2 belong to the FI or BF groups, and that all FI events peaked above MR = -17.6 mag, significantly brighter than average SNe II.

  12. Flash Spectroscopy: Emission Lines from the Ionized Circumstellar Material Around <10-Day-Old Type II Supernovae

    DOE PAGES

    Khazov, Daniel; Yaron, O.; Gal-Yam, A.; ...

    2016-02-02

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. In this paper, by searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger thanmore » 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Finally and interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude MR = -18.2 belong to the FI or BF groups, and that all FI events peaked above MR = -17.6 mag, significantly brighter than average SNe II.« less

  13. How do type II topoisomerases use ATP hydrolysis to simplify DNA topology beyond equilibrium? Investigating the relaxation reaction of non-supercoiling type II topoisomerases

    PubMed Central

    Stuchinskaya, Tanya; Mitchenall, Lesley A.; Schoeffler, Allyn J.; Corbett, Kevin D.; Berger, James M.; Bates, Andrew D.; Maxwell, Anthony

    2015-01-01

    DNA topoisomerases control the topology of DNA (e.g. the level of supercoiling) in all cells. Type IIA topoisomerases are ATP-dependent enzymes that have been shown to simplify the topology of their DNA substrates to a level beyond that expected at equilibrium (i.e. more relaxed than the product of relaxation by ATP-independent enzymes, such as type I topoisomerases, or a lower than equilibrium level of catenation). The mechanism of this effect is currently unknown, although several models have been suggested. We have analysed the DNA relaxation reactions of type II topoisomerases to further explore this phenomenon. We find that all type IIA topoisomerases tested exhibit the effect to a similar degree and that it is not dependent on the C-terminal domains of the enzymes. As recently reported, the type IIB topoisomerase, topo VI (which is only distantly related to the type IIA enzymes), does not exhibit topology simplification. We find that topology simplification is not significantly dependent on circle size in the range ~2–9 kbp, and is not altered by reducing the free energy available from ATP hydrolysis by varying the ATP:ADP ratio. A direct test of one model (DNA tracking, i.e. sliding of a protein clamp along DNA to trap supercoils) suggests that this is unlikely to be the explanation for the effect. We conclude that geometric selection of DNA segments by the enzymes is likely to be a primary source of the effect but that it is possible that other factors contribute. We also speculate whether topology simplification might simply be an evolutionary relic, with no adaptive significance. PMID:19094994

  14. How do type II topoisomerases use ATP hydrolysis to simplify DNA topology beyond equilibrium? Investigating the relaxation reaction of nonsupercoiling type II topoisomerases.

    PubMed

    Stuchinskaya, Tanya; Mitchenall, Lesley A; Schoeffler, Allyn J; Corbett, Kevin D; Berger, James M; Bates, Andrew D; Maxwell, Anthony

    2009-02-06

    DNA topoisomerases control the topology of DNA (e.g., the level of supercoiling) in all cells. Type IIA topoisomerases are ATP-dependent enzymes that have been shown to simplify the topology of their DNA substrates to a level beyond that expected at equilibrium (i.e., more relaxed than the product of relaxation by ATP-independent enzymes, such as type I topoisomerases, or a lower-than-equilibrium level of catenation). The mechanism of this effect is currently unknown, although several models have been suggested. We have analyzed the DNA relaxation reactions of type II topoisomerases to further explore this phenomenon. We find that all type IIA topoisomerases tested exhibit the effect to a similar degree and that it is not dependent on the supercoil-sensing C-terminal domains of the enzymes. As recently reported, the type IIB topoisomerase, topoisomerase VI (which is only distantly related to type IIA enzymes), does not exhibit topology simplification. We find that topology simplification is not significantly dependent on circle size in the range approximately 2-9 kbp and is not altered by reducing the free energy available from ATP hydrolysis by varying the ADP:ATP ratio. A direct test of one model (DNA tracking; i.e., sliding of a protein clamp along DNA to trap supercoils) suggests that this is unlikely to be the explanation for the effect. We conclude that geometric selection of DNA segments by the enzymes is likely to be a primary source of the effect, but that it is possible that other kinetic factors contribute. We also speculate whether topology simplification might simply be an evolutionary relic, with no adaptive significance.

  15. Synthesis, characterization, equilibrium study and biological activity of Cu(II), Ni(II) and Co(II) complexes of polydentate Schiff base ligand.

    PubMed

    El-Sherif, Ahmed A; Shehata, Mohamed R; Shoukry, Mohamed M; Barakat, Mohammad H

    2012-10-01

    Schiff base ligand, 1,4-bis[(2-hydroxybenzaldehyde)propyl]piperazine (BHPP), and its Cu(II), Ni(II) and Co(II) metal complexes were synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance and spectral (IR and UV-vis) studies. The ground state of BHPP ligand was investigated using the BUILDER module of MOE. Metal complexes are formed in the 1:1 (M:L) ratio as found from the elemental analysis and found to have the general formula [ML]·nH(2)O, where M=Co(II), Ni(II) and Cu(II), L=BHPP. In all the studied complexes, the (BHPP) ligand behaves as a hexadentate divalent anion with coordination involving the two azomethine nitrogen's, the two nitrogen atoms of piperazine ring and the two deprotonated phenolic OH-groups. The magnetic and spectral data indicates octahedral geometry of metal(II) complexes. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria and fungi. They were found to be more active against Gram-positive than Gram-negative bacteria. Protonation constants of (BHPP) ligand and stability constants of its Cu(2+), Co(2+) and Ni(2+) complexes were determined by potentiometric titration method in 50% DMSO-water solution at ionic strength of 0.1 M sodium nitrate. It has been observed that the protonated Schiff base ligand (BHPP) have four protonation constants. The divalent metal ions Cu(2+), Ni(2+) and Co(2+) form 1:1 complexes.

  16. The use of native and protonated grapefruit biomass (Citrus paradisi L.) for cadmium(II) biosorption: equilibrium and kinetic modelling.

    PubMed

    Bayo, Javier; Esteban, Ginés; Castillo, Julián

    2012-01-01

    This paper describes the use of native and protonated grapefruit biomass, a by-product of the food industry, as an effective and low-cost biosorbent for cadmium removal from aqueous solutions. The biomass composition was analysed by high-performance liquid chromatography, scanning electron microscopy coupled with energy-dispersive X-ray analysis and Fourier transform infrared spectroscopy, showing that hydroxyl and carboxylic groups were the main functional groups implicated in Cd(II) biosorption. The effect of different parameters affecting the biosorption process were studied. The optimum removal of cadmium ions was at pH 4.5. Elution of alkaline-earth ions proved to be related with cadmium uptake, aiming for an ion-exchange mechanism. Protonated biomass showed higher adsorption affinity, binding strength and irreversibility for cadmium than native grapefruit, although the optimum metal uptake and high reaction rate was for the native form of grapefruit. Biosorption experimental data fitted Freundlich > Langmuir > Temkin equilibrium adsorption models. Data for both types of biomass were better fitted by a pseudo-second-order kinetic model, with an excellent correlation between calculated and experimental values. Because of these experimental results, and taking into account that both types of biomass displayed an exothermic and spontaneous physical adsorption process, native grapefruit can be proposed in further experiments as a cheap, effective, low-cost and environmentally friendly natural sorbent for the removal of cadmium from industrial wastewater effluents, avoiding chemical pretreatment before its use.

  17. CRIT II electric, magnetic, and density measurements within an ionizing neutral stream

    NASA Technical Reports Server (NTRS)

    Swenson, C. M.; Kelley, M. C.; Primdahl, F.; Baker, K. D.

    1990-01-01

    Measurements from rocket-borne sensors inside a high-velocity neutral barium beam show a-factor-of-six increase in plasma density in a moving ionizing front. This region was colocated with intense fluctuating electric fields at frequencies well under the lower hybrid frequency for a barium plasma. Large quasi-dc electric and magnetic field fluctuations were also detected with a large component of the current and the electric field parallel to B(0). An Alfven wave with a finite electric field component parallel to the geomagnetic field was observed to propagate along B(0), where it was detected by an instrumented subpayload.

  18. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres.

    PubMed

    Zhou, Limin; Wang, Yiping; Liu, Zhirong; Huang, Qunwu

    2009-01-30

    Magnetic chitosan microspheres were prepared and chemically modified with thiourea (TMCS) for adsorption of metal ions. TMCS obtained were investigated by means of X-ray diffraction (XRD), IR, magnetic properties and thermogravimetric analysis (TGA). The adsorption properties of TMCS toward Hg(2+), Cu(2+), and Ni(2+) ions were evaluated. Various factors affecting the uptake behavior such as contact time, temperature, pH and initial concentration of the metal ions were investigated. The kinetics was evaluated utilizing the pseudo-first-order, pseudo-second-order, and the intra-particle diffusion models. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 625.2, 66.7, and 15.3mg/g for Hg(2+), Cu(2+), and Ni(2+) ions, respectively. TMCS displayed higher adsorption capacity for Hg(2+) in all pH ranges studied. The adsorption capacity of the metal ions decreased with increasing temperature. The metal ion-loaded TMCS with were regenerated with an efficiency of greater than 88% using 0.01-0.1M ethylendiamine tetraacetic acid (EDTA).

  19. Three-dimensional modeling of ionized gas. II. Spectral energy distributions of massive and very massive stars in stationary and time-dependent modeling of the ionization of metals in H II regions

    NASA Astrophysics Data System (ADS)

    Weber, J. A.; Pauldrach, A. W. A.; Hoffmann, T. L.

    2015-11-01

    Context. H II regions play a crucial role in the measurement of the chemical composition of the interstellar medium and provide fundamental data about element abundances that constrain models of galactic chemical evolution. Discrepancies that still exist between observed emission line strengths and those predicted by nebular models can be partly attributed to the spectral energy distributions (SEDs) of the sources of ionizing radiation used in the models as well as to simplifying assumptions made in nebular modeling. Aims: One of the main influences on the nebular spectra is the metallicity, both nebular and stellar, which shows large variations even among nearby galaxies. Although nebular modeling often involves testing of different nebular metallicities against their influence on the predicted spectra, adequate grids of stellar atmospheres and realistic SEDs for different metallicities are still lacking. This is unfortunate because the influence of stellar metallicity on nebular line strength ratios, via its effect on the SEDs, is of similar importance as variations in the nebular metallicity. To overcome this deficiency we have computed a grid of model atmosphere SEDs for massive and very massive O-type stars covering a range of metallicities from significantly subsolar (0.1 Z⊙) to supersolar (2 Z⊙). Methods: The SEDs have been computed using a state-of-the-art model atmosphere code that takes into account the attenuation of the ionizing flux by the spectral lines of all important elements and the hydrodynamics of the radiatively driven winds and their influence on the SEDs. For the assessment of the SEDs in nebular simulations we have developed a (heretofore not available) 3D radiative transfer code that includes a time-dependent treatment of the metal ionization. Results: Using the SEDs in both 1D and 3D nebular models we explore the relative influence of stellar metallicity, gas metallicity, and inhomogeneity of the gas on the nebular ionization structure

  20. Time-dependent ionization in the envelopes of type II supernovae at the photospheric phase.

    NASA Astrophysics Data System (ADS)

    Potashov, M. Sh.; Blinnikov, S. I.; Utrobin, V. P.

    2017-01-01

    The importance of allowance for the time-dependent effect in the kinetics at the photospheric phase during a supernova explosion has been confirmed by several independent research groups. The time-dependent effect provides a higher degree of hydrogen ionization in comparison with the steady state solutions and strengthens the Hα line in the resulting simulated spectrum, with the intensity of the effect increasing with time. However, some researchers argue that the time-dependent ionization effect is unimportant. Its allowance leads to an insignificant strengthening of Hα in their modeling only in the first days after explosion. We have demonstrated the importance of the time-dependent effect with the models of SN 1999em as an example using the new original LEVELS software package. The role of a number of factors that can weaken the time-dependent effect has been checked. We have confirmed that the intensity of the effect is affected by the abundance of metal admixtures in the envelope, while the addition of extra levels to the model hydrogen atom weakens the time-dependent effect to a lesser degree and never removes it completely.

  1. Iron isotope fractionation between aqueous Fe(II) and goethite revisited: New insights based on a multi-direction approach to equilibrium and isotopic exchange rate modification

    NASA Astrophysics Data System (ADS)

    Frierdich, Andrew J.; Beard, Brian L.; Reddy, Thiruchelvi R.; Scherer, Michelle M.; Johnson, Clark M.

    2014-08-01

    The Fe isotope compositions of naturally occurring Fe oxide minerals provide insights into biogeochemical processes that occur in modern and ancient environments. Key to understanding isotopic variations in such minerals is knowledge of the equilibrium Fe isotope fractionation factors between common minerals and aqueous Fe species. Because experimental measurements of isotopic fractionation may reflect a combination of kinetic and equilibrium fractionations during rapid dissolution and precipitation, even in experiments that employ the three-isotope method, assessment of the attainment of equilibrium is often difficult. Here, we re-examine Fe isotope exchange, via a 57Fe tracer, and natural mass-dependent fractionation, through changes in initial 56Fe/54Fe ratios, between aqueous Fe(II) (Fe(II)aq) and goethite. This approach uses the three-isotope method, but is distinct in its evaluation of kinetic isotope fractionation and the attainment of equilibrium by: (i) employing a multi-direction approach to equilibrium at 22 °C via reaction of three Fe(II)aq solutions that had different initial 56Fe/54Fe ratios, (ii) conducting isotopic exchange experiments at elevated temperature (50 °C), and (iii) modifying the rate of isotopic exchange through a combination of trace-element substitutions and particle coarsening to evaluate corresponding temporal changes in fractionation trajectories that may reflect changing instantaneous fractionation factors. We find that rapid isotopic exchange produces kinetic isotope effects between Fe(II)aq and goethite, which shifts the 56Fe/54Fe ratios of Fe(II)aq early in reactions toward that of goethite, indicating that the instantaneous Fe(II)aq-goethite fractionation factor under kinetic conditions is small. Importantly, however, this kinetic fractionation is “erased” with continued reaction, and this is evident by the congruence for multiple-exchange trajectories of distinct initial Fe(II)aq solutions toward the same final value

  2. Kinetic theory of low-frequency cross-field instability in a weakly ionized plasma. II

    SciTech Connect

    Dimant, Y.S.; Sudan, R.N.

    1995-04-01

    The consistent kinetic approach developed in Paper I [Ya. S. Dimant and R. N. Sudan, Phys. Plasmas {bold 2}, 1157 (1995)] is applied to obtain the general dispersion relation of the two-stream {bold E}{times}{bold B} instability in collisionally dominated weakly ionized plasmas for wave frequencies small compared to the ion--neutral collision frequency. This dispersion relation covers the whole low-frequency band from the asymptotic short-wave limit studied in Paper I to the long-wave limit. Previous theories employing simplified kinetic theory or fluid equations for electron behavior are only correct in the long-wave limit. The principal new results are that the threshold conditions for this instability and the growth rates are altered from those predicted by earlier simplified theories. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes.

    PubMed

    Parkes, J H; Gibson, S K; Liebman, P A

    1999-05-25

    The equilibria between metarhodopsins I and II (MI and MII) and the binding of MII to retinal G protein (G) were investigated, using the dual wavelength absorbance response of rod disk membrane (RDM) suspensions to a series of small bleaches, together with a nonlinear least-squares fitting procedure that decouples the two reactions. This method has been subjected to a variety of theoretical and experimental tests that establish its validity. The two equilibrium constants, the amount of active G protein (that can bind to and stabilize MII) and the fraction bleached by the flash, have been determined without a priori assumptions about these values, at temperatures between 0 and 15 degrees C and pHs from 6.2 to 8.2. Binding of G to MII in normal RDM exhibits 1:1 stoichiometry (not cooperative), relatively weak, 2-4 x 10(4) M-1 affinity on the membrane, with a pH dependence maximal at pH 7.6, and a low thermal coefficient. The reported amount of active G remained constant even when its binding constant was reduced more than 10-fold at low pH. The method can readily be applied to the binding of MII to other proteins or polypeptides that stabilize its conformation as MII. It appears capable of determining many of the essential physical constants of G protein coupled receptor interaction with immediate signaling partners and the effect of perturbation of environmental parameters on these constants.

  4. Observations of feedback from radio-quiet quasars - II. Kinematics of ionized gas nebulae

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Zakamska, Nadia L.; Greene, Jenny E.; Nesvadba, Nicole P. H.; Liu, Xin

    2013-12-01

    The prevalence and energetics of quasar feedback is a major unresolved problem in galaxy formation theory. In this paper, we present Gemini Integral Field Unit observations of ionized gas around 11 luminous, obscured, radio-quiet quasars at z ˜ 0.5 out to ˜15 kpc from the quasar; specifically, we measure the kinematics and morphology of [O III] λ5007 Å emission. The round morphologies of the nebulae and the large line-of-sight velocity widths (with velocities containing 80 per cent of the emission as high as 103 km s-1) combined with relatively small velocity difference across them (from 90 to 520 km s-1) point towards wide-angle quasi-spherical outflows. We use the observed velocity widths to estimate a median outflow velocity of 760 km s-1, similar to or above the escape velocities from the host galaxies. The line-of-sight velocity dispersion declines slightly towards outer parts of the nebulae (by 3 per cent kpc-1 on average). The majority of nebulae show blueshifted excesses in their line profiles across most of their extents, signifying gas outflows. For the median outflow velocity, we find dot{E}_kin between 4 × 1044 and 3 × 1045 erg s-1 and dot{M} between 2 × 103 and 2 × 104 M⊙ yr-1. These values are large enough for the observed quasar winds to have a significant impact on their host galaxies. The median rate of converting bolometric luminosity to kinetic energy of ionized gas clouds is ˜2 per cent. We report four new candidates for `superbubbles' - outflows that may have broken out of the denser regions of the host galaxy.

  5. Search for lightly ionizing particles using CDMS-II data and fabrication of CDMS detectors with improved homogeneity in properties

    SciTech Connect

    Prasad, Kunj Bihari

    2013-12-01

    Fundamental particles are always observed to carry charges which are integral multiples of one-third charge of electron, e/3. While this is a well established experimental fact, the theoretical understanding for the charge quantization phenomenon is lacking. On the other hand, there exist numerous theoretical models that naturally allow for existence of particles with fractional electromagnetic charge. These particles, if existing, hint towards existence of physics beyond the standard model. Multiple high energy, optical, cosmological and astrophysical considerations restrict the allowable mass-charge parameter space for these fractional charges. Still, a huge unexplored region remains. The Cryogenic Dark Matter Search (CDMS-II), located at Soudan mines in northern Minnesota, employs germanium and silicon crystals to perform direct searches for a leading candidate to dark matter called Weakly Interacting Massive Particles (WIMPs). Alternately, the low detection threshold allows search for fractional electromagnetic-charged particles, or Lightly Ionizing Particles (LIPs), moving at relativistic speed. Background rejection is obtained by requiring that the magnitude and location of energy deposited in each detector be consistent with corresponding \\signatures" resulting from the passage of a fractionally charged particle. In this dissertation, the CDMS-II data is analyzed to search for LIPs, with an expected background of 0.078 0.078 events. No candidate events are observed, allowing exclusion of new parameter space for charges between e/6 and e/200.

  6. Flare heating and ionization of the low solar chromosphere. II - Observations of five solar flares

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Canfield, Richard C.; Saba, Julia L. R.

    1990-01-01

    Two neutral Mg spectral lines formed in the temperature-minimum region and the low chromosphere, at 4571 and 5173 A, are used to quantify the changes in the atmospheric structure as a function of time during five solar flares. Eight proposed flare heating and ionization mechanisms and predictions of the effects of each on the temperature minimum region are discussed. Two Mg spectral observations made at the National Solar Observatory (Sacramento Peak), along with observations of hard and soft X-rays from the SMM and GOES satellites, are compared to the predictions of the eight proposed mechanisms. The initial effects in all five flares are consistent with backwarming by enhanced Balmer- and Paschen-continuum radiation originating in the upper chromosphere. Extended heating observed in two of the flares is most likely due to UV irradiation. In all cases heating by the dissipation of nonreversed electric currents, collisions with an electron or proton beam, irradiation by soft X-rays, and dissipation of Alfven waves are eliminated.

  7. Flare heating and ionization of the low solar chromosphere. II - Observations of five solar flares

    NASA Astrophysics Data System (ADS)

    Metcalf, Thomas R.; Canfield, Richard C.; Saba, Julia L. R.

    1990-12-01

    Two neutral Mg spectral lines formed in the temperature-minimum region and the low chromosphere, at 4571 and 5173 A, are used to quantify the changes in the atmospheric structure as a function of time during five solar flares. Eight proposed flare heating and ionization mechanisms and predictions of the effects of each on the temperature minimum region are discussed. Two Mg spectral observations made at the National Solar Observatory (Sacramento Peak), along with observations of hard and soft X-rays from the SMM and GOES satellites, are compared to the predictions of the eight proposed mechanisms. The initial effects in all five flares are consistent with backwarming by enhanced Balmer- and Paschen-continuum radiation originating in the upper chromosphere. Extended heating observed in two of the flares is most likely due to UV irradiation. In all cases heating by the dissipation of nonreversed electric currents, collisions with an electron or proton beam, irradiation by soft X-rays, and dissipation of Alfven waves are eliminated.

  8. Flare heating and ionization of the low solar chromosphere. II - Observations of five solar flares

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Canfield, Richard C.; Saba, Julia L. R.

    1990-01-01

    Two neutral Mg spectral lines formed in the temperature-minimum region and the low chromosphere, at 4571 and 5173 A, are used to quantify the changes in the atmospheric structure as a function of time during five solar flares. Eight proposed flare heating and ionization mechanisms and predictions of the effects of each on the temperature minimum region are discussed. Two Mg spectral observations made at the National Solar Observatory (Sacramento Peak), along with observations of hard and soft X-rays from the SMM and GOES satellites, are compared to the predictions of the eight proposed mechanisms. The initial effects in all five flares are consistent with backwarming by enhanced Balmer- and Paschen-continuum radiation originating in the upper chromosphere. Extended heating observed in two of the flares is most likely due to UV irradiation. In all cases heating by the dissipation of nonreversed electric currents, collisions with an electron or proton beam, irradiation by soft X-rays, and dissipation of Alfven waves are eliminated.

  9. Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. II. Global analysis

    SciTech Connect

    Escobar, D.; Ahedo, E.

    2015-10-15

    The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared against experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methods.

  10. Hyperfine structure constants for singly ionized manganese (Mn II) using Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Townley-Smith, Keeley; Nave, Gillian; Pickering, Juliet C.; Blackwell-Whitehead, Richard J.

    2016-09-01

    We expand on the comprehensive study of hyperfine structure (HFS) in Mn II conducted by Holt et al. (1999) by verifying hyperfine magnetic dipole constants (A) for 20 levels previously measured by Holt et al. (1999) and deriving A constants for 47 previously unstudied levels. The HFS patterns were measured in archival spectra from Fourier transform (FT) spectrometers at Imperial College London and the National Institute of Standards and Technology. Analysis of the FT spectra was carried out in XGREMLIN. Our A constant for the ground level has a lower uncertainty by a factor of 6 than that of Blackwell-Whitehead et al.

  11. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems

    SciTech Connect

    Wu, Wei; Wang, Jin

    2014-09-14

    We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series.

  12. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems.

    PubMed

    Wu, Wei; Wang, Jin

    2014-09-14

    We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series.

  13. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. II. Experimental detection

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The basic 30-nm chromatin fiber in the mammalian cell consists of an unknown (possibly helical) arrangement of nucleosomes, with about 1.2 kb of DNA per 10-nm length of fiber. Track-structure considerations suggest that interactions of single delta rays or high-LET particles with the chromatin fiber might result in the formation of multiple lesions spread over a few kilobases of DNA (see the accompanying paper: W.R. Holley and A. Chatterjee, Radiat. Res. 145, 188-199, 1996). In particular, multiple DNA double-strand breaks and single-strand breaks may form. To test this experimentally, primary human fibroblasts were labeled with [3H]thymidine and exposed at 0 degrees C to X rays or accelerated nitrogen or iron ions in the LET range of 97-440 keV/microns. DNA was isolated inside agarose plugs and subjected to agarose gel electrophoresis under conditions that allowed good separation of 0.1-2 kb size DNA. The bulk of DNA remained in the well or migrated only a small distance into the gel. It was found that DNA fragments in the expected size range were formed linearly with dose with an efficiency that increased with LET. A comparison of the yield of such fragments with the yield of total DNA double-strand breaks suggests that for the high-LET ions a substantial proportion (20-90%) of DNA double-strand breaks are accompanied within 0.1-2 kb by at least one additional DNA double-strand break. It is shown that these results are in good agreement with theoretical calculations based on treating the 30-nm chromatin fiber as the target for ionizing particles. Theoretical considerations also predict that the clusters will contain numerous single-strand breaks and base damages. It is proposed that such clusters be designated "regionally multiply damaged sites." Postirradiation incubation at 37 degrees C resulted in a decline in the number of short DNA fragments, suggesting a repair activity. The biological significance of regionally multiply damaged sites is presently unknown.

  14. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. II. Experimental detection

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The basic 30-nm chromatin fiber in the mammalian cell consists of an unknown (possibly helical) arrangement of nucleosomes, with about 1.2 kb of DNA per 10-nm length of fiber. Track-structure considerations suggest that interactions of single delta rays or high-LET particles with the chromatin fiber might result in the formation of multiple lesions spread over a few kilobases of DNA (see the accompanying paper: W.R. Holley and A. Chatterjee, Radiat. Res. 145, 188-199, 1996). In particular, multiple DNA double-strand breaks and single-strand breaks may form. To test this experimentally, primary human fibroblasts were labeled with [3H]thymidine and exposed at 0 degrees C to X rays or accelerated nitrogen or iron ions in the LET range of 97-440 keV/microns. DNA was isolated inside agarose plugs and subjected to agarose gel electrophoresis under conditions that allowed good separation of 0.1-2 kb size DNA. The bulk of DNA remained in the well or migrated only a small distance into the gel. It was found that DNA fragments in the expected size range were formed linearly with dose with an efficiency that increased with LET. A comparison of the yield of such fragments with the yield of total DNA double-strand breaks suggests that for the high-LET ions a substantial proportion (20-90%) of DNA double-strand breaks are accompanied within 0.1-2 kb by at least one additional DNA double-strand break. It is shown that these results are in good agreement with theoretical calculations based on treating the 30-nm chromatin fiber as the target for ionizing particles. Theoretical considerations also predict that the clusters will contain numerous single-strand breaks and base damages. It is proposed that such clusters be designated "regionally multiply damaged sites." Postirradiation incubation at 37 degrees C resulted in a decline in the number of short DNA fragments, suggesting a repair activity. The biological significance of regionally multiply damaged sites is presently unknown.

  15. Clusters of DNA damage induced by ionizing radiation: Formation of short DNA fragments. II. Experimental detection

    SciTech Connect

    Rydberg, B.

    1996-02-01

    The basic 30-nm chromatin fiber in the mammalian cell consists of an unknown (possibly helical) arrangement of nucleosomes, with about 1.2 kb of DNA per 10-nm length of fiber. Track-structure considerations suggest that interactions of single {delta} rays or high-LET particles with the chromatin fiber might result in the formation of multiple lesions spread over a few kilobases of DNA. In particular, multiple DNA double-strand breaks and single-strand breaks may form. To test this experimentally, primary human fibroblasts were labeled with [{sup 3}H]thymidine and exposed at 0{degrees}C to X rays or accelerated nitrogen or iron ions in the LET range of 97-440 keV/pm. DNA was isolated inside agarose plugs and subjected to agarose gel electrophoresis under conditions that allowed good separation of 0.1-2 kb size DNA. The bulk of DNA remained in the well or migrated only a small distance into the gel. It was found that DNA fragments in the expected size range were formed linearly with dose with an efficiency that increased with LET. A comparison of the yield of such fragments with the yield of total DNA double-strand breaks suggests that for the high-LET ions a substantial proportion (20-90%) of DNA double-strand breaks are accompanied within 0.1-2 kb by at least one additional DNA double-strand break. It is shown that these results are in good agreement with theoretical calculations based on treating the 30-nm chromatin fiber as the target for ionizing particles. Theoretical considerations also predict that the clusters will contain numerous single-strand breaks and base damages. It is proposed that such clusters be designated {open_quotes}regionally multiply damaged sites.{close_quotes} Postirradiation incubation at 37{degrees}C resulted in a decline in the number of short DNA fragments, suggesting a repair activity. The biological significance of regionally multiply damaged sites is presently unknown. 34 refs., 6 figs., 1 tab.

  16. The interaction of catalytic metal ions and ionizing groups in equilibrium studies and in transient intermediates of metal-substituted alcohol dehydrogenases.

    PubMed

    Maret, W; Gerber, M; Zeppezauer, M; Dunn, M F

    1985-01-01

    The step of ternary complex interconversion in the reaction catalyzed by horse liver alcohol dehydrogenase has been resolved into five distinct molecular species with the aid of metal-substitution studies in combination with rapid-scanning spectrophotometry. A correlation with electronic absorption spectra at equilibrium provides structural insights into these intermediates. In contrast to NADH, NAD+ only leads to a conformational change of the protein when a negative charge has been created in the vicinity of the catalytic metal ion. This paper presents also a reevaluation of previous assignments of catalytically important groups in the light of some recent results.

  17. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe.

    PubMed

    Prevosto, L; Kelly, H; Mancinelli, B

    2013-12-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  18. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: Analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2013-12-15

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  19. Ionizing stellar population in the disc of NGC 3310 - II. The Wolf-Rayet population

    NASA Astrophysics Data System (ADS)

    Miralles-Caballero, D.; Rosales-Ortega, F. F.; Díaz, A. I.; Otí-Floranes, H.; Pérez-Montero, E.; Sánchez, S. F.

    2014-12-01

    We use integral field spectroscopy to study in detail the Wolf-Rayet (WR) population in NGC 3310, spatially resolving 18 star-forming knots with typical sizes of 200-300 pc in the disc of the galaxy hosting a substantial population of WRs. The detected emission in the so-called blue bump is attributed mainly to late-type nitrogen WRs (WNL), ranging from a few dozens to several hundreds of stars per region. Our estimated WNL/(WNL+O) ratio is comparable to reported empirical relations once the extinction-corrected emission is further corrected by the presence of dust grains inside the nebula that absorb a non-negligible fraction of UV photons. Comparisons of observables with stellar population models show disagreement by factors larger than 2-3. However, if the effects of interacting binaries and/or photon leakage are taken into account, observations and predictions tend to converge. We estimate the binary fraction of the H II regions hosting WRs to be significant in order to recover the observed X-ray flux, hence proving that the binary channel can be critical when predicting observables. We also explore the connection of the environment with the current hypothesis that WRs can be progenitors to long-duration gamma-ray bursts (GRBs). Galaxy interactions, which can trigger strong episodes of star formation in the central regions, may be a plausible environment where WRs may act as progenitors of GRBs. Finally, even though the chemical abundance is generally homogeneous, we also find weak evidence for rapid N pollution by WR stellar winds at scales of ˜200 pc.

  20. Detailed and simplified nonequilibrium helium ionization in the solar atmosphere

    SciTech Connect

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit E-mail: mats.carlsson@astro.uio.no

    2014-03-20

    Helium ionization plays an important role in the energy balance of the upper chromosphere and transition region. Helium spectral lines are also often used as diagnostics of these regions. We carry out one-dimensional radiation-hydrodynamics simulations of the solar atmosphere and find that the helium ionization is set mostly by photoionization and direct collisional ionization, counteracted by radiative recombination cascades. By introducing an additional recombination rate mimicking the recombination cascades, we construct a simplified three-level helium model atom consisting of only the ground states. This model atom is suitable for modeling nonequilibrium helium ionization in three-dimensional numerical models. We perform a brief investigation of the formation of the He I 10830 and He II 304 spectral lines. Both lines show nonequilibrium features that are not recovered with statistical equilibrium models, and caution should therefore be exercised when such models are used as a basis for interpretating observations.

  1. Detailed and Simplified Nonequilibrium Helium Ionization in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit

    2014-03-01

    Helium ionization plays an important role in the energy balance of the upper chromosphere and transition region. Helium spectral lines are also often used as diagnostics of these regions. We carry out one-dimensional radiation-hydrodynamics simulations of the solar atmosphere and find that the helium ionization is set mostly by photoionization and direct collisional ionization, counteracted by radiative recombination cascades. By introducing an additional recombination rate mimicking the recombination cascades, we construct a simplified three-level helium model atom consisting of only the ground states. This model atom is suitable for modeling nonequilibrium helium ionization in three-dimensional numerical models. We perform a brief investigation of the formation of the He I 10830 and He II 304 spectral lines. Both lines show nonequilibrium features that are not recovered with statistical equilibrium models, and caution should therefore be exercised when such models are used as a basis for interpretating observations.

  2. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    PubMed

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  3. Predictive Value of Ionized Calcium in Critically Ill Patients: An Analysis of a Large Clinical Database MIMIC II

    PubMed Central

    Zhang, Zhongheng; Xu, Xiao; Ni, Hongying; Deng, Hongsheng

    2014-01-01

    Background and Objective ionized calcium (iCa) has been investigated for its association with mortality in intensive care unit (ICU) patients in many studies. However, these studies are small in sample size and the results are conflicting. The present study aimed to establish the association of iCa with mortality by using a large clinical database. Methods Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC II) database was used for analysis. Patients older than 15 years were eligible, and patients without iCa measured during their ICU stay were excluded. Demographic data and clinical characteristics were extracted and compared between survivors and non-survivors. iCa measure on ICU admission was defined as Ca0; Camax was the maximum iCa during ICU stay; Camin was the minimum value of iCa during the ICU stay; Camean was the arithmetic mean iCa during ICU stay. Main results A total of 15409 ICU admissions satisfied our inclusion criteria and were included in our analysis. The prevalence of hypocalcemia on ICU entry was 62.06%. Ca0 was significantly lower in non-survivors than in survivors (1.11±0.14 vs 1.13±0.10 mmol/l, p<0.001). In multivariate analysis, moderate hypocalcemia in Ca0 was significantly associated with increased risk of death (OR: 1.943; 95% CI: 1.340–2.817), and mild hypercalcemia was associated with lower mortality (OR: 0.553, 95% CI: 0.400–0.767). While moderate and mild hypocalcemia in Camean is associated with increased risk of death (OR: 1.153, 95% CI: 1.006–1.322 and OR: 2.520, 95% CI: 1.485–4.278), hypercalcemia in Camean is not significantly associated with ICU mortality. Conclusion The relationship between Ca0 and clinical outcome follows an “U” shaped curve with the nadir at the normal range, extending slightly to hypercalcemia. Mild hypercalcemia in Ca0 is protective, whereas moderate and mild hypocalcemia in Camean is associated with increased risk of death. PMID:24736693

  4. Statistical investigation of simulated intestinal fluid composition on the equilibrium solubility of biopharmaceutics classification system class II drugs.

    PubMed

    Khadra, Ibrahim; Zhou, Zhou; Dunn, Claire; Wilson, Clive G; Halbert, Gavin

    2015-01-25

    A drug's solubility and dissolution behaviour within the gastrointestinal tract is a key property for successful administration by the oral route and one of the key factors in the biopharmaceutics classification system. This property can be determined by investigating drug solubility in human intestinal fluid (HIF) but this is difficult to obtain and highly variable, which has led to the development of multiple simulated intestinal fluid (SIF) recipes. Using a statistical design of experiment (DoE) technique this paper has investigated the effects and interactions on equilibrium drug solubility of seven typical SIF components (sodium taurocholate, lecithin, sodium phosphate, sodium chloride, pH, pancreatin and sodium oleate) within concentration ranges relevant to human intestinal fluid values. A range of poorly soluble drugs with acidic (naproxen, indomethacin, phenytoin, and piroxicam), basic (aprepitant, carvedilol, zafirlukast, tadalafil) or neutral (fenofibrate, griseofulvin, felodipine and probucol) properties have been investigated. The equilibrium solubility results determined are comparable with literature studies of the drugs in either HIF or SIF indicating that the DoE is operating in the correct space. With the exception of pancreatin, all of the factors individually had a statistically significant influence on equilibrium solubility with variations in magnitude of effect between the acidic and basic or neutral compounds and drug specific interactions were evident. Interestingly for the neutral compounds pH was the factor with the second largest solubility effect. Around one third of all the possible factor combinations showed a significant influence on equilibrium solubility with variations in interaction significance and magnitude of effect between the acidic and basic or neutral compounds. The least number of significant media component interactions were noted for the acidic compounds with three and the greatest for the neutral compounds at seven

  5. Kinetic, Equilibrium and thermodynamic studies on the biosorption of Cd(II) from aqueous solutions by the leaf biomass of Calotropis procera - 'Sodom apple'

    NASA Astrophysics Data System (ADS)

    Chukwudumebi Overah, Loretta; Babalola, Oyebamiji.; Babarinde, Adesola; Oninla, Vincent; Olatunde, Abimbola

    2013-04-01

    The kinetics, equilibrium and thermodynamics of the biosorption of Cd (II) from aqueous solution by the leaf biomass of Calotropis procera popularly known in western Nigeria as 'bom bom' and generally known as Sodom apple were investigated at different experimental conditions. Optimum conditions of pH,contact time, biomass dosage, initial metal ion concentration and temperature were determined to be 5, 60 minutes, 110 mg, 0.3 mM and 27°C respectively. The maximum biosorption capacity was found to be 8.91 mg/g. The kinetic studies indicated that the biosorption process of the metal ion followed the pseudo-second-order and intra-particle diffusion models with an R-square value of 0.998 and 0.985 respectively. Equilibrium studies showed that the biosorption of Cd (II) is well represented by both Freundlich and Langmuir isotherms but the Langmuir model gave a better fit with an R-square value of 0.979,Langmuir constant, bm of 0.0080 and monolayer adsorption capacity, μm of 123.46. The calculated thermodynamic parameters (ΔG° -4.846 kJmol-1, ΔH° 10.60 kJmol-1 and ΔS° 0.052 kJK-1mol-1) showed that the biosorption of Cd (II)is feasible, spontaneous, endothermic and highly disordered in nature under the experimental conditions. Thesefindings indicate that the leaf of Calotropis procera could be employed in the removal of Cd (II) from industrial effluents. Key words: Calotropis procera, Cadmium, Adsorption isotherm.

