Science.gov

Sample records for ii muon pdt

  1. Flammability tests on D0 Run II muon PDT Gas and P-10 Gas

    SciTech Connect

    Herman F. Haggerty; James L. Priest and Tom Marshall

    2001-07-12

    The authors have done a series of measurements with mixtures of Argon, CF4 and CH4 to demonstrate that the mixture chosen for RunII (84% Argon, 8% CH4, 8% CF4) is not flammable. The tests were conducted in the Meson Detector Building in a test cell similar in construction to a cell of a Muon PDT. In order to establish the viability of the test set-up, they first repeated the demonstration that P-10 gas (90% Argon, 10% CH4) is in fact flammable, contrary to the classification by the US DOT. US DOT regulation 173.115 defines flammable gas as: (1) is ignitable (at 14.7 psi) when in a mixture of 13% or less with air; or (2) has a flammability range (at 14.7 psi) with air of at least 12% regardless of the lower explosive limit (LEL). P-10 has a LEL of about 40% and a flammability range of about 10%, so P-10 is not flammable according to the US DOT definition. The point here is that the DOT classifications are to serve the DOT's function to ensure transportation safety, and are not necessarily appropriate for other situations. The first configuration of their test cell, however, apparently failed to ignite P-10. With the guidance of Bill Nuttall of CERN, they modified their test cell to make it more like the standard flammability testing setups, with a large viewing window and a spark gap in the middle of the cell. In this second configuration P-10 was easily and reliably ignitable. After becoming more familiar with the visible indicators of combustion of P-10 (water vapor cloud formation, pressure changes and gas venting) they retested with the initial configuration, and found that the mixture actually had been burning, and that they had just missed all the indications. The data from CERN showed that P-10 burns rather slowly, with about a one second rise time for the pressure to reach the maximum of four atmospheres overpressure. In the tests they saw no signs of any flame, but only a water vapor cloud. Some preliminary tests with the same cell using Argon-Ethane and

  2. The muon system of the Run II DØ detector

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Acharya, B. S.; Alexeev, G. D.; Alkhazov, G.; Anosov, V. A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J. F.; Baturitsky, M. A.; Beutel, D.; Bezzubov, V. A.; Bodyagin, V.; Butler, J. M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Doulas, S.; Dugad, S. R.; Dvornikov, O. V.; Dyshkant, A.; Eads, M.; Evdokimov, A.; Evdokimov, V. N.; Fitzpatrick, T.; Fortner, M.; Gavrilov, V.; Gershtein, Y.; Golovtsov, V.; Gómez, B.; Goodwin, R.; Gornushkin, Yu. A.; Green, D. R.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Haggerty, H.; Hanlet, P.; Hansen, S.; Hazen, E.; Hedin, D.; Hoeneisen, B.; Ito, A. S.; Jayanti, R.; Johns, K.; Jouravlev, N.; Kalinin, A. M.; Kalmani, S. D.; Kharzheev, Y. N.; Kirsch, N.; Komissarov, E. V.; Korablev, V. M.; Kostritsky, A.; Kozelov, A. V.; Kozlovsky, M.; Kravchuk, N. P.; Krishnaswamy, M. R.; Kuchinsky, N. A.; Kuleshov, S.; Kupco, A.; Larwill, M.; Leitner, R.; Lipaev, V. V.; Lobodenko, A.; Lokajicek, M.; Lubatti, H. J.; Machado, E.; Maity, M.; Malyshev, V. L.; Mao, H. S.; Marcus, M.; Marshall, T.; Mayorov, A. A.; McCroskey, R.; Merekov, Y. P.; Mikhailov, V. A.; Mokhov, N.; Mondal, N. K.; Nagaraj, P.; Narasimham, V. S.; Narayanan, A.; Negret, J. P.; Neustroev, P.; Nozdrin, A. A.; Oshinowo, B.; Parashar, N.; Parua, N.; Podstavkov, V. M.; Polozov, P.; Porokhovoi, S. Y.; Prokhorov, I. K.; Rao, M. V. S.; Raskowski, J.; Reddy, L. V.; Regan, T.; Rotolo, C.; Russakovich, N. A.; Sabirov, B. M.; Satyanarayana, B.; Scheglov, Y.; Schukin, A. A.; Shankar, H. C.; Shishkin, A. A.; Shpakov, D.; Shupe, M.; Simak, V.; Sirotenko, V.; Smith, G.; Smolek, K.; Soustruznik, K.; Stefanik, A.; Steinberg, J.; Stolin, V.; Stoyanova, D. A.; Stutte, L.; Temple, J.; Terentyev, N.; Teterin, V. V.; Tokmenin, V. V.; Tompkins, D.; Uvarov, L.; Uvarov, S.; Vasilyev, I. A.; Vertogradov, L. S.; Vishwanath, P. R.; Vorobyov, A.; Vysotsky, V. B.; Willutzki, H.; Wobisch, M.; Wood, D. R.; Yamada, R.; Yatsunenko, Y. A.; Yoffe, F.; Zanabria, M.; Zhao, T.; Zieminska, D.; Zieminski, A.; Zvyagintsev, S. A.

    2005-11-01

    We describe the design, construction, and performance of the upgraded DØ muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the DØ muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  3. The Muon system of the run II D0 detector

    SciTech Connect

    Abazov, V.M.; Acharya, B.S.; Alexeev, G.D.; Alkhazov, G.; Anosov, V.A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J.F.; Baturitsky, M.A.; Beutel, D.; Bezzubov, V.A.; Bodyagin, V.; Butler, J.M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S.P.; Diehl, H.T.; Doulas, S.; Dugad, S.R.; /Beijing, Inst. High Energy Phys. /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Tata Inst. /Dubna, JINR /Moscow, ITEP /Moscow State U. /Serpukhov, IHEP /St. Petersburg, INP /Arizona U. /Florida State U. /Fermilab /Northern Illinois U. /Indiana U. /Boston U. /Northeastern U. /Brookhaven /Washington U., Seattle /Minsk, Inst. Nucl. Problems

    2005-03-01

    The authors describe the design, construction and performance of the upgraded D0 muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the D0 muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  4. Specific light exposure of galactosylated Zn(II) phthalocyanines for selective PDT effects on breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mantareva, V. N.; Kril, A.; Angelov, I.; Avramov, L.

    2013-03-01

    Photodynamic therapy (PDT) is a clinically approved non-invasive and curative procedure for different oncological and non-oncological applications. PDT is still under development due to several limitations which lead to partially successful photodynamic response. The crucial steps in PDT procedure are binding of the photosensitizer to outer cell membrane, its penetration and subcellular localization which envisage the target sites of reactive oxygen species generated during irradiation. Since the surrounding normal cells are also exposed to the photosensitizer and the ambient daylight can be harmful for healthy tissues after therapeutic light application, the challenging task in PDT research is to optimize the procedure in a way to reach tumor cell selectivity. The present study outlines the influence of a light exposure pre-treatment (prior therapeutic light) with specific wavelengths (365 nm and 635 nm) on the uptake, the localization and further re-localization of galactose-substituted Zn(II) phthalocyanines into MDA-MB-231 breast cancer cells. The in vitro photodynamic effect towards tumor cells was studied in comparison to the normal cell line Balb/c 3T3 (clone 31) after pre-irradiation with UV light (365 nm) and red LED (635 nm). The results suggest that the galactose functional groups of Zn(II) phthalocyanine and the harmless UV light at 365 nm favor the selective PDT response.

  5. Photodynamic Therapy (PDT): PDT Mechanisms

    PubMed Central

    Allison, Ron R.

    2013-01-01

    Photodynamic therapy (PDT) is a light based therapy used to ablate tumors. As practiced in oncology a photosensitizing agent is applied and then activated by a specific wavelength and energy of light. This light energy in the presence of oxygen will lead to the creation of the photodynamic reaction which is cyto and vasculo toxic. This paper will review the mechanisms of action of PDT and how they may be manipulated to improve clinical outcome in cancer patients. PMID:23422955

  6. MUON EDM EXPERIMENT USING STAGE II OF THE NEUTRINO FACTORY.

    SciTech Connect

    FERNOW,R.C.; GALLARDO,J.C.; MORSE,W.M.; SEMERTZIDIS,Y.K.

    2002-07-01

    During the second stage of a future neutrino factory unprecedented numbers of bunched muons will become available. The cooled medium-energy muon beam could be used for a high sensitivity search for an electric dipole moment (EDM) of the muon with a sensitivity better than 10{sup -24}e {center_dot} cm. This will make the sensitivity of the EDM experiment to non-standard physics competitive and in many models more sensitive than the present limits on edms of the electron and nucleons. The experimental design exploits the strong motional electric field sensed by relativistic particles in a magnetic storage ring.

  7. The Performance and Long Term Stability of the D0 Run II Forward Muon Scintillation Counters

    SciTech Connect

    Bezzubov, V.; Denisov, D.; Evdokimov, V.; Lipaev, V.; Shchukin, A.; Vasilyev, I.

    2014-07-21

    The performance of the D0 experiment forward muon scintillation counters system during Run II of the Tevatron from 2001 to 2011 is described. The system consists of 4214 scintillation counters in six layers. The long term stability of the counters amplitude response determined using LED calibration system and muons produced in proton-antiproton collisions is presented. The average signal amplitude for counters of all layers has gradually decreased over ten years by 11%. The reference timing, determined using LED calibration, was stable within 0.26 ns. Average value of muon timing peak position was used for periodic D0 clock signal adjustments to compensate seasonal drift caused by temperature variations. Counters occupancy for different triggers in physics data collection runs and for minimum bias triggers are presented. The single muon yields versus time and the luminosity dependence of yields were stable for the forward muon system within 1% over 10 years.

  8. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  9. GPD physics with polarized muon beams at COMPASS-II

    SciTech Connect

    Ferrero, Andrea [CEA-Saclay, DSM Collaboration: COMPASS Collaboration

    2013-04-15

    A major part of the future COMPASS program is dedicated to the investigation of the nucleon structure through Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP). COMPASS will measure DVCS and DVMP reactions with a high intensity muon beam of 160 GeV and a 2.5 m-long liquid hydrogen target surrounded by a new TOF system. The availability of muon beams with high energy and opposite charge and polarization will allow to access the Compton form factor related to the dominant GPD H and to study the x{sub B}-dependence of the t-slope of the pure DVCS cross section and to study nucleon tomography. Projections on the achievable accuracies and preliminary results of pilot measurements will be presented.

  10. Multi-year search for a diffuse flxu of muon neutrinos with AMANDA-II

    SciTech Connect

    IceCube Collaboration; Klein, Spencer; Achterberg, A.; Collaboration, IceCube

    2008-04-13

    A search for TeV-PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent livetime of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with non-thermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E{sup 2}{Phi}{sub 90%C.L.} < 7.4 x 10{sup -8} GeV cm{sup -2} s{sup -1} sr{sup -1} is placed on the diffuse flux of muon neutrinos with a {Phi} {proportional_to} E{sup -2} spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive {Phi} {proportional_to} E{sup -2} diffuse astrophysical neutrino limit. We also set upper limits for astrophysical and prompt neutrino models, all of which have spectra different than {Phi} {proportional_to} E{sup -2}.

  11. PDT: death pathways

    NASA Astrophysics Data System (ADS)

    Kessel, David

    2007-02-01

    Cellular targets of photodynamic therapy include mitochondria, lysosomes, the endoplasmic reticulum (ER) and the plasma membrane. PDT can evoke necrosis, autophagy and apoptosis, or combinations of these, depending on the PDT dose, the site(s) of photodamage and the cellular phenotype. It has been established that loss of viability occurs even when the apoptotic program is inhibited. Studies assessing effects of ER or mitochondrial photodamage, involving loss of Bcl-2 function, indicate that low-dose PDT elicited a rapid autophagic response in L1210 cells. This was attributed to the ability of autophagy to recycle photodamaged organelles, and there was partial protection from loss of viability. This effect was not observed in L1210/Atg7, where autophagy was silenced. At higher PDT doses, apoptotic cells were observed within 60 min in both cell lines, but more so in L1210. The ability of L1210 cells to undergo autophagy did not offer protection from cell death at the higher PDT dose. Previous studies had indicated that autophagy can contribute to cell death, since L1210 cells that do not undergo an initial apoptotic response often contain multiple autophagic vacuoles 24 hr later. With L1210/Atg7, apoptosis alone may account for the loss of viability at an LD 90 PDT dose.

  12. Synthesis, DNA interactions and antibacterial PDT of Cu(II) complexes of phenanthroline based photosensitizers via singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Sudhamani, C. N.; Bhojya Naik, H. S.; Sangeetha Gowda, K. R.; Giridhar, M.; Girija, D.; Prashanth Kumar, P. N.

    2015-03-01

    Cu(II) complexes [Cu(mqt)(B)H2O]ClO4(1-3) of 2-thiol 4-methylquinoline and phenanthroline bases (B), viz 1,10-phenanthroline (phen in 1), Dipyrido[3,2-d:2‧,3‧-f]quinoxaline (dpq in 2) and Dipyrido[3,2-a:2‧,3‧-c]phenazine (dppz in 3) have been prepared and characterized by elemental analysis, IR, UV-Vis, magnetic moment values, EPR spectra and conductivity measurements. The spectral data reveal that all the complexes exhibit square-pyramidal geometry. The DNA-binding behaviors of the three complexes were investigated by absorption spectra, viscosity measurements and thermal denaturation studies. The DNA binding constants for complexes (1), (2) and (3) were determined to 2.2 × 103, 1.3 × 104 and 8.6 × 104 M-1 respectively. The experimental results suggest that these complexes interact with DNA through groove-binding mode. The photo induced cleavage studies shows that the complexes possess photonuclease property against pUC19 DNA under UV-Visible irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. Antimicrobial photodynamic therapy was studied using photodynamic antimicrobial chemotherapy (PACT) assay against Escherichiacoli and all complexes exhibited significant reduction in bacterial growth on photoirradiation.

  13. Synthesis, DNA interactions and antibacterial PDT of Cu(II) complexes of phenanthroline based photosensitizers via singlet oxygen generation.

    PubMed

    Sudhamani, C N; Bhojya Naik, H S; Sangeetha Gowda, K R; Giridhar, M; Girija, D; Prashanth Kumar, P N

    2015-03-01

    Cu(II) complexes [Cu(mqt)(B)H2O]ClO4(1-3) of 2-thiol 4-methylquinoline and phenanthroline bases (B), viz 1,10-phenanthroline (phen in 1), Dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2) and Dipyrido[3,2-a:2',3'-c]phenazine (dppz in 3) have been prepared and characterized by elemental analysis, IR, UV-Vis, magnetic moment values, EPR spectra and conductivity measurements. The spectral data reveal that all the complexes exhibit square-pyramidal geometry. The DNA-binding behaviors of the three complexes were investigated by absorption spectra, viscosity measurements and thermal denaturation studies. The DNA binding constants for complexes (1), (2) and (3) were determined to 2.2×10(3), 1.3×10(4) and 8.6×10(4)M(-1) respectively. The experimental results suggest that these complexes interact with DNA through groove-binding mode. The photo induced cleavage studies shows that the complexes possess photonuclease property against pUC19 DNA under UV-Visible irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. Antimicrobial photodynamic therapy was studied using photodynamic antimicrobial chemotherapy (PACT) assay against Escherichiacoli and all complexes exhibited significant reduction in bacterial growth on photoirradiation.

  14. Endoscopic photodynamic therapy (PDT) for oesophageal cancer.

    PubMed

    Moghissi, Keyvan

    2006-06-01

    Endoscopic photodynamic therapy (PDT) is undertaken only when tumour is visible endoscopically with malignancy biopsy confirmed. Patients will be either Group A: inoperable cases with locally advanced cancer when the aim is palliation of dysphagia, or Group E: patients with early stage I-II disease who are unsuitable for surgery or decline operation, when the intent is curative. Following assessment for suitability for PDT and counselling, Photofrin 2mg/(kgbw) is administered 24-72h before endoscopic illumination using a Diode 630nm laser. Illumination may be either interstitial or intraluminal at a dose of 100-200J/cm. PMID:25049097

  15. Measurement of the Flux and Zenith-Angle Distribution of Upward Through-Going Muons in Kamiokande II+III

    NASA Astrophysics Data System (ADS)

    Hatakeyama, S.; Hara, T.; Fukuda, Y.; Hayakawa, T.; Inoue, K.; Ishihara, K.; Ishino, H.; Joukou, S.; Kajita, T.; Kasuga, S.; Koshio, Y.; Kumita, T.; Matsumoto, K.; Nakahata, M.; Nakamura, K.; Okumura, K.; Sakai, A.; Shiozawa, M.; Suzuki, J.; Suzuki, Y.; Tomoeda, T.; Totsuka, Y.; Hirata, K. S.; Kihara, K.; Oyama, Y.; Koshiba, M.; Nishijima, K.; Horiuchi, T.; Fujita, K.; Koga, M.; Maruyama, T.; Suzuki, A.; Mori, M.; Suda, T.; Suzuki, A. T.; Ishizuka, T.; Miyano, K.; Okazawa, H.; Nagashima, Y.; Takita, M.; Yamaguchi, T.; Hayato, Y.; Kaneyuki, K.; Suzuki, T.; Takeuchi, Y.; Tanimori, T.; Tasaka, S.; Ichihara, E.; Miyamoto, S.; Nishikawa, K.

    1998-09-01

    The flux of upward through-going muons of minimum (mean) threshold energy >1.6 (3.0) GeV is measured, based on a total of 372 events observed by the Kamiokande II+III detector during 2456 detector live days. The observed muon flux was Φobs = [1.94+/-0.10\\(stat.\\)+0.07-0.06sys.\\)]×10-13 cm-2 s-1 sr-1, which is compared to an expected value of Φtheo = [2.46+/-0.54\\(theo.\\)]×10-13 cm-2 s-1 sr-1. The observation is in agreement with the prediction within the errors. The zenith-angle dependence of the observed upward through-going muons supports the previous indication of neutrino oscillations made by Kamiokande using sub- and multi-GeV atmospheric neutrino events.

  16. PDT - PARTICLE DISPLACEMENT TRACKING SOFTWARE

    NASA Technical Reports Server (NTRS)

    Wernet, M. P.

    1994-01-01

    multiple frequency RGB monitor (EGA or better), a math co-processor, and a pointing device. The printers supported by the graphical analysis routines are the HP Laserjet+, Series II, and Series III with at least 1.5 MB memory. The data acquisition routines require the EPIX 4-MEG video board and optional 12.5MHz oscillator, and associated EPIX software. Data can be acquired from any CCD or RS-170 compatible video camera with pixel resolution of 600hX400v or better. PDT is distributed on one 5.25 inch 360K MS-DOS format diskette. Due to the use of required proprietary software, executable code is not provided on the distribution media. Compiling the source code requires the Microsoft C v5.1 compiler, Microsoft QuickC v2.0, the Microsoft Mouse Library, EPIX Image Processing Libraries, the Microway NDP-Fortran-386 v2.1 compiler, and the Media Cybernetics HALO Professional Graphics Kernal System. Due to the complexities of the machine requirements, COSMIC strongly recommends the purchase and review of the documentation prior to the purchase of the program. The source code, and sample input and output files are provided in PKZIP format; the PKUNZIP utility is included. PDT was developed in 1990. All trade names used are the property of their respective corporate owners.

  17. Survey of the A, B and C layers of the Fermilab D0 muon detector system

    SciTech Connect

    Babatunde O'Sheg Oshinowo

    2000-06-13

    The Fermilab D0 detector is currently being upgraded to exploit the physics potential to be presented by the Main Injector and the Tevatron Collider during Run II in the Fall of 2000. One of the essential elements of this upgrade is the upgrade of the Muon detector system. The Muon detector system consists of the Central Muon Detector and the Forward Muon Detector. The Central Muon Detector consists of three detector systems: the Proportional Drift Tube (PDT) chambers which were used in Run I, the B- and C-layer Scintillation Counters, and new the A-layer Scintillation Counters. The Forward Muon Detector consists of the Mini-Drift Tubes (MDTs) and the Scintillation Pixel Counters. There are three layers, designated A, B, C, of the Muon detector system. The A-layer is closest to the interaction region and a toroid magnet is located between the A- and B-layers. This paper discusses the methods currently employed to survey and align these PDTs, MDTs, and the scintillation pixel counters in the three layers of the Muon detector system within the specified accuracy. The accuracy for the MDTs and PDTs is {+-}0.5 mm, and {+-}2.0 mm for the scintillation pixel counters. The Laser Tracker, the BETS, and the V-STARS systems are the major instruments used for the survey.

  18. Photodynamic therapy (PDT) for perianal bowenoid papulosis

    NASA Astrophysics Data System (ADS)

    Gahlen, Johannes; Stern, Josef; Graschew, Georgi; Kaus, Michael R.; Tilgen, W.

    1995-03-01

    HPV associated bowenoid papulosis of the anogenital region are classified as carcinoma in situ. The treatment can be difficult and recurrence rates are high. Extended surgical resections may have complications such as anal sphincter insufficiency. PDT does have some advantages and less side effects in the treatment of these tumors. We treated one female patient with an extended perianal bowenoid papulosis. Previous surgical resection led to local recurrence and partial sphincter insufficiency. Twenty-four hours before local laser light radiation (Ar-Dye laser, 630 nm wavelength), a systemic photosensitizer was applied (Photofrin II, 1.5 mg/kg BW). Four courses of PDT were performed within one year. We observed a total tumor necrosis in every radiation area. The previous sphincter insufficiency improved during the sessions. Side effects were rare. Pain in the radiation was stopped within 2 - 3 days under pain medication. PDT can induce a total local tumor necrosis in perianal bowenoid papulosis. Concerning local expansion, PDT can be a curable treatment.

  19. A Diffusion Cloud Chamber Study of Very Slow Mesons. II. Beta Decay of the Muon

    DOE R&D Accomplishments Database

    Lederman, L. M.; Sargent, C. P.; Rinehart, M.; Rogers, K.

    1955-03-01

    The spectrum of electrons arising from the decay of the negative mu meson has been determined. The muons are arrested in the gas of a high pressure hydrogen filled diffusion cloud chamber. The momenta of the decay electrons are determined from their curvature in a magnetic field of 7750 gauss. The spectrum of 415 electrons has been analyzed according to the theory of Michel.

  20. Photodynamic therapy (PDT) for locally recurrent breast carcinoma

    NASA Astrophysics Data System (ADS)

    Gahlen, Johannes; Stern, Josef; Graschew, Georgi; Kaus, Michael R.; Herfarth, Christian

    1995-03-01

    Locally recurrent breast carcinoma and skin metastasisses on the chest wall can be difficult to treat. Conventional treatments like radiation-, chemo- and hormonal therapy have shown poor results in these patients. In comparison to this, PDT has some advantages and less side effects. We can observe a tumor accumulation of a systemic applied photosensitizer (PS). The PS can be stimulated by light of a wavelength of 630 nm and a phototoxic effect in the tumor occurs. We treated 7 patients with locally recurrent breast carcinoma 15 times with PDT. The intravenous application of the PS (Photofrin II, 1.5 mg/kg BW) was done 24 - 96 hours before local laser light radiation. The light source was an Ar-Dye laser with a wavelength of 630 nm. Due to a local tumor necrosis we observed a tumor reduction in each case. In 5 patients we saw a complete local remission with a good cosmetic result. Side effects were rare. All patients suffered from pain in the treated area. No major phototoxicity effects were seen. PDT can induce complete local tumor remissions in patients with cutaneous metastasisses after locally recurrent breast carcinoma. In absence of other metastasisses PDT is possibly a curative treatment. One of the major advantages of this treatment are the rare side effects, rare complications and the possible repetition of the PDT.

  1. Photodynamic therapy (PDT) as a biological modifier

    NASA Astrophysics Data System (ADS)

    Obochi, Modestus; Tao, Jing-Song; Hunt, David W. C.; Levy, Julia G.

    1996-04-01

    The capacity of photosensitizers and light to ablate cancerous tissues and unwanted neovasculature constitutes the classical application of photodynamic therapy (PDT). Cell death results from either necrotic or apoptotic processes. The use of photosensitizers and light at doses which do not cause death has been found to affect changes in certain cell populations which profoundly effect their expression of cell surface molecules and secretion of cytokines, thereby altering the functional attributes of the treated cells. Cells of the immune system and the skin may be sensitive to modulation by 'sub-lethal PDT.' Ongoing studies have been conducted to assess, at the molecular level, changes in both lymphocytes and epidermal cells (EC) caused by treatment with low levels of benzoporphyrin derivative monoacid ring A (BPD) (a photosensitizer currently in clinical trials for cancer, psoriasis, endometriosis and age-related macular degeneration) and light. Treatment of skin with BPD and light, at levels which significantly enhanced the length of murine skin allograft acceptance, have been found to down-regulate the expression of Langerhans cell (LC) surface antigen molecules [major histocompatibility complex (MHC) class II and intracellular adhesion molecule (ICAM)-1] and the formation of some cytokines (tumor necrosis factor-alpha (TNF- (alpha) ).

  2. The role of DAMPS in ALA-PDT for skin squamous cell carcinoma (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Xiuli; Wang, Xiaojie; Ji, Jie; Zhang, Haiyan; Shi, Lei

    2016-03-01

    5-Aminolevulinic acid mediated photodynamic therapy (ALA-PDT) is an established local approach for skin squamous cell carcinoma. It is believed that dangerous signals damage-associated molecular patterns (DAMPs) play an important role in ALA-PDT. In this study, we evaluated in vitro and in vivo expressions of major DAMPs, calreticulin (CRT), heat shock proteins 70 (HSP70), and high mobility group box 1 (HMGB1), induced by ALA-PDT using immunohistochemistry, western blot, and ELISA in a squamous cell carcinoma (SCC) mouse model. The role of DAMPs in the maturation of DCs potentiated by ALA-PDT-treated tumor cells was detected by FACS and ELISA. Our results showed that ALA-PDT enhanced the expression of CRT, HSP70, and HMGB1. These induced DAMPs played an important role in activating DCs by PDT-treated tumor cells, including phenotypic maturation (upregulation of surface expression of MHC-II, CD80, and CD86) and functional maturation (enhanced capability to secrete IFN-γ and IL-12). Furthermore, injecting ALA-PDT-treated tumor cells into naïve mice resulted in complete protection against cancer cells of the same origin. Our findings indicate that ALA-PDT can upregulate DAMPs and enhance tumor immunogenicity, providing a promising strategy for inducing a systemic anticancer immune response.

  3. Optical molecular imaging in PDT

    NASA Astrophysics Data System (ADS)

    Mitra, Soumya; Snyder, John W.; Foster, Thomas H.

    2007-02-01

    Motivated by recent successes in fluorescence imaging of whole mount tissue preparations and by rapid progress in the fields of molecular imaging and molecular biology, we are exploring a number of applications of optical fluorescence imaging in superficial murine tumor models in vivo. Imaging the PDT-induced expression of the heat shock protein 70 (HSP70) in cells and in vivo is accomplished using stably transfected EMT6 cells in which the gene for GFP is under the control of the HSP70 promoter. These cells readily form solid tumors in BALB/c mice, enabling the direct imaging of the extent and time course of the activation of this promoter, with each mouse serving as its own control. Imaging of similarly transfected EMT6 cells with a HIF-1α/GFP fusion protein vector enables visualization of HIF-1α translocation to the nucleus. Recently, we have accomplished fluorescent labeling of surface antigens in vivo using intratumor and intravenous injection of fluorophore-conjugated antibodies. Injection of deep-red fluorophore-conjugated-anti-CD31 enables confocal fluorescence imaging of the tumor vasculature to depths of at least 100 microns. With the vessels rendered fluorescent in this way, a number of interesting studies become possible in the living mouse, including the direct visualization of photosensitizer distribution from perfused vessels. Using the appropriate fluorophore-conjugated antibodies, we have also been able to image infiltrating granulocytes in EMT6 tumors in response to PDT in vivo.

  4. Muon colliders

    SciTech Connect

    Palmer, R.B. |; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {micro}{sup +}{micro}{sup {minus}}colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  5. ALA-PDT mediated DC vaccine for skin squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Ji, Jie; Fan, Zhixia; Zhou, Feifan; Wang, Xiaojie; Shi, Lei; Zhang, Haiyan; Wang, Peiru; Yang, Degang; Zhang, Linglin; Wang, Xiuli; Chen, Wei R.

    2015-03-01

    Dendritic cell (DC) based vaccine has emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have only achieved limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secret INF-Υ and IL-12). ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumor in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing DC-based cancer vaccine, which could improve the clinical application of PDT- DC vaccines.

  6. Photosensitizer dosimetry controlled PDT treatment planning reduces inter-individual variability in response to PDT

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaodong; Pogue, Brian W.; Chen, Bin; Demidenko, Eugene; Joshi, Rohan; Hoopes, Jack; Hasan, Tayyaba

    2006-02-01

    Effective Photodynamic therapy (PDT) treatment depends on the amount of active photosensitizer and the delivered light in the targeting tissue. For the same PDT treatment protocol, variation in photosensitizer uptake between animals induces variation in the treatment response between animals. This variation can be compensated via control of delivered light dose through photodynamic dose escalation based on online dosimetry of photosensitizer in the animal. The subcutaneous MAT-LyLu Dunning prostate tumor model was used in this study. Photosensitizer BPD-MA uptake was quantified by multiple fluorescence micro-probe measurements at 3 hours after verteporfin administration. PDT irradiation was carried out after photosensitizer uptake measurement with a total light dose of 75 J/cm2 and a light dose rate of 50 mW/cm2. Therapeutic response of PDT treatments was evaluated by the tumor regrowth assay. Verteporfin uptake varied considerably among tumors (inter-tumor variation 56% standard deviation) and within a tumor (largest intra-tumor variation 64%). An inverse correlation was found between mean photosensitizer intensity and PDT treatment effectiveness (R2 = 37.3%, p < 0.005). In order to compensate individual PDT treatments, photodynamic doses were calculated on an individual animal basis, by matching the light delivered to provide an equal photosensitizer dose multiplied by light dose. This was completed for the lower-quartile, mean and upper-quartile of the photosensitizer distribution. The coefficient of variance in the surviving fraction decreased from 24.9% in non-compensated PDT (NC-PDT) treatments to 16.0%, 14.0% and 15.9% in groups compensated to the lower-quartile (CL-PDT), the median (CM-PDT) and the upper-quartile (CU-PDT), respectively. In terms of treatment efficacy, the CL-PDT group was significantly less effective compared with NC-PDT, CM-PDT and CU-PDT treatments (p < 0.005). No significant difference in effectiveness was observed between NC-PDT, CM-PDT

  7. Targeted PDT agent eradicates TrkC expressing tumors via photodynamic therapy (PDT).

    PubMed

    Kue, Chin Siang; Kamkaew, Anyanee; Lee, Hong Boon; Chung, Lip Yong; Kiew, Lik Voon; Burgess, Kevin

    2015-01-01

    This contribution features a small molecule that binds TrkC (tropomyosin receptor kinase C) receptor that tends to be overexpressed in metastatic breast cancer cells but not in other breast cancer cells. A sensitizer for (1)O2 production conjugated to this structure gives 1-PDT for photodynamic therapy. Isomeric 2-PDT does not bind TrkC and was used as a control throughout; similarly, TrkC- cancer cells were used to calibrate enhanced killing of TrkC+ cells. Ex vivo, 1- and 2-PDT where only cytotoxic when illuminated, and 1-PDT, gave higher cell death for TrkC+ breast cancer cells. A 1 h administration-to-illumination delay gave optimal TrkC+/TrkC--photocytotoxicity, and distribution studies showed the same delay was appropriate in vivo. In Balb/c mice, a maximum tolerated dose of 20 mg/kg was determined for 1-PDT. 1- and 2-PDT (single, 2 or 10 mg/kg doses and one illumination, throughout) had similar effects on implanted TrkC- tumors, and like those of 2-PDT on TrkC+ tumors. In contrast, 1-PDT caused dramatic TrkC+ tumor volume reduction (96% from initial) relative to the TrkC- tumors or 2-PDT in TrkC+ models. Moreover, 71% of the mice treated with 10 mg/kg 1-PDT (n = 7) showed full tumor remission and survived until 90 days with no metastasis to key organs. PMID:25487316

  8. Targeted PDT Agent Eradicates TrkC Expressing Tumors via Photodynamic Therapy (PDT)

    PubMed Central

    2015-01-01

    This contribution features a small molecule that binds TrkC (tropomyosin receptor kinase C) receptor that tends to be overexpressed in metastatic breast cancer cells but not in other breast cancer cells. A sensitizer for 1O2 production conjugated to this structure gives 1-PDT for photodynamic therapy. Isomeric 2-PDT does not bind TrkC and was used as a control throughout; similarly, TrkC– cancer cells were used to calibrate enhanced killing of TrkC+ cells. Ex vivo, 1- and 2-PDT where only cytotoxic when illuminated, and 1-PDT, gave higher cell death for TrkC+ breast cancer cells. A 1 h administration-to-illumination delay gave optimal TrkC+/TrkC–-photocytotoxicity, and distribution studies showed the same delay was appropriate in vivo. In Balb/c mice, a maximum tolerated dose of 20 mg/kg was determined for 1-PDT. 1- and 2-PDT (single, 2 or 10 mg/kg doses and one illumination, throughout) had similar effects on implanted TrkC– tumors, and like those of 2-PDT on TrkC+ tumors. In contrast, 1-PDT caused dramatic TrkC+ tumor volume reduction (96% from initial) relative to the TrkC– tumors or 2-PDT in TrkC+ models. Moreover, 71% of the mice treated with 10 mg/kg 1-PDT (n = 7) showed full tumor remission and survived until 90 days with no metastasis to key organs. PMID:25487316

  9. Muon Collider

    SciTech Connect

    Palmer, R.

    2009-10-19

    Parameters are given of muon colliders with center of mass energies of 1.5 and 3 TeV. Pion production is from protons on a mercury target. Capture, decay, and phase rotation yields bunch trains of both muon signs. Six dimensional cooling reduces the emittances until the trains are merged into single bunches, one of each sign. Further cooling in 6 dimensions is then applied, followed by final transverse cooling in 50 T solenoids. After acceleration the muons enter the collider ring. Ongoing R&D is discussed.

  10. Muon muon collider: Feasibility study

    SciTech Connect

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  11. Effect of verteporfin-PDT on epithelial growth factor receptor (EGFR) signaling pathway in cholangiocarcinoma cell lines

    NASA Astrophysics Data System (ADS)

    Andreola, Fausto; Cerec, Virginie; Pereira, Stephen P.

    2009-06-01

    EGFR, a member of the ERBB family, plays a pivotal role in carcinogenesis. EGFR overexpression is implicated in DNA repair and synergistic interactions between EGFR-targeting drugs and conventional chemo/radiotherapy have been reported in preclinical studies for different cancers but not cholangiocarcinoma (CCA). To date there are no in vitro data available on the cellular response and effect of either photodynamic therapy (PDT) or EGFR-targeting drugs on CCA. Therefore, we aimed to study the: (i) response to Verteporfin PDT and to EGFR-targeting drugs, as single agents; (ii) effect of PDT on ERBBs expression, phosporylation status and activation of its signaling pathways; (iii) response to combination of PDT and EGFR-targeting agents. We showed that two cholangiocarcinoma cell lines (HuCCT1 and TFK1 cells, intra- and extrahepatic, respectively) differentially respond to verteporfin-PDT treatment and are resistant to EGFR-targeting agents. A constitutive activation of EGFR in both cell lines was also observed, which could partly account for the observed resistance to EGFR-targeting drugs. In addition, verteporfin-PDT induced further phosphorylation of both EGFR and other Receptor Tyrosine Kinases. Mitochondria-independent apoptosis was induced by PDT in both CCA cell lines; in particular, PDT modulated the expression of members of the Inhibitor of Apoptosis (IAP) family of proteins. Interestingly, there was a PDT-induced EGFR nuclear translocation in both cell lines; co-treatment with either an EGFR-inhibitor (Cetuximab) or a nuclear import blocking agent (Wheat Germ Agglutinin) had an additive effect on PDT cell killing, thus implying a role of EGFR in repairing the potential PDT-induced DNA damage.

  12. Muon Muon Collider: Feasibility Study

    SciTech Connect

    Gallardo, J.C.; Palmer, R.B.; Tollestrup, A.V.; Sessler, A.M.; Skrinsky, A.N.; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  13. Assessing PDT response with diffuse optical spectroscopies

    NASA Astrophysics Data System (ADS)

    Rohrbach, Daniel J.

    Photodynamic therapy (PDT) is used to treat a variety of conditions including cancer. Effective PDT requires three components: a photosensitizer (PS), light of a specific wavelength to activate the PS and oxygen. When all three are present in a lesion it leads to cell death and vascular destruction. Optical techniques such as diffuse reflectance spectroscopy (DRS), diffuse fluorescence spectroscopy (DFS) and diffuse correlation spectroscopy (DCS) can be used to quantify vascular parameters and photosensitizer content before and after PDT, providing valuable information for assessing response. For the quantification of vascular parameters, a probe-specific empirical light transport model was developed. A look-up-table was constructed using tissue simulating phantoms made of Intralipid to control the scattering, India Ink to control the absorption and water. The empirical model allowed the quantification of optical properties as well as the vascular parameters blood volume fraction (BVf) and blood oxygen saturation (SO2) with DRS. Blood flow was measured using DCS. For the quantification of PS content two techniques were used. DRS was used to fit the absorption of the PS and DFS measured the fluorescence of the PS. For quantification of PS content from measured fluorescence, a correction factor was developed using Monte Carlo simulations to account for the optical properties at the excitation and emission wavelengths. The three techniques were used to assess PDT response in pre-clinical and clinical studies. For the preclinical study, mice were treated with HPPH-PDT and blood flow was measured continuously with DCS. Blood flow variables were compared to STAT3 crosslinking (a molecular marker for PDT photoreaction) and CD31 staining (to visualize intact endothelial cells after PDT). For the clinical study, patients in a clinical trial for HPPH-PDT were measured with DRS, DFS and DCS before and after treatment. Multiple parameters were compared to the clinical response

  14. PDT Dose Dosimeter for Pleural Photodynamic Therapy

    PubMed Central

    Kim, Michele M.; Darafsheh, Arash; Ahmad, Mahmoud; Finlay, Jarod C.; Zhu, Timothy C.

    2016-01-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in the target tissue. For improved dosimetry during plural photodynamic therapy (PDT), a PDT dose dosimeter was developed to measure both the light fluence and the photosensitizer concentration simultaneously in the same treatment location. Light fluence and spectral data were rigorously compared to other methods of measurement (e.g. photodiode, multi-fiber spectroscopy contact probe) to assess the accuracy of the measurements as well as their uncertainty. Photosensitizer concentration was obtained by measuring the fluorescence of the sensitizer excited by the treatment light. Fluence rate based on the intensity of the laser spectrum was compared to the data obtained by direct measurement of fluence rate by a fiber-coupled photodiode. Phantom studies were done to obtain an optical property correction for the fluorescence signal. Measurements were performed in patients treated Photofrin for different locations in the pleural cavity. Multiple sites were measured to investigate the heterogeneity of the cavity and to provide cross-validation via relative dosimetry. This novel method will allow for accurate real-time determination of delivered PDT dose and improved PDT dosimetry. PMID:27053825

  15. PDT dose dosimeter for pleural photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Darafsheh, Arash; Ahmad, Mahmoud; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in the target tissue. For improved dosimetry during plural photodynamic therapy (PDT), a PDT dose dosimeter was developed to measure both the light fluence and the photosensitizer concentration simultaneously in the same treatment location. Light fluence and spectral data were rigorously compared to other methods of measurement (e.g. photodiode, multi-fiber spectroscopy contact probe) to assess the accuracy of the measurements as well as their uncertainty. Photosensitizer concentration was obtained by measuring the fluorescence of the sensitizer excited by the treatment light. Fluence rate based on the intensity of the laser spectrum was compared to the data obtained by direct measurement of fluence rate by a fiber-coupled photodiode. Phantom studies were done to obtain an optical property correction for the fluorescence signal. Measurements were performed in patients treated Photofrin for different locations in the pleural cavity. Multiple sites were measured to investigate the heterogeneity of the cavity and to provide cross-validation via relative dosimetry. This novel method will allow for accurate real-time determination of delivered PDT dose and improved PDT dosimetry.

  16. Taking PDT into mainstream clinical practice

    NASA Astrophysics Data System (ADS)

    Bown, Stephen G.

    2009-06-01

    Many individuals in the field are frustrated by the slow progress getting PDT established in mainstream clinical practice. The five key reasons are: 1. Lack of adequate evidence of safety and efficacy and optimization of dosimetry. These are fundamental. The number of randomized controlled studies is still small. For some cancer applications, it is difficult to get patients to agree to be randomised, so different approaches must be taken. Anecdotal results are not acceptable to sceptics and regulators. 2. The regulatory processes. The rules get more complex every day, but there is no choice, they must be met. The full bureaucratic strength of the pharmaceutical industry is needed to address these issues. 3. Conservatism of the medical profession. Established physicians are reluctant to change practice, especially if it means referring patients to different specialists. 4. Lack of education. It is amazing how few physicians have even heard of PDT and many that have, are sceptical. The profile of PDT to both the medical profession and the general public needs to be raised dramatically. Patient demand works wonders! 5. Money. Major investment is required to run clinical trials. Pharmaceutical companies may see PDT as a threat (eg reduced market for chemotherapy agents). Licensed photosensitisers are expensive. Why not reduce the price initially, to get the technique established and stimulate demand? PDT has the potential for enormous cost savings for health service providers. With appropriate motivation and resources these problems can be addressed. Possible routes forward will be suggested.

  17. Hyperglycemia enhances the effectiveness of PDT

    NASA Astrophysics Data System (ADS)

    Fan, Keichun; Huang, Yingcai; Li, Junheng

    1995-05-01

    The effect of injection of 10 mg/g 50% glucose on photodynamic therapy of mouse transplantable S-180 sarcoma was studied. The concentration of hematoporphyrin monomethylether in plasma, skin, and tumor was measured by recording spectrofluorophotometer. tumor pathological section was made and necrosis area of tumor longitudinal section was measured by image processing after photoradiation of gold vapor laser. The results of this study suggested that the uptake of photosensitizer in tumor significantly increased while the uptake of photosensitizer in skin remained unchanged after glucose administration. Furthermore, glucose administration combined with PDT produced a greater tumor necrosis area than using PDT alone. The mechanisms and clinical significance were also discussed.

  18. [Photodynamic therapy (PDT) for early cervical cancer].

    PubMed

    Muroya, T; Suehiro, Y; Umayahara, K; Akiya, T; Iwabuchi, H; Sakunaga, H; Sakamoto, M; Sugishita, T; Tenjin, Y

    1996-01-01

    The incidence of carcinoma in situ (CIS) and dysplasia of the uterine cervix has been increasing among young women in recent years. Most of these patients want to preserve their fertility. Also, to accommodate high-risk patients with complications, elderly patients, and those who refuse surgery, we perform PDT as a method to preserve fertility. The technique required for PDT is relatively simple, and can be performed without anesthesia, since it causes no pain or bleeding. PDT, with the use of Excimer Dye Laser (EDL), a type of low pulse laser, has a considerably higher degree of tissue penetration, even compared to PDT using Argon Dye Laser (ADL). Also, PDT using EDL can manage glandular involvement of CIN, and its special feature of selective destruction of malignant cells with almost no effect on normal tissues is noteworthy. Beginning in 1995, PDT using YAG-OPO Laser with a variable laser wavelength has been performed. PDT is performed 48 hours after intravenous injection of 1.5 mg/kg to 2 mg/kg photosensitizer Porfimer sodium (PHE) when the difference in density of PHE becomes greatest between malignant cells and normal tissue. The most advanced features of our method compared to conventional radiation which uses cut fiber are: First, by using colposcope with an optical path for the laser, it is possible to show a 10 mm circular spot at the focus of observation. With this method, cervical lesions can be observed and checked while receiving stable and precise photoradiation by using colposcope through direct observation. Second, for cervical canal treatment, by using a cervical probe to administer photoradiation in the forward direction in the cervical canal and to the side walls, 70% of the laser light is scattered to the side walls, so that all of the cervical canal can be radiated. Also, the cervical canal probe used to administer photoradiation, by inserting 2 cm to 3 cm depending on the conditions of the cervical canal and withdrawing the probe 1 mm, can

  19. ALA-mediated fluorescence-guided resection (FGR) and PDT of glioma

    NASA Astrophysics Data System (ADS)

    Johansson, Ann; Stepp, Herbert; Beck, Tobias; Beyer, Wolfgang; Pongratz, Thomas; Sroka, Ronald; Meinel, Thomas; Stummer, Walter; Kreth, Friedrich-Wilhelm; Tonn, Jörg-Christian; Baumgartner, Reinhold

    2009-06-01

    A summary of clinical trials employing photodynamic diagnosis (PDD) and photodynamic therapy (PDT) for the diagnosis and treatment of brain malignancies is presented. Intra-cavity PDT has been performed within the surgical cavity following FGR, employing oral administration of 5-aminolevulinic acid (5-ALA), either targeting fluorescing tissue regions that were not removed during FGR due to safety reasons (referred to as focal PDT, n=20) or illuminating the entire resection cavity (referred to as integral PDT, n=9). Both approaches proved technically feasible and safe. Spectroscopic measurements performed pre-, during and post-PDT revealed Protoporphyrin IX (PpIX)-photobleaching of more than 95% after the delivery of 200 J/cm2. This light dose did not induce any side effects. Furthermore, interstitial PDT (iPDT) has been employed within one feasibility trial (n=10) and one Phase I/II trial (n=15). Here, three to six cylindrical light diffusors (20-30 mm length, 200 mW/cm, 720 J/cm) were positioned within the target tissue under stereotactic guidance. Pre-treatment planning was performed with the intent to target the entire tumour volume with a sufficient light dose while also minimising the risk of any light-induced temperature increase. For the feasibility trial patients with small, recurrent gliomas were included, resulting in a median survival of 15 months as well as some unexpected longterm survivals (up to 5 years). The Phase I/II trial employed the same clinical procedures. Here, the 12-month survival was 35% and the median progression-free survival was 6 months. In summary, stereotactic iPDT in combination with treatment-planning could be shown to be a safe and feasible treatment modality. These trials are presently being extended to also include on-line monitoring of PpIX fluorescence and photobleaching kinetics. Preliminary data has revealed dramatically different PpIX levels and photobleaching kinetics. Such data could possibly be employed for realtime

  20. Photodynamic therapy (PDT) for lung cancer

    NASA Astrophysics Data System (ADS)

    Moghissi, K.; Dixon, Kate

    2005-11-01

    The Yorkshire Laser Centre has been engaged in Photodynamic Therapy (PDT) since 1990. In this article we present our experience highlighting the lesson learnt. 280 bronchoscopic PDT treatments have been carried out in 160 patients divided in 2 groups. Group A: (Nr 144) with advanced inoperable disease and Group E (Nr 16) with early stage cancer. PDT method was intravenous administration of 2mg/kg bw of Photofrin followed by bronchoscopic illumination of 630nm laser light. There was no procedure-related mortality. A total of 9 cases of photosensitivity (skin burn) occurred in the series (5.6% of patients). Every patient in both groups expressed their total satisfaction to treatment. Group A: Symptom relief was achieved in all. This was matched by improvement in significant bronchial opening (58.1%). Survival was 9.6 months (mean).This was greater in patients with better performance status and lower stage of disease. Group E: Every patient had a complete response to treatment. Survival in this group was 75.4 months (mean). We conclude that bronchoscopic PDT is indicated in both advanced and early stage lung cancer. In the former it provides symptomatic relief in all and survival benefit in some; in the latter it achieves long survival and potential cure.

  1. PDT-induced in vitro bystander effect

    NASA Astrophysics Data System (ADS)

    Olivier, David; Douilard, Samuel; Patrice, Thierry

    2009-06-01

    The mechanisms of Photodynamic therapy (PDT) include singlet oxygen and reactive oxygen species (ROS) production that damage tumor cells and vasculature. The resulting effect is a balance between photo-oxidations via primary or secondary ROS and scavenging activity. Sensitizers distribute in the extra-cellular space before and during cell sensitization, suggesting that PDT could act directly on cell structures and on extra-cellular compartments, including sera. In this paper we endeavored to determine whether the application of PDT to culture media could have an effect on cell survival. Culture media (RPMI supplemented with Fetal Calf Serum (FCS)) was incubated with Rose Bengal (RB) and irradiated before being added to cells for various times of contact, as a replacement for untreated media. Treatedmedia reduced cell survival by up to 40% after 30 min of contact for 10 μg/mL of RB and 20 J/cm2. This effect was RB or light dose-dependent. The survival reduction observed when adding treated-media was more pronounced when cell doubling time was shorter. Analysis of ROS or peroxide production in treated-media revealed a long-lasting oxidizing activity. Our findings support the hypothesis of a ROS or peroxide-mediated, PDT-induced, delayed cell toxicity

  2. Effect of hyperthermia on PDT and imaging

    NASA Astrophysics Data System (ADS)

    Srivatsan, Avinash; Rao, K. V. R.; Chen, Yihui; Wang, Yanfang; Batt, Carrie; Morgan, Janet; Sen, Arindam; Repasky, Elizabeth; Pandey, Ravindra K.

    2009-06-01

    Photodynamic Therapy (PDT) is emerging as a successful tool to treat both malignant and benign tumors. It involves the interaction of a photosensitizer which upon activation by the appropriate light dose, leads to a cytotoxic and vasculotoxic photodynamic reaction. Improvements in PDT in areas such as the delivery and selectivity of photosensitizers, light-delivery and overall efficacy have helped to increase its attractiveness as an option for therapy. For optimizing the PDT treatment by a "see and treat approach," we have developed a number of tumor avid photosensitizers (PS) namely HPPH-Cyanine dye conjugates or other compounds (Iodinated photosensitizers) which have the ability for Optical and/or PET imaging as well as being effective photosensitizers for treatment. Hyperthermia refers to various techniques of heat application which may be delivered as a single modality or as part of an adjunct treatment option to the existing cancer therapies. Depending upon the temperature range used, hyperthermia might either directly induce cell kill or enhance the efficacy of other treatment modalities. Hyperthermia increases blood flow within the body, which may allow for higher dose delivery of photosensitizers with subsequent increased therapeutic efficacy of PDT. Hyperthermia could also increase the sensitivity of molecular imaging. The use of multifunctional photosensitizers for imaging and PDT is an emerging area and we have developed a few such agents in our lab. We wish to explore the use of hyperthermia to improve the use of such multifunctional photosensitizers from the point of view of imaging and/or therapy. Hyperthermia can be performed either as a whole-body mode or as localized mode. Our goal is to see which of the two heating modalities offers us better outcome.

  3. Mechanistic exploration of a bi-directional PDT-based combination in pancreatic cancer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Huang-Chiao; Mallidi, Srivalleesha; Liu, Joyce; Chiang, Chun-Te; Mai, Zhiming; Goldschmidt, Ruth; Rizvi, Imran; Ebrahim-Zadeh, Neema; Hasan, Tayyaba

    2016-03-01

    It is increasingly evident that the most effective cancer treatments will involve interactive regimens that target multiple non-overlapping pathways, preferably such that each component enhances the others to improve outcomes while minimizing systemic toxicities. Toward this goal, we developed a combination of photodynamic therapy and irinotecan, which mechanistically cooperate with each other, beyond their individual tumor destruction pathways, to cause synergistic reduction in orthotopic pancreatic tumor burden. A three-way mechanistic basis of the observed the synergism will be discussed: (i) PDT downregulates drug efflux transporters to increase intracellular irinotecan levels. (ii) Irinotecan reduces the expression of hypoxia-induced marker, which is upregulated by PDT. (iii) PDT downregulates irinotecan-induced survivin expression to amplify the apoptotic and anti-proliferative effects. The clinical translation potential of the combination will also be highlighted.

  4. Laserthermia And New PDT In Neurosurgery

    NASA Astrophysics Data System (ADS)

    Sakai, Tsuneo; Fujishima, Ichiro; Sugiyama, Kenji

    1989-09-01

    The usefulness of laserthermia using Nd:YAG laser was studied experimentally and clinically to treat deep seated brain tumor. Histological changes, temperature profile, modification of blood-brain barrier (BBB) were studied. Five patients with brain tumors were treated with laserthermia. Laserthermia using Nd:YAG laser is easy and safe to use and it is beneficial to treat deep seated brain tumor. Photodynamic therapy (PDT) was also evaluated using the photosensitizing agent pheophorbide-a (Ph-a) and an acoustic Q switched Nd:YAG laser. In xitro survival of T98G human glioma cells pretreated with Ph-a (1x10-3 mole/1 in albumin) and irradiated with a pulsed Nd:YAG laser for 5 minutes at 37.0°C was 0.4%. The present study suggested that PDT using an acoustic Q switched Nd:YAG laser and Ph-a was useful in treating experimental human glioma.

  5. Mechanistic studies on a sequential PDT protocol

    NASA Astrophysics Data System (ADS)

    Kessel, David

    2016-03-01

    A low (~LD15) PDT dose resulting in selective lysosomal photodamage can markedly promote photokilling by subsequent photodamage targeted to mitochondria. Experimental data are consistent with the proposal that cleavage of the autophagyassociated protein ATG5 to a pro-apoptotic fragment is responsible for this effect. This process is known to be dependent on the proteolytic activity of calpain. We have proposed that Ca2+ released from photodamaged lysosomes is the trigger for ATG5 cleavage. We can now document the conversion of ATG5 to the truncated form after lysosomal photodamage. Photofrin, a photosensitizer that targets both mitochondria and lysosomes, can be used for either phase of the sequential PDT process. The ability of Photofrin to target both loci may explain the well-documented efficacy of this agent.

  6. Cell death pathways associated with PDT

    NASA Astrophysics Data System (ADS)

    Kessel, David; Reiners, John J., Jr.

    2006-02-01

    Photodynamic therapy leads to both direct and indirect tumor cell death. The latter also involves the consequences of vascular shut-down and immunologic effects. While these factors are a major factor in tumor eradication, there is usually an element of direct cell killing that can reduce the cell population by as much as 2-3 logs. Necrosis was initially believed to represent the predominant PDT death mechanism. An apoptotic response to PDT was first reported by Oleinick in 1991, using a sensitizer that targets the anti-apoptotic protein Bcl-2. Apoptosis leads to fragmentation of DNA and of cells into apoptotic bodies that are removed by phagocytosis. Inflammatory effects are minimized, and the auto- catalytic elements of the process can amplify the death signal. In this study, we examined consequences of Bcl-2 photodamage by a porphycene sensitizer that targets the ER and causes photodamage to the anti-apoptotic protein Bcl-2. Death patterns after Bcl-2 inactivation by a small-molecular antagonist were also assessed. In addition to apoptosis, we also characterized a hitherto undescribed PDT effect, the initiation of autophagy. Autophagy was initially identified as a cell survival pathway, allowing the recycling of components as nutrients become scarce. We propose that autophagy can also represent both a potential survival pathway after PDT damage to cellular organelles, as well as a cell-death pathway. Recent literature reports indicate that autophagy, as well as apoptosis, can be evoked after down-regulation of Bcl-2, a result consistent with results reported here.

  7. Animal models for photodynamic therapy (PDT)

    PubMed Central

    Silva, Zenildo Santos; Bussadori, Sandra Kalil; Fernandes, Kristianne Porta Santos; Huang, Ying-Ying; Hamblin, Michael R.

    2015-01-01

    Photodynamic therapy (PDT) employs non-toxic dyes called photosensitizers (PSs), which absorb visible light to give the excited singlet state, followed by the long-lived triplet state that can undergo photochemistry. In the presence of ambient oxygen, reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radicals are formed that are able to kill cancer cells, inactivate microbial pathogens and destroy unwanted tissue. Although there are already several clinically approved PSs for various disease indications, many studies around the world are using animal models to investigate the further utility of PDT. The present review will cover the main groups of animal models that have been described in the literature. Cancer comprises the single biggest group of models including syngeneic mouse/rat tumours that can either be subcutaneous or orthotopic and allow the study of anti-tumour immune response; human tumours that need to be implanted in immunosuppressed hosts; carcinogen-induced tumours; and mice that have been genetically engineered to develop cancer (often by pathways similar to those in patients). Infections are the second biggest class of animal models and the anatomical sites include wounds, burns, oral cavity, ears, eyes, nose etc. Responsible pathogens can include Gram-positive and Gram-negative bacteria, fungi, viruses and parasites. A smaller and diverse group of miscellaneous animal models have been reported that allow PDT to be tested in ophthalmology, atherosclerosis, atrial fibrillation, dermatology and wound healing. Successful studies using animal models of PDT are blazing the trail for tomorrow's clinical approvals. PMID:26415497

  8. Animal models for photodynamic therapy (PDT).

    PubMed

    Silva, Zenildo Santos; Bussadori, Sandra Kalil; Fernandes, Kristianne Porta Santos; Huang, Ying-Ying; Hamblin, Michael R

    2015-01-01

    Photodynamic therapy (PDT) employs non-toxic dyes called photosensitizers (PSs), which absorb visible light to give the excited singlet state, followed by the long-lived triplet state that can undergo photochemistry. In the presence of ambient oxygen, reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radicals are formed that are able to kill cancer cells, inactivate microbial pathogens and destroy unwanted tissue. Although there are already several clinically approved PSs for various disease indications, many studies around the world are using animal models to investigate the further utility of PDT. The present review will cover the main groups of animal models that have been described in the literature. Cancer comprises the single biggest group of models including syngeneic mouse/rat tumours that can either be subcutaneous or orthotopic and allow the study of anti-tumour immune response; human tumours that need to be implanted in immunosuppressed hosts; carcinogen-induced tumours; and mice that have been genetically engineered to develop cancer (often by pathways similar to those in patients). Infections are the second biggest class of animal models and the anatomical sites include wounds, burns, oral cavity, ears, eyes, nose etc. Responsible pathogens can include Gram-positive and Gram-negative bacteria, fungi, viruses and parasites. A smaller and diverse group of miscellaneous animal models have been reported that allow PDT to be tested in ophthalmology, atherosclerosis, atrial fibrillation, dermatology and wound healing. Successful studies using animal models of PDT are blazing the trail for tomorrow's clinical approvals. PMID:26415497

  9. Boosting Tumor-Specific Immunity Using PDT

    PubMed Central

    Maeding, Nicole; Verwanger, Thomas; Krammer, Barbara

    2016-01-01

    Photodynamic therapy (PDT) is a cancer treatment with a long-standing history. It employs the application of nontoxic components, namely a light-sensitive photosensitizer and visible light, to generate reactive oxygen species (ROS). These ROS lead to tumor cell destruction, which is accompanied by the induction of an acute inflammatory response. This inflammatory process sends a danger signal to the innate immune system, which results in activation of specific cell types and release of additional inflammatory mediators. Activation of the innate immune response is necessary for subsequent induction of the adaptive arm of the immune system. This includes the priming of tumor-specific cytotoxic T lymphocytes (CTL) that have the capability to directly recognize and kill cells which display an altered self. The past decades have brought increasing appreciation for the importance of the generation of an adaptive immune response for long-term tumor control and induction of immune memory to combat recurrent disease. This has led to considerable effort to elucidate the immune effects PDT treatment elicits. In this review we deal with the progress which has been made during the past 20 years in uncovering the role of PDT in the induction of the tumor-specific immune response, with special emphasis on adaptive immunity. PMID:27782066

  10. Current methods for photodynamic therapy in the US: comparison of MAL/PDT and ALA/PDT.

    PubMed

    Lee, Peter K; Kloser, Andrew

    2013-08-01

    There is some debate regarding the rate of progression of actinic keratosis (AK) into squamous cell carcinoma (SCC).1-4 However, it is clear that treatment for AK lesions is warranted. Results from numerous studies with aminolevulinic acid (ALA) and methyl aminolevulinate (MAL) photodynamic therapy (PDT) for the treatment of AKs, SCC, and Bowen's disease show high rates of clearance for these lesions. MAL/PDT provides similar efficacy to ALA/PDT with the benefits of shorter incubation times according to the approved FDA labeling, greater selectivity, reduced pain during and immediately following therapy, and fewer systemic side effects. Cosmetic outcomes are better with PDT than with cryosurgery or excisional surgery. A number of case reports show efficacy with ALA/PDT and MAL/PDT for acne, photorejuvenation, and other off-label indications. Side effects with PDT tend to be mild to moderate and transient in nature. Overall, ALA/PDT and MAL/PDT are effective for a variety of skin diseases and conditions. MAL/PDT provides some advantages over ALA/PDT.

  11. Muons in gamma showers

    NASA Technical Reports Server (NTRS)

    Stanev, T.; Vankov, C. P.; Halzen, F.

    1985-01-01

    Muon production in gamma-induced air showers, accounting for all major processes. For muon energies in the GeV region the photoproduction is by far the most important process, while the contribution of micron + micron pair creation is not negligible for TeV muons. The total rate of muons in gamma showers is, however, very low.

  12. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2011-11-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  13. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  14. Effects of PDT on the endocytic pathway

    NASA Astrophysics Data System (ADS)

    Kessel, David

    2010-02-01

    Two lines of evidence point to an early effect of photodamage on membrane trafficking. [1] Internalization of a fluorescent probe for hydrophobic membrane loci was impaired by prior photodamage. [2] Interference with the endocytic pathway by the PI-3 kinase antagonist wortmannin led to accumulation of cytoplasmic vacuoles suggesting a block in the recycling of plasma membrane components. Prior photodamage blocked this pathway so that no vacuoles were formed upon exposure of cells to wortmannin. In a murine hepatoma line, the endocytic pathway was preferentially sensitive to lysosomal photodamage. The role of photodamage to the endocytic pathway as a factor in PDT efficacy remains to be assessed.

  15. An IR Navigation System for Pleural PDT

    PubMed Central

    Zhu, Timothy C.; Liang, Xing; Kim, Michele M.; Finlay, Jarod C.; Dimofte, Andreea; Rodriguez, Carmen; Simone, Charles B.; Friedberg, Joseph S.; Cengel, Keith A.

    2015-01-01

    Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM). In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR) navigation system is used to track the motion of the light source in real-time at a rate of 20 – 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light fluence uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method. PMID:25995987

  16. Preparations for Muon Experiments at Fermilab

    SciTech Connect

    Syphers, M.J.; Popovic, M.; Prebys, E.; Ankenbrandt, C.; /Muons Inc., Batavia

    2009-05-01

    The use of existing Fermilab facilities to provide beams for two muon experiments--the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment--is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration.

  17. Photodynamic therapy induced vascular damage: an overview of experimental PDT

    NASA Astrophysics Data System (ADS)

    Wang, W.; Moriyama, L. T.; Bagnato, V. S.

    2013-02-01

    Photodynamic therapy (PDT) has been developed as one of the most important therapeutic options in the treatment of cancer and other diseases. By resorting to the photosensitizer and light, which convert oxygen into cytotoxic reactive oxygen species (ROS), PDT will induce vascular damage and direct tumor cell killing. Another consequence of PDT is the microvascular stasis, which results in hypoxia and further produces tumor regression. To improve the treatment with PDT, three promising strategies are currently attracting much interest: (1) the combination of PDT and anti-angiogenesis agents, which more effectively prevent the proliferation of endothelial cells and the formation of new blood vessels; (2) the nanoparticle-assisted delivery of photosensitizer, which makes the photosensitizer more localized in tumor sites and thus renders minimal damage to the normal tissues; (3) the application of intravascular PDT, which can avoid the loss of energy during the transmission and expose the target area directly. Here we aim to review the important findings on vascular damage by PDT on mice. The combination of PDT with other approaches as well as its effect on cancer photomedicine are also reviewed.

  18. Activity of glycated chitosan and other adjuvants to PDT vaccines

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Banáth, Judit; Čiplys, Evaldas; Szulc, Zdzislaw; Bielawska, Alicja; Chen, Wei R.

    2015-03-01

    Glycated chitosan (GC), a water soluble galactose-conjugated natural polysaccharide, has proven to be an effective immunoadjuvant for treatment of tumors based on laser thermal therapy. It was also shown to act as adjuvant for tumor therapy with high-intensity ultrasound and in situ photodynamic therapy (PDT). In the present study, GC was examined as potential adjuvant to PDT-generated cancer vaccine. Two other agents, pure calreticulin protein and acid ceramidase inhibitor LCL521, were also tested as prospective adjuvants for use in conjunction with PDT vaccines. Single treatment with GC, included with PDT vaccine cells suspension, improved the therapeutic efficacy when compared to vaccine alone. This attractive prospect of GC application remains to be carefully optimized and mechanistically elucidated. Both calreticulin and LCL521 proved also effective adjuvants when combined with PDT vaccine tumor treatment.

  19. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  20. Experimental study of PDT with aluminum sulphophthalocyanine using sodium ascorbate and hyperbaric oxygenation

    NASA Astrophysics Data System (ADS)

    Meerovich, Gennadii A.; Torshina, Nadezgda L.; Loschenov, Victor B.; Stratonnikov, Alexander A.; Volkova, Anna I.; Vorozhtsov, Georgy N.; Kaliya, Oleg L.; Lukyanets, Eugeny A.; Kogan, Boris Y.; Butenin, Alexander V.; Kogan, Eugenia A.; Gladskikh, Olga P.; Polyakova, Larisa N.

    1999-02-01

    It is well known that sulphophthalocyanine derivatives under laser irradiation induce photochemical reaction of II type with generation of cytotoxic agent - singlet oxygen. The combination of phthalocyanine and exogenic reductant - sodium ascorbate may also induce other reactions, involving the formation of free radicals, and thus intensify the antitumor effect. To improve the results of PDT we used the additional injection of sodium ascorbate, the hyperbaric oxygenation and different regimes of laser irradiation. We conducted the experimental study on 100 white mice with Erlich carcinoma. Macroscopic and microscopic data showed that sodium ascorbate significantly increases the effect of PDT in comparison with control group due to the higher tumor damage, vascular alterations, inhibition of cell proliferation and stimulation of antitumor desmoplastic reaction.

  1. Squamous cell carcinoma of dogs and cats: an ideal test system for human head and neck PDT protocols

    NASA Astrophysics Data System (ADS)

    Lucroy, Michael D.

    2006-02-01

    Photodynamic therapy (PDT) is ideally suited for the treatment of head and neck cancer (HNC) in humans. Developing useful PDT protocols for HNC is challenging due to the expense of Phase I and II clinical trials. Moreover, the often-poor predictive value of murine models means that photosensitizers may proceed far into development before problems are noted. Dogs and cats with spontaneous oral squamous cell carcinoma (SCC) share striking similarities with humans affected with oral SCC. These similarities include viral and environmental tobacco smoke as risk factors, location-dependent prognoses, and relative resistance to chemotherapy. The relatively large oral cancers encountered in veterinary patients allow for light and drug dosimetry that are directly applicable to humans. The irregular shape of oral SCC allows a rigorous evaluation of novel photodynamic therapy protocols under field conditions. Because spontaneous tumors in dogs and cats arise in an outbred animal population it is possible to observe an intact host response to PDT. The shorter lifespan of dogs and cats allows rapid accrual of endpoint data. External beam radiation therapy and chemotherapy are commonplace in veterinary medicine, making dogs and cats with spontaneous SCC a useful resource to study the interactions with PDT and other cancer treatment modalities. Our preliminary results demonstrate that PDT is well-tolerated by dogs with oral cancer, and a Phase II clinical trial of zinc-phthalocyanine-based photodynamic therapy is underway in dogs with oral SCC. The usefulness of 5-aminolevulinic acid methyl ester-based PDT is being investigated in cats with oral SCC.

  2. HSP70 inhibits Bax translocation during Photofrin-PDT apoptosis

    NASA Astrophysics Data System (ADS)

    Zhou, Feifan; Chen, Wei R.; Song, Sheng

    2009-02-01

    Apoptosis is an important cellular event that plays a key role in therapy of many diseases. The mechanisms of the initiation and regulation of photodynamic therapy (PDT) -induced apoptosis is complex. Some PDT-associated apoptosis pathways involved plasma membrane death receptors, mitochondria, lysosomes and endoplasmic reticulum (ER). Our previous study found that Photofrin were localized primarily in mitochondria, the primary targets of Photofrin-PDT. The key role of Bax in the mitochondrion-mediated apoptosis has been demonstrated in many systems. In order to determine the role of Bax in the mitochondrion-mediated apoptosis induced by Photofrin-PDT, we used the CFP/GFP-Bax plasmid to monitor the dynamics of Bax activation and translocation after PDT treatment. With laser scanning confocal microscopy, we found that PDT induced Bax translocation from the cytosol to mitochondria; however, with cells over-expressing YFP-HSP70 plasmids, Bax translocation was not detected. Thus, for Photofrin-PDT, Bax activation and translocation were inhibited by HSP70, not influence the cell death.

  3. PDT: loss of autophagic cytoprotection after lysosomal photodamage

    NASA Astrophysics Data System (ADS)

    Kessel, David; Price, Michael

    2012-02-01

    Photodynamic therapy is known to evoke both autophagy and apoptosis. Apoptosis is an irreversible death pathway while autophagy can serve a cytoprotective function. In this study, we examined two photosensitizing agents that target lysosomes, although they differ in the reactive oxygen species (ROS) formed during irradiation. With both agents, the 'shoulder' on the PDT dose-response curve was substantially attenuated, consistent with loss of a cytoprotective pathway. In contrast, this 'shoulder' is commonly observed when PDT targets mitochondria or the ER. We propose that lysosomal targets may offer the possibility of promoting PDT efficacy by eliminating a potentially protective pathway.

  4. Muon cooling: longitudinal compression.

    PubMed

    Bao, Yu; Antognini, Aldo; Bertl, Wilhelm; Hildebrandt, Malte; Khaw, Kim Siang; Kirch, Klaus; Papa, Angela; Petitjean, Claude; Piegsa, Florian M; Ritt, Stefan; Sedlak, Kamil; Stoykov, Alexey; Taqqu, David

    2014-06-01

    A 10  MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon "swarm" has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2  μs. This paves the way for the preparation of a high-quality low-energy muon beam, with an increase in phase space density relative to a standard surface muon beam of 10^{7}. The achievable phase space compression by using only the longitudinal stage presented here is of the order of 10^{4}.

  5. Muon Cooling: Longitudinal Compression

    NASA Astrophysics Data System (ADS)

    Bao, Yu; Antognini, Aldo; Bertl, Wilhelm; Hildebrandt, Malte; Khaw, Kim Siang; Kirch, Klaus; Papa, Angela; Petitjean, Claude; Piegsa, Florian M.; Ritt, Stefan; Sedlak, Kamil; Stoykov, Alexey; Taqqu, David

    2014-06-01

    A 10 MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon "swarm" has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2 μs. This paves the way for the preparation of a high-quality low-energy muon beam, with an increase in phase space density relative to a standard surface muon beam of 107. The achievable phase space compression by using only the longitudinal stage presented here is of the order of 104.

  6. Role of PDT and lasers in the tracheobronchial tree

    NASA Astrophysics Data System (ADS)

    Beamis, John F.

    1993-07-01

    Multiple centers in this country and throughout the world have documented the efficacy of Photodynamic Therapy (PDT) in the treatment of cancers of the tracheobronchial tree. While PDT can effectively achieve airway patency by treating bulky obstructing tumors, its most promising role for treating tracheobronchial cancers is in the treatment of superficial early stage tumors which can potentially be treated for cure with this technique. Unfortunately more widespread use of PDT awaits FDA approval which will be slow in coming due to the need for randomized controlled studies. Many improvements are needed in the thoracic application of the Nd:YAG Laser and PDT. However efforts to prevent lung cancer and detect early lung tumors may prove more beneficial than improvement of current systems which are all too often utilized on end stage tumors.

  7. PDT for malignant tumors: a clinical analysis of 152 cases

    NASA Astrophysics Data System (ADS)

    Zhuang, Shi-Zhang; Wang, Yun-Zhen; Li, Xin; Zhang, Changjun; Wang, Jian-Zhao; Zhang, Da-Ren

    1993-03-01

    Hematoporphyrin derivative (HPD) laser photodynamic therapy (PDT) was applied for the patients of 152 cases of malignant tumors, including tumors of the lip, tongue, esophagus, urinary bladder, skin, larynx, vagina, etc. Since early 1981 good results have been obtained.

  8. [Use of nanoparticles (NP) in photodynamic therapy (PDT) against cancer].

    PubMed

    Roblero-Bartolón, Gabriela Victoria; Ramón-Gallegos, Eva

    2015-01-01

    Nanotechnology is a promising interdisciplinary field for developing improved methods of diagnosis and treatment of different diseases, including cancer. Give their optical, magnetic, and structural property, the nanoparticles have been proposed to be use in the development of unconventional treatments for cancer such as photodynamic therapy (PDT). In PDT, a photosensitizing agent is used that accumulates in tumor cells, generating reactive oxygen species that causes the death of malignant cells after irradiation with light at a particular wavelength. However, the use of PDT presents different problems in its application due to the characteristics of hydrophobicity of the photosensitizers, which hinder the efficiency of administration and treatment. It is here where the use of nanoparticles is proposed as a delivery vehicle to optimize treatment application. In this review we describe the use of nanoparticles coupled to PDT in the treatment of cancer and its molecular mechanism of action. PMID:25739488

  9. Multiple muons in MACRO

    NASA Technical Reports Server (NTRS)

    Heinz, R.

    1985-01-01

    An analysis of the multiple muon events in the Monopole Astrophysics and Cosmic Ray Observatory detector was conducted to determine the cosmic ray composition. Particular emphasis is placed on the interesting primary cosmic ray energy region above 2000 TeV/nucleus. An extensive study of muon production in cosmic ray showers has been done. Results were used to parameterize the characteristics of muon penetration into the Earth to the location of a detector.

  10. Monitoring blood flow and photobleaching during topical ALA PDT treatment

    NASA Astrophysics Data System (ADS)

    Sands, Theresa L.; Sunar, Ulas; Foster, Thomas H.; Oseroff, Allan R.

    2009-02-01

    Photodynamic therapy (PDT) using topical aminolevulinic acid (ALA) is currently used as a clinical treatment for nonmelanoma skin cancers. In order to optimize PDT treatment, vascular shutdown early in treatment must be identified and prevented. This is especially important for topical ALA PDT where vascular shutdown is only temporary and is not a primary method of cell death. Shutdown in vasculature would limit the delivery of oxygen which is necessary for effective PDT treatment. Diffuse correlation spectroscopy (DCS) was used to monitor relative blood flow changes in Balb/C mice undergoing PDT at fluence rates of 10mW/cm2 and 75mW/cm2 for colon-26 tumors implanted intradermally. DCS is a preferable method to monitor the blood flow during PDT of lesions due to its ability to be used noninvasively throughout treatment, returning data from differing depths of tissue. Photobleaching of the photosensitizer was also monitored during treatment as an indirect manner of monitoring singlet oxygen production. In this paper, we show the conditions that cause vascular shutdown in our tumor model and its effects on the photobleaching rate.

  11. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  12. Telecommunication using muon beams

    DOEpatents

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  13. Diffractively produced Z bosons in the muon decay channel in p-pbar collisions at s**(1/2) = 1.96 TeV, and the measurement of the efficiency of the D0 Run II luminosity monitor

    SciTech Connect

    Edwards, Tamsin L

    2006-04-01

    The first analysis of diffractively produced Z bosons in the muon decay channel is presented, using data taken by the D0 detector at the Tevatron at {radical}s = 1.96 TeV. The data sample corresponds to an integrated luminosity of 109 pb{sup -1}. The diffractive sample is defined using the fractional momentum loss {zeta} of the intact proton or antiproton measured using the calorimeter and muon detector systems. In a sample of 10791 (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} events, 24 diffractive candidate events are found with {zeta} < 0.02. The first work towards measuring the cross section times branching ratio for diffractive production of (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} is presented for the kinematic region {zeta} < 0.02. The first work towards measuring the cross section times branching ratio for diffractive production of (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} is presented for the kinematic region {zeta} < 0.02. The systematic uncertainties are not yet sufficiently understood to present the cross section result. In addition, the first measurement of the efficiency of the Run II D0 Luminosity Monitor is presented, which is used in all cross section measurements. The efficiency is: {var_epsilon}{sub LM} = (90.9 {+-} 1.8)%.

  14. Initial targets and cellular responses to PDT

    NASA Astrophysics Data System (ADS)

    Rodriguez, Myriam E.; Azizuddin, Kashif; Chiu, Song-mao; Delos Santos, Grace; Joseph, Sheeba; Xue, Liang-yan; Oleinick, Nancy L.

    2007-02-01

    Pc 4, a photosensitizer first synthesized at Case Western Reserve University and now in clinical trial at University Hospitals of Cleveland, has been shown to bind preferentially and with high affinity to mitochondrial and endoplasmic reticulum membranes. Upon photoirradiation of Pc 4-loaded cells, membrane components are photodamaged. In most cancer cells, apoptosis is triggered by the initial photodamage; however, in cells deficient in one of the critical intermediates of apoptosis, this process does not occur, although the cells remain as sensitive to the lethal effects of Pc 4-PDT as the apoptosis-competent cells, when cell death is determined by colony formation. Here we report that an alternative death process, autophagy, is induced in all cells tested and becomes the dominant pathway for elimination of lethally damaged cells when apoptosis is compromised. The anti-apoptotic protein Bcl-2, when overexpressed, protects only apoptosis-competent cells against loss of clonogenicity, while the autophagy inhibitor 3-methyladenine provides a markedly greater protection to apoptosis-deficient cells. The results suggest that the primary determinant of cell death is not the final pathway for elimination of the cells but the initial photodamage to critical membrane targets. In attempts to identify those targets, we have studied the role of different membrane phospholipids in the localization of Pc 4. Cardiolipin (CL) is a phospholipid found exclusively in the mitochondrial inner membrane and at the contact sites between the inner and outer membranes. Previous fluorescence resonance energy transfer studies revealed colocalization of Pc 4 and CL, which points to CL as a possible binding site and target for Pc 4. Unilamellar liposomes with different lipid compositions were used as membrane models to test the affinity of Pc 4. As revealed by the binding constants, Pc 4 does not display preferential binding to CL in these systems. Moreover, binding affinities appear to be

  15. Fluorescence Guided PDT for Optimization of Skin Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Blanco, Kate; Moriyama, Lilian; Inada, Natalia; Kurachi, Cristina; Salvio, Ana; Leite, Everson; Menezes, Priscila; Bagnato, Vanderlei

    2015-04-01

    The photodynamic therapy (PDT) is an alternative technique that can be indicated for superficial basal cell carcinoma (sBCC), Bowen’s disease and actinic keratosis with high efficiency. The objective of this study is to present the importance of fluorescence imaging for PDT guidance and monitoring in real time. Confirming that the lesion is well prepared and the photosensitizer shows a homogenous distribution, the outcome after few PDT sessions will be positive and the recurrence should be lower. Our proposition in this study is use the widefield fluorescence imaging to evaluate the PDT protocol in situ and in real time for each lesion. This evaluation procedure is performed in two steps: first with the monitoring of the production of protoporphyrin IX (PpIX) induced by methyl aminolevulinate (MAL), an derivative of 5-aminolevulinic acid (ALA) and second with the detection of PpIX photobleaching after illumination. The fluorescence images provide information correlated with distinct clinical features and with the treatment outcome. Eight BCC lesions are presented and discussed in this study. Different fluorescence patterns of PpIX production and photobleaching could be correlated with the treatment response. The presented results show the potential of using widefield fluorescence imaging as a guidance tool to customized PDT.

  16. Biological consequences of PDT: tying up the loose ends

    NASA Astrophysics Data System (ADS)

    Kessel, David; Andrzejak, Michelle; Price, Michael

    2011-02-01

    While many of the determinants of photodynamic tumor eradication have been identified, the story is not yet complete. Fluorescent probes for reactive oxygen species (ROS) are seldom specific, and the role of different ROS in apoptosis vs. autophagy are not fully delineated. Moreover, the conflicting roles of autophagy as both a death and a survival pathway remain to be explained. Most tissue-culture studies are carried out in 20% oxygen although this is far in excess of the environment of malignant cells in vivo. And while apoptotic and/or autophagic death appears to account for the lethal effects of PDT, an effect on membrane recycling has now been identified. In this report, we summarize some recent experiments designed to examine the specificity of fluorescent ROS probes. We also demonstrate the ability of hydrogen peroxide to accelerate the autophagic response to PDT in an adhering cell line, the 1c1c7 murine hepatoma. In this cell line, autophagy appears to be a pro-survival mechanism since a sub-line (KD) depleted in a critical autophagy protein (atg7) was more responsive to PDT than wild-type (WT) cells. There are clearly multiple determinants of direct tumor cell kill by PDT that depend on the PDT target, the ROS produced and phenotypic variations.

  17. Underwater measurements of muon intensity

    NASA Technical Reports Server (NTRS)

    Fedorov, V. M.; Pustovetov, V. P.; Trubkin, Y. A.; Kirilenkov, A. V.

    1985-01-01

    Experimental measurements of cosmic ray muon intensity deep underwater aimed at determining a muon absorption curve are of considerable interest, as they allow to reproduce independently the muon energy spectrum at sea level. The comparison of the muon absorption curve in sea water with that in rock makes it possible to determine muon energy losses caused by nuclear interactions. The data available on muon absorption in water and that in rock are not equivalent. Underground measurements are numerous and have been carried out down to the depth of approx. 15km w.e., whereas underwater muon intensity have been measured twice and only down to approx. 3km deep.

  18. Muon Collider Progress: Accelerators

    SciTech Connect

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  19. The Muon Collider

    SciTech Connect

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  20. The Muon Collider

    SciTech Connect

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  1. Muons and neutrinos

    NASA Technical Reports Server (NTRS)

    Stanev, T.

    1986-01-01

    The first generation of large and precise detectors, some initially dedicated to search for nucleon decay has accumulated significant statistics on neutrinos and high-energy muons. A second generation of even better and bigger detectors are already in operation or in advanced construction stage. The present set of experimental data on muon groups and neutrinos is qualitatively better than several years ago and the expectations for the following years are high. Composition studies with underground muon groups, neutrino detection, and expected extraterrestrial neutrino fluxes are discussed.

  2. Simple optical theory for light dosimetry during PDT (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.

    1992-06-01

    Photons are one of the three major reactants in the photodynamic reaction that yields toxic photoproduct for cell killing. Dosimetry of light is a major concern when planning a photodynamic therapy (PDT) protocol. This paper presents a very simple approach toward the tissue optics with a practical conclusion about how tissue optics affects planning of day-to-day PDT dosimetry. The paper does not address all the complexities of real tissue dosimetry, such as heterogeneous tissues, variable absorption due to changing tissue blood content, and variable tissue oxygen levels. The paper outlines the optical behavior in a homogeneous tissue, which is a starting point for understanding light dosimetry.

  3. Investigation of In vitro PDT Activities and In vivo Biopotential of Zinc Phthalocyanines Using (131)I Radioisotope.

    PubMed

    Ince, Mine; Er, Ozge; Ocakoglu, Kasim; Lambrecht, Fatma Yurt; Colak, Suleyman Gokhan; Soylu, Hale Melis; Kayabasi, Cagla; Gunduz, Cumhur

    2016-02-01

    Novel octylthio-containing asymmetrically substituted Zn(II) phthalocyanine (Zn(II)Pc1) and a symmetric derivative (Zn(II)Pc2) have been prepared to investigate the biological potential and ability to photosensitize singlet oxygen for photodynamic therapy applications. In this study, the singlet oxygen generation potential and in vitro photodynamic activities of these compounds have been tested. Both ZnPcs reveal to be very efficient singlet oxygen generators and promising PSs for PDT applications. In vitro PDT activities of the compounds were evaluated in EMT-6 murine mammary carcinoma and HeLa human cervix carcinoma cell lines. Moreover, Zn(II)Pc1 displayed the phototoxic effects in the mammary cancer cell line (6.25 μm concentration at 30 J/cm(2) light dose and 12.5 μm concentration at 20 J/cm(2) light dose), while Zn(II)Pc2 did not show any phototoxic effects both in two cell lines. Zn(II)Pcs were radiolabeled with (131) I in high yields. Biodistribution studies revealed that the radiolabeled Zn(II)Pc1 showed significant uptake in l. intestine, pancreas, brain, and ovary, while Zn(II)Pc2 has significant uptake in ovary and pancreas in normal rats. Hence, these Pcs derivatives could be promising candidate for tumor nuclear imaging.

  4. Investigation of In vitro PDT Activities and In vivo Biopotential of Zinc Phthalocyanines Using (131)I Radioisotope.

    PubMed

    Ince, Mine; Er, Ozge; Ocakoglu, Kasim; Lambrecht, Fatma Yurt; Colak, Suleyman Gokhan; Soylu, Hale Melis; Kayabasi, Cagla; Gunduz, Cumhur

    2016-02-01

    Novel octylthio-containing asymmetrically substituted Zn(II) phthalocyanine (Zn(II)Pc1) and a symmetric derivative (Zn(II)Pc2) have been prepared to investigate the biological potential and ability to photosensitize singlet oxygen for photodynamic therapy applications. In this study, the singlet oxygen generation potential and in vitro photodynamic activities of these compounds have been tested. Both ZnPcs reveal to be very efficient singlet oxygen generators and promising PSs for PDT applications. In vitro PDT activities of the compounds were evaluated in EMT-6 murine mammary carcinoma and HeLa human cervix carcinoma cell lines. Moreover, Zn(II)Pc1 displayed the phototoxic effects in the mammary cancer cell line (6.25 μm concentration at 30 J/cm(2) light dose and 12.5 μm concentration at 20 J/cm(2) light dose), while Zn(II)Pc2 did not show any phototoxic effects both in two cell lines. Zn(II)Pcs were radiolabeled with (131) I in high yields. Biodistribution studies revealed that the radiolabeled Zn(II)Pc1 showed significant uptake in l. intestine, pancreas, brain, and ovary, while Zn(II)Pc2 has significant uptake in ovary and pancreas in normal rats. Hence, these Pcs derivatives could be promising candidate for tumor nuclear imaging. PMID:26348246

  5. Critical dosimetry measures and surrogate tools that can facilitate clinical success in PDT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Davis, Scott C.; Kanick, Stephen C.; Maytin, Edward V.; Pereira, Stephen P.; Palanisami, Akilan; Hasan, Tayyaba

    2016-03-01

    Photodynamic therapy can be a highly complex treatment with more than one parameter to control, or in some cases it is easily implemented with little control other than prescribed drug and light values. The role of measured dosimetry as related to clinical adoption has not been as successful as it could have been, and part of this may be from the conflicting goals of advocating for as many measurements as possible for accurate control, versus companies and clinical adopters advocating for as few measurements as possible, to keep it simple. An organized approach to dosimetry selection is required, which shifts from mechanistic measurements in pre-clinical and early phase I trials, towards just those essential dose limiting measurements and a focus on possible surrogate measures in phase II/III trials. This essential and surrogate approach to dosimetry should help successful adoption of clinical PDT if successful. The examples of essential dosimetry points and surrogate dosimetry tools which might be implemented in phase II and higher trials are discussed for solid tissue PDT with verteporfin and skin lesion treatment with aminolevulinc acid.

  6. Multi-muon events at CDF

    SciTech Connect

    Ptochos, F.; /Cyprus U.

    2009-07-01

    We report a study of multi-muon events produced at the Fermilab Tevatron collider and recorded by the CDF II detector. In a data set acquired with a dedicated dimuon trigger and corresponding to an integrated luminosity of 2100 pb{sup -1}, we isolate a significant sample of events in which at least one of the identified muons has large impact parameter and is produced outside the beam pipe of radius 1.5 cm. We are unable to fully account for the number and properties of the events through standard model processes in conjunction with our current understanding of the CDF II detector, trigger and event reconstruction. Several topological and kinematic properties of these events are also presented. In contrast, the production cross section and kinematics of events in which both muon candidates are produced inside the beam pipe are successfully modeled by known QCD processes which include heavy flavor production. The presence of these anomalous multi-muon events offers a plausible resolution to long-standing inconsistencies related to b{bar b} production and decay.

  7. MAL-PDT for difficult to treat nonmelanoma skin cancer.

    PubMed

    Stebbins, William G; Hanke, C William

    2011-01-01

    With an incidence of over 3.5 million nonmelanoma skin cancers (NMSCs) per year in the United States, there is an increasing need for effective, cost-effective treatments for NMSC. When surgical excision is impractical or not feasible, methyl aminolevulinate photodynamic therapy (MAL-PDT) has demonstrated consistently high long-term cure rates ranging from 70-90%, with superior cosmetic outcomes compared with other treatment modalities. With the exception of invasive squamous cell carcinoma, MAL-PDT has been successful in treating all types of NMSC, especially in patients with multiple comorbidities, field cancerization, and lesions in cosmetically sensitive locations. Herein, a step-by-step description of the procedure for MAL-PDT is provided, followed by a review of outcomes from large clinical trials performed over the past 15 years for each variant of NMSC. After reading this review, clinicians should have a thorough understanding of the benefits and limits of MAL-PDT, and should be able to add this valuable procedure to their armamentarium of therapies for NMSC.

  8. Techport Input for Propulsive Descent Technologies (PDT) Project

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2013-01-01

    The PDT project will investigate the use of retro propulsion during the supersonic phase of atmospheric entry for Mars missions. The project technical approach involves a combination of procurement and evaluation of commercially provided flight data, development of candidate vehicle configurations, and engineering calibration of computational fluid dynamics models to the available flight data.

  9. Preclinical evaluation of zinc phthalocyanine tetrasulfonate-based PDT

    NASA Astrophysics Data System (ADS)

    Borgatti-Jeffreys, Antonella; Hooser, Stephen B.; Miller, Margaret A.; Thomas, Rose M.; deGortari, Amalia; Lucroy, Michael D.

    2005-04-01

    Photodynamic therapy (PDT) involves the light activation of a drug within a tumor causing selective tumor cell death. Unfortunately, some photosensitizing drugs have been associated with adverse reactions in veterinary patients. Zinc phthalocyanine tetrasulfonate (ZnPcS4) is a promising second-generation photosensitizer for use in veterinary medicine, however, it cannot be applied clinically until safety and efficacy data are available. ZnPcS4 was given to Swiss Webster mice to assess acute toxicity. Doses >100 mg/kg were associated with acute toxicity and mortality, and doses >100 mg/kg resulted in renal tubular nephrosis, suggesting that the minimum toxic dose is approximately 100 mg/kg. Based on these data, a Phase I clinical trial of ZnPcS4-based PDT in tumor-bearing dogs is underway, with ZnPcS4 doses up to 2 mg/kg producing no apparent toxicity. Tumor response has been observed after ZnPcS4-based PDT using doses as low as 0.25 mg/kg, suggesting that conventional phase I clinical trials may not be appropriate for PDT protocols.

  10. A photobleaching-based PDT dose metric predicts PDT efficacy over certain BPD concentration ranges in a three-dimensional model of ovarian cancer

    NASA Astrophysics Data System (ADS)

    Anbil, S.; Rizvi, I.; Celli, J. P.; Alagic, N.; Hasan, T.

    2013-03-01

    Photodynamic therapy (PDT) dosimetry is an active area of study that is motivated by the need to reliably predict treatment outcomes. Implicit dosimetric parameters, such as photosensitizer (PS) photobleaching, may indicate PDT efficacy and could establish a framework to provide patient-customized PDT. Here, tumor destruction and benzoporphryin-derivative (BPD) photobleaching are characterized by systematically varying BPD-light combinations to achieve fixed PDT doses (M * J * cm-2) in a three-dimensional (3D) model of micrometastatic ovarian cancer (OvCa). It is observed that the BPD-light parameters used to construct a given PDT dose significantly impact nodule viability and BPD photobleaching. As a result, PDT dose, when measured by the product of BPD concentration and fluence, does not reliably predict overall efficacy. A PDT dose metric that incorporates a term for BPD photobleaching more robustly predicts PDT efficacy at low concentrations of BPD. These results suggest that PDT dose metrics that are informed by implicit approaches to dosimetry could improve the reliability of PDT-based regimens and provide opportunities for patient-specific treatment planning.

  11. Delineating unique cellular responses to PDT (Invited paper)

    NASA Astrophysics Data System (ADS)

    Kessel, David

    2005-04-01

    Photodamage to mitochondria, endoplasmic reticulum (ER) or lysosomes can lead to activation of the apoptotic program, as can exposure of cells to the non-peptidic Bcl-2/Bcl-xL antagonist HA14-1. Many signaling pathways are evoked by photodynamic therapy (PDT), presumably from oxidative stress effects. To discover which of the latter effects might be unique to PDT, we compared some photodynamic effects with HA14-1 treatment, using murine leukemia L1210 cells in culture. Two photosensitizers were employed: the porphycene CPO and the chlorin NPe6. The former targets the endoplasmic reticulum (ER) and causes Bcl-2 photodamage, while NPe6 targets lysosomes, resulting in protease-induced cleavage and activation of Bid to form the pro-apoptotic product t-Bid. PDT at either target will lead to loss of the mitochondrial membrane potential ΔΨm, translocation of cytochrome c to the cytosol and an apoptotic response. Photodynamic effects of CPO or NPe6 led to activation of several 'stress proteins' and intracellular oxidation of the probe dihydrodichlorofluorescein (H2DCF). All of these effects were mimicked by HA14-1, indicating that these early responses to PDT result from initiation of apoptosis, however achieved. After CPO-catalyzed PDT or HA14-1 treatment, we observed a prompt release of Ca2+ into the cytosol, but this was insufficient to significantly alter mitochondrial calcium levels. The apoptotic response to HA14-1 or Bcl-2 photodamage was markedly promoted by the protein kinase C (PKC) inhibitor staurosporin (STS). These effects were not observed after photodamage catalyzed by NPe6, indicating that calcium release and PKC interactions are associated with loss of Bcl-2 function, but not Bid activation.

  12. PDT in periodontal disease of HAART resistance patients

    NASA Astrophysics Data System (ADS)

    Giovani, Elcio M.; Noro-Filho, Gilberto A.; Caputo, Bruno V.; Casarin, Renato; Costa, Claudio; Salgado, Daniela; Santos, Camila C.

    2016-03-01

    HIV/Aids patients present a change of microbiota associated with host immunodeficiency. Photodynamic therapy (PDT) showed as a promising and viable alternative in reducing microbiota. Present study evaluate effectiveness of photodynamic therapy in periodontal disease of AIDS patients with highly activity antiretroviral therapy (HAART) failure, measuring the clinical periodontal parameters and periodontal microbiota. Twelve patients with HARRT resistance (R group) divided into two groups (control and PDT) and 12 patients with no HAART resistance (NR group) divided into two groups (control and PDT). The results show the difference in baseline of CD4 cells count, NR group 640.0 +/- 176.2 cells/mm3 R group and 333.3 +/- 205.8 cells / mm3 (p<0.05), and in 8.3% detectable viral load in NR group and 75% detectable (p <0.001) in R group. As clinical periodontal parameters (PD and CAL), PDT was more effective than the control group only in the NR group (p <0.05%), moreover, there was no difference in the evaluation of clinical periodontal parameters between the both R groups (p>0.05%). Microbiological evaluation in R group presents a general reduction in the Aa at 3 and 6 months. Furthermore, demonstrated a reduction of Pg in all groups at 6 months and in R group at 3 months. The impact assessment of photodynamic therapy in patients with different levels of immunosuppression determined that the combination of mechanical periodontal treatment with photodynamic therapy in patients with HAART failure did not cause additional benefits. Therefore, PDT in this study could not been indicated in HAART resistance patients.

  13. Accelerator Preparations for Muon Physics Experiments at Fermilab

    SciTech Connect

    Syphers, M.J.; /Fermilab

    2009-10-01

    The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

  14. Balancing particle absorption with structural support of the muon beam stop in muons-to-electrons experimental chamber

    SciTech Connect

    Majewski, Ryan

    2013-01-01

    The Mu2e experiment at Fermi National Accelerator Laboratory is seeking a full conversion from muon to electron. The design for Mu2e is based off MECO, another proposed experiment that sought a full conversion from muon to electron at Brookhaven National Laboratory in the 1990s. Mu2e will provide sensitivity that is four times the sensitivity of the previous experiment, SINDRUM II. Discovering muon to electron conversions could help explain physics beyond the standard model of the particle physics.

  15. Fukushima Daiichi Muon Imaging

    NASA Astrophysics Data System (ADS)

    Miyadera, Haruo

    2015-10-01

    Japanese government announced cold-shutdown condition of the reactors at Fukushima Daiichi by the end of 2011, and mid- and long-term roadmap towards decommissioning has been drawn. However, little is known for the conditions of the cores because access to the reactors has been limited by the high radiation environment. The debris removal from the Unit 1 - 3 is planned to start as early as 2020, but the dismantlement is not easy without any realistic information of the damage to the cores, and the locations and amounts of the fuel debris. Soon after the disaster of Fukushima Daiichi, several teams in the US and Japan proposed to apply muon transmission or scattering imagings to provide information of the Fukushima Daiichi reactors without accessing inside the reactor building. GEANT4 modeling studies of Fukushima Daiichi Unit 1 and 2 showed clear superiority of the muon scattering method over conventional transmission method. The scattering method was demonstrated with a research reactor, Toshiba Nuclear Critical Assembly (NCA), where a fuel assembly was imaged with 3-cm resolution. The muon scattering imaging of Fukushima Daiichi was approved as a national project and is aiming at installing muon trackers to Unit 2. A proposed plan includes installation of muon trackers on the 2nd floor (operation floor) of turbine building, and in front of the reactor building. Two 7mx7m detectors were assembled at Toshiba and tested.

  16. Muon Reconstruction and Identification in CMS

    SciTech Connect

    Everett, A.

    2010-02-10

    We present the design strategies and status of the CMS muon reconstruction and identification identification software. Muon reconstruction and identification is accomplished through a variety of complementary algorithms. The CMS muon reconstruction software is based on a Kalman filter technique and reconstructs muons in the standalone muon system, using information from all three types of muon detectors, and links the resulting muon tracks with tracks reconstructed in the silicon tracker. In addition, a muon identification algorithm has been developed which tries to identify muons with high efficiency while maintaining a low probability of misidentification. The muon identification algorithm is complementary by design to the muon reconstruction algorithm that starts track reconstruction in the muon detectors. The identification algorithm accepts reconstructed tracks from the inner tracker and attempts to quantify the muon compatibility for each track using associated calorimeter and muon detector hit information. The performance status is based on detailed detector simulations as well as initial studies using cosmic muon data.

  17. Susceptibility of representative dental pathogens to inactivation by the PDT with water-soluble photosensitizers

    NASA Astrophysics Data System (ADS)

    Angelov, Ivan; Mantareva, Vanya; Kussovski, Veselin; Worle, Diter; Kisov, Hristo; Belcheva, Marieta; Georgieva, Tzvetelina; Dimitrov, Slavcho

    2011-02-01

    In the recent decade the applications of photodynamic therapy (PDT) rapidly increase in several topics and one of areas where the PDT in the future will be play significant role is dentistry. The different photosensitizing complexes with a good water solubility and with absorption with an intensive maximum in the red region (630-690 nm), which makes them suitable for photodynamic treatments, were investigated. The photochemical properties of complexes for singlet oxygen generation were investigated and were shown relations between uptake levels and light intensity to achieve increase in photodynamic efficacy. Photodynamic efficacy against fungi Candida albicans and bacteria's E. faecalis, MRSA and S. Mutans in planktonic media was evaluated. The high photodynamic efficacy was shown for SiPc at very low concentrations (0.9 μM) and light doses of 50 J cm-2 by intensity of light 60 mW cm-2. The photodynamic response for E. faecalis, MRSA and S. Mutans, after treatments with different photosensitizers show strong dependence on concentrations of photsensitzers and micro organisms. The level of inactivation of the pathogen bacteria's from 1-2 degree of initial concentration up to full inactivation was observed. The studied complexes were compared to the recently studied Methylene blue, Haematoporphyrine and tetra-methylpirydiloxy Zn(II)- phthalocyanines and experimental results show that some of them have a good potential for inactivation of representative pathogenic bacterial strains. Experimental results also indicate that photodynamic therapy appears an effective method for inactivation of oral pathogenic bacterias and fungi.