  6. Amine-based extraction recovery of Cu(II) from aqueous solutions in the presence of EDTA. Equilibrium studies

    SciTech Connect

    Juang, R.S.; Chen, Y.J.; Huang, I.P.

    1999-11-01

    The distribution ratios of Cu(II) between kerosene solutions of Aliquat 336 and water containing EDTA (ethylenediaminetetraacetic acid) are measured. Experiments were performed as a function of the pH, the concentration of Cu(II), the concentration ratio of EDTA to Cu(II), and the concentration of amine. It is shown that the distribution ratios first increase with pH and then decrease with further increase in pH up to 7.0. The effect of temperature on the extraction was studied, and the enthalpy of the extraction reaction was determined. Finally, the nonideal behavior of the organic phase is discussed.

  7. Removal of copper (II) ion from aqueous solution using zeolite Y synthesized from rice husk ash: Equilibrium and kinetic study

    NASA Astrophysics Data System (ADS)

    Tuyen, Nguyen Thi Kim; Nhan, Do Nguyen Thanh; Nhat, Trieu Thi; An, Ngo Thanh; Long, Nguyen Quang

    2017-09-01

    Zeolite Y was synthesized from silica of rice-husk ash using hydrothermal process. The crystalline structure FAU of zeolite Y was characterized by X-ray diffraction (XRD). Surface's area of the catalyst was determined by physic-adsorption method using BET model. The zeolite was examined for possibility of Cu2+ adsorbent by an ion-exchange mechanism. Various adsorption isotherm models, such as Langmuir, Freundlich and Dubinin-Radushkevich were tested for equilibrium study. The integration method was applied to find out the possible kinetic equation of the Cu2+ adsorption on the zeolite Y which obtained from cheap and locally available rice husk ash.

  8. Mesoscale simulation of polymer reaction equilibrium: Combining dissipative particle dynamics with reaction ensemble Monte Carlo. II. Supramolecular diblock copolymers

    NASA Astrophysics Data System (ADS)

    Lísal, Martin; Brennan, John K.; Smith, William R.

    2009-03-01

    We present an alternative formulation of the reaction ensemble dissipative particle dynamics (RxDPD) method [M. Lísal, J. K. Brennan, and W. R. Smith, J. Chem. Phys. 125, 16490 (2006)], a mesoscale simulation technique for studying polymer systems in reaction equilibrium. The RxDPD method combines elements of dissipative particle dynamics (DPD) and reaction ensemble Monte Carlo (RxMC), and is primarily targeted for the prediction of the system composition, thermodynamic properties, and phase behavior of reaction equilibrium polymer systems. The alternative formulation of the RxDPD method is demonstrated by considering a supramolecular diblock copolymer (SDC) melt in which two homopolymers, An and Bm, can reversibly bond at terminal binding sites to form a diblock copolymer, AnBm. We consider the effect of the terminal binding sites and the chemical incompatibility between A- and B-segments on the phase behavior. Both effects are found to strongly influence the resulting phase behavior. Due to the reversible nature of the binding, the SDC melt can be treated as the reaction equilibrium system An+Bm⇌AnBm. To simulate the An+Bm⇌AnBm melt, the system contains, in addition to full An, Bm, and AnBm polymers, two fractional polymers: one fractional polymer either fAn or fBm, and one fractional polymer fAnBm, which have fractional particles at the ends of the polymer chains. These fractional particles are coupled to the system via a coupling parameter. The time evolution of the system is governed by the DPD equations of motion, accompanied by random changes in the coupling parameter. Random changes in the coupling parameter mimic forward and reverse reaction steps as in the RxMC approach, and they are accepted with a probability derived from the expanded ensemble grand canonical partition function. Unlike the original RxDPD method that considers coupling of entire fractional polymers to the system, the expanded ensemble framework allows a stepwise coupling, thus

  9. Equilibrium 2H/ 1H fractionations in organic molecules. II: Linear alkanes, alkenes, ketones, carboxylic acids, esters, alcohols and ethers

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A., III

    2009-12-01

    Equilibrium 2H/ 1H fractionation factors (α eq) for various H positions in alkanes, alkenes, ketones, carboxylic acids, esters, alcohols, and ethers were calculated between 0 and 100 °C using vibrational frequencies from ab initio QM calculations (B3LYP/6-311G**). Results were then corrected using a temperature-dependent linear calibration curve based on experimental data for H α in ketones ( Wang et al., 2009). The total uncertainty in reported α eq values is estimated at 10-20‰. The effects of functional groups were found to increase the value of α eq for H next to electron-donating groups, e.g. sbnd OR, sbnd OH or sbnd O(C dbnd O)R, and to decrease the value of α eq for H next to electron-withdrawing groups, e.g. sbnd (C dbnd O)R or sbnd (C dbnd O)OR. Smaller but significant functional group effects are also observed for H β and sometimes H γ. By summing over individual H positions, we estimate the equilibrium fractionation relative to water to be -90‰ to -70‰ for n-alkanes and around -100‰ for pristane and phytane. The temperature dependence of these fractionations is very weak between 0 and 100 °C. Our estimates of α eq agree well with field data for thermally mature hydrocarbons (δ 2H values between -80‰ and -110‰ relative to water). Therefore the observed δ 2H increase of individual hydrocarbons and the disappearance of the biosynthetic δ 2H offset between n-alkyl and linear isoprenoid lipids during maturation of organic matter can be confidently attributed to H exchange towards an equilibrium state. Our results also indicate that many n-alkyl lipids are biosynthesized with δ 2H values that are close to equilibrium with water. In these cases, constant down-core δ 2H values for n-alkyl lipids cannot be reliably used to infer a lack of isotopic exchange.

  10. Spectrophotometric determination of reaction stoichiometry and equilibrium constants of metallochromic indicators. II. The Ca2+-arsenazo III complexes.

    PubMed

    Dorogi, P L; Neumann, E

    1981-04-01

    The analytical method described in the preceding article was applied to spectrophotometric Ca2+-titrations of the metallochromic indicator arsenazo III (Ar). At various reactant concentrations it was determined that Ar forms 1:1,1:2 and 2 : 1 complexes with calcium. The equilibrium constants and extinction coefficients at 602 nm were determined. Corrected to zero ionic strength at 293 K and pH 7.0, the reactions Ca + Ar = CaAr, CaAr + Ar = CaAr2 and CaAr + Ca = Ca2Ar are associated with dissociation equilibrium constants k(11) = 1.6 x 10(-6)M, K12 = 3.2 x 10(-4)M and K21 = 5.8 x 10(-3)M. respectively. The extinction coefficient of unbound indicator is (602) = 9.6 (+/-0.3) x 10(3) cm(-1) M(-1). Arscnazo III complexes with monovalent ions like Na+ and K+ : at zero ionic strength, the dissociation constant of the Na+-Ar complex is about 0.1 M.

  11. Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies.

    PubMed

    Sari, Ahmet; Tuzen, Mustafa

    2008-09-15

    The biosorption characteristics of Cd(II) ions using the red alga (Ceramium virgatum) were investigated. Experimental parameters affecting the biosorption process such as pH, contact time, biomass dosage and temperature were studied. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherms. The biosorption capacity of C. virgatum biomass for Cd(II) ions was found to be 39.7 mg/g. From the D-R isotherm model, the mean free energy was calculated as 12.7 kJ/mol, indicating that the biosorption of Cd(II) the metal ions was taken place by chemisorption. The calculated thermodynamic parameters (DeltaG degrees , DeltaH degrees and DeltaS degrees ) showed that the biosorption of Cd(II) ions onto C. virgatum was feasible, spontaneous and exothermic at 293-323 K. Evaluation of experimental data in terms of biosorption kinetics showed that the biosorption of Cd(II) C. virgatum followed well pseudo-second-order kinetics.

  12. Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations.

    PubMed

    Wu, D; He, X T; Yu, W; Fritzsche, S

    2017-02-01

    A physical model based on a Monte Carlo approach is proposed to calculate the ionization dynamics of hot-solid-density plasmas within particle-in-cell (PIC) simulations, and where the impact (collision) ionization (CI), electron-ion recombination (RE), and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal relaxation of ionization dynamics can also be simulated by the proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite different compositions. The proposed model is implemented into a PIC code, with (final) ionization equilibriums sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model and model without IPD or RE are performed. Our results indicate that for bulk aluminium at temperature of 1 to 1000 eV, (i) the averaged ionization degree increases by including IPD; while (ii) the averaged ionization degree is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures and shows good agreements with that generated from Saha-Boltzmann model and/or FLYCHK code.

  13. Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Wu, D.; He, X. T.; Yu, W.; Fritzsche, S.

    2017-02-01

    A physical model based on a Monte Carlo approach is proposed to calculate the ionization dynamics of hot-solid-density plasmas within particle-in-cell (PIC) simulations, and where the impact (collision) ionization (CI), electron-ion recombination (RE), and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal relaxation of ionization dynamics can also be simulated by the proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite different compositions. The proposed model is implemented into a PIC code, with (final) ionization equilibriums sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model and model without IPD or RE are performed. Our results indicate that for bulk aluminium at temperature of 1 to 1000 eV, (i) the averaged ionization degree increases by including IPD; while (ii) the averaged ionization degree is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures and shows good agreements with that generated from Saha-Boltzmann model and/or FLYCHK code.

  14. Ionization in nearby interstellar gas

    NASA Technical Reports Server (NTRS)

    Frisch, P. C.; Welty, D. E.; York, D. G.; Fowler, J. R.

    1990-01-01

    Due to dielectric recombination, neutral magnesium represents an important tracer for the warm low-density gas around the solar system. New Mg I 2852 absorption-line data from IUE are presented, including detections in a few stars within 40 pc of the sun. The absence of detectable Mg I in Alpha CMa and other stars sets limits on the combined size and electron density of the interstellar cloud which gives rise to the local interstellar wind. For a cloud radius greater than 1 pc and density of 0.1/cu cm, the local cloud has a low fractional ionization, n(e)/n(tot) less than 0.05, if magnesium is undepleted, equilibrium conditions prevail, the cloud temperature is 11,750 K, and 80 percent of the magnesium in the sightline is Mg II.

  15. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. V. [Ne ii], MULTIPLE CLUSTERS, HIGH EFFICIENCY STAR FORMATION, AND BLUE FLOWS IN HE 2–10

    SciTech Connect

    Beck, Sara; Turner, Jean; Lacy, John; Greathouse, Thomas

    2015-11-20

    We measured the 12.8 μm [Ne ii] line in the dwarf starburst galaxy He 2–10 with the high-resolution spectrometer TEXES on the NASA IRTF. The data cube has a diffraction-limited spatial resolution of ∼1″ and a total velocity resolution, including thermal broadening, of ∼5 km s{sup −1}. This makes it possible to compare the kinematics of individual star-forming clumps and molecular clouds in the three dimensions of space and velocity, and allows us to determine star formation efficiencies. The kinematics of the ionized gas confirm that the starburst contains multiple dense clusters. From the M/R of the clusters and the ≃30%–40% star formation efficiencies, the clusters are likely to be bound and long lived, like globulars. Non-gravitational features in the line profiles show how the ionized gas flows through the ambient molecular material, as well as a narrow velocity feature, which we identify with the interface of the H ii region and a cold dense clump. These data offer an unprecedented view of the interaction of embedded H ii regions with their environment.

  16. Base Catalytic Approach: A Promising Technique for the Activation of Biochar for Equilibrium Sorption Studies of Copper, Cu(II) Ions in Single Solute System

    PubMed Central

    Hamid, Sharifah Bee Abdul; Chowdhury, Zaira Zaman; Zain, Sharifuddin Mohammad

    2014-01-01

    This study examines the feasibility of catalytically pretreated biochar derived from the dried exocarp or fruit peel of mangostene with Group I alkali metal hydroxide (KOH). The pretreated char was activated in the presence of carbon dioxide gas flow at high temperature to upgrade its physiochemical properties for the removal of copper, Cu(II) cations in single solute system. The effect of three independent variables, including temperature, agitation time and concentration, on sorption performance were carried out. Reaction kinetics parameters were determined by using linear regression analysis of the pseudo first, pseudo second, Elovich and intra-particle diffusion models. The regression co-efficient, R2 values were best for the pseudo second order kinetic model for all the concentration ranges under investigation. This implied that Cu(II) cations were adsorbed mainly by chemical interactions with the surface active sites of the activated biochar. Langmuir, Freundlich and Temkin isotherm models were used to interpret the equilibrium data at different temperature. Thermodynamic studies revealed that the sorption process was spontaneous and endothermic. The surface area of the activated sample was 367.10 m2/g, whereas before base activation, it was only 1.22 m2/g. The results elucidated that the base pretreatment was efficient enough to yield porous carbon with an enlarged surface area, which can successfully eliminate Cu(II) cations from waste water. PMID:28788595

  17. Uncovering multiple Wolf-Rayet star clusters and the ionized ISM in Mrk 178: the closest metal-poor Wolf-Rayet H II galaxy

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Pérez-Montero, E.; Vílchez, J. M.; Brinchmann, J.; Kunth, D.; García-Benito, R.; Crowther, P. A.; Hernández-Fernández, J.; Durret, F.; Contini, T.; Fernández-Martín, A.; James, B. L.

    2013-07-01

    New integral field spectroscopy (IFS) has been obtained for the nearby metal-poor Wolf-Rayet (WR) galaxy Mrk 178 to examine the spatial correlation between its WR stars and the neighbouring ionized interstellar medium (ISM). The strength of the broad WR features and its low metallicity make Mrk 178 an intriguing object. We have detected the blue and red WR bumps in different locations across the field of view (˜300 pc × 230 pc) in Mrk 178. The study of the WR content has been extended, for the first time, beyond its brightest star-forming knot uncovering new WR star clusters. Using Large/Small Magellanic Cloud-template WR stars, we empirically estimate a minimum of ˜20 WR stars within the region sampled. Maps of the spatial distribution of the emission lines and of the physical-chemical properties of the ionized ISM have been created and analysed. Here, we refine the statistical methodology by Pérez-Montero et al. (2011) to probe the presence of variations in the ISM properties. An error-weighted mean of 12+log(O/H) = 7.72 ± 0.01 is taken as the representative oxygen abundance for Mrk 178. A localized N and He enrichment, spatially correlated with WR stars, is suggested by this analysis. Nebular He II λ4686 emission is shown to be spatially extended reaching well beyond the location of the WR stars. This spatial offset between WRs and He II emission can be explained based on the mechanical energy input into the ISM by the WR star winds, and does not rule out WR stars as the He II ionization source. We study systematic aperture effects on the detection and measurement of the WR features, using Sloan Digital Sky Survey spectra combined with the power of IFS. In this regard, the importance of targeting low metallicity nearby systems is discussed.

  18. Synthesis, characterization, biological activity and equilibrium studies of metal(II) ion complexes with tridentate hydrazone ligand derived from hydralazine

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Shoukry, Mohamed M.; Abd-Elgawad, Mohamed M. A.

    2012-12-01

    In the present study, a new hydrazone ligand (2-((2-phthalazin-1-yl)hydrazono)methyl)phenol) prepared by condensation of hydralazine (1-Hydralazinophthalazine) with salicylaldehyde (SAH). The synthesized SAH-hydrazone and its metal complexes have been characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:1 [M:L] ratio, where M represents Ni(II), Co(II) and Cu(II) ions, while L represents the deprotonated hydrazone ligand. IR spectra show that SAH is coordinated to the metal ions in a tridentate manner through phthalazine-N, azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria and fungi. Proton-ligand association constants of (SAH) and the stepwise stability constants of its metal complexes are determined potentiometrically in 0.1 M NaNO3 at different temperatures and the corresponding thermodynamic parameters were derived and discussed. The order of -ΔG° and -ΔH° were found to obey Mn2+ < Co2+ < Ni2+ < Cu2+, in accordance with the Irving-Williams order. The complexes were stabilized by enthalpy changes and the results suggest that the complexation is an enthalpy-driven process. The concentration distribution diagrams of the complexes are evaluated.

  19. Modulation of the metarhodopsin I/metarhodopsin II equilibrium of bovine rhodopsin by ionic strength--evidence for a surface-charge effect.

    PubMed

    Delange, F; Merkx, M; Bovee-Geurts, P H; Pistorius, A M; Degrip, W J

    1997-01-15

    The effects of ionic strength on formation and decay of metarhodopsin II (MII), the active photointermediate of bovine rhodopsin, were studied in the native membrane environment by means of ultraviolet/ visible and Fourier-transform infrared (FTIR) spectroscopy. By increasing the concentration of KCl in the range from hypotonic to 4 M, the apparent pKa of the metarhodopsin I(MI)/MII equilibrium is shifted by approximately pH three, in favor of the MII intermediate. In addition, the apparent rate of MII formation is enhanced by an increase in ionic strength (about twofold in the presence of 2 M KCl). MIII decay is independent of the salt concentration. Attenuated-total-reflectance/FTIR data show that the high-salt conditions have no effect on the rigidity of the membrane matrix and do not induce structural changes in the intermediates themselves. Different salts were tested for their ability to shift the MI/MII equilibrium; however, no clear ion dependence was observed. We interpret these results as an indication for direct involvement of the cytosolic surface charge in the regulation of the photochemical activity of bovine rhodopsin.

  20. Multi-fluid Approach to High-frequency Waves in Plasmas. II. Small-amplitude Regime in Partially Ionized Media

    NASA Astrophysics Data System (ADS)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume

    2017-03-01

    The presence of neutral species in a plasma has been shown to greatly affect the properties of magnetohydrodynamic waves. For instance, the interaction between ions and neutrals through momentum transfer collisions causes the damping of Alfvén waves and alters their oscillation frequency and phase speed. When the collision frequencies are larger than the frequency of the waves, single-fluid magnetohydrodynamic approximations can accurately describe the effects of partial ionization, since there is a strong coupling between the various species. However, at higher frequencies, the single-fluid models are not applicable and more complex approaches are required. Here, we use a five-fluid model with three ionized and two neutral components, which takes into consideration Hall’s current and Ohm’s diffusion in addition to the friction due to collisions between different species. We apply our model to plasmas composed of hydrogen and helium, and allow the ionization degree to be arbitrary. By analyzing the corresponding dispersion relation and numerical simulations, we study the properties of small-amplitude perturbations. We discuss the effect of momentum transfer collisions on the ion-cyclotron resonances and compare the importance of magnetic resistivity, and ion–neutral and ion–ion collisions on the wave damping at various frequency ranges. Applications to partially ionized plasmas of the solar atmosphere are performed.

  1. Improved log(gf) Values Of Selected Lines In Mn I And Mn II For Studies Of Non-equilibrium Effects In Stellar Photospheres

    NASA Astrophysics Data System (ADS)

    Den Hartog, Elizabeth; Lawler, J. E.; Sobeck, J.; Sneden, C.; Cowan, J. J.; Asplund, M.

    2010-01-01

    The work presents transition probabilities with very low uncertainties for a selected set of multiplets of Mn I and Mn II. Multiplets are chosen which are accessible to ground-based observation, are relatively unblended and unsaturated in stellar spectra and which are amenable to accurate branching fraction determination. These lab measurements provide a foundation for studies of non-LTE and 3-dimensional effects in stellar photospheres. We report on new radiative lifetime measurements for 22 levels of Mn I from the e8D, z6P, z6D, z4F, e8S and e6S multiplets and 3 levels of Mn II from the z5P multiplet using time-resolved laser-induced fluorescence on a slow atomic beam. New branching fractions for transitions from these levels, measured using a Fourier-transform spectrometer, are also reported. When combined, these measurements yield transition probabilities for 47 transitions of Mn I and 12 transitions of Mn II. Comparisons are made to data from the literature and to simple Russell-Saunders or LS theory. Final recommended values, which are weighted averages of all available modern measurements and in some cases LS theory, are given for the transition probabilities. These recommended log(gf) values are accurate to +/- 0.02 dex with high ( 2 sigma) confidence. The companion paper applies these new lab results to studies of departures from both LTE in Mn I and Saha equilibrium between Mn I and Mn II on a variety of stellar photospheres. This research is supported in part by NASA Grant NNX08AQ09G and NSF Grant AST-0907732.

  2. Partition Equilibrium

    NASA Astrophysics Data System (ADS)

    Feldman, Michal; Tennenholtz, Moshe

    We introduce partition equilibrium and study its existence in resource selection games (RSG). In partition equilibrium the agents are partitioned into coalitions, and only deviations by the prescribed coalitions are considered. This is in difference to the classical concept of strong equilibrium according to which any subset of the agents may deviate. In resource selection games, each agent selects a resource from a set of resources, and its payoff is an increasing (or non-decreasing) function of the number of agents selecting its resource. While it has been shown that strong equilibrium exists in resource selection games, these games do not possess super-strong equilibrium, in which a fruitful deviation benefits at least one deviator without hurting any other deviator, even in the case of two identical resources with increasing cost functions. Similarly, strong equilibrium does not exist for that restricted two identical resources setting when the game is played repeatedly. We prove that for any given partition there exists a super-strong equilibrium for resource selection games of identical resources with increasing cost functions; we also show similar existence results for a variety of other classes of resource selection games. For the case of repeated games we identify partitions that guarantee the existence of strong equilibrium. Together, our work introduces a natural concept, which turns out to lead to positive and applicable results in one of the basic domains studied in the literature.

  3. Rapid assessment of human amylin aggregation and its inhibition by copper(II) ions by laser ablation electrospray ionization mass spectrometry with ion mobility separation

    SciTech Connect

    Li, Hang; Ha, Emmeline; Donaldson, Robert P.; Jeremic, Aleksandar M.; Vertes, Akos

    2015-09-09

    Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreas that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. In this paper, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin–copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the —HSSNN– residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin–copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential

  4. Rapid assessment of human amylin aggregation and its inhibition by copper(II) ions by laser ablation electrospray ionization mass spectrometry with ion mobility separation

    DOE PAGES

    Li, Hang; Ha, Emmeline; Donaldson, Robert P.; ...

    2015-09-09

    Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreasmore » that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. In this paper, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin–copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the —HSSNN– residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin–copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of

  5. Rapid assessment of human amylin aggregation and its inhibition by copper(II) ions by laser ablation electrospray ionization mass spectrometry with ion mobility separation.

    PubMed

    Li, Hang; Ha, Emmeline; Donaldson, Robert P; Jeremic, Aleksandar M; Vertes, Akos

    2015-10-06

    Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreas that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. Here, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin-copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the -HSSNN- residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin-copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential inhibitors of amylin

  6. Refining thermodynamic constants for mercury(II)-sulfides in equilibrium with metacinnabar at sub-micromolar aqueous sulfide concentrations.

    PubMed

    Drott, A; Björn, E; Bouchet, S; Skyllberg, U

    2013-05-07

    An important issue in mercury (Hg) biogeochemistry is to explore the influence of aqueous Hg(II) forms on bacterial uptake, and subsequent methyl mercury formation, under iron(III) and sulfate reducing conditions. The success of this is dependent on relevant information on the thermodynamic stability of Hg-sulfides. In the present study, we determined the solubility of a commercially available HgS(s) phase, which was shown by X-ray diffraction to be a mixture of 83% metacinnabar and 17% cinnabar. At aqueous sulfide concentrations between 0.060 and 84 μM, well below levels in previous studies, we report a solubility product (log Ksp ± SE) of -36.8 ± 0.1 (HgS(s) + H(+) = Hg(2+) + HS(-), I = 0, T = 25 °C, pH 6-10, n = 20) for metacinnabar. This value is 0.7 log units higher than previous estimates. Complementing our data with data from Paquette and Helz (1997), we took advantage of a large data set (n = 65) covering a wide range of aqueous sulfide (0.06 μM-140 mM) and pH (1-11). On the basis of this, we report refined formation constants (±SE) for the three aqueous Hg(II)-sulfide species proposed by Schwarzenbach and Widmer (1963): Hg(2+) + 2HS(-) = Hg(SH)2(0); log K = 39.1 ± 0.1, Hg(2+) + 2HS(-) = HgS2H(-) + H(+); log K = 32.5 ± 0.1, Hg(2+) + 2HS(-) = HgS2(2-) + 2H(+); log K = 23.2 ± 0.1. Our refined log K values differ from previous estimates by 0.2-0.6 log units. Furthermore, at the low sulfide concentrations in our study we could rule out the value of -10.0 for the reaction HgS(s) + H2O = HgOHSH(aq) as reported by Dyrssén and Wedborg (1991). By establishing a solubility product for the most environmentally relevant HgS(s) phase, metacinnabar, and extending the range of aqueous sulfide concentrations to sub-micromolar levels, relevant for soils, sediments, and waters, this study decreases the uncertainty in stability constants for Hg-sulfides, thereby improving the basis for understanding the bioavailability and mobility of Hg(II) in the environment.

  7. A quantitative description of equilibrium and homeostatic thickness regulation in the in vivo cornea. II. Variations from the normal state.

    PubMed

    Friedman, M H

    1972-06-01

    The description of corneal mechanics and transport developed in part I and used there to describe normal corneal behavior is here applied to corneas whose properties or boundary conditions are abnormal. The predicted effects of changing intraocular pressure, aqueous concentration, and tear tonicity are examined, and these compare favorably with available experimental data. The periodic variation in tear tonicity which accompanies the sleep-wake cycle prevents the cornea from achieving a true steady state, but a time-average steady state, about which corneal behavior oscillates, can be defined. The in vivo effects of endothelial dystrophy and epithelial removal are explained, and it is suggested that the epithelial sodium pump may act homeostatically to maintain corneal thickness in the face of ambient temperature variations. Part II concludes with a discussion, from the standpoint of the present theory, of the role of metabolically coupled water transport in the maintenance of the normal corneal thickness.

  8. Effect of electronic excitation on high-temperature flows of ionized nitrogen and oxygen mixtures behind strong shock waves

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2016-11-01

    Strongly non-equilibrium flows of reacting five-component ionized mixtures of nitrogen (N2/N2+/N /N+/e-) and oxygen (O2/O2+/O /O+/e-) behind the plane shock wave are studied taking into account electronic degrees of freedom of both neutral and ionized species. The kinetic scheme includes non-equilibrium reactions of ionization, dissociation, recombination and charge-transfer. Two test cases corresponding to the spacecraft re-entry (Hermes and Fire II experiments) are considered; fluid-dynamic variables, transport coefficients and heat flux are calculated, and different contribution to the heat flux are analyzed. The effect of electronic excitation on the heat transfer is governed by the competition of diffusion and heat conduction; it becomes weak if diffusive processes prevail. An important role of thermal diffusion in ionized flows is emphasized. The influence of dissociation rates on the heat flux is assessed.

  9. A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. II. CORRELATIONS AND LOCAL THERMAL EQUILIBRIUM MODELS

    SciTech Connect

    Salyk, C.; Pontoppidan, K. M.; Blake, G. A.; Najita, J. R.; Carr, J. S.

    2011-04-20

    We present an analysis of Spitzer Infrared Spectrograph observations of H{sub 2}O, OH, HCN, C{sub 2}H{sub 2}, and CO{sub 2} emission, and Keck-NIRSPEC observations of CO emission, from a diverse sample of T Tauri and Herbig Ae/Be circumstellar disks. We find that detections and strengths of most mid-IR molecular emission features are correlated with each other, suggesting a common origin and similar excitation conditions for this mid-infrared line forest. Aside from the remarkable differences in molecular line strengths between T Tauri, Herbig Ae/Be, and transitional disks discussed in Pontoppidan et al., we note that the line detection efficiency is anti-correlated with the 13/30 {mu}m spectral slope, which is a measure of the degree of grain settling in the disk atmosphere. We also note a correlation between detection efficiency and H{alpha} equivalent width, and tentatively with accretion rate, suggesting that accretional heating contributes to line excitation. If detected, H{sub 2}O line fluxes are correlated with the mid-IR continuum flux, and other co-varying system parameters, such as L{sub *}. However, significant sample variation, especially in molecular line ratios, remains, and its origin has yet to be explained. Local thermal equilibrium (LTE) models of the H{sub 2}O emission show that line strength is primarily related to the best-fit emitting area, and this accounts for most source-to-source variation in H{sub 2}O emitted flux. Best-fit temperatures and column densities cover only a small range of parameter space, near {approx}10{sup 18} cm{sup -2} and 450 K for all sources, suggesting a high abundance of H{sub 2}O in many planet-forming regions. Other molecules have a range of excitation temperatures from {approx}500to1500 K, also consistent with an origin in planet-forming regions. We find molecular ratios relative to water of {approx}10{sup -3} for all molecules, with the exception of CO, for which n(CO)/n(H{sub 2}O) {approx} 1. However, LTE

  10. Removal of cadmium(II) ions from aqueous solution using Ni (15 wt.%)-doped α-Fe2O3 nanocrystals: equilibrium, thermodynamic, and kinetic studies.

    PubMed

    OuldM'hamed, Mohamed; Khezami, L; Alshammari, Abdulrahman G; Ould-Mame, S M; Ghiloufi, I; Lemine, O M

    2015-01-01

    The present publication investigates the performance of nanocrystalline Ni (15 wt.%)-doped α-Fe2O3 as an effective nanomaterial for the removal of Cd(II) ions from aqueous solutions. The nanocrystalline Ni-doped α-Fe2O3 powders were prepared by mechanical alloying, and characterized by X-ray diffraction and a vibrating sample magnetometer. Batch-mode experiments were realized to determine the adsorption equilibrium, kinetics, and thermodynamic parameters of toxic heavy metal ions by Ni (15 wt.%)-doped α-Fe2O3. The adsorption isotherms data were found to be in good agreement with the Langmuir model. The adsorption capacity of Cd(II) ion reached a maximum value of about 90.91 mg g(-1) at 328 K and pH 7. The adsorption process kinetics was found to comply with pseudo-second-order rate law. Thermodynamic parameters related to the adsorption reaction, free energy change, enthalpy change and entropy change, were evaluated. The found values of free energy and enthalpy revealed a spontaneous endothermic adsorption-process. Moreover, the positive entropy suggests an increase of randomness during the process of heavy metal removal at the adsorbent-solution interface.

  11. Equilibrium properties of superconducting niobium at high magnetic fields: A possible existence of a filamentary state in type-II superconductors

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V.; Valente-Feliciano, A.-M.; Curran, P. J.; Suter, A.; Liu, A. H.; Richter, G.; Morenzoni, E.; Bending, S. J.; Van Haesendonck, C.

    2017-05-01

    The standard interpretation of the phase diagram of type-II superconductors was developed in the 1960s and has since been considered a well-established part of classical superconductivity. However, upon closer examination a number of fundamental issues arises that leads one to question this standard picture. To address these issues we studied equilibrium properties of niobium samples near and above the upper critical field Hc 2 in parallel and perpendicular magnetic fields. The samples investigated were very high quality films and single-crystal disks with the Ginzburg-Landau parameters 0.8 and 1.3, respectively. A range of complementary measurements has been performed, which include dc magnetometry, electrical transport, muon spin rotation spectroscopy, and scanning Hall-probe microscopy. Contrary to the standard scenario, we observed that a superconducting phase is present in the sample bulk above Hc 2 and the field Hc 3 is the same in both parallel and perpendicular fields. Our findings suggest that above Hc 2 the superconducting phase forms filaments parallel to the field regardless of the field orientation. Near Hc 2 the filaments preserve the hexagonal structure of the preceding vortex lattice of the mixed state, and the filament density continuously falls to zero at Hc 3. Our paper has important implications for the correct interpretation of the properties of type-II superconductors and can be essential for practical applications of these materials.

  12. Equilibrium properties of superconducting niobium at high magnetic fields: A possible existence of a filamentary state in type-II superconductors

    DOE PAGES

    Kozhevnikov, V.; Valente-Feliciano, A. -M.; Curran, P. J.; ...

    2017-05-01

    The standard interpretation of the phase diagram of type-II superconductors was developed in the 1960s and has since been considered a well-established part of classical superconductivity. However, upon closer examination a number of fundamental issues arises that leads one to question this standard picture. To address these issues we studied equilibrium properties of niobium samples near and above the upper critical field Hc2 in parallel and perpendicular magnetic fields. The samples investigated were very high quality films and single-crystal disks with the Ginzburg-Landau parameters 0.8 and 1.3, respectively. A range of complementary measurements has been performed, which include dc magnetometry,more » electrical transport, muon spin rotation spectroscopy, and scanning Hall-probe microscopy. Contrary to the standard scenario, we observed that a superconducting phase is present in the sample bulk above Hc2 and the field Hc3 is the same in both parallel and perpendicular fields. Our findings suggest that above Hc2 the superconducting phase forms filaments parallel to the field regardless of the field orientation. Near Hc2 the filaments preserve the hexagonal structure of the preceding vortex lattice of the mixed state, and the filament density continuously falls to zero at Hc3. Our paper has important implications for the correct interpretation of the properties of type-II superconductors and can be essential for practical applications of these materials.« less

  13. Synthesis, characterization and equilibrium studies of some potential antimicrobial and antitumor complexes of Cu(II), Ni(II), Zn(II) and Cd(II) ions involving 2-aminomethylbenzimidazole and glycine

    NASA Astrophysics Data System (ADS)

    Aljahdali, M.

    2013-08-01

    The ternary complexes of Cu(II), Zn(II), Ni(II) and Cd(II) with 2-aminomethylbenzimidazole (AMBI) and glycine as a representative example of amino acids have been isolated and characterized by elemental analyses, IR, ESR, UV-vis, magnetic moment, molar conductance and 1H NMR spectra. AMBI behaves as neutral bidentate ligands with coordination through imidazole and amino group nitrogens while the glycine amino acid behaves as a monodenate anion with coordination involving the amino group and carboxylate oxygen after deprotonation. The magnetic and spectral data indicates a square planar geometry for both Cu2+ and Ni2+ complexes and a tetrahedral geometry for both Zn2+ and Cd2+ complexes. The isolated chelates have been screened for their antifungal and antibacterial activities using the disc diffusion method. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. The stability constants of ternary M-AMBI-Gly complexes were determined potentiometrically in aqueous solution at I = 0.1 mol dm-3 NaCl.

  14. Indirect dark matter signatures in the cosmic dark ages. II. Ionization, heating, and photon production from arbitrary energy injections

    NASA Astrophysics Data System (ADS)

    Slatyer, Tracy R.

    2016-01-01

    Any injection of electromagnetically interacting particles during the cosmic dark ages will lead to increased ionization, heating, production of Lyman-α photons and distortions to the energy spectrum of the cosmic microwave background, with potentially observable consequences. In this paper we describe numerical results for the low-energy electrons and photons produced by the cooling of particles injected at energies from keV to multi-TeV scales, at arbitrary injection redshifts (but focusing on the post-recombination epoch). We use these data, combined with existing calculations modeling the cooling of these low-energy particles, to estimate the resulting contributions to ionization, excitation and heating of the gas, and production of low-energy photons below the threshold for excitation and ionization. We compute corrected deposition-efficiency curves for annihilating dark matter, and demonstrate how to compute equivalent curves for arbitrary energy-injection histories. These calculations provide the necessary inputs for the limits on dark matter annihilation presented in the accompanying paper I, but also have potential applications in the context of dark matter decay or deexcitation, decay of other metastable species, or similar energy injections from new physics. We make our full results publicly available at http://nebel.rc.fas.harvard.edu/epsilon, to facilitate further independent studies. In particular, we provide the full low-energy electron and photon spectra, to allow matching onto more detailed codes that describe the cooling of such particles at low energies.

  15. Influence of Physiological Gastrointestinal Surfactant Ratio on the Equilibrium Solubility of BCS Class II Drugs Investigated Using a Four Component Mixture Design.