  18. Susceptibility of representative dental pathogens to inactivation by the PDT with water-soluble photosensitizers

    NASA Astrophysics Data System (ADS)

    Angelov, Ivan; Mantareva, Vanya; Kussovski, Veselin; Worle, Diter; Kisov, Hristo; Belcheva, Marieta; Georgieva, Tzvetelina; Dimitrov, Slavcho

    2010-09-01

    In the recent decade the applications of photodynamic therapy (PDT) rapidly increase in several topics and one of areas where the PDT in the future will be play significant role is dentistry. The different photosensitizing complexes with a good water solubility and with absorption with an intensive maximum in the red region (630-690 nm), which makes them suitable for photodynamic treatments, were investigated. The photochemical properties of complexes for singlet oxygen generation were investigated and were shown relations between uptake levels and light intensity to achieve increase in photodynamic efficacy. Photodynamic efficacy against fungi Candida albicans and bacteria's E. faecalis, MRSA and S. Mutans in planktonic media was evaluated. The high photodynamic efficacy was shown for SiPc at very low concentrations (0.9 μM) and light doses of 50 J cm-2 by intensity of light 60 mW cm-2. The photodynamic response for E. faecalis, MRSA and S. Mutans, after treatments with different photosensitizers show strong dependence on concentrations of photsensitzers and micro organisms. The level of inactivation of the pathogen bacteria's from 1-2 degree of initial concentration up to full inactivation was observed. The studied complexes were compared to the recently studied Methylene blue, Haematoporphyrine and tetra-methylpirydiloxy Zn(II)- phthalocyanines and experimental results show that some of them have a good potential for inactivation of representative pathogenic bacterial strains. Experimental results also indicate that photodynamic therapy appears an effective method for inactivation of oral pathogenic bacterias and fungi.

  19. Endobronchial occlusive disease: Nd:YAG or PDT?

    NASA Astrophysics Data System (ADS)

    Regal, Anne-Marie; Takita, Hiroshi

    1991-06-01

    Patients with endobronchial occlusion commonly experience dyspnea, cough, hemoptysis, pneumonitis, and atelectasis. If luminal patency is not re-established, obstructive symptoms may progress to sepsis and death. Although the overall survival of patients with lung cancer may not be altered by relief of airway obstruction, the prognosis for this subset of patients may be improved by eliminating the septic complications of bronchial occlusion. Techniques to treat occluded bronchi include electro-fulguration, cryotherapy, brachytherapy, laser (CO2, Nd-YAG) therapy, and photodynamic therapy (PDT). These represent local forms of treatment and are intended to be palliative. Nd-YAG and PDT are the modalities more frequently utilized in this setting. Comparison of the two treatment forms may furnish insight regarding the appropriate role for each as individual therapies and as part of the armamentarium of cancer therapies.

  20. Mars Mission Scenario: Data Volume and PDT Notes

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Biswas, A.; Piazzolla, S.; Townes, S.

    2012-01-01

    Objectives of this work are: (1) Investigate methods for quantifying the value of interoperability for deep space missions: A network of optical receive stations Each one potentially owned by a different space agency. Reduces overall cost to any individual agency Provides geographically diverse locations to mitigate weather problems (clouds, wind, rain, dust, etc.) (2) Metrics: a. Total data volume returned over mission duration b. Percent data transferred (PDT) or something similar.

  1. Ultrasound-guided interventional PDT of liver cancer

    NASA Astrophysics Data System (ADS)

    Zeng, Chaoying; Yang, Dong; Huang, Ping; Zhang, Huijuan; Huang, Muyin; Chen, Ji; Lu, Guorong

    1996-09-01

    Thirty patients with advanced liver cancer were treated by interstitial photodynamic therapy (PDT). These included 28 hepatocellular carcinoma and two adenocarcinoma, 19 primary tumors and 11 recurred follow other treatments. The diameter of tumors were 7-10cm in 13 cases and 10-16cm in 17 cases. In this study, an argon laser pumped dye laser system was used to give a CW laser beam at 630 nm which was split and coupled into there optical fibers. The patients were injected intravenously with photosensitizer hematoporphyrin derivative at a dose of 5mg/kg body weight 48 hours before PDT. Then the fibers were inserted into tumor by ultrasound- guided percutaneous puncture. The inserted irradiation points were spaced in entire tumor with the light release power 300mW and the irradiation time 12 minutes per point. Total 52 treatments were performed in 30 patients. Among them, 14 cases were treated only one time and 16 cases via 2-3 times. The follow-up was carried out in 25 cases for 12- 24 months. The results show that significant remission was 22 percent in those patients by only one treatment and 62 percent in those via 2 to 3 treatments. The shrink rate of tumor size was over 90 percent in five of six cases after treatment 3. The survival time has been over one year in 12 cases. No obvious change to be found for all patients in liver function test, renal function test and blood routine examination. The level of AFP indicated a descending trend after PDT. This work indicate that PDT is effective and safe for the treatment of large liver cancers including those recurred follow hepatic resection and those failed in hepatic artery infusion embolic chemotherapy.

  2. Fractionated PDT with 5-aminolevulinic acid: effective, cost effective, and patient friendly

    NASA Astrophysics Data System (ADS)

    de Vijlder, Hannah C.; Middelburg, Tom A.; de Bruijn, Henriette S.; Robinson, Dominic J.; Neumann, H. A. Martino; de Haas, Ellen R. M.

    2009-06-01

    PDT with ALA and MAL is established as a relatively effective treatment for non-melanoma skin cancer and premalignancies. PDT is often repeated, because a single treatment gives poor long term results. Preclinical studies showed that ALA-PDT applying a fractionated illumination scheme with a small first light fraction and a second larger light fraction separated by a dark interval of two hours resulted in a significant increase in efficacy. Whereas the efficacy was not enhanced by fractionating MAL-PDT, indicating that ALA-PDT mechanism is not the same as MAL-PDT mechanism. The increase in efficacy using fractionated PDT was confirmed clinically. A randomized comparative clinical study comparing fractionated ALA-PDT versus non-fractionated ALA-PDT in the treatment of superficial basal cell carcinoma showed a significant higher response rate in the lesions treated with fractionated ALA-PDT after a follow-up of one year ( p<0.002, log-rank test). The five year follow-up is studied at moment. So far the complete response in the group treated with fractionated ALA-PDT seems to be only a few percentages lower compared to the one year follow-up. Besides the gain in response rate, fractionated ALA PDT is cost effective. ALA gel is less expensive than the commercially available MAL (Metvix) and moreover fractionated ALA-PDT takes one treatment day, instead of two treatment days using the Metvix treatment protocol (two MAL-PDT treatments separated by one week), both reducing direct and indirect costs and the burden to the patient.

  3. Using iron chelating agents to enhance dermatological PDT

    NASA Astrophysics Data System (ADS)

    Curnow, Alison; Dogra, Yuktee; Winyard, Paul; Campbell, Sandra

    2009-06-01

    Topical protoporphyrin IX (PPIX) induced photodynamic therapy (PDT) of basal cell carcinoma (BCC) produces good clinical outcomes with excellent cosmesis as long as the disease remains superficial. Efficacy for nodular BCC however appears inferior to standard treatment unless repeat treatments are performed. Enhancement is therefore required and is possible by employing iron chelating agents to temporarily increase PPIX accumulation above the levels normally obtained using aminolevulinic acid (ALA) or the methyl ester of ALA (MAL) alone. In vitro studies investigated the effect of the novel iron chelator, CP94 on necrotic or apoptotic cell death in cultured human skin fibroblasts and epidermal carcinoma cells incubated with MAL. Furthermore, following a dose escalating safety study conducted with ALA in patients, an additional twelve nodular BCCs were recruited for topical treatment with standard MAL-PDT +/- increasing doses of CP94. Six weeks later following clinical assessment, the whole treatment site was excised for histological analysis. CP94 produced greater cell death in vitro when administered in conjunction with MAL than this porphyrin precursor could produce when administered alone. Clinically, PDT treatment using Metvix + CP94 was a simple and safe modification associated with a trend of reduced tumor thickness with increasing CP94 dose.

  4. PDT-treated apoptotic cells induce macrophage synthesis NO

    NASA Astrophysics Data System (ADS)

    Song, S.; Xing, D.; Zhou, F. F.; Chen, W. R.

    2009-11-01

    Nitric oxide (NO) is a biologically active molecule which has multi-functional in different species. As a second messenger and neurotransmitter, NO is not only an important regulatory factor between cells' information transmission, but also an important messenger in cell-mediated immunity and cytotoxicity. On the other side, NO is involving in some diseases' pathological process. In pathological conditions, the macrophages are activated to produce a large quantity of nitric oxide synthase (iNOS), which can use L-arginine to produce an excessive amount of NO, thereby killing bacteria, viruses, parasites, fungi, tumor cells, as well as in other series of the immune process. In this paper, photofrin-based photodynamic therapy (PDT) was used to treat EMT6 mammary tumors in vitro to induce apoptotic cells, and then co-incubation both apoptotic cells and macrophages, which could activate macrophage to induce a series of cytotoxic factors, especially NO. This, in turn, utilizes macrophages to activate a cytotoxic response towards neighboring tumor cells. These results provided a new idea for us to further study the immunological mechanism involved in damaging effects of PDT, also revealed the important function of the immune effect of apoptotic cells in PDT.

  5. PDT-induced apoptosis in arterial smooth muscles cells

    NASA Astrophysics Data System (ADS)

    Nyamekye, Isaac; Renick, R.; Gilbert, C.; McEwan, Jean R.; Evan, G.; Bishop, Christopher C. R.; Bown, Stephen G.

    1995-03-01

    PDT kills smooth muscle cells (SMC) in vivo and thus prevents intimal hyperplasia after angioplasty. It causes little inflammation and structural integrity of the artery is not compromised. We have studied the process of the SMC death in vitro. Cultured rat SMC (cell line sv40 ATCC) were sensitized with aluminum disulphonated phthalocyanine (AlS2Pc), and then irradiated with 675 nm laser light (2.5 J/cm2). Controls were studied using only sensitizer or laser for treatment. The cells were incubated and the dying process observed with a time lapse video and microscope system. PDT caused a characteristic pattern of death. Cells lost contact with neighbors, shrank, and showed hyperactivity and membrane ruffling. The cells imploded into active and condensed membrane bound vesicles which were terminally reduced to residual bodies. These are the morphological changes of apoptosis. The control cells which were given AlS2Pc alone or laser alone showed no death. PDT induced cultured arterial SMC death by apoptosis rather than necrosis. An apoptotic mechanism of cell death in vivo would explain the relative lack of inflammation and local tissue destruction in the face of massive death.

  6. PREFACE: Muon spin rotation, relaxation or resonance

    NASA Astrophysics Data System (ADS)

    Heffner, Robert H.; Nagamine, Kanetada

    2004-10-01

    ), is currently being built to replace the current Japanese muSR capability at KEK. These muSR institutions provide scientists a variety of sample environments, including a range of temperatures, magnetic fields and applied pressure. In addition, very low-energy muon beams (< 1 keV) have been developed for studies of thin films and nano-materials. In 2002 this world-wide community founded the International Society of muSR Spectroscopy (http://musr.org/~isms/) in order to promote the health of this growing field of research. The 20 papers presented in this volume are intended to highlight some of the current muSR research activities of interest to condensed matter physicists. It is not an exhaustive review. In particular, the active and exciting area of muonium chemistry is left to a future volume. The group of papers in section I addresses the physics of strongly correlated electrons in solids, one of the most active fields of condensed matter research today. Strong electron correlations arise from (Coulomb) interactions which render Landau's theory of electron transport for weakly interacting systems invalid. Included in this category are unconventional heavy-fermion superconductors, high-temperature copper-oxide superconductors, non-Fermi liquid (NFL) systems and systems with strong electron-lattice-spin coupling, such as the colossal magnetoresistance manganites. Two key properties often make the muon a unique probe of these materials: (1) the muon's large magnetic moment (~3 mup) renders it extremely sensitive to the tiny magnetic fields (~1 Gauss) found, for example, in many NFL systems and in superconductors possessing time-reversal-violating order parameters, and (2) the muon's spin 1/2 creates a simple muSR lineshape (no quadrupolar coupling), ideal for measuring spin-lattice-relaxation, local susceptibilities and magnetic-field distributions in ordered magnets and superconductors. Section II contains studies which exploit the unique sensitivities of muSR just

  7. Borehole Muon Detector Development

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  8. Adjuvant photodynamic therapy (PDT) with photosensitizer photosens for superficial bladder cancer: experimental investigations to treat prostate cancer by PDT with photosens

    NASA Astrophysics Data System (ADS)

    Apolikhin, Oleg I.; Chernishov, Igor V.; Sivkov, Andrey V.; Altunin, Denis V.; Kuzmin, Sergey G.; Vorozhtsov, Georgy N.

    2007-07-01

    14 patients with transional-cell bladder cancer in stage T1N0M0G2 after transurethral bladder resection were offered adjuvant treatment with PDT. Adjuvant PDT was performed 1-1.5 months after transurethral bladder resection for superficial bladder cancer. Prior to PDT conventional and fluorescent cystoscopy were performed. In the absence of inflammation and after full epitalisation of postoperative wound a session of therapy was performed. 24 hours prior to PDT-session photosensitizer Photosens was injected intravenously in the dose of 0.8 mg per kg of body weight. Prior to PDT local anesthesia of urethra with lidocain-gel was performed. Cystoscopy was carried out. PDT was performed with diode laser "Biospec" (675 nm). During the session the place of standing diffuser and the volume of a bladder were controlled. After 7 months of observation no tumor recidivists were observed. Registered side effects were not life-threatened. 5 patients had pain or discomfort in suprapubic area, ceasing spontaneously or requiring administration of analgetics. No systemic side-effects or allergic reactions were observed. The method can be used in out-patient practice. Absence of early recidivists shows efficiency of PDT in the treatment of superficial bladder cancer. Further study is necessary to estimate optimal regimen of PDT. The further controlling of condition on the patients in this group is required. At the laboratory animals' experiment, we conducted the explorations devoted to the influence of the photodynamic effect at the prostate's tissues.

  9. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect

    Pakvasa, Sandip

    2013-05-23

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  10. On muon energy spectrum in muon groups underground

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Novoseltsev, Y. F.; Novoseltseva, M. V.; Stenkin, Y. V.

    1985-01-01

    A method is described which was used to measure muon energy spectrum characteristics in muon groups underground using mu-e decays recording. The Baksan Telescope's experimental data on mu-e decays intensity in muon groups of various multiplicities are analyzed. The experimental data indicating very flat spectrum does not however represent the total spectrum in muon groups. Obviously the muon energy spectrum depends strongly on a distance from the group axis. The core attraction effect makes a significant distortion, making the spectrum flatter. After taking this into account and making corrections for this effect the integral total spectrum index in groups has a very small depencence on muon multiplicity and agrees well with expected one: beta=beta (sub expected) = 1.75.

  11. Muon capture for the front end of a muon collider

    SciTech Connect

    Neuffer, D.; Yoshikawa, C.; /MUONS Inc., Batavia

    2011-03-01

    We discuss the design of the muon capture front end for a {mu}{sup +}-{mu}{sup -} Collider. In the front end, a proton bunch on a target creates secondary pions that drift into a capture transport channel, decaying into muons. A sequence of rf cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. The muons are then cooled and accelerated to high energy into a storage ring for high-energy high luminosity collisions. Our initial design is based on the somewhat similar front end of the International Design Study (IDS) neutrino factory.

  12. Muon identification with Muon Telescope Detector at the STAR experiment

    NASA Astrophysics Data System (ADS)

    Huang, T. C.; Ma, R.; Huang, B.; Huang, X.; Ruan, L.; Todoroki, T.; Xu, Z.; Yang, C.; Yang, S.; Yang, Q.; Yang, Y.; Zha, W.

    2016-10-01

    The Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identification performance for the MTD using proton-proton collisions at √{ s }=500 GeV with various methods. The result using the Likelihood Ratio method shows that the muon identification efficiency can reach up to ∼90% for muons with transverse momenta greater than 3 GeV/c and the significance of the J / ψ signal is improved by a factor of 2 compared to using the basic selection.

  13. Muon spin rotation studies

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  14. Muon Collider design status

    SciTech Connect

    Alexahin, Y.; /Fermilab

    2010-09-01

    Muon Collider (MC) - proposed by G.I. Budker and A.N. Skrinsky a few decades ago - is now considered as the most exciting option for the energy frontier machine in the post-LHC era. A national Muon Accelerator Program (MAP) is being formed in the USA with the ultimate goal of building a MC at the Fermilab site with c.o.m. energy in the range 1.5-3 TeV and luminosity of {approx} 1.5 {center_dot} 10{sup 34} cm{sup -2} s{sup -1}. As the first step on the way to MC it envisages construction of a Neutrino Factory (NF) for high-precision neutrino experiments. The baseline scheme of the NF-MC complex is presented and possible options for its main components are discussed.

  15. NK Muon Beam

    SciTech Connect

    Koizumi, G.

    1988-09-28

    The NK Muon Beam will be a modified version of the existing NT beam line. The decision to employ a modified version of the NT beam line was made based on considerations of cost and availability of the beam line. Preliminary studies considered use of other beam lines, e.g., the NW beam line, and even of moving the bubble chamber with its superconducting coils but were rejected for reasons such as cost, personnel limitations, and potential conflicts with other users.

  16. Photodynamic therapy (PDT) in advanced inoperable bronchial carcinoma

    NASA Astrophysics Data System (ADS)

    Moghissi, Keyvan; Dixon, Kate; Stringer, Mark R.; Brown, Stanley B.

    1996-12-01

    Objective: To assess the efficacy of PDT to: Palliate symptoms, control disease and extend survival in patients with advanced inoperable cancer. Subject and Method: 55 Males and 23 females aged between 45-81 years (mean 66 years) with inoperable and advanced lung cancer with > 5O. obstructive lesions of the main, lobar or segmental bronchi. Patients had pre-treatment routine clinical radiological, functional and endoscopic assessment with proven histological diagnosis. Protocol of PDT was; Intravenous injection of 2 mg/Kg bodyweight Polyhaematoporphyrin (equivalent to Photofrin) or Photofrin followed 24-72 hours later by illumination of tumour using 630 nm light (Oxford Laser) delivered via an optical fibre with end diffuser. Treatments were carried out under general anaesthesia as a day case procedure. Patients were rebronchoscoped for debridement/retreatment 4-7 days later. Results: There was no treatment related mortality. Two patients developed mild photosensitivity reaction. All patients showed symptomatic improvement with good initial functional and radiological amelioration. Every patient responded to treatment. Seven patients had complete response and negative histology for 3-12 months. After the first treatment average Forced Vital Capacity (FVC) and Forced Expiratory Volume in one second (FEV1) improvement was 0.5 litres and 0.4 litres respectively. Twenty five percent of patients (nr 19) survived more than 2 years, 10'. (nr=8) between 1-2 years and the remaining 51 patients less than a year. Conclusion: PDT should be considered as a therapeutic modality for all stages of lung cancer and is an excellent treatment modality for palliation in advanced bronchial malignancies.

  17. The OPERA muon spectrometers

    NASA Astrophysics Data System (ADS)

    Garfagnini, A.; Bergnoli, A.; Brugnera, R.; Carrara, E.; Ciesielski, R.; Dal Corso, F.; Dusini, S.; Fanin, C.; Longhin, A.; Stanco, L.; Cazes, A.; Cecchetti, A.; Di Troia, C.; Dulach, B.; Felici, G.; Mengucci, A.; Orecchini, D.; Paoloni, A.; Spinetti, M.; Terranova, F.; Ventura, M.; Votano, L.; Candela, A.; D'Incecco, M.; Gustavino, C.; Lindozzi, M.

    2007-03-01

    The OPERA experiment will study νμ to ντ oscillations through τ appearance on the 732 km long CERN to Gran Sasso baseline. The magnet yokes of the two muon spectrometers are instrumented with 48 planes of high resistivity bakelite Resistive Plate Chambers (RPC) operated in streamer mode. Each plane covers about 70 m2. A general introduction to the system installation and commissioning will be given. Four RPC planes were instrumented and the first tests were performed confirming a good behavior of the installed RPCs in terms of intrinsic noise and operating currents. The measured noise maps agree with those obtained in the extensive quality test performed at surface. Counting rates are below 20 Hz/m2. Single and multiple cosmic muon tracks were also reconstructed. The estimated efficiency is close to the geometrical limit and the very first measurements of the absolute and differential muon flux are in agreement with the expectations. Finally, a description of the readout electronics and of the slow control system is given.

  18. Gold mining for PDT: Great expectations from tiny nanoparticles.

    PubMed

    Gamaleia, Nikolai F; Shton, Irina O

    2015-06-01

    Among many and various products, born by the modern nanotechnology, gold nanoparticles roused a special interest of biomedical researchers. Unique features of the nanoparticles allow to use them not only as effective transporters for therapeutic agents but also as basic components of nanocomposite preparations intended for targeted photodynamic and photothermal therapy of tumours. In the review, physical, chemical and biological properties of gold nanoparticles which can promote PDT efficiency of a designed nanocomposite, are briefly characterized, and promising trends in creation of gold-containing composite photosensitizers are analysed.

  19. Muon Colliders and Neutrino Factories *

    NASA Astrophysics Data System (ADS)

    Geer, Steve

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate O(1021) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  20. Muon Colliders and Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  1. Muon colliders and neutrino factories

    SciTech Connect

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  2. The role of impurities in molecular solids and biological materials. First-principles study of: I. Helium in solid hydrogen as an obstacle for efficiency of muon catalyzed fusion, and II. Muon and muonium in proteins and DNA as probes for electron transport

    NASA Astrophysics Data System (ADS)

    Scheicher, Ralph H.

    The Hartree-Fock cluster procedure has been used to investigate the electronic structures and associated properties of helium in solid hydrogen and of muon and muonium in cytochrome c and DNA. Our study has shown that He+ is trapped about equally strongly at both tetrahedral and octahedral interstitial sites in solid hydrogen, with almost no dependence of the binding energy on the orientation of the surrounding H2 molecules. Neutral helium appears unbound in solid hydrogen. The results of our calculations provide an explanation for the stronger trapping of helium in the solid phase of hydrogen as compared to the liquid phase, observed in muon catalyzed fusion experiments. Regarding the phenomenon of helium nucleation, our calculations have shown that two He+ ions trapped at adjacent sites in solid hydrogen can substantially reduce their repulsion due to the influence of the H2 molecules. For muon and muonium trapping in cytochrome c, we have shown that the double-bonded oxygen in the carboxyl group is capable of trapping both muon and muonium. This suggests for the muon spin relaxation measurements which study the electron transfer path in cytochrome c, that the muon trapped at this type of oxygen atom is the main one that can sense the movement of the electron that leaves the trapped muonium. Our results provide valuable understanding of the differences between the properties associated with muon and muonium trapped in different amino acids in the protein chain of cytochrome c and the role of environmental effects. Our study of muon and muonium trapping in DNA has shown that significant differences exist in the magnetic hyperfine interaction of muonium trapped in the nucleic acid Adenine between the A-form and B-form DNA type, and the isolated molecule type. This result has potential importance for the interpretation of muon spin relaxation experiments which investigate the dependence of electron mobility upon base pair separation in DNA. The results of our study

  3. Experimental studies of combination of PDT and tumor chemotherapy or 60Co irradiation

    NASA Astrophysics Data System (ADS)

    Didziapetriene, Janina; Prasmickiene, Grazina; Sukeliene, Dalija; Rotomskis, Ricardas; Streckyte, Giedre; Atkocius, Vydmantas; Staciokiene, Laima; Smilgevicius, Valerijus

    1995-01-01

    We present experimental results obtained by combining photodynamic therapy (PDT) with tumor chemotherapy or radiotherapy. Dimethoxyhematoporphyrin (DMHp) and photosan (PS) were used as photosensitizers, pharanoxi and vincristine as antitumor drugs. The therapeutic effect of the combination of PDT and antitumor drugs (pharanoxi, vincristine) slightly increases as compared to the treatment of PDT or antitumor drug alone. The additive therapeutic effect is achieved under the combination of PDT and 60Co irradiation. It seems that the sensitizers DMHp and PS regulate lipid peroxidation in blood serum of experimental animals, which becomes more active under the influence of alkylating antitumor drugs. Therefore, they could protect an organism from negative influence of tumor chemotherapy.

  4. PDT-induced apoptosis: investigations using two malignant brain tumor models

    NASA Astrophysics Data System (ADS)

    Lilge, Lothar D.; Menzies, Keir; Bisland, Stuart K.; Lin, Annie; Wilson, Brian C.

    2002-06-01

    PDT included necrosis in brain tissue and an intracranial tumor has been quantified for various photosensitizers, and it has been shown to be dependent on the sub-cellular localization of these photosensitizers. In quantifying non- necrotic biological endpoints, such as PDT induced apoptosis, the expression and translation of apoptosis inhibiting or promoting genes is of considerable importance. We studied the susceptibility of two glioblastoma cell lines to under go apoptotic cell death following photodynamic treatment with either Photofrin or delta-aminolevulinic acid (delta) ALA) in vivo. Murine 9L Gliosarcoma cells or human U87 Glioblastoma cells were implanted into the cortex of rats, and following 12 or 14 days of growth respectively, subjected to either Photofrin-mediated PDT or ALA-mediated PDT. 9L gliosarcoma cells express the phosphatase Tensin homologue (PTEN) tumor suppressor gene while in U87 cells PTEN is mutated. Differences in the Photofrin mediated PDT induced apoptosis were noted between the two different cell lines in vivo, suggesting that Photofrin mediated PDT may be dependent on apoptotic pathways. ALA induced PPIX showed higher selectivity towards 9L than Photofrin mediated PDT. These studies suggests that PDT could be used as an effective treatment for intracranial neoplasm. Endogenous photosensitizers such as ALA could be used to promote apoptosis in tumor cells due to PDT treatment and thereby minimize the extent of necrotic infarction in the surrounding normal brain.

  5. Topical PDT in the Treatment of Benign Skin Diseases: Principles and New Applications

    PubMed Central

    Kim, Miri; Jung, Haw Young; Park, Hyun Jeong

    2015-01-01

    Photodynamic therapy (PDT) uses a photosensitizer, light energy, and molecular oxygen to cause cell damage. Cells exposed to the photosensitizer are susceptible to destruction upon light absorption because excitation of the photosensitizing agents leads to the production of reactive oxygen species and, subsequently, direct cytotoxicity. Using the intrinsic cellular heme biosynthetic pathway, topical PDT selectively targets abnormal cells, while preserving normal surrounding tissues. This selective cytotoxic effect is the basis for the use of PDT in antitumor treatment. Clinically, PDT is a widely used therapeutic regimen for oncologic skin conditions such as actinic keratosis, squamous cell carcinoma in situ, and basal cell carcinoma. PDT has been shown, under certain circumstances, to stimulate the immune system and produce antibacterial, and/or regenerative effects while protecting cell viability. Thus, it may be useful for treating benign skin conditions. An increasing number of studies support the idea that PDT may be effective for treating acne vulgaris and several other inflammatory/infective skin diseases, including psoriasis, rosacea, viral warts, and aging-related changes. This review provides an overview of the clinical investigations of PDT and discusses each of the essential aspects of the sequence: its mechanism of action, common photosensitizers, light sources, and clinical applications in dermatology. Of the numerous clinical trials of PDT in dermatology, this review focuses on those studies that have reported remarkable therapeutic benefits following topical PDT for benign skin conditions such as acne vulgaris, viral warts, and photorejuvenation without causing severe side effects. PMID:26404243

  6. Topical PDT in the Treatment of Benign Skin Diseases: Principles and New Applications.

    PubMed

    Kim, Miri; Jung, Haw Young; Park, Hyun Jeong

    2015-01-01

    Photodynamic therapy (PDT) uses a photosensitizer, light energy, and molecular oxygen to cause cell damage. Cells exposed to the photosensitizer are susceptible to destruction upon light absorption because excitation of the photosensitizing agents leads to the production of reactive oxygen species and, subsequently, direct cytotoxicity. Using the intrinsic cellular heme biosynthetic pathway, topical PDT selectively targets abnormal cells, while preserving normal surrounding tissues. This selective cytotoxic effect is the basis for the use of PDT in antitumor treatment. Clinically, PDT is a widely used therapeutic regimen for oncologic skin conditions such as actinic keratosis, squamous cell carcinoma in situ, and basal cell carcinoma. PDT has been shown, under certain circumstances, to stimulate the immune system and produce antibacterial, and/or regenerative effects while protecting cell viability. Thus, it may be useful for treating benign skin conditions. An increasing number of studies support the idea that PDT may be effective for treating acne vulgaris and several other inflammatory/infective skin diseases, including psoriasis, rosacea, viral warts, and aging-related changes. This review provides an overview of the clinical investigations of PDT and discusses each of the essential aspects of the sequence: its mechanism of action, common photosensitizers, light sources, and clinical applications in dermatology. Of the numerous clinical trials of PDT in dermatology, this review focuses on those studies that have reported remarkable therapeutic benefits following topical PDT for benign skin conditions such as acne vulgaris, viral warts, and photorejuvenation without causing severe side effects. PMID:26404243

  7. Overcoming therapeutic resistance in pancreatic cancer is not a simple mix of PDT and chemotherapy: Evaluation of PDT-chemotherapy combinations in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan P.; Petrovic, Ljubica; Massdodi, Iqbal; Rizvi, Imran; Hasan, Tayyaba

    2013-03-01

    The dismal survival statistics for pancreatic cancer are due in large part to the notoriously poor response of these tumors to conventional therapies. Here we examine the ability of photodynamic therapy (PDT), using the photosensitizer verteporfin to enhance of the efficacy of traditional chemotherapy agents and/or eradicate populations that are nonresponsive to these agents. Using an in vitro 3D tumor model of pancreatic cancer combined with an imaging-based methodology for quantifying therapeutic response, we specifically examine PDT combination treatments with gemcitabine and oxaliplatin. We show that our 3D cell culture model recapitulates a more clinically-relevant dose response to gemcitabine, with minimal cytotoxic response even at high doses. The same cultures exhibit modest response to PDT treatments, but are also less responsive to this modality relative to our previous reports of monolayer dose response in the same cells. In combination we found no evidence of any enhancement in efficacy of either PDT or gemcitabine treatment regardless of dose or sequence (PDT before gemcitabine, or gemcitabine before PDT). However, when oxaliplatin chemotherapy was administered immediately after treatment with 2.5J/cm2 verteporfin PDT, there was an observable enhancement in response that appears to exceed the additive combination of either treatment alone and suggesting there may be a synergistic interaction. This observation is consistent with previous reports of enhanced efficacy in combinations of PDT with platinum-based chemotherapy. The contrast in results between the combinations examined here underscores the need for rational design of mechanism-based PDT combinations.

  8. From Neutrino Factory to Muon Collider

    SciTech Connect

    Geer, S.; /Fermilab

    2010-01-01

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  9. Physical applications of muon catalysis: Muon capture in hydrogen

    NASA Astrophysics Data System (ADS)

    Filchenkov, V. V.

    2016-07-01

    Results of theoretical and experimental research on capture of negative muons in hydrogen are reported with an emphasis on the accompanying phenomenon of muon catalysis in hydrogen and subtleties of the experimental method. A conclusion is drawn that precise determination of the capture rate is important for refining the standard model.

  10. Beta-lactamase targeted enzyme activatable photosensitizers for antimicrobial PDT

    NASA Astrophysics Data System (ADS)

    Zheng, Xiang; Verma, Sarika; Sallum, Ulysses W.; Hasan, Tayyaba

    2009-06-01

    Photodynamic therapy (PDT) as a treatment modality for infectious disease has shown promise. However, most of the antimicrobial photosensitizers (PS) non-preferentially accumulate in both bacteria and host tissues, causing host tissue phototoxicity during treatment. We have developed a new antimicrobial PDT strategy which exploits beta-lactam resistance mechanism, one of the major drug-resistance bacteria evolved, to achieve enhanced target specificity with limited host damage. Our strategy comprises a prodrug construct with a PS and a quencher linked by beta-lactam ring, resulting in a diminished phototoxicity. This construct, beta-lactamase enzyme-activated-photosensitizer (beta-LEAP), can only be activated in the presence of both light and bacteria, and remains inactive elsewhere such as mammalian tissue. Beta-LEAP construct had shown specific cleavage by purified beta-lactamase and by beta-lactamase over-expressing methicillin resistant Staphylococcus aureus (MRSA). Specific photodynamic toxicity was observed towards MRSA, while dark and light toxicity were equivalent to reference strains. The prodrug design, synthesis and photophysical properties will be discussed.

  11. Effect of PDT-treated apoptotic cells on macrophages

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Xing, Da; Zhou, Fei-fan; Chen, Wei R.

    2009-02-01

    Recently, the long-term immunological effects of photodynamic therapy have attracted much attention. PDT induced immune response was mainly initiated through necrotic cells and apoptotic cells, as well as immune cells such as macrophages. Nitric oxide (NO) as an important regulatory factor in signal transfer between cells has been wildly studied for generation, development, and metastasis of tumors. NO synthase is a key enzyme in nitric oxide synthesis. However, inducible nitric oxide synthase (iNOS) is usually activated under pathological conditions, such as stress and cancer, which can produce high levels of nitric oxide and contribute to tumor cytotoxicity. In addition, increased NO production by iNOS has been associated with the host immune response and cell apoptosis, which play an important role in many carcinogenesis and anti-carcinoma mechanisms. This study focuses on the NO production in macrophages, induced by mouse breast carcinoma apoptotic cells treated by PDT in vitro, and on the effects of immune response induced by apoptotic cells in tumor cells growth.

  12. Real-time treatment feedback guidance of Pleural PDT

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.; Kim, Michele M.; Liang, Xing; Liu, Baochang; Meo, Julia L.; Finlay, Jarod C.; Dimofte, Andreea; Rodriguez, Carmen; Simone, Charles; Cengel, Keith; Friedberg, Joseph

    2013-03-01

    Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for mesothelioma with remarkable results. In the current intrapleural PDT protocol, a moving fiber-based point source is used to deliver the light and the light dose are monitored by 7 detectors placed in the pleural cavity. To improve the delivery of light dose uniformity, an infrared (IR) camera system is used to track the motion of the light sources. A treatment planning system uses feedback from the detectors as well as the IR camera to update light fluence distribution in real-time, which is used to guide the light source motion for uniform light dose distribution. We have improved the GUI of the light dose calculation engine to provide real-time light fluence distribution suitable for guiding the surgery to delivery light more uniformly. A dual-correction method is used in the feedback system, so that fluence calculation can match detector readings using both direct and scatter light models. An improved measurement device is developed to automatically acquire laser position for the point source. Comparison of the effects of the guidance is presented in phantom study.

  13. Noncoherent light for PDT of spontaneous animal tumors

    NASA Astrophysics Data System (ADS)

    Lucroy, Michael D.; Ridgway, Tisha D.; Higbee, Russell G.; Reeds, Kimberly

    2004-07-01

    Cultured 9L cells were incubated with graded doses of pheophorbide-a-hexyl ether (HPPH) and exposed to 665 nm red light from either a noncoherent light source or a KTP-pumped dye laser. Cell death was observed after irradiation using either light source, with the noncoherent light being most effective at the highest HPPH concentrations. To determing the practicality of using the noncoherent light source for clinical PDT, dogs and cats with spontaneous tumors were injected intravenously with 0.15 mg/kg HPPH one hour before their tumors were irradiated with 665 nm noncoherent light (50 mW cm-2, 100 J cm-2). Of the 9 tumors treated, 8 complete responses were observed, all of which occurred in animals with squamous cell carcinoma. After 68 weeks of follow up, the median initial disease free interval had not been reached. These data support the use of noncoherent light sources for PDT of spontaneous tumors in animals, representing a cost-effective alternative to medical lasers in both veterinary and human dermatology and oncology.

  14. Electron-muon ranger: performance in the MICE muon beam

    NASA Astrophysics Data System (ADS)

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bene, P.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Bradshaw, T. W.; Bravar, U.; Bross, A. D.; Cadoux, F.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; Debieux, S.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Graulich, J. S.; Greis, J.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Husi, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J.-B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Masciocchi, F.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nicola, L.; Noah Messomo, E.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rothenfusser, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Sandström, R.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Wisting, H.; Yang, X.; Young, A.; Zisman, M.

    2015-12-01

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/c.

  15. Electron-Muon Ranger: Performance in the MICE muon beam

    DOE PAGES

    Adams, D.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. Lastly, the EMR also proved to be a powerful tool for the reconstruction of muon momenta inmore » the range 100–280 MeV/c.« less

  16. Electron-Muon Ranger: Performance in the MICE muon beam

    SciTech Connect

    Adams, D.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. Lastly, the EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100–280 MeV/c.

  17. Muon Spin Rotation Spectroscopy - Utilizing Muons in Solid State Physics

    SciTech Connect

    Suter, Andreas

    2012-10-17

    Over the past decades muon spin rotation techniques (mSR) have established themselves as an invaluable tool to study a variety of static and dynamic phenomena in bulk solid state physics and chemistry. Common to all these approaches is that the muon is utilized as a spin microprobe and/or hydrogen-like probe, implanted in the material under investigation. Recent developments extend the range of application to near surface phenomena, thin film and super-lattice studies. After briefly summarizing the production of so called surface muons used for bulk studies, and discussing the principle differences between pulsed and continuous muon beams, the production of keV-energy muon sources will be discussed. A few topical examples from different active research fields will be presented to demonstrate the power of these techniques.

  18. Ionization Cooling for Muon Experiments

    SciTech Connect

    Alexahin, Y.; Neuffer, D.; Prebys, E.

    2014-09-18

    Possible application for muon experiments such as mu2e is discussed of the initial part of the ionization cooling channel originally developed for muon collider. It is shown that with the FNAL Booster as the proton driver the mu2e sensitivity can be increased by two orders of magnitude compared to the presently considered experiment.

  19. High luminosity muon collider design

    SciTech Connect

    Palmer, R.; Gallardo, J.

    1996-10-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders.

  20. Muon collider design

    SciTech Connect

    Palmer, R. |; Sessler, A.; Skrinsky, A.

    1996-03-01

    The possibility of muon colliders was introduced by Skrinsky et al., Neuffer, and others. More recently, several workshops and collaboration meetings have greatly increased the level of discussion. In this paper we present scenarios for 4 TeV and 0.5 TeV colliders based on an optimally designed proton source, and for a lower luminosity 0.5 TeV demonstration based on an upgraded version of the AGS. It is assumed that a demonstration version based on upgrades of the FERMILAB machines would also be possible. 53 refs., 25 figs., 8 tabs.

  1. PREFACE: Muon spin rotation, relaxation or resonance

    NASA Astrophysics Data System (ADS)

    Heffner, Robert H.; Nagamine, Kanetada

    2004-10-01

    ), is currently being built to replace the current Japanese muSR capability at KEK. These muSR institutions provide scientists a variety of sample environments, including a range of temperatures, magnetic fields and applied pressure. In addition, very low-energy muon beams (< 1 keV) have been developed for studies of thin films and nano-materials. In 2002 this world-wide community founded the International Society of muSR Spectroscopy (http://musr.org/~isms/) in order to promote the health of this growing field of research. The 20 papers presented in this volume are intended to highlight some of the current muSR research activities of interest to condensed matter physicists. It is not an exhaustive review. In particular, the active and exciting area of muonium chemistry is left to a future volume. The group of papers in section I addresses the physics of strongly correlated electrons in solids, one of the most active fields of condensed matter research today. Strong electron correlations arise from (Coulomb) interactions which render Landau's theory of electron transport for weakly interacting systems invalid. Included in this category are unconventional heavy-fermion superconductors, high-temperature copper-oxide superconductors, non-Fermi liquid (NFL) systems and systems with strong electron-lattice-spin coupling, such as the colossal magnetoresistance manganites. Two key properties often make the muon a unique probe of these materials: (1) the muon's large magnetic moment (~3 mup) renders it extremely sensitive to the tiny magnetic fields (~1 Gauss) found, for example, in many NFL systems and in superconductors possessing time-reversal-violating order parameters, and (2) the muon's spin 1/2 creates a simple muSR lineshape (no quadrupolar coupling), ideal for measuring spin-lattice-relaxation, local susceptibilities and magnetic-field distributions in ordered magnets and superconductors. Section II contains studies which exploit the unique sensitivities of muSR just

  2. MUON STORAGE RINGS - NEUTRINO FACTORIES

    SciTech Connect

    PARSA,Z.

    2000-05-30

    The concept of a muon storage ring based Neutrino Source (Neutrino Factory) has sparked considerable interest in the High Energy Physics community. Besides providing a first phase of a muon collider facility, it would generate more intense and well collimated neutrino beams than currently available. The BNL-AGS or some other proton driver would provide an intense proton beam that hits a target, produces pions that decay into muons. The muons must be cooled, accelerated and injected into a storage ring with a long straight section where they decay. The decays occurring in the straight sections of the ring would generate neutrino beams that could be directed to detectors located thousands of kilometers away, allowing studies of neutrino oscillations with precisions not currently accessible. For example, with the neutrino source at BNL, detectors at Soudan, Minnesota (1,715 km), and Gran Sasso, Italy (6,527 km) become very interesting possibilities. The feasibility of constructing and operating such a muon-storage-ring based Neutrino-Factory, including geotechnical questions related to building non-planar storage rings (e.g. at 8{degree} angle for BNL-Soudan, and 3{degree} angle for BNL-Gran Sasso) along with the design of the muon capture, cooling, acceleration, and storage ring for such a facility is being explored by the growing Neutrino Factory and Muon Collider Collaboration (NFMCC). The authors present overview of Neutrino Factory concept based on a muon storage ring, its components, physics opportunities, possible upgrade to a full muon collider, latest simulations of front-end, and a new bowtie-muon storage ring design.

  3. ALA-PDT inhibits proliferation and promotes apoptosis of SCC cells through STAT3 signal pathway.

    PubMed

    Qiao, Li; Mei, Zhusong; Yang, Zhiyong; Li, Xinji; Cai, Hong; Liu, Wei

    2016-06-01

    Previous studies suggest that apoptosis of carcinoma cells led by photodynamics is mainly intrinsic apoptosis, but whether the extrinsic pathway is involved in the treatment of carcinoma by photodynamic therapy is not confirmed. This research investigated the effect of ALA-PDT on the proliferation and apoptosis of SCC cell A431 and COLO-16, and discussed the role played by JAK/STAT3 signal pathway in this process. Our data showed that the expression levels STAT3 and p-STAT3 protein in the cancer tissue are higher than the corresponding adjacent tissue to carcinoma. The expression level of p-STAT3 in cancerous tissue has a correlation with the tumor size and tissue histopathological differentiation. ALA-PDT could inhibit proliferation of A431 and COLO-16 cells, STAT3 knock down could enhance ALA-PDT's inhibition of cell proliferation, and promote apoptosis induced by ALA-PDT. On the other hand, overexpression of STAT3 has the opposite effect. In addition, ALA-PDT can weaken the protein expression of STAT3 and its target gene Bcl-2 mRNA, and ALA-PDT can strengthen the protein expression of STAT3's target gene Bax mRNA. Overexpression of STAT3 can offset the effect on Bcl-2 and Bax by ALA-PDT; on the other hand, STAT3 knocking down can strengthen ALA-PDT's effect on Bcl-2 and Bax. PMID:26805005

  4. Sensitive detection of PDT-induced cell damages with luminescent oxygen nanosensors

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Ru; Peng, Hong-shang; You, Fang-tian; Ping, Jian-tao; Zhou, Chao; Guo, Lan-ying

    2016-09-01

    In this work luminescent nanosensors specifically created for intracellular oxygen (ic-O2) were utilized to assess photodynamic therapy (PDT) -induced cell damages. Firstly, ic-O2 was demonstrated to be consumed much faster than extracellular O2 with respective O2 nanosensors. Using the ic-O2 nanosensors, PDT-treated cells with different degree of impairment were then resolved according to the oxygen consumption rate (OCR). The evolving trend of cytotoxicity derived from OCRs was in agreement with cell viability obtained from 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Moreover, the direct damage of PDT on cell mitochondria was successfully detected by monitoring respiration instantly after PDT treatment, which is actually beyond the scope of MTT assay. These results suggest that fluorescence sensing of ic-O2-associated cell respiration is promising and even may become a standardized method, complementary to MTT assay, to evaluate PDT-induced cytotoxicity.

  5. Internal interface for RPC muon trigger electronics at CMS experiment

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.; Bartoszek, Marcin; Pietrusinski, Michal

    2004-07-01

    The paper describes design and practical realization of an internal communication layer referred to as the Internal Interface (II). The system was realized for the RPC Muon Trigger of the CMS experiment. Fully automatic implementation of the communication layer is realized in the FPGA chips and in the control software. The methodology of implementation was presented in the description form of the interface structure from the sides of hardware and software. The examples of the communication layer realizations were given for the RPC Muon Trigger.

  6. Search for excited and exotic muons at CDF

    SciTech Connect

    Gerberich, Heather; Hays, Christopher; Kotwal, Ashutosh; /Duke U.

    2006-05-01

    The authors present a search for the production of excited or exotic muons ({mu}*) via the reaction {bar p} + p {yields} {mu}* + {mu} {yields} {mu}{gamma}+{mu} using 371 pb{sup -1} of data collected with the Run II CDF detector. In this signature-based search, we look for a resonance in the {mu}{gamma} mass spectrum. The data are compared to standard model and detector background expectations, and with predictions of excited muon production. We use these comparisons to set limits on the {mu}* mass and compositeness scale {Lambda} in contact interaction and gauge-mediated models.

  7. Research and Development of Future Muon Collider

    SciTech Connect

    Yonehara, K.; /Fermilab

    2012-05-01

    Muon collider is a considerable candidate of the next generation high-energy lepton collider machine. A novel accelerator technology must be developed to overcome several intrinsic issues of muon acceleration. Recent research and development of critical beam elements for a muon accelerator, especially muon beam phase space ionization cooling channel, are reviewed in this paper.

  8. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2010-10-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  9. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  10. Probing beyond the Standard Model with Muons

    SciTech Connect

    Hisano, Junji

    2008-02-21

    Muon's Properties are the most precisely studied among unstable particles. After discovery of muons in 40's, the studies of muons contributed to construction and establishment of the standard model in the particle physics. Now we are going to LHC era, however, precision frontier is still important in the particle physics. In this article, we review roles of muon physics in the particle physics. Muon g-2, lepton flavor violation (LFV) in muon decay, and electric dipole moment (EDM) of muon are mainly discussed.

  11. Quasi-isochronous Muon Collection Channels

    SciTech Connect

    Yoshikawa, C.; Ankenbrandt, C.; Neuffer, D.; /Fermilab

    2010-05-01

    Intense muon beams have many potential applications, including neutrino factories and muon colliders. However, muons are produced as tertiary beams, resulting in diffuse phase space distributions. To make useful beams, the muons must be rapidly cooled before they decay. An idea conceived recently for the collection and cooling of muon beams, namely, the use of a Quasi-Isochronous Helical Channel (QIHC) to facilitate capture of muons into RF buckets, has been developed further. The resulting distribution could be cooled quickly and coalesced into a single bunch to optimize the luminosity of a muon collider. After a brief elaboration of the QIHC concept, recent developments are described.

  12. The Gran Sasso muon puzzle

    SciTech Connect

    Fernandez-Martinez, Enrique; Mahbubani, Rakhi E-mail: rakhi@cern.ch

    2012-07-01

    We carry out a time-series analysis of the combined data from three experiments measuring the cosmic muon flux at the Gran Sasso laboratory, at a depth of 3800 m.w.e. These data, taken by the MACRO, LVD and Borexino experiments, span a period of over 20 years, and correspond to muons with a threshold energy, at sea level, of around 1.3 TeV. We compare the best-fit period and phase of the full muon data set with the combined DAMA/NaI and DAMA/LIBRA data, which spans the same time period, as a test of the hypothesis that the cosmic ray muon flux is responsible for the annual modulation detected by DAMA. We find in the muon data a large-amplitude fluctuation with a period of around one year, and a phase that is incompatible with that of the DAMA modulation at 5.2σ. Aside from this annual variation, the muon data also contains a further significant modulation with a period between 10 and 11 years and a power well above the 99.9% C.L threshold for noise, whose phase corresponds well with the solar cycle: a surprising observation for such high energy muons. We do not see this same period in the stratospheric temperature data.

  13. Muon Simulation at the Daya Bay SIte

    SciTech Connect

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-05-23

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  14. Muon Collider Task Force Report

    SciTech Connect

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  15. Laser-Assisted Muon Decay

    SciTech Connect

    Liu Aihua; Li Shumin; Berakdar, Jamal

    2007-06-22

    We show theoretically that the muon lifetime can be changed dramatically by embedding the decaying muon in a strong linearly polarized laser field. Evaluating the S-matrix elements taking all electronic multiphoton processes into account we find that a CO{sub 2} laser with an electric field amplitude of 10{sup 6} V cm{sup -1} results in an order of magnitude shorter lifetime of the muon. We also analyze the dependencies of the decay rate on the laser frequency and intensity.

  16. Muon Colliders and Neutrino Factories

    SciTech Connect

    Kaplan, Daniel M.

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  17. Muon front end for the neutrino factory

    NASA Astrophysics Data System (ADS)

    Rogers, C. T.; Stratakis, D.; Prior, G.; Gilardoni, S.; Neuffer, D.; Snopok, P.; Alekou, A.; Pasternak, J.

    2013-04-01

    In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  18. Measurement of muon intensity by Cerenkov method

    NASA Technical Reports Server (NTRS)

    Liu, Z. H.; Li, G. J.; Bai, G. Z.; Liu, J. G.; Geng, Q. X.; Ling, J.

    1985-01-01

    Optical detection is an important technique in studies and observations of air showers, muons and relevant phenomena. The muon intensity is measured in a proper energy range and to study some problems about Cerenkov radiation of cosmic rays are studied, by a muon-telescope operated with Cerenkov detector. It is found that the measured muon intensity agrees with the integral energy spectrum of cosmic ray muons.

  19. Muon ID - taking care of lower momenta muons

    SciTech Connect

    Milstene, C.; Fisk, G.; Para, A.; /Fermilab

    2005-12-01

    In the Muon package under study, the tracks are extrapolated using an algorithm which accounts for the magnetic field and the ionization (dE/dx). We improved the calculation of the field dependent term to increase the muon detection efficiency at lower momenta using a Runge-Kutta method. The muon identification and hadron separation in b-bbar jets is reported with the improved software. In the same framework, the utilization of the Kalman filter is introduced. The principle of the Kalman filter is described in some detail with the propagation matrix, with the Runge-Kutta term included, and the effect on low momenta for low momenta single muons particles is described.

  20. First-principles investigation of electronic structures and properties of impurities in molecular solids and semiconductors: I. Muon and muonium in organic ferromagnets. II. Erbium in silicon-optoelectronic system

    NASA Astrophysics Data System (ADS)

    Jeong, Junho

    The first-principles Hartree-Fock theory is used to obtain the electronic structures and properties of three different systems. For the TEMPO system, the trapping sites were obtained near NO group site for muonium singlet and near chlorine and bridge nitrogen for muon. The calculated hyperfine interactions including relaxation and vibrational effect were used to compare the observed zero field muSR frequency 3.2 MHz. It has been concluded that the two trapping centers that can best explain the observed muSR frequency is trapped singlet muonium near the radical oxygen and a trapped muon site near the chlorine. The direction for the easy axis is determined to be the b-axis of the monoclinic lattice and also is obtained using the magnetic moment distributions in the ferromagnetic state in the absence of muon and muonium. The nuclear quadrupole coupling constants and asymmetry parameters (eta) have studied for the 35Cl, 17O, and 14N nuclei in the TEMPO system for the bare system and systems with trapped muon and muonium. Substantial influence of the muon and muonium on the coupling constants and eta for the nuclei close to the trapping sites have been observed for the systems with trapped muon and muonium. For the beta-NPNN, the observed muSR signal at zero field with frequency 2.1 MHz is assigned to the singlet muonium sites near the two oxygens of the two NO groups and the high frequency signal ascribed to an isotropic hyperfine constant of 400MHz is assigned to the trapped muon sites near the oxygen atoms of the NO groups. Er3+-Si material which emits 1.54 mum wavelength has led to interest in optoelectronic system. Using first-principles HF procedure, the locations of Er3+ in silicon cluster without codopant were determined. Since covalent radius of Er3+ is bigger than that of silicon, the first nearest and second nearest silicon of Er3+ for Hi (Er3+Si14H18), Ti (Er3+ Si10H16, Er3+Si26H 48), and Substitutional site (Er3+Si18H 36) applied relaxation effect. The

  1. LINACS FOR FUTURE MUON FACILITIES

    SciTech Connect

    Slawomir Bogacz, Rolland Johnson

    2008-10-01

    Future Muon Colliders (MC) and Neutrino Factories (NF) based on muon storage rings will require innovative linacs to: produce the muons, cool them, compress longi-tudinally and ‘shape’ them into a beam and finally to rap-idly accelerate them to multi-GeV (NF) and TeV (MC) energies. Each of these four linac applications has new requirements and opportunities that follow from the na-ture of the muon in that it has a short lifetime (τ = 2.2 μsec) in its own rest frame, it is produced in a tertiary process into a large emittance, and its electron, photon, and neutrino decay products can be more than an annoy-ance. As an example, for optimum performance, the linac repetition rates should scale inversely with the laboratory lifetime of the muon in its storage ring, something as high as 1 kHz for a 40 GeV Neutrino Factory or as low as 20 Hz for a 5 TeV Muon Collider. A superconducting 8 GeV Linac capable of CW operation is being studied as a ver-satile option for muon production [1] for colliders, facto-ries, and muon beams for diverse purposes. A linac filled with high pressure hydrogen gas and imbedded in strong magnetic fields has been proposed to rapidly cool muon beams [2]. Recirculating Linear Accelerators (RLA) are possible because muons do not generate significant syn-chrotron radiation even at extremely high energy and in strong magnetic fields. We will describe the present status of linacs for muon applications; in particular the longitu-dinal bunch compression in a single pass linac and multi-pass acceleration in the RLA, especially the optics and technical requirements for RLA designs, using supercon-ducting RF cavities capable of simultaneous acceleration of both μ+ and μ- species, with pulsed linac quadrupoles to allow the maximum number of passes. The design will include the optics for the multi-pass linac and droplet-shaped return arcs.

  2. Expression Levels of ALA Dehydratase as a Marker of ALA-PDT Efficacy

    NASA Astrophysics Data System (ADS)

    Avital, Schauder; Tamar, Feuerstein; Zvi, Malik

    2010-05-01

    Accelerated synthesis of protoporphyrinIX (PpIX) following ALA pre-treatment followed by light irradiation is the principle of ALA-PDT. Several limiting enzymes were suggested to control PpIX accumulation and PDT efficacy, among them porphobilinogen deaminase (PBGD) and ferrochelatase. Here we reveal the centrality of ALA dehydratase (ALAD) activity in predicting ALA-PDT efficacy. Silencing of ALAD expression and activity was carried out in leukemic cells using shRNA plasmid transfection or Pb2+ intoxication. ALAD activity, porphyrin synthesis and mitochondrial activity were determined versus PDT efficacy. In K562 ALAD-silenced cells, ALAD activity and expression were reduced and as a result, PpIX synthesis was almost abolished. Following ALA treatment and irradiation, ALAD-silenced cells depicted normal mitochondrial activity, in contrast to control and non-silencing transfected cells where accumulated PpIX and irradiation caused ROS formation and mitochondrial damage. Morphological analysis by scanning electron microscopy (SEM) of ALA-PDT treated cells showed no morphological changes in ALAD-silenced cells, while controls exhibited cell deformations and lysis. Annexin V-FITC/PI staining as well as LDH-L leakage testing showed that membrane integrity was undamaged following ALA-PDT in ALAD silenced cells. Pb2+ treatment in MEL cells impaired ALAD activity and reduced PpIX synthesis but to a lesser extent. In conclusion, we show that a dramatic reduction in PpIX accumulation following down regulation of ALAD expression prevents an efficient PDT. Thus, ALAD has a major role in regulating PpIX synthesis and ALA-PDT therapeutic outcome. Monitoring ALAD expression or activity in various tumors may be useful as prognostic tool to predict PDT efficacy.

  3. Muon spin rotation in solids

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.

    1983-01-01

    The muon spin rotation (MuSR) technique is used to probe the microscopic electron density in materials. High temperature MuSR and magnetization measurements in nickel are in progress to allow an unambiguous determination of the muon impurity interaction and the impurity induced change in local spin density. The first results on uniaxial stress induced frequency shifts in an Fe single crystal are also reported.

  4. Muon Colliders: The Next Frontier

    ScienceCinema

    Tourun, Yagmur [Illinois Institute of Technology, Chicago, Illinois, United States

    2016-07-12

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  5. Muon Colliders: The Next Frontier

    SciTech Connect

    Tourun, Yagmur

    2009-07-29

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be 'at least 20 years away' for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  6. Muon Colliders: The Next Frontier

    SciTech Connect

    Tourun, Yagmur

    2009-07-29

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  7. Monitoring PDT response of head and neck lesions with diffuse optical spectroscopies

    NASA Astrophysics Data System (ADS)

    Rohrbach, Daniel J.; Rigual, Nestor; Tracy, Erin; Keymel, Ken; Cooper, Michele T.; Baumann, Heinz; Henderson, Barbara W.; Sunar, Ulas

    2013-03-01

    Photodynamic therapy (PDT) has recently emerged as a potential treatment alternative for head and neck cancer. There is strong evidence that imprecise PDT dosimetry results in variations in clinical responses. Quantitative tools are likely to play an essential role in bringing PDT to a full realization of its potential benefits. They can provide standardization of site-specific individualized protocols that are used to monitor both light and photosensitizer (HPPH) dose, as well as the tissue response for individual patients. To accomplish this, we used a custom instrument and a hand-held probe that allowed quantification of blood flow, blood volume, blood oxygen saturation and drug concentration.

  8. Guidelines for practical use of MAL-PDT in non-melanoma skin cancer.

    PubMed

    Christensen, E; Warloe, T; Kroon, S; Funk, J; Helsing, P; Soler, A M; Stang, H J; Vatne, O; Mørk, C

    2010-05-01

    Methyl aminolaevulinate photodynamic therapy is increasingly practiced in the treatment of actinic keratoses, Bowen's disease and basal cell carcinomas. This method is particularly suitable for treating multiple lesions, field cancerization and lesions in areas where a good cosmetic outcome is of importance. Good treatment routines will contribute to a favourable result. The Norwegian photodynamic therapy (PDT) group consists of medical specialists with long and extensive PDT experience. With support in the literature, this group presents guidelines for the practical use of topical PDT in non-melanoma skin cancer.

  9. Performance of the Muon Identification at LHCb

    NASA Astrophysics Data System (ADS)

    Archilli, F.; Baldini, W.; Bencivenni, G.; Bondar, N.; Bonivento, W.; Cadeddu, S.; Campana, P.; Cardini, A.; Ciambrone, P.; Cid Vidal, X.; Deplano, C.; De Simone, P.; Falabella, A.; Frosini, M.; Furcas, S.; Furfaro, E.; Gandelman, M.; Hernando Morata, J. A.; Graziani, G.; Lai, A.; Lanfranchi, G.; Lopes, J. H.; Maev, O.; Manca, G.; Martellotti, G.; Massafferri, A.; Milanes, D.; Oldeman, R.; Palutan, M.; Passaleva, G.; Pinci, D.; Polycarpo, E.; Santacesaria, R.; Santovetti, E.; Sarti, A.; Satta, A.; Schmidt, B.; Sciascia, B.; Soomro, F.; Sciubba, A.; Vecchi, S.

    2013-10-01

    The performance of the muon identification in LHCb is extracted from data using muons and hadrons produced in J/ψ → μ+μ-, Λ0 → pπ- and Dstar+→π+D0(K-π+) decays. The muon identification procedure is based on the pattern of hits in the muon chambers. A momentum dependent binary requirement is used to reduce the probability of hadrons to be misidentified as muons to the level of 1%, keeping the muon efficiency in the range of 95-98%. As further refinement, a likelihood is built for the muon and non-muon hypotheses. Adding a requirement on this likelihood that provides a total muon efficiency at the level of 93%, the hadron misidentification probabilities are below 0.6%.

  10. Quasi-isochronous muon collection channels

    SciTech Connect

    Ankenbrandt, Charles M.; Neuffer, David; Johnson, Rolland P.

    2015-04-26

    Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons into RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for

  11. Clinical studies of photodynamic therapy for malignant brain tumors: Karnofsky score and neurological score in patients with recurrent gloms treated with Photofrin PDT

    NASA Astrophysics Data System (ADS)

    Muller, Paul J.; Wilson, Brian C.; Lilge, Lothar D.; Yang, Victor X.; Varma, Abhay; Bogaards, Arjen; Hetzel, Fred W.; Chen, Qun; Fullagar, Tim; Fenstermaker, Robert; Selker, Robert; Abrams, Judith

    2002-06-01

    In our previous phase II studies we treated 112 patients with malignant brain tumors with 2-mg/kg Photofrin i.v. and intra-operative cavitary PDT. We concluded that PDT was safe in patients with newly diagnosed or recurrent supratentorial malignant gliomas. Pathology, performance grade and light dose were significantly related to survival time. In selected patients when an adequate light dose was used survival time improved. The surgical mortality rate was less than 3%. [spie 2000] We have initiated two randomized prospective trials - the first, to determine if the addition of PDT to standard therapy [surgery, radiation and/or chemotherapy] prolongs the survival of patients with newly diagnosed malignant astrocytic tumors; and the second, to determine whether high light dose PDT [120 J/cm2] is superior to low light dose PDT [40 J/cm2] in patients with recurrent malignant astrocytic tumors. To date, 158 patients have been recruited - 72 to the newly diagnosed malignant glioma study and 86 to the recurrent glioma study. In the recurrent glioma study we compared the pre-operative KS and elements of the neurological examination [speech function, visual fields, cognitive function, sensory examination and gait] to the post-operative examinations at hospital discharge. The means were compared by paired student-t test. The KS in 86 of 88 patients with recurrent gliomas were assessable. The mean [s.d.] preoperative and post-operative KS were 82+/- 14 and 79+/- 17, respectively [p=0.003]. The mean decline in KS, although statistically significant, was small and of no clinical importance. The median Karnofsky score changed from 90 to 80. The KS improved in 8 patients; their post-operative average length of stay (alos) was =9.7 days. There was no change in 47 [alos=8.3], a decline of 10 points in 24 [aloc=13.4] and declined by more than 10 points in 7 [alos=23.3]. Three of these 7 patients who had a decline of >10 points improved in follow-up but did not reach their

  12. Adjuvant photodynamic therapy (PDT) of the superficial bladder cancer

    NASA Astrophysics Data System (ADS)

    Sokolov, V. V.; Russakov, I. G.; Teplov, A. A.; Filonenko, E. V.; Ul'yanov, R. V.; Bystrov, A. A.

    2005-08-01

    Superficial transitional cell carcinoma represents 50 to 80% of newly diagnosed bladder cancer in various countries. Transurethral resection of the urinary bladder is the standard procedure for biopsy and treatment superficial bladder cancer. However recurrence tumors after transurethral resection alone is high enough (50-90%). Intravesical chemotherapy for prophylaxis after complete transurethral resection is reducing recurrence rate about 1 5%. Adjuvant intravesical Bacillus of Calmette and Guerin (BCG) is reducing recurrence rate about 30%, but frequency side effects of this therapy is very high. Purpose of this study is appreciate efficacy adjuvant PDT with photosensitizer Photogeme (Russia) of superficial bladder cancer for prophylaxis after complete transurethral resection. The follow up was from 3 to 63 months (27 months, on average). Sixty-five patients (75.6%) showed no recurrence. For the follow up period, the recurrence was revealed in 21 (24.4%) patient, in two of them it was progressing (one case of invasive growth and one case of remote metastases). Four cases of recurrence were revealed 4 months after the surgery. In other cases, the recurrence was diagnosed from 9 to 18 months.

  13. Imaging of a targeted PDT drug with fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Muffoletto, Dan; Gupta, Anurag; Xu, Zhiqiang; Mahrer, Chris; Bauer, Gretchen; Galas, Scott; Pandey, Ravindra K.; Sunar, Ulas

    2009-02-01

    We constructed a whole-body fluorescence tomography instrument to monitor novel bifunctional phototherapeutic drugs (e.g., HPPH-Cyanine dye conjugate) in small animals. The instrument allows dense source and detector sampling with a fast galvo scanner and a CCD detector for improved resolution and sensitivity (Patwardhan et al., 2005). Here we report tissue phantom measurements to evaluate the imaging performance with a newly constructed tomography instrument. Phantom measurements showed that strong fluorescence generated by HPPH-Cyanine dye (HPPH-CD), having high fluorescence quantum yield and long wavelength fluorescence emission, allowed deep tissue imaging. We also report in vivo fluorescence measurements of the conjugate in Nude mice bearing A549 human non-small cell lung carcinoma (NSCLC) tumors at 24 hr post injection to evaluate tumor detection ability of the conjugate. Our results indicate that the HPPH-CD shows preferential uptake in tumors compared to surrounding normal tissue at 24 hr post injection. This study demonstrates a potential use of HPPH-CD in detection (fluorescence imaging) and treatment (PDT) of deeply seated tumors.

  14. Biocompatible magnetic microspheres for Use in PDT and hyperthermia.

    PubMed

    Vaccari, C B; Cerize, N N P; Morais, P C; Ré, M I; Tedesco, A C

    2012-06-01

    Loaded microspheres with a silicon (IV) phthalocyanine derivative (NzPC) acting as a photosensitizer were prepared from polyhydroxybutyrate-co-valerate (PHBHV) and poly(ecaprolactone) (PCL) polymers using the emulsification solvent evaporation method (EE). The aim of our study was to prepare two systems of these biodegradable PHBHV/PCL microspheres. The first one containing only photosensitizer previously incorporated in the PHBHV and poly(ecaprolactone) (PCL) microspheres and the second one with the post magnetization of the DDS with magnetic nanoparticles. Magnetic fluid is successfully used for controlled incorporation of nanosized magnetic particles within the micron-sized template. This is the first time that we could get a successful pos incorporation of nanosized magnetic particles in a previously-prepared polymeric template. This procedure opens a great number of possibilities of post-functionalization of polymeric micro or nanoparticles with different bioactive materials. The NzPC release profile of the systems is ideal for PDT, the zeta potential and the size particle are stable upon aging in time. In vitro studies were evaluated using gingival fibroblastic cell line. The dark citotoxicity, the phototoxicity and the AC magnetic field assays of the as-prepared nanomagnetic composite were evaluated and the cellular viability analyzed by the classical test of MTT.

  15. Explanation for the low flux of high-energy astrophysical muon neutrinos.

    PubMed

    Pakvasa, Sandip; Joshipura, Anjan; Mohanty, Subhendra

    2013-04-26

    There has been some concern about the unexpected paucity of cosmic high-energy muon neutrinos in detectors probing the energy region beyond 1 PeV. As a possible solution we consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, we consider (i) neutrino decay and (ii) neutrinos being pseudo-Dirac-particles. This would provide a mechanism for the reduction of high-energy muon events in the IceCube detector, for example.

  16. Influence of nitric oxide on antitumor activity of photodynamic therapy: laser systems for PDT

    NASA Astrophysics Data System (ADS)

    Evtushenko, V. A.; Zagrebelnaya, G. V.; Soldatov, Anatoly N.; Kondakova, I. V.; Shumeiko, Alexei S.

    2004-05-01

    Photodynamic therapy (PDT) is a promising therapeutic modality used for the cancer treatment. The principle of PDT is based on the formation of singlet oxygen and other activated oxygen metabolites that result in apoptotic tumor cell death. However, the resistance of some tumors to radiation therapy is recorded. The search for the chemical agents, therefore, which are able to enhance the antitumor activity of radiation therapy and induce the tumor cell apoptosis is of great importance. The use of pharmacologic agents such as donors of nitric oxide (NO) or modulators of NO-synthase may be one of the approaches to improve the therapeutic efficiency of PDT. The aim of our study was to evaluate the feasibility of using nitric oxide in combination with PDT for enhancing the induction of tumor cell apoptosis.

  17. Investigation of photodynamic effect caused by MPPa-PDT on breast cancer Investigation of photodynamic effect caused by MPPa-PDT

    NASA Astrophysics Data System (ADS)

    Tian, Y. Y.; Hu, X. Y.; Leung, W. N.; Yuan, H. Q.; Zhang, L. Y.; Cui, F. A.; Tian, X.

    2012-10-01

    Breast cancer is the common malignant tumor, the incidence increases with age. Photodynamic therapy (PDT) is a new technique applied in tumors, which involves the administration of a tumor localizing photosensitizer and it is followed by the activation of a specific wavelength. Pyropheophorbide-a methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. We are exploring the photodynamic effect caused by MPPa-PDT on breast cancer. The in vitro and in vivo experiments indicate that MPPa is a comparatively ideal photosensitizer which can induce apoptosis in breast cancer.

  18. Brain photodiagnosis (PD), fluorescence guided resection (FGR) and photodynamic therapy (PDT): past, present and future.

    PubMed

    Eljamel, M Sam

    2008-03-01

    Intracranial tumours are an excellent target for photodiagnosis (PD), fluorescence guided resection (FGR) and photodynamic therapy (PDT), because the tumour to brain ratio of photosensitizers' concentration is very high. However, several attempts of proving the value of PDT in the most malignant type of brain tumours, gliobastoma multeforme (GBM) failed to demonstrate any significant worthwhile survival advantage in the past because of the very nature of this cancer and several compounding factors that led to this apparent disappointing outcome; variations in the photosensitizer and light dosages, variations in the photosensitizer administration to treatment time-intervals, and variations in photosensitizers used are just few to mention in this article. However, after a very long gestation period of brain PD, FGR and PDT, three randomized controlled trials (RCT) in brain PD, FGR and PDT were concluded by 2007. The first trial demonstrated that time to tumour progression (TTP) was significantly longer in patients who had PD and FGR compared to standard surgical resection but this difference did not translate into survival advantage in GBM due to the variability in the management of recurrent tumours and significant residual tumour cells left after FGR in about a third of patients leading to GBM relapse. The second trial compared single shot PDT in GBM and standard therapy. Neither the treatment nor the control group received PD or FGR. Again this RCT did not provide any survival advantage in patients who had had PDT due to the fact that standard surgical resection had left significant residual tumour in a large number of patients canceling any potential benefit from PDT. The last trial compared combined PD, FGR and repetitive PDT and standard therapy and confirmed that TTP was significantly longer in the treatment group and demonstrated that the treatment group had significant survival advantage in GBM. In conclusion, PD, FGR and PDT need to be combined to be

  19. Real-life practice study of the clinical outcome and cost-effectiveness of photodynamic therapy using methyl aminolevulinate (MAL-PDT) in the management of actinic keratosis and basal cell carcinoma.

    PubMed

    Annemans, Lieven; Caekelbergh, Karin; Roelandts, Rik; Boonen, Hugo; Leys, Christoph; Nikkels, Arjen F; van Den Haute, V; van Quickenborne, L; Verhaeghe, Evelien; Leroy, Bernard

    2008-01-01

    Clinical trials have shown that photodynamic therapy using methyl aminolevulinate (MAL-PDT) is an effective treatment for actinic keratosis (AK), and nodular and superficial basal cell carcinoma (nBCC and sBCC) unsuitable for other available therapies. Economic evaluation models have shown that it is a cost effective intervention as well. The objectives of this prospective, observational, one arm study were (i) to verify in a real-life practice study the results obtained in previous clinical trials with MAL-PDT in the treatment of AK, nBCC and sBCC; (ii) to calculate the real-life cost of treatment and validate predictions from an economic evaluation model. Patients with AK and/or BCC were selected according to Belgian reimbursement criteria for treatment with MAL-PDT. Clinical response, cosmetic outcome and tolerability were assessed. MAL-PDT cost was calculated and compared to published model cost data. Data were collected from 247 patients (117 AK, 130 BCC). A complete clinical response was obtained for 83% of AK (85/102) and BCC (97/116) patients. A good or excellent cosmetic outcome was obtained for 95% of AK patients and 93% of BCC patients. Tolerability was good: only 2 patients withdrew for adverse events. Clinical results were similar to previous studies. Total cost of care per patient was euro 381 for AK, euro 318 for nBCC, and euro 298 for sBCC. Total cost per lesion was euro 58 for AK (identical to model prediction), euro 316 for nBCC and euro 178 for sBCC (both within 20% of model prediction). The clinical results of MAL-PDT in this real-life practice study confirm those demonstrated in previous clinical trials. Costs calculated from this study confirm predicted cost-effectiveness in the original model for MAL-PDT in the management of AK and BCC.

  20. Muon-muon and other high energy colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The first section looks at the high energy physics advantages, disadvantages and luminosity requirements of hadron, of lepton and photon-photon colliders for comparison. The second section discusses the physics considerations for the muon collider. The third section covers muon collider components. The fourth section is about the intersection region and detectors. In the fifth section, the authors discuss modifications to enhance the muon polarization`s operating parameters with very small momentum spreads, operations at energies other than the maximum for which the machine is designed, and designs of machines for different maximum energies. The final section discusses a Research and Development plan aimed at the operation of a 0.5 TeV demonstration machine by the year 2010, and of the 4 TeV machine by the year 2020.

  1. Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage

    PubMed Central

    Dewaele, Michael; Martinet, Wim; Rubio, Noemí; Verfaillie, Tom; de Witte, Peter A; Piette, Jacques; Agostinis, Patrizia

    2011-01-01

    Abstract Reactive oxygen species (ROS) concurrently instigate apoptosis and autophagy pathways, but the link between these processes remains unclear. Because cytotoxic ROS formation is exploited in anticancer therapy, such as in photodynamic therapy (PDT), a better understanding of the complex interplay between autophagy and apoptosis is urgently required. Previously, we reported that ROS generated by PDT with an endoplasmic reticulum (ER)-associated sensitizer leads to loss of ER-Ca2+ homeostasis, ER stress and apoptosis. Here we show that PDT prompted Akt-mTOR (mammalian target of rapamycin) pathway down-regulation and stimulated macroautophagy (MA) in cancer and normal cells. Overexpression of the antioxidant enzyme glutathione peroxidase-4 reversed mTOR down-regulation and blocked MA progression and apoptosis. Attenuating MA using Atg5 knockdown or 3-methyladenine, reduced clearance of oxidatively damaged proteins and increased apoptosis, thus revealing a cytoprotective role of MA in PDT. Paradoxically, genetic loss of MA improved clearance of oxidized proteins and reduced photokilling. We found that up-regulation of chaperone-mediated autophagy (CMA) in unstressed Atg5−/− cells compensated for MA loss and increased cellular resistance to PDT. CMA-deficient cells were significantly sensitized to photokilling but were protected against the ER stressor thapsigargin. These results disclose a stress-specific recruitment of autophagy pathways with cytoprotective function and unravel CMA as the dominant defence mechanism against PDT. PMID:20626525

  2. The bacterial flora of the skin surface following routine MAL-PDT.

    PubMed

    Bryld, Lars Eeik; Jemec, Gregor B E

    2006-01-01

    Photodynamic therapy using methylated 5-aminolevulate (MAL-PDT) appears to have an effect on non-neoplastic skin diseases, for example acne vulgaris and rosacea, for which antibiotics are sometimes used, and a possible antibiotic effect of PDT has previously been suggested. It does, however, also cause local immunosuppression and post-treatment barrier defects, which may promote infection. At the same time, PDT-induced therapeutic skin damage is sometimes confused with secondary bacterial infection by non-dermatologists. The possible changes in bacterial flora associated with MAL-PDT were therefore studied in 47 patients undergoing treatment. Skin swabs were taken immediately before applying the MAL and instantly after light irradiation. Bacterial growth was identified in 18 cases. No statistically significant changes were seen, either in the specific species found or the estimated bacterial density on the skin surface. The observations do not support the notion that routine MAL-PDT affects the bacterial flora of the skin in a clinically significant manner. Therefore, the possible antibacterial effect of routine MAL-PDT is probably not the main explanation of its apparent effect on non-neoplastic skin disease.

  3. EGF targeted fluorescence molecular tomography as a predictor of PDT outcomes in pancreas cancer models

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Davis, Scott C.; Srinivasan, Subhadra; Isabelle, Martin E.; O'Hara, Julia; Hasan, Tayyaba; Pogue, Brian W.

    2010-02-01

    Verteporfin photodynamic therapy (PDT) is a promising adjuvant therapy for pancreas cancer and investigations for its use are currently underway in both orthotopic xenograft mouse models and in human clinical trials. The mouse models have been studied extensively using magnetic resonance (MR) imaging as a measure of surrogate response to verteporfin PDT and it was found that tumor lines with different levels of aggression respond with varying levels to PDT. MR imaging was successful in determining the necrotic volume caused by PDT but there was difficultly in distinguishing inflamed tissues and regions of surviving tumor. In order to understand the molecular changes within the tumor immediately post-PDT we propose the implementation of MR-guided fluorescence molecular tomography (FMT) in conjunction with an exogenously administered fluorescently labeled epidermal growth factor (EGF-IRDye800CW, LI-COR Biosciences). We have previously shown that MR-guided FMT is feasible in the mouse abdomen when multiple regions of fluorescence are considered from contributing internal organs. In this case the highly aggressive AsPC-1 (+EGFR) orthotopic tumor was implanted in SCID mice, interstitial verteporfin PDT (1mg/kg, 20J/cm) was performed when the tumor reached ~60mm3 and both tumor volume and EGF binding were followed with MR-guided FMT.

  4. Soluble guanylyl cyclase is involved in PDT-induced injury of crayfish glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Uzdensky, A. B.

    2016-04-01

    Photodynamic therapy (PDT) is a potential tool for selective destruction of malignant brain tumors. However, not only malignant but also healthy neurons and glial cells may be damaged during PDT. Nitric oxide is an important modulator of cell viability and intercellular neuroglial communications. NO have been already shown to participate in PDT-induced injury of neurons and glial cells. As soluble guanylyl cyclase is the only known receptor for NO, we have studied the possible role of soluble guanylyl cyclase in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Using inhibitory analysis we have shown that during PDT soluble guanylyl cyclase, probably, has proapoptotic and antinecrotic effect on the glial cells of the isolated crayfish stretch receptor. Proapoptotic effect of soluble guanylyl cyclase could be mediated by protein kinase G (PKG). Thus, the involvement of NO/sGC/cGMP/PKG signaling pathway in PDT-induced apoptosis of glial cells was indirectly demonstrated.

  5. Next-generation light delivery system for multitreatment extended-duration photodynamic therapy (MED-PDT)

    NASA Astrophysics Data System (ADS)

    Chen, James C.

    1997-05-01

    The primary focus of laser based oncologic PDT has been on the treatment of skin and hollow organ tumors. Extending PDT to other primary internal lesions and metastasis requires a different approach. Light Sciences has developed a series of semiconductor-based devices which will be completely implanted in the patient using established, minimally invasive surgical techniques. These devices are energized noninvasively utilizing inductive coupling. The light delivery system will allow the clinician to modulate the intensity, spatial distribution, and duration of light delivery in order to maximize the benefits derived from each PDT drug dose. Light Sciences' technology minimizes patient risk and discomfort, is cost competitive, and expands the treatment options available to the clinician. Avoidance of lengthy operations, bone marrow suppression, and an emphasis on organ preservation allow this next generation of PDT light delivery devices to be effectively integrated with other forms of cancer treatment, if desired. We have termed our technique 'Multi-treatment Extended Duration PDT'. In what follows, we shall describe Light Sciences' technology and development of minimally invasive oncologic PDT.

  6. Photodynamic therapy (PDT) with endoscopic ultrasound for the treatment of esophageal cancer

    NASA Astrophysics Data System (ADS)

    Woodward, Timothy A.; Wolfsen, Herbert C.

    2000-05-01

    In 1995, PDT was approved for palliative use in patients with esophageal cancer. We report our experience using PDT to treat esophageal cancer patients previously treated with combination chemotherapy and radiation therapy. In our series, nine patients referred for PDT with persistent esophageal cancer after chemo-radiation therapy. We found: (1) All patients were men with a mean age of 63 years and eight out of nine had adenocarcinoma with Barrett's esophagus; (2) All patients required endoscopic dilation after PDT; (3) At a mean follow up of 4 months, two T2N0 patients had no demonstrable tumor and all three T3N0 patients had greater than 50% tumor reduction (the partially responsive T3N0 patients will be offered repeat PDT); (4) Patients with metastatic disease (T3N1 or M1) had effective dysphagia palliation. Thus, PDT is safe and effective in ablating all or most tumor in patients with persistent esophageal cancer after chemotherapy and radiation therapy.

  7. Lifetime-resolved photoacoustic (LPA) spectroscopy for monitoring oxygen change and photodynamic therapy (PDT)

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Lee, Chang Heon; Kopelman, Raoul; Wang, Xueding

    2016-03-01

    The Methylene Blue loaded Polyacrylamide Nanoparticles (MB-PAA NPs) are used for oxygen sensing and Photodynamic therapy (PDT), a promising therapeutic modality employed for various tumors, with distinct advantages of delivery of biomedical agents and protection from other bio-molecules overcoming inherent limitations of molecular dyes. Lifetime-resolved photoacoustic spectroscopy using quenched-phosphorescence method is applied with MB-PAA NPs so as to sense oxygen, while the same light source is used for PDT. The dye is excited by absorbing 650 nm wavelength light from a pump laser to reach triplet state. The probe laser at 810 nm wavelength is used to excite the first triplet state at certain delayed time to measure the dye lifetime which indicates oxygen concentration. The 9L cells (106 cells/ml) incubated with MB-PAA NP solution are used for monitoring oxygen level change during PDT in situ test. The oxygen level and PDT efficacy are confirmed with a commercial oximeter, and fluorescence microscope imaging and flow cytometry results. This technique with the MB-PAA NPs allowed us to demonstrate a potential non-invasive theragnostic operation, by monitoring oxygen depletion during PDT in situ, without the addition of secondary probes. Here, we demonstrate this theragnostic operation, in vitro, performing PDT while monitoring oxygen depletion. We also show the correlation between O2 depletion and cell death.

  8. Muon motion in titanium hydride

    NASA Technical Reports Server (NTRS)

    Kempton, J. R.; Petzinger, K. G.; Kossler, W. J.; Schone, H. E.; Hitti, B. S.; Stronach, C. E.; Adu, N.; Lankford, W. F.; Reilly, J. J.; Seymour, E. F. W.

    1988-01-01

    Motional narrowing of the transverse-field muon spin rotation signal was observed in gamma-TiH(x) for x = 1.83, 1.97, and 1.99. An analysis of the data for TiH1.99 near room temperature indicates that the mechanism responsible for the motion of the muon out of the octahedral site is thermally activated diffusion with an attempt frequency comparable to the optical vibrations of the lattice. Monte Carlo calculations to simulate the effect of muon and proton motion upon the muon field-correlation time were used to interpret the motional narrowing in TiH1.97 near 500 K. The interpretation is dependent upon whether the Bloembergen, Purcell, and Pound (BPP) theory or an independent spin-pair relaxation model is used to obtain the vacancy jump rate from proton NMR T1 measurements. Use of BPP theory shows that the field-correction time can be obtained if the rate of motion of the muon with respect to the rate of the motion for the protons is decreased. An independent spin-pair relaxation model indicates that the field-correlation time can be obtained if the rate of motion for the nearest-neighbor protons is decreased.

  9. Muon-pair production by atmospheric muons in CosmoALEPH.

    PubMed

    Maciuc, F; Grupen, C; Hashim, N-O; Luitz, S; Mailov, A; Müller, A-S; Putzer, A; Sander, H-G; Schmeling, S; Schmelling, M; Tcaciuc, R; Wachsmuth, H; Ziegler, Th; Zuber, K

    2006-01-20

    Data from a dedicated cosmic ray run of the ALEPH detector were used in a study of muon trident production, i.e., muon pairs produced by muons. Here the overburden and the calorimeters are the target materials while the ALEPH time projection chamber provides the momentum measurements. A theoretical estimate of the muon trident cross section is obtained by developing a Monte Carlo simulation for muon propagation in the overburden and the detector. Two muon trident candidates were found to match the expected theoretical pattern. The observed production rate implies that the nuclear form factor cannot be neglected for muon tridents.

  10. Muon-fluorine entanglement in fluoropolymers.

    PubMed

    Lancaster, T; Pratt, F L; Blundell, S J; McKenzie, I; Assender, H E

    2009-08-26

    We present the results of muon spin relaxation measurements on the fluoropolymers polytetrafluoroethylene (PTFE), poly(vinylidene fluoride) (PVDF) and poly(vinyl fluoride) (PVF). Entanglement between the muon spin and the spins of the fluorine nuclei in the polymers allows us to identify the different muon stopping states that occur in each of these materials and provides a method of probing the local environment of the muon and the dynamics of the polymer chains.

  11. The MICE Muon Beam Line

    NASA Astrophysics Data System (ADS)

    Apollonio, Marco

    2011-10-01

    In the Muon Ionization Cooling Experiment (MICE) at RAL, muons are produced and transported in a dedicated beam line connecting the production point (target) to the cooling channel. We discuss the main features of the beamline, meant to provide muons with momenta between 140 MeV/c and 240 MeV/c and emittances up to 10 mm rad, which is accomplished by means of a diffuser. Matching procedures to the MICE cooling channel are also described. In summer 2010 we performed an intense data taking campaign to finalize the calibration of the MICE Particle Identification (PID) detectors and the understanding of the beam line, which completes the STEPI phase of MICE. We highlight the main results from these data.

  12. Law of Conservation of Muons

    DOE R&D Accomplishments Database

    Feinberg, G.; Weinberg, S.

    1961-02-01

    A multiplicative selection rule for mu meson-electron transitions is proposed. A "muon parity" = -1 is considered for the muon and its neutrino, while the "muon parity" for all other particles is +1. The selection rule then states that (-1) exp(no. of initial (-1) parity particles) = (-1) exp(no. of final (-1) parity particles). Several reactions that are forbidden by an additive law but allowed by the multiplicative law are suggested; these reactions include mu{sup +} .> e{sup +} + nu{sub mu} + {ovr nu}{sub e}, e{sup -} + e{sup -} .> mu{sup -} + mu{sup -}, and muonium .> antimuonium (mu{sup +} + e{sup -} .> mu{sup -} + e{sup +}). An intermediate-boson hypothesis is suggested. (T.F.H.)

  13. Ionization cooling and muon dynamics

    SciTech Connect

    Parsa, Z.

    1998-01-01

    Muon colliders potential to provide a probe for fundamental particle physics is very interesting. To obtain the needed collider luminosity, the phase space volume must be greatly reduced within the muon life time. The Ionization cooling is the preferred method used to compress the phase space and reduce the emittance to obtain high luminosity muon beams. The authors note that, the ionization losses results not only in damping, but also heating. They discuss methods used including moments methods, Focker Plank Equation, and Multi Particle Codes. In addition they show how a simple analysis permits us to estimate the most part of the optimal system parameters, such as optimal damping rates, length of the system and energy.

  14. A Highly intense DC muon source, MuSIC and muon CLFV search

    NASA Astrophysics Data System (ADS)

    Hino, Y.; Kuno, Y.; Sato, A.; Sakamoto, H.; Matsumoto, Y.; Tran, N. H.; Hashim, I. H.; Fukuda, M.; Hayashida, Y.; Ogitsu, T.; Yamamoto, A.; Yoshida, M.

    2014-08-01

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 108 muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  15. Superconducting magnet system for muon beam cooling

    SciTech Connect

    Andreev, N.; Johnson, R.P.; Kashikhin, V.S.; Kashikhin, V.V.; Novitski, I.; Yonehara, K.; Zlobin, A.; /Fermilab

    2006-08-01

    A helical cooling channel has been proposed to quickly reduce the six-dimensional phase space of muon beams for muon colliders, neutrino factories, and intense muon sources. A novel superconducting magnet system for a muon beam cooling experiment is being designed at Fermilab. The inner volume of the cooling channel is filled with liquid helium where passing muon beam can be decelerated and cooled in a process of ionization energy loss. The magnet parameters are optimized to match the momentum of the beam as it slows down. The results of 3D magnetic analysis for two designs of magnet system, mechanical and quench protection considerations are discussed.

  16. Design Concepts for Muon-Based Accelerators

    SciTech Connect

    Ryne, R. D.; Berg, J. S.; Kirk, H. G.; Palmer, R. B.; Stratkis, D.; Alexahin, Y.; Bross, A.; Gollwitzer, K.; Mokhov, N. V.; Neuffer, D.; Palmer, M. A.; Yonehara, K.; Snopok, P.; Bogacz, A.; Roberts, T. J.; Delahaye, J. -P.

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  17. Neutrino Factory and Muon Collider Fellow

    SciTech Connect

    Hanson, Gail G.; Snopak, Pavel; Bao, Yu

    2015-03-20

    Muons are fundamental particles like electrons but much more massive. Muon accelerators can provide physics opportunities similar to those of electron accelerators, but because of the larger mass muons lose less energy to radiation, allowing more compact facilities with lower operating costs. The way muon beams are produced makes them too large to fit into the vacuum chamber of a cost-effective accelerator, and the short muon lifetime means that the beams must be reduced in size rather quickly, without losing too many of the muons. This reduction in size is called "cooling." Ionization cooling is a new technique that can accomplish such cooling. Intense muon beams can then be accelerated and injected into a storage ring, where they can be used to produce neutrino beams through their decays or collided with muons of the opposite charge to produce a muon collider, similar to an electron-positron collider. We report on the research carried out at the University of California, Riverside, towards producing such muon accelerators, as part of the Muon Accelerator Program based at Fermilab. Since this research was carried out in a university environment, we were able to involve both undergraduate and graduate students.

  18. Muon g-2 Experiment Shimming

    ScienceCinema

    Kiburg, Brendan

    2016-07-12

    The Muon g-2 experiment at Fermilab will use as its primary instrument a 52-foot-wide electromagnet that creates a precise magnetic field. In this video, Fermilab's Brendan Kiburg explains the lengthy process of finely "shimming" that magnetic field into shape.

  19. Cosmic muons, as messengers from the Universe

    SciTech Connect

    Brancus, I. M.; Rebel, H.

    2015-02-24

    Penetrating from the outer space into the Earth atmosphere, primary cosmic rays are producing secondary radiation by the collisions with the air target subsequently decaying in hadrons, pions, muons, electrons and photons, phenomenon called Extensive air Shower (EAS). The muons, considered as the “penetrating” component, survive the propagation to the Earth and even they are no direct messenger of the Universe, they reflect the features of the primary particles. The talk gives a description of the development of the extensive air showers generating the secondary particles, especially the muon component. Results of the muon flux and of the muon charge ratio, (the ratio between the positive and the negative muons), obtained in different laboratories and in WILLI experiment, are shown. At the end, the contribution of the muons measured in EAS to the investigation of the nature of the primary cosmic rays is emphasized in KASCADE and WILLI-EAS experiments.

  20. Pion contamination in the MICE muon beam

    NASA Astrophysics Data System (ADS)

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Brashaw, T. W.; Bravar, U.; Bross, A. D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drews, M.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Greis, J. R.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J.-B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Winter, M.; Yang, X.; Young, A.; Zisman, M.

    2016-03-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ~1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  1. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES.

    SciTech Connect

    PARSA,Z.

    2001-06-18

    Intense muon sources for the purpose of providing intense high energy neutrino beams ({nu} factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both {+-} {mu}. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider.

  2. Double-targeting Using A TrkC-Ligand Conjugated To BODIPY-based PDT Agent

    PubMed Central

    Kamkaew, Anyanee; Burgess, Kevin

    2013-01-01

    A molecule 1 (IY-IY-PDT) was designed to contain a fragment (IY-IY) that targets the TrkC receptor, and a photosensitizer that acts as an agent for photodynamic therapy (PDT). Molecule 1 had sub-micromolar photocytotoxicities to cells that were either engineered to stably express TrkC (NIH3T3-TrkC) or that naturally express high levels of TrkC (SY5Y neuroblastoma lines). Control experiments showed 1 is not cytotoxic in the dark, and has significantly less photocytotoxicity towards cells that do not express TrkC (NIH3T3-WT). Other controls featuring a similar agent 2 (YI-YI-PDT) which is identical and isomeric with 1 except that the targeting region is scrambled (a YI-YI motif, see text) showed 1 is considerably more photocytotoxic than 2 on TrkC+ cells. Imaging live TrkC+ cells after treatment with a fluorescent agent 1 (IY-IY-PDT) proved that 1 permeates into TrkC+ cells and localizes in the lysosomes. This observation indirectly indicates agent 1 enters the cells via the TrkC receptor. Consistent with this, the dose-dependent PDT effects of 1 can be competitively reduced by the natural TrkC ligand, neurotrophin NT3. PMID:24063347

  3. In vitro therapeutic effect of PDT combined with VEGF-A gene therapy

    NASA Astrophysics Data System (ADS)

    Lecaros, Rumwald Leo G.; Huang, Leaf; Hsu, Yih-Chih

    2014-02-01

    Vascular endothelial growth factor A (VEGF-A), commonly known as VEGF, is one of the primary factors that affect tumor angiogenesis. It was found to be expressed in cancer cell lines including oral squamous cell carcinoma. Photodynamic therapy (PDT) is a novel therapeutic modality to treat cancer by using a photosensitizer which is activated by a light source to produce reactive oxygen species and mediates oxygen-independent hypoxic conditions to tumor. Another emerging treatment to cure cancer is the use of interference RNA (e.g. siRNA) to silence a specific mRNA sequence. VEGF-A was found to be expressed in oral squamous cell carcinoma and overexpressed after 24 hour post-PDT by Western blot analysis. Cell viability was found to decrease at 25 nM of transfected VEGF-A siRNA. In vitro combined therapy of PDT and VEGF-A siRNA showed better response as compared with PDT and gene therapy alone. The results suggest that PDT combined with targeted gene therapy has a potential mean to achieve better therapeutic outcome.

  4. Our experience of PDT of cancer with two Russian-produced photosensitizers

    NASA Astrophysics Data System (ADS)

    Stranadko, Eugeny P.; Skobelkin, Oleg K.

    1995-05-01

    Analysis of the results of photodynamic therapy (PDT) for treating malignant neoplasms of the skin, mammary glands, tongue, oral mucous, lower lip, larynx, lungs, urinary bladder, rectum,and other locations has been made. During 1992-1994 432 tumoral foci in 108 patients have been treated with PDT. All patients were previously treated with conventional techniques without effect or they were not treated due to contraindications either because of sever accompanying diseases or because of old age. A number of the patients had PDT because of recurrences or intradermal metastases within one to two years after surgical, radial, or combined treatment. Two homemade preparations were used as photosensitizers: Photohem (hematoporphyrin derivative) and Photosense (aluminum sulfonated phthalocyanine). Light sources were an American dye laser with argon laser pumping and homemade laser devices including a copper vapor laser-pumped dye laser, gas discharge unit, gold vapor laser for the Photohem sessions, wile for the Photosense sessions were used solid state lasers on yttrium aluminate. Up to now we have follow-up control data within 2 months and 3 years. Positive effect of PDT was seen in 90.7% of patients including complete regression of tumors in 52% and partial in 38.7%. Currently this new technique of treating malignant neoplasms is successfully being used in Russia; new photosensitizers and light sources for PDT and fluorescent tumor diagnostics are being developed as well.

  5. Cell cycle arrest induced by MPPa-PDT in MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Liang, Liming; Bi, Wenxiang; Tian, Yuanyuan

    2016-05-01

    Photodynamic therapy (PDT) is a medical treatment using a photosensitizing agent and light source to treat cancers. Pyropheophorbidea methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. To learn more about this photosensitizer, we examined the cell cycle arrest in MDA-MB-231. Cell cycle and apoptosis were measured by flow cytometer. Checkpoints of the cell cycle were measured by western blot. In this study, we found that the expression of Cyclin D1 was obviously decreased, while the expression of Chk2 and P21 was increased after PDT treatment. This study showed that MPPa-PDT affected the checkpoints of the cell cycle and led the cells to apoptosis.

  6. TSPO 18 kDa (PBR) Targeted Photosensitizers for Cancer Imaging (PET) and PDT.

    PubMed

    Chen, Yihui; Sajjad, Munawwar; Wang, Yanfang; Batt, Carrie; Nabi, Hani A; Pandey, Ravindra K

    2011-02-10

    Translocator protein (TSPO) 18 kDa overexpression has been observed in a large variety of human cancers, especially breast cancers. PK 11195, an isoquinoline analogue, is one of the ligands of highest TSPO binding affinity. Due to the long biological half life of our photosensitizers, there is a need to label them with a long lived radioisotope, for example I-124. Our objectives are to find translocator protein targeted photosensitizers for both tumor imaging (PET) and photodynamic therapy (PDT). I-PK 11195 is conjugated with the tumor avid photosensitizer HPPH. We find that those two tumor avid components complement each other and make the conjugate molecule even more tumor avid; compared to the photosensitizer itself, the conjugate is found to show improved PDT efficacy. It is concluded that I-PK 11195 can be a good vehicle to deliver radionuclide and photosensitizer to TSPO overexpressed tumor regions. Such conjugates could be useful for both tumor imaging (PET) and PDT.

  7. Progress on muon{sup +}muon{sup {minus}} colliders

    SciTech Connect

    Palmer, R.B.

    1997-05-01

    Advantages and disadvantages of muon colliders are discussed. Recent results of calculations of the radiation hazard from muon decay neutrinos are presented. This is a significant problem for machines with center of mass energy of 4 TeV, but of no consequence for lower energies. Plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 4 TeV collider, studies are now starting on a machine near 100 GeV that could be a factory for the s-channel production of Higgs particles. Proposals are also presented for a demonstration of ionization cooling and of the required targeting, pion capture, and phase rotation rf.

  8. Open-Midplane Dipoles for a Muon Collider

    SciTech Connect

    Weggel, R.; Gupta, R.; Kolonko, J., Scanlan, R., Cline, D., Ding, X., Anerella, M., Kirk, H., Palmer, B., Schmalzle, J.

    2011-03-28

    For a muon collider with copious decay particles in the plane of the storage ring, open-midplane dipoles (OMD) may be preferable to tungsten-shielded cosine-theta dipoles of large aperture. The OMD should have its midplane completely free of material, so as to dodge the radiation from decaying muons. Analysis funded by a Phase I SBIR suggests that a field of 10-20 T should be feasible, with homogeneity of 1 x 10{sup -4} and energy deposition low enough for conduction cooling to 4.2 K helium. If funded, a Phase II SBIR would refine the analysis and build and test a proof-of-principle magnet. A Phase I SBIR has advanced the feasibility of open-midplane dipoles for the storage ring of a muon collider. A proposed Phase II SBIR would refine these predictions of stresses, deformations, field quality and energy deposition. Design optimizations would continue, leading to the fabrication and test, for the first time, of a proof-of-principle dipole of truly open-midplane design.

  9. Simulation of large acceptance LINAC for muons

    SciTech Connect

    Miyadera, H; Kurennoy, S; Jason, A J

    2010-01-01

    There has been a recent need for muon accelerators not only for future Neutrino Factories and Muon Colliders but also for other applications in industry and medical use. We carried out simulations on a large-acceptance muon linac with a new concept 'mixed buncher/acceleration'. The linac can accept pions/muons from a production target with large acceptance and accelerate muon without any beam cooling which makes the initial section of muon-linac system very compact. The linac has a high impact on Neutrino Factory and Muon Collider (NF/MC) scenario since the 300-m injector section can be replaced by the muon linac of only 10-m length. The current design of the linac consists of the following components: independent 805-MHz cavity structure with 6- or 8-cm-radius aperture window; injection of a broad range of pion/muon energies, 10-100 MeV, and acceleration to 150 - 200 MeV. Further acceleration of the muon beam are relatively easy since the beam is already bunched.