    PubMed

    Zhou, Zhou; Dunn, Claire; Khadra, Ibrahim; Wilson, Clive G; Halbert, Gavin W

    2017-08-22

    The absorption of poorly water-soluble drugs is influenced by the luminal gastrointestinal fluid content and composition, which control solubility. Simulated intestinal fluids have been introduced into dissolution testing including endogenous amphiphiles and digested lipids at physiological levels; however, in vivo individual variation exists in the concentrations of these components, which will alter drug absorption through an effect on solubility. The use of a factorial design of experiment and varying media by introducing different levels of bile, lecithin, and digested lipids has been previously reported, but here we investigate the solubility variation of poorly soluble drugs through more complex biorelevant amphiphile interactions. A four-component mixture design was conducted to understand the solubilization capacity and interactions of bile salt, lecithin, oleate, and monoglyceride with a constant total concentration (11.7 mM) but varying molar ratios. The equilibrium solubility of seven low solubility acidic (zafirlukast), basic (aprepitant, carvedilol), and neutral (fenofibrate, felodipine, griseofulvin, and spironolactone) drugs was investigated. Solubility results are comparable with literature values and also our own previously published design of experiment studies. Results indicate that solubilization is not a sum accumulation of individual amphiphile concentrations, but a drug specific effect through interactions of mixed amphiphile compositions with the drug. This is probably due to a combined interaction of drug characteristics; for example, lipophilicity, molecular shape, and ionization with amphiphile components, which can generate specific drug-micelle affinities. The proportion of each component can have a remarkable influence on solubility with, in some cases, the highest and lowest points close to each other. A single-point solubility measurement in a fixed composition simulated media or human intestinal fluid sample will therefore provide a

  16. Chemical Equilibrium Models for the S3 State of the Oxygen-Evolving Complex of Photosystem II.

    PubMed

    Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi

    2016-01-19

    We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed.

  17. Copper(II) complexes of quinoline polyazamacrocyclic scorpiand-type ligands: X-ray, equilibrium and kinetic studies.

    PubMed

    Castillo, Carmen E; Angeles Máñez, M; Basallote, Manuel G; Paz Clares, M; Blasco, Salvador; García-España, Enrique

    2012-05-14

    The formation of Cu(II) complexes with two isomeric quinoline-containing scorpiand-type ligands has been studied. The ligands have a tetraazapyridinophane core appended with an ethylamino tail including 2-quinoline (L1) or 4-quinoline (L2) functionalities. Potentiometric studies indicate the formation of stable CuL(2+) species with both ligands, the L1 complex being 3-4 log units more stable than the L2 complex. The crystal structure of [Cu(L1)](ClO(4))(2)·H(2)O shows that the coordination geometry around the Cu(2+) ions is distorted octahedral with significant axial elongation; the four Cu-N distances in the equatorial plane vary from 1.976 to 2.183 Å, while the axial distances are of 2.276 and 2.309 Å. The lower stability of the CuL2(2+) complex and its capability of forming protonated and hydroxo complexes suggest a penta-dentate coordination of the ligand, in agreement with the type of substitution at the quinoline ring. Kinetic studies on complex formation can be interpreted by considering that initial coordination of L1 and L2 takes place through the nitrogen atom in the quinoline ring. This is followed by coordination of the remaining nitrogen atoms, in a process that is faster in the L1 complex probably because substitution at the quinoline ring facilitates the reorganization. Kinetic studies on complex decomposition provide clear evidence on the occurrence of the molecular motion typical of scorpiands in the case of the L2 complex, for which decomposition starts with a very fast process (sub-millisecond timescale) that involves a shift in the absorption band from 643 to 690 nm.

  18. Single photon simultaneous K-shell ionization and K-shell excitation. II. Specificities of hollow nitrogen molecular ions

    SciTech Connect

    Carniato, S. Selles, P.; Andric, L.; Palaudoux, J.; Penent, F.; Lablanquie, P.; Žitnik, M.; Bučar, K.; Nakano, M.; Hikosaka, Y.; Ito, K.

    2015-01-07

    The formalism developed in the companion Paper I is used here for the interpretation of spectra obtained recently on the nitrogen molecule. Double core-hole ionization K{sup −2} and core ionization-core excitation K{sup −2}V processes have been observed by coincidence electron spectroscopy after ionization by synchrotron radiation at different photon energies. Theoretical and experimental cross sections reported on an absolute scale are in satisfactory agreement. The evolution with photon energy of the relative contribution of shake-up and conjugate shake-up processes is discussed. The first main resonance in the K{sup −2}V spectrum is assigned to a K{sup −2}π{sup ∗} state mainly populated by the 1s→ lowest unoccupied molecular orbital dipolar excitation, as it is in the K{sup −1}V NEXAFS (Near-Edge X-ray Absorption Fine Structure) signals. Closer to the K{sup −2} threshold Rydberg resonances have been also identified, and among them a K{sup −2}σ{sup ∗} resonance characterized by a large amount of 2s/2p hybridization, and double K{sup −2}(2σ{sup ∗}/1π/3σ){sup −1}1π{sup ∗2} shake-up states. These resonances correspond in NEXAFS spectra to, respectively, the well-known σ{sup ∗} shape resonance and double excitation K{sup −1}(2σ{sup ∗}/1π/3σ){sup −1}1π{sup ∗2} resonances, all being positioned above the threshold.

  19. 3D radiative transfer simulations of Eta Carinae's inner colliding winds - II. Ionization structure of helium at periastron

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Paardekooper, J.-P.

    2015-06-01

    Spectral observations of the massive colliding wind binary Eta Carinae show phase-dependent variations, in intensity and velocity, of numerous helium emission and absorption lines throughout the entire 5.54-yr orbit. Approaching periastron, the 3D structure of the wind-wind interaction region (WWIR) gets highly distorted due to the eccentric (e ˜ 0.9) binary orbit. The secondary star (ηB) at these phases is located deep within the primary's dense wind photosphere. The combination of these effects is thought to be the cause of the particularly interesting features observed in the helium lines at periastron. We perform 3D radiative transfer simulations of η Car's interacting winds at periastron. Using the SIMPLEX radiative transfer algorithm, we post-process output from 3D smoothed particle hydrodynamic simulations of the inner 150 au of the η Car system for two different primary star mass-loss rates (dot{M}_{η A}). Using previous results from simulations at apastron as a guide for the initial conditions, we compute 3D helium ionization maps. We find that, for higher dot{M}_{η A}, ηB He0+-ionizing photons are not able to penetrate into the pre-shock primary wind. He+ due to ηB is only present in a thin layer along the leading arm of the WWIR and in a small region close to the stars. Lowering dot{M}_{η A} allows ηB's ionizing photons to reach the expanding unshocked secondary wind on the apastron side of the system, and create a low fraction of He+ in the pre-shock primary wind. With apastron on our side of the system, our results are qualitatively consistent with the observed variations in strength and radial velocity of η Car's helium emission and absorption lines, which helps better constrain the regions where these lines arise.

  20. A Critical Compilation of Energy Levels, Spectral Lines, and Transition Probabilities of Singly Ionized Silver, Ag II.

    PubMed

    Kramida, Alexander

    2013-01-01

    All available experimental measurements of the spectrum of the Ag(+) ion are critically reviewed. Systematic shifts are removed from the measured wavelengths. The compiled list of critically evaluated wavelengths is used to derive a comprehensive list of energy levels with well-defined uncertainties. Eigenvector compositions and level designations are found in two alternate coupling schemes. Some of the older work is found to be incorrect. A revised value of the ionization energy, 173283(7) cm(-1), equivalent to 21.4844(8) eV, is derived from the new energy levels. A set of critically evaluated transition probabilities is given.

  1. A Critical Compilation of Energy Levels, Spectral Lines, and Transition Probabilities of Singly Ionized Silver, Ag II

    PubMed Central

    Kramida, Alexander

    2013-01-01

    All available experimental measurements of the spectrum of the Ag+ ion are critically reviewed. Systematic shifts are removed from the measured wavelengths. The compiled list of critically evaluated wavelengths is used to derive a comprehensive list of energy levels with well-defined uncertainties. Eigenvector compositions and level designations are found in two alternate coupling schemes. Some of the older work is found to be incorrect. A revised value of the ionization energy, 173283(7) cm−1, equivalent to 21.4844(8) eV, is derived from the new energy levels. A set of critically evaluated transition probabilities is given. PMID:26401429

  2. Picosecond spectroscopic studies of equilibrium structural fluctuations of native and partially unfolded states of Zinc II-substituted and metal-free cytochromes C

    NASA Astrophysics Data System (ADS)

    Tripathy, Jagnyaseni

    Picosecond time-resolved fluorescence spectroscopy was employed to characterize the equilibrium and non-equilibrium protein structural fluctuations in Zn II-substituted (ZnCytc) and metal-free (fbCytc) cytochromes c using dynamic fluorescence Stokes shift (FSS) and fluorescence anisotropy (FA) measurements. The intrinsic porphyrin chromophore is used as the probe for the structural fluctuations of the surrounding protein and solvent. The FSS experiments examine how the time scales detected from the dynamic solvation of a chromoprotein report changes in the character of motion. ZnCytc and fbCytc serve as limited, single-chromophore models for photosynthetic reaction center and light-harvesting proteins. The dynamic solvation of redox and light-harvesting chromophores in photosynthesis plays an important role in the quantum efficiency of electron transfer and energy transfer performed by these systems, respectively. The FSS response function of fbCytc in water is biexponential over the 100-ps--50-ns regime and the two time constants are 1.4 ns and 9.1 ns. ZnCytc under similar solution conditions shows a biexponential FSS response but with time constants of 0.2 ns and 1.5 ns. The two correlation times from the FSS response function correspond to motions of the hydrophobic core and the solvent-contact layer, respectively. Both FSS correlation times were lengthened and the solvation reorganization energy was reduced from 43 cm-1 to 33 cm-1 in the presence of 50% (v/v) glycerol. A Brownian diffusion model with thermally activated barrier crossings on the protein-folding energy landscape is used to interpret these results. The conclusion is that the mean-squared deviations of the fluctuations exhibited by fbCytc are perhaps a factor of ten larger than those in ZnCytc, which is consistent with the suggestion that fbCytc assumes a dynamic, partially unfolded structure with some of the characteristics of a molten globule. The nature of the motion associated with the

  3. Regular oscillatory behavior of aqueous solutions of CuII salts related to effects on equilibrium dynamics of ortho/para hydrogen spin isomers of water.

    PubMed

    Morré, D J; Orczyk, J; Hignite, H; Kim, C

    2008-02-01

    Cell surface and growth-related NADH oxidases with protein disulfide-thiol interchange activity, ECTO-NOX, exhibit copper-dependent, clock-related, temperature-independent and entrainable patterns of regular oscillations in the rate of oxidation of NAD(P)H as do aqueous solutions of copper salts. Because of time scale similarities, a basis for the oscillatory patterns in nuclear spin orientations of the hydrogen atoms of the copper-associated water was sought. Extended X-ray absorption fine structure (EXAFS) measurements at 9302 eV on pure water were periodic with a ca. 3.5 min peak to peak separation. Decomposition fits revealed 5 unequally spaced maxima similar to those observed previously for Cu(II)Cl(2) to generate a period length of about 18 min. With D(2)O, the period length was proportionately increased by 30% to 24 min. The redox potential of water and of D(2)O also oscillated with 18 and 24 min period lengths, respectively. Measurements in the middle infrared spectral region above a water sample surface revealed apparent oscillations in the two alternative orientations of the nuclear spins (ortho and para) of the hydrogen atoms of the water or D(2)O with 5 unequally spaced maxima and respective period lengths of 18 and 24 min. Thus, the time keeping oscillations of ECTO-NOX proteins appear to reflect the equilibrium dynamics of ortho-para hydrogen atom spin ratios of water where the presence of metal cations such as Cu(II) in solution determine period length.

  4. Observations of an ionization ridge containing an embedded O-B cluster in the G10.2-0.3 H II region of W31

    NASA Technical Reports Server (NTRS)

    Woodward, C. E.; Helfer, H. L.; Pipher, J. L.

    1984-01-01

    VLA radio maps at 5-GHz of the G10.2-0.3 H II region in the W31 complex reveal an extended ionization ridge of dimensions 5.7 x 2.9 sq pc at an assumed distance of 7 kpc. In the ridge, 21 dense clumps have been found with characteristic emission measures of about a million pc/cm to the 6th and electron densities greater than 1000/cu cm, suggesting embedded stars. From estimates of the number of Lyman continuum photos required to support the radio structure, spectral types in the ridge are found which range from B0.5 to O6. The observed radio structure cannot be explained by excitation from a single embedded source, or by expansion of shock-heated gas into the interstellar medium.

  5. Laser desorption ionization mass spectrometry in the study of natural and synthetic melanins. II--Serotonin melanins.

    PubMed

    Bertazzo, A; Biasiolo, M; Costa, C; Allegri, G; Elli, G; Seraglia, R; Traldi, P

    1994-07-01

    Various biosynthetic melanins obtained by enzymic oxidation of serotonin with polyphenol oxidase from Psalliota campestris mushroom or potato, and with tyrosinase from Sepia officinalis or from Sigma were studied by means of laser desorption ionization mass spectrometry. Various oligomeric clusters were evidenced, proving that the examined melanins are composed of sets of different oligomers, the production of which strongly depends on the enzyme reaction. While serotonin melanins obtained with polyphenol oxidase from potato showed wide species distribution with molecular weights ranging from 2008 to 13,000 Da, the same melanins obtained from mushroom showed oligomer distributions from 1505 to 9000 Da. Serotonin melanins prepared with tyrosinase from Sepia showed oligomers from 1636 to 18,000 Da. A dopa-melanin obtained with mushroom polyphenol oxidase showed oligomer species from 1709 to 17,874 Da. Comparison of molecular weight distributions of the various oligomer sets in serotonin melanins with those in tyrosine melanins revealed clear differences, which are investigated and discussed.

  6. Equilibrium properties of superconducting niobium at high magnetic fields: A possible existence of a filamentary state in type-II superconductors [Possible existence of a filamentary state in type-II superconductors

    DOE PAGES

    Kozhevnikov, V.; Valente-Feliciano, A. -M.; Curran, P. J.; ...

    2017-05-17

    The standard interpretation of the phase diagram of type-II superconductors was developed in the 1960s and has since been considered a well-established part of classical superconductivity. However, upon closer examination a number of fundamental issues arises that leads one to question this standard picture. To address these issues we studied equilibrium properties of niobium samples near and above the upper critical field Hc2 in parallel and perpendicular magnetic fields. The samples investigated were very high quality films and single-crystal disks with the Ginzburg-Landau parameters 0.8 and 1.3, respectively. A range of complementary measurements has been performed, which include dc magnetometry,more » electrical transport, muon spin rotation spectroscopy, and scanning Hall-probe microscopy. Contrary to the standard scenario, we observed that a superconducting phase is present in the sample bulk above Hc2 and the field Hc3 is the same in both parallel and perpendicular fields. Our findings suggest that above Hc2 the superconducting phase forms filaments parallel to the field regardless of the field orientation. Near Hc2 the filaments preserve the hexagonal structure of the preceding vortex lattice of the mixed state, and the filament density continuously falls to zero at Hc3. Finally, our paper has important implications for the correct interpretation of the properties of type-II superconductors and can be essential for practical applications of these materials.« less

  7. Properties of the ionized gas in HH 202 - II. Results from echelle spectrophotometry with Ultraviolet Visual Echelle Spectrograph

    NASA Astrophysics Data System (ADS)

    Mesa-Delgado, A.; Esteban, C.; García-Rojas, J.; Luridiana, V.; Bautista, M.; Rodríguez, M.; López-Martín, L.; Peimbert, M.

    2009-05-01

    We present results of deep echelle spectrophotometry of the brightest knot of the Herbig-Haro object HH 202 in the Orion Nebula - HH 202-S - using the Ultraviolet Visual Echelle Spectrograph in the spectral range from 3100 to 10400 Å. The high spectral resolution of the observations has permitted to separate the component associated with the ambient gas from that associated with the gas flow. We derive electron densities and temperatures from different diagnostics for both components, as well as the chemical abundances of several ions and elements from collisionally excited lines, including the first determinations of Ca+ and Cr+ abundances in the Orion Nebula. We also calculate the He+, C2+, O+ and O2+ abundances from recombination lines. The difference between the O2+ abundances determined from collisionally excited and recombination lines - the so-called abundance discrepancy factor - is 0.35 and 0.11 dex for the shock and nebular components, respectively. Assuming that the abundance discrepancy is produced by spatial variations in the electron temperature, we derive values of the temperature fluctuation parameter, t2, of 0.050 and 0.016 for the shock and nebular components, respectively. Interestingly, we obtain almost coincident t2 values for both components from the analysis of the intensity ratios of HeI lines. We find significant departures from case B predictions in the Balmer and Paschen flux ratios of lines of high principal quantum number n. We analyse the ionization structure of HH 202-S, finding enough evidence to conclude that the flow of HH 202-S has compressed the ambient gas inside the nebula trapping the ionization front. We measure a strong increase of the total abundances of nickel and iron in the shock component, the abundance pattern and the results of photoionization models for both components are consistent with the partial destruction of dust after the passage of the shock wave in HH 202-S. Based on observations collected at the European

  8. A Gel Probe Equilibrium Sampler for Measuring Arsenic Porewater Profiles And Sorption Gradients in Sediments: Ii. Field Application to Haiwee Reservoir Sediment

    SciTech Connect

    Campbell, K.M.; Root, R.; O'Day, P.A.; Hering, J.G.

    2009-05-12

    Arsenic (As) geochemistry and sorption behavior were measured in As- and iron (Fe)-rich sediments of Haiwee Reservoir by deploying undoped (clear) polyacrylamide gels and hydrous ferric oxide (HFO)-doped gels in a gel probe equilibrium sampler, which is a novel technique for directly measuring the effects of porewater composition on As adsorption to Fe oxides phases in situ. Arsenic is deposited at the sediment surface as As(V) and is reduced to As(III) in the upper layers of the sediment (0-8 cm), but the reduction of As(V) does not cause mobilization into the porewater. Dissolved As and Fe concentrations increased at depth in the sediment column driven by the reductive dissolution of amorphous Fe(III) oxyhydroxides and conversion to a mixed Fe(II, III) green rust-type phase. Adsorption of As and phosphorous (P) onto HFO-doped gels was inhibited at intermediate depths (10-20 cm), possibly due to dissolved organic or inorganic carbon, indicating that dissolved As concentrations were at least partially controlled by porewater composition rather than surface site availability. In sediments that had been recently exposed to air, the region of sorption inhibition was not observed, suggesting that prior exposure to air affected the extent of reductive dissolution, porewater chemistry, and As adsorption behavior. Arsenic adsorption onto the HFO-doped gels increased at depths >20 cm, and the extent of adsorption was most likely controlled by the competitive effects of dissolved phosphate. Sediment As adsorption capacity appeared to be controlled by changes in porewater composition and competitive effects at shallower depths, and by reductive dissolution and availability of sorption sites at greater burial depths.

  9. A gel probe equilibrium sampler for measuring arsenic porewater profiles and sorption gradients in sediments: II. Field application to Haiwee reservoir sediment

    USGS Publications Warehouse

    Campbell, K.M.; Root, R.; O'Day, P. A.; Hering, J.G.

    2008-01-01

    Arsenic (As) geochemistry and sorption behavior were measured in As- and iron (Fe)-rich sediments of Haiwee Reservoir by deploying undoped (clear) polyacrylamide gels and hydrous ferric oxide (HFO)-doped gels in a gel probe equilibrium sampler, which is a novel technique for directly measuring the effects of porewater composition on As adsorption to Fe oxides phases in situ. Arsenic is deposited at the sediment surface as As(V) and is reduced to As(III) in the upper layers of the sediment (0-8 cm), but the reduction of As(V) does not cause mobilization into the porewater. Dissolved As and Fe concentrations increased at depth in the sediment column driven by the reductive dissolution of amorphous Fe(III) oxyhydroxides and conversion to a mixed Fe(II, III) green rust-type phase. Adsorption of As and phosphorous (P) onto HFO-doped gels was inhibited at intermediate depths (10-20 cm), possibly due to dissolved organic or inorganic carbon, indicating that dissolved As concentrations were at least partially controlled by porewater composition rather than surface site availability. In sediments that had been recently exposed to air, the region of sorption inhibition was not observed, suggesting that prior exposure to air affected the extent of reductive dissolution, porewater chemistry, and As adsorption behavior. Arsenic adsorption onto the HFO-doped gels increased at depths >20 cm, and the extent of adsorption was most likely controlled by the competitive effects of dissolved phosphate. Sediment As adsorption capacity appeared to be controlled by changes in porewater composition and competitive effects at shallower depths, and by reductive dissolution and availability of sorption sites at greater burial depths. ?? 2008 American Chemical Society.

  10. Informational Equilibrium.

    DTIC Science & Technology

    1982-09-01

    that for variouis standard types of equilibria* they hold. In particular, if one uses the teaporary equilibrium framework one can use the standard ...T, the integral converges toward f’ia(da) f fU(b~dc)6(a,b,c)T( asdm ) A B C which is fR (da) f d(lib,c) U0 T (cab) A BxC Me converse Is obvious

  11. Updated Coronal Equilibrium Calculations

    NASA Astrophysics Data System (ADS)

    Bryans, Paul; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.; Mitthumsiri, W.; Savin, D. W.

    2006-06-01

    Reliably interpreting solar spectra requires accurate ionization balance calculations. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and are often highly suspect. This translates directly into the reliability of the collisional ionization equilibrium (CIE) calculations. We make use of state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He through to Zn. We also make use of state-of-the-art radiative recombination (RR) rate coefficient calculations for the bar e through Na-like ions of all elements from H to Zn. Here we present improved CIE calculations for temperatures from 1e4 to 1e9 K using our data and the recommended electron impact ionization data of Mazzotta et al. (1998, A&AS, 133, 403) for elements up through Ni and Mazzotta (private communication) for Cu and Zn. DR and RR data for ionization stages that have not been updated are also taken from these two additional sources. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. for all elements from H to Ni. The differences in peak fractional abundance are up to 60%. We also compare with the fractional ionic abundances for Mg, Si, S, Ar, Ca, Fe, and Ni derived from the modern DR calculations of Gu (2003a, ApJ, 590, 1131; 2004, ApJ, 153, 389) for the H-like through Na-like ions, and the RR calculations of Gu (2003b, ApJ, 589, 1085) for the bare through F-like ions. These results are in better agreement with our work, with differences in peak fractional abundance of less than 10%. This work was supported in part by the NASA Solar SR&T and LWS programs, theOffice of Naval Research, and PPARC.

  12. Ultra high performance liquid chromatography-ultraviolet-electrospray ionization-micrOTOF-Q II analysis of flavonoid fractions from Jatropha tanjorensis

    PubMed Central

    Purushothaman, Arun Kallur; Pemiah, Brindha

    2014-01-01

    Background: Jatropha tanjorensis (Euphorbiaceae) an exotic traditional plant unique to Thanjavur district of Southern India also commonly called as Catholic vegetable. It has been used traditionally in decoctions for treating various ailments and as a health tonic. Objective: The objective of the present work is to study a comprehensive characterization of methanolic extract fractions using ultra high performance liquid chromatography (UHPLC)+-electrospray ionization (ESI)-micrOTOF-Q II and correlate their bioactivities. Materials and Methods: Phytoconstituents from J. tanjorensis leaves were extracted with methanol (MeOH) followed by successive chromatography using linear gradient polar solvents system. All fractions obtained were evaluated for their chemical potential using micrOTOF-Q II techniques and identified key molecules were determined for their anticancer and anti-oxidant potential using in vitro methods. Results: Successive column chromatography of the MeOH residue yielded six fractions. Compounds such as such as C-glycosylflavones (mono-C-, di-C-), O, C-diglycosylflavones and aglycones were identified for the first time in this plant using UHPLC-ultraviolet-micrOTOF-Q II ESI and a correlation with their anticancer using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay on Ehrlich ascites cells (EAC) and antioxidant activities using 2,2-diphenyl-1-picrylhydrazyl and lipid peroxidation were studied; fraction D extract exhibited the strongest activity against cancer cell. Conclusions: LC-mass spectrometry has been successfully applied for a quick separation and identification of the major phytoconstituents. All fractions have shown potent antioxidative activity as compared to standard antioxidant 3,5-di-tert-butyl-4-hydroxytoluene. EAC cell-based cytotoxicity assay also revealed encouraging results. The antioxidant and anticancer activity determined in the present work can be attributed to the presence of flavonoids and flavone glycosides

  13. Temperature dependence of the crystal structure and g-values of trans-diaquabis(methoxyacetato)copper(II): evidence for a thermal equilibrium between complexes with tetragonally elongated and compressed geometries.

    PubMed

    Simmons, Charles J; Stratemeier, Horst; Hitchman, Michael A; Reinen, Dirk; Masters, Vanessa M; Riley, Mark J

    2011-06-06

    The crystal structures of trans-diaquabis(methoxyacetato)copper(II) and the isostructural nickel(II) complex have been determined over a wide temperature range. In conjunction with the reported behavior of the g-values, the structural data suggest that the copper(II) compound exhibits a thermal equilibrium between three structural forms, two having orthorhombically distorted, tetragonally elongated geometries but with the long and intermediate bonds to different atoms, and the third with a tetragonally compressed geometry. This is apparently the first reported example of a copper(II) complex undergoing an equilibrium between tetragonally elongated and compressed forms. The optical spectrum of single crystals of the copper(II) compound is used to obtain metal-ligand bonding parameters which yield the g-values of the compressed form of the complex and hence the proportions of the complex in each structural form at every temperature. When combined with estimates of the Jahn-Teller distortions of the different forms, the latter produce excellent agreement with the observed temperature dependence of the bond lengths. The behavior of an infrared combination band is consistent with such a thermal equilibrium, as is the temperature dependence of the thermal ellipsoid parameters and the XAFS. The potential surfaces of the different forms of the copper(II) complex have been calculated by a model based upon Jahn-Teller coupling. It is suggested that cooperative effects may cause the development of the population of tetragonally compressed complexes, and the crystal packing is consistent with this hypothesis, though the present model may oversimplify the diversity of structural forms present at high temperature. © 2011 American Chemical Society

  14. The Contribution of Field OB Stars to the Ionization of the Diffuse Ionized Gas in M33

    NASA Astrophysics Data System (ADS)

    Hoopes, Charles G.; Walterbos, René A. M.

    2000-10-01

    We present a study of the ionizing stars associated with the diffuse ionized gas (DIG) and H II regions in the nearby spiral galaxy M33. We compare our Schmidt Hα image to the far-ultraviolet (FUV, 1520 Å) image from the Ultraviolet Imaging Telescope (UIT). The Hα/FUV ratio is higher in H II regions than in the DIG, suggesting an older population of ionizing stars in the DIG. Assuming ionization equilibrium, we convert the Hα flux to the number of Lyman continuum photons NLyc. When compared to models of evolving stellar populations, the NLyc/FUV ratio in H II regions is consistent with a young burst, while the DIG ratio resembles an older burst population, or a steady state population built up by constant star formation, which is probably a more accurate description of the stellar population in the field. The UIT data is complemented with archival FUV and optical images of a small portion of the disk of M33 obtained with WFPC2 on board the Hubble Space Telescope (HST). These images overlap low- and mid-luminosity H II regions as well as DIG, so we can investigate the stellar population in these environments. Using the HST FUV and optical photometry, we assign spectral types to the stars observed in DIG and H II regions. The photometry indicates that ionizing stars are present in the DIG. We compare the predicted ionizing flux with the amount required to produce the observed Hα emission, and we find that field OB stars in the HST images can account for 40%+/-12% of the ionization of the DIG, while the stars in H II regions can provide 107%+/-26% of the Hα luminosity of the H II regions. Due to the limited coverage of the HST data, we cannot determine if stars outside the HST fields ionize some of the DIG located in the HST fields, nor can we determine if photons from stars inside the HST fields leak out of the area covered by the HST fields. We do not find any correlation between leakage of ionizing photons and Hα luminosity for the H II regions in our HST

  15. Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z~6 Quasars. II. A Sample of 19 Quasars

    NASA Astrophysics Data System (ADS)

    Fan, Xiaohui; Strauss, Michael A.; Becker, Robert H.; White, Richard L.; Gunn, James E.; Knapp, Gillian R.; Richards, Gordon T.; Schneider, Donald P.; Brinkmann, J.; Fukugita, Masataka

    2006-07-01

    We study the evolution of the ionization state of the intergalactic medium (IGM) at the end of the reionization epoch using moderate-resolution spectra of a sample of 19 quasars at 5.74II regions around luminous quasars. Using this large sample, we find that the evolution of the ionization state of the IGM accelerated at z>5.7: the GP optical depth evolution changes from τeffGP~(1+z)4.3 to (1+z)>~11, and the average length of dark gaps with τ>3.5 increases from <10 to >80 comoving Mpc. The dispersion of IGM properties along different lines of sight also increases rapidly, implying fluctuations by a factor of >~4 in the UV background at z>6, when the mean free path of UV photons is comparable to the correlation length of the star-forming galaxies that are thought to have caused reionization. The mean length of dark gaps shows the most dramatic increase at z~6, as well as the largest line-of-sight variations. We suggest using dark gap statistics as a powerful probe of the ionization state of the IGM at yet higher redshift. The sizes of H II regions around luminous quasars decrease rapidly toward higher redshift, suggesting that the neutral fraction of the IGM has increased by a factor of >~10 from z=5.7 to 6.4, consistent with the value derived from the GP optical depth. The mass-averaged neutral fraction is 1%-4% at z~6.2 based on the GP optical depth and H II region size measurements. The observations suggest that z~6 is the end of the overlapping stage of reionization and are inconsistent with a mostly neutral IGM at z~6, as indicated by the finite length of the dark absorption gaps. Based on observations obtained with the Sloan Digital Sky Survey at the W. M. Keck Observatory, which is

  16. From Ultracompact to Extended H II Regions

    NASA Astrophysics Data System (ADS)

    Garcia-Segura, Guillermo; Franco, Jose

    1996-09-01

    The dynamical evolution of H II regions and wind-driven bubbles in dense clouds is studied. In particular, we address two different issues: (1) the conditions under which ultracompact H II (UCHII) regions can reach pressure equilibrium with their surrounding medium (and thereby stall their expansion) and (2) the appearance of a powerful dynamic instability in expanding H II regions. At pressure equilibrium, the ionized regions become static, and as long as the ionization sources and the ambient gas densities remain about constant, the resulting UCHII regions are stable and long-lived. The equilibrium sizes and densities, Rs,eq ˜3 X 10-2F⅓48T⅔H II, 4P-⅔7 pc and ni,eq ˜4 × 104P7T-1H II, 4 cm-3 (where Fβ8 is the photoionizing flux in units of 1048 s-11, P7 is the pressure in units of 10-7 dyne cm-2, and TH II,4 is the ion temperature in units of 104 K), are similar to those actually observed in UCHII regions. Similarly, ultra- compact wind-driven bubbles can reach pressure equilibrium, and the resulting final sizes are similar to those of UCHII'S. The same is true for a combined ultracompact structure consisting of an interior wind- driven cavity and an external H II region. For nonmoving stars in a constant-density medium, the lifetimes for all types of ultracompact objects only depend on the stellar lifetimes. For cases with a density gradient, depending on the core size and slope of the density distribution, some regions never reach the static equilibrium condition. A powerful dynamic instability appears when cooling is included in the neutral gas swept up by an H II region or a combined wind-H II region structure. This instability was first studied by Giuliani and is associated with the thin-shell instability described by Vishniac. The internal ionization front exacerbates the growth of the thin-shell instability, creating a rapid shell fragmentation, and our numerical simulations confirm the linear analysis of Giuliani. The fragments tend to merge as

  17. pH-metric log P. II: Refinement of partition coefficients and ionization constants of multiprotic substances.

    PubMed

    Avdeef, A

    1993-02-01

    A generalized, weighted, nonlinear least squares procedure is developed, based on pH titration data, for the refinement of octanol-water partition coefficients (log P) and ionization constants (pKa) of multiprotic substances. Ion-pair partition reactions, self-association reactions forming oligomers, and formations of mixed-substance complexes can be treated with this procedure. The procedure allows for CO2 corrections in instances where the base titrant may have CO2 as an impurity. Optionally, the substance purity and the titrant strength may be treated as adjustable parameters. The partial differentiation in the Gauss-Newton refinement procedure is based on newly derived analytical expressions. The new procedure was experimentally demonstrated with benzoic acid, 1-benzylimidazole, (+/-)-propranolol, and mellitic acid (benzenehexacarboxylic acid, AH6). Ionic strength (l) was adjusted with KNO3. Benzoic acid (20 degrees C; l 0.1 M): pKa = 3.99 +/- 0.02, log P = 1.96 +/- 0.02, log P (anion) = -1.2; 1-benzylimidazole (25 degrees C; l 0.1 M): pKa = 6.70 +/- 0.03, log P = 1.60 +/- 0.04; propranolol (25 degrees C; l 0.1 M): pKa = 9.53 +/- 0.06, log P = 3.35 +/- 0.03, log P (cation) = 0.62 +/- 0.08; mellitic acid (26 degrees C; l 0.2 M): pKas 1.10 +/- 0.46, 1.69 +/- 0.03, 2.75 +/- 0.02, 4.00 +/- 0.02, 5.05 +/- 0.01, and 6.04 +/- 0.02; in the presence of 0.01 M n-Bu4NBr, log P (AH6) = 1.5, log P (AH5-) = 1.1, log P (AH4(2-)) = 0.8, log P (AH3(3-)) = 0.3, log P (AH2(4-)) = -0.1, and log P (AH5-) = -0.5 (all +/- 0.1).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. The Suzaku view of highly ionized outflows in AGN - II. Location, energetics and scalings with bolometric luminosity

    NASA Astrophysics Data System (ADS)

    Gofford, J.; Reeves, J. N.; McLaughlin, D. E.; Braito, V.; Turner, T. J.; Tombesi, F.; Cappi, M.

    2015-08-01

    Ongoing studies with XMM-Newton have shown that powerful accretion disc winds, as revealed through highly ionized Fe K-shell absorption at E ≥ 6.7 keV, are present in a significant fraction of active galactic nuclei (AGNs) in the local Universe (Tombesi et al. 2010a). In Gofford et al., we analysed a sample of 51 Suzaku-observed AGNs and independently detected Fe K absorption in ˜40 per cent of the sample, and we measured the properties of the absorbing gas. In this work, we build upon these results to consider the properties of the associated wind. On average, the fast winds (vw > 0.01c) are located ˜ 1015-18 cm (typically ˜102-4 rs) from their black hole, their mass outflow rates are of the order of < dot{M}_w > ˜ 0.01-1 M⊙ yr-1 or {˜ }(0.01-1)dot{M}_Edd and kinetic power is constrained to ˜ 1043-45 erg s-1, equivalent to ˜(0.1-10 per cent)LEdd. We find a fundamental correlation between the source bolometric luminosity and the wind velocity, with v_w ∝ L_bol^{α } and α =0.4^{+0.3}_{-0.2} (90 per cent confidence), which indicates that more luminous AGN tend to harbour faster Fe K winds. The mass outflow rate dot{M}_w, kinetic power Lw and momentum flux dot{p}_w of the winds are also consequently correlated with Lbol, such that more massive and more energetic winds are present in more luminous AGN. We investigate these properties in the framework of a continuum-driven wind, showing that the observed relationships are broadly consistent with a wind being accelerated by continuum-scattering. We find that, globally, a significant fraction (˜85 per cent) of the sample can plausibly exceed the Lw/Lbol ˜ 0.5 per cent threshold thought necessary for feedback, while 45 per cent may also exceed the less conservative ˜5 per cent of Lbol threshold as well. This suggests that the winds may be energetically significant for AGN-host-galaxy feedback processes.

  19. Detection of Extraplanar Diffuse Ionized Gas in M83

    NASA Astrophysics Data System (ADS)

    Boettcher, Erin; Gallagher, J. S., III; Zweibel, Ellen G.

    2017-08-01

    We present the first kinematic study of extraplanar diffuse ionized gas (eDIG) in the nearby, face-on disk galaxy M83 using optical emission-line spectroscopy from the Robert Stobie Spectrograph on the Southern African Large Telescope. We use a Markov Chain Monte Carlo method to decompose the [N ii]λ λ 6548, 6583, Hα, and [S ii]λ λ 6717, 6731 emission lines into H ii region and diffuse ionized gas emission. Extraplanar, diffuse gas is distinguished by its emission-line ratios ([N ii]λ6583/Hα ≳ 1.0) and its rotational velocity lag with respect to the disk ({{Δ }}v=-24 km s-1 in projection). With interesting implications for isotropy, the velocity dispersion of the diffuse gas, σ =96 km s-1, is a factor of a few higher in M83 than in the Milky Way and nearby, edge-on disk galaxies. The turbulent pressure gradient is sufficient to support the eDIG layer in dynamical equilibrium at an electron scale height of {h}z=1 kpc. However, this dynamical equilibrium model must be finely tuned to reproduce the rotational velocity lag. There is evidence of local bulk flows near star-forming regions in the disk, suggesting that the dynamical state of the gas may be intermediate between a dynamical equilibrium and a galactic fountain flow. As one of the first efforts to study eDIG kinematics in a face-on galaxy, this study demonstrates the feasibility of characterizing the radial distribution, bulk velocities, and vertical velocity dispersions in low-inclination systems. Based on observations made with the Southern African Large Telescope (SALT) under program 2015-2-SCI-004 (PI: E. Boettcher).

  20. Ionizing radiation

    USDA-ARS?s Scientific Manuscript database

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  1. Measurements of miniature ionization chamber currents in the JSI TRIGA Mark II reactor demonstrate the importance of the delayed contribution to the photon field in nuclear reactors

    NASA Astrophysics Data System (ADS)

    Radulović, Vladimir; Fourmentel, Damien; Barbot, Loïc; Villard, Jean-François; Kaiba, Tanja; Gašper, Žerovnik; Snoj, Luka

    2015-12-01

    The characterization of experimental locations of a research nuclear reactor implies the determination of neutron and photon flux levels within, with the best achievable accuracy. In nuclear reactors, photon fluxes are commonly calculated by Monte Carlo simulations but rarely measured on-line. In this context, experiments were conducted with a miniature gas ionization chamber (MIC) based on miniature fission chamber mechanical parts, recently developed by the CEA (French Atomic Energy and Alternative Energies Commission) irradiated in the core of the Jožef Stefan Institute TRIGA Mark II reactor in Ljubljana, Slovenia. The aim of the study was to compare the measured MIC currents with calculated currents based on simulations with the MCNP6 code. A discrepancy of around 50% was observed between the measured and the calculated currents; in the latter taking into consideration only the prompt photon field. Further experimental measurements of MIC currents following reactor SCRAMs (reactor shutdown with rapid insertions of control rods) provide evidence that over 30% of the total measured signal is due to the delayed photon field, originating from fission and activation products, which are untreated in the calculations. In the comparison between the measured and calculated values, these findings imply an overall discrepancy of less than 20% of the total signal which is still unexplained.

  2. Equilibrium Shaping

    NASA Astrophysics Data System (ADS)

    Izzo, Dario; Petazzi, Lorenzo

    2006-08-01

    We present a satellite path planning technique able to make identical spacecraft aquire a given configuration. The technique exploits a behaviour-based approach to achieve an autonomous and distributed control over the relative geometry making use of limited sensorial information. A desired velocity is defined for each satellite as a sum of different contributions coming from generic high level behaviours: forcing the final desired configuration the behaviours are further defined by an inverse dynamic calculation dubbed Equilibrium Shaping. We show how considering only three different kind of behaviours it is possible to acquire a number of interesting formations and we set down the theoretical framework to find the entire set. We find that allowing a limited amount of communication the technique may be used also to form complex lattice structures. Several control feedbacks able to track the desired velocities are introduced and discussed. Our results suggest that sliding mode control is particularly appropriate in connection with the developed technique.

  3. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage.

    PubMed

    Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H

    2014-03-30

    The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes.

  4. Definitions and Basic Concepts of Supply and Demand Analysis Used to Determine Market Equilibrium. Principles of Economics II (Microeconomics), Lesson Plan No. 6.

    ERIC Educational Resources Information Center

    Chiu-Irion, Vicky

    Developed as part of a 37.5-hour microeconomics course, this lesson plan focuses on the concepts of supply and demand analysis used to determine market equilibrium. The objectives of the 50-minute lesson are to enable the student to: (1) explain how a demand schedule is derived from raw data; (2) graph a demand curve from the demand schedule; (3)…

  5. Above-threshold ionization with highly charged ions in superstrong laser fields. II. Relativistic Coulomb-corrected strong-field approximation

    NASA Astrophysics Data System (ADS)

    Klaiber, Michael; Yakaboylu, Enderalp; Hatsagortsyan, Karen Z.

    2013-02-01

    We develop a relativistic Coulomb-corrected strong-field approximation (SFA) for the investigation of spin effects at above-threshold ionization in relativistically strong laser fields with highly charged hydrogenlike ions. The Coulomb-corrected SFA is based on the relativistic eikonal-Volkov wave function describing the ionized electron laser-driven continuum dynamics disturbed by the Coulomb field of the ionic core. The SFA in different partitions of the total Hamiltonian is considered. The formalism is applied for direct ionization of a hydrogenlike system in a strong linearly polarized laser field. The differential and total ionization rates are calculated analytically. The relativistic analog of the Perelomov-Popov-Terent'ev ionization rate is retrieved within the SFA technique. The physical relevance of the SFA in different partitions is discussed.

  6. Investigation of combwax of honeybees with high-temperature gas chromatography and high-temperature gas chromatography-chemical ionization mass spectrometry. II: High-temperature gas chromatography-chemical ionization mass spectrometry.

    PubMed

    Aichholz, R; Lorbeer, E

    2000-06-23

    Crude combwax of six various honey bee species have been analyzed by high-temperature gas chromatography (HTGC)-chemical ionization mass spectrometry after a two-step silylation procedure. An optimized chromatographic procedure, described previously, enables the separation of high-molecular mass lipid compounds resulting in a characteristic fingerprint of the combwaxes of different honeybee species. The coupling of HTGC to mass spectrometry requires appropriate instrumentation in order to achieve sufficient sensitivity at high elution temperatures and avoid loss of chromatographic resolution. Chemical ionization was carried out using methane as reagent gas in order to determine the molecular mass of the individual compounds by means of abundant quasi molecular ions. To confirm the presence of unsaturated wax esters, ammonia was used as reagent gas. More than 80 lipid constituents were separated and characterized by their mass spectra. Representative chemical ionization mass spectra of individual compounds are presented. Both, HTGC-flame ionization detection data and the results of the HTGC-mass spectrometric investigations enabled a rapid profiling of the individual classes of compounds in crude combwaxes.

  7. Thermo-chemical dynamics and chemical quasi-equilibrium of plasmas in thermal non-equilibrium

    NASA Astrophysics Data System (ADS)

    Massot, Marc; Graille, Benjamin; Magin, Thierry E.

    2011-05-01

    We examine both processes of ionization by electron and heavy-particle impact in spatially uniform plasmas at rest in the absence of external forces. A singular perturbation analysis is used to study the following physical scenario, in which thermal relaxation becomes much slower than chemical reactions. First, electron-impact ionization is investigated. The dynamics of the system rapidly becomes close to a slow dynamics manifold that allows for defining a unique chemical quasi-equilibrium for two-temperature plasmas and proving that the second law of thermodynamics is satisfied. Then, all ionization reactions are taken into account simultaneously, leading to a surprising conclusion: the inner layer for short time scale (or time boundary layer) directly leads to thermal equilibrium. Global thermo-chemical equilibrium is reached within a short time scale, involving only chemical reactions, even if thermal relaxation through elastic collisions is assumed to be slow.

  8. Thermo-chemical dynamics and chemical quasi-equilibrium of plasmas in thermal non-equilibrium

    SciTech Connect

    Massot, Marc; Graille, Benjamin; Magin, Thierry E.

    2011-05-20

    We examine both processes of ionization by electron and heavy-particle impact in spatially uniform plasmas at rest in the absence of external forces. A singular perturbation analysis is used to study the following physical scenario, in which thermal relaxation becomes much slower than chemical reactions. First, electron-impact ionization is investigated. The dynamics of the system rapidly becomes close to a slow dynamics manifold that allows for defining a unique chemical quasi-equilibrium for two-temperature plasmas and proving that the second law of thermodynamics is satisfied. Then, all ionization reactions are taken into account simultaneously, leading to a surprising conclusion: the inner layer for short time scale (or time boundary layer) directly leads to thermal equilibrium. Global thermo-chemical equilibrium is reached within a short time scale, involving only chemical reactions, even if thermal relaxation through elastic collisions is assumed to be slow.

  9. Grid-based methods for diatomic quantum scattering problems II: Time-dependent treatment of single- and two-photon ionization of H2+

    SciTech Connect

    Rescigno, Thomas N.; Tao, L.; McCurdy, C.W.

    2009-04-20

    The time-dependent Schr\\"odinger equation for H2+ in a time-varying electromagnetic field is solved in the fixed-nuclei approximation using a previously developed finite-element/ discrete variable representation in prolate spheroidal coordinates. Amplitudes for single- and two-photon ionization are obtained using the method of exterior complex scaling to effectively propagate the field-free solutions from the end of the radiation pulse to infinite times. Cross sections are presented for one-and two-photon ionization for both parallel and perpendicular polarization of the photon field, as well as photoelectron angular distributions for two-photon ionization.

  10. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. Users Manual and Program Description. 2; Users Manual and Program Description

    NASA Technical Reports Server (NTRS)

    McBride, Bonnie J.; Gordon, Sanford

    1996-01-01

    This users manual is the second part of a two-part report describing the NASA Lewis CEA (Chemical Equilibrium with Applications) program. The program obtains chemical equilibrium compositions of complex mixtures with applications to several types of problems. The topics presented in this manual are: (1) details for preparing input data sets; (2) a description of output tables for various types of problems; (3) the overall modular organization of the program with information on how to make modifications; (4) a description of the function of each subroutine; (5) error messages and their significance; and (6) a number of examples that illustrate various types of problems handled by CEA and that cover many of the options available in both input and output. Seven appendixes give information on the thermodynamic and thermal transport data used in CEA; some information on common variables used in or generated by the equilibrium module; and output tables for 14 example problems. The CEA program was written in ANSI standard FORTRAN 77. CEA should work on any system with sufficient storage. There are about 6300 lines in the source code, which uses about 225 kilobytes of memory. The compiled program takes about 975 kilobytes.

  11. On Radiation Pressure in Static, Dusty H II Regions

    NASA Astrophysics Data System (ADS)

    Draine, B. T.

    2011-05-01

    Radiation pressure acting on gas and dust causes H II regions to have central densities that are lower than the density near the ionized boundary. H II regions in static equilibrium comprise a family of similarity solutions with three parameters: β, γ, and the product Q 0 n rms; β characterizes the stellar spectrum, γ characterizes the dust/gas ratio, Q 0 is the stellar ionizing output (photons/s), and n rms is the rms density within the ionized region. Adopting standard values for β and γ, varying Q 0 n rms generates a one-parameter family of density profiles, ranging from nearly uniform density (small Q 0 n rms) to shell-like (large Q 0 n rms). When Q 0 n rms >~ 1052 cm-3 s-1, dusty H II regions have conspicuous central cavities, even if no stellar wind is present. For given β, γ, and Q 0 n rms, a fourth quantity, which can be Q 0, determines the overall size and density of the H II region. Examples of density and emissivity profiles are given. We show how quantities of interest—such as the peak-to-central emission measure ratio, the rms-to-mean density ratio, the edge-to-rms density ratio, and the fraction of the ionizing photons absorbed by the gas—depend on β, γ, and Q 0 n rms. For dusty H II regions, compression of the gas and dust into an ionized shell results in a substantial increase in the fraction of the stellar photons that actually ionize H (relative to a uniform-density H II region with the same dust/gas ratio and density n = n rms). We discuss the extent to which radial drift of dust grains in H II regions can alter the dust-to-gas ratio. The applicability of these solutions to real H II regions is discussed.

  12. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  13. Fluid hydrogen at high density - Pressure ionization

    NASA Technical Reports Server (NTRS)

    Saumon, Didier; Chabrier, Gilles

    1992-01-01

    The Helmholtz-free-energy model for nonideal mixtures of hydrogen atoms and molecules by Saumon and Chabrier (1991) is extended to describe dissociation and ionization in similar mixtures in chemical equilibrium. A free-energy model is given that describes partial ionization in the pressure and temperature ionization region. The plasma-phase transition predicted by the model is described for hydrogen mixtures including such components as H2, H, H(+), and e(-). The plasma-phase transition has a critical point at Tc = 15,300 K and Pc = 0.614 Mbar, and thermodynamic instability is noted in the pressure-ionization regime. The pressure dissociation and ionization of fluid hydrogen are described well with the model yielding information on the nature of the plasma-phase transition. The model is shown to be valuable for studying dissociation and ionization in astrophysical objects and in high-pressure studies where pressure and temperature effects are significant.

  14. Forebody and base region real gas flow in severe planetary entry by a factored implicit numerical method. II - Equilibrium reactive gas

    NASA Technical Reports Server (NTRS)

    Davy, W. C.; Green, M. J.; Lombard, C. K.

    1981-01-01

    The factored-implicit, gas-dynamic algorithm has been adapted to the numerical simulation of equilibrium reactive flows. Changes required in the perfect gas version of the algorithm are developed, and the method of coupling gas-dynamic and chemistry variables is discussed. A flow-field solution that approximates a Jovian entry case was obtained by this method and compared with the same solution obtained by HYVIS, a computer program much used for the study of planetary entry. Comparison of surface pressure distribution and stagnation line shock-layer profiles indicates that the two solutions agree well.

  15. Study of rock-water-nuclear waste interactions in the Pasco Basin, Washington: Part II. Preliminary equilibrium-step simulations of basalt diagenesis

    SciTech Connect

    Benson, L.V.; Carnahan, C.L.; Che, M.

    1980-08-01

    Interactions between a large number of complex chemical and physical processes have resulted in significant changes in the Pasco Basin hydrochemical system since emplacement of the first basalt flow. In order to perform preliminary simulations of the chemical evolution of this system, certain simplifying assumptions and procedures were adopted and a computer model which operates on the principal of local equilibrium was used for the mass transfer calculations. Significant uncertainties exist in both the thermodynamic and reaction rate data which were input to the computer model. In addition, the compositional characteristics of the evolving hydrochemical system remain largely unknown, especially as a function of distance along the flow path. Given these uncertainties, it remains difficult to assess the applicability of the equilibrium-step approach even though reasonable matches between observed and simulated hydrochemical data were obtained. Given the uncertainties mentioned, the predictive abilities of EQ6 are difficult, if not impossible to evaluate; our simulations produced, at best, only qualitative agreement with observed product mineral assemblages and sequences, and fluid compositions.

  16. Equilibrium theory of the hard sphere fluid and glasses in the metastable regime up to jamming. II. Structure and application to hopping dynamics

    NASA Astrophysics Data System (ADS)

    Jadrich, Ryan; Schweizer, Kenneth S.

    2013-08-01

    Building on the equation-of-state theory of Paper I, we construct a new thermodynamically consistent integral equation theory for the equilibrium pair structure of 3-dimensional monodisperse hard spheres applicable up to the jamming transition. The approach is built on a two Yukawa generalized mean spherical approximation closure for the direct correlation function (DCF) beyond contact that reproduces the exact contact value of the pair correlation function and isothermal compressibility. The detailed construction of the DCF is guided by the desire to capture its distinctive features as jamming is approached. Comparison of the theory with jamming limit simulations reveals good agreement for many, but not all, of the key features of the pair correlation function. The theory is more accurate in Fourier space where predictions for the structure factor and DCF are accurate over a wide range of wavevectors from significantly below the first cage peak to very high wavevectors. New features of the equilibrium pair structure are predicted for packing fractions below jamming but well above crystallization. For example, the oscillatory DCF decays very slowly at large wavevectors for high packing fractions as a consequence of the unusual structure of the radial distribution function at small separations. The structural theory is used as input to the nonlinear Langevin equation theory of activated dynamics, and calculations of the alpha relaxation time based on single particle hopping are compared to recent colloid experiments and simulations at very high volume fractions.

  17. Equilibrium theory of the hard sphere fluid and glasses in the metastable regime up to jamming. II. Structure and application to hopping dynamics.

    PubMed

    Jadrich, Ryan; Schweizer, Kenneth S

    2013-08-07

    Building on the equation-of-state theory of Paper I, we construct a new thermodynamically consistent integral equation theory for the equilibrium pair structure of 3-dimensional monodisperse hard spheres applicable up to the jamming transition. The approach is built on a two Yukawa generalized mean spherical approximation closure for the direct correlation function (DCF) beyond contact that reproduces the exact contact value of the pair correlation function and isothermal compressibility. The detailed construction of the DCF is guided by the desire to capture its distinctive features as jamming is approached. Comparison of the theory with jamming limit simulations reveals good agreement for many, but not all, of the key features of the pair correlation function. The theory is more accurate in Fourier space where predictions for the structure factor and DCF are accurate over a wide range of wavevectors from significantly below the first cage peak to very high wavevectors. New features of the equilibrium pair structure are predicted for packing fractions below jamming but well above crystallization. For example, the oscillatory DCF decays very slowly at large wavevectors for high packing fractions as a consequence of the unusual structure of the radial distribution function at small separations. The structural theory is used as input to the nonlinear Langevin equation theory of activated dynamics, and calculations of the alpha relaxation time based on single particle hopping are compared to recent colloid experiments and simulations at very high volume fractions.

  18. Experimental approaches for studying non-equilibrium atmospheric plasma jets

    SciTech Connect

    Shashurin, A.; Keidar, M.

    2015-12-15

    This work reviews recent research efforts undertaken in the area non-equilibrium atmospheric plasma jets with special focus on experimental approaches. Physics of small non-equilibrium atmospheric plasma jets operating in kHz frequency range at powers around few Watts will be analyzed, including mechanism of breakdown, process of ionization front propagation, electrical coupling of the ionization front with the discharge electrodes, distributions of excited and ionized species, discharge current spreading, transient dynamics of various plasma parameters, etc. Experimental diagnostic approaches utilized in the field will be considered, including Rayleigh microwave scattering, Thomson laser scattering, electrostatic streamer scatterers, optical emission spectroscopy, fast photographing, etc.

  19. Optimization, equilibrium, kinetic, thermodynamic and desorption studies on the sorption of Cu(II) from an aqueous solution using marine green algae: Halimeda gracilis.

    PubMed

    Jayakumar, R; Rajasimman, M; Karthikeyan, C

    2015-11-01

    The aptitude of marine green algae Helimeda gracilis for sorption of Cu(II) ions from an aqueous solution was studied in batch experiments. The effect of relevant parameters such as function of pH, sorbent dosage, agitation speed and contact time was evaluated by using Response surface methodology (RSM). A maximum percentage removal of Cu (II) by Halimeda gracilis occurs at pH-4.49, sorbent dosage-1.98g/L, agitation speed-119.43rpm and contact time-60.21min. Further, the sorbent was characterized by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning electron microscope (SEM) analysis. Experimental data were analyzed in terms of pseudo-first order, pseudo-second order, intraparticle diffusion, power function and elovich kinetic models. The results showed that the sorption process of Cu(II) ions followed well pseudo-second order kinetics. The sorption data of Cu(II) ions at 308.15K are fitted to Langmuir, Freundlich, Dubinin-Radushkevich (D-R), Temkin, Sips and Toth isotherms. Sorption of Cu(II) onto marine green algae Helimeda gracilis followed the Langmuir and Toth isotherm models (R(2)=0.998 and R(2)=0.999) with the maximum sorption capacity of 38.46 and 38.07mg/g. The calculated thermodynamic parameters such as ΔG°, ΔH° and ΔS° showed that the sorption of Cu(II) ions onto Helimeda gracilis biomass was feasible, spontaneous and endothermic. Desorption study shows that the sorbent could be regenerated using 0.2M HCl solution, with up to 89% recovery. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. [Non-equilibrium thermodynamic separation theory of nonlinear chromatography. II. The 0-1 model for nonlinear-mass transfer kinetic processes].

    PubMed

    Liang, Heng; Jia, Zhenbin

    2007-11-01

    In the optimal design and control of preparative chromatographic processes, the obstacles appear when one tries to link the Wilson' s framework of chromatographic theories based on partial differential equations (PDEs) with the Eulerian presentation to optimal control approaches based on discrete time states, such as Markov decision processes (MDP) or Model predictive control (MPC). In this paper, the 0-1 model is presented to overcome the obstacles for nonlinear transport chromatography (NTC). With the Lagrangian-Eulerian description (L-ED), one solute cell unit is split into two solute cells, one (SCm) in the mobile phase with the linear velocity of the mobile phase, and the other (SCs) in the stationary phase with zero-velocity. The thermodynamic state vector, S(k), which comprises four vector components, i.e., the sequence number, the position and the local solute concentrations in both SCms and SCses, is introduced to describe the local thermodynamic path (LTP) and the macroscopical thermodynamic path (MTP). For the NTC, the LTP is designed for a solute zone to evolve from the state, S(k), to the virtual migration state, S(M), undergoing the virtual net migration sub-process, and then to the state, S(k+1), undergoing the virtual net inter phase mass transfer sub-process in a short time interval. Complete thermodynamic state iterations with the Markov characteristics are derived by using the local equilibrium isotherm and the local lumped mass transfer coefficient. When the local thermodynamic equilibrium is retained, excellent properties, such as consistency, stability, conservation, accuracy, etc., of the numerical solution of the 0-1 model are observed in the theoretical analysis and in the numerical experiments of the nonlinear ideal chromatography. It is found that the 0-1 model could properly link up with the MDP or optimal control approaches based on discrete time states.

  1. The effects of metallicity, UV radiation and non-equilibrium chemistry in high-resolution simulations of galaxies

    NASA Astrophysics Data System (ADS)

    Richings, A. J.; Schaye, Joop

    2016-05-01

    We present a series of hydrodynamic simulations of isolated galaxies with stellar mass of 109 M⊙. The models use a resolution of 750 M⊙ per particle and include a treatment for the full non-equilibrium chemical evolution of ions and molecules (157 species in total), along with gas cooling rates computed self-consistently using the non-equilibrium abundances. We compare these to simulations evolved using cooling rates calculated assuming chemical (including ionization) equilibrium, and we consider a wide range of metallicities and UV radiation fields, including a local prescription for self-shielding by gas and dust. We find higher star formation rates and stronger outflows at higher metallicity and for weaker radiation fields, as gas can more easily cool to a cold (few hundred Kelvin) star-forming phase under such conditions. Contrary to variations in the metallicity and the radiation field, non-equilibrium chemistry generally has no strong effect on the total star formation rates or outflow properties. However, it is important for modelling molecular outflows. For example, the mass of H2 outflowing with velocities {>}50 {km} {s}^{-1} is enhanced by a factor ˜20 in non-equilibrium. We also compute the observable line emission from C II and CO. Both are stronger at higher metallicity, while C II and CO emission are higher for stronger and weaker radiation fields, respectively. We find that C II is generally unaffected by non-equilibrium chemistry. However, emission from CO varies by a factor of ˜2-4. This has implications for the mean XCO conversion factor between CO emission and H2 column density, which we find is lowered by up to a factor ˜2.3 in non-equilibrium, and for the fraction of CO-dark molecular gas.

  2. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A SINGLE-STAGE IONIZING WET SCRUBBER - VOLUME II: APPENDICES

    EPA Science Inventory

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. ...

  3. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A SINGLE-STAGE IONIZING WET SCRUBBER - VOLUME II: APPENDICES

    EPA Science Inventory

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. ...

  4. A simulation model for the density of states and for incomplete ionization in crystalline silicon. II. Investigation of Si:As and Si:B and usage in device simulation

    NASA Astrophysics Data System (ADS)

    Altermatt, P. P.; Schenk, A.; Schmithüsen, B.; Heiser, G.

    2006-12-01

    Building on Part I of this paper [Altermatt et al., J. Appl. Phys. 100, 113714 (2006)], the parametrization of the density of states and of incomplete ionization (ii) is extended to arsenic- and boron-doped crystalline silicon. The amount of ii is significantly larger in Si:As than in Si:P. Boron and phosphorus cause a similar amount of ii although the boron energy level has a distinctly different behavior as a function of dopant density than the phosphorus level. This is so because the boron ground state is fourfold degenerate, while the phosphorus ground state is twofold degenerate. Finally, equations of ii are derived that are suitable for implementation in device simulators. Simulations demonstrate that ii increases the current gain of bipolar transistors by up to 25% and that it decreases the open-circuit voltage of thin-film solar cells by up to 10mV. The simulation model therefore improves the predictive capabilities of device modeling of p-n-junction devices.

  5. Aerospace Applications of Non-Equilibrium Plasma

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  6. Non-local Thermodynamic Equilibrium Stellar Spectroscopy with 1D and >3D< Models. II. Chemical Properties of the Galactic Metal-poor Disk and the Halo

    NASA Astrophysics Data System (ADS)

    Bergemann, Maria; Collet, Remo; Schönrich, Ralph; Andrae, Rene; Kovalev, Mikhail; Ruchti, Greg; Hansen, Camilla Juul; Magic, Zazralt

    2017-09-01

    From exploratory studies and theoretical expectations it is known that simplifying approximations in spectroscopic analysis (local thermodynamic equilibrium (LTE), 1D) lead to systematic biases of stellar parameters and abundances. These biases depend strongly on surface gravity, temperature and, in particular, for LTE versus non-LTE (NLTE), on metallicity of the stars. Here we analyze the [Mg/Fe] and [Fe/H] plane of a sample of 326 stars, comparing LTE and NLTE results obtained using 1D hydrostatic models and averaged <3D> models. We show that compared to the <3D> NLTE benchmark, the other three methods display increasing biases toward lower metallicities, resulting in false trends of [Mg/Fe] against [Fe/H], which have profound implications for interpretations by chemical evolution models. In our best <3D> NLTE model, the halo and disk stars show a clearer behavior in the [Mg/Fe]–[Fe/H] plane, from the knee in abundance space down to the lowest metallicities. Our sample has a large fraction of thick disk stars and this population extends down to at least [Fe/H] ∼ ‑1.6 dex, further than previously proven. The thick disk stars display a constant [Mg/Fe] ≈ 0.3 dex, with a small intrinsic dispersion in [Mg/Fe] that suggests that a fast SN Ia channel is not relevant for the disk formation. The halo stars reach higher [Mg/Fe] ratios and display a net trend of [Mg/Fe] at low metallicities, paired with a large dispersion in [Mg/Fe]. These indicate the diverse origin of halo stars from accreted low-mass systems to stochastic/inhomogeneous chemical evolution in the Galactic halo.

  7. Strong-field approximation for above-threshold ionization of polyatomic molecules. II. The role of electron rescattering off the molecular centers

    NASA Astrophysics Data System (ADS)

    Hasović, E.; Milošević, D. B.

    2014-05-01

    We consider high-order above-threshold ionization of polyatomic molecules by a strong laser field. An improved molecular strong-field approximation which takes into account the electron rescattering off the molecular centers is developed. The presented theory is applied to calculate the photoelectron energy and angular distributions for the ozone molecule. The obtained spectra exhibit pronounced minima, and this is explained as a three-point destructive interference of the rescattered electron wave packets.

  8. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire. II. Electron energy loss spectroscopic study

    SciTech Connect

    Lee, Sung Bo Han, Heung Nam; Kim, Young-Min

    2015-07-15

    In Part I, we have shown that the addition of Si into sapphire by ion implantationmakes the sapphire substrate elastically softer than for the undoped sapphire. The more compliant layer of the Si-implanted sapphire substrate can absorb the misfit stress at the GaN/sapphire interface, which produces a lower threading-dislocation density in the GaN overlayer. Here in Part II, based on experimental results by electron energy loss spectroscopy and a first-principle molecular orbital calculation in the literature, we suggest that the softening effect of Si results from a reduction of ionic bonding strength in sapphire (α-Al{sub 2}O{sub 3}) with the substitution of Si for Al.

  9. Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies.

    PubMed

    Santana, Andrea J; dos Santos, Walter N L; Silva, Laiana O B; das Virgens, Cesário F

    2016-05-01

    Mercury is a highly toxic substance that is a health hazard to humans. This study aims to investigate powders obtained from the peel of the fruit of Pachira aquatica Aubl, in its in natura and/or acidified form, as an adsorbent for the removal of mercury ions in aqueous solution. The materials were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. The infrared spectra showed bands corresponding to the axial deformation of carbonyls from carboxylic acids, the most important functional group responsible for fixing the metal species to the adsorbent material. The thermograms displayed mass losses related to the decomposition of three major components, i.e., hemicellulose, cellulose, and lignin. The adsorption process was evaluated using cold-vapor atomic fluorescence spectrometry (CV AFS) and cold-vapor atomic absorption spectrometry (CV AAS). Three isotherm models were employed. The adsorption isotherm model, Langmuir-Freundlich, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 0.71 and 0.58 mg g(-1) at 25 °C in nature and acidified, respectively. Adsorption efficiencies were further tested on real aqueous wastewater samples, and removal of Hg(II) was recorded as 69.6 % for biomass acidified and 76.3 % for biomass in nature. Results obtained from sorption experiments on real aqueous wastewater samples revealed that recovery of the target metal ions was very satisfactory. The pseudo-second-order model showed the best correlation to the experimental data. The current findings showed that the investigated materials are potential adsorbents for mercury(II) ion removal in aqueous solution, with acidified P. aquatica Aubl being the most efficient adsorbent.

  10. Flux Jacobian Matrices For Equilibrium Real Gases

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  11. Flux Jacobian Matrices For Equilibrium Real Gases

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  12. NON-LOCAL THERMODYNAMICAL EQUILIBRIUM EFFECTS ON THE IRON ABUNDANCE OF ASYMPTOTIC GIANT BRANCH STARS IN 47 TUCANAE

    SciTech Connect

    Lapenna, E.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Massari, D.

    2014-12-20

    We present the iron abundance of 24 asymptotic giant branch (AGB) stars, members of the globular cluster 47 Tucanae, obtained with high-resolution spectra collected with the FEROS spectrograph at the MPG/ESO 2.2 m Telescope. We find that the iron abundances derived from neutral lines (with a mean value [Fe I/H] =–0.94 ± 0.01, σ = 0.08 dex) are systematically lower than those derived from single ionized lines ([Fe II/H] =–0.83 ± 0.01, σ = 0.05 dex). Only the latter are in agreement with those obtained for a sample of red giant branch (RGB) cluster stars, for which the Fe I and Fe II lines provide the same iron abundance. This finding suggests that non-local thermodynamical equilibrium (NLTE) effects driven by overionization mechanisms are present in the atmosphere of AGB stars and significantly affect the Fe I lines while leaving Fe II features unaltered. On the other hand, the very good ionization equilibrium found for RGB stars indicates that these NLTE effects may depend on the evolutionary stage. We discuss the impact of this finding on both the chemical analysis of AGB stars and on the search for evolved blue stragglers.

  13. Atmospheric and ionospheric response to trace gas perturbations through the ice age to the next century in the middle atmosphere. Part II-ionization

    NASA Astrophysics Data System (ADS)

    Beig, G.; Mitra, A. P.

    1997-07-01

    A global two-dimensional meridional ion composition model of the middle atmosphere is used to examine the effect of changing concentrations of several greenhouse gases on the overall distribution of ionization for this region, along with a steady state calculation for the upper heights. Changes in the neutral parameters for this study are taken from the companion article (Beig and Mitra, 1997). It has been predicted that there are several sensitive signals of man-made perturbations in the middle atmospheric ionization. In the mesospheric region, for a doubled CO2 scenario, we find that the total ionization density does not change appreciably and the maximum variation is found to be around 15% at about 70 km. However, the distribution of individual ions shows a considerable variation (up to about 100%) throughout the middle atmosphere. The fall-off height of the fractional abundance of water cluster ions is higher for 2050 A.D., suggesting domination of these ions up to greater heights. The concentration of water cluster ions increases below about 85 km; above this height it starts to decrease sharply with height. When a scenario with doubled CO2, with CH4 and business-as-usual (BAU) (for CFCs and N2O) is considered in the stratospheric region, it is found that only one family of negative ions, called NO3-core ions, is dominant instead of two in the normal case. Simulations are also made through the ages since the last ice age. Results indicate a reverse trend as compared to the above.

  14. Two-dimensional Radiative Magnetohydrodynamic Simulations of Partial Ionization in the Chromosphere. II. Dynamics and Energetics of the Low Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Martínez-Sykora, Juan; De Pontieu, Bart; Carlsson, Mats; Hansteen, Viggo H.; Nóbrega-Siverio, Daniel; Gudiksen, Boris V.

    2017-09-01

    We investigate the effects of interactions between ions and neutrals on the chromosphere and overlying corona using 2.5D radiative MHD simulations with the Bifrost code. We have extended the code capabilities implementing ion–neutral interaction effects using the generalized Ohm’s law, i.e., we include the Hall term and the ambipolar diffusion (Pedersen dissipation) in the induction equation. Our models span from the upper convection zone to the corona, with the photosphere, chromosphere, and transition region partially ionized. Our simulations reveal that the interactions between ionized particles and neutral particles have important consequences for the magnetothermodynamics of these modeled layers: (1) ambipolar diffusion increases the temperature in the chromosphere; (2) sporadically the horizontal magnetic field in the photosphere is diffused into the chromosphere, due to the large ambipolar diffusion; (3) ambipolar diffusion concentrates electrical currents, leading to more violent jets and reconnection processes, resulting in (3a) the formation of longer and faster spicules, (3b) heating of plasma during the spicule evolution, and (3c) decoupling of the plasma and magnetic field in spicules. Our results indicate that ambipolar diffusion is a critical ingredient for understanding the magnetothermodynamic properties in the chromosphere and transition region. The numerical simulations have been made publicly available, similar to previous Bifrost simulations. This will allow the community to study realistic numerical simulations with a wider range of magnetic field configurations and physics modules than previously possible.

  15. Kinetics of the light-induced proton translocation associated with the pH-dependent formation of the metarhodopsin I/II equilibrium of bovine rhodopsin.

    PubMed

    Dickopf, S; Mielke, T; Heyn, M P

    1998-12-01

    The kinetics of the formation of the metaII (MII) state of bovine rhodopsin was investigated by time-resolved electrical and absorption measurements with rod outer segment (ROS) fragments. Photoexcitation leads to proton transfer in the direction from the cytosolic to the intradiscal side of the membrane, probably from the Schiff base to the acceptor glutamate 113. Two components of comparable amplitude are required to describe the charge movement with exponential times of 1.1 (45%) and 3.0 ms (55%) (pH 7.8, 22 degreesC, 150 mM KCl). The corresponding activation energies are 86 and 123 kJ/mol, respectively (150 mM KCl). The time constants and amplitudes depend strongly on pH. Between pH 7.1 and 3.8 the kinetics becomes much faster, with the faster and slower components accelerating by factors of about 8 and 2, respectively. Complementary single-flash absorption experiments at 380 nm and 10 degreesC show that the formation of MII also occurs with two components with similar time constants and pH dependence. This suggests that both signals monitor the same molecular events. The pH dependence of the two apparent time constants and amplitudes of the optical data can be described well over the pH range 4-7.5 by two coupled equilibria between MI and two isochromic MII species MIIa and MIIb: MI MIIa(380) MIIb(380), with k0 proportional to the proton concentration. This model implies that deprotonation of the Schiff base and proton uptake are tightly coupled in ROS membranes. Models with k2 proportional to the proton concentration cannot describe the data. Photoreversal of MII by blue flashes (420 nm) leads to proton transfer in a direction opposite to that of the signal associated with MII formation. In this transition the Schiff base is reprotonated, most likely from glutamate 113. At pH 7.3, 150 mM KCl, 22 degreesC, this electrical charge reversal has an exponential time constant of about 30 ms and is about 10 times slower than the forward charge motion.

  16. RNA-binding Protein Insulin-like Growth Factor mRNA-binding Protein 3 (IMP-3) Promotes Cell Survival via Insulin-like Growth Factor II Signaling after Ionizing Radiation*

    PubMed Central

    Liao, Baisong; Hu, Yan; Brewer, Gary

    2011-01-01

    Ionizing radiation (IR) induces proapoptotic gene expression programs that inhibit cell survival. These programs often involve RNA-binding proteins that associate with their mRNA targets to elicit changes in mRNA stability and/or translation. The RNA-binding protein IMP-3 is an oncofetal protein overexpressed in many human malignancies. IMP-3 abundance correlates with tumor aggressiveness and poor prognosis. As such, IMP-3 is proving to be a highly significant biomarker in surgical pathology. Among its many mRNA targets, IMP-3 binds to and promotes translation of insulin-like growth factor II (IGFII) mRNA. Our earlier studies showed that reducing IMP-3 abundance with siRNAs reduced proliferation of human K562 chronic myeloid leukemia cells because of reduced IGF-II biosynthesis. However, the role of IMP-3 in apoptosis is unknown. Here, we have used IR-induced apoptosis of K562 cells as a model to explore a role for IMP-3 in cell survival. Knockdown of IMP-3 with siRNA increased susceptibility of cells to IR-induced apoptosis and led to reduced IGF-II production. Gene reporter assays revealed that IMP-3 acts through the 5′ UTR of IGFII mRNA during apoptosis to promote translation. Finally, culture of IR-treated cells with recombinant IGF-II partially reversed the effects of IMP-3 knockdown on IR-induced apoptosis. Together, these results indicate that IMP-3 acts in part through the IGF-II pathway to promote cell survival in response to IR. Thus, IMP-3 might serve as a new drug target to increase sensitivity of CML cells or other cancers to IR therapy. PMID:21757716

  17. RNA-binding protein insulin-like growth factor mRNA-binding protein 3 (IMP-3) promotes cell survival via insulin-like growth factor II signaling after ionizing radiation.