  10. ALA PDT for high grade dysplasia in Barrett's oesophagus: review of a decade's experience

    NASA Astrophysics Data System (ADS)

    Bown, Stephen G.; Mackenzie, Gary D.; Dunn, Jason M.; Thorpe, Sally M.; Lovat, Laurence B.

    2009-06-01

    We have been investigating PDT with 5 aminolaevulinic acid (ALA) for the treatment of high grade dysplasia (HGD) in Barrett's oesophagus (BO) for over a decade. This drug has inherent advantages over porfimer sodium (Photofrin), the current approved photosensitiser in the UK and USA, which causes strictures in 18-50% and light sensitivity for up to three months. ALA has a lower rate of oesophageal strictures due to its preferential activity in the mucosa, sparing the underlying muscle, and patients are only light sensitive for 1-2 days. Within a randomised controlled trial, we demonstrated that an ALA dose of 60mg/kg activated by 1000J/cm red laser light is the most effective. Using these values we achieved complete reversal of HGD at 1 year in 89% of 27 patients. A randomised controlled trial of ALA vs porfimer sodium PDT for HGD is currently under way with end points of efficacy and safety. 50 of 66 patients have been recruited. Preliminary data suggest ALA PDT is safer with a trend to higher efficacy. Late relapse can occur in 20% of patients. New prognostic markers, in particular aneuploidy, are helping us to identify and target patients at risk of late relapse. Furthermore optical biopsy techniques such as elastic scattering spectroscopy (ESS) may allow detection of nuclear abnormalities in vivo and enable us to target areas of interest whilst reducing sampling error. PDT faces new challenges for the treatment of HGD in BO, with the recent introduction of balloon based radiofrequency ablation. This technique appears simpler and as effective as PDT, but follow up is currently short and long term safety data is lacking. In our experience ALA PDT is currently the most effective minimally invasive treatment for HGD in BO. This work was undertaken at UCLH/UCL who received a proportion of funding from the Department of Health's NIHR Biomedical Research Centres funding scheme.

  11. Contribution of the nos-pdt Operon to Virulence Phenotypes in Methicillin-Sensitive Staphylococcus aureus

    PubMed Central

    Almand, Erin A.; Rivera, Frances E.; Shaw, Lindsey N.; Richardson, Anthony R.; Rice, Kelly C.

    2014-01-01

    Nitric oxide (NO) is emerging as an important regulator of bacterial stress resistance, biofilm development, and virulence. One potential source of endogenous NO production in the pathogen Staphylococcus aureus is its NO-synthase (saNOS) enzyme, encoded by the nos gene. Although a role for saNOS in oxidative stress resistance, antibiotic resistance, and virulence has been recently-described, insights into the regulation of nos expression and saNOS enzyme activity remain elusive. To this end, transcriptional analysis of the nos gene in S. aureus strain UAMS-1 was performed, which revealed that nos expression increases during low-oxygen growth and is growth-phase dependent. Furthermore, nos is co-transcribed with a downstream gene, designated pdt, which encodes a prephenate dehydratase (PDT) enzyme involved in phenylalanine biosynthesis. Deletion of pdt significantly impaired the ability of UAMS-1 to grow in chemically-defined media lacking phenylalanine, confirming the function of this enzyme. Bioinformatics analysis revealed that the operon organization of nos-pdt appears to be unique to the staphylococci. As described for other S. aureus nos mutants, inactivation of nos in UAMS-1 conferred sensitivity to oxidative stress, while deletion of pdt did not affect this phenotype. The nos mutant also displayed reduced virulence in a murine sepsis infection model, and increased carotenoid pigmentation when cultured on agar plates, both previously-undescribed nos mutant phenotypes. Utilizing the fluorescent stain 4-Amino-5-Methylamino-2',7'-Difluorofluorescein (DAF-FM) diacetate, decreased levels of intracellular NO/reactive nitrogen species (RNS) were detected in the nos mutant on agar plates. These results reinforce the important role of saNOS in S. aureus physiology and virulence, and have identified an in vitro growth condition under which saNOS activity appears to be upregulated. However, the significance of the operon organization of nos-pdt and potential

  12. Contribution of the nos-pdt operon to virulence phenotypes in methicillin-sensitive Staphylococcus aureus.

    PubMed

    Sapp, April M; Mogen, Austin B; Almand, Erin A; Rivera, Frances E; Shaw, Lindsey N; Richardson, Anthony R; Rice, Kelly C

    2014-01-01

    Nitric oxide (NO) is emerging as an important regulator of bacterial stress resistance, biofilm development, and virulence. One potential source of endogenous NO production in the pathogen Staphylococcus aureus is its NO-synthase (saNOS) enzyme, encoded by the nos gene. Although a role for saNOS in oxidative stress resistance, antibiotic resistance, and virulence has been recently-described, insights into the regulation of nos expression and saNOS enzyme activity remain elusive. To this end, transcriptional analysis of the nos gene in S. aureus strain UAMS-1 was performed, which revealed that nos expression increases during low-oxygen growth and is growth-phase dependent. Furthermore, nos is co-transcribed with a downstream gene, designated pdt, which encodes a prephenate dehydratase (PDT) enzyme involved in phenylalanine biosynthesis. Deletion of pdt significantly impaired the ability of UAMS-1 to grow in chemically-defined media lacking phenylalanine, confirming the function of this enzyme. Bioinformatics analysis revealed that the operon organization of nos-pdt appears to be unique to the staphylococci. As described for other S. aureus nos mutants, inactivation of nos in UAMS-1 conferred sensitivity to oxidative stress, while deletion of pdt did not affect this phenotype. The nos mutant also displayed reduced virulence in a murine sepsis infection model, and increased carotenoid pigmentation when cultured on agar plates, both previously-undescribed nos mutant phenotypes. Utilizing the fluorescent stain 4-Amino-5-Methylamino-2',7'-Difluorofluorescein (DAF-FM) diacetate, decreased levels of intracellular NO/reactive nitrogen species (RNS) were detected in the nos mutant on agar plates. These results reinforce the important role of saNOS in S. aureus physiology and virulence, and have identified an in vitro growth condition under which saNOS activity appears to be upregulated. However, the significance of the operon organization of nos-pdt and potential

  13. Photofrin-PDT for gastric cancer in the era of endoscopic submucosal dissection

    NASA Astrophysics Data System (ADS)

    Nishiwaki, Yoshiro; Ikematsu, Yoshito; Tokunaga, Yuuji; Kanai, Toshikazu

    2009-06-01

    Background: Endoscopic mucosal resection (EMR) was originated to treat early gastric cancer (EGC). EMR was suitable for small, mucosal and well-differentiated adenocarcinoma without ulceration. It was difficult to resect larger tumors en bloc by this method. In recent years, a more useful method, endoscopic submuscosal dissection (ESD) has been developed, which enables en bloc resection of large mucosal lesions. On the contrary, photodynamic therapy (PDT) is applicable to submucosal, poorly differentiated, or carcinoma with ulceration. In the era of ESD, we evaluated the value of Photofrin-PDT. Patients & Methods: We applied PDT to 36 patients including three advanced cancers, who had been excluded from EMR (ESD) and were at high risks for surgery or refused surgery. Four EGC patients who had not been cured by EMR (ESD) were included. Our PDT procedure consisted of polyhematoporphyrin ether/ester administration (Photofrin, 2 mg/Kg) and pulsed excimer dye laser irradiation at 630 nm 48 hours (and 96 hours) after sensitization. Results: Complete response (CR) at three months was obtained in 84% (21/25) of mucosal cancer and in 50% (4/8) of submucosal cancer. Although three patients with an advanced cancer improved but were not cured, quality of their life was maintained. There were no serious side effects except skin photosensitivity. Conclusion: Photofrin-PDT should be applied not only EGC patients who are excluded from ESD and have not been cured by ESD with poor risk for surgery, and have high possibilitiy to be cured by PDT, but also advanced cancer patients for local improvement of lesions.

  14. Deciphering PDT-induced inflammatory responses using real-time FDG-PET in a mouse tumour model.

    PubMed

    Cauchon, Nicole; Hasséssian, Haroutioun M; Turcotte, Eric; Lecomte, Roger; van Lier, Johan E

    2014-10-01

    Dynamic positron emission tomography (PET), combined with constant infusion of 2-deoxy-2-[(18)F]fluoro-d-glucose (FDG), enables real-time monitoring of transient metabolic changes in vivo, which can serve to understand the underlying physiology. Here we investigated characteristic changes in the tumour FDG-uptake profiles in relation to acute localized inflammatory responses induced by photodynamic therapy (PDT). Dynamic PET imaging with constant FDG infusion was used with EMT-6 tumour bearing mice. FDG time-activity uptake curves were measured simultaneously, in treated and reference tumours, for 3 hours, before, during and after PDT light treatment. Inflammation was studied when evoked, either by PDT using a trisulfonated porphyrazine photosensitizer, or lipopolysaccharide (LPS), and inhibited using indomethacin. The distinct transient patterns, characterized by drops and subsequent recovery of tumour FDG uptake rates, were also analysed using immunohistochemical markers for apoptosis, necrosis, and inflammation. Typical profiles for tumour FDG-uptake, consisted of a drop during PDT, followed by a gradual recovery period. Tumours treated with LPS, but not with light, showed a continuous increase in FDG-uptake during the 3 h experimental period. Treatment with indomethacin, inhibited the rise in FDG-uptake observed with either LPS or PDT. Tumour FDG-uptake profiles correlated with necrosis markers during PDT, and inflammatory response markers post-PDT, but not with an apoptosis marker at any time during or after PDT. Dynamic FDG-PET imaging combined with indomethacin reveals that, the drop in the tumour FDG-uptake rate during the PDT illumination phase reflects vascular collapse and necrosis, while the increased tumour FDG-uptake rate immediately post-illumination involves an acute localized inflammatory response. Dynamic FDG infusion and PET imaging, combined with the use of selective inhibitors, provides unique insight for deciphering the complex underlying

  15. Feasibility of repeated sequential treatments of RIF-1 tumors with photodynamic therapy (PDT) using lutetium texaphyrin (PCI-0123)

    NASA Astrophysics Data System (ADS)

    Miles, Dale R.; Parker, Lynn M.; Thiemann, Patricia A.; Woodburn, Kathryn W.; Young, Stuart W.

    1997-05-01

    Lutetium texaphyrin (PCI-0123) is currently in clinical trials as a PDT agent for the treatment of cancer patients. The drug is cleared rapidly from the plasma, and photoirradiation can be performed shortly after drug administration.T He photosensitizer as yet does not appear to elicit any significant skin photosensitivity. These characteristics favor frequent multiple PDT treatments with PCI-0123. In order to support repeated PDT treatments in the clinic, the safety of multiple drug dosing was studied in rats and mice. In rats, each group received 5 consecutive daily intravenous administrations of 5, 15, 30, or 60 mg/kg/day of PCI-0123. There were no deaths in any of the groups, and no drug-related effects were detected in the 5 mg/kg/day group. In mice, there were no observable signs of toxicity after consecutive daily administration of 10 micrometers ol/kg/day of PCI-0123 for 13 days. The feasibility and efficacy of repeated PDT treatments were assessed in C3H mice bearing RIF-1 tumors. Repeated PDT proved to be superior to a single PDT treatment. Repeated PDT treatments were well tolerated. Seven PDT treatments were administered over a nine day period without significant toxicity while achieving good therapeutic responses. All six groups receiving repeated PDT treatments showed an improved response compared to groups receiving a single PDT cycle, and the improvement was statistically significant for five of these groups. Sixty-two percent of mice receiving four sequential daily treatments were cured, and daily treatments were superior to regimens with longer intervals between PDT cycles.

  16. Light fractionation increases the efficacy of ALA-PDT but not of MAL-PDT: What is the role of (vascular) endothelial cells?

    NASA Astrophysics Data System (ADS)

    de Bruijn, H. S.; de Vijlder, H. C.; de Haas, E. R. M.; van der Ploeg-van den Heuvel, A.; Kruijt, B.; Poel-Dirks, D.; Sterenborg, H. J. C. M.; ten Hagen, T. L. M.; Robinson, D. J.

    2009-06-01

    Photodynamic therapy (PDT) using protoporpyrin IX (PpIX) precursors like 5-aminolevulinic acid (ALA) or methyl-aminolevulinate (MAL) has shown to be effective in the treatment of various skin diseases. Using ALA we have shown in numerous studies a significantly improved efficacy by applying light fractionation with a long dark interval. In contrast, in the hairless mouse model, the PDT efficacy using MAL is unaffected by adopting this approach. More acute edema is found after ALA-PDT suggesting a difference in response of endothelial cells to PDT. To investigate the role of endothelial cells, cryo-sections of hairless mouse skin after 4 hours of topical MAL or ALA application were stained with a fluorescent endothelial cell marker (CD31). Co-localization of this marker with the PpIX fluorescence was performed using the spectral imaging function of the confocal microscope. We have also used intra-vital confocal microscopy to image the PpIX fluorescence distribution in correlation with the vasculature of live mouse skin. Our results show PpIX fluorescence at depth in cryo-sections of mouse skin after 4 hours of topical application. Co-localization has shown to be difficult due to the changes in tissue organization caused by the staining procedure. As expected we found high PpIX fluorescence levels in the epidermis after both MAL and ALA application using intra-vital microscopy. After ALA application more PpIX fluorescence was found deep in the dermal layer of the skin than after MAL. Furthermore we detected localized fluorescence in unidentified structures that could not be correlated to blood vessels or nerves.

  17. Mechanisms contributing to optimization of PDT with first-generation photosensitizers

    NASA Astrophysics Data System (ADS)

    Hilf, Russell; Gibson, Scott L.; Foster, Thomas H.

    1993-06-01

    Improved control of tumor growth has been accomplished by modification of the irradiation scheme applied to hematoporphyrin-induced sensitization. Significantly enhanced efficacy of PDT was seen with either reduction of fluence rate or with an intermittent light-dark protocol, together suggesting that consideration must be given to photochemical oxygen depletion as a rate-limiting component in the production of singlet oxygen, the mediator of cytotoxicity resulting from PDT. A model to explain the basis for the improved efficacy was developed and is being tested by study of homograft and xenograft tumors in vivo and in multicellular tumor spheroids in vitro.

  18. Endoscopic treatment of early bronchial cancer: our experience with photodynamic therapy (PDT)

    NASA Astrophysics Data System (ADS)

    Corti, Luigi; Toniolo, Lamberto; Boso, Caterina; Colaut, Flavio; Fiore, Davide; Muzzio, Pier-Carlo; Loreggian, Lucio; Sotti, Guido

    2009-06-01

    The role of photodynamic therapy (PDT) in the treatment of small cancers has been established in several clinical studies. Here, we report on the efficacy of PDT for early inoperable or recurrent non-small-cell lung cancer (NSCLC). Methods and Materials: From June 1989 to November 2004, 40 patients with 50 NSCLC were treated with PDT. Twelve cases were inoperable for medical reasons and were staged as T1N0M0, and 28 had recurrent in situ carcinoma. Patients with residual disease after PDT received definitive radiotherapy and/or brachytherapy. Follow-up ranged from 6 to 167 months (median 43.59). Twenty of the 40 patients received i.v. injections of hematoporphyrin derivative (5 mg/kg), the other 20 had injections of porfimer sodium (Photofrin, 2 mg/kg). An argon dye laser (630 nm wavelength, 200-300 J/cm2) was used for light irradiation in 24 of the 40 patients, a diode laser (Diomed, 630 nm wavelength, 100- 200 J/cm2) in the other 16. Results: PDT obtained a 72% complete response (CR) rate (36/50 treated lesions), that is 27 CR among the 37 Tis carcinomas and 9 among the 13 T1 cases. Kaplan-Meier curves showed a mean overall survival (OS) of 75.59 months (median 91.4 months). Two- and 5- year OS rates were 72.78% and 59.55%. The mean and median survival rates for patients with Tis stage were 86.5 and 120.4 months, respectively (standard error 9.50) and for patients with T1 disease they were 45.78 and 35.71 months, respectively; the difference was statistically significant (P< 0.03). No severe early or late PDT-related adverse events were recorded. Conclusions: PDT is effective in early primary or recurrent NSCLC, resulting in a CR rate of 72%. The incorporation of PDT in standard clinical practice, in combination with radiotherapy, warrants further investigation.

  19. Synthesis, characterization and preclinical studies of two-photon-activated targeted PDT therapeutic triads

    NASA Astrophysics Data System (ADS)

    Spangler, C. W.; Starkey, J. R.; Rebane, A.; Meng, F.; Gong, A.; Drobizhev, M.

    2006-02-01

    Photodynamic therapy (PDT) continues to evolve into a mature clinical treatment of a variety of cancer types as well as age-related macular degeneration of the eye. However, there are still aspects of PDT that need to be improved in order for greater clinical acceptance. While a number of new PDT photo-sensitizers, sometimes referred to as second- or third- generation therapeutic agents, are currently under clinical investigation, the direct treatment through the skin of subcutaneous tumors deeper than 5 mm remains problematic. Currently approved PDT porphyrin photo-sensitizers, as well as several modified porphyrins (e.g. chlorins, bacteriochlorins, etc.) that are under clinical investigation can be activated at 630-730 nm, but none above 800 nm. It would be highly desirable if new PDT paradigms could be developed that would allow photo-activation deep in the tissue transparency window in the Near-infrared (NIR) above 800 nm to reduce scattering and absorption phenomena that reduce deep tissue PDT efficacy. Rasiris and MPA Technologies have developed new porphyrins that have greatly enhanced two-photon absorption ( P A ) cross-sections and can be activated deep in the NIR (ca. 780-850 nm). These porphyrins can be incorporated into a therapeutic triad that also employs an small molecule targeting agent that directs the triad to over-expressed tumor receptor sites, and a NIR onephoton imaging agent that allows tracking the delivery of the triad to the tumor site, as well as clearance of excess triad from healthy tissue prior to the start of PDT treatment. We are currently using these new triads in efficacy studies with a breast cancer cell line that has been transfected with luciferase genes that allow implanted tumor growth and post- PDT treatment efficacy studies in SCID mouse models by following the rise and decay of the bioluminescence signal. We have also designed highly absorbing and scattering collagen breast cancer phantoms in which we have demonstrated

  20. A method for video-assisted thoracoscopic photodynamic therapy (VAT-PDT).

    PubMed

    Moghissi, Keyvan; Dixon, Kate; Thorpe, J Andrew C

    2003-09-01

    A technique is described for application of photodynamic therapy (PDT) to peripheral pulmonary and other intrathoracic malignant tumours. For video-assisted thoracoscopic-PDT we advocate the use of the flexible fibreoptic bronchoscope through an appropriately placed port. This, together with the standard thoracoscope and attached monitor can provide three-dimensional visualisation of the intrathoracic lesion and more importantly allow the accurate delivery of laser light to the tumour. At the present time we have successfully used this method without complication in three patients with advanced inoperable disease. PMID:17670074

  1. Local magnetism in palladium bionanomaterials probed by muon spectroscopy.

    PubMed

    Creamer, Neil J; Mikheenko, Iryna P; Johnson, Clive; Cottrell, Stephen P; Macaskie, Lynne E

    2011-05-01

    Palladium bionanomaterial was manufactured using the sulfate-reducing bacterium, Desulfovibrio desulfuricansm, to reduce soluble Pd(II) ions to cell-bound Pd(0) in the presence of hydrogen. The biomaterial was examined using a Superconducting Quantum Interference Device (SQUID) to measure bulk magnetisation and by Muon Spin Rotation Spectroscopy (µSR) which is uniquely able to probe the local magnetic environment inside the sample. Results showed behaviour attributable to interaction of muons both with palladium electrons and the nuclei of hydrogen trapped in the particles during manufacture. Electronic magnetism, also suggested by SQUID, is not characteristic of bulk palladium and is consistent with the presence of nanoparticles previously seen in electron micrographs. We show the first use of μSR as a tool to probe the internal magnetic environment of a biologically-derived nanocatalyst material.

  2. The first muon beam from a new highly-intense DC muon source, MuSIC

    NASA Astrophysics Data System (ADS)

    Tran, Nam Hoai; MuSIC Collaboration

    2012-09-01

    A new DC muon source, MuSIC, is now under construction at Research Center for Nuclear Physics (RCNP), Osaka University, Japan. The MuSIC adopts a new pion/muon collection system and a curved transport solenoid. These techniques are important in realization of future muon programs such as the muon to electron conversion experiments (COMET/Mu2e), neutrino factories, and muon colliders. The pion capture magnet and a part of the transport solenoid have been built and beam tests were carried out to assess the MuSIC's performance. Muon lifetime measurements and muonic X-ray measurements have been used for estimation of muon yield of the MuSIC. The result indicates that the MuSIC would be one of the most intense DC muon beams in the world.

  3. Photon scattering in muon collisions.

    SciTech Connect

    Klasen, M.

    1997-12-18

    The authors estimate the benefit of muon colliders for photon physics. They calculate the rate at which photons are emitted from muon beams in different production mechanisms. Bremsstrahlung is reduced, beamstrahlung disappears, and laser backscattering suffers from a bad conversion of the incoming to the outgoing photon beam in addition to requiring very short wavelengths. As a consequence, the cross sections for jet photoproduction in {mu}p and {mu}{sup +} {mu}{sup {minus}} collisions are reduced by factors of 2.2 and 5 compared to ep and e{sup +} e{sup {minus}} machines. However, the cross sections remain sizable and measurable giving access to the photon and proton parton densities down to x values of 10{sup {minus}3} to 10{sup {minus}4}.

  4. Introduction to Mini Muon Tracker

    SciTech Connect

    Borozdin, Konstantin N.

    2012-08-13

    Using a mini muon tracker developed at the Los Alamos National Laboratory we performed experiments of simple landscapes of various materials, including TNT, 9501, lead, tungsten, aluminium, and water. Most common scenes are four two inches thick step wedges of different dimensions: 12-inch x 12-inch, 12-inch x 9-inch, 12-inch x 6-inch, and 12-inch x 3-inch; and a one three inches thick hemisphere of lead with spherical hollow, and a similar full lead sphere.

  5. Muon ID at the ILC

    SciTech Connect

    Milstene, C.; Fisk, G.; Para, A.; /Fermilab

    2006-09-01

    This paper describes a new way to reconstruct and identify muons with high efficiency and high pion rejection. Since muons at the ILC are often produced with or in jets, for many of the physics channels of interest [1], an efficient algorithm to deal with the identification and separation of particles within jets is important. The algorithm at the core of the method accounts for the effects of the magnetic field and for the loss of energy by charged particles due to ionization in the detector. We have chosen to develop the analysis within the setup of one of the Linear Collider Concept Detectors adopted by the US. Within b-pair production jets, particles cover a wide range in momenta; however {approx}80% of the particles have a momentum below 30 GeV[2]. Our study, focused on bbar-b jets, is preceded by a careful analysis of single energy particles between 2 and 50 GeV. As medium energy particles are a substantial component of the jets, many of the particles lose part of their energy in the calorimeters and the solenoid coil before reaching the muon detector where they may have energy below 2 GeV. To deal with this problem we have implemented a Runge-Kutta correction of the calculated trajectory to better handle these lower energy particles. The multiple scattering and other stochastic processes, more important at lower energy, is addressed by a Kalman-filter integrated into the reconstruction algorithm. The algorithm provides a unique and powerful separation of muons from pions. The 5 Tesla magnetic field from a solenoid surrounds the hadron calorimeter and allows the reconstruction and precision.

  6. A muon beam for cooling experiments

    SciTech Connect

    Jansson, Andreas; Balbekov, V.I.; Broemmelsiek, Daniel Robert; Hu, M.; Mokhov, Nikolai V.; Yonehara, K.; /Fermilab

    2007-06-01

    Within the framework of the Fermilab Muon Collider Task Force, the possibility of developing a dedicated muon test beam for cooling experiments has been investigated. Cooling experiments can be performed in a very low intensity muon beam by tracking single particles through the cooling device. With sufficient muon intensity and large enough cooling decrement, a cooling demonstration experiment may also be performed without resolving single particle trajectories, but rather by measuring the average size and position of the beam. This allows simpler, and thus cheaper, detectors and readout electronics to be used. This paper discusses muon production using 400MeV protons from the Linac, decay channel and beamline design, as well as the instrumentation required for such an experiment, in particular as applied to testing the Helical Cooling Channel (HCC) proposed by Muons Inc.

  7. Information extraction from muon radiography data

    SciTech Connect

    Borozdin, K. N.; Asaki, T. J.; Chartrand, R.; Hengartner, N. W.; Hogan, G. E.; Morris, C. L.; Priedhorsky, W. C.; Schirato, R.C.; Schultz, L. J.; Sottile, M. J.; Vixie, K. R.; Wohlberg, B. E.; Blanpied, G.

    2004-01-01

    Scattering muon radiography was proposed recently as a technique of detection and 3-d imaging for dense high-Z objects. High-energy cosmic ray muons are deflected in matter in the process of multiple Coulomb scattering. By measuring the deflection angles we are able to reconstruct the configuration of high-Z material in the object. We discuss the methods for information extraction from muon radiography data. Tomographic methods widely used in medical images have been applied to a specific muon radiography information source. Alternative simple technique based on the counting of high-scattered muons in the voxels seems to be efficient in many simulated scenes. SVM-based classifiers and clustering algorithms may allow detection of compact high-Z object without full image reconstruction. The efficiency of muon radiography can be increased using additional informational sources, such as momentum estimation, stopping power measurement, and detection of muonic atom emission.

  8. Combination of PI3K/Akt/mTOR inhibitors and PDT in endothelial and tumor cells

    NASA Astrophysics Data System (ADS)

    Fateye, Babasola; Chen, Bin

    2011-02-01

    The PI3/Akt/mTOR kinase signaling pathway is a major signaling pathway in eukaryotic cells, and dysregulation of this signaling pathway has been implicated in tumorigenesis and malignancy in several cancers including prostate cancer. We assessed the effects of combination PI3K pathway inhibition on the efficacy of PDT in human prostate tumor cell line (PC3) and SV40-transformed mouse endothelial cell line (SVEC-40). Combination of PDT and BEZ 235 (BEZ), a pan-PI3/ mTOR kinase inhibitor additively enhanced efficacy of sub-lethal PDT in both cell lines. The combination of the pan-PI3/ mTOR kinase inhibitor LY294002 (LY) with PDT also enhanced efficacy of PDT in PC3 in an additive manner but synergistically in SVEC. In order to determine the mechanism of enhancement of efficacy, we assessed apoptosis and autophagy following PDT. PDT-mediated apoptosis was enhanced in endothelial cells, by both BEZ and LY rapidly after treatment. Compared to SVEC, PC3 cells are apoptosis-deficient and apoptosis was not significantly enhanced by either LY or BEZ. However, lethal PDT of PC3 cells induced a delayed autophagic response which may be enhanced by combination, depending on PI3K inhibitor and dose.

  9. Studies of a novel photosensitizer Pd-bacteriopheophorbide (Tookad) for the prostate cancer PDT in canine model

    NASA Astrophysics Data System (ADS)

    Huang, Zheng; Chen, Qun; Brun, Pierre-Herve; Wilson, Brian C.; Scherz, Avigdor; Salomon, Yoram; Luck, David L.; Beckers, Jill; Hetzel, Fred W.

    2003-12-01

    Photodynamic therapy (PDT) mediated with vascular acting photosensitizer pd-bacteriopheophorbide (Tookad), is investigated as an alternative modality for the total ablation of prostate cancer. In vivo normal canine prostate is used as the animal model. Interstitial PDT was performed by irradiating the surgically exposed prostates with a diode laser (763 nm, 150 mW/cm) to activate the i.v. infused photosensitizer drug. The effects of two-session PDT were evaluated. The prostate and its adjacent tissues were harvested and subjected to histopathological examination. At one-week, post second-session PDT, the animals recovered well with little or no urethral complications. Prostatic urethra and prostate adjacent tissues (bladder and underlying colon) were well preserved. Two-session PDT or one single session PDT induced a similar extent of damage. PDT induced prostate lesions were characterized by marked hemorrhagic necrosis. Maximum lesion size of over 3 cm in dimension could be achieved with a single 1-cm interstitial treatment, suggesting the therapy is very effective in ablating prostatic tissue. Pharmacokinetic studies show that the photosensitizer is cleared rapidly from the circulation. In conclusion, the novel photosensitizer Tookad mediated PDT may provide an effective alternative to treat prostate cancer.

  10. Status of the MANX muon cooling experiment

    SciTech Connect

    Yonehara, K.; Broemmelsiek, D.; Hu, M.; Jansson, A.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Lopes, M.; Shiltsev, V.; Yarba, V.; Yu, M.; /Fermilab /Muons Inc., Batavia

    2008-06-01

    A demonstration experiment of six-dimensional (6D) phase space muon beam cooling is a key milestone on the roadmap toward to a real muon collider. In order to achieve this goal, they have designed the Muon Collider and Neutrino Factory Experiment (MANX) channel, which consists of the Helical Cooling Channel (HCC). They discuss the status of the simulation study of the MANX in this document.

  11. Muon cooling in a quadrupole magnet channel

    SciTech Connect

    Neuffer, David; Poklonskiy, A.; /Michigan State U.

    2007-10-01

    As discussed before,[1] a cooling channel using quadrupole magnets in a FODO transport channel can be used for initial cooling of muons. In the present note we discuss this possibility of a FODO focusing channel for cooling, and we present ICOOL simulations of muon cooling within a FODO channel. We explore a 1.5m cell-length cooling channel that could be used for the initial transverse cooling stage of a muon collider or neutrino factory.

  12. Materials science with muon spin rotation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    During this reporting period, the focus of activity in the Materials Science with Muon Spin Rotation (MSMSR) program was muon spin rotation studies of superconducting materials, in particular the high critical temperature and heavy-fermion materials. Apart from these studies, work was continued on the analysis of muon motion in metal hydrides. Results of these experiments are described in six papers included as appendices.

  13. The US Muon Accelerator Program (MAP)

    SciTech Connect

    Bross, Alan D.; /Fermilab

    2010-12-01

    The US Department of Energy Office of High Energy Physics has recently approved a Muon Accelerator Program (MAP). The primary goal of this effort is to deliver a Design Feasibility Study for a Muon Collider after a 7 year R&D program. This paper presents a brief physics motivation for, and the description of, a Muon Collider facility and then gives an overview of the program. I will then describe in some detail the primary components of the effort.

  14. CMS muon detector and trigger performance

    NASA Astrophysics Data System (ADS)

    Park, Sung Keun; CMS Collaboration

    2011-06-01

    The CMS muon system has been in full operation since its commissioning with several million events of cosmic ray data. The muon system of the CMS experiment consists of three independent detectors: Resistive Plate Chambers (RPCs) both in the barrel and the endcap, Drift Tubes (DTs) in the barrel, and Cathode Strip Chambers (CSCs) in the endcap region. In this report, the performance of each of these muon detectors and their trigger response are presented.

  15. Status of MICE, the international Muon Ionization Cooling Experiment

    NASA Astrophysics Data System (ADS)

    Bross, Alan D.; MICE Collaboration

    2012-08-01

    The Muon Ionization Cooling Experiment (MICE) will demonstrate transverse muon ionization cooling and is thus a strategic R&D project for future muon facilities. It is under development at the Rutherford Appleton Laboratory in the United Kingdom.

  16. Registration of the high energy muon bundles by the muon detector of the Ani gamma installation

    NASA Astrophysics Data System (ADS)

    Ivanov, V. A.; Eganov, V. S.; Nikolskaya, N. M.; Romakhin, V. A.

    The paper presents analyses of muon component of EAS measured with "GAMMA" installation at Mt. Aragats. It shows a strong dependence of muon lateral distribution shape and of total muon number from the age parameter of EAS electron-photon component. Obtained Nµ/Ne dependence demonstrates abrupt change in the knee region.

  17. The MANX Muon Cooling Experiment Detection System

    NASA Astrophysics Data System (ADS)

    Kahn, S. A.; Abrams, R. J.; Ankenbrandt, C.; Cummings, M. A. C.; Johnson, R. P.; Robertsa, T. J.; Yoneharab, K.

    2010-03-01

    The MANX experiment is being proposed to demonstrate the reduction of 6D muon phase space emittance, using a continuous liquid absorber to provide ionization cooling in a helical solenoid magnetic channel. The experiment involves the construction of a two-period-long helical cooling channel (HCC) to reduce the muon invariant emittance by a factor of two. The HCC would replace the current cooling section of the MICE experiment now being set up at the Rutherford Appleton Laboratory. The MANX experiment would use the existing MICE spectrometers and muon beam line. We discuss the placement of detection planes to optimize the muon track resolution.

  18. Magnets for Muon 6D Cooling Channels

    SciTech Connect

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  19. Biochemical changes in cutaneous squamous cell carcinoma submitted to PDT using ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lima, Cassio A.; Goulart, Viviane P.; de Castro, Pedro A. A.; Correa, Luciana; Benetti, Carolina; Zezell, Denise M.

    2015-06-01

    Nonmelanoma skin cancers are the most common form of malignancy in humans. Between the traditional treatment ways, the photodynamic therapy (PDT) is a promising alternative which is minimally invasive and do not requires surgical intervention or exposure to ionizing radiation. The understanding of the cascade of effects playing role in PDT is not fully understood, so that define and understand the biochemical events caused by photodynamic effect will hopefully result in designing better PDT protocols. In this study we investigated the potential of the FTIR spectroscopy to assess the biochemical changes caused by photodynamic therapy after 10 and 20 days of treatment using 5-aminolevulinic acid (ALA) as precursor of the photosensitizer photoporphyrin IX (PpIX). The amplitude values of second derivative from vibrational modes obtained with FTIR spectroscopy showed similar behavior with the morphological features observed in histopathological analysis, which showed active lesions even 20 days after PDT. Thus, the technique has the potential to be used to complement the investigation of the main biochemical changes that photodynamic therapy promotes in tissue.

  20. In vivo study of ALA PLGA nanoparticles-mediated PDT for treating cutaneous squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojie; Shi, Lei; Huang, Zheng; Wang, Xiuli

    2014-09-01

    Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still a challenge. Although topical photodynamic therapy (PDT) is effective for treating in situ and superficial SCC, the effectiveness of topical ALA delivery to thick SCC can be limited by its bioavailability. Polylactic-co-glycolic acid nanopartieles (PLGA NPs) might provide a promising ALA delivery strategy. The aim of this study was to evaluate the efficacy of ALA PLGA NPs PDT for the treatment of cutaneous SCC in a mouse model. Methods: ALA loaded PLGA NPs were prepared and characterized. The therapeutic efficacy of ALA PLGA NP mediated PDT in treating UV-induced cutaneous SCC in the mice model were examined. Results: In vivo study showed that ALA PLGA NPs PDT were more effective than free ALA of the same concentration in treating mouse cutaneous SCC. Conclusion: ALA PLGA NPs provides a promising strategy for delivering ALA and treating cutaneous SCC.

  1. In vivo outcome study of BPD-mediated PDT using a macroscopic singlet oxygen model

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Penjweini, Rozhin; Zhu, Timothy C.

    2015-03-01

    Macroscopic modeling of the apparent reacted singlet oxygen concentration ([1O2]rx) for use with photodynamic therapy (PDT) has been developed and studied for benzoporphryin derivative monoacid ring A (BPD), a common photosensitizer. The four photophysical parameters (ξ, σ, β, δ) and threshold singlet oxygen dose ([1O2]rx, sh) have been investigated and determined using the RIF model of murine fibrosarcomas and interstitial treatment delivery. These parameters are examined and verified further by monitoring tumor growth post-PDT. BPD was administered at 1 mg/kg, and mice were treated 3 hours later with fluence rates ranging between 75 - 150 mW/cm2 and total fluences of 100 - 350 J/cm2. Treatment was delivered superficially using a collimated beam. Changes in tumor volume were tracked following treatment. The tumor growth rate was fitted for each treatment condition group and compared using dose metrics including total light dose, PDT dose, and reacted singlet oxygen. Initial data showing the correlation between outcomes and various dose metrics indicate that reacted singlet oxygen serves as a good dosimetric quantity for predicting PDT outcome.

  2. Topical application of ALA PDT for the treatment of moderate to severe acne vulgaris

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Li; Wang, Hong-Wei; Zhang, Ling-Lin; Su, Lina; Guo, Ming-Xia; Huang, Zheng

    2009-06-01

    Objectives: To evaluate the effectiveness of topical 5-aminolevulinic acid (ALA)- medicated photodynamic therapy (ALA PDT) for the treatment of moderate to severe acne vulgaris. Methods: Sixteen Chinese patients with moderate to severe facial acne were treated with 1-3 courses of ALA PDT. ALA cream (3%) was freshly prepared and applied to acne lesions for 3-4 h. The lesions were irradiated by a 635 nm diode laser at dose levels of 60 - 80 J/cm2 at 100 mW/cm2. Clinical assessments were conducted before and after treatment up to 3 months. Results: All patents showed response to ALA PDT. Complete clearance was seen in 10 patients (62.5%) and partial clearance in 6 patients (37.5%). One case showed recurrence after complete clearance at 2 months and another two showed recurrence after complete clearance at 3 months. However, the number of new lesions were significantly reduced. Adverse effects were minimal. Conclusions: The results of this preliminary clinical study is encouraging. ALA PDT is a simple, safe and useful therapeutic option for the treatment of moderate to severe acne. Further studies to evaluate the treatment with a larger number of patients and for a longer period of follow-up are needed.

  3. Photodynamic Therapy (PDT) with Chemotherapy for Advanced Lung Cancer with Airway Stenosis.

    PubMed

    Kimura, Masakazu; Miyajima, Kuniharu; Kojika, Masakazu; Kono, Takafumi; Kato, Harubumi

    2015-10-23

    Intractable advanced lung cancer can be treated palliatively with photodynamic therapy (PDT) combined with chemotherapy to remove central and peripheral (lobar or segmental bronchi) bronchial stenosis and obstruction. We present data for 12 (eight men, four women) consecutive patients with 13 advanced non-small cell lung carcinomas in whom curative operations were contraindicated, who underwent PDT combined with chemotherapy for local control of the intraluminal lesions. The mean age was 73.3 years (range, 58-80 years), and the stages of cancer were IIA-IV. The median stenosis rates before treatment, one week post-treatment, and one month post-treatment were 60% (range, 30%-100%), 15% (range, 15%-99%), and 15% (range 15%-60%), respectively. The mean and median survival times were 9.3 and 5.9 months, respectively. The overall 1-year survival rate was 30.0%. No PDT-related morbidity or mortality occurred. In this single-institution study, all patients experienced improved symptoms and quality of life at one week after treatment; furthermore, an objective response was evidenced by the substantial increase in the openings of the bronchial lumen and prevention of obstructive pneumonia. Therefore, PDT with chemotherapy was useful and safe for the treatment of bronchial obstruction.

  4. Establishment of treatment parameters for ALA-PDT of plaque psoriasis

    NASA Astrophysics Data System (ADS)

    Stringer, Mark R.; Robinson, Dominic J.; Collins, P.

    1996-12-01

    We report an investigation into the use of photodynamic therapy (PDT), following topically applied 5-aminolaevulinic acid (ALA), as a treatment for plaque psoriasis. Treatment was performed 4 hours post-ALA, using white light doses of 2 - 16 J cm-2 delivered at 10 - 40 mW cm-2. The fluorescence emission of protoporphyrin IX was used as an indicator of the relative concentration of photosensitizer within each plaque before, during, and after therapy. Results show that the rate of sensitizer photo- oxidation is proportional to both pre-treatment fluorescence intensity and surface irradiance, consistent with a rate- equation analysis. A correlation of fluorescence measurements with clinical response of plaques indicates that the effectiveness of PDT is dominated by the level of PpIX at the onset of treatment, and is much less dependent upon light dose. Using these findings we have established a PDT treatment protocol that involves the delivery of 8 J cm-2 of white light, at a rate of 15 mW cm-2. The possibility of ALA-PDT being established as the therapy of choice is discussed.

  5. Molecular mechanism of PDT-induced apoptotic cells stimulation NO production in macrophages

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Fei-fan; Yang, Si-hua; Chen, Wei R.

    2011-03-01

    It is well known that apoptotic cells (AC) participate in immune response. The immune response induced by AC, either immunostimulatory or immunosuppressive, have been extensively studied. However, the molecular mechanisms of the immunostimulatory effects induced by PDT-treated AC remain unclear. Nitric oxide (NO) is an important signal transduction molecule and has been implicated in a variety of functions. It has also been found to play an important role not only as a cytotoxic effector but an immune regulatory mediator. In this study, we demonstrate that the PDT-induced apoptotic tumor cells stimulate the production of NO in macrophages by up-regulating expression of inducible nitric oxide synthase (iNOS). In addition, we show that AC, through toll-like receptors (TLRs), can activate myeloid differentiation factor-88 (MyD88), indicating that AC serves as an intercellular signal to induce iNOS expression in immune cells after PDT treatment. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  6. Assessment of biophysical tumor response to PDT in pancreatic cancer using localized reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Isabelle, Martin; Klubben, William; He, Ting; Laughney, Ashley M.; Glaser, Adam; Krishnaswamy, Venkataramanan; Hoopes, P. Jack; Hasan, Tayyaba; Pogue, Brian W.

    2011-02-01

    Biophysical changes such as inflammation and necrosis occur immediately following PDT and may be used to assess the treatment response to PDT treatment in-vivo. This study uses localized reflectance measurements to quantify the scatter changes in tumor tissue occurring in response to verteporfin-based PDT treatment in xenograft pancreas tumors. Nude mice were implanted with subcutaneous AsPC-1 pancreatic tumors cells in matrigel, and allowed to establish solid tumors near 100mm3 volume. The mice were sensitized with 1mg/kg of the active component of verteporfin (benzoporphryin derivative, BPD), one hour before light delivery. The optical irradiation was performed using a 1 cm cylindrical interstitial diffusing tip fiber with 20J of red light (690nm). Tumor tissue was excised progressively and imaged, from 1 day to 4 weeks, after PDT treatment. The tissue sections were stained and analyzed by an expert veterinary pathologist, who provided information on tissue regions of interest. This information was correlated with variations in scattering and absorption parameters elucidated from the spectral images and the degree of necrosis and inflammation involvement was identified. Areas of necrosis and dead cells exhibited the lowest average scatter irradiance signature (3.78 and 4.07 respectively) compared to areas of viable pancreatic tumor cells and areas of inflammation (5.81 and 7.19 respectively). Bilirubin absorbance parameters also showed a lower absorbance value in necrotic tissue and areas of dead cells (0.05 and 0.1 respectively) compared to tissue areas for viable pancreatic tumor cells and areas of inflammation (0.28 and 0.35). These results demonstrate that localized reflectance spectroscopy is an imaging modality that can be used to identify tissue features associated with PDT treatment (e.g. necrosis and inflammation) that can be correlated with histopathologically-reviewed H&E stained slides. Further study of this technique may provide means for automated

  7. Identifying initial molecular targets of PDT: protein and lipid oxidation products

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Kim, Junhwan; Rodriguez, Myriam E.; Xue, Liang-yan; Kenney, Malcolm E.; Anderson, Vernon E.

    2009-06-01

    Photodynamic Therapy (PDT) generates singlet oxygen (1O2) which oxidizes biomolecules in the immediate vicinity of its formation. The phthalocyanine photosensitizer Pc 4 localizes to mitochondria and endoplasmic reticulum, and the primary targets of Pc 4-PDT are expected to be lipids and proteins of those membranes. The initial damage then causes apoptosis in cancer cells via the release of cytochrome c (Cyt-c) from mitochondria into the cytosol, followed by the activation of caspases. That damage also triggers the induction of autophagy, an attempt by the cells to eliminate damaged organelles, or when damage is too extensive, to promote cell death. Cyt-c is bound to the cytosolic side of the mitochondrial inner membrane through association with cardiolipin (CL), a phospholipid containing four unsaturated fatty acids and thus easily oxidized by 1O2 or by other oxidizing agents. Increasing evidence suggests that oxidation of CL loosens its association with Cyt-c, and that the peroxidase activity of Cyt-c can oxidize CL. In earlier studies of Cyt-c in homogeneous medium by MALDI-TOF-MS and LC-ESI-MS, we showed that 1O2 generated by Pc 4-PDT oxidized histidine, methionine, tryptophan, and unexpectedly phenylalanine but not tyrosine. Most of the oxidation products were known to be formed by other oxidizing agents, such as hydroxyl radical, superoxide radical anion, and peroxynitrite. However, two products of histidine were unique to 1O2 and may be useful for reporting the action of 1O2 in cells and tissues. These products, as well as CL oxidation products, have now been identified in liposomes and mitochondria after Pc 4-PDT. In mitochondria, the PDT dose-dependent oxidations can be related to specific changes in mitochondrial function, Bcl-2 photodamage, and Cyt-c release. Thus, the role of PDT-generated 1O2 in oxidizing Cyt-c and CL and the interplay between protein and lipid targets may be highly relevant to understanding one mechanism for cell killing by PDT.

  8. Efficacy of low-dose mTHPC-PDT for the treatment of basal cell carcinomas

    NASA Astrophysics Data System (ADS)

    Betz, Christian S.; Rauschning, Winrich; Stranadko, Evgueni P.; Riabov, Mikhail V.; Albrecht, Volker; Nifantiev, Nikolay E.; Hopper, Colin

    2009-06-01

    Objectives: Basal cell carcinomas (BCCs) are the most common skin cancers, and incidence rates are still rising. Photodynamic Therapy (PDT) with mTHPC (Foscan®) has shown to be a promising alternative to other treatments with good cosmetic results. This study was performed to determine optimal treatment parameters for this indication. Methods: 117 patients with a total of 460 BCCs received mTHPC-PDT. The treatment parameters were varied as follows: Foscan® dose 0.03 - 0.15 mg/kg, drug-light interval (DLI) 1 - 96 hours, total energy density 20 - 120 J/cm2. The clinical outcomes were assessed 8 weeks after PDT following WHO guidelines. Results: The rate of complete remissions (CR) was 96.7% and the general cosmetic outcome rated very good. In the largest subgroup (n=80) with low-dose mTHPC (0.05 mg/kg mTHPC; 48 hours DLI; 50 J/cm2 total energy density), a CR rate of 100% was accomplished. Minor changes of the parameters (0.04 mg/kg mTHPC or 24 hours DLI) yielded similar results. Side effects were encountered in 52 out of 133 PDT sessions. They were more common in patients who had received high drug doses (0.06 - 0.15 mg/kg) and comprised pain and phototoxic reactions. 3 patients developed severe sunburns with subsequent scarring at the injection site following sunlight exposure 2-3 weeks after mTHPC administration. Conclusions: The data suggests that low-dose mTHPC-PDT is an effective treatment option for BCCs. If sensibly applied, it is well tolerated and provides mostly excellent cosmetic results. The evaluation of long term results is still to be undertaken.

  9. Optimization of targeted two-photon PDT triads for the treatment of head and neck cancers

    NASA Astrophysics Data System (ADS)

    Spangler, Charles W.; Starkey, Jean R.; Dubinina, Galyna; Fahlstrom, Carl; Shepard, Joyce

    2012-02-01

    Synthesis of new PDT triads that incorporate a tumor-killing porphyrin with large two-photon cross-section for 150 fs laser pulses (2000 GM) in the Near-infrared (NIR) at 840 nm, a NIR imaging agent, and a small peptide that targets over-expressed EGF receptors on the tumor surface. This triad formulation has been optimized over the past year to treat FADU Head and Neck SCC xenograft tumors in SCID mice. Effective PDT triad dose (1-10 mg/Kg) and laser operating parameters (840 nm, 15-45 min, 900 mW) have been established. Light, dark and PDT treatment toxicities were determined, showing no adverse effects. Previous experiments in phantom and mouse models indicate that tumors can be treated directly through the skin to effective depths between 2 and 5 cm. Treated mice demonstrated rapid tumor regression with some complete cures in as little as 15-20 days. No adverse effects were observed in any healthy tissue through which the focused laser beam passed before reaching the tumor site, and excellent healing occurred post treatment including rapid hair re-growth. Not all irradiation protocols lead to complete cures. Since two-photon PDT is carried out by rastering focused irradiation throughout the tumor, there is the possibility that as the treatment depth increases, some parts of the tumor may escape irradiation due to increased scattering, thus raising the possibility that tumor re-growth could be triggered by small islands of untreated cells, especially at the rapidly growing tumor margins, a problem we hope to alleviate by using image-guided two-photon PDT.

  10. Imaging the Subsurface with Upgoing Muons

    NASA Astrophysics Data System (ADS)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Technical Challenges and Scientific Payoffs of Muon BeamAccelerators for Particle Physics

    SciTech Connect

    Zisman, Michael S.

    2007-09-25

    Historically, progress in particle physics has largely beendetermined by development of more capable particle accelerators. Thistrend continues today with the recent advent of high-luminosityelectron-positron colliders at KEK and SLAC operating as "B factories,"the imminent commissioning of the Large Hadron Collider at CERN, and theworldwide development effort toward the International Linear Collider.Looking to the future, one of the most promising approaches is thedevelopment of muon-beam accelerators. Such machines have very highscientific potential, and would substantially advance thestate-of-the-art in accelerator design. A 20-50 GeV muon storage ringcould serve as a copious source of well-characterized electron neutrinosor antineutrinos (a Neutrino Factory), providing beams aimed at detectorslocated 3000-7500 km from the ring. Such long baseline experiments areexpected to be able to observe and characterize the phenomenon ofcharge-conjugation-parity (CP) violation in the lepton sector, and thusprovide an answer to one of the most fundamental questions in science,namely, why the matter-dominated universe in which we reside exists atall. By accelerating muons to even higher energies of several TeV, we canenvision a Muon Collider. In contrast with composite particles likeprotons, muons are point particles. This means that the full collisionenergy is available to create new particles. A Muon Collider has roughlyten times the energy reach of a proton collider at the same collisionenergy, and has a much smaller footprint. Indeed, an energy frontier MuonCollider could fit on the site of an existing laboratory, such asFermilab or BNL. The challenges of muon-beam accelerators are related tothe facts that i) muons are produced as a tertiary beam, with very large6D phase space, and ii) muons are unstable, with a lifetime at rest ofonly 2 microseconds. How these challenges are accommodated in theaccelerator design will be described. Both a Neutrino Factory and a Muon

  12. DNA photocleavage by an osmium(II) complex in the PDT window.

    PubMed

    Sun, Yujie; Joyce, Lauren E; Dickson, Nicole M; Turro, Claudia

    2010-09-28

    The extended pi-delocalization of dppn (benzo[i]dipyrido[3,2-a:2,3-c]phenazine) results in a (3)pipi* state as the lowest triplet excited state in [Os(bpy)(2)(dppn)](2+) (bpy = 2,2'-bipyridine), which generates a (1)O(2) quantum yield of 0.42. Together with its (3)MLCT absorption, this new osmium complex shows efficient DNA cleavage under irradiation of lambda(irr) > or = 645 nm.