    PubMed

    Liao, Baisong; Hu, Yan; Brewer, Gary

    2011-09-09

    Ionizing radiation (IR) induces proapoptotic gene expression programs that inhibit cell survival. These programs often involve RNA-binding proteins that associate with their mRNA targets to elicit changes in mRNA stability and/or translation. The RNA-binding protein IMP-3 is an oncofetal protein overexpressed in many human malignancies. IMP-3 abundance correlates with tumor aggressiveness and poor prognosis. As such, IMP-3 is proving to be a highly significant biomarker in surgical pathology. Among its many mRNA targets, IMP-3 binds to and promotes translation of insulin-like growth factor II (IGFII) mRNA. Our earlier studies showed that reducing IMP-3 abundance with siRNAs reduced proliferation of human K562 chronic myeloid leukemia cells because of reduced IGF-II biosynthesis. However, the role of IMP-3 in apoptosis is unknown. Here, we have used IR-induced apoptosis of K562 cells as a model to explore a role for IMP-3 in cell survival. Knockdown of IMP-3 with siRNA increased susceptibility of cells to IR-induced apoptosis and led to reduced IGF-II production. Gene reporter assays revealed that IMP-3 acts through the 5' UTR of IGFII mRNA during apoptosis to promote translation. Finally, culture of IR-treated cells with recombinant IGF-II partially reversed the effects of IMP-3 knockdown on IR-induced apoptosis. Together, these results indicate that IMP-3 acts in part through the IGF-II pathway to promote cell survival in response to IR. Thus, IMP-3 might serve as a new drug target to increase sensitivity of CML cells or other cancers to IR therapy.

  18. Line emission from H II blister models

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.

    1984-01-01

    Numerical techniques to calculate the thermal and geometric properties of line emission from H II 'blister' regions are presented. It is assumed that the density distributions of the H II regions are a function of two dimensions, with rotational symmetry specifying the shape in three-dimensions. The thermal and ionization equilibrium equations of the problem are solved by spherical modeling, and a spherical sector approximation is used to simplify the three-dimensional treatment of diffuse ionizing radiation. The global properties of H II 'blister' regions near the edges of a molecular cloud are simulated by means of the geometry/density distribution, and the results are compared with observational data. It is shown that there is a monotonic increase of peak surface brightness from the i = 0 deg (pole-on) observational position to the i = 90 deg (edge-on) position. The enhancement of the line peak intensity from the edge-on to the pole-on positions is found to depend on the density, stratification, ionization, and electron temperature weighting. It is found that as i increases, the position of peak line brightness of the lower excitation species is displaced to the high-density side of the high excitation species.

  19. Line emission from H II blister models

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.

    1984-01-01

    Numerical techniques to calculate the thermal and geometric properties of line emission from H II 'blister' regions are presented. It is assumed that the density distributions of the H II regions are a function of two dimensions, with rotational symmetry specifying the shape in three-dimensions. The thermal and ionization equilibrium equations of the problem are solved by spherical modeling, and a spherical sector approximation is used to simplify the three-dimensional treatment of diffuse ionizing radiation. The global properties of H II 'blister' regions near the edges of a molecular cloud are simulated by means of the geometry/density distribution, and the results are compared with observational data. It is shown that there is a monotonic increase of peak surface brightness from the i = 0 deg (pole-on) observational position to the i = 90 deg (edge-on) position. The enhancement of the line peak intensity from the edge-on to the pole-on positions is found to depend on the density, stratification, ionization, and electron temperature weighting. It is found that as i increases, the position of peak line brightness of the lower excitation species is displaced to the high-density side of the high excitation species.

  20. Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z~6 Quasars II: A Sample of 19 Quasars

    SciTech Connect

    Fan, X; Strauss, M A; Becker, R H; White, R L; Gunn, J E; Knapp, G R; Richards, G T; Schneider, D P; Brinkmann, J; Fukugita, M

    2006-01-05

    We study the evolution of the ionization state of the intergalactic medium (IGM) at the end of the reionization epoch using moderate resolution spectra of a sample of nineteen quasars at 5.74 < z{sub em} < 6.42 discovered in the Sloan Digital Sky Survey. Three methods are used to trace IGM properties: (a) the evolution of the Gunn-Peterson (GP) optical depth in the Ly{alpha}, {beta}, and {gamma} transitions; (b) the distribution of lengths of dark absorption gaps, and (c) the size of HII regions around luminous quasars. Using this large sample, we find that the evolution of the ionization state of the IGM accelerated at z > 5.7: the GP optical depth evolution changes from {tau}{sub GP}{sup eff} {approx} (1 + z){sup 4.3} to (1 + z){sup {approx}> 11}, and the average length of dark gaps with {tau} > 3.5 increases from < 10 to > 80 comoving Mpc. The dispersion of IGM properties along different lines of sight also increases rapidly, implying fluctuations by a factor of {approx}> 4 in the UV background at z > 6, when the mean free path of UV photons is comparable to the correlation length of the star forming galaxies that are thought to have caused reionization. The mean length of dark gaps shows the most dramatic increase at z {approx} 6, as well as the largest line-of-sight variations. We suggest using dark gap statistics as a powerful probe of the ionization state of the IGM at yet higher redshift. The sizes of HII regions around luminous quasars decrease rapidly towards higher redshift, suggesting that the neutral fraction of the IGM has increased by a factor of {approx}> 10 from z = 5.7 to 6.4, consistent with the value derived from the GP optical depth. The mass-averaged neutral fraction is 1-4% at z {approx} 6.2 based on the GP optical depth and HII region size measurements. The observations suggest that z {approx} 6 is the end of the overlapping stage of reionization, and are inconsistent with a mostly neutral IGM at z {approx} 6, as indicated by the finite

  1. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  2. Epsilon Canis Majoris and the ionization of the local cloud

    NASA Astrophysics Data System (ADS)

    Vallerga, J. V.; Welsh, B. Y.

    1995-05-01

    The Lyman continuum radiation from the brightest extreme ultraviolet (EUV) source, the B2 II star epsilon Canis Majoris (Adara), is so intense that it dominates the local stellar EUV radiation field at wavelengths longer than 450 A and therefore sets a lower limit to the ionization of hydrogen in the Local Cloud. Using the EUV (70-730 A) spectrum of epsilon CMa taken with the Extreme Ultraviolet Explorer Satellite (EUVE) and simple models that extrapolate this spectrum to the Lyman edge at 912 A, we have determined the local interstellar hydrogen photionizatin parameter Gamma solely from epsilon CMa to be 1.1 x 10-15/s. This figure is a factor of 7 greater than previous estimates of Gamma calculated for all nearby stars combined (Bruhweiler & Cheng 1988). Using measured values of the density and temperature of neutral interstellar hydrogen gas in the Local Cloud, we derive a particle density of ionized hydrogen n(H(+)) and electrons ne of 0.015-0.019/cu cm assuming ionization equilibrium and a helium ionization fraction of less than 20%. These values correspond to a hydrogen ionizatin fraction, chiH from 19% to 15%, respectively. The range of these derived quantities is due to the uncertainties in the local values of the neutral hydrogen and helium interstellar densities derived from both (1) solar backscatter measurements of Ly alpha lines of hydrogen and helium (1216 and 584 A), and (2) the average neutral densities along the line of sight to nearby stars. The local proton density produced by epsilon CMa is enough to allow the ionization mechanism of Ripken & Fahr (1983) to work at the heliopause and explain the discrepancy between the neutral hydrogen density derived from solar backscatter measurements and line-of-sight averages to nearby stars. A large value of electron density in the Local Cloud of ne is approximately 0.3-0.7/cu cm (T = 7000 K) has recently been reported by Lallement et al. (1994) using observations of Mg II and Mg I toward Sirius A. We show

  3. Epsilon Canis Majoris and the ionization of the local cloud

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Welsh, B. Y.

    1995-01-01

    The Lyman continuum radiation from the brightest extreme ultraviolet (EUV) source, the B2 II star epsilon Canis Majoris (Adara), is so intense that it dominates the local stellar EUV radiation field at wavelengths longer than 450 A and therefore sets a lower limit to the ionization of hydrogen in the Local Cloud. Using the EUV (70-730 A) spectrum of epsilon CMa taken with the Extreme Ultraviolet Explorer Satellite (EUVE) and simple models that extrapolate this spectrum to the Lyman edge at 912 A, we have determined the local interstellar hydrogen photionizatin parameter Gamma solely from epsilon CMa to be 1.1 x 10(exp -15)/s. This fiugre is a factor of 7 greater than previous estimates of Gamma calculated for all nearby stars combined (Bruhweiler & Cheng 1988). Using measured values of the density and temperature of neutral interstellar hydrogen gas in the Local Cloud, we derive a particle density of ionized hydrogen n(H(+)) and electrons n(sub e) of 0.015-0.019/cu cm assuming ionization equilibrium and a helium ionization fraction of less than 20%. These values correspond to a hydrogen ionizatin fraction, chi(sub H) from 19% to 15%, respectively. The range of these derived quantities is due to the uncertainties in the local values of the neutral hydrogen and helium interstellar densities derived from both (1) solar backscatter measurements of Ly alpha lines of hydrogen and helium (1216 and 584 A), and (2) the average neutral densities along the line of sight to nearby stars. The local proton density produced by epsilon CMa is enough to allow the ionization mechanism of Ripken & Fahr (1983) to work at the heliopause and explain the discrepancy between the neutral hydrogen density derived from solar backscatter measurements and line-of-sight averages to nearby stars. A large value of electron density in the Local Cloud of n(sub e) is approximately 0.3-0.7/cu cm (T = 7000 K) has recently been reported by Lallement et al. (1994) using observations of Mg II and Mg I

  4. Epsilon Canis Majoris and the ionization of the local cloud

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Welsh, B. Y.

    1995-01-01

    The Lyman continuum radiation from the brightest extreme ultraviolet (EUV) source, the B2 II star epsilon Canis Majoris (Adara), is so intense that it dominates the local stellar EUV radiation field at wavelengths longer than 450 A and therefore sets a lower limit to the ionization of hydrogen in the Local Cloud. Using the EUV (70-730 A) spectrum of epsilon CMa taken with the Extreme Ultraviolet Explorer Satellite (EUVE) and simple models that extrapolate this spectrum to the Lyman edge at 912 A, we have determined the local interstellar hydrogen photionizatin parameter Gamma solely from epsilon CMa to be 1.1 x 10(exp -15)/s. This fiugre is a factor of 7 greater than previous estimates of Gamma calculated for all nearby stars combined (Bruhweiler & Cheng 1988). Using measured values of the density and temperature of neutral interstellar hydrogen gas in the Local Cloud, we derive a particle density of ionized hydrogen n(H(+)) and electrons n(sub e) of 0.015-0.019/cu cm assuming ionization equilibrium and a helium ionization fraction of less than 20%. These values correspond to a hydrogen ionizatin fraction, chi(sub H) from 19% to 15%, respectively. The range of these derived quantities is due to the uncertainties in the local values of the neutral hydrogen and helium interstellar densities derived from both (1) solar backscatter measurements of Ly alpha lines of hydrogen and helium (1216 and 584 A), and (2) the average neutral densities along the line of sight to nearby stars. The local proton density produced by epsilon CMa is enough to allow the ionization mechanism of Ripken & Fahr (1983) to work at the heliopause and explain the discrepancy between the neutral hydrogen density derived from solar backscatter measurements and line-of-sight averages to nearby stars. A large value of electron density in the Local Cloud of n(sub e) is approximately 0.3-0.7/cu cm (T = 7000 K) has recently been reported by Lallement et al. (1994) using observations of Mg II and Mg I

  5. Highly specific spectrophotometric method for palladium(II) determination with 3-(5'-tetrazolylazo)-2,6-Diaminotoluene in the presence of chlorides. Kinetic and equilibrium study of reactions.

    PubMed

    Hernández, O; Jiménez, A I; Jiménez, F; Arias, J J; Havel, J

    1994-05-01

    3-(5'-tetrazolylazo)-2,6-Diaminotoluene (TEADAT, H(3)L(2+)) forms stable 1:1 and 1:2 (metal:ligand) pink-red complexes (lambda(max) 506 and 536 nm) with palladium(II). The apparent molar absorptivity of 1:2 complex is 5.2 x 10(4) 1.mol(-1). cm(-1) at 536 nm. Equilibrium constants beta*(nl) for reactions PdCl(2-)(4) + nH(3)L(2+) right harpoon over left harpoonright harpoon over left harpoon PdCl(4-n) (H(2)L)(2n-2)(n) + n Cl(-) + n H(+) were determined: logbeta*(1) = 4.09 +/- 0.05, logbeta*(2) = 8.40 +/- 0.02, corresponding stability conditional constants of PdCl(3)(H(2)L) and PdCl(2)(H(2)L)(2+)(2) were log beta(1) = 19.03, log beta(2) = 26.74. The formation of complexes was rather slow but could be speeded up considerably by the catalytic effect of trace amounts of thiocyanate. Constant absorbance values were thus reached in 2-5 min. A rapid, sensitive and highly specific method for the determination of palladium(II) at pH 1.42 in 0.25M NACl has been worked out with a detection limit of 0.54 mug. Interference of precious and common metal ions have been studied and the method has been applied for the determination of palladium in Pd asbestos, oakay alloys and various catalysts and for the determination of palladium in precious metals.

  6. Single ionization of molecular iodine

    NASA Astrophysics Data System (ADS)

    Smith, Dale L.; Tagliamonti, Vincent; Dragan, James; Gibson, George N.

    2017-01-01

    We performed a study of the single ionization of iodine, I2 over a range of wavelengths. Single ionization of I2 is unexpectedly found to have a contribution from inner molecular orbitals involving the 5 s electrons. The I+I+ dissociation channel was recorded through velocity map imaging, and the kinetic-energy release of each channel was determined with two-dimensional fitting of the images. Most of the measured kinetic-energy data were inconsistent with ionization to the X , A , and B states of I2 + , implying ionization from deeper orbitals. A pump-probe Fourier transform technique was used to look for modulation at the X - and A -state vibrational frequencies to see if they were intermediate states in a two-step process. X - and A -state modulation was seen only for kinetic-energy releases below 0.2 eV, consistent with dissociation through the B state. From these results and intensity-, polarization-, and wavelength-dependent experiments we found no evidence of bond softening, electron rescattering, or photon mediation through the X or A states to higher-energy single-ionization channels.

  7. Ionization Equilibrium and Equation of State in the Solar Interior

    NASA Technical Reports Server (NTRS)

    Rogers, F. J.

    1984-01-01

    Many-body formulations of the equations of state are restated as a set of Saha-like equations. It is shown that the resulting equations are unique and convergent. These equations are similar to the usual Saha equations to the order of the Debye-Huckel theory. Higher order corrections, however, require a more general formulation. It is demonstrated that the positive free energy resulting from the interaction of unscreened particles in high orbits depletes the occupation of these states, without the introduction of shifted energy levels.

  8. Princeton spectral equilibrium code: PSEC

    SciTech Connect

    Ling, K.M.; Jardin, S.C.

    1984-03-01

    A fast computer code has been developed to calculate free-boundary solutions to the plasma equilibrium equation that are consistent with the currents in external coils and conductors. The free-boundary formulation is based on the minimization of a mean-square error epsilon while the fixed-boundary solution is based on a variational principle and spectral representation of the coordinates x(psi,theta) and z(psi,theta). Specific calculations using the Columbia University Torus II, the Poloidal Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR) geometries are performed.

  9. The He II Proximity Effect and The Lifetime of Quasars

    NASA Astrophysics Data System (ADS)

    Khrykin, I. S.; Hennawi, J. F.; McQuinn, M.; Worseck, G.

    2016-06-01

    The lifetime of quasars is fundamental for understanding the growth of supermassive black holes, and is an important ingredient in models of the reionization of the intergalactic medium (IGM). However, despite various attempts to determine quasar lifetimes, current estimates from a variety of methods are uncertain by orders of magnitude. This work combines cosmological hydrodynamical simulations and 1D radiative transfer to investigate the structure and evolution of the He ii Lyα proximity zones around quasars at z ≃ 3-4. We show that the time evolution in the proximity zone can be described by a simple analytical model for the approach of the He ii fraction {x}{He{{II}}}(t) to ionization equilibrium, and use this picture to illustrate how the transmission profile depends on the quasar lifetime, quasar UV luminosity, and the ionization state of Helium in the ambient IGM (i.e., the average He ii fraction, or equivalently the metagalactic He ii ionizing background). A significant degeneracy exists between the lifetime and the average He ii fraction, however the latter can be determined from measurements of the He ii Lyα optical depth far from quasars, allowing the lifetime to be measured. We advocate stacking existing He ii quasar spectra at z ˜ 3, and show that the shape of this average proximity zone profile is sensitive to lifetimes as long as ˜30 Myr. At higher redshift z ˜ 4 where the He ii fraction is poorly constrained, degeneracies will make it challenging to determine these parameters independently. Our analytical model for He ii proximity zones should also provide a useful description of the properties of H i proximity zones around quasars at z ≃ 6-7.

  10. Getting Freshman in Equilibrium.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Various aspects of chemical equilibrium were discussed in six papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). These include student problems in understanding hydrolysis, helping students discover/uncover topics, equilibrium demonstrations, instructional strategies, and flaws to kinetic…

  11. Getting Freshman in Equilibrium.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Various aspects of chemical equilibrium were discussed in six papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). These include student problems in understanding hydrolysis, helping students discover/uncover topics, equilibrium demonstrations, instructional strategies, and flaws to kinetic…

  12. Equilibrium of KSTAR Plasma

    NASA Astrophysics Data System (ADS)

    You, K.-I.; Lee, D.-K.; Lee, S. G.; Bak, J. G.; Hahn, S. H.; Lao, L.; Kstar Team

    2011-10-01

    We have installed the EFIT code on our computing system and made some modification to reconstruct the plasma equilibrium of KSTAR (Korea Superconducting Tokamak Advanced Research). KSTAR PF and TF coil systems use a CICC (Cable-In-Conduit Conductor) type superconductor. The CICC jacket material for most PF and all TF coils is Incoloy 908, which is a magnetic material with relative magnetic permeability greater than 10 in low external field. We newly introduced Diamagnetic Loop and variational Motion Stark Effect signals to equilibrium reconstruction. In this paper, we present some results of equilibrium reconstruction with the EFIT code, assess the effects of newly introduced diagnsotics signal on the equilibrium reconstruction and compare the EFIT results with the various diagnostics data in various plasma conditions including H- and L- modes. In addition, we will show the Incoloy908 effects on the plasma equilibrium.

  13. Characterization of Ni(II) complexes of Schiff bases of amino acids and (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide using ion trap and QqTOF electrospray ionization tandem mass spectrometry.

    PubMed

    Jirásko, Robert; Holcapek, Michal; Kolárová, Lenka; Nádvorník, Milan; Popkov, Alexander

    2008-09-01

    This work demonstrates the application of electrospray ionization mass spectrometry (ESI-MS) using two different mass analyzers, ion trap and hybrid quadrupole time-of-flight (QqTOF) mass analyzer, for the structural characterization of Ni(II) complexes of Schiff bases of (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide with different amino acids. ESI enables the determination of molecular weight on the basis of rather simple positive-ion ESI mass spectra containing only protonated molecules and adducts with sodium or potassium ions. Fragmentation patterns are characterized by tandem mass spectrometric experiments, where both tandem mass analyzers provide complementary information. QqTOF data are used for the determination of elemental composition of individual ions due to mass accuracies always better than 3 ppm with the external calibration, while multistage tandem mass spectra obtained by the ion trap are suitable for studying the fragmentation paths. The novel aspect of our approach is the combination of mass accuracies and relative abundances of all isotopic peaks in isotopic clusters providing more powerful data for the structural characterization of organometallic compounds containing polyisotopic elements. The benefit of relative and absolute mean mass accuracies is demonstrated on the example of studied Ni(II) complexes.

  14. An analytical theory of a scattering of radio waves on meteoric ionization - II. Solution of the integro-differential equation in case of backscatter

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-12-01

    The integro-differential equation for the polarization vector P inside the meteor trail, representing the analytical solution of the set of Maxwell equations, is solved for the case of backscattering of radio waves on meteoric ionization. The transversal and longitudinal dimensions of a typical meteor trail are small in comparison to the distances to both transmitter and receiver and so the phase factor appearing in the kernel of the integral equation is large and rapidly changing. This allows us to use the method of stationary phase to obtain an approximate solution of the integral equation for the scattered field and for the corresponding generalized radar equation. The final solution is obtained by expanding it into the complete set of Bessel functions, which results in solving a system of linear algebraic equations for the coefficients of the expansion. The time behaviour of the meteor echoes is then obtained using the generalized radar equation. Examples are given for values of the electron density spanning a range from underdense meteor echoes to overdense meteor echoes. We show that the time behaviour of overdense meteor echoes using this method is very different from the one obtained using purely numerical solutions of the Maxwell equations. Our results are in much better agreement with the observations performed e.g. by the Ondřejov radar.

  15. Wave propagation in a quasi-chemical equilibrium plasma

    NASA Technical Reports Server (NTRS)

    Fang, T.-M.; Baum, H. R.

    1975-01-01

    Wave propagation in a quasi-chemical equilibrium plasma is studied. The plasma is infinite and without external fields. The chemical reactions are assumed to result from the ionization and recombination processes. When the gas is near equilibrium, the dominant role describing the evolution of a reacting plasma is played by the global conservation equations. These equations are first derived and then used to study the small amplitude wave motion for a near-equilibrium situation. Nontrivial damping effects have been obtained by including the conduction current terms.

  16. Inhibition of Bcl-2/xl With ABT-263 Selectively Kills Senescent Type II Pneumocytes and Reverses Persistent Pulmonary Fibrosis Induced by Ionizing Radiation in Mice.

    PubMed

    Pan, Jin; Li, Deguan; Xu, Yanfeng; Zhang, Junling; Wang, Yueying; Chen, Mengyi; Lin, Shuai; Huang, Lan; Chung, Eun Joo; Citrin, Deborah E; Wang, Yingying; Hauer-Jensen, Martin; Zhou, Daohong; Meng, Aimin

    2017-10-01

    Ionizing radiation (IR)-induced pulmonary fibrosis (PF) is an irreversible and severe late effect of thoracic radiation therapy. The goal of this study was to determine whether clearance of senescent cells with ABT-263, a senolytic drug that can selectively kill senescent cells, can reverse PF. C57BL/6J mice were exposed to a single dose of 17 Gy on the right side of the thorax. Sixteen weeks after IR, they were treated with 2 cycles of vehicle or ABT-263 (50 mg/kg per day for 5 days per cycle) by gavage. The effects of ABT-263 on IR-induced increases in senescent cells; elevation in the expression of selective inflammatory cytokines, matrix metalloproteinases, and tissue inhibitors of matrix metalloproteinases; and the severity of the tissue injury and fibrosis in the irradiated lungs were evaluated 3 weeks after the last treatment, in comparison with the changes observed in the irradiated lungs before treatment or after vehicle treatment. At 16 weeks after exposure of C57BL/6 mice to a single dose of 17 Gy, thoracic irradiation resulted in persistent PF associated with a significant increase in senescent cells. Treatment of the irradiated mice with ABT-263 after persistent PF had developed reduced senescent cells and reversed the disease. To our knowledge, this is the first study to demonstrate that PF can be reversed by a senolytic drug such as ABT-263 after it becomes a progressive disease. Therefore, ABT-263 has the potential to be developed as a new treatment for PF. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Porfimer-sodium (Photofrin-II) in combination with ionizing radiation inhibits tumor-initiating cell proliferation and improves glioblastoma treatment efficacy

    PubMed Central

    Benayoun, Liat; Schaffer, Moshe; Bril, Rotem; Gingis-Velitski, Svetlana; Segal, Ehud; Nevelsky, Alexsander; Satchi-Fainaro, Ronit; Shaked, Yuval

    2013-01-01

    Tumor relapse and tumor cell repopulation has been explained partially by the drug-free break period between successive conventional treatments. Strategies to overcome tumor relapse have been proposed, such as the use of chemotherapeutic drugs or radiation in small, frequent fractionated doses without an extended break period between treatment intervals. Yet, tumors usually acquire resistance and eventually escape the therapy. Several mechanisms have been proposed to explain the resistance of tumors to therapy, one of which involves the cancer stem cell or tumor-initiating cell (TIC) concept. TICs are believed to resist many conventional therapies, in part due to their slow proliferation and self-renewal capacities. Therefore, emerging efforts to eradicate TICs are being undertaken. Here we show that treatment with Photofrin II, among the most frequently used photosensitizers, sensitized a TIC-enriched U-87MG human glioblastoma cell to radiation, and improve treatment outcome when used in combination with radiotherapy. A U-87MG tumor cell population enriched with radiation-resistant TICs becomes radio-sensitive, and an inhibition of cell proliferation and an increase in apoptosis are found in the presence of Photofrin II. Furthermore, U-87MG tumors implanted in mice treated with Photofrin II and radiation exhibit a significant reduction in angiogenesis and vasculogenesis, and an increased percentage of apoptotic TICs when compared with tumors grown in mice treated with radiation alone. Collectively, our results offer a new possible explanation for the therapeutic effects of radiosensitizing agents, and suggest that combinatorial treatment modalities can effectively prolong treatment outcome of glioblastoma tumors by inhibiting tumor growth mediated by TICs. PMID:23114641

  18. Simplified method for calculation of equilibrium plasma composition

    NASA Astrophysics Data System (ADS)

    Rydalevskaya, Maria A.

    2017-06-01

    In this work, a simplified method for the evaluation of equilibrium composition of plasmas consisted of monoatomic species is proposed. Multicomponent gas systems resulting from thermal ionization of spatially uniform mixtures are assumed enough rarefied to be treated as ideal gases even after multiple ionization steps. The method developed for the calculation of equilibrium composition of these mixtures makes use of the fundamental principles of statistical physics. Equilibrium concentrations of mixture components are determined by integration of distribution functions over the space of momentum and summation over electronic energy levels. These functions correspond to the entropy maximum. To determine unknown parameters, the systems of equations corresponding to the normalization conditions are derived. It is shown that the systems may be reduced to one algebraic equation if the equilibrium temperature is known. Numeral method to solve this equation is proposed. Special attention is given to the ionized mixtures, generated from the atoms of a single chemical species and the situations, when in the gas only the first- or the first- and second-order ionization are possible.

  19. Non-equilibrium in low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Taccogna, Francesco; Dilecce, Giorgio

    2016-11-01

    The wide range of applications of cold plasmas originates from their special characteristic of being a physical system out of thermodynamic equilibrium. This property enhances its reactivity at low gas temperature and allows to obtain macroscopic effects with a moderate energy consumption. In this review, the basic concepts of non-equilibrium in ionized gases are treated by showing why and how non-equilibrium functions of the degrees of freedom are formed in a variety of natural and man-made plasmas with particular emphasis on the progress made in the last decade. The modern point of view of a molecular basis of non-equilibrium and of a state-to-state kinetic approach is adopted. Computational and diagnostic techniques used to investigate the non-equilibrium conditions are also surveyed.

  20. Chemical Principles Revisited: Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1980-01-01

    Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)

  1. Response reactions: equilibrium coupling.

    PubMed

    Hoffmann, Eufrozina A; Nagypal, Istvan

    2006-06-01

    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle.

  2. Thermodynamics "beyond" local equilibrium

    NASA Astrophysics Data System (ADS)

    Vilar, Jose; Rubi, Miguel

    2002-03-01

    Nonequilibrium thermodynamics has shown its applicability in a wide variety of different situations pertaining to fields such as physics, chemistry, biology, and engineering. As successful as it is, however, its current formulation considers only systems close to equilibrium, those satisfying the so-called local equilibrium hypothesis. Here we show that diffusion processes that occur far away from equilibrium can be viewed as at local equilibrium in a space that includes all the relevant variables in addition to the spatial coordinate. In this way, nonequilibrium thermodynamics can be used and the difficulties and ambiguities associated with the lack of a thermodynamic description disappear. We analyze explicitly the inertial effects in diffusion and outline how the main ideas can be applied to other situations. [J.M.G. Vilar and J.M. Rubi, Proc. Natl. Acad. Sci. USA 98, 11081-11084 (2001)].

  3. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  4. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  5. Poly [1,1'-bis(ethynyl)-4,4'-biphenyl(bis-tributylphosphine)Pt(II)] solutions used as low dose ionizing radiation dosimeter

    SciTech Connect

    Bronze-Uhle, E. S.; Graeff, C. F. O.; Batagin-Neto, A.; Fernandes, D. M.; Fratoddi, I.; Russo, M. V.

    2013-06-17

    In this work, the effect of gamma radiation on the optical properties of polymetallayne poly[1,1'-bis(ethynyl)-4,4'-biphenyl(bis-tributylphosphine)Pt(II)] (Pt-DEBP) in chloroform solution is studied. The samples were irradiated at room temperature with doses from 0.01 Gy to 1 Gy using a {sup 60}Co gamma ray source. A new band at 420 nm is observed in the emission spectra, in superposition to the emission maximum at 398 nm, linearly dependent on dose. We propose to use the ratio of the emission amplitude bands as the dosimetric parameter. This method proved to be robust, accurate, and can be used as a dosimeter in medical applications.

  6. INSTRUMENTS AND METHODS OF INVESTIGATION: Surface-ionization field mass-spectrometry studies of nonequilibrium surface ionization

    NASA Astrophysics Data System (ADS)

    Blashenkov, Nikolai M.; Lavrent'ev, Gennadii Ya

    2007-01-01

    The ionization of polyatomic molecules on tungsten and tungsten oxide surfaces is considered for quasiequilibrium or essentially nonequilibrium conditions (in the latter case, the term nonequilibrium surface ionization is used for adsorbate ionization). Heterogeneous reactions are supposed to proceed through monomolecular decay of polyatomic molecules or fragments of multimolecular complexes. The nonequilibrium nature of these reactions is established. The dependences of the current density of disordered ions on the surface temperature, electric field strength, and ionized particle energy distribution are obtained in analytical form. Heterogeneous dissociation energies, the ionization potentials of radicals, and the magnitude of reaction departure from equilibrium are determined from experimental data, as are energy exchange times between reaction products and surfaces, the number of molecules in molecular complexes, and the number of effective degrees of freedom in molecules and complexes. In collecting the data a new technique relying on surface-ionization field mass-spectrometry was applied.

  7. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  8. Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2017-02-01

    The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great

  9. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  10. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  11. Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Nagy, Elisabeth; Becker, Simone; Sóki, József; Urbán, Edit; Kostrzewa, Markus

    2011-11-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used in clinical microbiological laboratories to identify bacteria and fungi at a species level and to subtype them. The cfiA gene encoding the unique carbapenemases found in Bacteroides is restricted to division II Bacteroides fragilis strains. The aim of this study was to evaluate whether MALDI-TOF MS is suitable for differentiating B. fragilis strains which harbour the cfiA gene from those that do not. A well-defined collection of 40 B. fragilis isolates with known imipenem MICs (0.062->32 mg l(-1)) were selected for this study. Twelve B. fragilis strains with known cfiA status, including NCTC 9343 (division I) and TAL3636 (division II), were measured by means of microflex LT MALDI-TOF MS and well-defined differences in mass spectra between the cfiA-positive and cfiA-negative strains were found in the interval 4000-5500 Da. A further 28 strains were selected for the blind measurements: 9 cfiA-positive clinical isolates with different imipenem MICs ranging between 0.06 and >32 mg l(-1) (different expressions of the metallo-β-lactamase gene) were clearly separated from the 19 cfiA-negative isolates. The presence or absence of the selected peaks in all tested strains clearly differentiated the strains belonging to B. fragilis division I (cfiA-negative) or division II (cfiA-positive). These results suggest a realistic method for differentiating division II B. fragilis strains (harbouring the cfiA gene) and to determine them at a species level at the same time. Although not all cfiA-positive B. fragilis strains are resistant to carbapenems, they all have the possibility of becoming resistant to this group of antibiotics by acquisition of an appropriate IS element for full expression of the cfiA gene, leading to possible treatment failure.

  12. Universality in equilibrium and away from it: A personal perspective

    SciTech Connect

    Munoz, Miguel A.

    2011-03-24

    In this talk/paper I discuss the concept of universality in phase transitions and the question of whether universality classes are more robust in equilibrium than away from it. In both of these situations, the main ingredients determining universality are symmetries, conservation laws, the dimension of the space and of the order-parameter and the presence of long-range interactions or quenched disorder. The existence of detailed-balance and fluctuation-dissipation theorems imposes severe constraints on equilibrium systems, allowing to define universality classes in a very robust way; instead, non-equilibrium allows for more variability. Still, quite robust non-equilibrium universality classes have been identified in the last decades. Here, I discuss some examples in which (i) non-equilibrium phase transitions are simply controlled by equilibrium critical points, i.e. non-equilibrium ingredients turn out to be irrelevant in the renormalization group sense and (ii) non-equilibrium situations in which equilibrium seems to come out of the blue, generating an adequate effective description of intrinsically non-equilibrium problems. Afterwards, I shall describe different genuinely non-equilibrium phase transitions in which introducing small, apparently innocuous changes (namely: presence or absence of an underlying lattice, parity conservation in the overall number of particles, existence of an un-accessible vacuum state, deterministic versus stochastic microscopic rules, presence or absence of a Fermionic constraint), the critical behavior is altered, making the case for lack of robustness. However, it will be argued that in all these examples, there is an underlying good reason (in terms of general principles) for universality to be altered. The final conclusions are that: (i) robust universality classes exist both in equilibrium and non-equilibrium; (ii) symmetry and conservation principles are crucial in both, (iii) non-equilibrium allows for more variability (i

  13. The H[subscript 3]PO[subscript 4] Acid Ionization Reactions: A Capstone Multiconcept Thermodynamics General Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; Barlag, Rebecca; Wise, Lindy; McMills, Lauren

    2013-01-01

    The thermodynamic properties of weak acid ionization reactions are determined. The thermodynamic properties are corresponding values of the absolute temperature (T), the weak acid equilibrium constant (K[subscript a]), the enthalpy of ionization (delta[subscript i]H[degrees]), and the entropy of ionization (delta[subscript i]S[degrees]). The…

  14. The H[subscript 3]PO[subscript 4] Acid Ionization Reactions: A Capstone Multiconcept Thermodynamics General Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; Barlag, Rebecca; Wise, Lindy; McMills, Lauren

    2013-01-01

    The thermodynamic properties of weak acid ionization reactions are determined. The thermodynamic properties are corresponding values of the absolute temperature (T), the weak acid equilibrium constant (K[subscript a]), the enthalpy of ionization (delta[subscript i]H[degrees]), and the entropy of ionization (delta[subscript i]S[degrees]). The…

  15. Dispersal of molecular clouds by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Walch, S. K.; Whitworth, A. P.; Bisbas, T.; Wünsch, R.; Hubber, D.

    2012-11-01

    Feedback from massive stars is believed to be a key element in the evolution of molecular clouds. We use high-resolution 3D smoothed particle hydrodynamics simulations to explore the dynamical effects of a single O7 star-emitting ionizing photons at 1049 s-1 and located at the centre of a molecular cloud with mass 104 M⊙ and radius 6.4 pc; we also perform comparison simulations in which the ionizing star is removed. The initial internal structure of the cloud is characterized by its fractal dimension, which we vary between D=2.0 and 2.8, and the standard deviation of the approximately log-normal initial densityPDF, which is σ10 = 0.38 for all clouds. (i) As regards star formation, in the short term ionizing feedback is positive, in the sense that star formation occurs much more quickly (than in the comparison simulations), in gas that is compressed by the high pressure of the ionized gas. However, in the long term ionizing feedback is negative, in the sense that most of the cloud is dispersed with an outflow rate of up to ˜10-2 M⊙yr-1, on a time-scale comparable with the sound-crossing time for the ionized gas (˜1-2 Myr ), and triggered star formation is therefore limited to a few per cent of the cloud's mass. We will describe in greater detail the statistics of the triggered star formation in a companion paper. (ii) As regards the morphology of the ionization fronts (IFs) bounding the H II region and the systematics of outflowing gas, we distinguish two regimes. For low D≲2.2, the initial cloud is dominated by large-scale structures, so the neutral gas tends to be swept up into a few extended coherent shells, and the ionized gas blows out through a few large holes between these shells; we term these H II regions shell dominated. Conversely, for high D≳2.6, the initial cloud is dominated by small-scale structures, and these are quickly overrun by the advancing IF, thereby producing neutral pillars protruding into the H II region, whilst the ionized gas

  16. Diagnosing transient ionization in dynamic events

    NASA Astrophysics Data System (ADS)

    Doyle, J. G.; Giunta, A.; Madjarska, M. S.; Summers, H.; O'Mullane, M.; Singh, A.

    2013-09-01

    Aims: The present study aims to provide a diagnostic line ratio that will enable the observer to determine whether a plasma is in a state of transient ionization. Methods: We use the Atomic Data and Analysis Structure (ADAS) to calculate line contribution functions for two lines, Si iv 1394 Å and O iv 1401 Å, formed in the solar transition region. The generalized collisional-radiative theory is used. It includes all radiative and electron collisional processes, except for photon-induced processes. State-resolved direct ionization and recombination to and from the next ionization stage are also taken into account. Results: For dynamic bursts with a decay time of a few seconds, the Si iv 1394 Å line can be enhanced by a factor of 2-4 in the first fraction of a second with the peak in the line contribution function occurring initially at a higher electron temperature due to transient ionization compared to ionization equilibrium conditions. On the other hand, the O iv 1401 Å does not show such any enhancement. Thus the ratio of these two lines, which can be observed with the Interface Region Imaging Spectrograph, can be used as a diagnostic of transient ionization. Conclusions: We show that simultaneous high-cadence observations of two lines formed in the solar transition region may be used as a direct diagnostic of whether the observed plasma is in transient ionization. The ratio of these two lines can change by a factor of four in a few seconds owing to transient ionization alone.