  13. Michel parameters in radiative muon decay

    NASA Astrophysics Data System (ADS)

    Arbuzov, A. B.; Kopylova, T. V.

    2016-09-01

    Radiative muon and tau lepton decays are described within the model-independent approach with the help of generalized Michel parameters. The exact dependence on charged lepton masses is taken into account. The results are relevant for modern and future experiments on muon and tau lepton decays.

  14. CMS muon detector and trigger performance

    NASA Astrophysics Data System (ADS)

    Piccolo, Davide; CMS Collaboration

    2011-02-01

    In the CMS experiment at the LHC proton-proton collider, a key role will be played by the muon system that is embedded inside the iron yoke used to close the magnetic flux of the CMS solenoid. The muon system of the CMS experiment performs three main tasks: triggering of muons, identifying muons, and assisting the central tracker in order to measure the momentum and charge of high-pt muons in the pseudorapidity region |η|≤2.4. The system is composed by a central barrel and two closing endcaps. Three independent technologies are used to reconstruct and trigger muons: Drift Tubes (DT) in the barrel, Cathode Strips Chambers (CSC) in the endcaps and Resistive Plate Chambers (RPC) in both barrel and endcap regions. All the detectors will contribute to the tracking and triggering of muons. Towards the end of 2008 and in 2009 the CMS experiment was commissioned with many millions of cosmic rays. These data have been fundamental to check the performance of the three sub-detectors and of the trigger response. In this paper the results in terms of the detection and trigger performance at the level of each sub-detector and at the level of the full muon system will be reported.

  15. Polarization Effects at a Muon Collider

    SciTech Connect

    Parsa, Z.

    1998-11-01

    For Muon Colliders, Polarization will be a useful tool if high polarization is achievable with little luminosity loss. Formulation and effects of beam polarization and luminosity including polarization effects in Higgs resonance studies are discussed for improving precision measurements and Higgs resonance ''discovery'' capability e.g. at the First Muon Collider (FMC).

  16. Neutron Production by Muon Spallation I: Theory

    SciTech Connect

    Luu, T; Hagmann, C

    2006-11-13

    We describe the physics and codes developed in the Muon Physics Package. This package is a self-contained Fortran90 module that is intended to be used with the Monte Carlo package MCNPX. We calculate simulated energy spectra, multiplicities, and angular distributions of direct neutrons and pions from muon spallation.

  17. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    SciTech Connect

    PARSA,Z.

    2000-04-07

    In this paper, high energy physics possibilities and future colliders are discussed. The {mu}{sup +} {mu}{sup {minus}} collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged.

  18. Histopathological and expression profiling studies of early tumor responses to near-infrared PDT treatment in SCID mice

    NASA Astrophysics Data System (ADS)

    Starkey, Jean R.; Rebane, Aleksander; Drobizhev, Mikhail A.; Meng, Fanqin; Gong, Aijun; Elliott, Aleisha; McInnerney, Kate; Pascucci, Elizabeth; Spangler, Charles W.

    2008-02-01

    A novel class of porphyrin-based near-infrared photodynamic therapy (PDT) sensitizers is studied. We achieve regressions of human small cell lung cancer (NCI-H69), non-small cell lung cancer (A 459) and breast cancer (MDAMB- 231) xenografts in SCID mice at significant tissue depth by irradiation with an amplified femtosecond pulsed laser at 800 nm wavelength. Significant tumor regressions were observed during the first 10-14 days post treatment. Tumor histopathology was consistent with known PDT effects, while no significant changes were noted in irradiated normal tissues. In vivo imaging studies using intravenous injections of fluorescent dextran demonstrated an early loss of tumor blood flow. RNA was isolated from NCI-H69 PDT treated SCID mouse xenografts and paired untreated xenografts at 4 hours post laser irradiation. Similarly RNA was isolated from PDT treated and untreated Lewis lung carcinomas growing in C57/Bl6 mice. Expression profiling was carried out using Affymetrix TM human and mouse GeneChips®. Cluster analysis of microarray expression profiling results demonstrated reproducible increases in transcripts associated with apoptosis, stress, oxygen transport and gene regulation in the PDT treated NCI-H69 samples. In addition, PDT treated Lewis lung carcinomas showed reproducible increases in transcripts associated with immune response and lipid biosynthesis. PDT treated C57/Bl6 mice developed cytotoxic T cell activity towards this tumor, while untreated tumor bearing mice failed to do so.

  19. Reverse Emittance Exchange for Muon Colliders

    SciTech Connect

    V. Ivanov, A. Afanasev, C.M. Ankenbrandt, R.P. Johnson, G.M. Wang, S.A. Bogacz, Y.S. Derbenev

    2009-05-01

    Muon collider luminosity depends on the number of muons in the storage ring and on the transverse size of the beams in collision. Ionization cooling as it is currently envisioned will not cool the beam sizes sufficiently well to provide adequate luminosity without large muon intensities. Six-dimensional cooling schemes will reduce the longitudinal emittance of a muon beam so that smaller high frequency RF cavities can be used for later stages of cooling and for acceleration. However, the bunch length at collision energy is then shorter than needed to match the interaction region beta function. New ideas to shrink transverse beam dimensions by lengthening each bunch will help achieve high luminosity in muon colliders. Analytic expressions for the reverse emittance exchange mechanism were derived, including a new resonant method of beam focusing.

  20. Cold fusion catalyzed by muons and electrons

    SciTech Connect

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

  1. Study of multi-muon events produced in p anti-p interactions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Fermilab

    2010-06-12

    We report the results of a study of multi-muon events produced at the Fermilab Tevatron collider and acquired with the CDF II detector using a dedicated dimuon trigger. The production cross section and kinematics of events in which both muon candidates are produced inside the beam pipe of radius 1.5 cm are successfully modeled by known processes which include heavy flavor production. In contrast, we are presently unable to fully account for the number and properties of the remaining events, in which at least one muon candidate is produced outside of the beam pipe, in terms of the same understanding of the CDF II detector, trigger, and event reconstruction.

  2. Photodynamic therapy activated STAT3 associated pathways: Targeting intrinsic apoptotic pathways to increase PDT efficacy in human squamous carcinoma cells.

    PubMed

    Qiao, Li; Xu, Chengshan; Li, Qiang; Mei, Zhusong; Li, Xinji; Cai, Hong; Liu, Wei

    2016-06-01

    5-Aminolaevulinic acid-based photodynamic therapy (ALA-PDT) has been used for part of squamous cell carcinoma (premalignant conditions or in situ cutaneous SCC-Bowen disease). However, mechanism of ALA-PDT is not fully understood yet on the cell apoptosis pathway. The aim of this study was to further investigate the effect and mechanism of 5-ALA-PDT on human squamous carcinoma A431cells. Apoptosis and cell viability after PDT were evaluated using Annexin V-FITC apoptosis detection kit and MTT assay. The mRNA and protein levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Our data showed that 5-ALA-PDT significantly inhibited cell proliferation (p<0.05), but there was no significant difference when the photosensitizer reached to 4.8mM. The inhibition in cell proliferation after 5-ALA-PDT treatment was correlated to more cells being arrested in the G0/G1 phase of the cell cycle (p<0.01). Immunocytochemical observations using anti-active caspase-3 antibodies showed active caspase-3 was translocated from cytoplasm to nuclear during apoptosis. STAT3 and its downstream gene Bax and BCL-2 were changed after 5-ALA-PDT treatment for the mRNA and protein expression. Our studies confirmed that 5-ALA-PDT might be an effective treatment for human squamous carcinoma by inhibiting the tumor cell A431growth and for the first time demonstrated that the expression of STAT3 was significantly reduced at 24h after 5-ALA-PDT treatment. PMID:26607555

  3. In vivo suppression of solid Ehrlich cancer via chlorophyllin derivative mediated PDT: an albino mouse tumour model

    NASA Astrophysics Data System (ADS)

    Gomaa, Iman; Saraya, Hend; Zekri, Maha; Abdel-Kader, Mahmoud

    2015-03-01

    In this study, copper chlorophyllin was used as a photosensitizer for photodynamic therapy (PDT) in Ehrlich tumour mouse model. Six groups of animals comprising 5 animals per group were subcutaneously transplanted with 1x106 Ehrlich tumour cells. A single dose of 200 μg/gm body weight chlorophylin derivative was administered by intravenous (IV) or intratumoral (IT) routes. Mice were exposed to monochromatic red laser of 630 nm for 1 h, and tumour regression was followed up for three consecutive months post treatment. Several Biochemical, histological and molecular tests were performed in order to evaluate the efficacy and safety of the applied treatment. An interest has been also directed towards investigating the molecular mechanisms underlying chlorophyllin derivative mediated PDT. PDT-treated animals via either the IV or IT routes showed significant decrease in tumour size 72 h post-treatment. Tumours at the IV-PDT group disappeared totally within a week with no recurrence over three months follow up. In the IT-PDT, the decrease in tumour size at the first week was interrupted by a slight increase; however never reached the original size. Histological examination of tumour tissues of the IV-PDT group at 24 h post treatment demonstrated restoring the normal muscle tissue architecture, and the biochemical assays indicated normal liver functions. The immunohistochemical analysis of caspase-3, and the quantitative PCR results of caspases-8 and 9 proved the presence of extrinsic apoptotic pathway after cholorphyllin derivative-mediated PDT. In conclusion IV-PDT strategy proved better cure rate than the IT-PDT, with no recurrence over three months of follow up.

  4. Anticancer effect and cell cycle regulation of photodynamic therapy (PDT) using 9-hydroxypheophorbide-a and 660-nm diode laser

    NASA Astrophysics Data System (ADS)

    Chung, Phil-Sang; Rhee, Chung-Ku; Oh, Chung-Hun; Kim, Han-Gyun; Jung, Sang-Oun; Ahn, Jin-Chul

    2003-06-01

    Tumor hypoxia, either pre-existing or as a result of oxygen bleaching during Photodynamic Therapy (PDT) light irradiation, can significantly reduce the effectiveness of PDT induced cell killing. To overcome the effect of tumor hypoxia and improve tumor cell killing, we propose using supplemental hyperoxygenation during Photofrin PDT. Our previous study has demonstrated that, in an in vivo model, tumor control can be improved by normobaric or hyperbaric 100% oxygen supply. The mechanism for the tumor cure enhancement of the hyperoxygenation-PDT combined therapy is investigated in this study by using an in vivo/in vitro technique. A hypoxic tumor model was established by implanting mammary adenocarcinoma (MCA) in hind legs of C3H mice. Light irradiation (200 J/cm2 at either 75 or 150 mW/cm2), under various oxygen supplemental conditions (room air or carbogen or 100% normobaric or hyperbaric 100% oxygen), was delivered through an optical fiber with a microlens to animals who received 12.5 mg/kg Photofrin 24 hours prior to light irradiation. Tumors treated with PDT were harvested and grown in vitro for colony formation analysis. Treated tumors were also analyzed histologically. The results show that, when combined with hyperoxygenation, the cell killing rate immediately after a PDT treatment is significantly improved over that treated without hyperoxygenation, suggesting an enhanced direct cell killing. This study further confirms our earlier observation that when a PDT treatment is combined with hyperoxygenation, it can be more effective in controlling hypoxic tumors. H&E stain revealed that PDT induced tumor necrosis and hemorrhage. In conclusion, by using an in vivo/in vitro assay, we have shown that PDT combined with hyper-oxygenation can enhance direct cell killing and improve tumor cure.

  5. Combination of verteporfin-PDT and PI3K inhibitors enhances cell growth inhibition and apoptosis in endothelial cells

    NASA Astrophysics Data System (ADS)

    Kraus, Daniel; Chen, Bin

    2016-03-01

    Vascular targeted photodynamic therapy is a promising cancer treatment modality by ablating tumor vasculature. The effectiveness of this treatment is often compromised by regrowth of endothelial cells, which causes tumor recurrence. In this preliminary report, we showed that activated PI3K signaling was involved in endothelial cell regrowth after PDT with verteporfin and combination between verteporfin-PDT and PI3K pathway inhibitor BEZ235 induced more cell apoptosis and greater inhibition in cell proliferation. These results suggest that rational combination of verteporfin-PDT and PI3K inhibitors result in enhanced treatment outcomes.

  6. Muon spin rotation research program

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.

    1980-01-01

    Data from cyclotron experiments and room temperature studies of dilute iron alloys and iron crystals under strain were analyzed. The Fe(Mo) data indicate that the effect upon the contact hyperfine field in Fe due to the introduction of Mo is considerably less than that expected from pure dilution, and the muon (+) are attracted to the Mo impurity sites. There is a significant change in the interstitial magnetic field with Nb concentration. The Fe(Ti) data, for which precession could clearly be observed early only at 468K and above, show that the Ti impurities are attractive to muon (+), and the magnitude of B(hf) is reduced far beyond the amount expected from pure dilution. Changes in the intersitital magnetic field with the introduction of Cr, W, Ge, and Si are also discussed. When strained to the elastic limit, the interstitial magnetic field in Fe crystals is reduced by 33 gauss, and the relaxation rate of the precession signal increases by 47%.

  7. Muon implantation of metallocenes: ferrocene.

    PubMed

    Jayasooriya, Upali A; Grinter, Roger; Hubbard, Penny L; Aston, Georgina M; Stride, John A; Hopkins, Gareth A; Camus, Laure; Reid, Ivan D; Cottrell, Stephen P; Cox, Stephen F J

    2007-01-01

    Muon Spin Relaxation and Avoided Level Crossing (ALC) measurements of ferrocene are reported. The main features observed are five high field resonances in the ALC spectrum at about 3.26, 2.44, 2.04, 1.19 and 1.17 T, for the low-temperature phase at 18 K. The high-temperature phase at 295 K shows that only the last feature shifted down to about 0.49 T and a muon spin relaxation peak at about 0.106 T which approaches zero field when reaching the phase transition temperature of 164 K. A model involving three muoniated radicals, two with muonium addition to the cyclopentadienyl ring and the other to the metal atom, is postulated to rationalise these observations. A theoretical treatment involving spin-orbit coupling is found to be required to understand the Fe-Mu adduct, where an interesting interplay between the ferrocene ring dynamics and the spin-orbit coupling of the unpaired electron is shown to be important. The limiting temperature above which the full effect of spin-orbit interaction is observable in the muSR spectra of ferrocene was estimated to be 584 K. Correlation time for the ring rotation dynamics of the Fe-Mu radical at this temperature is 3.2 ps. Estimated electron g values and the changes in zero-field splittings for this temperature range are also reported.

  8. MAGNETS FOR A MUON STORAGE RING.

    SciTech Connect

    PARKER, B.; ANERELLA, M.; GHOSH, A.; GUPTA, R.; HARRISON, M.; SCHMALZLE, J.; SONDERICKER, J.; WILLEN, E.

    2002-06-18

    We present a new racetrack coil magnet design, with an open midplane gap, that keeps decay particles in a neutrino factory muon storage ring from directly hitting superconducting coils. The structure is very compact because coil ends overlap middle sections top and bottom for skew focusing optics. A large racetrack coil bend radius allows ''react and wind'' magnet technology to be used for brittle Nb{sub 3}Sn superconductors. We describe two versions: Design-A, a magnet presently under construction and Design-B, a further iterated concept that achieves the higher magnetic field quality specified in the neutrino factory feasibility Study-II report. For Design-B reverse polarity and identical end design of consecutive long and short coils offers theoretically perfect magnet end field error cancellation. These designs avoid the dead space penalty from coil ends and interconnect regions (a large fraction in machines with short length but large aperture magnets) and provide continuous bending or focusing without interruption. The coil support structure and cryostat are carefully optimized.

  9. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    NASA Astrophysics Data System (ADS)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L. H.

    2015-12-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The "muon generator" produces muons with zenith angles in the range 0-90° and energies in the range 1-100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance-Rejection and Metropolis-Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1-60 GeV and zenith angles 0-90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic-polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed "muon generator" is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  10. Higher-Order Systematic Effects in the Muon Beam-Spin Dynamics for Muon g-2

    NASA Astrophysics Data System (ADS)

    Crnkovic, Jason; Brown, Hugh; Krouppa, Brandon; Metodiev, Eric; Morse, William; Semertzidis, Yannis; Tishchenko, Vladimir

    2016-03-01

    The BNL Muon g-2 Experiment (E821) produced a precision measurement of the muon anomalous magnetic moment, where as the Fermilab Muon g-2 Experiment (E989) is an upgraded version of E821 that has a goal of producing a measurement with approximately 4 times more precision. Improving the precision requires a more detailed understanding of the experimental systematic effects, and so three higher-order systematic effects in the muon beam-spin dynamics have recently been found and estimated for E821. The beamline systematic effect originates from muon production in beamline spectrometers, as well as from muons traversing beamline bending magnets. The kicker systematic effect comes from a combination of the variation in time spent inside the muon storage ring across a muon bunch and the temporal structure of the storage ring kicker waveform. Finally, the detector systematic effect arises from a combination of the energy dependent muon equilibrium orbit in the storage ring, muon decay electron drift time, and decay electron detector acceptance effects. Brookhaven Natl Lab.

  11. The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider

    SciTech Connect

    R. Raja et al.

    2001-08-08

    The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

  12. Photodynamic therapy (ALA-PDT) in the treatment of pathological states of the cornea

    NASA Astrophysics Data System (ADS)

    Switka-Wieclawska, Iwona; Kecik, Tadeusz; Kwasny, Miroslaw; Graczyk, Alfreda

    2003-10-01

    Each year an increasing amount of research is published on the use of photodynamic therapy in medicine. The most recent research has focused mostly on the use of photosensitizer called vertoporphyrin (Visudyne) is the treatment of subretinal neovascularization in age-related macular degeneration (AMD) or myopia, following a substantial amount of ophthalmology research mostly experimental on the application of the method in diagnosis and treatment of some eye tumors. In the Department of Ophthalmology of Polish Medical University in Warsaw, PDT was used as supplementary method in a selected group of patients with chronic virus ulcer of the cornea and keratopathies. During the treatment 5-aminolevulinic acid (5-ALA) was applied in ointment form as a photosensitizer activated with light wave of 633 nm. It appears, on the basis of the results obtained, that photodynamic therapy (ALA-PDT) may become in the future a valuable supplement to the methods being used at the present treating pathological states of the cornea.

  13. Absolute calibration of optical power for PDT: report of AAPM TG140.

    PubMed

    Zhu, Timothy C; Bonnerup, Chris; Colussi, Valdir C; Dowell, Marla L; Finlay, Jarod C; Lilge, Lothar; Slowey, Thomas W; Sibata, Claudio

    2013-08-01

    This report is primarily concerned with methods for optical calibration of laser power for continuous wave (CW) light sources, predominantly used in photodynamic therapy (PDT). Light power calibration is very important for PDT, however, no clear standard has been established for the calibration procedure nor the requirements of power meters suitable for optical power calibration. The purposes of the report are to provide guidance for establishing calibration procedures for thermopile type power meters and establish calibration uncertainties for most commercially available detectors and readout assemblies. The authors have also provided a review of the use of various power meters for CW and pulsed optical sources, and provided recommended temporal frequencies for optical power meter calibrations and guidance for routine quality assurance procedure.

  14. Muon simulation codes MUSIC and MUSUN for underground physics

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, V. A.

    2009-03-01

    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.

  15. Pion contamination in the MICE muon beam

    DOE PAGES

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; et al

    2016-03-01

    Here, the international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less thanmore » $$\\sim$$1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $$f_\\pi < 1.4\\%$$ at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.« less

  16. Comparison between mALA- and ALA-PDT in the treatment of basal cell carcinomas

    NASA Astrophysics Data System (ADS)

    Schleier, Peter; Zenk, Witold; Hyckel, Peter; Berndt, Alexander

    2006-02-01

    Introduction: The external application of aminoleavulinic acid (ALA), which is a substrate of physiologic cell metabolism, represents a possible treatment option in superficial basal cell carcinomas (BCC). The development of new ALA-esters (mALA) with potential for higher penetration depths promises higher therapeutic success. This research aimed to prove the following hypothesis: The cytotoxic effect of the mALA- photodynamic therapy (mALA-PDT), when compared to the ALA-PDT, leads to a higher clinical success rate. Material and Methods: 24 patients with multiple facial tumors, after having received several local surgical excisions with known histology, were treated with either ALA- or mALA-PDT, during the past two years. In total, 89 basal cell carcinoma, 45 actinic keratoses, 6 keratoacanthoma, and 2 squamous cell carcinomas were treated. ALA-PDT: A thermo gel with 40 % mALA or ALA was applied from a cooled syringe. Three to five hours after gel application the skin was cleaned from any gel residues. Irradiation was done with a diode laser and was performed in two sessions, each 10 min long. After intervals of 2, 4 and 12 weeks, the patients were recalled to assess therapeutic efficacy. This was followed by photographic documentation. Results: More than 80% of the tumors treated primarily were resolved successfully. A recurrence rate of approximately 15% was observed. Three per cent of the tumors showed no reaction to therapy. There were no statistically significant differences between the two therapeutic groups. Discussion: The advantage of the use of ALA lies foremost in the fast metabolic use of the body's own photosensitizer PpIX. There are no known side effects of this therapy. Moreover, external application is superior to systemic application with regard to patient management. The method can be combined with other therapies. Although the mALA should have a better penetration in tumor tissue, the therapeutic outcome is similar to the use of ALA.

  17. The tools of PDT: light sources and devices. Can they help in getting better therapeutic results?

    NASA Astrophysics Data System (ADS)

    Boucher, Didier

    2011-08-01

    PDT is a drug and device therapy using photosensitizing drugs activated by laser light, for tissue ablation. PDT light sources must deliver wavelengths matching the absorption of photosensitizers' compound without any side thermal effect. According to applications, these sources need to be: - pled to relatively small optical fibres so as to bring the light energy, of specific wavelength, inside of the body (gastroenterology, head & neck, urology, pneumology), - coupled to a slit lamp adapter to transmit the light to the eye (AMD) - or allow a direct illumination of tissues when large areas must be treated (dermatology). But they also need to be user-friendly with limited investment and installation costs. So as to achieve the required effects, several light sources are available and will be used but practical and economical reasons have limited the number and types of these sources. For PDT oncology applications, besides dermatology, it has also been necessary to develop specific light delivery systems based on optical fibres. These devices allow the treatment: - of circular lumens such as oesophagus, bile ducts, lungs - of solid volumes such as prostate, pancreas - of surfaces such as in head and neck - of empty volumes such as bladder, uterus, cervix. Due to the variety of these treatments, a full family of sources has been developed from original sophisticated costly lasers to more recent easy-to-use diode laser systems. The aim of this presentation is to present the actual state of the art of actual available PDT tools, analyze their qualities and weaknesses, analyze the consequences of a good and/or bad choice or good and/or bad utilization on the quality of the therapeutic results and resulting side effects. It will also evaluate the short and medium term developments of new tools and their effect on the development of the therapy including economical aspects.

  18. Naphthalocyanines relevant to the search for second-generation PDT sensitizers

    NASA Astrophysics Data System (ADS)

    Sounik, James R.; Rihter, Boris D.; Ford, William E.; Rodgers, Michael A. J.; Kenney, Malcolm E.

    1991-06-01

    Methods for the preparation of three siloxysilicon naphthalocyanines, a siloxygermanium tetraphenoxynaphthalocyanine, a siloxysilicon tetra-t-butyl-naphthalocyanine, a cofacial double-ring siloxysilicon naphthalocyanine, and a cofacial triple-ring siloxysilicon naphthalocyanine that are relevant to the search for second generation PDT sensitizers are outlined. Ultraviolet-visible spectra, NMR spectra, and other properties of these compounds are given and discussed. In addition, an attempt to make an aluminum tetradibenzobarreleno-naphthalocyanine is described.

  19. SNM detection by active muon interrogation

    SciTech Connect

    Jason, Andrew J; Miyadera, Haruo; Turchi, Peter J

    2010-01-01

    Muons are charged particles with mass between the electron and proton and can be produced indirectly through pion decay by interaction of a charged-particle beam with a target. There are several distinct features of the muon interaction with matter attractive as a probe for detection of SNM at moderate ranges. These include muon penetration of virtually any amount of material without significant nuclear interaction until stopped by ionization loss in a short distance. When stopped, high-energy penetrating x-rays (in the range of 6 MeV for uranium,) unique to isotopic composition are emitted in the capture process. The subsequent interaction with the nucleus produces additional radiation useful in assessing SNM presence. A focused muon beam can be transported through the atmosphere, at a range limited mainly by beam-size growth through scattering. A muonbeam intensity of > 10{sup 9} /second is required for efficient interrogation and, as in any other technique, dose limits are to be respected. To produce sufficient muons a high-energy (threshold {approx}140 MeV) high-intensity (<1 mA) proton or electron beam is needed implying the use of a linear accelerator to bombard a refractory target. The muon yield is fractionally small, with large angle and energy dispersion, so that efficient collection is necessary in all dimensions of phase space. To accomplish this Los Alamos has proposed a magnetic collection system followed by a unique linear accelerator that provides the requisite phase-space bunching and allows an energy sweep to successively stop muons throughout a large structure such as a sea-going vessel. A possible maritime application would entail fitting the high-gradient accelerators on a large ship with a helicopter-borne detection system. We will describe our experimental results for muon effects and particle collection along with our current design and program for a muon detection system.

  20. Designing PDT-based combinations to overcome chemoresistance in heterocellular 3D tumor models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rizvi, Imran; Briars, Emma A.; Bulin, Anne-Laure; Anbil, Sriram; Vecchio, Daniela; Alkhateeb, Ahmed; Hanna, William R.; Celli, Jonathan P.; Hasan, Tayyaba

    2016-03-01

    A major barrier to treating advanced-stage cancers is heterogeneity in the responsiveness of metastatic disease to conventional therapies leading to resistance and treatment failure. Photodynamic therapy (PDT) has been shown to synergize with conventional agents and to overcome the evasion pathways that cause resistance. Developing PDT-based combinations that target resistant tumor populations and cooperate mechanistically with conventional agents is an increasingly promising approach to improve therapeutic efficacy while minimizing toxicity, particularly in complex disease sites. Identifying the molecular, cellular, and microenvironmental cues that lead to heterogeneity and treatment resistance is critical to developing strategies to target unresponsive regions of stubborn disease. Cell-based research platforms that integrate key microenvironmental cues are emerging as increasingly important tools to improve the translational efficiency of new agents, and to design combination regimens. Among the challenges associated with developing and scaling complex cell-based screening platforms is the need to integrate, and balance, biological relevance with appropriate, high-content imaging routines that provide meaningful quantitative readouts of therapeutic response. The benefits and challenges associated with deriving meaningful insights from complex cell-based models will be presented, with a particular emphasis on overcoming chemoresistance mediated by physical stress and communication with stromal partners (e.g. tumor endothelial cells, which are emerging as dynamic regulators of treatment resistance) using PDT-based combinations.

  1. Photodynamic therapy (PDT) of malignant tumors by photosensitzer photosens: results of 45 clinical cases

    NASA Astrophysics Data System (ADS)

    Sokolov, Victor V.; Chissov, Valery I.; Yakubovskaya, Raisa I.; Aristarkhova, E. I.; Filonenko, E. V.; Belous, T. A.; Vorozhtsov, Georgy N.; Zharkova, Natalia N.; Smirnov, V. V.; Zhitkova, Margarita B.

    1996-01-01

    Photosensitizer Photosens is a mixture of sulphonated Al-phthalocyanines with a different number of substituents per phthalocyanine molecule. In the beginning of 1994, this photosensitizer was approved for clinical trials. Since that time till May 1995, 45 patients with 120 tumors were treated by PDT-Photosens. The main tumor localizations were lung (5/6), head and neck (4/4), esophagus (8/8), stomach (2/2), vulva (2/2), bladder (1/1), breast cancer (3/3), skin (basalioma, melanoma, sarcoma Kaposi, mts breast cancer) (20 patients/94 tumors). The lesions were photoirradiated 48-72 h after intravenous injection of Photosens in doses from 0.5 to 2.0 mg/kg b.w. (1.0 mg/kg b.w., on average). PDT was performed by laser power density from 20 to 1400 mW/sq cm (300 mW/sq.cm, on average), energy density varying from 15 to 200 J/sq cm (100 J/sq.cm, on average). The therapeutical effect of PDT was evaluated histologically, endoscopically, roentgenologically and sonographically 3 - 4 weeks after the treatment. Complete regression of tumors was reached in 56%, significant remission was reached in 34%, and partial remission was observed in 10% of cases. The follow-up of patients with complete tumor regression was to 15 months.

  2. The role of NO synthase isoforms in PDT-induced injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Berezhnaya, E. V.; Uzdensky, A. B.

    2015-03-01

    Nitric oxide (NO) is an important second messenger, involved in the implementation of various cell functions. It regulates various physiological and pathological processes such as neurotransmission, cell responses to stress, and neurodegeneration. NO synthase is a family of enzymes that synthesize NO from L-arginine. The activity of different NOS isoforms depends both on endogenous and exogenous factors. In particular, it is modulated by oxidative stress, induced by photodynamic therapy (PDT). We have studied the possible role of NOS in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Antinecrotic and proapoptotic effects of NO on the glial cells were found using inhibitory analysis. We have shown the role of inducible NO synthase in photoinduced apoptosis and involvement of neuronal NO synthase in photoinduced necrosis of glial cells in the isolated crayfish stretch receptor. The activation of NO synthase was evaluated using NADPH-diaphorase histochemistry, a marker of neurons expressing the enzyme. The activation of NO synthase in the isolated crayfish stretch receptor was evaluated as a function of time after PDT. Photodynamic treatment induced transient increase in NO synthase activity and then slowly inhibited this enzyme.

  3. Squaraine PDT induces oxidative stress in skin tumor of swiss albino mice

    NASA Astrophysics Data System (ADS)

    Cibin, T. R.; Gayathri, Devi D.; Ramaiah, D.; Abraham, Annie

    2010-02-01

    Photodynamic Therapy (PDT) using a sensitizing drug is recognized as a promising medical technique for cancer treatment. It is a two step process that requires the administration of a photosensitizer followed by light exposure to treat a disease. Following light exposure the photosensitizer is excited to a higher energy state which generates free radicals and singlet oxygen. The present study was carried out to assess the oxidative damage induced by bis (3, 5-diiodo-2, 4, 6- trihydroxyphenyl) squaraine in skin tumor tissues of mice with/ without light treatment. Skin tumor was induced using 7, 12-Dimethyl Benz(a)anthracene and croton oil. The tumor bearing mice were given an intraperitoneal injection with the squaraine dye. After 24h, the tumor area of a few animals injected with the dye, were exposed to visible light from a 1000 W halogen lamp and others kept away from light. All the mice were sacrificed one week after the PDT treatment and the oxidative profile was analyzed (TBARS, SOD, catalase, GSH, GPx and GR) in tumor/ skin tissues. The dye induces oxidative stress in the tumor site only on illumination and the oxidative status of the tumor tissue was found to be unaltered in the absence of light. The results of the study clearly shows that the tumor destruction mediated by PDT using bis (3, 5-diiodo-2, 4, 6-trihydroxyphenyl) squaraine as a photosensitizer is due to the generation of reactive oxygen species, produced by the light induced changes in the dye.

  4. Feasibility of interstitial diffuse optical tomography using cylindrical diffusing fiber for prostate PDT

    PubMed Central

    Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.

    2013-01-01

    Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149

  5. Photodynamic therapy (PDT) to treat a chronic skin wound in a dog

    NASA Astrophysics Data System (ADS)

    Hage, Raduan; Plapler, Hélio; Bitar, Renata A.

    2008-02-01

    Photodynamic Therapy (PDT) is an emerging and promising therapeutic modality for treatment of a wide variety of malignant and nononcologic tumors, as well as in the treatment of infected skin ulcers. This study evaluated the effectiveness of the PDT to treat a chronic skin wound that had been already subjected to several clinical and surgical type treatments in a dog. The animal with an infected chronic skin wound with 8 cm diameter in the left leg received an injection of an aqueous solution of 1% methylene blue (MB) with 2% lidocaine into the lesion. After MB injection the wound was irradiated using a LED (LED-VET MMOptics(r)) with a wavelength between 600 and 700 nm, 2 cm diameter circular light beam, of 150 mW of power, light dose of 50 J/cm2. After 3 and 6 weeks PDT was repeated and the wound was re-evaluated. Complete healing was achieved 10 weeks after the first procedure.

  6. FRET analysis demonstrates a rapid activating of caspase-3 during PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, Yunxia; Chen, Qun

    2006-09-01

    Apoptosis is a very important cellular event that plays a key role in pathogeny and therapy of many diseases. In this study, a recombinant caspase-3 substrate was used as a fluorescence resonance energy transfer (FRET) probe to detect the activation of caspase-3, and to monitor apoptosis in human lung adenocarcinoma (ASTC-a- 1) cells. With laser scanning confocal microscopy, we found that Photofrin were localized primarily in mitochondria, the primary targets of Photofrin-PDT. By analyzing the dynamic changes of FRET fluorescence, the results indicate that the onset and completion of caspase-3 activation induced by PDT is more rapidly than that by tumor necrosis factor-α (TNF-α). The activation of caspase-3 by PDT started 20 minutes after treatment and completed in about 15 minutes. In comparison, the onset of caspase-3 activation by TNF-a was delayed by 3 hours and the completion of caspase-3 activation required a significantly longer time (approximately 90 minutes). These results indicated that the initiation and process of caspase-3 activation are different corresponding to different treatment methods. Our data suggest that caspase-3 activation mediated by the cell surface death receptors is slower than that of the mitochondrial pathway and the mitochondria is an efficient target to induce apoptosis.

  7. PDT in non-surgical treatment of periodontitis in kidney transplanted patients: a split-mouth, randomized clinical trial

    NASA Astrophysics Data System (ADS)

    Marinho, Kelly C. T.; Giovani, Elcio M.

    2016-03-01

    This study was to evaluate clinical and microbiological effectiveness of photodynamic therapy (PDT) in the treatment of periodontal disease in kidney-transplanted patients. Eight kidney transplanted patients treated at Paulista University were arranged in two groups: SRP performed scaling and root planning by ultrasound; SRP+PDT- in the same patient, which was held to PDT in the opposite quadrant, with 0.01% methylene blue and red laser gallium aluminum arsenide, wavelength 660 nm, power 100 mW. There was reduction in probing pocket depth after 45 days and 3 months regardless the group examined; plaque and bleeding index showed improvement over time, regardless the technique used, and bleeding index in the SRP+PDT group was lower when compared with the baseline the other times. There was no difference in the frequency of pathogens. Photodynamic therapy may be an option for treatment of periodontal disease in renal-transplanted patients and its effectiveness is similar to conventional therapy.

  8. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L.; Lukic, Zarija; Masuda, Koji; Perry, John O.

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  9. Imaging Fukushima Daiichi reactors with muons

    NASA Astrophysics Data System (ADS)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Lukić, Zarija; Masuda, Koji; Milner, Edward C.; Morris, Christopher L.; Perry, John O.

    2013-05-01

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  10. Systematic muon capture rates in PQRPA

    SciTech Connect

    Samana, A. R.; Sande, D.; Krmpotić, F.

    2015-05-15

    In this work we performed a systematic study of the inclusive muon capture rates for several nuclei with A < 60 using the Projected Random Quasi-particle Phase Approximation (PQRPA) as nuclear model, because it is the only RPA model that treats the Pauli Principle correctly. We reckon that the comparison between theory and data for the inclusive muon capture is not a fully satisfactory test on the nuclear model that is used. The exclusive muon transitions are more robust for such a purpose.

  11. Fluorescent-spectroscopic and imaging methods of investigations for diagnostics of head and neck tumors and control of PDT

    NASA Astrophysics Data System (ADS)

    Edinak, N. E.; Chental, Victor V.; Komov, D.; Vaculovskaya, E.; Tabolinovskaya, T. D.; Abdullin, N. A.; Pustynsky, I.; Chatikhin, V.; Loschenov, Victor B.; Meerovich, Gennady A.; Stratonnikov, A. A.; Linkov, Kirill G.; Agafonov, Vladimir I.; Zuravleva, V.; Lukjanets, E.

    1996-01-01

    Methodics of PDT control and fluorescent-spectroscopic diagnostic of head and neck tumors and mammary gland cancer (nodular) with the use of Kr, He-Ne and semiconductor lasers and photosensitizer (PS) -- Al phtalocyanin (Photosense) are discussed. The results show that applied diagnostic methods permit us not only to identify the topology and malignancy of a tumor but also to correct PDT process directly during irradiation.

  12. Evaluation with mTHPC of early squamous cell carcinomas of the cheek pouch mucosa of Golden Syrian hamsters as a model for clinical PDT of early cancers in the upper aerodigestive tract, the esophag

    NASA Astrophysics Data System (ADS)

    Glanzmann, Thomas M.; Theumann, Jean-Francois; Forrer, Martin; Braichotte, Daniel; Wagnieres, Georges A.; van den Bergh, Hubert; Andrejevic-Blant, Snezana; Savary, Jean-Francois; Monnier, Philippe

    1995-03-01

    Golden Syrian hamsters are evaluated as an animal model for light induced fluorescence (LIF) photodetection and phototherapy of early squamous cell carcinomas of the upper aerodigestive tract, the esophagus, and the traecheo-bronchial tree. Carcinomas of this type are induced on the hamster cheek pouch mucosa by the application of the carcinogen 7,12-DMBA. For phototherapeutic experiments on the animals we utilized meso-(tetrahydoxyphenyl) chlorin (mTHPC). This drug is currently in phase I and II clinical trials for ENT patients presenting superficial `early' squamous cell carcinomas. By means of LIF we measured in vivo the kinetics of the uptake and removal of mTHPC in the normal and tumoral cheek mucosa and in the skin. The photodynamic therapy (PDT) reaction of the tissue after excitation of the photosensitizer with laser light at 652 nm was studied. Both pharmacokinetics and PDT efficacy are compared between animal model and clinical results with special emphasis on selectivity between normal and tumoral mucosa. These first experiments show that this tumor model in the hamster cheek pouch seems to be suitable for testing new photosensitizers preceding their clinical application as well as for optimization of the multiple parameters of clinical PDT.

  13. Muon-induced visual sensations.

    PubMed

    McNulty, P J; Pease, V P; Bond, V P

    1976-01-01

    The visual phenomena induced by the passage of a pulse of extremely relativistic muons through the vitreous humor have been studied at the Alternating Gradient Synchrotron at Brookhaven National Laboratory. The visual phenomena include flashes that range from small crescents of light in the peripheral field of view to large clouds of light that fill the entire field of view as well as bright flashes with dark centers. Three subjects have been exposed to date. Arguments are given to show that the physical mechanism behind these flashes is Cerenkov radiation. Standard psychophysical techniques are used to determine the threshold for muoninduced visual sensations for one subject. Comparison is made with his pion treshold measured under the same condition.

  14. An additional study of multi-muon events produced in $p\\bar{p}$ collisions at $\\sqrt{s}=1.96$ TeV

    SciTech Connect

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Fermilab

    2011-11-01

    We present one additional study of multi-muon events produced at the Fermilab Tevatron collider and recorded by the CDF II detector. We use a data set acquired with a dedicated dimuon trigger and corresponding to an integrated luminosity of 3.9 fb{sup -1}. We investigate the distribution of the azimuthal angle between the two trigger muons in events containing at least four additional muon candidates to test the compatibility of these events with originating from known QCD processes. We find that this distribution is markedly different from what is expected from such QCD processes and this observation strongly disfavours the possibility that multi-muon events result from an underestimate of the rate of misidentified muons in ordinary QCD events.

  15. Atmospheric muons and neutrinos, and the neutrino-induced muon flux underground

    NASA Technical Reports Server (NTRS)

    Liland, A.

    1985-01-01

    The diffusion equation for neutrino-induced cosmic ray muons underground was solved. The neutrino-induced muon flux and charge ratio underground have been calculated. The calculated horizontal neutrino-induced muon flux in the energy range 0.1 - 10000 GeV is in agreement with the measured horizontal flux. The calculated vertical flux above 2 GeV is in agreement with the measured vertical flux. The average charge ratio of neutrino-induced muons underground was found to be mu+/mu- = 0.40.

  16. Extracellular matrix composition and rigidity regulate invasive behavior and response to PDT in 3D pancreatic tumor models

    NASA Astrophysics Data System (ADS)

    Cramer, Gwendolyn; El-Hamidi, Hamid; Jafari, Seyedehrojin; Jones, Dustin P.; Celli, Jonathan P.

    2016-03-01

    The composition and mechanical compliance of the extracellular matrix (ECM) have been shown to serve as regulators of tumor growth and invasive behavior. These effects may be particularly relevant in tumors of the pancreas, noted for a profound desmoplastic reaction and an abundance of stroma rich in ECM. In view of recent progress in the clinical implementation of photodynamic therapy (PDT) for pancreatic tumors, in this report we examine how ECM composition and rheological properties impact upon invasive behavior and response to PDT in 3D multicellular pancreatic tumor spheroids in ECM environments with characterized rheological properties. Tumor spheroids were cultured initially in attachment-free conditions to form millimeter-sized spheroids that were transplanted into reconstituted ECM microenvironments (Matrigel and Type I Collagen) that were characterized using bulk oscillatory shear rheology. Analysis of growth behavior shows that the soft collagen ECM promoted growth and extensive invasion and this microenvironment was used in subsequent assessment of PDT and chemotherapy response. Evaluation of treatment response revealed that primary tumor nodule growth is inhibited more effectively with PDT, while verteporfin PDT response is significantly enhanced in the ECM-infiltrating populations that are non-responsive to oxaliplatin chemotherapy. This finding is potentially significant, suggesting the potential for PDT to target these clinically problematic invasive populations that are associated with aggressive metastatic progression and chemoresistance. Experiments to further validate and identify the mechanistic basis of this observation are ongoing.

  17. MUON ACCELERATION WITH THE RACETRACK FFAG

    SciTech Connect

    TRBOJEVIC,D.; EBERHARD, K.; SESSLER, A.

    2007-06-25

    Muon acceleration for muon collider or neutrino factory is still in a stage where further improvements are likely as a result of further study. This report presents a design of the racetrack non-scaling Fixed Field Alternating Gradient (NS-FFAG) accelerator to allow fast muon acceleration in small number of turns. The racetrack design is made of four arcs: two arcs at opposite sides have a smaller radius and are made of closely packed combined function magnets, while two additional arcs, with a very large radii, are used for muon extraction, injection, and RF accelerating cavities. The ends of the large radii arcs are geometrically matched at the connections to the arcs with smaller radii. The dispersion and both horizontal and vertical amplitude fictions are matched at the central energy.

  18. Development of a Portable Muon Witness System

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.

    2011-01-01

    Since understanding and quantifying cosmic ray induced radioactive backgrounds in copper and germanium are important to the MAJORANA DEMONSTRATOR, methods are needed for monitoring the levels of such backgrounds produced in materials being transported and processed for the experiment. This report focuses on work conducted at Pacific Northwest National Laboratory to develop a muon witness system as a one way of monitoring induced activities. The operational goal of this apparatus is to characterize cosmic ray exposure of materials. The cosmic ray flux at the Earth’s surface is composed of several types of particles, including neutrons, muons, gamma rays and protons. These particles induce nuclear reactions, generating isotopes that contribute to the radiological background. Underground, the main mechanism of activation is by muon produced spallation neutrons since the hadron component of cosmic rays is removed at depths greater than a few tens of meters. This is a sub-dominant contributor above ground, but muons become predominant in underground experiments. For low-background experiments cosmogenic production of certain isotopes, such as 68Ge and 60Co, must be accounted for in the background budgets. Muons act as minimum ionizing particles, depositing a fixed amount of energy per unit length in a material, and have a very high penetrating power. Using muon flux measurements as a “witness” for the hadron flux, the cosmogenic induced activity can be quantified by correlating the measured muon flux and known hadronic production rates. A publicly available coincident muon cosmic ray detector design, the Berkeley Lab Cosmic Ray Detector (BLCRD), assembled by Juniata College, is evaluated in this work. The performance of the prototype is characterized by assessing its muon flux measurements. This evaluation is done by comparing data taken in identical scenarios with other cosmic ray telescopes. The prototype is made of two plastic scintillator paddles with

  19. Muon transfer from muonic hydrogen to carbon

    SciTech Connect

    Dupays, Arnaud

    2005-11-15

    Exact three-dimensional quantum calculations of muon exchange between muonic hydrogen and carbon for collision energies in the range 10{sup -3}-100 eV, are presented. Muon transfer rates at thermal and epithermal energies are calculated including partial waves up to J=7. The relative populations of the final states are also given. The results show that above 1 eV, the relative population of ({mu}C){sub n=5}{sup 5+} can reach up to 30%.

  20. Muon Emittance Exchange with a Potato Slicer

    SciTech Connect

    Summers, D. J.; Hart, T. L.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S. J.; Perera, L. P.; Neuffer, D. V.

    2015-04-15

    We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal, and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025, 70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunch with modest angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 µs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift in the ring until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87 %.

  1. High intensity muon beam source for neutrino beam experiments

    NASA Astrophysics Data System (ADS)

    Kamal Sayed, Hisham

    2015-09-01

    High intensity muon beams are essential for Muon accelerators like Neutrino Factories and Muon Colliders. In this study we report on a global optimization of the muon beam production and capture based on end-to-end simulations of the Muon Front End. The study includes the pion beam production target geometry, capture field profile, and forming muon beam into microbunches for further acceleration. The interplay between the transverse and longitudinal beam dynamics during the capture and transport of muon beam is evaluated and discussed. The goal of the optimization is to provide a set of design parameters that delivers high intensity muon beam that could be fit within the acceptance of a muon beam accelerator.

  2. The Muon Science Facility at the JKJ Project

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Nishiyama, K.; Sakamoto, S.; Shimomura, K.; Kadono, R.; Higemoto, W.; Fukuchi, K.; Makimura, S.; Beveridge, J. L.; Ishida, K.; Matsuzaki, T.; Watanabe, I.; Matsuda, Y.; Kawamura, N.; Nagamine, K.

    2001-12-01

    The muon science facility is one of the experimental arenas of the JKJ project, which was recently approved for construction in a period from 2001 to 2006, as well as neutron science, particle and nuclear physics, neutrino physics and nuclear transmutation science. The muon science experimental area is planned to be located in the integrated building of the facility for the materials and life science study. One muon target will be installed upstream of the neutron target in a period of phase 1. The beam line and facility are designed to allow the later installation of a 2nd muon target in a more upstream location. The detailed design for electricity, cooling water, primary proton beam line, one muon target and secondary beam lines (a superconducting solenoid decay muon channel, a dedicated surface muon channel, and an ultra slow muon channel) is underway. In the symposium, a latest status of the muon science facility at JKJ project will be reported.

  3. Phase Rotation of Muon Beams for Producing Intense Low-Energy Muon Beams

    SciTech Connect

    Neuffer, D.; Bao, Y.; Hansen, G.

    2016-01-01

    Low-energy muon beams are useful for rare decay searches, which provide access to new physics that cannot be addressed at high-energy colliders. However, muons are produced within a broad energy spread unmatched to the low-energy required. In this paper we outline a phase rotation method to significantly increase the intensity of low-energy muons. The muons are produced from a short pulsed proton driver, and develop a time-momentum correlation in a drift space following production. A series of rf cavities is used to bunch the muons and phase-energy rotate the bunches to a momentum of around 100 MeV/c. Then another group of rf cavities is used to decelerate the muon bunches to low-energy. This obtains ~0.1 muon per 8 GeV proton, which is significantly higher than currently planned Mu2e experiments, and would enable a next generation of rare decay searches, and other intense muon beam applications.

  4. Modular detector for deep underwater registration of muons and muon groups

    NASA Technical Reports Server (NTRS)

    Demianov, A. I.; Sarycheva, L. I.; Sinyov, N. B.; Varadanyan, I. N.; Yershov, A. A.

    1985-01-01

    Registration and identification of muons and muon groups penetrating into the ocean depth, can be performed using a modular multilayer detector with high resolution bidimensional readout - deep underwater calorimeter (project NADIR). Laboratory testing of a prototype sensor cell with liquid scintillator in light-tight casing, testifies to the practicability of the full-scale experiment within reasonable expences.

  5. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    SciTech Connect

    Leon, M.

    1994-01-01

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  6. Low dose Photofrin PDT for recurrent in-situ squamous cell tumors of the head and neck

    NASA Astrophysics Data System (ADS)

    Allison, R. R.; Austerlitz, C.; Sheng, C.; Mota, H.; Brodish, B.; Camnitz, P.; Sibata, C. H.

    2009-06-01

    Multifocal recurrence of in-situ squamous cell cancer of the oral cavity, pharynx and vocal cord following surgical failure can be a therapeutic dilemma. Salvage surgery or radiation may be an option but morbidity can be significant. We evaluated the potential role of low dose Photofrin (1.2mg/Kg) Photodynamic Therapy for this cohort of patients. A total of 25 patients with multifocal recurrent in-situ squamous cell cancer of the oral cavity, pharynx and vocal cord who had failed local resection, and where additional surgery or radiation therapy would likely result in permanent morbidity, were offered Photodynamic Therapy. PDT consisted of off label infusion of Photofrin (1.2mg/kg) followed 48 hours later by illumination at 630nm employing a light diffuser (300J) and/or microlens (150Jcm2). All patients completed their prescribed PDT and no patient has been lost to follow up (minimum 1 year). No photosensitivity reactions were noted. No significant morbidity was seen. All patients were able to maintain oral nutrition. Procedure related pain was well controlled by one week of oral narcotics. At one month post PDT all patients were biopsy negative in the treatment region and no failures within the treatment region have been noted. No fibrosis or permanent PDT morbidity has been seen with follow up to three years. Vocal cord and voice function were excellent. Three patients developed new regions of in-situ disease outside the PDT fields, two underwent additional PDT and one had laser resection. Low dose Photofrin PDT offers excellent palliation and durable local control of recurrent in-situ squamous cell cancers of the oral cavity, pharynx and true cords. This is a well tolerated therapy. Low dose Photofrin appears to improve selectivity and minimize normal tissue injury. It should be tested in a larger patient population.

  7. The photodamage effect and ROS generation induced by PDT with HMME in MCF-7cells in vitro

    NASA Astrophysics Data System (ADS)

    Yin, Huijuan; Li, Xiaoyuan; Liu, Jianzhong; Li, Yan

    2007-05-01

    Hematoporphyrin monomethyl ether (HMME) is a novel and promising porphyrin-related photosensitizer for photodynamic therapy (PDT). We use the human breast cancer MCF-7 cells to investigate the photodamage effect of HMME and reactive oxygen species (ROS) generation in HMME-PDT. Methods: The growth rates of MCF-7 cells at 24h after irradiation by 532nm laser with HMME of 5~20μg/ml and light dose of 0.3~4.8J/cm2 were determined by CCK-8 assays. Hoechst33342 staining was used to investigate the morphological change of the tumor cell. Flow cytometry combined with dual Annexin V/PI staining was used to identify the death mode of the cells following PDT. The changes of ROS labeled by DCFH-DA were observed by Laser Scanning Confocal Microscopy (LSCM). Our results show that HMME-based PDT induced significant cell death, and the photocytotoxity to MCF-7 cells is dose-dependent at the range of HMME concentration 5~20μg/ml and the light dose 0.3~4.8J/cm2. The nucleolus underwent apoptosis and/or necrosis observed by LSCM with Hoechst33342 staining. The necrosis and apoptosis rate were 16.0% and 12.4% respectively by FCM, showing the number of necrosic cells was more than that of apoptosis. There was an intense increase of fluorescence intensity standing for ROS generation within 30min post-PDT, and the peak was at about 10min after PDT. Our results suggest that HMME-PDT could inhibit the proliferation of MCF-7 cells remarkably. Because the MCF-7 cells lack procaspase-3, the apoptosis rate is lower. ROS played an important role in the photodamage with HMME.

  8. Photodynamic therapy (PDT) in early central lung cancer: a treatment option for patients ineligible for surgical resection

    PubMed Central

    Moghissi, Keyvan; Dixon, Kate; Thorpe, James Andrew Charles; Stringer, Mark; Oxtoby, Christopher

    2007-01-01

    Objectives To review the Yorkshire Laser Centre experience with bronchoscopic photodynamic therapy (PDT) in early central lung cancer in subjects not eligible for surgery and to discuss diagnostic problems and the indications for PDT in such cases. Methods Of 200 patients undergoing bronchoscopic PDT, 21 had early central lung cancer and were entered into a prospective study. Patients underwent standard investigations including white light bronchoscopy in all and autofluorescence bronchoscopy in 12 of the most recent cases. Indications for bronchoscopic PDT were recurrence/metachronous endobronchial lesions following previous treatment with curative intent in 10 patients (11 lesions), ineligibility for surgery because of poor cardiorespiratory function in 8 patients (9 lesions) and declined consent to operation in 3 patients. PDT consisted of intravenous administration of Photofrin 2 mg/kg followed by bronchoscopic illumination 24–48 h later. Results 29 treatments were performed in 21 patients (23 lesions). There was no procedure‐related or 30 day mortality. One patient developed mild skin photosensitivity. All patients expressed satisfaction with the treatment and had a complete response of variable duration. Six patients died at 3–103 months (mean 39.3), three of which were not as a result of cancer. Fifteen patients were alive at 12–82 months. Conclusion Bronchoscopic PDT in early central lung cancer can achieve long disease‐free survival and should be considered as a treatment option in those ineligible for resection. Autofluorescence bronchoscopy is a valuable complementary investigation for identification of synchronous lesions and accurate illumination in bronchoscopic PDT. PMID:17090572

  9. 5-ALA Fluorescence in Native Pituitary Adenoma Cell Lines: Resection Control and Basis for Photodynamic Therapy (PDT)?

    PubMed Central

    Poeschke, Stephan; Greve, Burkhard; Prevedello, Daniel; Santacroce, Antonio; Stummer, Walter; Senner, Volker

    2016-01-01

    Objective: Pituitary adenomas (PA), especially invasive ones, are often not completely resectable. Usage of 5-aminolevulinic acid (5-ALA) for fluorescence guided surgery could improve the rate of total resection and, additionally, open the doors for photodynamic therapy (PDT) in case of unresectable or partially resected PAs. The aim of this study was to investigate the uptake of 5-ALA and the effect of 5-ALA based PDT in cell lines. Methods: GH3 and AtT-20 cell lines were incubated with different concentrations of 5-ALA, protoporphyrin IX (PPIX) fluorescence was measured by flow cytometry and fluorescencespectrometry. WST-1 assays were performed to determine the surviving fraction of cells after PDT. PPIX fluorescence intensities and PDT effect of the pituitary adenoma cells were compared to U373MG, a well-known glioblastoma cell line. Results: Both cell lines showed a 5-ALA dependent intracellular PPIX fluorescence. Significant differences after 24hrs of incubation were observed in AtT-20 cells in comparison to GH3. Regardless of the incubation or metabolism time, there was a proliferation inhibiting effect after PDT, with no statistical significance. Conclusion: Since GH3 cells showed a heterogenous uptake of 5-ALA in the flow cytometry profile, but not constantly high concentrations they might have a 5-ALA efflux mechanism, which still needs to be determined. In the case of AtT-20, the cells might need a longer time for the uptake due to their size or slow metabolism. We showed that the different cell lines have different uptake and metabolism mechanisms, which needs to be further investigated. The general uptake of 5-ALA allows the possibility of resection control and PDT for pituitary adenomas. But, the role of PDT for unresectable pituitary adenomas deserves further investigations. PMID:27583461

  10. Muon-fluorine entangled states in molecular magnets.

    PubMed

    Lancaster, T; Blundell, S J; Baker, P J; Brooks, M L; Hayes, W; Pratt, F L; Manson, J L; Conner, M M; Schlueter, J A

    2007-12-31

    The information accessible from a muon-spin relaxation experiment can be limited due to a lack of knowledge of the precise muon stopping site. We demonstrate here the possibility of localizing a spin polarized muon in a known stopping state in a molecular material containing fluorine. The muon-spin precession that results from the entangled nature of the muon spin and surrounding nuclear spins is sensitive to the nature of the stopping site. We use this property to identify three classes of sites that occur in molecular magnets and describe the extent to which the muon distorts its surroundings.

  11. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect

    Zisman, Michael S

    2011-03-20

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  12. Study of muon-induced neutron production using accelerator muon beam at CERN

    SciTech Connect

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.; Draeger, E.; White, C. G.; Luk, K. B.; Steiner, H.

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  13. Negative muon chemistry: the quantum muon effect and the finite nuclear mass effect.

    PubMed

    Posada, Edwin; Moncada, Félix; Reyes, Andrés

    2014-10-01

    The any-particle molecular orbital method at the full configuration interaction level has been employed to study atoms in which one electron has been replaced by a negative muon. In this approach electrons and muons are described as quantum waves. A scheme has been proposed to discriminate nuclear mass and quantum muon effects on chemical properties of muonic and regular atoms. This study reveals that the differences in the ionization potentials of isoelectronic muonic atoms and regular atoms are of the order of millielectronvolts. For the valence ionizations of muonic helium and muonic lithium the nuclear mass effects are more important. On the other hand, for 1s ionizations of muonic atoms heavier than beryllium, the quantum muon effects are more important. In addition, this study presents an assessment of the nuclear mass and quantum muon effects on the barrier of Heμ + H2 reaction.

  14. Testing model energy spectra of charged particles produced in hadron interactions on the basis of atmospheric muons

    SciTech Connect

    Dedenko, L. G.; Roganova, T. M.; Fedorova, G. F.

    2015-10-15

    An original method for calculating the spectrum of atmospheric muons with the aid of the CORSIKA 7.4 code package and numerical integration is proposed. The first step consists in calculating the energy distribution of muons for various fixed energies of primary-cosmic-ray particles and within several chosen hadron-interaction models included in the CORSIKA 7.4 code package. After that, the spectrum of atmospheric muons is calculated via integrating the resulting distribution densities with the chosen spectrum of primary-cosmic-ray particles. The atmospheric-muon fluxes that were calculated on the basis of the SIBYLL 2.1, QGSJET01, and QGSJET II-04 models exceed the predictions of the wellknown Gaisser approximation of this spectrum by a factor of 1.5 to 1.8 in the range of muon energies between about 10{sup 3} and 10{sup 4} GeV.Under the assumption that, in the region of extremely highmuon energies, a dominant contribution to the muon flux comes from one to two generations of charged π{sup ±} and K{sup ±} mesons, the production rate calculated for these mesons is overestimated by a factor of 1.3 to 1.5. This conclusion is confirmed by the results of the LHCf and TOTEM experiments.

  15. Measurement and modelling of protoporphyrin IX photo-oxidation during superficial PDT

    NASA Astrophysics Data System (ADS)

    Robinson, Dominic J.; Stringer, Mark R.; Crum, William R.; Collins, P.

    1996-12-01

    The oxidation of photosensitizers during photodynamic therapy (PDT) has important implications for their therapeutic and diagnostic potential. The reduction in sensitizer concentration during illumination progressively reduces the effectiveness of therapy and, ultimately, limits the destruction of the host tissue. In the course of our studies of the effects of PDT upon superficial skin disorders, following topical application of 5- aminolaevulinic acid (ALA), we routinely record the surface fluorescence emission of protoporphyrin IX (PpIX) before, during, and after therapy, in order to monitor the sensitizer photo-oxidation. It is important, therefore, to establish that measurements made in this way are representative of the variation in sensitizer concentration throughout the illuminated volume. We have developed a time- dependent Monte-Carlo model to simulate PpIX photo-oxidation during either low intensity laser (488 nm) or white light irradiation of plaque psoriasis. We have assessed the effect of differences in the optical properties of tissue at sites on different patients prior to treatment, and the effect of these variations on the surface fluorescence signal detected during treatment, at sites within the same plaque. The results show that the PpIX fluorescence intensity recorded from plaque psoriasis is an accurate indicator of the relative concentration of the sensitizer and can be used as a direct comparison between different sites and different patients. Also, the reduction in fluorescence emission during PDT is an effective measure of the depletion in sensitizer concentration throughout the illuminated volume. These results illustrate that the light dose required to achieve significant PpIX photo-oxidation is significantly lower than that often adopted for the treatment of superficial skin conditions.

  16. Muon Acceleration - RLA and FFAG

    SciTech Connect

    Bogacz, Alex

    2011-10-01

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  17. Mechanism of cell destruction and cell protection during methylene-blue-induced PDT

    NASA Astrophysics Data System (ADS)

    Rueck, Angelika C.; Beck, G.; Heckelsmiller, K.; Knoedlsdorfer, U.; Genze, Felicitas; Orth, K.

    1999-02-01

    Methylene Blue (MB+) is a well-known dye in medicine and has been discussed as an easily applicable drug for the topical treatment in photodynamic therapy (PDT). MB+ can potentially be used as a redox indicator to detect the important redox reactions that are induced during PDT. MB+ induced PDT was successful in the intraluminal treatment of inoperable esophageal tumors and in the topical treatment of psoriasis. In order to improve the therapy, the reaction mechanism of MB+ was investigated in vivo by local injection of MB+ in a xenotransplanted subcutaneous tumor (adeno-carcinoma, G-3) in female nude mice. The MB+ preparation 'MB+1%' was applied both undiluted and diluted to 0.1% and 0.01% with isotonic sodium chloride. After an incubation period of 1 h, the tumors were irradiated at 662 nm. Treatment with 1% MB+ and subsequent irradiation with 100 J/cm2 led to complete tumor destruction in 79% of the treated animals. A decrease of the fluence rate from 100 mW/cm2 to 50 mW/cm2 significantly increased the phototoxic response, which was attributed to oxygen depletion but also to nonlinear redox reactions. In addition, fractionated light application with 15 s interruption intervals enhanced the effect. When 0.1% MB+ was used, complete tumor destruction was observed only in 10% of the treated animals. Below a relatively high threshold dose the therapeutic response was not significant. The efficiency of the therapy was correlated with nonlinear dynamics of MB+ on a subcellular level, using laser scanning microscopy. During MB+-PDT nonlinear redox- reactions were induced. This could be deduced from local fast changes of the MB+-fluorescence as well as the pH-value during irradiation of single cells. The light induced reaction of MB+ seems to be correlated with the nonlinear production of reactive oxygen species (ROS). As a consequence below a threshold dose the reducing ability of MB+ prevents tissue from oxidative damage. However, above this dose, as a point of no

  18. Detection of recent holding of firearms: improving the sensitivity of the PDT test.

    PubMed

    Almog, Joseph; Bar-Or, Karni L; Leifer, Amihud; Delbar, Yair; Harush-Brosh, Yinon

    2014-08-01

    Despite the significant improvement of the PDT test for detecting recent contact with firearms, there are still many occasions in which the modified reagent (Ferrotrace™) shows insufficient sensitivity. Two techniques have been devised and tested for the enhancement of the sensitivity of this process: exposure to water vapors and accelerated sweating. Exposure of the hand to water vapors after spraying with the reagent significantly improved the quality of the colored impressions. The average increase was by 1 quality-grade (on an arbitrary scale of 4 grades). The technique is very simple and does not require any particular skill or equipment. Mechanistic aspects of the process are also discussed.

  19. Multi-course PDT of malignant tumors: the influence on primary tumor, metastatic spreading and homeostasis of cancer patients

    NASA Astrophysics Data System (ADS)

    Sokolov, Victor V.; Chissov, Valery I.; Yakubovskaya, Raisa I.; Filonenko, E. V.; Sukhin, Garry M.; Nemtsova, E. R.; Belous, T. A.; Zharkova, Natalia N.

    1996-12-01

    The first clinical trials of photodynamic therapy (PDT) of cancer with two photosensitizers, PHOTOHEME and PHOTOSENS, were started in P.A. Hertzen Research Oncological Institute (Moscow, Russia) in 1992 and 1994. Up to now, 208 patients with primary, recurrent and metastatic malignant tumors (469) of skin (34 patients/185 tumors), breast cancer (24/101), head and neck (30/31), trachea and bronchus (31/42), esophagus (35/35), stomach (31/32), rectum (4/4), vagina and uterine cervix (7/8) and bladder (12/31) have been treated by PDT. One-hundred-thirty patients were injected with PHOTOHEME, 64 patients were injected with PHOTOSENS, 14 patients were injected with PHOTOHEME and PHOTOSENS. Totally, 302 courses of treatment were performed: 155 patients had one course and 53 patients were subjected to two to nine PDT sources with intervals from 1 to 18 months. A therapeutic effect of a one-course and multi- course PDT of malignant tumors (respiratory, digestive and urogenital systems) was evaluated clinically, histologically, roentgenologically, sonographically and endoscopically. The biochemical, hematological and immunological investigations were performed for all the patients in dynamics. Results of our study showed that a multi-course PDT method seems to be perspective in treatment of malignant tumors of basic localizations.

  20. Double-targeting using a TrkC ligand conjugated to dipyrrometheneboron difluoride (BODIPY) based photodynamic therapy (PDT) agent.

    PubMed

    Kamkaew, Anyanee; Burgess, Kevin

    2013-10-10

    A molecule 1 (IY-IY-PDT) was designed to contain a fragment (IY-IY) that targets the TrkC receptor and a photosensitizer that acts as an agent for photodynamic therapy (PDT). Molecule 1 had submicromolar photocytotoxicities to cells that were engineered to stably express TrkC (NIH3T3-TrkC) or that naturally express high levels of TrkC (SY5Y neuroblastoma lines). Control experiments showed that 1 is not cytotoxic in the dark and has significantly less photocytotoxicity toward cells that do not express TrkC (NIH3T3-WT). Other controls featuring a similar agent 2 (YI-YI-PDT), which is identical and isomeric with 1 except that the targeting region is scrambled (a YI-YI motif, see text), showed that 1 is considerably more photocytotoxic than 2 on TrkC(+) cells. Imaging live TrkC(+) cells after treatment with a fluorescent agent 1 (IY-IY-PDT) proved that 1 permeates into TrkC(+) cells and is localized in the lysosomes. This observation indirectly indicates that agent 1 enters the cells via the TrkC receptor. Consistent with this, the dose-dependent PDT effects of 1 can be competitively reduced by the natural TrkC ligand, neurotrophin NT3.

  1. Three-year results of a modified photodynamic therapy procedure (Ironing PDT) for age-related macular degeneration patients with large lesions

    PubMed Central

    Otsuji, Tsuyoshi; Sho, Kenichiro; Tsumura, Akiko; Koike, Naoko; Nishimura, Tetsuya; Takahashi, Kanji

    2016-01-01

    Background To evaluate the effect of photodynamic therapy (PDT) using a modified procedure on exudative age-related macular degeneration having been conventionally difficult to treat. Methods The medical records of eight consecutive patients (eight eyes) with age-related macular degeneration treated with modified PDT were reviewed retrospectively. Modified PDT was used for the lesions that could not be covered by conventional use of PDT, either because the lesion was too large or too close to the optic disc. A moving PDT laser spot at constant speed, for 83 seconds, was used to cover the entire lesion, and was named “Ironing PDT.” This retrospective study was performed with informed patient consent. It was approved by the Institutional Review Board of Kansai Medical University. Results No exudation could be found 36 months after treatment in five eyes (62.5%). There was no significant difference between the best-corrected visual acuity before PDT (0.95 logMAR) and after PDT (1.09 logMAR). The logMAR best-corrected visual acuity was improved in one eye, maintained in five eyes, and deteriorated in two eyes. Conclusion Ironing PDT decreased subfoveal fluid and preserved visual acuity in some patients with age-related macular degeneration difficult to treat with conventional therapy. PMID:27041985

  2. STATUS OF THE INTERNATIONAL MUON IONIZATION COOLING EXPERIMENT(MICE)

    SciTech Connect

    Zisman, Michael S.

    2007-07-18

    An international experiment to demonstrate muon ionization cooling is scheduled for beam at Rutherford Appleton Laboratory (RAL) in 2007. The experiment comprises one cell of the Study II cooling channel [1], along with upstream and downstream detectors to identify individual muons and measure their initial and final 6D phase-space parameters to a precision of 0.1%. Magnetic design of the beam line and cooling channel are complete and portions are under construction. The experiment will be described, including cooling channel hardware designs, fabrication status, and running plans. Phase 1 of the experiment will prepare the beam line and provide detector systems, including time-of-flight, Cherenkov, scintillating-fiber trackers and their spectrometer solenoids, and an electromagnetic calorimeter. The Phase 2 system will add the cooling channel components, including liquid-hydrogen absorbers embedded in superconducting Focus Coil solenoids, 201-MHz normal-conducting RF cavities, and their surrounding Coupling Coil solenoids. The MICE Collaboration goal is to complete the experiment by 2010; progress toward this is discussed.

  3. New concept for muon catalyzed fusion reactor

    SciTech Connect

    Tajima, T.; Eliezer, S.; Kulsrud, R.M.

    1988-12-27

    A new concept for a muon catalyzed pure fusion reactor is considered. To our best knowledge this constitutes a first plausible configuration to make energy gain without resorting to fissile matter breeding by fusion neutrons, although a number of crucial physical and engineering questions as well as details have yet to be resolved. A bundle of DT ice ribbons (with a filling factor f) is immersed in the magnetic field. The overall magnetic field in the mirror configuration confines pions created by the injected high energy deuterium (or tritium) beam. The DT materials is long enough to be inertially confined along the axis of mirror. The muon catalyzed mesomolecule formation and nuclear fusion take place in the DT target, leaving ..cap alpha../sup + +/ and occasionally (..cap alpha mu..)/sup +/ (muon sticking). The stuck muons are stripped fast enough in the target, while they are accelerated by ion cyclotron resonance heating when they circulate in the vaccum (or dilute plasma). The ribbon is (eventually) surrounded and pressure-confined by this coronal plasma, whereas the corona is magnetically confined. The overall bundle of ribbons (a pellet) is inertially confined. This configuration may also be of use for stripping stuck muons via the plasma mechanism of Menshikov and Ponomarev.

  4. Muon and Tau Neutrinos Spectra from Solar Flares

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele; Moscato, Federica

    2003-12-01

    Most power-full solar flare as the ones occurred on 23th February 1956, September 29th 1989, 28th October and on 2nd-4th November 2003 are sources of cosmic rays, X, gamma and neutrino bursts. These flares took place both on front or in the edge and in the hidden solar disk. The 4th November event was the most powerful X event in the highest known rank category X28 just at horizons. The observed and estimated total flare energy (EFL ≃ 1031div 1033 erg) should be a source of a prompt secondary neutrino burst originated, by proton-proton-pion production on the sun itself; a more delayed and spread neutrino flux signal arise by the solar charged flare particles reaching the terrestrial atmosphere. These first earliest prompt solar neutrino burst might be observed, in a few neutrino clustered events, in present or future largest neutrino underground detectors as Super-Kamiokande one, in time correlation with the X-Radio flare. The onset in time correlation has great statistical significance. Our first estimate on the neutrino number events detection at the Super-Kamiokande II Laboratory for horizontal or hidden flare is found to be few events: NeV_bar{ν}_e≃ 0.63&etae ()/(35 MeV) ()/(1031 erg); and NeV_bar{ν}μ ≃ 3.58()/(200 MeV) ()/(1031erg) η,SUB>μ, where η≃ 1, Eνμ > 113 MeV. Our first estimates of neutrino signals in largest underground detectors hint for few events in correlation with X, gamma, radio onser. Our approximated spectra for muons and taus from these rare solar eruption are shown over the most common background. The muon and tau signature is very peculiar and characteristic over electron and anti-electron neutrino fluxes. The rise of muon neutrinos will be detectable above the minimal muon threshold Eν ≃ 113 MeV energy, or above the pion and Δ ° thresholds (Eν≃ 151 and 484 MeV). Any large neutrino flare event record might also verify the expected neutrino flavour mixing leading to a few as well as a comparable

  5. Pion production for neutrino factories and muon colliders

    SciTech Connect

    Mokhov, N.V.; Guidman, K.K.; Strait, J.B.; Striganov, S.I.; /Fermilab

    2009-12-01

    Optimization of pion and muon production/collection for neutrino factories and muon colliders is described along with recent developments of the MARS15 code event generators and effects influencing the choice of the optimal beam energy.

  6. Showering cosmogenic muons in a large liquid scintillator

    NASA Astrophysics Data System (ADS)

    Grassi, Marco; Evslin, Jarah; Ciuffoli, Emilio; Zhang, Xinmin

    2014-09-01

    We present the results of FLUKA simulations of the propagation of cosmogenic muons in a 20 kton spherical liquid scintillator detector underneath 700 to 900 meters of rock. A showering muon is one which deposits at least 3 GeV in the detector in addition to ionization energy. We find that 20 percent of muons are showering and a further 11 percent of muon events are muon bundles, of which more than one muon enters the detector. In this range the showering and bundle fractions are robust against changes in the depth and topography, thus the total shower and bundle rate for a given experiment can be obtained by combining our results with an estimate for the total muon flux. One consequence is that a straightforward adaptation of the full detector showering muon cuts used by KamLAND to JUNO or RENO 50 would yield a nearly vanishing detector efficiency.

  7. Effect of inducible expression of HIF-1α on prostate cancer cell in MPPa-PDT

    NASA Astrophysics Data System (ADS)

    Tian, Y. Y.; Kong, F.; Tian, X.; Guo, Q.; Cui, F. A.

    2008-10-01

    Photodynamic therapy (PDT) is a promising treatment on neoplastic pathologic tissues, which involves the administration of a photosensitizing agent followed by exposure of the tissue to visible non-thermal light. In our previous findings MPPa was showed to be a good photosensitizer candidature, because it can lead PC-3M cell line to death mainly via apoptotic way. In this study, we studied the effect of overexpression of hypoxia inducible factor-1α (HIF-1α) on MPPa-PDT. Over expression of HIF-1α was induced by cobalt chloride (CoCl2) and then the cell viability was tested by MTT assay. After that, HIF-1α siRNA was transfected into PC-3M cells to knock down the expression of HIF-1α and the cell viability was observed. Western blot was used to determine the expression of HIF-1α. Finally, we found that the over expression of HIF-1α would reduce the photodynamic effect of MPPa on PC-3M cells, while the photodynamic effect would be enhanced by HIF-1α siRNA.

  8. Studies of muon-induced radioactivity at NuMI

    SciTech Connect

    Boehnlein, David j.; Leveling, A.F.; Mokhov, N.V.; Vaziri, K.; Iwamoto, Y.; Kasugai, Y.; Matsuda, N.; Nakashima, H.; Sakamoto, Y.; Hagiwara, M.; Iwase, Hiroshi; /KEK, Tsukuba /Kyoto U., KURRI /Pohang Accelerator Lab. /Shimizu, Tokyo /Tohoku U.

    2009-12-01

    The JASMIN Collaboration has studied the production of radionuclides by muons in the muon alcoves of the NuMI beamline at Fermilab. Samples of aluminum and copper are exposed to the muon field and counted on HpGe detectors when removed to determine their content of radioactive isotopes. We compare the results to MARS simulations and discuss the radiological implications for neutrino factories and muon colliders.

  9. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    SciTech Connect

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  10. MICE, the international Muon Ionization Cooling Experiment

    NASA Astrophysics Data System (ADS)

    Heidt, Chris

    2013-04-01

    Ionization Cooling is the only practical solution to preparing high brilliance muon beams for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (UK). It is characterized by exquisite emittance determination by 6D measurement of individual particles, a cooling section comprising 23 MV of acceleration at 200 MHz and 3 liquid hydrogen absorbers totaling 1m of liquid hydrogen on the path of 140-240 MeV/c muons. Thebeam has already been commissioned successfully and first measurements of beam emittance performed. We are setting up for the final high precision emittance determination and the measurements of cooling in Li Hydrogen. The design offers opportunities to observe cooling with various absorbers and several optics configurations. Results will be compared with detailed simulations of cooling channel performance to ensure full understanding of the cooling process. Progress towards the full cooling experiment with RF re-acceleration will also be reported.

  11. Muon Fluence Measurements for Homeland Security Applications

    SciTech Connect

    Ankney, Austin S.; Berguson, Timothy J.; Borgardt, James D.; Kouzes, Richard T.

    2010-08-10

    This report focuses on work conducted at Pacific Northwest National Laboratory to better characterize aspects of backgrounds in RPMs deployed for homeland security purposes. Two polyvinyl toluene scintillators were utilized with supporting NIM electronics to measure the muon coincidence rate. Muon spallation is one mechanism by which background neutrons are produced. The measurements performed concentrated on a broad investigation of the dependence of the muon flux on a) variations in solid angle subtended by the detector; b) the detector inclination with the horizontal; c) depth underground; and d) diurnal effects. These tests were conducted inside at Building 318/133, outdoors at Building 331G, and underground at Building 3425 at Pacific Northwest National Laboratory.

  12. Muon Tracking to Detect Special Nuclear Materials

    SciTech Connect

    Schwellenbach, D.; Dreesen, W.; Green, J. A.; Tibbitts, A.; Schotik, G.; Borozdin, K.; Bacon, J.; Midera, H.; Milner, C.; Morris, C.; Perry, J.; Barrett, S.; Perry, K.; Scott, A.; Wright, C.; Aberle, D.

    2013-03-18

    Previous experiments have proven that nuclear assemblies can be imaged and identified inside of shipping containers using vertical trajectory cosmic-ray muons with two-sided imaging. These experiments have further demonstrated that nuclear assemblies can be identified by detecting fission products in coincidence with tracked muons. By developing these technologies, advanced sensors can be designed for a variety of warhead monitoring and detection applications. The focus of this project is to develop tomographic-mode imaging using near-horizontal trajectory muons in conjunction with secondary particle detectors. This will allow imaging in-situ without the need to relocate the objects and will enable differentiation of special nuclear material (SNM) from other high-Z materials.

  13. Muon trackers for imaging a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  14. Muon (g-2) Technical Design Report

    SciTech Connect

    Grange, J.

    2015-01-27

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

  15. PROTON BEAM REQUIREMENTS FOR A NEUTRINO FACTORY AND MUON COLLIDER

    SciTech Connect

    Zisman, Michael S.

    2009-12-11

    Both a Neutrino Factory and a Muon Collider place stringent demands on the proton beam used to generate the desired beam of muons. Here we discuss the advantages and challenges of muon accelerators and the rationale behind the requirements on proton beam energy, intensity, bunch length, and repetition rate. Example proton driver configurations that have been considered in recent years are also briefly indicated.

  16. Noninvasive Reactor Imaging Using Cosmic-Ray Muons

    NASA Astrophysics Data System (ADS)

    Miyadera, H.; Fujita, K.; Karino, Y.; Kume, N.; Nakayama, K.; Sano, Y.; Sugita, T.; Yoshioka, K.; Morris, C. L.; Bacon, J. D.; Borozdin, K. N.; Perry, J. O.; Mizokami, S.; Otsuka, Y.; Yamada, D.

    2015-10-01

    Cosmic-ray-muon imaging is proposed to assess the damages to the Fukushima Daiichi reactors. Simulation studies showed capability of muon imaging to reveal the core conditions.The muon-imaging technique was demonstrated at Toshiba Nuclear Critical Assembly, where the uranium-dioxide fuel assembly was imaged with 3-cm spatial resolution after 1 month of measurement.

  17. Muon fluence measurements at the site boundary for 1985

    SciTech Connect

    Elwyn, A.J.

    1986-03-01

    Muon fluence (muons cm/sup -2/) was measured downstream of the experimental area beamlines, just beyond the Fermilab site boundary at Route 38. The purpose of these measurements was to obtain an estimate of the yearly off-site radiation exposure to the general population due to accelerator-produced muons during the 1985 800 GeV run.

  18. Jet production in muon-proton and muon-nuclei scattering at Fermilab-E665

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1993-08-01

    Measurements of multi-jet production rates from Muon-Proton Muon- Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Proton deep-inelastic scattering are compared to perturbative Quantum Chromodynamics (PQCD) and Monte Carlo model predictions. We observe hadronic (2+1)-jet rates which are a factor of two higher than PQCD predictions at the partonic level. Preliminary results from jet production on heavy targets, in the shadowing region, show a suppression of the jet rates as compared to deuterium. The two- forward jet sample present higher suppression as compared to the one-forward jet sample.

  19. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    NASA Astrophysics Data System (ADS)

    Adams, D.; Adey, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Back, J.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Bradshaw, T. W.; Bravar, U.; Bross, A. D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, G.; Cobb, J. H.; Colling, D.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; DeMello, A.; Dick, A. J.; Dobbs, A.; Dornan, P.; Fayer, S.; Filthaut, F.; Fish, A.; Fitzpatrick, T.; Fletcher, R.; Forrest, D.; Francis, V.; Freemire, B.; Fry, L.; Gallagher, A.; Gamet, R.; Gourlay, S.; Grant, A.; Graulich, J. S.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Harrison, P.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kolev, D.; Kuno, Y.; Kyberd, P.; Lau, W.; Leaver, J.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Lucchini, G.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J. C.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Palmer, R. B.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Richards, A.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, R.; Rusinov, I.; Sakamoto, H.; Sanders, D. A.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Stanley, T.; Summers, D. J.; Takahashi, M.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Vankova, G.; Verguilov, V.; Virostek, S. P.; Vretenar, M.; Walaron, K.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Wisting, H.; Zisman, M. S.

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/ c, have emittances of approximately 1.2-2.3 π mm-rad horizontally and 0.6-1.0 π mm-rad vertically, a horizontal dispersion of 90-190 mm and momentum spreads of about 25 MeV/ c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  20. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    SciTech Connect

    Adams, D.; et al.,

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  1. First Run II results from ALICE

    NASA Astrophysics Data System (ADS)

    Toia, Alberica

    2016-07-01

    The ALICE Collaboration is collecting data with both Minimum Bias and Muon triggers with pp collisions at √s = 13 TeV in the ongoing LHC Run II. An excellent performance of tracking and PID in the central barrel and in the muon spectrometer has been obtained. First results on the charged-particle pseudorapidity density and on identified particle transverse momentum spectra at √s = 13 TeV is presented.

  2. Post-acute response of 9L gliosarcoma to Photofrin-mediated PDT in athymic nude mice.

    PubMed

    Zhang, Xuepeng; Jiang, Feng; Kalkanis, Steven N; Zhang, ZhengGang; Hong, Xin; Yang, Hongyan; Chopp, Michael

    2007-11-01

    The objective of this study is to measure the chronic responses of 9L glioma and normal brain to photodynamic therapy (PDT). Tumor size, proliferation activity of glioma cells, and vascular endothelial growth factor (VEGF) expression in both the tumor area and the brain adjacent to tumor (BAT) were observed 7 days after clinically relevant doses of PDT treatment. 9L Gliosarcoma cells were implanted into the brain of 20 athymic nude mice. Fifteen mice were injected intraperitoneally with Photofrin at a dose of 2 mg/kg on day 6 after tumor implantation and were treated with laser at different optical doses of 40 J/cm(2) (n = 5), 80 J/cm(2) (n = 5), and 120 J/cm(2) (n = 5) at 24 h after Photofrin injection, respectively. The remaining five tumor-bearing mice served as a tumor-only control. All animals were killed 14 days after tumor implantation. Hematoxylin and eosin and immunostaining were performed to assess tumor volume, VEGF expression in the tumor and the BAT, as well as Ki67 expression in the tumor area. The tumor volume of the mice receiving 80 or 120 J/cm(2) group was significantly smaller than the control group (p < 0.01). VEGF immunoreactivity in the BAT was significantly increased in the 120 J/cm(2) PDT-treated mice (p < 0.001), compared with the immunoreactivity seen in untreated mice and those receiving Photofrin and lower optical doses. No significant differences were detected in the proliferation of glioma cells and VEGF expression in the tumor area between these groups. These data indicate that PDT can shrink tumor, especially at the high light dose, and that PDT induces expression of VEGF in the BAT, which is associated with tumor recurrence. Therefore, PDT combined with anti-angiogenic agents may be an effective treatment strategy for glioma. PMID:17505777

  3. Combination of PDT and a DNA demethylating agent produces anti-tumor immune response in a mouse tumor model

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Hamblin, Michael R.

    2009-06-01

    Epigenetic mechanisms, which involve DNA methylation and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. However, these changes must be actively maintained after each cell division rendering them a promising target for pharmacologic inhibition. DNA methyltransferase inhibitors like 5-aza-deoxycytidine (5-aza-dC) induce and/or up-regulate the expression of MAGE-type antigens in human and mice cancer cells. Photodynamic therapy (PDT) has been shown to be an effective locally ablative anti-cancer treatment that has the additional advantage of stimulating tumor-directed immune response. We studied the effects of a new therapy that combined the demethylating agent 5-aza-dC with PDT in the breast cancer model 4T1 syngenic to immunocompetent BALB/c mice. PDT was used as a locally ablating tumor treatment that is capable of eliciting strong and tumor directed immune response while 5-aza-dC pretreatment was used promote de novo induction of the expression of P1A.protein. This is the mouse homolog of human MAGE family antigens and is reported to function as a tumor rejection antigen in certain mouse tumors. This strategy led to an increase in PDT-mediated immune response and better treatment outcome. These results strongly suggest that the MAGE family antigens are important target for PDT mediated immune response but that their expression can be silenced by epigenetic mechanisms. Therefore the possibility that PDT can be combined with epigenetic strategies to elicit anti-tumor immunity in MAGE-positive tumor models is highly clinically significant and should be studied in detail.

  4. Large muon electric dipole moment from flavor?

    SciTech Connect

    Hiller, Gudrun; Huitu, Katri; Rueppell, Timo; Laamanen, Jari

    2010-11-01

    We study the prospects and opportunities of a large muon electric dipole moment (EDM) of the order (10{sup -24}-10{sup -22}) ecm. We investigate how natural such a value is within the general minimal supersymmetric extension of the standard model with CP violation from lepton flavor violation in view of the experimental constraints. In models with hybrid gauge-gravity-mediated supersymmetry breaking, a large muon EDM is indicative for the structure of flavor breaking at the Planck scale, and points towards a high messenger scale.

  5. Measurement of Muon Capture on the Proton

    SciTech Connect

    Clayton, Steven M.

    2006-11-17

    The goal of the {mu}Cap experiment is a 1% precision measurement of the muon capture rate on the free proton, which will determine the weak pseudoscalar form factor gP to 7%. At the end of 2004, the {mu}Cap detector was completed and commissioned and first physics data were taken. The analysis of these data is in an advanced stage. The muon capture rate will be determined to 3%, translating to a measurement of gP to 20%. Improvements to the detector, implemented to reach the design goal, were made for the 2005 and 2006 data runs.

  6. FFAG Designs for Muon Collider Acceleration

    SciTech Connect

    Berg, J. Scott

    2014-01-13

    I estimate FFAG parameters for a muon collider with a 70mm longitudinal emittance. I do not discuss the lower emittance beam for a Higgs factory. I produce some example designs, giving only parameters relevant to estimating cost and performance. The designs would not track well, but the parameters of a good design will be close to those described. I compare these cost estimates to those for a fast-ramping synchrotron and a recirculating linear accelerator. I conclude that FFAGs do not appear to be cost-effective for the large longitudinal emittance in a high-energy muon collider.

  7. Rare kaon, muon, and pion decay

    SciTech Connect

    Littenberg, L.

    1998-12-01

    The author discusses the status of and prospects for the study of rare decays of kaons, muons, and pions. Studies of rare kaon decays are entering an interesting new phase wherein they can deliver important short-distance information. It should be possible to construct an alternative unitarity triangle to that determined in the B sector, and thus perform a critical check of the Standard Model by comparing the two. Rare muon decays are beginning to constrain supersymmetric models in a significant way, and future experiments should reach sensitivities which this kind of model must show effects, or become far less appealing.

  8. Successful treatment of recalcitrant dissecting cellulitis of the scalp with ALA-PDT: case report and literature review.

    PubMed

    Liu, Ye; Ma, Ying; Xiang, Lei-Hong

    2013-12-01

    A case of refractory dissecting cellulitis of the scalp (DCS) in a forty-one-year-old Chinese female patient was treated with a total of 6 sessions of topical ALA-PDT at one week intervals. The patient tolerated and responded well to this new approach without any adverse events. This suggested that topical ALA-PDT could be an effective and safe alternative for DCS patients who were refractory to other conventional therapies. We also reviewed etiology, pathophysiology, natural history and treatment options for DCS. PMID:24284093

  9. Children and guns: The detection of recent contact with firearms on children's hands by the PDT reagent.

    PubMed

    Bar-Or, Karni L; Almog, Joseph

    2015-08-01

    Throughout the world, young children are worryingly found to be involved in both unintentional and intentional gun violence, rendering the forensic investigation of gun handling by children a highly important matter. The effectiveness of the PDT reaction for mapping iron traces on hands of children has been tested and compared to its application on adults. Counter-intuitively, children were found to produce considerably more intense PDT impressions than adults. A plausible explanation which is based on physiological differences between children and adolescents is suggested.

  10. Flux modulations seen by the muon veto of the GERDA experiment

    NASA Astrophysics Data System (ADS)

    Collaboration, Gerda; Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicsk'o Cs'athy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knapp, M.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Ritter, F.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Strecker, H.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2016-11-01

    The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66 PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modulation. Two causes have been identified: (i) secondary muons from the CNGS neutrino beam (2.2%) and (ii) a temperature modulation of the atmosphere (1.4%). A mean cosmic muon rate of Iμ0 =(3.477 ± 0 .002stat ± 0 .067sys) ×10-4 /(s · m2) was found in good agreement with other experiments at LNGS. Combining the present result with those from previous experiments at LNGS the effective temperature coefficient αT , Lngs is determined to 0.93 ± 0.03. A fit of the temperature coefficients measured at various underground sites yields a kaon to pion ratio rK/π of 0.10 ± 0.03.

  11. Performance of the ALICE muon trigger system in pp and Pb-Pb collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Fronzé, G. G.

    2016-06-01

    The ALICE muon spectrometer studies the production of quarkonia and open heavy-flavour particles. It is equipped with a trigger system composed of Resistive Plate Chambers which, by applying a transverse-momentum-based muon selection, minimises the background from light-hadron decays. The system has been continuously taking data throughout the LHC Run I; it has undergone maintenance and consolidation operations during the LHC shutdown period 1. In the first year of the LHC Run II, the system, fully recommissioned, has participated in data taking in pp and Pb-Pb collisions. The performance of the system throughout the last data-taking period is presented.

  12. First Observation of Accelerator Muon Antineutrinos in MINOS

    SciTech Connect

    Danko, Istvan

    2009-10-01

    We report the first direct observation of muon antineutrinos in the MINOS Far Detector in the current muon-neutrino dominated beam. The magnetic field of the detector is utilized to separate muon neutrinos and antineutrinos event-by-event by identifying the charge sign of the muon created in charged-current interactions. We present preliminary results on the {bar {nu}}{sub {mu}} oscillation parameters as well as limit on the fraction of neutrinos that disappear and reappear as antineutrinos. We also discuss the prospect of the measurement when the polarity of the magnetic focusing horns will be reversed to create a dedicated muon antineutrino beam.

  13. The International Muon Ionization Cooling Experiment: MICE and Neutrino Factories

    NASA Astrophysics Data System (ADS)

    Freemire, Ben

    2010-03-01

    The Muon Ionization Cooling Experiment (MICE) is an accelerator and particle physics experiment aimed at demonstrating the technique of ionization cooling on a beam of muons. Ionization cooling is the process by which muons are sent through an absorbing material, thereby losing energy and decreasing their normalized emittance. The muons are then reaccelerated in the appropriate direction with radio frequency (RF) cavities. This produces an overall reduction in transverse emittance of the muon beam. Ionization cooling could be a key technique in the design of a high intensity Neutrino Factory.

  14. ICOOL: A TOOL FOR MUON COLLIDER SIMULATIONS.

    SciTech Connect

    FERNOW,R.C.

    2001-09-28

    Current ideas for designing neutrino factories [ 1,2] and muon colliders [3] require unique configurations of fields and materials to prepare the muon beam for acceleration. This so-called front end system must accomplish the goals of phase rotation, bunching and cooling. We have continued the development of a 3-D tracking code, ICOOL [4], for examining possible muon collider front end configurations. A system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of {approx}50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary codes can be used for pre-processing, post-processing and optimization.

  15. Muon Collider Machine-Detector Interface

    SciTech Connect

    Mokhov, Nikolai V.; /Fermilab

    2011-08-01

    In order to realize the high physics potential of a Muon Collider (MC) a high luminosity of {mu}{sup +}{mu}{sup -}-collisions at the Interaction Point (IP) in the TeV range must be achieved ({approx}10{sup 34} cm{sup -2}s{sup -1}). To reach this goal, a number of demanding requirements on the collider optics and the IR hardware - arising from the short muon lifetime and from relatively large values of the transverse emittance and momentum spread in muon beams that can realistically be obtained with ionization cooling should be satisfied. These requirements are aggravated by limitations on the quadrupole gradients as well as by the necessity to protect superconducting magnets and collider detectors from muon decay products. The overall detector performance in this domain is strongly dependent on the background particle rates in various sub-detectors. The deleterious effects of the background and radiation environment produced by the beam in the ring are very important issues in the Interaction Region (IR), detector and Machine-Detector Interface (MDI) designs. This report is based on studies presented very recently.

  16. Target studies for surface muon production

    NASA Astrophysics Data System (ADS)

    Berg, F.; Desorgher, L.; Fuchs, A.; Hajdas, W.; Hodge, Z.; Kettle, P.-R.; Knecht, A.; Lüscher, R.; Papa, A.; Rutar, G.; Wohlmuther, M.

    2016-02-01

    Meson factories are powerful drivers of diverse physics programs. With beam powers already in the MW-regime attention has to be turned to target and beam line design to further significantly increase surface muon rates available for experiments. For this reason we have explored the possibility of using a neutron spallation target as a source of surface muons by performing detailed Geant4 simulations with pion production cross sections based on a parametrization of existing data. While the spallation target outperforms standard targets in the backward direction by more than a factor 7 it is not more efficient than standard targets viewed under 90°. Not surprisingly, the geometry of the target plays a large role in the generation of surface muons. Through careful optimization, a gain in surface muon rate of between 30% and 60% over the standard "box-like" target used at the Paul Scherrer Institute could be achieved by employing a rotated slab target. An additional 10% gain could also be possible by utilizing novel target materials such as, e.g., boron carbide.

  17. Neutrino masses, Majorons, and muon decay

    SciTech Connect

    Santamaria, A.; Bernabeu, J.; Pich, A.

    1987-09-01

    The contributions to the parameters xi, delta, rho, and eta in muon decay coming from double Majoron emission, Majorana neutrino masses, and effects of charged scalars are evaluated in the scalar-triplet model. The relevance of these effects for planned experiments is discussed.

  18. Gamma rays from muons from WIMPs: Implementation of radiative muon decays for dark matter analyses

    NASA Astrophysics Data System (ADS)

    Scaffidi, Andre; Freese, Katherine; Li, Jinmian; Savage, Christopher; White, Martin; Williams, Anthony G.

    2016-06-01

    Dark matter searches in gamma ray final states often make use of the fact that photons can be produced from final state muons. Modern Monte Carlo generators and dark matter codes include the effects of final state radiation from muons produced in the dark matter annihilation process itself, but neglect the O (1 %) radiative correction that arises from the subsequent muon decay. After implementing this correction we demonstrate the effect that it can have on dark matter phenomenology by considering the case of dark matter annihilation to four muons via scalar mediator production. We first show that the AMS-02 positron excess can no longer easily be made consistent with this final state once the Fermi-LAT dwarf limits are calculated with the inclusion of radiative muon decays, and we next show that the Fermi-LAT galactic center gamma excess can be improved with this final state after inclusion of the same effect. We provide code and tables for the implementation of this effect in the popular dark matter code micrOMEGAs, providing a solution for any model producing final state muons.

  19. Corrections for temperature effect for ground-based muon hodoscopes

    NASA Astrophysics Data System (ADS)

    Dmitrieva, A. N.; Kokoulin, R. P.; Petrukhin, A. A.; Timashkov, D. A.

    2011-01-01

    Influence of atmospheric temperature on muon flux at sea level is considered. Results of calculations of muon spectrum for normal atmospheric conditions, differential temperature coefficients (DTC) for muons at different zenith angles and threshold energies are presented. In calculations, a six-layer stationary spherical model of atmosphere is used, contributions of both pions and kaons as well as dependence of muon energy loss on muon energy are taken into account. Comparison of muon spectrum calculations and experimental data in a wide range of zenith angles and momentums shows a good agreement. Comparison of results of DTC calculations with results of earlier works exhibits only qualitative agreement; possible sources of differences are analyzed. Some practical questions of the use of DTC for muon hodoscope data analysis are discussed.

  20. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source.

    PubMed

    Lord, J S; McKenzie, I; Baker, P J; Blundell, S J; Cottrell, S P; Giblin, S R; Good, J; Hillier, A D; Holsman, B H; King, P J C; Lancaster, T; Mitchell, R; Nightingale, J B; Owczarkowski, M; Poli, S; Pratt, F L; Rhodes, N J; Scheuermann, R; Salman, Z

    2011-07-01

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  1. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  2. Determination of the low concentration correction in the macroscopic singlet oxygen model for PDT

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Penjweini, Rozhin; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    The macroscopic singlet oxygen model has been used for singlet oxygen explicit dosimetry in photodynamic therapy (PDT). The photophysical parameters for commonly used sensitizers, HPPH and BPD, have been investigated in pre-clinical studies using mouse models. So far, studies have involved optimizing fitting algorithms to obtain the some of the photophysical parameters (ξ, σ, g) and the threshold singlet oxygen dose ([1O2]rx,sh), while other parameters such as the low concentration correction, δ, has been kept as a constant. In this study, using photobleaching measurements of mice in vivo, the value of δ was also optimized and fit to better describe experimental data. Furthermore, the value of the specific photobleaching ratio (σ) was also fine-tuned using the photobleaching results. Based on literature values of δ, σ for photosensitizers can be uniquely determined using the additional photobleaching measurements. This routine will further improve the macroscopic model of singlet oxygen production for use in explicit dosimetry.

  3. Efficiency of autofluorescence diagnosis and photodynamic therapy (PDT) of bladder tumors: our own experience

    NASA Astrophysics Data System (ADS)

    Szygula, Michal; Wojciechowski, Boguslaw; Sieron, Aleksander; Adamek, Mariusz; Cebula, Wojciech; Biniszkiewicz, Tomasz; Zieleznik, Witold; Kawczyk-Krupka, Aleksandra

    2001-01-01

    The efficiency of autofluorescence diagnosis within urinary bladder was analyzed in the study. We examined two groups of patients: the first one consisting of 22 patients suspected to have bladder cancer and the second one consisting of 45 patients who have undergone transurethral electro resection due to urinary bladder neoplasms. Our goal was to detect cancerous tissue invisible in white-light examination. In the first group sensitivity was 100 percent and specificity was 69.23 percent. In the second group sensitivity was 96 percent and specificity was 80 percent. We also report in the study treatment efficiency of PDT in 12 patients with superficial bladder cancer. In our procedure two hours after the instillation of bladder with ALA solution, the lesion was irradiated by laser light. In 9 out of 12 treated patients regression of bladder tumor was obtained, while in 3 cases a progression of neoplasmatic process was observed.

  4. Volcanoes muon imaging using Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  5. Glycodendrimeric phenylporphyrins as new candidates for retinoblastoma PDT: blood carriers and photodynamic activity in cells.