  17. Quantum statistical mechanics of dense partially ionized hydrogen

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogen plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. The statistical mechanical calculation of the plasma equation of state is intended for stellar interiors. The general approach is extended to the calculation of the equation of state of the outer layers of large planets.

  18. Photoionized gaseous nebulae and magnetized stellar winds: The evolution and shaping of H II regions and planetary nebulae

    NASA Astrophysics Data System (ADS)

    Franco, José; García-Segura, Guillermo; Kurtz, Stan E.; López, José A.

    2001-05-01

    The early evolution of hydrogen+ (H II) regions is controlled by the properties of the star-forming cloud cores. The observed density distributions in some young H II regions indicate that the power-law stratifications can be steeper than r-2. Ionization fronts can overrun these gradients and the ionized outflows are strongly accelerated along these steep density distributions. Thus, photoionized regions can either reach pressure equilibrium inside the inner parts of the high-pressure cores [with sizes and densities similar to those observed in ultra compact (UC) H II regions], or create bright H II regions with extended emission. The density inhomogeneities engulfed within the ionization fronts create corrugations in the front, which in turn drive instabilities in the ionization-shock (I-S) front. These instabilities grow on short time scales and lead to the fragmentation of the dense shells generated by the shock fronts. Thus, new clumps are continuously created from the fragmented shell, and the resulting finger-like structures can explain the existence of elephant trunks and cometary-like globules in most H II regions. In the case of planetary nebulae (PNe), wind asymmetries and magnetic fields from rotating stars, along with precession of the rotation axis, can create the wide range of observed PNe morphologies and collimated outflows (jets). Magnetic collimation and jet formation in PNe become very efficient after the flow has passed through the reverse shock of the PN.

  19. Immunity by equilibrium.

    PubMed

    Eberl, Gérard

    2016-08-01

    The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.

  20. Determination of nonaxisymmetric equilibrium

    SciTech Connect

    Elkin, D.

    1980-01-01

    The Princeton Equilibrium Code is modified to determine the equilibrium surfaces for a large aspect ratio toroidal system with helical magnetic fields. The code may easily be made to include any variety of modes. Verification of the code is made by comparison with an analytic solution for l = 3. Previously observed shifting of the magnetic axis with increasing pressure or with a changed externally applied vertical field is obtained. The case l = 0, a bumpy torus, gives convergence only for the lenient convergence tolerance of epsilon/sub b/ = 1.0 x 10-/sup 2/.

  1. Beyond Equilibrium Thermodynamics

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2005-01-01

    Beyond Equilibrium Thermodynamics fills a niche in the market by providing a comprehensive introduction to a new, emerging topic in the field. The importance of non-equilibrium thermodynamics is addressed in order to fully understand how a system works, whether it is in a biological system like the brain or a system that develops plastic. In order to fully grasp the subject, the book clearly explains the physical concepts and mathematics involved, as well as presenting problems and solutions; over 200 exercises and answers are included. Engineers, scientists, and applied mathematicians can all use the book to address their problems in modelling, calculating, and understanding dynamic responses of materials.

  2. Axisymmetric model of the ionized gas in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.; Simpson, J. P.; Haas, M. R.; Erickson, E. F.

    1991-01-01

    New ionization and thermal equilibrium models for the ionized gas in the Orion Nebula with an axisymmetric two-dimensional 'blister' geometry/density distribution are presented. The HII region is represented more realistically than in previous models, while the physical detail of the microphysics and radiative transfer of the earlier spherical modeling is maintained. The predicted surface brightnesses are compared with observations for a large set of lines at different positions to determine the best-fitting physical parameters. The model explains the strong singly ionized line emission along the lines of sight near the Trapezium.

  3. Axisymmetric model of the ionized gas in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.; Simpson, J. P.; Haas, M. R.; Erickson, E. F.

    1991-01-01

    New ionization and thermal equilibrium models for the ionized gas in the Orion Nebula with an axisymmetric two-dimensional 'blister' geometry/density distribution are presented. The HII region is represented more realistically than in previous models, while the physical detail of the microphysics and radiative transfer of the earlier spherical modeling is maintained. The predicted surface brightnesses are compared with observations for a large set of lines at different positions to determine the best-fitting physical parameters. The model explains the strong singly ionized line emission along the lines of sight near the Trapezium.

  4. An Updated Equilibrium Machine

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are…

  5. An Updated Equilibrium Machine

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are…

  6. Roles of ionizing radiation in cell transformation

    SciTech Connect

    Tobias, C.A.; Albright, N.W.; Yang, T.C.

    1983-07-01

    Earlier the authors described a repair misrepair model (RMR-I) which is applicable for radiations of low LET, e.g., x rays and gamma rays. RMR-II was described later. Here is introduced a mathematical modification of the RMR model, RMR-III, which is intended to describe lethal effects caused by heavily ionizing tracks. 31 references, 4 figures.

  7. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  8. Non-Equilibrium Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Ciccotti, Giovanni; Kapral, Raymond; Sergi, Alessandro

    Statistical mechanics provides a well-established link between microscopic equilibrium states and thermodynamics. If one considers systems out of equilibrium, the link between microscopic dynamical properties and non-equilibrium macroscopic states is more difficult to establish [1,2]. For systems lying near equilibrium, linear response theory provides a route to derive linear macroscopic laws and the microscopic expressions for the transport properties that enter the constitutive relations. If the system is displaced far from equilibrium, no fully general theory exists to treat such systems. By restricting consideration to a class of non-equilibrium states which arise from perturbations (linear or non-linear) of an equilibrium state, methods can be developed to treat non-equilibrium states. Furthermore, non-equilibrium molecular dynamics (NEMD) simulation methods can be devised to provide estimates for the transport properties of these systems.

  9. Equilibrium properties of indium and iodine in LWIR HgCdTe

    NASA Astrophysics Data System (ADS)

    Berding, M. A.

    2000-06-01

    The equilibrium properties of indium and iodine HgCdTe are calculated from ab initio methods and compared with experimental results. Indium, a group III element, is found to substitute exclusively on the group II sublattice, behaving as a singly ionizable donor throughout the existence region. Indium forms a neutral bound complex with a cation vacancy, and although this complex accounts for less than 1% of the indium incorporation at the temperatures considered >250°C, it will be important in the diffusion of the indium. Iodine, a group VII element, is found to substitute on the group VI sublattice, also behaving as a singly ionizable donor throughout the existence region. Iodine is found to bind strongly to the cation vacancy, and this neutral complex dominates the incorporation under mercury-deficient conditions. Even under near mercury-saturated conditions, at low temperature the complex is still present in significant concentrations. Although iodine incorporation on the cation sublattice is predicted, it never represents a significant source of inactive incorporation.

  10. Radioactive equilibrium in ancient marine sediments

    USGS Publications Warehouse

    Breger, I.A.

    1955-01-01

    Radioactive equilibrium in eight marine sedimentary formations has been studied by means of direct determinations of uranium, radium and thorium. Alpha-particle counting has also been carried out in order to cross-calibrate thick-source counting techniques. The maximum deviation from radioactive equilibrium that has been noted is 11 per cent-indicating that there is probably equilibrium in all the formations analyzed. Thick-source alpha-particle counting by means of a proportional counter or an ionization chamber leads to high results when the samples contain less than about 10 p.p.m. of uranium. For samples having a higher content of uranium the results are in excellent agreement with each other and with those obtained by direct analytical techniques. The thorium contents that have been obtained correspond well to the average values reported in the literature. The uranium content of marine sediments may be appreciably higher than the average values that have been reported for sedimentary rocks. Data show that there is up to fourteen times the percentage of uranium as of thorium in the formations studied and that the percentage of thorium never exceeds that of uranium. While the proximity of a depositional environment to a land mass may influence the concentration of uranium in a marine sediment, this is not true with thorium. ?? 1955.

  11. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  12. An Updated Equilibrium Machine

    NASA Astrophysics Data System (ADS)

    Schultz, Emeric

    2008-08-01

    A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are applied. Equilibrium can be approached from different distributions of balls in the container under different conditions. The Le Châtelier principle can be demonstrated. Kinetic concepts can be demonstrated by changing the nature of the barrier, either changing the height or by having various sized holes in the barrier. Thermodynamic concepts can be demonstrated by taping over some or all of the openings and restricting air flow into container on either side of the barrier.

  13. Solids Far from Equilibrium

    NASA Astrophysics Data System (ADS)

    Godrèche, C.

    2011-03-01

    Preface; 1. Shape and growth of crystals P. Nozières; 2. Instabilities of planar solidification fronts B. Caroli, C. Caroli and B. Roulet; 3. An introduction to the kinetics of first-order phase transition J. S. Langer; 4. Dendritic growth and related topics Y. Pomeau and M. Ben Amar; 5. Growth and aggregation far from equilibrium L. M. Sander; 6. Kinetic roughening of growing surfaces J. Krug and H. Spohn; Acknowledgements; References; Index.

  14. Non-equilibrium proteins.

    PubMed

    Klonowski, W

    2001-07-01

    There exist no methodical studies concerning non-equilibrium systems in cellular biology. This paper is an attempt to partially fill this shortcoming. We have undertaken an extensive data-mining operation in the existing scientific literature to find scattered information about non-equilibrium subcellular systems, in particular concerning fast proteins, i.e. those with short turnover half-time. We have advanced the hypothesis that functionality in fast proteins emerges as a consequence of their intrinsic physical instability that arises due to conformational strains resulting from co-translational folding (the interdependence between chain elongation and chain folding during biosynthesis on ribosomes). Such intrinsic physical instability, a kind of conformon (Klonowski-Klonowska conformon, according to Ji, (Molecular Theories of Cell Life and Death, Rutgers University Press, New Brunswick, 1991)) is probably the most important feature determining functionality and timing in these proteins. If our hypothesis is true, the turnover half-time of fast proteins should be positively correlated with their molecular weight, and some experimental results (Ames et al., J. Neurochem. 35 (1980) 131) indeed demonstrated such a correlation. Once the native structure (and function) of a fast protein macromolecule is lost, it may not be recovered--denaturation of such proteins will always be irreversible; therefore, we searched for information on irreversible denaturation. Only simulation and modeling of protein co-translational folding may answer the questions concerning fast proteins (Ruggiero and Sacile, Med. Biol. Eng. Comp. 37 (Suppl. 1) (1999) 363). Non-equilibrium structures may also be built up of protein subunits, even if each one taken by itself is in thermodynamic equilibrium (oligomeric proteins; sub-cellular sol-gel dissipative network structures).

  15. Molecular equilibrium with condensation

    NASA Astrophysics Data System (ADS)

    Sharp, C. M.; Huebner, W. F.

    1990-02-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated.

  16. Microwave Mapping Demonstration Using the Thermochromic Cobalt Chloride Equilibrium

    ERIC Educational Resources Information Center

    Nguyen, Vu D.; Birdwhistell, Kurt R.

    2014-01-01

    An update to the thermochromic cobalt(II) chloride equilibrium demonstration is described. Filter paper that has been saturated with aqueous cobalt(II) chloride is heated for seconds in a microwave oven, producing a color change. The resulting pink and blue map is used to colorfully demonstrate Le Châtelier's principle and to illuminate the…

  17. Microwave Mapping Demonstration Using the Thermochromic Cobalt Chloride Equilibrium

    ERIC Educational Resources Information Center

    Nguyen, Vu D.; Birdwhistell, Kurt R.

    2014-01-01

    An update to the thermochromic cobalt(II) chloride equilibrium demonstration is described. Filter paper that has been saturated with aqueous cobalt(II) chloride is heated for seconds in a microwave oven, producing a color change. The resulting pink and blue map is used to colorfully demonstrate Le Châtelier's principle and to illuminate the…

  18. Equilibrium Electroconvective Instability

    NASA Astrophysics Data System (ADS)

    Rubinstein, I.; Zaltzman, B.

    2015-03-01

    Since its prediction 15 years ago, hydrodynamic instability in concentration polarization at a charge-selective interface has been attributed to nonequilibrium electro-osmosis related to the extended space charge which develops at the limiting current. This attribution had a double basis. On the one hand, it has been recognized that neither equilibrium electro-osmosis nor bulk electroconvection can yield instability for a perfectly charge-selective solid. On the other hand, it has been shown that nonequilibrium electro-osmosis can. The first theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge selectivity for the sake of simplicity and so did the subsequent studies of various time-dependent and nonlinear features of electro-osmotic instability. In this Letter, we show that relaxing the assumption of perfect charge selectivity (tantamount to fixing the electrochemical potential of counterions in the solid) allows for the equilibrium electroconvective instability. In addition, we suggest a simple experimental test for determining the true, either equilibrium or nonequilibrium, origin of instability in concentration polarization.

  19. Statistical equilibrium calculations for silicon in early-type model stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Kamp, L. W.

    1976-01-01

    Line profiles of 36 multiplets of silicon (Si) II, III, and IV were computed for a grid of model atmospheres covering the range from 15,000 to 35,000 K in effective temperature and 2.5 to 4.5 in log (gravity). The computations involved simultaneous solution of the steady-state statistical equilibrium equations for the populations and of the equation of radiative transfer in the lines. The variables were linearized, and successive corrections were computed until a minimal accuracy of 1/1000 in the line intensities was reached. The common assumption of local thermodynamic equilibrium (LTE) was dropped. The model atmospheres used also were computed by non-LTE methods. Some effects that were incorporated into the calculations were the depression of the continuum by free electrons, hydrogen and ionized helium line blocking, and auto-ionization and dielectronic recombination, which later were found to be insignificant. Use of radiation damping and detailed electron (quadratic Stark) damping constants had small but significant effects on the strong resonance lines of Si III and IV. For weak and intermediate-strength lines, large differences with respect to LTE computations, the results of which are also presented, were found in line shapes and strengths. For the strong lines the differences are generally small, except for the models at the hot, low-gravity extreme of our range. These computations should be useful in the interpretation of the spectra of stars in the spectral range B0-B5, luminosity classes III, IV, and V.

  20. Thermal low spin-high spin equilibrium of Fe(II) in thiospinels CuFe{sub 0.5}(Sn{sub (1-x)}Ti{sub x}){sub 1.5}S{sub 4} (0{<=}x{<=}1)

    SciTech Connect

    Womes, M.; Reibel, C.; Mari, A.; Zitoun, D.

    2011-04-15

    A series of spinel compounds with composition CuFe{sub 0.5}(Sn{sub (1-x)}Ti{sub x}){sub 1.5}S{sub 4} (0{<=}x{<=}1) is analysed by X-ray diffraction, measurements of magnetic susceptibilities and {sup 57}Fe Moessbauer spectroscopy. All samples show a temperature-dependent equilibrium between an electronic low spin 3d(t{sub 2g}){sup 6}(e{sub g}){sup 0} and a high spin 3d(t{sub 2g}){sup 4}(e{sub g}){sup 2} state of the Fe(II) ions. The spin crossover is of the continuous type and extends over several hundred degrees in all samples. The Sn/Ti ratio influences the thermal equilibrium between the two spin states. Substitution of Sn(IV) by the smaller Ti(IV) ions leads to a more compact crystal lattice, which, in contrast to many metal-organic Fe(II) complexes, does not stabilise the low spin state, but increases the residual high spin fraction for T{yields}0 K. The role played by antiferromagnetic spin coupling in the stabilisation of the high spin state is discussed. The results are compared with model calculations treating the effect of magnetic interactions on spin state equilibria. -- Graphical Abstract: Comparison of fractions of high spin Fe(II) from Moessbauer spectra (circles) with plots of {chi}{sub m}T (dots) versus T. Discrepancies between both methods indicate anti-ferromagnetic spin coupling. Display Omitted Research highlights: {yields} Many Fe(II) complexes show thermally induced high spin-low spin crossover. {yields} Spin crossover in spinel compounds is extremely scarce. {yields} Usually, lattice contraction favours the low spin state in Fe(II) complexes. {yields} In these spinels, lattice contraction favours the high spin state. {yields} The stabilisation of the high spin state is explained by spin-spin interactions.

  1. Tuning of the copper-thioether bond in tetradentate N₃S(thioether) ligands; O-O bond reductive cleavage via a [Cu(II)₂(μ-1,2-peroxo)]²⁺/[Cu(III)₂(μ-oxo)₂]²⁺ equilibrium.

    PubMed

    Kim, Sunghee; Ginsbach, Jake W; Billah, A Imtiaz; Siegler, Maxime A; Moore, Cathy D; Solomon, Edward I; Karlin, Kenneth D

    2014-06-04

    Current interest in copper/dioxygen reactivity includes the influence of thioether sulfur ligation, as it concerns the formation, structures, and properties of derived copper-dioxygen complexes. Here, we report on the chemistry of {L-Cu(I)}2-(O2) species L = (DMM)ESE, (DMM)ESP, and (DMM)ESDP, which are N3S(thioether)-based ligands varied in the nature of a substituent on the S atom, along with a related N3O(ether) (EOE) ligand. Cu(I) and Cu(II) complexes have been synthesized and crystallographically characterized. Copper(I) complexes are dimeric in the solid state, [{L-Cu(I)}2](B(C6F5)4)2, however are shown by diffusion-ordered NMR spectroscopy to be mononuclear in solution. Copper(II) complexes with a general formulation [L-Cu(II)(X)](n+) {X = ClO4(-), n = 1, or X = H2O, n = 2} exhibit distorted square pyramidal coordination geometries and progressively weaker axial thioether ligation across the series. Oxygenation (-130 °C) of {((DMM)ESE)Cu(I)}(+) results in the formation of a trans-μ-1,2-peroxodicopper(II) species [{((DMM)ESE)Cu(II)}2(μ-1,2-O2(2-))](2+) (1(P)). Weakening the Cu-S bond via a change to the thioether donor found in (DMM)ESP leads to the initial formation of [{((DMM)ESP)Cu(II)}2(μ-1,2-O2(2-))](2+) (2(P)) that subsequently isomerizes to a bis-μ-oxodicopper(III) complex, [{((DMM)ESP)Cu(III)}2(μ-O(2-))2](2+) (2(O)), with 2(P) and 2(O) in equilibrium (K(eq) = [2(O)]/[2(P)] = 2.6 at -130 °C). Formulations for these Cu/O2 adducts were confirmed by resonance Raman (rR) spectroscopy. This solution mixture is sensitive to the addition of methylsulfonate, which shifts the equilibrium toward the bis-μ-oxo isomer. Further weakening of the Cu-S bond in (DMM)ESDP or substitution with an ether donor in (DMM)EOE leads to only a bis-μ-oxo species (3(O) and 4(O), respectively). Reactivity studies indicate that the bis-μ-oxodicopper(III) species (2(O), 3(O)) and not the trans-peroxo isomers (1(P) and 2(P)) are responsible for the observed ligand

  2. Tuning of the Copper–Thioether Bond in Tetradentate N3S(thioether) Ligands; O–O Bond Reductive Cleavage via a [CuII2(μ-1,2-peroxo)]2+/[CuIII2(μ-oxo)2]2+ Equilibrium

    PubMed Central

    2015-01-01

    Current interest in copper/dioxygen reactivity includes the influence of thioether sulfur ligation, as it concerns the formation, structures, and properties of derived copper-dioxygen complexes. Here, we report on the chemistry of {L-CuI}2-(O2) species L = DMMESE, DMMESP, and DMMESDP, which are N3S(thioether)-based ligands varied in the nature of a substituent on the S atom, along with a related N3O(ether) (EOE) ligand. CuI and CuII complexes have been synthesized and crystallographically characterized. Copper(I) complexes are dimeric in the solid state, [{L-CuI}2](B(C6F5)4)2, however are shown by diffusion-ordered NMR spectroscopy to be mononuclear in solution. Copper(II) complexes with a general formulation [L-CuII(X)]n+ {X = ClO4–, n = 1, or X = H2O, n = 2} exhibit distorted square pyramidal coordination geometries and progressively weaker axial thioether ligation across the series. Oxygenation (−130 °C) of {(DMMESE)CuI}+ results in the formation of a trans-μ-1,2-peroxodicopper(II) species [{(DMMESE)CuII}2(μ-1,2-O22–)]2+ (1P). Weakening the Cu–S bond via a change to the thioether donor found in DMMESP leads to the initial formation of [{(DMMESP)CuII}2(μ-1,2-O22–)]2+ (2P) that subsequently isomerizes to a bis-μ-oxodicopper(III) complex, [{(DMMESP)CuIII}2(μ-O2–)2]2+ (2O), with 2P and 2O in equilibrium (Keq = [2O]/[2P] = 2.6 at −130 °C). Formulations for these Cu/O2 adducts were confirmed by resonance Raman (rR) spectroscopy. This solution mixture is sensitive to the addition of methylsulfonate, which shifts the equilibrium toward the bis-μ-oxo isomer. Further weakening of the Cu–S bond in DMMESDP or substitution with an ether donor in DMMEOE leads to only a bis-μ-oxo species (3O and 4O, respectively). Reactivity studies indicate that the bis-μ-oxodicopper(III) species (2O, 3O) and not the trans-peroxo isomers (1P and 2P) are responsible for the observed ligand sulfoxidation. Our findings concerning the existence of the 2P/2O equilibrium

  3. Structural design using equilibrium programming

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.

    1992-01-01

    Multiple nonlinear programming methods are combined in the method of equilibrium programming. Equilibrium programming theory has been appied to problems in operations research, and in the present study it is investigated as a framework to solve structural design problems. Several existing formal methods for structural optimization are shown to actually be equilibrium programming methods. Additionally, the equilibrium programming framework is utilized to develop a new structural design method. Selected computational results are presented to demonstrate the methods.

  4. The simultaneous measurement of ionized and total calcium and ionized and total magnesium in intensive care unit patients.

    PubMed

    Koch, Stephen M; Warters, R David; Mehlhorn, Uwe

    2002-09-01

    This study was undertaken to determine the relationship between total magnesium and ionized magnesium in critically ill and injured patients. Eighty consecutive intensive care unit (ICU) admissions were evaluated and 34 patients were enrolled in the study. Patients were enrolled who had indwelling arterial catheters and were within 4 days of ICU admission. Six milliliters of blood was collected and assayed simultaneously for total and ionized magnesium, total and ionized calcium, and albumin level. An Acute Physiology and Chronic Health Evaluation (APACHE II) score was calculated at the time of blood collection. The results of our study show a strong correlation between ionized and total magnesium (R =.903) that was not seen between ionized and total calcium (R =.748). We found total hypomagnesemia in 18% and ionized hypomagnesemia in 21% of ICU patients. We also found that 14.7% (5 of 34) of our patients had ionized hypermagnesemia whereas none displayed total hypermagnesemia. We did not find a correlation between APACHE II, sex, race, albumin level, and any electrolyte level. The mortality rate in the subjects studied was 21% (7 of 34). Based on our results we would recommend that intensivists directly measure ionized calcium whereas ionized magnesium can be inferred from total magnesium. Copyright 2002, Elsevier Science (USA). All rights reserved.

  5. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  6. Thermochemistry of Silicate Speciation in Aqueous Sodium Silicate Solutions: Ionization and Polymerization of Small Silicate Ion

    DTIC Science & Technology

    1993-07-12

    reasonable success, but a number of simplifications were used. For instance, the polymerization equilibrium constants were assumed to be independent of...Another weakness lies in the functionality assumed for the ionization equilibrium constants . As will be discussed below, experimental data that the free...characterize silicate species in fairly complex alkaline silicate solutions and thereby to estimate a large number of equilibrium constants [27,28

  7. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    SciTech Connect

    Aslanyan, V.; Tallents, G. J.

    2014-06-15

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.

  8. Thermal equilibrium of goats.

    PubMed

    Maia, Alex S C; Nascimento, Sheila T; Nascimento, Carolina C N; Gebremedhin, Kifle G

    2016-05-01

    The effects of air temperature and relative humidity on thermal equilibrium of goats in a tropical region was evaluated. Nine non-pregnant Anglo Nubian nanny goats were used in the study. An indirect calorimeter was designed and developed to measure oxygen consumption, carbon dioxide production, methane production and water vapour pressure of the air exhaled from goats. Physiological parameters: rectal temperature, skin temperature, hair-coat temperature, expired air temperature and respiratory rate and volume as well as environmental parameters: air temperature, relative humidity and mean radiant temperature were measured. The results show that respiratory and volume rates and latent heat loss did not change significantly for air temperature between 22 and 26°C. In this temperature range, metabolic heat was lost mainly by convection and long-wave radiation. For temperature greater than 30°C, the goats maintained thermal equilibrium mainly by evaporative heat loss. At the higher air temperature, the respiratory and ventilation rates as well as body temperatures were significantly elevated. It can be concluded that for Anglo Nubian goats, the upper limit of air temperature for comfort is around 26°C when the goats are protected from direct solar radiation.

  9. Equilibrium properties of chemically reacting gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The equilibrium energy, enthalpy, entropy, specific heat at constant volume and constant pressure, and the equation of state of the gas are all derived for chemically reacting gas mixtures in terms of the compressibility, the mol fractions, the thermodynamic properties of the pure gas components, and the change in zero point energy due to reaction. Results are illustrated for a simple diatomic dissociation reaction and nitrogen is used as an example. Next, a gas mixture resulting from combined diatomic dissociation and atomic ionization reactions is treated and, again, nitrogen is used as an example. A short discussion is given of the additional complexities involved when precise solutions for high-temperature air are desired, including effects caused by NO produced in shuffle reactions and by other trace species formed from CO2, H2O and Ar found in normal air.

  10. Ionized Gaseous Nebulae Abundance Determination from the Direct Method

    NASA Astrophysics Data System (ADS)

    Pérez-Montero, Enrique

    2017-04-01

    This tutorial explains the procedure used to analyze an optical emission-line spectrum produced by a nebula ionized by massive star formation. Particularly, the methodology used to derive physical properties, such as electron density and temperature, and the ionic abundances of the most representative elements whose emission lines are present in the optical spectrum is described. The main focus is on the direct method, which is based on the measurement of the electron temperature to derive the abundances, given that the ionization and thermal equilibrium of the ionized gas is dominated by the metallicity. The ionization correction factors used to obtain total abundances from the abundances of some of their ions are also given. Finally, some strong-line methods to derive abundances are described. Such methods are used when no estimation of the temperature can be derived, but which can be consistent with the direct method if they are empirically calibrated.

  11. Electron ionization of acetylene.

    PubMed

    King, Simon J; Price, Stephen D

    2007-11-07

    Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H+2, C2+, C+/C2+ 2, CH+/C2H+2, CH+2, C+2, and C2H+ relative to the formation of C2H+2, as a function of ionizing electron energy from 30-200 eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50 eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100 eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H2+2 dissociates predominantly on the ground triplet potential energy surface (3Sigma*g) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (1Delta g). Measurements of the kinetic energy released in the fragmentation reactions of C2H2+2 have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.

  12. Search for a non-equilibrium plasma in the merging galaxy cluster Abell 754

    NASA Astrophysics Data System (ADS)

    Inoue, Shota; Hayashida, Kiyoshi; Ueda, Shutaro; Nagino, Ryo; Tsunemi, Hiroshi; Koyama, Katsuji

    2016-06-01

    Abell 754 is a galaxy cluster in which an ongoing merger is evident on the plane of the sky, from the southeast to the northwest. We study the spatial variation of the X-ray spectra observed with Suzaku along the merging direction, centering on the Fe Ly α/Fe He α line ratio to search for possible deviation from ionization equilibrium. Fitting with a single-temperature collisional non-equilibrium plasma model shows that the electron temperature increases from the southeast to the northwest. The ionization parameter is consistent with that in equilibrium (net > 1013 s cm-3) except for the specific region with the highest temperature (kT=13.3_{-1.1}^{+1.4}keV) where n_et=10^{11.6_{-1.7}^{+0.6}}s cm-3. The elapsed time from the plasma heating estimated from the ionization parameter is 0.36-76 Myr at the 90% confidence level. This timescale is quite short but consistent with the traveling time of a shock to pass through that region. We thus interpret that the non-equilibrium ionization plasma in Abell 754 observed is a remnant of the shock heating in the merger process. However, we note that the X-ray spectrum of the specific region where the non-equilibrium is found can also be fitted with a collisional ionization plasma model with two temperatures, low kT=4.2^{+4.2}_{-1.5}keV and very high kT >19.3 keV. The very high temperature component is alternatively fitted with a power-law model. Either of these spectral models is interpreted as a consequence of the ongoing merger process as in the case of the non-equilibrium ionization plasma.

  13. Equilibrium of nematic vesicles

    NASA Astrophysics Data System (ADS)

    Napoli, Gaetano; Vergori, Luigi

    2010-11-01

    A variational scheme is proposed which allows the derivation of a concise and elegant formulation of the equilibrium equations for closed fluid membranes, endowed with a nematic microstructure. The nematic order is described by an in-plane nematic director and a degree of orientation, as customary in the theory of uniaxial nematics. The only constitutive ingredient in this scheme is a free-energy density which depends on the vesicle geometry and order parameters. The stress and the couple stress tensors related to this free-energy density are provided. As an application of the proposed scheme, a certain number of special theories are deduced: soap bubbles, lipid vesicles, chiral and achiral nematic membranes, and nematics on curved substrates.

  14. Statistical physics ""Beyond equilibrium

    SciTech Connect

    Ecke, Robert E

    2009-01-01

    The scientific challenges of the 21st century will increasingly involve competing interactions, geometric frustration, spatial and temporal intrinsic inhomogeneity, nanoscale structures, and interactions spanning many scales. We will focus on a broad class of emerging problems that will require new tools in non-equilibrium statistical physics and that will find application in new material functionality, in predicting complex spatial dynamics, and in understanding novel states of matter. Our work will encompass materials under extreme conditions involving elastic/plastic deformation, competing interactions, intrinsic inhomogeneity, frustration in condensed matter systems, scaling phenomena in disordered materials from glasses to granular matter, quantum chemistry applied to nano-scale materials, soft-matter materials, and spatio-temporal properties of both ordinary and complex fluids.

  15. Equilibrium Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan C.; Krumholz, Mark R.; McKee, Christopher F.

    2006-04-01

    We argue that rich star clusters take at least several local dynamical times to form and so are quasi-equilibrium structures during their assembly. Observations supporting this conclusion include morphologies of star-forming clumps, momentum flux of protostellar outflows from forming clusters, age spreads of stars in the Orion Nebula cluster (ONC) and other clusters, and the age of a dynamical ejection event from the ONC. We show that these long formation timescales are consistent with the expected star formation rate in turbulent gas, as recently evaluated by Krumholz & McKee. Finally, we discuss the implications of these timescales for star formation efficiencies, the disruption of gas by stellar feedback, mass segregation of stars, and the longevity of turbulence in molecular clumps.

  16. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  17. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  18. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  19. Fluctuation theorem for constrained equilibrium systems.

    PubMed

    Gilbert, Thomas; Dorfman, J Robert

    2006-02-01

    We discuss the fluctuation properties of equilibrium chaotic systems with constraints such as isokinetic and Nosé-Hoover thermostats. Although the dynamics of these systems does not typically preserve phase-space volumes, the average phase-space contraction rate vanishes, so that the stationary states are smooth. Nevertheless, finite-time averages of the phase-space contraction rate have nontrivial fluctuations which we show satisfy a simple version of the Gallavotti-Cohen fluctuation theorem, complementary to the usual fluctuation theorem for nonequilibrium stationary states and appropriate to constrained equilibrium states. Moreover, we show that these fluctuations are distributed according to a Gaussian curve for long enough times. Three different systems are considered here: namely, (i) a fluid composed of particles interacting with Lennard-Jones potentials, (ii) a harmonic oscillator with Nosé-Hoover thermostatting, and (iii) a simple hyperbolic two-dimensional map.

  20. Fluctuation theorem for constrained equilibrium systems

    NASA Astrophysics Data System (ADS)

    Gilbert, Thomas; Dorfman, J. Robert

    2006-02-01

    We discuss the fluctuation properties of equilibrium chaotic systems with constraints such as isokinetic and Nosé-Hoover thermostats. Although the dynamics of these systems does not typically preserve phase-space volumes, the average phase-space contraction rate vanishes, so that the stationary states are smooth. Nevertheless, finite-time averages of the phase-space contraction rate have nontrivial fluctuations which we show satisfy a simple version of the Gallavotti-Cohen fluctuation theorem, complementary to the usual fluctuation theorem for nonequilibrium stationary states and appropriate to constrained equilibrium states. Moreover, we show that these fluctuations are distributed according to a Gaussian curve for long enough times. Three different systems are considered here: namely, (i) a fluid composed of particles interacting with Lennard-Jones potentials, (ii) a harmonic oscillator with Nosé-Hoover thermostatting, and (iii) a simple hyperbolic two-dimensional map.

  1. Systems biology and the origins of life? part II. Are biochemical networks possible ancestors of living systems? networks of catalysed chemical reactions: non-equilibrium, self-organization and evolution.

    PubMed

    Ricard, Jacques

    2010-01-01

    The present article discusses the possibility that catalysed chemical networks can evolve. Even simple enzyme-catalysed chemical reactions can display this property. The example studied is that of a two-substrate proteinoid, or enzyme, reaction displaying random binding of its substrates A and B. The fundamental property of such a system is to display either emergence or integration depending on the respective values of the probabilities that the enzyme has bound one of its substrate regardless it has bound the other substrate, or, specifically, after it has bound the other substrate. There is emergence of information if p(A)>p(AB) and p(B)>p(BA). Conversely, if p(A)equilibrium. Moreover, in such systems, emergence results in an increase of the energy level of the ternary EAB complex that becomes closer to the transition state of the reaction, thus leading to the enhancement of catalysis. Hence a drift from quasi-equilibrium is, to a large extent, responsible for the production of information and enhancement of catalysis. Non-equilibrium of these simple systems must be an important aspect that leads to both self-organization and evolutionary processes. These conclusions can be extended to networks of catalysed chemical reactions. Such networks are, in fact, networks of networks, viz. meta-networks. In this formal representation, nodes are chemical reactions catalysed by poorly specific proteinoids, and links can be identified to the transport of metabolites from proteinoid to proteinoid. The concepts of integration and emergence can be applied to such situations and can be used to define the identity of these networks and therefore their evolution. Defined as open non-equilibrium structures, such biochemical networks possess two remarkable properties: (1) the probability of occurrence of their nodes is dependant upon the input and output of matter

  2. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    SciTech Connect

    Sharma, Rohit; Singh, Kuldip

    2014-03-15

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T{sub e}/T{sub h}) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter.

  3. Equilibrium Policy Proposals with Abstentions.

    DTIC Science & Technology

    1981-05-01

    AB I I I EQUILIBRIUM POLICY PROPOSALS WITH ABSTENTIONS* by Peter Coughlin** 1. Introduction Spatial analyses of economic policy formation in elections...alternative in S at which there is a local equilibrium when the incumbent must defend the status quo. 5. Applications to Related Spatial Voting Models...York: Holt, Rinehart and Winston. Hestenes, M. [19751, Optimization Theoy, New York: Wiley. Hinich, M. [1977], " Equilibrium in Spatial Voting: The Median

  4. Grinding kinetics and equilibrium states

    NASA Technical Reports Server (NTRS)

    Opoczky, L.; Farnady, F.

    1984-01-01

    The temporary and permanent equilibrium occurring during the initial stage of cement grinding does not indicate the end of comminution, but rather an increased energy consumption during grinding. The constant dynamic equilibrium occurs after a long grinding period indicating the end of comminution for a given particle size. Grinding equilibrium curves can be constructed to show the stages of comminution and agglomeration for certain particle sizes.

  5. The Nash equilibrium: A perspective

    PubMed Central

    Holt, Charles A.; Roth, Alvin E.

    2004-01-01

    In 1950, John Nash contributed a remarkable one-page PNAS article that defined and characterized a notion of equilibrium for n- person games. This notion, now called the “Nash equilibrium,” has been widely applied and adapted in economics and other behavioral sciences. Indeed, game theory, with the Nash equilibrium as its centerpiece, is becoming the most prominent unifying theory of social science. In this perspective, we summarize the historical context and subsequent impact of Nash's contribution. PMID:15024100

  6. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  7. Equilibrium CH acidity of Ni(II) complexes of Schiff's bases of amino acids with S-2-N-(N'-benzylprolyl)amino-benzaldehyde and S-2-N-(N'-benzylprolyl)aminobenzophenone

    SciTech Connect

    Terekhova, M.I.; Belokon', Yu.N.; Maleev, V.I.; Chernoglazova, N.I.; Kochetkov, K.A.; Belikov, V.M.; Petrov, E.S.

    1986-10-20

    By metal exchange in DMSO (K/sup +/ cation) pK values have been measured for a series of acids which are Ni(II) complexes of Schiff's bases of the amino acids Gly, S-Ala, and S-Val, with S-2-N-(N'-benzylprolyl)aminobenzaldehyde and S-2-N-(N'-benzylprolyl)aminobenzophenone. The amino acid fragment in the studied Ni(II) complexes possesses high acidity close to fluorene but five orders of magnitude greater than for acetophenone and approaching nitroalkanes in acidity.

  8. Atmospheric Ionization Measurements

    NASA Astrophysics Data System (ADS)

    Slack, Thomas; Mayes, Riley

    2015-04-01

    The measurement of atmospheric ionization is a largely unexplored science that potentially holds the key to better understanding many different geophysical phenomena through this new and valuable source of data. Through the LaACES program, which is funded by NASA through the Louisiana Space Consortium, students at Loyola University New Orleans have pursued the goal of measuring high altitude ionization for nearly three years, and were the first to successfully collect ionization data at altitudes over 30,000 feet using a scientific weather balloon flown from the NASA Columbia Scientific Ballooning Facility in Palestine, TX. In order to measure atmospheric ionization, the science team uses a lightweight and highly customized sensor known as a Gerdien condenser. Among other branches of science the data is already being used for, such as the study of aerosol pollution levels in the atmosphere, the data may also be useful in meteorology and seismology. Ionization data might provide another variable with which to predict weather or seismic activity more accurately and further in advance. Thomas Slack and Riley Mayes have served as project managers for the experiment, and have extensive knowledge of the experiment from the ground up. LaSPACE Louisiana Space Consortium.

  9. Convective quasi-equilibrium

    NASA Astrophysics Data System (ADS)

    Yano, J.-I.; Plant, R. S.

    2012-12-01

    The concept of convective quasi-equilibrium (CQE) is a key ingredient in order to understand the role of deep moist convection in the atmosphere. It has been used as a guiding principle to develop almost all convective parameterizations and provides a basic theoretical framework for large-scale tropical dynamics. The CQE concept as originally proposed by Arakawa and Schubert (1974) is systematically reviewed from wider perspectives. Various interpretations and extensions of Arakawa and Schubert's CQE are considered both in terms of a thermodynamic analogy and as a dynamical balance. The thermodynamic interpretations can be more emphatically embraced as a homeostasis. The dynamic balance interpretations can be best understood by analogy with the slow manifold. Various criticisms of CQE can be avoided by taking the dynamic balance interpretation. Possible limits of CQE are also discussed, including the importance of triggering in many convective situations, as well as the possible self-organized criticality of tropical convection. However, the most intriguing aspect of the CQE concept is that in spite of many observational tests supporting and interpreting it in many different senses, it has never been established in a robust manner based on a systematic analysis of the cloud work function budget by observations as was originally defined.

  10. Napoleon Is in Equilibrium

    NASA Astrophysics Data System (ADS)

    Phillips, Rob

    2015-03-01

    It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest.

  11. Napoleon Is in Equilibrium.

    PubMed

    Phillips, Rob

    2015-03-01

    It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest.

  12. Heater-induced ionization inferred from spectrometric airglow measurements

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Miceli, R. J.; Kendall, E. A.; Schlatter, N. M.; Varney, R. H.; Watkins, B. J.; Pedersen, T. R.; Bernhardt, P. A.; Huba, J. D.

    2014-03-01

    Spectrographic airglow measurements were made during an ionospheric modification experiment at High Frequency Active Auroral Research Program on 12 March 2013. Artificial airglow enhancements at 427.8, 557.7, 630.0, 777.4, and 844.6 nm were observed. On the basis of these emissions and using a methodology based on the method of Backus and Gilbert (1968, 1970), we estimate the suprathermal electron population and the subsequent equilibrium electron density profile, including contributions from electron impact ionization. We find that the airglow is consistent with heater-induced ionization in view of the spatial intermittency of the airglow.

  13. Heater-induced ionization inferred from spectrometric airglow measurements

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Miceli, R. J.; Varney, R. H.; Schlatter, N.; Huba, J. D.

    2013-12-01

    Spectrographic airglow measurements were made during an ionospheric modification experiment at HAARP on March 12, 2013. Artificial airglow enhancements at 427.8, 557.7, 630.0, 777.4, and 844.6 nm were observed. On the basis of these emissions and using a methodology based on the method of Backus and Gilbert [1968, 1970], we estimate the suprathermal electron population and the subsequent equilibrium electron density profile, including contributions from electron impact ionization. We find that the airglow is consistent with significant induced ionization in view of the spatial intermittency of the airglow.

  14. THE EXTENDED He IIλ4686-EMITTING REGION IN IZw 18 UNVEILED: CLUES FOR PECULIAR IONIZING SOURCES

    SciTech Connect

    Kehrig, C.; Vílchez, J. M.; Pérez-Montero, E.; Iglesias-Páramo, J.; Bayo, F. M.; Kunth, D.; Durret, F.

    2015-03-10

    New integral field spectroscopy has been obtained for IZw 18, the nearby lowest-metallicity galaxy considered to be our best local analog of systems forming at high redshift (z). Here we report the spatially resolved spectral map of the nebular He ii λ4686 emission in IZw 18, from which we derived for the first time its total He ii-ionizing flux. Nebular He ii emission implies the existence of a hard radiation field. He ii-emitters are observed to be more frequent among high-z galaxies than for local objects. Therefore, investigating the He ii-ionizing source(s) in IZw 18 may reveal the ionization processes at high z. He ii emission in star-forming galaxies has been suggested to be mainly associated with Wolf–Rayet stars (WRs), but WRs cannot satisfactorily explain the He ii-ionization at all times, particularly at the lowest metallicities. Shocks from supernova remnants, or X-ray binaries, have been proposed as additional potential sources of He ii-ionizing photons. Our data indicate that conventional He ii-ionizing sources (WRs, shocks, X-ray binaries) are not sufficient to explain the observed nebular He iiλ4686 emission in IZw 18. We find that the He ii-ionizing radiation expected from models for either low-metallicity super-massive O stars or rotating metal-free stars could account for the He ii-ionization budget measured, while only the latter models could explain the highest values of He iiλ4686/Hβ observed. The presence of such peculiar stars in IZw 18 is suggestive and further investigation in this regard is needed. This letter highlights that some of the clues of the early universe can be found here in our cosmic backyard.

  15. Thermodynamic efficiency out of equilibrium

    NASA Astrophysics Data System (ADS)

    Sivak, David; Crooks, Gavin

    2011-03-01

    Molecular-scale machines typically operate far from thermodynamic equilibrium, limiting the applicability of equilibrium statistical mechanics to understand their efficiency. Thermodynamic length analysis relates a non-equilibrium property (dissipation) to equilibrium properties (equilibrium fluctuations and their relaxation time). Herein we demonstrate that the thermodynamic length framework follows directly from the assumptions of linear response theory. Uniting these two frameworks provides thermodynamic length analysis a firmer statistical mechanical grounding, and equips linear response theory with a metric structure to facilitate the prediction and discovery of optimal (minimum dissipation) paths in complicated free energy landscapes. To explore the applicability of this theoretical framework, we examine its accuracy for simple bistable systems, parametrized to model single-molecule force-extension experiments. Through analytic derivation of the equilibrium fluctuations and numerical calculation of the dissipation and relaxation time, we verify that thermodynamic length analysis (though derived in a near-equilibrium limit) provides a strikingly good approximation even far from equilibrium, and thus provides a useful framework for understanding molecular motor efficiency.

  16. Equilibrium states for hyperbolic potentials

    NASA Astrophysics Data System (ADS)

    Ramos, Vanessa; Viana, Marcelo

    2017-02-01

    We prove the existence of finitely many ergodic equilibrium states for local homeomorphisms and hyperbolic potentials. We also deal with partially hyperbolic skew-products over non-uniformly expanding maps with uniform contraction on the fibre. For these systems we prove the existence and finiteness of the equilibrium states associated with a class of Hölder continuous potentials.

  17. Rapid-Equilibrium Enzyme Kinetics

    ERIC Educational Resources Information Center

    Alberty, Robert A.

    2008-01-01

    Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…

  18. [Oculomotor equilibrium and aviation activities].

    PubMed

    Maille, M; Pedeprat Lamechinou, P; Corbe, C; Manent, P J

    1989-01-01

    A good oculomotor equilibrium warrants flight safety. It is indeed directly linked with depth vision an may decompensate, causing a deficit or a diplopia. It is therefore very important to screen pilots carefully and to have periodical examinations to check the oculomotor equilibrium.

  19. Rapid-Equilibrium Enzyme Kinetics

    ERIC Educational Resources Information Center

    Alberty, Robert A.

    2008-01-01

    Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…

  20. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  1. Electron-impact ionization measurements for use in astrophysics

    NASA Astrophysics Data System (ADS)

    Bannister, Mark E.

    2006-05-01

    Spectroscopic data produced by an array of past, present, and future satellite and space observatories are being used to address many fundamental questions in astrophysics. Analyzing the collected spectra from electron-ionized plasmas, however, requires accurate ionization balance calculations for plasmas in collisional ionization equilibrium (CIE) as well as plasmas under conditions of non-equilibrium ionization (NEI). Therefore accurate electron-impact ionization (EII) data are needed for ions found in many cosmic plasmas where EII is the dominant ionization mechanism, such as supernova remnants, stellar coronae, the interstellar medium (ISM), the intracluster medium in clusters of galaxies, and elliptical galaxies. Here we report on a program of laboratory measurements of EII for ions in the berylliumlike isoelectronic sequence at the ORNL Multicharged Ion Research Facility. These results are compared with state-of-the-art non-perturbative calculations. Our studies also focus on measurements of EII for heliumlike and oxygenlike ions. For these three isoelectronic sequences there appear to be significant errors and uncertainties in the EII data used in astrophysics, primarily due to uncertainty in the fraction of metastable ions encountered in prior measurements. By determining the metastable ion fractions independently of the ionization experiments, our measurements will provide new EII data with total uncertainties of 15% or less. This material is based upon work supported by NASA under Award Nos. NNH04AA151 and NNH04AA72I and by the U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  2. Equilibrium Shape of Colloidal Crystals.

    PubMed

    Sehgal, Ray M; Maroudas, Dimitrios

    2015-10-27

    Assembling colloidal particles into highly ordered configurations, such as photonic crystals, has significant potential for enabling a broad range of new technologies. Facilitating the nucleation of colloidal crystals and developing successful crystal growth strategies require a fundamental understanding of the equilibrium structure and morphology of small colloidal assemblies. Here, we report the results of a novel computational approach to determine the equilibrium shape of assemblies of colloidal particles that interact via an experimentally validated pair potential. While the well-known Wulff construction can accurately capture the equilibrium shape of large colloidal assemblies, containing O(10(4)) or more particles, determining the equilibrium shape of small colloidal assemblies of O(10) particles requires a generalized Wulff construction technique which we have developed for a proper description of equilibrium structure and morphology of small crystals. We identify and characterize fully several "magic" clusters which are significantly more stable than other similarly sized clusters.

  3. Ionization nebulae surrounding supersoft X-ray sources

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Chiang, E.; Kallman, T.; Malina, R.

    1994-01-01

    In this work we carry out a theoretical investigation of a new type of astrophysical gaseous nebula, viz., ionized regions surrounding supersoft X-ray sources. Supersoft X-ray sources, many of which have characteristic luminosities of approximately 10(exp 37)-(10(exp 38) ergs/s and effective temperatures of approximately 4 x 10(exp 5) K, were first discovered with the Einstein Observatory. These sources have now been shown to constitute a distinct class of X-ray source and are being found in substantial numbers with ROSAT. We predict that these sources should be surrounded by regions of ionized hydrogen and helium with properties that are distinct from other astrophysical gaseous nebulae. We present caluations of the ionization and temperature structure of these ionization nebulae, as well as the expected optical line fluxes. The ionization profiles for both hydrogen and helium exhibit substantially more gradual transitions from the ionized to the unionized state than is the case for conventional H II regions. The calculated optical line intensitites are presented as absolute fluxes from sources in the Large Magellanic Cloud and as fractions of the central source luminosity. We find, in particular, that (O III) lambda 5008 and He II lambda 4686 are especially prominent in these ionization nebulae as compared to other astrophysical nebulae. We propose that searches for supersoft X-rays via their characteristic optical lines may reveal sources in regions where the soft X-rays are nearly completely absorbed by the interstellar medium.

  4. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    SciTech Connect

    Benson, Andrew; Venkatesan, Aparna; Shull, J. Michael E-mail: avenkatesan@usfca.edu

    2013-06-10

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  5. Equilibrium and kinetic studies of iron(II) and iron(III) complexes of some alpha (N)-heterocyclic thiosemicarbazones. Reduction of the iron(III) complexes of 2-formylpyridine thiosemicarbazone and 2-acetylpyridine thiosemicarbazone by cellular thiol-like reducing agents.

    PubMed

    Borges, R H; Paniago, E; Beraldo, H

    1997-03-01

    alpha (N)-heterocyclic thiosemicarbazones have been shown to possess antitumor properties in mammalian cells through the inhibition of DNA synthesis; the ability to provide the inhibitory action is probably due to coordination of iron. This paper deals with equilibrium and kinetic studies involving 2-formylpyridine thiosemicarbazone (HFPT) and 2-acetylpyridine thiosemicarbazone (HAPT) coordinated to Fe(II) and Fe(III) cations in aqueous solution. The formation constants of all species present in equilibrium were determined. Kinetic measurements of the reduction of the Fe(III) complex of both ligands by thiolic reducing agents, that can act as structural models of cellular thiols, i.e., N-acetyl-L-cysteine (ACCIS) and dithiothreitol (DTT), were carried out. The experimental data lead to a rate law of the type v = k1[A] + k2[A] [B], where [A] represents the concentration of the complex and [B] that of the reducing agent, indicating the coexistence of two reaction pathways. One pathway depends only on the complex concentration and occurs even in the absence of the reducing agent, and the other involves both the complex and ACCIS or DTT.

  6. Ultrafast molecular dynamics of dissociative ionization in OCS probed by soft x-ray synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Ramadhan, Ali; Wales, Benji; Karimi, Reza; Gauthier, Isabelle; MacDonald, Michael; Zuin, Lucia; Sanderson, Joe

    2016-11-01

    Soft x-rays (90-173 eV) from the 3rd generation Canadian Light Source have been used in conjunction with a multi coincidence time and position sensitive detection apparatus to observe the dissociative ionization of OCS. By varying the x-ray energy we can compare dynamics from direct and Auger ionization processes, and access ionization channels which result in two or three body breakup, from 2+ to 4+ ionization states. We make several new observations for the 3+ state such as kinetic energy release limited by photon energy, and using Dalitz plots we can see evidence of timescale effects between the direct and Auger ionization process for the first time. Finally, using Dalitz plots for OCS4+ we observe for the first time that breakup involving an O2+ ion can only proceed from out of equilibrium nuclear arrangement for S(2p) Auger ionization.

  7. Surface-active agents from the group of polyoxyethylated glycerol esters of fatty acids. Part III. Surface activity and solubilizing properties of the products of oxyethylation of lard (Adeps suillus, F.P. VIII) in the equilibrium system in relation to lipophilic therapeutic agents (class II and III of BCS).

    PubMed

    Nachajski, Michał J; Piotrowska, Jowita B; Kołodziejczyk, Michał K; Lukosek, Marek; Zgoda, Marian M

    2013-01-01

    Research was conducted into the solubilization processes of diclofenac, ibuprofen, ketoprofen and naproxen in equilibrium conditions in the environment of aqueous solutions of oxyethylated lard's fractions (Adeps suillus, Polish Pharmacopoeia VIII). The determined thermodynamic (cmc, deltaGm(0)) and hydrodynamic (R0, R(obs), omega, M(eta)) parameters characterizing the micelle of the solubilizer and the adduct demonstrate that lipophilic therapeutic agents are adsorbed in a palisade structure of the micelle due to a topologically created so-called "lipophilic adsorption pocket". This shows that the hydrophilicity of the micelle and the adsorption layer decreases at the phase boundary, which is confirmed by the calculated values of coefficients A(m) and r x (a). The results obtained indicate the possibility of making use of the class of non-ionic surfactants which are not ksenobiotics for the modification of the profile of solid oral dosage forms with lipophilic therapeutic agents from the II class of Biopharmaceutics Classification System (BCS).

  8. Fossil Ionized Bubbles around Dead Quasars during Reionization

    NASA Astrophysics Data System (ADS)

    Furlanetto, Steven R.; Haiman, Zoltán; Oh, S. Peng

    2008-10-01

    One of the most dramatic signatures of the reionization era may be the enormous ionized bubbles around luminous quasars (with radii reaching ~40 comoving Mpc), which may survive as "fossil" ionized regions long after their source shuts off. Here we study how the inhomogeneous intergalactic medium (IGM) evolves inside such fossils. The average recombination rate declines rapidly with time, and the brief quasar episode significantly increases the mean free path inside the fossil bubbles. As a result, even a weak ionizing background generated by galaxies inside the fossil can maintain it in a relatively highly and uniformly ionized state. For example, galaxies that would ionize 20%-30% of hydrogen in a random patch of the IGM can maintain 80%-90% ionization inside the fossil for a duration much longer than the average recombination time in the IGM. Quasar fossils at zlesssim 10 thus retain their identity for nearly a Hubble time and appear "gray," distinct from both the average IGM (which has a "Swiss cheese" ionization topology and a lower mean ionized fraction) and the fully ionized bubbles around active quasars. More distant fossils, at zgtrsim 10, have a weaker galaxy-generated ionizing background and a higher gas density, so they can attain a Swiss cheese topology similar to the rest of the IGM, but with a smaller contrast between the ionized bubbles and the partially neutral regions separating them. Analogous He III fossils should exist around the epoch of He II/He III reionization at z ~ 3, although rapid recombination inside the He III fossils is more common. Our model of inhomogeneous recombination also applies to "double-reionization" models and shows that a nonmonotonic reionization history is even more unlikely than previously thought.

  9. Ionizing radiation and life.

    PubMed

    Dartnell, Lewis R

    2011-01-01

    Ionizing radiation is a ubiquitous feature of the Cosmos, from exogenous cosmic rays (CR) to the intrinsic mineral radioactivity of a habitable world, and its influences on the emergence and persistence of life are wide-ranging and profound. Much attention has already been focused on the deleterious effects of ionizing radiation on organisms and the complex molecules of life, but ionizing radiation also performs many crucial functions in the generation of habitable planetary environments and the origins of life. This review surveys the role of CR and mineral radioactivity in star formation, generation of biogenic elements, and the synthesis of organic molecules and driving of prebiotic chemistry. Another major theme is the multiple layers of shielding of planetary surfaces from the flux of cosmic radiation and the various effects on a biosphere of violent but rare astrophysical events such as supernovae and gamma-ray bursts. The influences of CR can also be duplicitous, such as limiting the survival of surface life on Mars while potentially supporting a subsurface biosphere in the ocean of Europa. This review highlights the common thread that ionizing radiation forms between the disparate component disciplines of astrobiology. © Mary Ann Liebert, Inc.

  10. Microchip sonic spray ionization.

    PubMed

    Pól, Jaroslav; Kauppila, Tiina J; Haapala, Markus; Saarela, Ville; Franssila, Sami; Ketola, Raimo A; Kotiaho, Tapio; Kostiainen, Risto

    2007-05-01

    The first microchip version of sonic spray ionization (SSI) as an atmospheric pressure ionization source for mass spectrometry (MS) is presented. The microchip used for SSI has recently been developed in our laboratory, and it has been used before as an atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) source. Now the ionization is achieved simply by applying high (sonic) speed nebulizer gas, without heat, corona discharge, or high voltage. The microchip SSI was applied to the analysis of tetra-N-butylammonium, verapamil, testosterone, angiotensin I, and ibuprofen. The limits of detection were in the range of 15 nM to 4 microM. The technique was found to be highly dependent on the position of the chip toward the mass spectrometer inlet, and on the gas and the sample solution flow rates. The microchip SSI provided dynamic linearity following a pattern similar to that used with electrospray, good quantitative repeatability (RSD=16%), and long-term signal stability.

  11. Ionizing radiation from tobacco

    SciTech Connect

    Westin, J.B.

    1987-04-24

    Accidents at nuclear power facilities seem inevitably to bring in their wake a great deal of concern on the part of both the lay and medical communities. Relatively little attention, however, is given to what may be the largest single worldwide source of effectively carcinogenic ionizing radiation: tobacco. The risk of cancer deaths from the Chernobyl disaster are tobacco smoke is discussed.

  12. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  13. Electron-impact Ionization Of Li2 And Li+2

    SciTech Connect

    Colgan, James P

    2008-01-01

    Electron-impact ionization cross sections for Li{sub 2} and Li{sup +}{sub 2} are calculated using a configuration-average distorted-wave method. Bound orbitals for the molecule and its ions are calculated using a single configuration self-consistent field method based on a linear combination of Slater-type orbitals. The bound orbitals are transformed onto a two-dimensional lattice ({tau}, {theta}), which is variable in the radial coordinate and constant in the angular coordinate, from which Hartree with local exchange potentials are constructed. The single particle Schrodinger equation is then solved for continuum distorted-waves with S-matrix boundary conditions. Total ionization cross sections for Li{sub 2} at an equilibrium internuclear separation of R = 5.0 and for Li{sup +}{sub 2} at an equilibrium internuclear separation of R = 5.9 are presented.

  14. Quantum statistical mechanics of dense partially ionized hydrogen.

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogenic plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. In this theory, the effective interaction between any two charges is the dynamic screened potential obtained from the plasma dielectric function. We make the static approximation; and we carry out detailed numerical calculations with the bound and scattering states of the Debye potential, using the Beth-Uhlenbeck form of the quantum second virial coefficient. We compare our results with calculations from the Saha equation.

  15. Non-equilibrium supramolecular polymerization.

    PubMed

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-03-28

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  16. Chemical protection against ionizing radiation. Final report

    SciTech Connect

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  17. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  18. Departure of High-temperature Iron Lines from the Equilibrium State in Flaring Solar Plasmas

    NASA Astrophysics Data System (ADS)

    Kawate, T.; Keenan, F. P.; Jess, D. B.

    2016-07-01

    The aim of this study is to clarify if the assumption of ionization equilibrium and a Maxwellian electron energy distribution is valid in flaring solar plasmas. We analyze the 2014 December 20 X1.8 flare, in which the Fe xxi 187 Å, Fe xxii 253 Å, Fe xxiii 263 Å, and Fe xxiv 255 Å emission lines were simultaneously observed by the EUV Imaging Spectrometer on board the Hinode satellite. Intensity ratios among these high-temperature Fe lines are compared and departures from isothermal conditions and ionization equilibrium examined. Temperatures derived from intensity ratios involving these four lines show significant discrepancies at the flare footpoints in the impulsive phase, and at the looptop in the gradual phase. Among these, the temperature derived from the Fe xxii/Fe xxiv intensity ratio is the lowest, which cannot be explained if we assume a Maxwellian electron distribution and ionization equilibrium, even in the case of a multithermal structure. This result suggests that the assumption of ionization equilibrium and/or a Maxwellian electron energy distribution can be violated in evaporating solar plasma around 10 MK.

  19. Helical axis stellarator equilibrium model

    SciTech Connect

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift.

  20. Equilibrium ignition for ICF capsules

    SciTech Connect

    Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G. )

    1994-10-05

    In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-[ital Z] pushers which contain the radiation, we point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity, and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an atractive alternative. [copyright] 1994 [ital American] [ital Institute] [ital of] [ital Physics

  1. Interregional equilibrium with heterogeneous labor.

    PubMed

    Michel, P; Perrot, A; Thisse J-f

    1996-02-01

    "The impact of labor migration on interregional equilibrium is studied when workers are heterogeneous in productivity and regional mobility. The skilled respond to market disequilibrium by moving into the most attractive region. The unskilled are immobile in the short-run and move with the skilled in the long-run. Both regions have a neoclassical production function affected by an externality depending on the number of skilled. Workers move according to the utility differential when regional amenities vary with population or according to the wage differential. The equilibrium pattern depends on the unskilled's mobility and on migration incentives. Typically, regional imbalance characterizes the equilibrium which is often suboptimal."

  2. New Constraints on the Escape of Ionizing Photons from Starburst Galaxies Using Ionization-parameter Mapping

    NASA Astrophysics Data System (ADS)

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael

    2013-12-01

    The fate of ionizing radiation in starburst galaxies is key to understanding cosmic reionization. However, the galactic parameters on which the escape fraction of ionizing radiation depend are not well understood. Ionization-parameter mapping provides a simple, yet effective, way to study the radiative transfer in starburst galaxies. We obtain emission-line ratio maps of [S III]/[S II] for six, nearby, dwarf starbursts: NGC 178, NGC 1482, NGC 1705, NGC 3125, NGC 7126, and He 2-10. The narrowband images are obtained with the Maryland-Magellan Tunable Filter at Las Campanas Observatory. Using these data, we previously reported the discovery of an optically thin ionization cone in NGC 5253, and here we also discover a similar ionization cone in NGC 3125. This latter cone has an opening angle of 40° ± 5° (0.4 sr), indicating that the passageways through which ionizing radiation may travel correspond to a small solid angle. Additionally, there are three sample galaxies that have winds and/or superbubble activity, which should be conducive to escaping radiation, yet they are optically thick. These results support the scenario that an orientation bias limits our ability to directly detect escaping Lyman continuum in many starburst galaxies. A comparison of the star formation properties and histories of the optically thin and thick galaxies is consistent with the model that high escape fractions are limited to galaxies that are old enough (gsim3 Myr) for mechanical feedback to have cleared optically thin passageways in the interstellar medium, but young enough (lsim5 Myr) that the ionizing stars are still present.

  3. New constraints on the escape of ionizing photons from starburst galaxies using ionization-parameter mapping

    SciTech Connect

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael

    2013-12-10

    The fate of ionizing radiation in starburst galaxies is key to understanding cosmic reionization. However, the galactic parameters on which the escape fraction of ionizing radiation depend are not well understood. Ionization-parameter mapping provides a simple, yet effective, way to study the radiative transfer in starburst galaxies. We obtain emission-line ratio maps of [S III]/[S II] for six, nearby, dwarf starbursts: NGC 178, NGC 1482, NGC 1705, NGC 3125, NGC 7126, and He 2-10. The narrowband images are obtained with the Maryland-Magellan Tunable Filter at Las Campanas Observatory. Using these data, we previously reported the discovery of an optically thin ionization cone in NGC 5253, and here we also discover a similar ionization cone in NGC 3125. This latter cone has an opening angle of 40° ± 5° (0.4 sr), indicating that the passageways through which ionizing radiation may travel correspond to a small solid angle. Additionally, there are three sample galaxies that have winds and/or superbubble activity, which should be conducive to escaping radiation, yet they are optically thick. These results support the scenario that an orientation bias limits our ability to directly detect escaping Lyman continuum in many starburst galaxies. A comparison of the star formation properties and histories of the optically thin and thick galaxies is consistent with the model that high escape fractions are limited to galaxies that are old enough (≳3 Myr) for mechanical feedback to have cleared optically thin passageways in the interstellar medium, but young enough (≲5 Myr) that the ionizing stars are still present.

  4. A Unified Kinetics and Equilibrium Experiment: Rate Law, Activation Energy, and Equilibrium Constant for the Dissociation of Ferroin

    ERIC Educational Resources Information Center

    Sattar, Simeen

    2011-01-01

    Tris(1,10-phenanthroline)iron(II) is the basis of a suite of four experiments spanning 5 weeks. Students determine the rate law, activation energy, and equilibrium constant for the dissociation of the complex ion in acid solution and base dissociation constant for phenanthroline. The focus on one chemical system simplifies a daunting set of…

  5. A Unified Kinetics and Equilibrium Experiment: Rate Law, Activation Energy, and Equilibrium Constant for the Dissociation of Ferroin

    ERIC Educational Resources Information Center

    Sattar, Simeen

    2011-01-01

    Tris(1,10-phenanthroline)iron(II) is the basis of a suite of four experiments spanning 5 weeks. Students determine the rate law, activation energy, and equilibrium constant for the dissociation of the complex ion in acid solution and base dissociation constant for phenanthroline. The focus on one chemical system simplifies a daunting set of…

  6. Comments on ionization cooling channels

    DOE PAGES

    Neuffer, David

    2017-09-25

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this study, we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  7. Comments on ionization cooling channels

    NASA Astrophysics Data System (ADS)

    Neuffer, D.

    2017-09-01

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  8. A numerical scheme for ionizing shock waves

    SciTech Connect

    Aslan, Necdet . E-mail: naslan@yeditepe.edu.tr; Mond, Michael

    2005-12-10

    A two-dimensional (2D) visual computer code to solve the steady state (SS) or transient shock problems including partially ionizing plasma is presented. Since the flows considered are hypersonic and the resulting temperatures are high, the plasma is partially ionized. Hence the plasma constituents are electrons, ions and neutral atoms. It is assumed that all the above species are in thermal equilibrium, namely, that they all have the same temperature. The ionization degree is calculated from Saha equation as a function of electron density and pressure by means of a nonlinear Newton type root finding algorithms. The code utilizes a wave model and numerical fluctuation distribution (FD) scheme that runs on structured or unstructured triangular meshes. This scheme is based on evaluating the mesh averaged fluctuations arising from a number of waves and distributing them to the nodes of these meshes in an upwind manner. The physical properties (directions, strengths, etc.) of these wave patterns are obtained by a new wave model: ION-A developed from the eigen-system of the flux Jacobian matrices. Since the equation of state (EOS) which is used to close up the conservation laws includes electronic effects, it is a nonlinear function and it must be inverted by iterations to determine the ionization degree as a function of density and temperature. For the time advancement, the scheme utilizes a multi-stage Runge-Kutta (RK) algorithm with time steps carefully evaluated from the maximum possible propagation speed in the solution domain. The code runs interactively with the user and allows to create different meshes to use different initial and boundary conditions and to see changes of desired physical quantities in the form of color and vector graphics. The details of the visual properties of the code has been published before (see [N. Aslan, A visual fluctuation splitting scheme for magneto-hydrodynamics with a new sonic fix and Euler limit, J. Comput. Phys. 197 (2004) 1

  9. Effect of a finite ionization rate on the radiative heating of outer planet atmospheric entry probes

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1981-01-01

    The influence of finite rate ionization in the inviscid gas just behind the stagnation shock wave on the radiation heating of probes entering the hydrogen helium atmospere of the major planets was investigated. At the present time, there is disagreement as to whether the radiative flux increases or decreases relative to its equilibrium value when finite rate ionization is considered. Leibowitz and Kuo content that the finite rate ionization in the hydrogen gas just behind the shock wave reduces the radiative flux to the probe, whereas Tiwari and Szema predict that it increases the radiative flux. The radiation modeling used in the calculations of both pairs of these investigators was reviewed. It is concluded that finite rate ionization in the inviscid region of the shock layer should reduce the cold wall radiative heating below the values predicted by equilibrium chemistry assumptions.

  10. Self-consistent chemical model of partially ionized plasmas

    SciTech Connect

    Arkhipov, Yu. V.; Baimbetov, F. B.; Davletov, A. E.

    2011-01-15

    A simple renormalization theory of plasma particle interactions is proposed. It primarily stems from generic properties of equilibrium distribution functions and allows one to obtain the so-called generalized Poisson-Boltzmann equation for an effective interaction potential of two chosen particles in the presence of a third one. The same equation is then strictly derived from the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for equilibrium distribution functions in the pair correlation approximation. This enables one to construct a self-consistent chemical model of partially ionized plasmas, correctly accounting for the close interrelation of charged and neutral components thereof. Minimization of the system free energy provides ionization equilibrium and, thus, permits one to study the plasma composition in a wide range of its parameters. Unlike standard chemical models, the proposed one allows one to study the system correlation functions and thereby to obtain an equation of state which agrees well with exact results of quantum-mechanical activity expansions. It is shown that the plasma and neutral components are strongly interrelated, which results in the short-range order formation in the corresponding subsystem. The mathematical form of the results obtained enables one to both firmly establish this fact and to determine a characteristic length of the structure formation. Since the cornerstone of the proposed self-consistent chemical model of partially ionized plasmas is an effective pairwise interaction potential, it immediately provides quite an efficient calculation scheme not only for thermodynamical functions but for transport coefficients as well.

  11. Equilibrium and Orientation in Cephalopods.

    ERIC Educational Resources Information Center

    Budelmann, Bernd-Ulrich

    1980-01-01

    Describes the structure of the equilibrium receptor system in cephalopods, comparing it to the vertebrate counterpart--the vestibular system. Relates the evolution of this complex system to the competition of cephalopods with fishes. (CS)

  12. Equilibrium ignition for ICF capsules

    SciTech Connect

    Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.

    1993-12-31

    There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative.

  13. Simulations for Teaching Chemical Equilibrium

    NASA Astrophysics Data System (ADS)

    Huddle, Penelope A.; White, Margaret Dawn; Rogers, Fiona

    2000-07-01

    This paper outlines a systematic approach to teaching chemical equilibrium using simulation experiments that address most known alternate conceptions in the topic. Graphs drawn using the data from the simulations are identical to those obtained using real experimental data for reactions that go to equilibrium. This allows easy mapping of the analogy to the target. The requirements for the simulations are simple and inexpensive, making them accessible to even the poorest schools. The simulations can be adapted for all levels, from pupils who are first encountering equilibrium through students in tertiary education to qualified teachers who have experienced difficulty in teaching the topic. The simulations were piloted on four very different audiences. Minor modifications were then made before the Equilibrium Games as reported in this paper were tested on three groups of subjects: a Grade 12 class, college students, and university Chemistry I students. Marked improvements in understanding of the concept were shown in two of the three sets of subjects.

  14. Equilibrium Constants You Can Smell.

    ERIC Educational Resources Information Center

    Anderson, Michael; Buckley, Amy

    1996-01-01

    Presents a simple experiment involving the sense of smell that students can accomplish during a lecture. Illustrates the important concepts of equilibrium along with the acid/base properties of various ions. (JRH)

  15. Equilibrium and Orientation in Cephalopods.

    ERIC Educational Resources Information Center

    Budelmann, Bernd-Ulrich

    1980-01-01

    Describes the structure of the equilibrium receptor system in cephalopods, comparing it to the vertebrate counterpart--the vestibular system. Relates the evolution of this complex system to the competition of cephalopods with fishes. (CS)

  16. Nonlocal thermodynamic equilibrium self-consistent average-atom model for plasma physics.

    PubMed

    Faussurier, G; Blancard, C; Berthier, E

    2001-02-01

    A time-dependent collisional-radiative average-atom model is presented to study statistical properties of highly charged ion plasmas in off-equilibrium conditions. The time evolution of electron populations and the electron covariance matrix is obtained as approximate solutions of a master equation. Atomic structure is described either with a screened-hydrogenic model including l splitting, or by calculating one-electron states in a self-consistent average-atom potential. Collisional and radiative excitation/deexcitation and ionization/recombination rates, as well as autoionization and dielectronic recombination rates, are formulated within the average-configuration framework. Local thermodynamic equilibrium is obtained as a specific steady-state solution. The influence of atomic structure and the role of autoionization and dielectronic recombination processes are studied by calculating steady-state average ionization and ionization variance of hot plasmas with or without radiation field.

  17. A search for equilibrium states

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1982-01-01

    An efficient search algorithm is described for the location of equilibrium states in a search set of states which differ from one another only by the choice of pure phases. The algorithm has three important characteristics: (1) it ignores states which have little prospect for being an improved approximation to the true equilibrium state; (2) it avoids states which lead to singular iteration equations; (3) it furnishes a search history which can provide clues to alternative search paths.

  18. Edge equilibrium code for tokamaks

    SciTech Connect

    Li, Xujing; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  19. Relevance of equilibrium in multifragmentation

    SciTech Connect

    Furuta, Takuya; Ono, Akira

    2009-01-15

    The relevance of equilibrium in a multifragmentation reaction of very central {sup 40}Ca + {sup 40}Ca collisions at 35 MeV/nucleon is investigated by using simulations of antisymmetrized molecular dynamics (AMD). Two types of ensembles are compared. One is the reaction ensemble of the states at each reaction time t in collision events simulated by AMD, and the other is the equilibrium ensemble prepared by solving the AMD equation of motion for a many-nucleon system confined in a container for a long time. The comparison of the ensembles is performed for the fragment charge distribution and the excitation energies. Our calculations show that there exists an equilibrium ensemble that well reproduces the reaction ensemble at each reaction time t for the investigated period 80{<=}t{<=}300 fm/c. However, there are some other observables that show discrepancies between the reaction and equilibrium ensembles. These may be interpreted as dynamical effects in the reaction. The usual static equilibrium at each instant is not realized since any equilibrium ensemble with the same volume as that of the reaction system cannot reproduce the fragment observables.

  20. Transport Properties of Equilibrium Argon Plasma in a Magnetic Field

    SciTech Connect

    Bruno, D.; Laricchiuta, A.; Chikhaoui, A.; Kustova, E. V.; Giordano, D.

    2005-05-16

    Electron electrical conductivity coefficients of equilibrium Argon plasma in a magnetic field are calculated up to the 12th Chapman-Enskog approximation at pressure of 1 atm and 0.1 atm for temperatures 500K-20000K; the magnetic Hall parameter spans from 0.01 to 100. The collision integrals used in the calculations are discussed. The convergence properties of the different approximations are assessed. The degree of anisotropy introduced by the presence of the magnetic field is evaluated. Differences with the isotropic case can be very substantial. The biggest effects are visible at high ionization degrees, i.e. high temperatures, and at strong magnetic fields.

  1. Nonequilibrium evolution of strong-field anisotropic ionized electrons towards a delayed plasma-state.

    PubMed

    Pasenow, B; Moloney, J V; Koch, S W; Chen, S H; Becker, A; Jaroń-Becker, A

    2012-01-30

    Rigorous quantum calculations of the femtosecond ionization of hydrogen atoms in air lead to highly anisotropic electron and ion angular (momentum) distributions. A quantum Monte-Carlo analysis of the subsequent many-body dynamics reveals two distinct relaxation steps, first to a nearly isotropic hot nonequilibrium and then to a quasi-equilibrium configuration. The collective isotropic plasma state is reached on a picosecond timescale well after the ultrashort ionizing pulse has passed.

  2. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  3. Equilibrium slab models of Lyman-alpha clouds

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Salpeter, Edwin E.; Hogan, Craig J.

    1993-01-01

    Solutions for the equilibrium configuration of a slab with ionizing radiation incident equally from both sides are explored. Radiation effects (photoionization, Ly-alpha photon trapping, and mock gravity) as well as external pressure and self gravity (with and without dark matter) are included. The general formalism is applied to structure growth on small scales at very high z due to mock gravity on dust. Emphasis is placed on the application of slab models at z of less than 5, particularly those that may correspond to Ly-alpha forest, Lyman limit, and damped Ly-alpha systems. The regime with a dominant outward force contributed by trapping of Ly-alpha photons is discussed. General expressions are given for the equilibrium, including dark matter, assuming various relationships between the density of the dark matter halo and the total gas column density.

  4. First-principles simulation of molecular dissociation-recombination equilibrium

    NASA Astrophysics Data System (ADS)

    Kylänpää, Ilkka; Rantala, Tapio T.

    2011-09-01

    For the first time, the equilibrium composition of chemical dissociation-recombination reaction is simulated from first-principles, only. Furthermore, beyond the conventional ab initio Born-Oppenheimer quantum chemistry the effects from the thermal and quantum equilibrium dynamics of nuclei are consistently included, as well as, the nonadiabatic coupling between the electrons and the nuclei. This has been accomplished by the path integral Monte Carlo simulations for full NVT quantum statistics of the H_3^+ ion. The molecular total energy, partition function, free energy, entropy, and heat capacity are evaluated in a large temperature range: from below room temperature to temperatures relevant for planetary atmospheric physics. Temperature and density dependent reaction balance of the molecular ion and its fragments above 4000 K is presented, and also the density dependence of thermal ionization above 10 000 K is demonstrated.

  5. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  6. Hysteresis of ionization waves

    SciTech Connect

    Dinklage, A.; Bruhn, B.; Testrich, H.; Wilke, C.

    2008-06-15

    A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

  7. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    PubMed

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  8. A COMPARATIVE REVIEW OF INORGANIC AEROSOL THERMODYNAMIC EQUILIBRIUM MODULES: SIMILARITIES, DIFFERENCES, AND THEIR LIKELY CAUSES

    EPA Science Inventory

    A comprehensive comparison of five inorganic aerosol thermodynamic equilibrium modules, MARS-A, SEQUILIB, SCAPE2, EQUISOLV II, and AIM2, was conducted for a variety of atmospheric concentrations of particulate matter (PM) constituents, relative humidities (RHs), and temperatures....

  9. A COMPARATIVE REVIEW OF INORGANIC AEROSOL THERMODYNAMIC EQUILIBRIUM MODULES: SIMILARITIES, DIFFERENCES, AND THEIR LIKELY CAUSES

    EPA Science Inventory

    A comprehensive comparison of five inorganic aerosol thermodynamic equilibrium modules, MARS-A, SEQUILIB, SCAPE2, EQUISOLV II, and AIM2, was conducted for a variety of atmospheric concentrations of particulate matter (PM) constituents, relative humidities (RHs), and temperatures....

  10. Distinction and quantitation of leucine-isoleucine isomers and lysine-glutamine isobars by electrospray ionization tandem mass spectrometry (MS(n), n = 2, 3) of copper(II)-diimine complexes.

    PubMed

    Seymour, J L; Turecek, F

    2000-04-01

    Electrospray ionization of mixtures of isomeric and isobaric amino acids was investigated with the goal of distinguishing and quantifying the components. Isomeric amino acids leucine and isoleucine were readily distinguished and quantified in 90 : 10 to 10 : 90 binary mixtures using two-stage (MS(2)) and three-stage (MS(3)) tandem mass spectrometric dissociations of ternary Cu(2+)-2, 2'-bipyridyl (bpy) complexes, [Cu(AA - H)bpy](+). The complexes self-assembled in solution upon mixing the components and provided a convenient means of efficient derivatization that increased the efficiency of amino acid ionization by electrospray and shifted the mass of the analytes to a region which was free of solvent interferences. Low-energy dissociations of [Cu(AA - H)bpy](+) complexes in a quadrupole ion trap were achieved at >90% conversions and >80% trapping efficiencies for the MS(2) and MS(3) precursor and fragment ions. Isobaric amino acids glutamine and lysine were also distinguished through MS(2) and MS(3) of their ternary complexes with Cu(2+) and bpy. ESI of [Cu(Gln - H)bpy](+) was enhanced in the presence of [Cu(Lys - H)bpy](+), which resulted in non-linear response at low Lys concentrations.

  11. Simulation of atomic ionization following the α decay of the nucleus

    NASA Astrophysics Data System (ADS)

    Kataoka, F.; Nogami, Y.; van Dijk, W.

    2000-08-01

    When the nucleus of an atom decays by emitting an α particle, the surrounding electrons are perturbed and the atom may be ionized. We consider two types of schematic one-dimensional models, I and II, that simulate this ionization process. In model I the α particle is treated as a classical point charge that is emitted by the nucleus at a certain time and travels out at constant speed. This model simulates Migdal's method, on which virtually all calculations performed so far for the ionization process are based. Migdal's method yields an ionization probability that is in reasonable agreement with experiment. In model II, the α particle is treated as a quantum mechanical wave that slowly leaks out from the nucleus. The ionization probability that follows from model II, however, is far smaller than that of model I. Implications of this difference are discussed.

  12. Total and ionized serum magnesium in critically ill patients.

    PubMed

    Escuela, Maria Paz; Guerra, Manuel; Añón, José M; Martínez-Vizcaíno, Vicente; Zapatero, María Dolores; García-Jalón, Angel; Celaya, Sebastian

    2005-01-01

    To assess the alterations in total serum magnesium (tsMg) and ionized serum magnesium (Mg(2+)) and their association with prognosis in critically ill patients. Prospective, cohort study in the intensive care unit (ICU) of a university teaching hospital. Adult patients admitted to the ICU without previous factors influencing magnesium homeostasis were included during a 6-month period. One hundred forty four patients were included. Mean age was 60.6+/-15.4 years; mean APACHE II score was 12.6+/-6.9. Blood samples were collected in the first 24 h after ICU admission and again on the second, third, and last days of stay in the ICU. At ICU admission 52.5% had total hypomagnesemia and 13.5% total hypermagnesemia; with respect to the Mg(2+) 9.7% showed ionized hypomagnesemia and 23.6% ionized hypermagnesemia. Patients who developed ionized hypermagnesemia had higher mortality than patients without ionized hypermagnesemia development (P=0.04). A moderate correlation between tsMg and Mg(2+) concentrations was found; however, a number of patients with total hypomagnesemia (69-85% during the study) had ionized normomagnesemia. The measure of agreement between tsMg and Mg(2+) levels was poor. Magnesium alterations are frequently found in critically ill patients. The usually determined tsMg levels are not a reflection of Mg(2+) levels. Development of ionized hypermagnesemia is associated with prognosis.

  13. Resonant three-Photon Ionization Spectroscopy of Atomic Fe

    SciTech Connect

    Liu, Yuan; Gottwald, T.; Havener, Charles C; Mattolat, C.; Vane, C Randy; Wendt, K.

    2013-01-01

    Laser spectroscopic investigations on high-lying states around the ionization potential in the atomic spectrum of Fe have been carried out for development of a practical three-step resonance ionization scheme accessible by Ti:Sapphire lasers. A hot cavity laser ion source typically used at on-line radioactive ion beam production facilities was employed in this work. Ionization schemes employing high-lying Rydberg and autoionizing states populated by three-photon excitations were established. Five new Rydberg and autoionizing Rydberg series converging to the ground and to the first four excited states of Fe II are reported. Analyses of the Rydberg series yield the value 63737.686 0.068 cm-1 for the ionization potential of iron.

  14. Quantum Games: Mixed Strategy Nash's Equilibrium Represents Minimum Entropy

    NASA Astrophysics Data System (ADS)

    Jiménez, Edward

    2003-12-01

    This paper introduces Hermite's polynomials, in the description of quantum games. Hermite's polynomials are associated with gaussian probability density. The gaussian probability density represents minimum dispersion. I introduce the concept of minimum entropy as a paradigm of both Nash's equilibrium (maximum utility MU) and Hayek equilibrium (minimum entropy ME). The ME concept is related to Quantum Games. Some questions arise after carrying out this exercise: i) What does Heisenberg's uncertainty principle represent in Game Theory and Time Series?, and ii) What do the postulates of Quantum Mechanics indicate in Game Theory and Economics?.

  15. CHEMI-IONIZATION IN SOLAR PHOTOSPHERE: INFLUENCE ON THE HYDROGEN ATOM EXCITED STATES POPULATION

    SciTech Connect

    Mihajlov, Anatolij A.; Ignjatovic, Ljubinko M.; Sreckovic, Vladimir A.; Dimitrijevic, Milan S. E-mail: mihajlov@ipb.ac.rs

    2011-03-15

    In this paper, the influence of chemi-ionization processes in H*(n {>=} 2) + H(1s) collisions, as well as the influence of inverse chemi-recombination processes on hydrogen atom excited-state populations in solar photosphere, are compared with the influence of concurrent electron-atom and electron-ion ionization and recombination processes. It has been found that the considered chemi-ionization/recombination processes dominate over the relevant concurrent processes in almost the whole solar photosphere. Thus, it is shown that these processes and their importance for the non-local thermodynamic equilibrium modeling of the solar atmosphere should be investigated further.

  16. The distribution of warm ionized gas in NGC 891

    NASA Technical Reports Server (NTRS)

    Rand, Richard J.; Kulkarni, Shrinivas R.; Hester, J. Jeff

    1990-01-01

    Narrow-band imaging is presented of the edge-on spiral NGC 891 in the H-alpha and S II 6716, 6731 A forbidden lines. Emission from H II regions confined to the plane of the galaxy and from diffuse gas up to about 4 kpc off the plane is readily detected. The full radial extent of the diffuse emission in the plane is about 30 kpc. NGC 891 is found to have a surface density of diffuse ionized gas twice the Galactic value, a thicker ionized gas layer, and a larger surface density of ionized gas relative to neutral gas. These are interpreted as consequences of a relatively high level of star formation in this galaxy. Other star formation tracers indicate the same conclusion. Many vertical H-alpha filaments, or 'worms,' extending to over 2 kpc off the plane of the galaxy are seen. These worms are interpreted in terms of chimney models for the interstellar media of spirals.

  17. Tuning universality far from equilibrium

    PubMed Central

    Karl, Markus; Nowak, Boris; Gasenzer, Thomas

    2013-01-01

    Possible universal dynamics of a many-body system far from thermal equilibrium are explored. A focus is set on meta-stable non-thermal states exhibiting critical properties such as self-similarity and independence of the details of how the respective state has been reached. It is proposed that universal dynamics far from equilibrium can be tuned to exhibit a dynamical transition where these critical properties change qualitatively. This is demonstrated for the case of a superfluid two-component Bose gas exhibiting different types of long-lived but non-thermal critical order. Scaling exponents controlled by the ratio of experimentally tuneable coupling parameters offer themselves as natural smoking guns. The results shed light on the wealth of universal phenomena expected to exist in the far-from-equilibrium realm. PMID:23928853

  18. Detecting temperature fluctuations at equilibrium.

    PubMed

    Dixit, Purushottam D

    2015-05-21

    The Gibbs and the Boltzmann definition of temperature agree only in the macroscopic limit. The ambiguity in identifying the equilibrium temperature of a finite-sized 'small' system exchanging energy with a bath is usually understood as a limitation of conventional statistical mechanics. We interpret this ambiguity as resulting from a stochastically fluctuating temperature coupled with the phase space variables giving rise to a broad temperature distribution. With this ansatz, we develop the equilibrium statistics and dynamics of small systems. Numerical evidence using an analytically tractable model shows that the effects of temperature fluctuations can be detected in the equilibrium and dynamical properties of the phase space of the small system. Our theory generalizes statistical mechanics to small systems relevant in biophysics and nanotechnology.

  19. Calcium: total or ionized?

    PubMed

    Schenck, Patricia A; Chew, Dennis J

    2008-05-01

    Measurement of serum total calcium (tCa) has been relied on for assessment of calcium status, despite the fact that it is the ionized calcium (iCa) fraction that has biologic activity. Serum tCa does not accurately predict iCa status in many clinical conditions. For accurate assessment of iCa status, iCa should be directly measured. Anaerobic measurement of serum iCa under controlled conditions provides the most reliable assessment of calcium status; aerobic measurement of iCa with species-specific pH correction is highly correlated with anaerobic measurements.

  20. Investigation of electric field distribution on FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2016-07-01

    One of the important parameters for establishing charge particle equilibrium (CPE) conditions of free-air ionization chamber is an electric field distribution. In this paper, electric field distribution inside the ionization chamber was investigated by finite element method. For this purpose, the effects of adding guard plate and guard strips on the electric field distribution in the ionization chamber were studied. it is necessary to apply a lead box around the ionization chamber body to avoid of scattered radiation effects on the ionization chamber operation, but the lead box changes the electric field distribution. In the following, the effect of lead box on the electric field distribution was studied. Finally, electric field distribution factor (kfield) was calculated by the simulation. The results of the simulation showed that presence of the guard plate and guard strips, and applying a suitable potential to lead box, a convergence of kfield to 1 was achieved.

  1. Equilibrium in a Production Economy

    SciTech Connect

    Chiarolla, Maria B.; Haussmann, Ulrich G.

    2011-06-15

    Consider a closed production-consumption economy with multiple agents and multiple resources. The resources are used to produce the consumption good. The agents derive utility from holding resources as well as consuming the good produced. They aim to maximize their utility while the manager of the production facility aims to maximize profits. With the aid of a representative agent (who has a multivariable utility function) it is shown that an Arrow-Debreu equilibrium exists. In so doing we establish technical results that will be used to solve the stochastic dynamic problem (a case with infinite dimensional commodity space so the General Equilibrium Theory does not apply) elsewhere.

  2. Adiabatic evolution of plasma equilibrium

    PubMed Central

    Grad, H.; Hu, P. N.; Stevens, D. C.

    1975-01-01

    A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729

  3. Plasma Production via Field Ionization

    SciTech Connect

    O'Connell, C.L.; Barnes, C.D.; Decker, F.; Hogan, M.J.; Iverson, R.; Krejcik, P.; Siemann, R.; Walz, D.R.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Zhou, M.; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; /Southern California U.

    2007-01-02

    Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam's bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  4. Chemical Principles Revisited: Using the Equilibrium Concept.

    ERIC Educational Resources Information Center

    Mickey, Charles D., Ed.

    1981-01-01

    Discusses the concept of equilibrium in chemical systems, particularly in relation to predicting the position of equilibrium, predicting spontaneity of a reaction, quantitative applications of the equilibrium constant, heterogeneous equilibrium, determination of the solubility product constant, common-ion effect, and dissolution of precipitates.…

  5. Equilibrium Principles: A Game for Students

    NASA Astrophysics Data System (ADS)

    Edmonson, Lionel J., Jr.; Lewis, Don L.

    1999-04-01

    The laboratory exercise is a game using marked sugar cubes as dice. The game emphasizes the dynamic character of equilibrium. Forward and reverse rate-constant values are used to calculate an equilibrium constant and to predict equilibrium populations. Predicted equilibrium populations are compared with experimental results.

  6. Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)

    2002-01-01

    The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.

  7. Hydraulic effects in a radiative atmosphere with ionization

    NASA Astrophysics Data System (ADS)

    Bhat, P.; Brandenburg, A.

    2016-03-01

    Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability (NEMPI). Aims: We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations. Methods: We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. Results: Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy. Owing to the absence of turbulence, the downflows reach transonic speeds. Conclusions: We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations and homogenize the specific entropy to a stratification that is close to marginal.

  8. Polarity effect in plane-parallel ionization chambers using air or a dielectric liquid as ionization medium

    SciTech Connect

    Wickman, G.; Holmstroem, T. )

    1992-05-01

    A plane-parallel ionization chamber having a sensitive volume of 2 mm{sup 3} and using the dielectric liquid tetramethylsilane as the sensitive medium instead of air is described. In the design of the chamber special attention was given to the factors that can cause unwanted currents in the cable, stem, or the chamber dielectric material. The chamber has been tested with respect to the polarity effect in regions of radiation fields where ordinary plane-parallel ionization chambers will often fail. These regions are the build-up region in photon fields, and the region close to the practical range for electrons where nonelectronic equilibrium is significant. Experimental results show that, despite the extremely small ionization volume in the liquid ionization chamber, the polarity effect never exceeds a few tenths of a percent in field positions where well-known commercially available chambers with much less spatial resolution designed for measurements in radiation therapy fields can show polarity effects of 5% to 30%. The origin of spurious currents and how they must be minimized in the design of either a liquid- or gas-filled ionization chamber is discussed.

  9. Ionization of elements in medium power capacitively coupled argon plasma torch with single and double ring electrodes.

    PubMed

    Ponta, Michaela; Frentiu, Maria; Frentiu, Tiberiu

    2012-06-01

    A medium power, low Ar consumption capacitively coupled plasma torch (275 W, 0.4 L min-1) with molybdenum tubular electrode and single or two ring electrodes in non-local thermodynamic equilibrium (LTE) was characterized with respect to its ability to achieve element ionization. Ionization degrees of Ca, Mg, Mn and Cd were determined from ionic-to-atomic emission ratio and ionization equilibrium according to Saha's equation. The ionization degrees resulted from the Saha equation were higher by 9-32% than those obtained from spectral lines intensity in LTE regime and closer to reality. A linear decrease of ionization with increase of ionization energy of elements was observed. Plasma torch with two ring electrodes provided higher ionization degrees (85 ± 7% Ca, 79 ± 7% Mn, 80 ± 7% Mg and 73 ± 8% Cd) than those in single ring arrangement (70 ± 6% Ca, 57 ± 7% Mn, 57 ± 8% Mg and 42 ± 9% Cd). The Ca ionization decreased linearly by up to 79 ± 4% and 53 ± 6% in plasma with two ring electrodes and single ring respectively in the presence of up to 400 µg mL-1 Na as interferent. The studied plasma was effective in element ionization and could be a potential ion source in mass spectrometry.

  10. Thermodynamic theory of equilibrium fluctuations

    SciTech Connect

    Mishin, Y.

    2015-12-15

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  11. Magnetospheric equilibrium with anisotropic pressure

    SciTech Connect

    Cheng, C.Z.

    1991-07-01

    Self-consistent magnetospheric equilibrium with anisotropic pressure is obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distribution or particle distribution measured along the satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibrium including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases, the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator due to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the tail-like surface. 23 refs., 17 figs.

  12. Understanding Thermal Equilibrium through Activities

    ERIC Educational Resources Information Center

    Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra

    2015-01-01

    Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…

  13. An investigation of equilibrium concepts

    NASA Technical Reports Server (NTRS)

    Prozan, R. J.

    1982-01-01

    A different approach to modeling of the thermochemistry of rocket engine combustion phenomena is presented. The methodology described is based on the hypothesis of a new variational principle applicable to compressible fluid mechanics. This hypothesis is extended to treat the thermochemical behavior of a reacting (equilibrium) gas in an open system.

  14. Understanding Thermal Equilibrium through Activities

    ERIC Educational Resources Information Center

    Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra

    2015-01-01

    Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…

  15. Equilibrium Distribution Functions: Another Look.

    ERIC Educational Resources Information Center

    Waite, Boyd A.

    1986-01-01

    Discusses equilibrium distribution functions and provides an alternative "derivation" that allows the student, with the help of a computer, to gain intuitive insight as to the nature of distributions in general and the precise nature of the dominance of the Boltzmann distribution. (JN)

  16. Quantifying mixing using equilibrium reactions

    NASA Astrophysics Data System (ADS)

    Wheat, Philip M.; Posner, Jonathan D.

    2009-03-01

    A method of quantifying equilibrium reactions in a microchannel using a fluorometric reaction of Fluo-4 and Ca2+ ions is presented. Under the proper conditions, equilibrium reactions can be used to quantify fluid mixing without the challenges associated with constituent mixing measures such as limited imaging spatial resolution and viewing angle coupled with three-dimensional structure. Quantitative measurements of CaCl and calcium-indicating fluorescent dye Fluo-4 mixing are measured in Y-shaped microchannels. Reactant and product concentration distributions are modeled using Green's function solutions and a numerical solution to the advection-diffusion equation. Equilibrium reactions provide for an unambiguous, quantitative measure of mixing when the reactant concentrations are greater than 100 times their dissociation constant and the diffusivities are equal. At lower concentrations and for dissimilar diffusivities, the area averaged fluorescence signal reaches a maximum before the species have interdiffused, suggesting that reactant concentrations and diffusivities must be carefully selected to provide unambiguous, quantitative mixing measures. Fluorometric equilibrium reactions work over a wide range of pH and background concentrations such that they can be used for a wide variety of fluid mixing measures including industrial or microscale flows.

  17. Concurrent fractional and equilibrium crystallisation

    NASA Astrophysics Data System (ADS)

    Sha, Lian-Kun

    2012-06-01

    This paper proposes the concept of concurrent fractional and equilibrium crystallisation (CFEC) in a multi-phase magmatic system in light of experimental results on diffusivities of elements and other species in minerals and melts. A group of equations are presented to describe how the concentrations of an element or isotope change in fractionated solid, equilibrated solid, melt, liquid, and gas phases, as well as in magma, as a function of distribution coefficients and mass fractions during the CFEC process. CFEC model is a generalised and unified formulation that is valid, not only for pure fractional crystallisation (FC) and perfect equilibrium crystallisation (EC) singly, as two of its limiting end-member cases, but also for the geologically more important process of concurrent fractional and equilibrium crystallisation. The concept that both fractional and equilibrium crystallisation can operate concurrently in a magmatic system, for a given element, among different minerals, and even within different-sized crystal grains of the very same mineral phase, is of fundamental importance in deepening our current understanding of magmatic differentiation processes. CFEC probably occurs more frequently in the natural world than either pure fractional or perfect equilibrium crystallisation alone, as a result of the interplay of varying diffusivities of elements under diverse physicochemical conditions, different residence time and growth rates of mineral phases in magmas, and varying grain sizes within each phase and among different phases. The marked systematic variations in trace element concentrations in the melts of the Bishop Tuff have long been perplexing and difficult to reconcile with existing models of differentiation. CFEC, which is able to better explain the scatter trends in a systematic way than fractional crystallisation, is considered to be the cause.

  18. Liquid-vapor equilibrium-states and critical properties of aluminum from dense plasma equation-of-state

    NASA Astrophysics Data System (ADS)

    Zaghloul, Mofreh

    2016-10-01

    We present successful estimates of the critical properties and liquid-vapor equilibrium states of pure aluminum fluid as predicted from a chemical model for the equation-of-state of hot dense partially ionized plasma. The essential features of strongly-coupled plasma of metal vapors, such as, multiple ionization, Coulomb interactions among charged particles, partial degeneracy, and intensive short range hard core repulsion are taken into consideration. Internal partition functions of neutral, excited, and ionized species are thoughtfully evaluated in a statistical-mechanically consistent way implementing recent developments in the literature. Results predicted from the present model are discussed and carefully examined against available data and predictions in the literature.

  19. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  20. [Ionizing and non-ionizing radiation (comparative risk estimations)].

    PubMed

    Grigor'ev, Iu G

    2012-01-01

    The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.

  1. Losartan sensitizes selectively prostate cancer cell to ionizing radiation.

    PubMed

    Yazdannejat, H; Hosseinimehr, S J; Ghasemi, A; Pourfallah, T A; Rafiei, A

    2016-01-11

    Losartan is an angiotensin II receptor (AT-II-R) blocker that is widely used by human for blood pressure regulation. Also, it has antitumor property. In this study, we investigated the radiosensitizing effect of losartan on cellular toxicity induced by ionizing radiation on prostate cancer and non-malignant fibroblast cells. Human prostate cancer (DU-145) and human non-malignant fibroblast cells (HFFF2) were treated with losartan at different concentrations (0.5, 1, 10, 50 and 100 µM) and then these cells were exposed to ionizing radiation. The cell proliferation was determined using MTT assay. Our results showed that losartan exhibited antitumor effect on prostate cancer cells; it was reduced cell survival to 66% at concentration 1 µM. Losartan showed an additive killing effect in combination with ionizing radiation on prostate cancer cell. The cell proliferation was reduced to 54% in the prostate cancer cells treated with losartan at concentration 1 µM in combination with ionizing radiation. Losartan did not exhibit any toxicity on HFFF2 cell. This result shows a promising effect of losartan on enhancement of therapeutic effect of ionizing radiation in patients during therapy.

  2. Non-Equilibrium Properties from Equilibrium Free Energy Calculations

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.

  3. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  4. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  5. Multiphoton ionization of Uracil

    NASA Astrophysics Data System (ADS)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  6. AN IONIZATION CONE IN THE DWARF STARBURST GALAXY NGC 5253

    SciTech Connect

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael; Martin, Crystal L.

    2011-11-01

    There are few observational constraints on how the escape of ionizing photons from starburst galaxies depends on galactic parameters. Here we report on the first major detection of an ionization cone in NGC 5253, a nearby starburst galaxy. This high-excitation feature is identified by mapping the emission-line ratios in the galaxy using [S III] {lambda}9069, [S II] {lambda}6716, and H{alpha} narrowband images from the Maryland-Magellan Tunable Filter at Las Campanas Observatory. The ionization cone appears optically thin, which suggests the escape of ionizing photons. The cone morphology is narrow with an estimated solid angle covering just 3% of 4{pi} steradians, and the young, massive clusters of the nuclear starburst can easily generate the radiation required to ionize the cone. Although less likely, we cannot rule out the possibility of an obscured active galactic nucleus source. An echelle spectrum along the minor axis shows complex kinematics that are consistent with outflow activity. The narrow morphology of the ionization cone supports the scenario that an orientation bias contributes to the difficulty in detecting Lyman continuum emission from starbursts and Lyman break galaxies.

  7. IONIZED OUTFLOWS FROM COMPACT STEEP SPECTRUM SOURCES

    SciTech Connect

    Shih, Hsin-Yi; Stockton, Alan; Kewley, Lisa E-mail: stockton@ifa.hawaii.edu

    2013-08-01

    Massive outflows are known to exist, in the form of extended emission-line regions (EELRs), around about one-third of powerful FR II radio sources. We investigate the origin of these EELRs by studying the emission-line regions around compact-steep-spectrum (CSS) radio galaxies that are younger (10{sup 3}-10{sup 5} yr old) versions of the FR II radio galaxies. We have searched for and analyzed the emission-line regions around 11 CSS sources by taking integral field spectra using Gemini Multi-Object Spectrograph on Gemini North. We fit the [O III] {lambda}5007 line and present the velocity maps for each detected emission-line region. We find, in most cases, that the emission-line regions have multi-component velocity structures with different velocity dispersions and/or flux distributions for each component. The velocity gradients of the emission-line gas are mostly well aligned with the radio axis, suggesting a direct causal link between the outflowing gas and the radio jets. The complex velocity structure may be a result of different driving mechanisms related to the onset of the radio jets. We also present the results from the line-ratio diagnostics we used to analyze the ionization mechanism of the extended gas, which supports the scenario where the emission-line regions are ionized by a combination of active galactic nucleus radiation and shock excitation.

  8. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  9. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  10. Structure and evolution of fossil H II regions

    NASA Technical Reports Server (NTRS)

    Mccray, R.; Schwarz, J.

    1971-01-01

    The structure and evolution of a fossil H II region created by a burst of ionizing radiation from a supernova is considered. The cooling time scale for the shell is about 10 to the 6th power years. Superposition of million-year-old fossil H II regions may account for the temperature and ionization of the interstellar medium. Fossil H II regions are unstable to growth of thermal condensations. Highly ionized filamentary structures form and dissipate in about 10,000 years. Partially ionized clouds form and dissipate in about 10 to the 6th power years.

  11. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  12. Ionization front interactions and the formation of globules

    NASA Astrophysics Data System (ADS)

    Brand, P. W. J. L.

    1981-10-01

    It is assumed that an H II region has evolved inside a molecular cloud. The interactions that result from the expanding shell of compressed molecular gas reaching the edge of the cloud are calculated, and the instability of the ionization front to the formation of globules is investigated. The rarefaction wave which is reflected from the contact discontinuity as the leading shock passes through the edge of the cloud accelerates the ionization front, and since conditions at the front satisfy Capriotti's criterion for instability, the shell breaks up. The size of the fragment so created is determined by the thickness of the compressed shell. If the shell phase of H II region evolution has proceeded significantly, then globules of up to a fraction of a solar mass may be formed in an H II region caused by a star with an ionizing luminosity of 10 to the 49th photons/sec in a molecular cloud of density 1000/cu cm. These globules may survive the ionizing flux from the star, and will be driven from the cloud by the rocket effect.

  13. Non-equilibrium in cosmology

    NASA Astrophysics Data System (ADS)

    Pietroni, M.

    2009-02-01

    All the non-trivial features of the Universe we see around us, such as particles, stars, galaxies, and clusters of galaxies, are the result of non-equilibrium processes in the cosmic evolution. These lectures aim to provide some general background in cosmology and to examine specific, and notable, examples of departures from thermal equilibrium. They are organized as follows: 1) Overview of the thermal history of the Universe after the Big Bang: the relevant time-scales and the mechanism of particle decoupling from the themal bath; 2) Explicit examples of cosmic relics: nucleosynthesis, photons and the cosmic microwave background, neutrinos, and cold dark matter; 3) Baryogenesis: the generation of the baryon asymmetry of the Universe; 4) The formation of cosmic structures (galaxies, clusters of galaxies): from the Vlasov equation to the renormalization group.

  14. Korshunov instantons out of equilibrium

    NASA Astrophysics Data System (ADS)

    Titov, M.; Gutman, D. B.

    2016-04-01

    Zero-dimensional dissipative action possesses nontrivial minima known as Korshunov instantons. They have been known so far only for imaginary time representation that is limited to equilibrium systems. In this work we reconstruct and generalise Korshunov instantons using real-time Keldysh approach. This allows us to formulate the dissipative action theory for generic nonequilibrium conditions. Possible applications of the theory to transport in strongly biased quantum dots are discussed.

  15. Electron-impact ionization and dissociative ionization of biomolecules

    NASA Astrophysics Data System (ADS)

    Huo, Winifred

    2006-05-01

    Oxidative damages by ionizing radiation are the source of radiation-induced damages to human health. It is recognized that secondary electrons play a role in the damage process, particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. The damage can be direct, by creating a DNA lesion, or indirect, by producing radicals that attack the DNA. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. This investigation focuses on ionization and dissociative ionization (DI) of DNA fragments by electron-impact. For ionization we use the improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64, 042719-1 (2001)]. For DI it is assumed that electron motion is much faster than nuclear motion, allowing DI to be treated as a two-step process and the DI cross section given by the product of the ionization cross section and dissociation probability. The ionization study covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 5%. The result implies that certain properties of the DNA, like the total ionization cross section, are localized properties and an additivity principle may apply. This allows us to obtain properties of a larger molecular system built up from the results of smaller subsystem fragments. The DI of guanine and cytosine has been studied. For guanine, a proton is produced from the channel where the ionized electron originates from a molecular orbital with significant charge density along the N(1)-H bond. The interaction of the proton with cytosine was also studied.

  16. Local equilibrium in bird flocks

    NASA Astrophysics Data System (ADS)

    Mora, Thierry; Walczak, Aleksandra M.; Del Castello, Lorenzo; Ginelli, Francesco; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano; Cavagna, Andrea; Giardina, Irene

    2016-12-01

    The correlated motion of flocks is an example of global order emerging from local interactions. An essential difference with respect to analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically rearranging their interaction network. This non-equilibrium characteristic has been studied theoretically, but its impact on actual animal groups remains to be fully explored experimentally. Here, we introduce a novel dynamical inference technique, based on the principle of maximum entropy, which accommodates network rearrangements and overcomes the problem of slow experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling flocks. We find that local bird alignment occurs on a much faster timescale than neighbour rearrangement. Accordingly, equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground for the applicability of statistical physics in certain active systems.

  17. Local equilibrium in bird flocks.

    PubMed

    Mora, Thierry; Walczak, Aleksandra M; Castello, Lorenzo Del; Ginelli, Francesco; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano; Cavagna, Andrea; Giardina, Irene

    2016-12-01

    The correlated motion of flocks is an instance of global order emerging from local interactions. An essential difference with analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically rearranging their interaction network. The effect of this off-equilibrium element is well studied theoretically, but its impact on actual biological groups deserves more experimental attention. Here, we introduce a novel dynamical inference technique, based on the principle of maximum entropy, which accodomates network rearrangements and overcomes the problem of slow experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling flocks. We find that local bird alignment happens on a much faster timescale than neighbour rearrangement. Accordingly, equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground for the applicability of statistical physics in certain active systems.

  18. Analytical study on the influence of nonequilibrium ionization for current flow pattern and flow field of MPD arcjets

    NASA Astrophysics Data System (ADS)

    Kimura, Itsuro; Shoji, Tsunetake

    1990-07-01

    The effect of non-equilibrium ionization on a one-dimensional supersonic self-field MPD flow, which starts from the point of Mach number 1, is analyzed taking ionization and recombination rate-equations and electron energy equation into consideration. It was observed generally that for given inlet boundary conditions and a total discharge current, the solution exists in a limited region of propellant flow rate and the required electrode becomes longer for lower propellant flow rate, as in the cases of frozen or thermal-equilibrium flow. Based on the calculated results with argon or hydrogen propellant, it was shown that a remarkable deviation from ionization equilibrium appears in the course of plasma acceleration, when the propellant flow rate is near the lower limit, and that for molecular species hydrogen, current concentration on the inlet part, observed in the case of argon, is removed by the influence of dissociation process.

  19. A self-consistent 3D model of fluctuations in the helium-ionizing background

    NASA Astrophysics Data System (ADS)

    Davies, Frederick B.; Furlanetto, Steven R.; Dixon, Keri L.

    2017-03-01

    Large variations in the effective optical depth of the He II Lyα forest have been observed at z ≳ 2.7, but the physical nature of these variations is uncertain: either the Universe is still undergoing the process of He II reionization, or the Universe is highly ionized but the He II-ionizing background fluctuates significantly on large scales. In an effort to build upon our understanding of the latter scenario, we present a novel model for the evolution of ionizing background fluctuations. Previous models have assumed the mean free path of ionizing photons to be spatially uniform, ignoring the dependence of that scale on the local ionization state of the intergalactic medium (IGM). This assumption is reasonable when the mean free path is large compared to the average distance between the primary sources of He II-ionizing photons, ≳ L⋆ quasars. However, when this is no longer the case, the background fluctuations become more severe, and an accurate description of the average propagation of ionizing photons through the IGM requires additionally accounting for the fluctuations in opacity. We demonstrate the importance of this effect by constructing 3D semi-analytic models of the helium-ionizing background from z = 2.5-3.5 that explicitly include a spatially varying mean free path of ionizing photons. The resulting distribution of effective optical depths at large scales in the He II Lyα forest is very similar to the latest observations with HST/COS at 2.5 ≲ z ≲ 3.5.

  20. Equilibrium and kinetics in metamorphism

    NASA Astrophysics Data System (ADS)

    Pattison, D. R.

    2012-12-01

    The equilibrium model for metamorphism is founded on the metamorphic facies principle, the repeated association of the same mineral assemblages in rocks of different bulk composition that have been metamorphosed together. Yet, for any metamorphic process to occur, there must be some degree of reaction overstepping (disequilibrium) to initiate reaction. The magnitude and variability of overstepping, and the degree to which it is either a relatively minor wrinkle or a more substantive challenge to the interpretation of metamorphic rocks using the equilibrium model, is an active area of current research. Kinetic barriers to reaction generally diminish with rising temperature due to the Arrhenius relation. In contrast, the rate of build-up of the macroscopic energetic driving force needed to overcome kinetic barriers to reaction, reaction affinity, does not vary uniformly with temperature, instead varying from reaction to reaction. High-entropy reactions that release large quantities of H2O build up reaction affinity more rapidly than low-entropy reactions that release little or no H2O, such that the former are expected to be overstepped less than the latter. Some consequences include: (1) metamorphic reaction intervals may be discrete rather than continuous, initiating at the point that sufficient reaction affinity has built up to overcome kinetic barriers; (2) metamorphic reaction intervals may not correspond in a simple way to reaction boundaries in an equilibrium phase diagram; (3) metamorphic reactions may involve metastable reactions; (4) metamorphic 'cascades' are possible, in which stable and metastable reactions involving the same reactant phases may proceed simultaneously; and (5) fluid generation, and possibly fluid presence in general, may be episodic rather than continuous, corresponding to discrete intervals of reaction. These considerations bear on the interpretation of P-T-t paths from metamorphic mineral assemblages and textures. The success of the