    PubMed

    Wang, Ze-Jian; Chauvin, Benoît; Maillard, Philippe; Hammerer, Fabien; Carez, Danièle; Croisy, Alain; Sandré, Catherine; Chollet-Martin, Sylvie; Prognon, Patrice; Paul, Jean-Louis; Blais, Jocelyne; Kasselouri, Athena

    2012-10-01

    Photodynamic therapy (PDT) has recently been proposed as a possible indication in the conservative treatment of hereditary retinoblastoma. In order to create photosensitizers with enhanced targeting ability toward retinoblastoma cells, meso-tetraphenylporphyrins bearing one glycodendrimeric moiety have been synthesized. The binding properties to plasma proteins and photodynamic activity of two monodendrimeric porphyrins bearing three mannose units via monoethylene glycol (1) or diethylene glycol (2) linkers have been compared to that of the non-dendrimeric tri-substituted derivative [TPP(p-Deg-O-α-ManOH)(3)]. The dendrimeric structure was found to highly increase the binding affinity to plasma proteins and to modify to some extent plasma distribution. HDL and to a lesser extent LDL have been shown to be the main carriers of dendrimeric and non-dendrimeric compounds. The phototoxicity observed for the two glycodendrimers (1) and (2) (LD(50)=0.5 μM) in Y79 cells is of the same order of magnitude that for TPP(p-Deg-O-α-ManOH)(3) (LD(50)=0.7 μM), with a similar cellular uptake level for (1) and a lower for (2). A serum content increase from 2% to 20% (v/v) in the incubation medium was found to inhibit both cellular uptake and photoactivity of dendrimeric derivatives, whereas those of TPP(p-Deg-O-α-ManOH)(3) remained little affected. Specificities of glycodendrimeric porphyrins, combining a lower cellular uptake together with a higher affinity toward plasma proteins, make these derivatives possible candidates for a vascular targeting PDT. PMID:22796430

  6. Photophysical and photochemical properties of Bauhinia megalandra (Caesalpinaceae) extracts as new PDT photosensitizer

    NASA Astrophysics Data System (ADS)

    Vargas Tovar, Franklin R.; Rivas, C.; Estrada, O.; Marcano O., Aristides A.; Echevarria, Lorenzo; Diaz, Yrene; Alexander, I.; Rodriguez, L.; Padron, L.; Rivera, I. R.

    2004-10-01

    Recently new photosensitizers, chlorophyll "a and b" derivatives, for photodynamic therapy (PDT) have been presented. It already passed complete pre-clinical investigations. This prompted us to carry out an extensive study of photophysical properties of chlorine derivatives, important both for optimization of their clinic applications and for study of mechanisms of chlorine PDT&. The fresh leaves of Bauhinia megalandra (Caesalpinaceae) were extracted with methanol by percolation, and re-extract with a mixture of methanol-water (1:1), the insoluble fraction was then separated by column chromatography [RP18/hexane-ethylacetate (9:1)] to obtain four fractions named 1 to 4. These compounds were identified by NMR data. We found that 3 and 4 efficiently generates singlet oxygen when irradiated with visible light. Detection of the singlet oxygen was fulfilled by its reaction with histidine and detected by bleaching p-nitrosodimethylaniline under 440 nm irradiation. The quantum yields of singlet oxygen determined by us were 0.088 (1), 0.151 (2), 0.219 (3) and 0.301 (4). We measured absorption and fluorescence spectra of compounds 1 to 4 (Mg-chlorophyll-a, Pheophytin, Mg-chlorophyll-b and chlorophyll-b respectively) in different media and in aqueous solutions of human serum albumin. The association constant of the compounds 1, 2, 3 and 4 in the presence of HSA were estimated. The binding and quenching studies suggest that only 1 and 3 may serve as a useful fluorescence probe for structure/function studies of different chlorophyll binding proteins. No photoinduced binding was observed after irradiation by all the studied compounds in presence of human serum albumin.

  7. Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): current clinical and development status

    NASA Astrophysics Data System (ADS)

    Marcus, Stuart L.; Sobel, Russel S.; Golub, Allyn L.; Carroll, Ronald L.; Lundahl, Scott L.; Shulman, D. Geoffrey

    1996-04-01

    Exogenous provision of ALA to many tissues results in the accumulation of sufficient quantities of the endogenous photosensitizer protoporphyrin IX, (PpIX), to produce a photodynamic effect. Therefore, ALA may be considered the only current PDT agent in clinical development which is a biochemical precursor of a photosensitizer. Topical ALA application, followed by exposure to activating light (ALA PDT), has been reported effective for the treatment of a variety of dermatologic diseases including cutaneous T-cell lymphoma, superficial basal cell carcinoma, Bowen's disease, and actinic (solar) keratoses, and is also being examined for treatment of acne and hirsutism. PpIX induced by ALA application also may serve as a fluorescence detection marker for photodiagnosis (PD) of malignant and pre- malignant conditions of the urinary bladder and other organs. Local internal application of ALA has also been used for selective endometrial ablation in animal model systems and is beginning to be examined in human clinical studies. Systemic, oral administration of ALA has been used for ALA PDT of superficial head and neck cancer, various gastrointestinal cancers, and the condition known as Barrett's esophagus. This brief paper reviews the current clinical and development status of ALA PDT.

  8. The involvement of NF-κB in PDT-induced death of crayfish glial and nerve cells

    NASA Astrophysics Data System (ADS)

    Berezhnaya, E. V.; Neginskaya, M. A.; Kovaleva, V. D.; Rudkovskii, M. V.; Uzdensky, A. B.

    2015-03-01

    Photodynamic therapy (PDT) is used for selective destruction of cells, in particular, for treatment of brain tumors. However, photodynamic treatment damages not only tumor cells, but also healthy neurons and glial cells. To study the possible role of NF-κB in photodynamic injury of neurons and glial cells, we investigated the combined effect of photodynamic treatment and NF-κB modulators: activator betulinic acid, or inhibitors parthenolide and CAPE on an isolated crayfish stretch receptor consisting of a single neuron surrounded by glial cells. A laser diode (670 nm, 0.4 W/cm2) was used as a light source. The inhibition of NF-κB during PDT increased the duration of neuron firing and glial necrosis and decreased neuron necrosis and glial apoptosis. The activation of NF-κB during PDT increased neuron necrosis and glial apoptosis and decreased glial necrosis. The difference between the effects of NF-κB modulators on photosensitized neurons and glial cells indicates the difference in NF-κB-mediated signaling pathways in these cell types. Thus, NF-κB is involved in PDT-induced shortening of neuron firing, neuronal and glial necrosis, and apoptosis of glial cells.

  9. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy

    PubMed Central

    Wang, Kaikai; Zhang, Yifan; Wang, Juan; Yuan, Ahu; Sun, Minjie; Wu, Jinhui; Hu, Yiqiao

    2016-01-01

    Combination of photothermal and photodynamic therapy (PTT/PDT) offer unique advantages over PDT alone. However, to achieve synergetic PDT/PTT effect, one generally needs two lasers with different wavelengths. Near-infrared dye IR-780 could be used as photosensitizer both for PTT and PDT, but its lipophilicity limits its practical use and in vivo efficiency. Herein, a simple multifunctional IR780-loaded nanoplatform based on transferrin was developed for targeted imaging and phototherapy of cancer compatible with a single-NIR-laser irradiation. The self-assembled transferrin-IR780 nanoparticles (Tf-IR780 NPs) exhibited narrow size distribution, good photo-stability, and encouraging photothermal performance with enhanced generation of ROS under laser irradiation. Following intravenous injection, Tf-IR780 NPs had a high tumor-to-background ratio in CT26 tumor-bearing mice. Treatment with Tf-IR780 NPs resulted in significant tumor suppression. Overall, the Tf-IR780 NPs show notable targeting and theranostic potential in cancer therapy. PMID:27263444

  10. The role of sensitivity of ALA (PpIX)-based PDT on Human embryonic kidney cell line (HEK293T)

    NASA Astrophysics Data System (ADS)

    Fakhar-e-Alam, M.; Atif, M.; Rehman, T.; Sadia, H.; Firdous, S.

    2011-08-01

    Present study evaluates the effects of photodynamic therapy (PDT) with aminolevulinic acid (5-ALA) as photo sensitizer using Human embryonic kidney (HEK293T) cell line as an experimental model. Porphyrins derivatives are used as active cytotoxic antitumor agents in PDT. Above mentioned cell line were irradiated with red light (a diode laser, λ = 635 nm) at different doses (0-160 J/cm2) of light. The influence/effectiveness of incubation time, various concentrations of aminolevulinic acid (5-ALA) and light doses on the cellular viability was studied. HEK293T cells were deliberated by exposing the ALA-PpIX (0-1000 μg/ml) of concentrations. The optimal uptakes of photosensitizer (PS) in cell lines were investigated by means of spectro photo metric measurements. Cells viability was determined by means of neutral red assay (NRA). It was observed that alone, neither photosensitizer nor light dose have significant effect on cells viability, but optimal concentration of PS along with suitable dose of light exhibit effective impact on the viability of cell. Our results showed that light doses of 40 J/cm2 demonstrates effective PDT outcome for HEK293T cell line when incubated with 400 μg/ml, with wrapping up view that HEK293T cell line is very sensitive to ALA-mediated PDT as compared to cell line published in our data. At the end results has been verified by using reactive oxygen species (ROS) measure test.

  11. The effect of ALA/PpIX PDT on putative cancer stem cells in tumor side populations

    NASA Astrophysics Data System (ADS)

    Morgan, Janet; Petrucci, Cara M.

    2009-06-01

    Protoporphyrin IX (PpIX) synthesized endogenously from 5-aminolevulinic acid (ALA), is effluxed from cells expressing the ATP-dependent transporter ABCG2. Side population (SP) cells (named for their low red/blue fluorescence distribution in flow cytometry plots with ABCG2 substrates such as Hoechst) are postulated to contain cancer stem cells (CSC). The SP in U87 (human gliblastoma cell line) were more resistant to ALA-PDT than NON-SP cells. Inhibiting ABCG2 activity with the tyrosine kinase inhibitor imatinib mesylate (IM, Gleevec) during incubation with ALA increased PpIX in the SP by preventing its efflux and decreased the SP after subsequent PDT, enhancing phototoxicity. Evasion of SP cells from ALA-PDT could cause tumor recurrence from CSC. Manipulation of ABCG2 levels on the SP with small molecule modulators may be a potential strategy for enhancing PDT by decreasing the amount of substrate photosensitizer extruded from cells and lowering the threshold for phototoxicity.

  12. The mechanism of PDT-induced electrical blockade: the dependence of time-lapse localization of talaporfin sodium on the cell death phenotypes in rat cardiac myocytes

    NASA Astrophysics Data System (ADS)

    Ito, A.; Matsuo, H.; Suenari, T.; Miyoshi, S.; Takatsuki, S.; Ogawa, S.; Arai, T.

    2009-02-01

    We have proposed a new type of atrial fibrillation treatment with the early state photodynamic therapy (PDT), in which the interval time between the photosensitizer injection and irradiation is shorter than that in conventional way. We had demonstrated the acute electrical blockade by the PDT with talaporfin sodium and a red (670 nm) diode laser in ex vivo and in vivo experiment using rat normal myocardial tissue. The previous study of intracellular Ca2+ concentration measurement in rat cardiac myocytes during the PDT indicated that Ca2+ influx induced by the plasma membrane damage might be the main cause of the acute reaction of myocardial tissue. We found that the cell damage of cardiac myocytes triggered by the PDT was mainly influenced by the site where the photosensitizer exists. In this study, we examined the relationship between the sites of talaporfin sodium existing and cell death phenotypes in response to the PDT, in order to clarify the mechanism of the acute electrical blockade induced by the PDT in myocardial tissue. The talaporfin sodium fluorescence was observed after the various incubation times to visualize the time-lapse intracellular photosensitizer localization. The distribution of the photosensitizer was dependent on the incubation time. The change in intracellular Ca2+ concentration during the PDT was examined with a fluorescent Ca2+ indicator by a high-speed Nipkow confocal laser microscope (CSU-X1, Yokogawa Electric Company). We obtained the Ca2+ dynamics during the PDT which can explain the PDT-induced cell death pathways. We concluded that the Ca2+ influx induced by plasma membrane damage is the possible mechanism of the electrical blockade by the early state PDT.

  13. Differences of response of human bladder cancer cells to photodynamic therapy (PDT) with Hypericum perforantum L extract and Photofrin

    NASA Astrophysics Data System (ADS)

    Nseyo, Unyime; Kim, Albert; Stavropoulos, Nikos E.; Skalkos, Dimitris; Nseyo, Unwana U.; Chung, Theodore D.

    2005-04-01

    Refractory carcinoma in situ and resistant multifocal transitional cell carcinoma (TCC) of the human urinary bladder respond modestly to PHOTOFRIN (PII) PDT. Hypericum perforatum L., (St. John"s wort /Epirus" Vasalmo, Greece), a medicinal plant used for many human ailments, is under investigation as a new photosensitizer. We have reported on the antiproliferative activity of the lipophilic extract of the Hypericum perforatum L. (HP) against cultured T-24, and NBT-11 bladder cancer cells. We investigated response of the polar methanolic fraction (PMF) of the HP extract versus PHOTOFRIN in photodynamic therapy (PDT) of human bladder cancer cells, RT-4 and T-24.The PMF was extracted from the dry herb with methanol, followed by liquid extraction with petroleum ether. RT-4/T-24, were plated (105 cells/well) and placed in the incubator (370 C, 5%CO) for 24 hours prior to addition of drugs. PII 2ug/ml, or PMF 60ug /ml was added and incubation continued. After 24 hours, the cells were treated with laser light (630nm) with 0,1,2,4 and 8 Joules. The cells were then washed and reincubated for another 24 hours. After this incubation cell survival was assessed by the MTT assay. PMF-PDT induced percent cell kill of 0%, 0%, 0%, 29% and 75%, in RT-4 cells (primary noninvasive urinary bladder TCC) versus 5%, 9%, 13%, 69% and 86%, in T-24 cells(metastatic TTC) at 0,1,2,4 and 8 Joules respectively. PII-PDT induced cell kill of 0 %, 0% ,0%,0% and 9 %, in RT-4 cells versus 0%,10%,0%,21% and 77%, in T-24 cells at 0,1,2,4 and 8 Joules respectively.RT-24 cells were relatively more resistant than T-24 cells to PMF and PII-PDT. Understanding mechanisms of such differential responses might prove useful

  14. Neutrino Factory and Muon Collider Fellow, Final Technical Report for DOE Award DE-FG02-03ER41267

    SciTech Connect

    Hanson, Gail G; Klier, Amit; Palmer, R; Alsharo'a, Mohammad M; Ozaki, S; Zisman, M S; Gallardo, J; Cline, D B; Holtkamp, N; Finley, D; Ankenbrandt, C M

    2006-06-21

    the U.S. [5, 6]. International design efforts are now under way. The International Neutrino Factory and Superbeam Scoping Study (ISS) [7] began at the NuFact05 Workshop in June 2005 with the goals of elaborating the physics case, defining the baseline options for such a facility and its neutrino detectors, and identifying the required R&D program to lay the foundations for a complete design study proposal, and an International Design Study of the Neutrino Factory is beginning. These studies entail iterative cost and technical difficulty evaluations, thereby providing guidelines for the advancing R&D program. One of the central subsystems of a neutrino factory or muon collider is the muon cooling system. The muon beam is cooled to increase the phase space density and allow the muons to pass through smaller apertures, thus reducing the cost of the following accelerator systems. This cooling is accomplished through ionization cooling, in which the beam is passed through liquid hydrogen absorbers and then accelerated in RF cavities to restore the longitudinal momentum. Ionization cooling was proposed more than twenty years ago [8] but has not yet been demonstrated in practice. The International Muon Ionization Cooling Experiment (MICE) [9, 10] seeks to build and operate a muon-cooling device of a design proposed in Feasibility Study-II [6]. In addition to cooling the muons, MICE includes apparatus to measure the performance of the device. The experiment will be carried out by a collaboration of physicists from the U.S., Europe, and Japan at the Rutherford Appleton Laboratory in the U.K. MICE will begin operation in late 2007. Successful performance of the MICE experiment will provide the understanding needed to design a complete neutrino factory, in which the muons are cooled, accelerated, circulated in a storage ring, and decay to produce the neutrino beam. The first neutrino factory might be built in the U.S., Europe, or Japan. A Muon Collider Task Force (MCTF) has

  15. Imaging a vertical shaft from a tunnel using muons

    NASA Astrophysics Data System (ADS)

    Bonal, N.; Preston, L. A.; Dorsey, D. J.; Schwellenbach, D.; Green, A.; Smalley, D.

    2015-12-01

    We use muon technology to image a vertical shaft from a tunnel. The density of the materials through which cosmic ray muons pass influences the flux of muons because muons are more attenuated by higher density material. Additionally, muons can travel several kilometers allowing measurements through deep rock. Density maps are generated from muon flux measurements to locate subsurface features like tunnel structures and ore bodies. Additionally, muon data can be jointly inverted with other data such as gravity and seismic to produce higher quality earth models than produced from a single method. We collected several weeks of data in a tunnel to image a vertical shaft. The minimum length of rock between the vertical shaft and the detector is 120 meters and the diameter of the vertical shaft is 4.6 meters. The rock the muons traveled through consists of Tertiary age volcanic tuff and steeply dipping, small-displacement faults. Results will be presented for muon flux in the tunnel and Monte-Carlo simulations of this experiment. Simulations from both GEANT4 (Geometry And Tracking version 4) and MCNP6 (Monte-Carlo N-Particle version 6) models will be compared. The tunnel overburden from muon measurements is also estimated and compared with actual the overburden. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. SuperB Muon Detector Prototype

    SciTech Connect

    Not Available

    2010-11-01

    The test objective is to optimize the muon identification in an experiment at a Super B Factory. To accomplish this, experimenters will study the muon identification capability of a detector with different iron configurations at different beam energies. The detector is a full scale prototype, composed of a stack of iron tiles. The segmentation of the iron allows the study of different configurations. Between the tiles, one or two extruded scintillator slabs can be inserted to test two different readout options; a Binary Readout and a Time Readout. In the Binary Readout option the two coordinates are given by the two orthogonal scintillator bars, and the spatial resolution is driven by the bar width. In the Time Readout option one coordinate is determined by the scintillator position and the other by the arrival time of the signal read with a TDC.

  17. Muon RLA - design status and simulations

    NASA Astrophysics Data System (ADS)

    Beard, K. B.; Bogacz, S. A.; Morozov, V. S.; Roblin, Y. R.

    2013-02-01

    The Neutrino Factory baseline design involves a complex chain of accelerators beginning with a linac. This first pre-linac follows the capture and bunching section and accelerates the muons from about 244 to 900 MeV and must accept a high emittance beam about 30 cm wide with a 10% energy spread. It uses counterwound, shielded superconducting solenoids and 201 MHz superconducting cavities, and currently consists of 24 3 m and 24 5 m long cryomodules. The next stage is a 1st dogbone-shaped RLA that takes the total energy from 900 MeV to 3.6 GeV in 4.5 passes, followed by a 2nd RLA that takes the energy from 3.6 to 12.6 GeV in 4.5 passes. Simulations are in progress to optimize the optics and determine the radiation loads from beam loss and muon decay.

  18. The Brookhaven muon storage ring magnet

    NASA Astrophysics Data System (ADS)

    Danby, G. T.; Addessi, L.; Armoza, Z.; Benante, J.; Brown, H. N.; Bunce, G.; Cottingham, J. C.; Cullen, J.; Geller, J.; Hseuh, H.; Jackson, J. W.; Jia, L.; Kochis, S.; Koniczny, D.; Larsen, R.; Lee, Y. Y.; Mapes, M.; Meier, R. E.; Meng, W.; Morse, W. M.; O'Toole, M.; Pai, C.; Polk, I.; Prigl, R.; Semertzidis, Y. K.; Shutt, R.; Snydstrup, L.; Soukas, A.; Tallerico, T.; Toldo, F.; Von Lintig, D.; Woodle, K.; Carey, R. M.; Earle, W.; Hazen, E. S.; Krienen, F.; Miller, J. P.; Ouyang, J.; Roberts, B. L.; Sulak, L. R.; Worstell, W. A.; Orlov, Y.; Winn, D.; Grossmann, A.; Jungmann, K.; zu Putlitz, G.; von Walter, P.; Debevec, P. T.; Deninger, W. J.; Hertzog, D. W.; Sedykh, S.; Urner, D.; Green, M. A.; Haeberlen, U.; Cushman, P.; Giron, S.; Kindem, J.; Miller, D.; Timmermans, C.; Zimmerman, D.; Druzhinin, V. P.; Fedotovich, G. V.; Grigorev, D. N.; Khazin, B. I.; Ryskulov, N. M.; Serednyakov, S.; Shatunov, Yu. M.; Solodov, E.; Endo, K.; Hirabayashi, H.; Mizumachi, Y.; Yamamoto, A.; Dhawan, S. K.; Disco, A.; Farley, F. J. M.; Fei, X.; Grosse-Perdekamp, M.; Hughes, V. W.; Kawall, D.; Redin, S. I.

    2001-01-01

    The muon g-2 experiment at Brookhaven National Laboratory has the goal of determining the muon anomalous g-value a μ (=(g-2)/2) to the very high precision of 0.35 parts per million and thus requires a storage ring magnet with great stability and homogeniety. A superferric storage ring with a radius of 7.11 m and a magnetic field of 1.45 T has been constructed in which the field quality is largely determined by the iron, and the excitation is provided by superconducting coils operating at a current of 5200 A. The storage ring has been constructed with maximum attention to azimuthal symmetry and to tight mechanical tolerances and with many features to allow obtaining a homogenous magnetic field. The fabrication of the storage ring, its cryogenics and quench protection systems, and its initial testing and operation are described.

  19. Helical Muon Beam Cooling Channel Engineering Design

    SciTech Connect

    Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

    2012-05-01

    The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

  20. Muon-catalyzed fusion experiments at LAMPF

    SciTech Connect

    Caffrey, A.J.; Anderson, A.N.; Van Siclen, C.D.W.; Watts, K.D.; Bradbury, J.N.; Gram, P.A.M.; Leon, M.; Maltrud, H.R.; Paciotti, M.A.; Jones, S.E.

    1986-01-01

    Our collaboration has conducted a series of muon-catalysis experiments over broad temperature and density ranges at the LAMPF accelerator in Los Alamos. We have discovered surprising effects on the normalized muon-catalysis cycling rate, lambda/sub c/, and the apparent alpha-particle sticking coefficient, ..omega../sub s/, that depend on the d-t mixture density. This paper reviews our experimental approach, analysis methods, and results for tests with targets varying in density from 0.12 to 1.30, normalized to liquid hydrogen density, and in temperature from 15K to 800K. In particular, results will be presented on the cycling rate, sticking coefficient, and /sup 3/He scavenging rate, as functions of temperature, mixture density, or tritium concentration.

  1. Muon acceleration in cosmic-ray sources

    SciTech Connect

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  2. Apoptosis of HeLa cells induced by a new targeting photosensitizer-based PDT via a mitochondrial pathway and ER stress

    PubMed Central

    Li, Donghong; Li, Lei; Li, Pengxi; Li, Yi; Chen, Xiangyun

    2015-01-01

    Photodynamic therapy (PDT) is emerging as a viable treatment for many cancers. To decrease the cutaneous photosensitivity induced by PDT, many attempts have been made to search for a targeting photosensitizer; however, few reports describe the molecular mechanism of PDT mediated by this type of targeting photosensitizer. The present study aimed to investigate the molecular mechanism of PDT induced by a new targeting photosensitizer (PS I), reported previously by us, on HeLa cells. Apoptosis is the primary mode of HeLa cell death in our system, and apoptosis occurs in a manner dependent on concentration, irradiation dose, and drug–light intervals. After endocytosis mediated by the folate receptor, PS I was primarily localized to the mitochondria and the endoplasmic reticulum (ER) of HeLa cells. PS I PDT resulted in rapid increases in intracellular reactive oxygen species (ROS) production and Ca2+ concentration, both of which reached a peak nearly simultaneously at 15 minutes, followed by the loss of mitochondrial membrane potential at 30 minutes, release of cytochrome c from mitochondria into the cytoplasm, downregulation of Bcl-2 expression, and upregulation of Bax expression. Meanwhile, activation of caspase-3, -9, and -12, as well as induction of C/EBP homologous protein (CHOP) and glucose-regulated protein (GRP78), in HeLa cells after PS I PDT was also detected. These results suggest that apoptosis of HeLa cells induced by PS I PDT is not only triggered by ROS but is also regulated by Ca2+ overload. Mitochondria and the ER serve as the subcellular targets of PS I PDT, the effective activation of which is responsible for PS I PDT-induced apoptosis in HeLa cells. PMID:25897245

  3. Apoptosis of HeLa cells induced by a new targeting photosensitizer-based PDT via a mitochondrial pathway and ER stress.

    PubMed

    Li, Donghong; Li, Lei; Li, Pengxi; Li, Yi; Chen, Xiangyun

    2015-01-01

    Photodynamic therapy (PDT) is emerging as a viable treatment for many cancers. To decrease the cutaneous photosensitivity induced by PDT, many attempts have been made to search for a targeting photosensitizer; however, few reports describe the molecular mechanism of PDT mediated by this type of targeting photosensitizer. The present study aimed to investigate the molecular mechanism of PDT induced by a new targeting photosensitizer (PS I), reported previously by us, on HeLa cells. Apoptosis is the primary mode of HeLa cell death in our system, and apoptosis occurs in a manner dependent on concentration, irradiation dose, and drug-light intervals. After endocytosis mediated by the folate receptor, PS I was primarily localized to the mitochondria and the endoplasmic reticulum (ER) of HeLa cells. PS I PDT resulted in rapid increases in intracellular reactive oxygen species (ROS) production and Ca(2+) concentration, both of which reached a peak nearly simultaneously at 15 minutes, followed by the loss of mitochondrial membrane potential at 30 minutes, release of cytochrome c from mitochondria into the cytoplasm, downregulation of Bcl-2 expression, and upregulation of Bax expression. Meanwhile, activation of caspase-3, -9, and -12, as well as induction of C/EBP homologous protein (CHOP) and glucose-regulated protein (GRP78), in HeLa cells after PS I PDT was also detected. These results suggest that apoptosis of HeLa cells induced by PS I PDT is not only triggered by ROS but is also regulated by Ca(2+) overload. Mitochondria and the ER serve as the subcellular targets of PS I PDT, the effective activation of which is responsible for PS I PDT-induced apoptosis in HeLa cells.

  4. Recent results from COMPASS muon scattering measurements

    SciTech Connect

    Capozza, Luigi [Irfu Collaboration: COMPASS Collaboration

    2012-10-23

    A sample of recent results in muon scattering measurements from the COMPASS experiment at CERN will be reviewed. These include high energy processes with longitudinally polarised proton and deuteron targets. High energy polarised measurements provide important constraints for studying the nucleon spin structure and thus permit to test the applicability of the theoretical framework of factorisation theorems and perturbative QCD. Specifically, latest results on longitudinal quark polarisation, quark helicity densities and gluon polarisation will be reviewed.

  5. Seasonal modulations of the underground cosmic-ray muon energy

    SciTech Connect

    Malgin, A. S.

    2015-08-15

    The parameters of the seasonal modulations in the intensity of muons and cosmogenic neutrons generated by them at a mean muon energy of 280 GeV have been determined in the LVD (Large Volume Detector) experiment. The modulations of muons and neutrons are caused by a temperature effect, the seasonal temperature and density variations of the upper atmospheric layers. The analysis performed here leads to the conclusion that the variations in the mean energy of the muon flux are the main source of underground cosmogenic neutron variations, because the energy of muons is more sensitive to the temperature effect than their intensity. The parameters of the seasonal modulations in the mean energy of muons and the flux of cosmogenic neutrons at the LVD depth have been determined from the data obtained over seven years of LVD operation.

  6. Analytical calculation of muon intensities under deep sea-water

    NASA Technical Reports Server (NTRS)

    Inazawa, H.; Kobayakawa, K.

    1985-01-01

    The study of the energy loss of high energy muons through different materials, such as rock and sea-water can cast light on characteristics of lepton interactions. There are less ambiguities for the values of atomic number (Z) and mass number (A) in sea-water than in rock. Muon intensities should be measured as fundamental data and as background data for searching the fluxes of neutrino. The average range energy relation in sea-water is derived. The correction factors due to the range fluctuation is also computed. By applying these results, the intensities deep under sea are converted from a given muon energy spectra at sea-level. The spectra of conventional muons from eta, K decays have sec theta enhancement. The spectrum of prompt muons from charmed particles is almost isotropic. The effect of prompt muons is examined.

  7. Next Generation Muon g - 2 Experiments

    NASA Astrophysics Data System (ADS)

    Hertzog, David W.

    2016-04-01

    I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of aμ from Brookhaven E821 by a factor of 4; that is, δaμ ˜ 16 × 10-11, a relative uncertainty of 140 ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase 1 installation.

  8. Muon g-2 Experiment at Fermilab

    SciTech Connect

    Gray, Frederick

    2015-10-01

    A new experiment at Fermilab will measure the anomalous magnetic moment of the muon with a precision of 140 parts per billion (ppb). This measurement is motivated by the results of the Brookhaven E821 experiment that were first released more than a decade ago, which reached a precision of 540 ppb. As the corresponding Standard Model predictions have been refined, the experimental and theoretical values have persistently differed by about 3 standard deviations. If the Brookhaven result is confirmed at Fermilab with this improved precision, it will constitute definitive evidence for physics beyond the Standard Model. The experiment observes the muon spin precession frequency in flight in a well-calibrated magnetic fi eld; the improvement in precision will require both 20 times as many recorded muon decay events as in E821 and a reduction by a factor of 3 in the systematic uncertainties. This paper describes the current experimental status as well as the plans for the upgraded magnet, detector and storage ring systems that are being prepared for the start of beam data collection in 2017.

  9. Next Generation Muon g-2 Experiments

    SciTech Connect

    Hertzog, David W.

    2015-12-02

    I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of $a_\\mu$ from Brookhaven E821 by a factor of 4; that is, $\\delta a_\\mu \\sim 16 \\times 10^{-11}$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.

  10. Applications of Cosmic Ray Muon Radiography

    NASA Astrophysics Data System (ADS)

    Guardincerri, E.; Durham, J. M.; Morris, C. L.; Rowe, C. A.; Poulson, D. C.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D. J.

    2015-12-01

    The Dome of Santa Maria del Fiore, Florence Cathedral, was built between 1420 and 1436 by architect Filippo Brunelleschi and it is now cracking under its own weight. Engineering efforts are underway to model the dome's structure and reinforce it against further deterioration. According to some scholars, Brunelleschi might have built reinforcement structures into the dome itself; however, the only confirmed known subsurface reinforcement is a chain of iron and stone around the dome's base. Tomography with cosmic ray muons is a non-destructive imaging method that can be used to image the interior of the wall and therefore ascertain the layout and status of any iron substructure in the dome. We will show the results from a muon tomography measurement of iron hidden in a mockup of the dome's wall performed at Los Alamos National Lab in 2015. The sensitivity of this technique, and the status of this project will be also discussed. At last, we will show results on muon attenuation radiography of larger shallow targets.

  11. Muon Beam Helical Cooling Channel Design

    SciTech Connect

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G; Kazakevich, G M; Marhauser, Frank; Neubauer, Michael; Roberts, T; Yoshikawa, C; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V S; Lopes, Mattlock; Tollestrup, A; Yonehara, Katsuya; Zloblin, A

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  12. Jet production in muon scattering at Fermilab E665

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1993-11-01

    Measurements of multi-jet production rates from Muon-Nucleon and Muon-Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Nucleon deep-inelastic scattering are compared to Monte Carlo model predictions. Preliminary results from jet production on heavy targets, in the shadowing region, show a higher suppression of two-forward jets as compared to one-forward jet production.

  13. High intensity muon storage rings for neutrino production: Lattice design

    SciTech Connect

    Johnstone, C>

    1998-05-01

    Five energies, 250, 100, 50, 20, and 10 GeV, have been explored in the design of a muon storage ring for neutrino-beam production. The ring design incorporates exceptionally long straight sections with large beta functions in order to produce an intense, parallel neutrino beam via muon decay. To emphasize compactness and reduce the number of muon decays in the arcs, high-field superconducting dipoles are used in the arc design.

  14. Muons in Air Showers at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Unger, M.

    We present measurements of muons in air showers at ultra-high energies with the Pierre Auger Observatory. The number of muons at the ground in air showers detected at large zenith angles is determined as a function of energy and the results are compared to air shower simulations. Furthermore, using data collected at zenith angles smaller than 60°, rescaling factors are derived that quantify the deficit of muon production in air shower simulations.

  15. Muon Bunching and Phase-Energy Rotation for a Neutrino Factory and Muon Collider

    NASA Astrophysics Data System (ADS)

    Neuffer, David; Yoshikawa, Cary

    2008-04-01

    We have developed scenarios for capture, bunching and phase-energy rotation of muons from a proton source, using high-frequency rf systems. The method captures a maximal number of muons into a string of rf bunches with initial application in the neutrino factory design studies. For a muon collider, these bunches must be recombined for maximal luminosity, and our initial design produced a relatively long bunch train. In this paper we present more compact scenarios that obtain a smaller number of bunches, and, after some optimization, obtain cases that are better for both neutrino-factory and collider scenarios. We also consider further modification by incorporating hydrogen gas-filled rf cavities for bunching and cooling. We describe these examples and consider variations toward an optimal factory + collider scenario.

  16. The performance of the MICE muon beam line

    NASA Astrophysics Data System (ADS)

    Rayner, Mark Alastair

    2011-10-01

    The Muon Ionization Cooling Experiment is one lattice cell of a cooling channel suitable for conditioning the muon beam at the front end of a Neutrino Factory or Muon Collider. The beam line designed to transport muons into MICE has been installed, and data was collected in 2010. In this paper the method of reconstructing longitudinal momentum and transverse trace space using two timing detectors is discussed, and a preliminary simulation of the performance of a measured beam in the cooling channel is presented.

  17. Muon SR Newsletter, No. 29, April 5, 1984

    SciTech Connect

    Crowe, K.M.; Portis, A.M.; Yamazaki, T.

    1984-04-05

    Muon SR stands for Muon Spin Relaxation, Rotation, Resonance, Research, or what have you. The intention of the mnemonic acronym is to draw attention to the analogy with NMR and ESR, the range of whose applications is well known. Any study of the interactions of the muon spin by virtue of the asymmetric decay is considered ..mu..SR, but this definition is not intended to exclude any peripherally related phenomena, especially if relevant to the use of the muon's mganetic moment as a delicate probe of matter. Abstracts of individual items from this issue were prepared separately for the data base.

  18. Cosmic muon flux measurements at the Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.

    2014-08-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

  19. Multiple muons of conventional and exotic origin in DUMAND

    NASA Technical Reports Server (NTRS)

    Grieder, K. F.

    1985-01-01

    A first summary of results from a theoretical analysis, based on hadron - muon cascade calculations, that yield relative intensities of very high energy multiple muons originating from ultra high energy interactions initiated by primary protons and iron nuclei in the atmosphere, under consideration of normal as well as direct and exotic production channels is presented. Lateral density distributions and target diagrams will be presented which show that only very large detectors, such as DUMAND, will be able to record multiple muons of conventional origin reliably. This, however, is a prerequisite for any primary mass determination based on multiple muon data.

  20. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  1. Muons probe strong hydrogen interactions with defective graphene.

    PubMed

    Riccò, Mauro; Pontiroli, Daniele; Mazzani, Marcello; Choucair, Mohammad; Stride, John A; Yazyev, Oleg V

    2011-11-01

    Here, we present the first muon spectroscopy investigation of graphene, focused on chemically produced, gram-scale samples, appropriate to the large muon penetration depth. We have observed an evident muon spin precession, usually the fingerprint of magnetic order, but here demonstrated to originate from muon-hydrogen nuclear dipolar interactions. This is attributed to the formation of CHMu (analogous to CH(2)) groups, stable up to 1250 K where the signal still persists. The relatively large signal amplitude demonstrates an extraordinary hydrogen capture cross section of CH units. These results also rule out the formation of ferromagnetic or antiferromagnetic order in chemically synthesized graphene samples.

  2. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, Peter

    1992-01-01

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

  3. Muon beam polarization at the LAMPF Biochemical Channel

    SciTech Connect

    Paciotti, M.A.; Bradbury, J.N.; Heffner, R.H.; Leon, M.; Rink, D.; Rivera, O.M.

    1985-01-01

    Recent modifications to the LAMPF Biomedical Channel have improved versatility for stopping pion and muon physics experiments. High muon polarization was achieved by favorable kinematic selection of the decay muons. This polarization has been measured and found to be close to the design expectation of about 85%. The Hanle method was employed to measure the polarization by observing left-right decay asymmetry at right angles to the beam with small precession fields (0-50 gauss). This technique is particularly suitable for high-intensity muon beams. 6 refs., 3 figs.

  4. Tetra-2,3-pyrazinoporphyrazines with externally appended pyridine rings. 12. New heteropentanuclear complexes carrying four exocyclic cis-platin-like functionalities as potential bimodal (PDT/cis-platin) anticancer agents.

    PubMed

    Donzello, Maria Pia; Viola, Elisa; Ercolani, Claudio; Fu, Zhen; Futur, David; Kadish, Karl M

    2012-11-19

    Heteropentanuclear porphyrazines having the formula [(PtCl2)4LM] where L = tetrakis-2,3-[5,6-di(2-pyridyl)pyrazino]porphyrazinato dianion and M = Zn(II), Mg(II)(H2O), Pd(II), Cu(II) or Co(II) were characterized by elemental analyses, IR-UV-visible spectroscopy and electrochemistry and the data compared to new and previously published results for the corresponding homopentanuclear compound [(PtCl2)4LPt]. This latter species has four external N2(py)PtCl2 coordination sites which closely resemble cis-platin, (NH3)2PtCl2, the potent chemotherapeutic anticancer drug, and is able to act as a photosensitizer for the generation of (1)O2, the cytotoxic agent in photodynamic therapy (PDT). UV-visible spectra and half wave potentials for reduction of [(PtCl2)4LM], [(PtCl2)4LPt], the parallel series of mononuclear [LM] compounds and the pentanuclear [(PdCl2)4LM] compounds were examined in the nonaqueous solvents dimethyl sulfoxide, pyridine, and dimethylformamide. The complete set of available data indicate that external coordination of the PtCl2 and PdCl2 units significantly increases the level of the electron-deficiency of the entire molecular framework despite the fact that these groups are far away from the central porphyrazine π-ring system and have coordination sites nearly orthogonal to the plane of the macrocycle. The pentanuclear species [(M'Cl2)4LM] (M' = Pt(II), Pd(II)) undergo multiple one-electron transfers and exhibit an easier reducibility as compared to related electrode reactions of the parent compounds [LM] having the same central metal. Aggregation phenomena and reducibility of the porphyrazines to their monoanionic form (prevalently in DMF) are observed for some of the examined compounds and were analyzed and accurately taken into account. Quantum yields of (1)O2 (ΦΔ), of interest in PDT, were measured for [(PtCl2)4LM] with M = Zn(II), Mg(II)(H2O), or Pd(II) and the related macrocycles [(PdCl2)4LM] and [LM] in dimethylformamide (DMF) and/or DMF

  5. Tetra-2,3-pyrazinoporphyrazines with externally appended pyridine rings. 12. New heteropentanuclear complexes carrying four exocyclic cis-platin-like functionalities as potential bimodal (PDT/cis-platin) anticancer agents.

    PubMed

    Donzello, Maria Pia; Viola, Elisa; Ercolani, Claudio; Fu, Zhen; Futur, David; Kadish, Karl M

    2012-11-19

    Heteropentanuclear porphyrazines having the formula [(PtCl2)4LM] where L = tetrakis-2,3-[5,6-di(2-pyridyl)pyrazino]porphyrazinato dianion and M = Zn(II), Mg(II)(H2O), Pd(II), Cu(II) or Co(II) were characterized by elemental analyses, IR-UV-visible spectroscopy and electrochemistry and the data compared to new and previously published results for the corresponding homopentanuclear compound [(PtCl2)4LPt]. This latter species has four external N2(py)PtCl2 coordination sites which closely resemble cis-platin, (NH3)2PtCl2, the potent chemotherapeutic anticancer drug, and is able to act as a photosensitizer for the generation of (1)O2, the cytotoxic agent in photodynamic therapy (PDT). UV-visible spectra and half wave potentials for reduction of [(PtCl2)4LM], [(PtCl2)4LPt], the parallel series of mononuclear [LM] compounds and the pentanuclear [(PdCl2)4LM] compounds were examined in the nonaqueous solvents dimethyl sulfoxide, pyridine, and dimethylformamide. The complete set of available data indicate that external coordination of the PtCl2 and PdCl2 units significantly increases the level of the electron-deficiency of the entire molecular framework despite the fact that these groups are far away from the central porphyrazine π-ring system and have coordination sites nearly orthogonal to the plane of the macrocycle. The pentanuclear species [(M'Cl2)4LM] (M' = Pt(II), Pd(II)) undergo multiple one-electron transfers and exhibit an easier reducibility as compared to related electrode reactions of the parent compounds [LM] having the same central metal. Aggregation phenomena and reducibility of the porphyrazines to their monoanionic form (prevalently in DMF) are observed for some of the examined compounds and were analyzed and accurately taken into account. Quantum yields of (1)O2 (ΦΔ), of interest in PDT, were measured for [(PtCl2)4LM] with M = Zn(II), Mg(II)(H2O), or Pd(II) and the related macrocycles [(PdCl2)4LM] and [LM] in dimethylformamide (DMF) and/or DMF

  6. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Blyth, S. C.; Chan, Y. L.; Chen, X. C.; Chu, M. C.; Cui, K. X.; Hahn, R. L.; Ho, T. H.; Hsiung, Y. B.; Hu, B. Z.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lau, Y. P.; Leung, J. K. C.; Leung, K. Y.; Lin, G. L.; Lin, Y. C.; Luk, K. B.; Luk, W. H.; Ngai, H. Y.; Ngan, S. Y.; Pun, C. S. J.; Shih, K.; Tam, Y. H.; Tsang, R. H. M.; Wang, C. H.; Wong, C. M.; Wong, H. L. H.; Wong, K. K.; Yeh, M.; Zhang, B. J.; Aberdeen Tunnel Experiment Collaboration

    2016-04-01

    We have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ=(5.7 ±0.6 )×10-6 cm-2 s-1 sr-1 . The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn=(1.19 ±0.08 (stat)±0.21 (syst))×10-4 neutrons /(μ .g .cm-2 ) . A fit to the recently measured neutron yields at different depths gave a mean muon energy dependence of ⟨Eμ⟩ 0.76 ±0.03 for liquid-scintillator targets.

  7. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    DOE PAGES

    Yeh, M.; Chan, Y. L.; Chen, X. C.; Chu, M. C.; Cui, K. X.; Hahn, R. L.; Ho, T. H.; Hsiung, Y. B.; Hu, B. Z.; Kwan, K. K.; et al

    2016-04-07

    In this study, we have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ = (5.7±0.6)×10–6 cm–2 s–1 sr–1. The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn = (1.19 ± 0.08(stat) ± 0.21(syst)) × 10–4 neutrons/(μ•g•cm–2). A fit to the recently measured neutron yields at different depthsmore » gave a mean muon energy dependence of < Eμ >0.76±0.03 for liquid-scintillator targets.« less

  8. Local anisotropy of muon flux - The basis of the method of muon diagnostics of extra-terrestrial space

    NASA Astrophysics Data System (ADS)

    Astapov, I. I.; Barbashina, N. S.; Dmitrieva, A. N.; Kokoulin, R. P.; Petrukhin, A. A.; Shutenko, V. V.; Yakovleva, E. I.; Yashin, I. I.

    2015-12-01

    A new method for the analysis of spatial and angular characteristics of the cosmic ray muon flux registered in the hodoscopic mode using a single setup - the muon hodoscope - is presented. Various parameters of the muon flux anisotropy and methods of calculation of these parameters are discussed. It is shown that the horizontal projection of the muon flux relative anisotropy vector which characterizes lateral (horizontal) displacement of the muon flux angular distribution is the sensitive parameter to a variety of nonstationary processes in the heliosphere. The experimental data on the variation of the muon flux anisotropy during the passage of various irregularities in the solar wind and interplanetary magnetic field in the Earth's vicinity are presented.

  9. Muon dynamics in superprotonic conductors

    NASA Astrophysics Data System (ADS)

    Ikedo, Yutaka; Sugiyama, Jun; Nozaki, Hiroshi; Nishiyama, Kusuo; Matsuo, Yasumitsu; Lord, James S.

    2009-04-01

    In order to clarify the mechanism of high proton conductivity ( σ) for superprotonic conductors, MHXO4, where M=Cs and Rb, X=S and Se, μ+SR experiments have been performed in the temperature range between 250 and 450 K using single crystal samples. Here, MHXO4 exhibits extraordinary high σ at T above its structural phase transition ( Tc=414 K for CsHSO4) from a low- T monoclinic phase (Phase II) to a high- T tetragonal phase (Phase I). Since the asymmetry of weak transverse field (wTF) spectrum does not reach its maximum at ambient T, muonium (Mu) state is found to exist in both CsHSO4 and CsHSeO4. The Mu fraction in wTF spectrum for CsHSO4 is still a finite value even in Phase I, while the Mu state disappears in Phase I of CsHSeO4. The longitudinal field μ+SR measurements for observing the Mu state and its dynamics in CsHSO4, show fast Mu diffusion and the conversion from Mu to diamagnetic μ+ in whole T range measured. Considering the fact that the σ in Phase I of CsHSO4 is about 10 times larger than that of CsHSeO4, the Mu formation in Phase I implies the presence of the atomic hydrogen state and play a possible crucial role for the high σ in Phase I of CsHSO4.

  10. Studies on Muon Induction Acceleration and an Objective Lens Design for Transmission Muon Microscope

    NASA Astrophysics Data System (ADS)

    Artikova, Sayyora; Yoshida, Mitsuhiro; Naito, Fujio

    Muon acceleration will be accomplished by a set of induction cells, where each increases the energy of the muon beam by an increment of up to 30 kV. The cells are arranged in a linear way resulting in total accelerating voltage of 300 kV. Acceleration time in the linac is about hundred nanoseconds. Induction field calculation is based on an electrostatic approximation. Beam dynamics in the induction accelerator is investigated and final beam focusing on specimen is realized by designing a pole piece lens.

  11. Helical muon beam cooling channel engineering design

    SciTech Connect

    Johnson, Rolland

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary

  12. Photodynamic therapy (PDT) of endometrium primary cultures serving as an in-vitro model for endometriosis

    NASA Astrophysics Data System (ADS)

    Herter, Wiebke; Viereck, Volker; Keckstein, J.; Steiner, Rudolf W.; Rueck, Angelika C.

    1994-05-01

    As a new treatment model for endometriosis, photodynamic therapy (PDT) was applied to endometrium cultures. Endometriosis is a benign disease. Therefore primary cultures were used instead of cell lines. Endometrium is composed of epithelial and stromal cells which can also be found in primary culture. While stromal cells take a polygonal shape in culture, epithelial cells form cell colonies. PSIII (Photasan III), which is similar to hematorporphyrin derivate (HpD), meso-tetra (4-sulfonatophenyl) porphyrin (TPPS4), which posses a high fluorescence quantum yield and may be useful in fluorescence diagnosis of subtle endometriotic spots, and methylene blue (MB), a vital dye with phototoxic properties, were used as photosensitizers. Different sensitizer concentrations and incubation times were applied. The highest phototoxicity was observed for PSIII; TPPS4 and MB were less phototoxic. We compared our results with the sensitivity of cell lines described in the literature. The necessary irradiation to destroy stromal cells was relatively high but still in the same dimension as for cell lines. However they were even more sensitive than epithelial cells. This was true for all sensitizers used.

  13. Photodynamic treatment (PDT) of endometrium primary cultures serving as an in-vitro-model for endometriosis

    NASA Astrophysics Data System (ADS)

    Werter, Wiebke; Viereck, Volker; Keckstein, J.; Steiner, Rudolf W.; Rueck, Angelika C.

    1994-05-01

    As a new treatment model for endometriosis, photodynamic therapy (PDT) was applied to endometrium cultures. Endometriosis is a benign disease. Therefore primary cultures were used instead of cell lines. Endometrium is composed of epithelial and stromal cells which can also be found in primary culture. While stromal cells take a polygonal shape in culture, epithelial cells form cell colonies. PSIII (Photasan III), which is similar to hematorporphyrin derivate (HpD), meso-tetra (4-sulfonatophenyl) porphyrin (TPPS4), which posses a high fluorescence quantum yield and may be useful in fluorescence diagnosis of subtle endometriotic spots, and methylene blue (MB), a vital dye with phototoxic properties, were used as photosensitizers. Different sensitizer concentrations and incubation times were applied. The highest phototoxicity was observed for PSIII; TPPS4 and MB were less phototoxic. We compared our results with the sensitivity of cell lines described in the literature. The necessary irradiation to destroy stromal cells was relatively high but still in the same dimension as for cell lines. However they were even more sensitive than epithelial cells. This was true for all sensitizers used.

  14. Calculation of singlet oxygen formation from one photon absorbing photosensitizers used in PDT

    NASA Astrophysics Data System (ADS)

    Potasek, M.; Parilov, Evgueni; Beeson, K.

    2013-03-01

    Advances in biophotonic medicine require new information on photodynamic mechanisms. In photodynamic therapy (PDT), a photosensitizer (PS) is injected into the body and accumulates at higher concentrations in diseased tissue compared to normal tissue. The PS absorbs light from a light source and generates excited-state triplet states of the PS. The excited triplet states of the PS can then react with ground state molecular oxygen to form excited singlet - state oxygen or form other highly reactive species. The reactive species react with living cells, resulting in cel l death. This treatment is used in many forms of cancer including those in the prostrate, head and neck, lungs, bladder, esophagus and certain skin cancers. We developed a novel numerical method to model the photophysical and photochemical processes in the PS and the subsequent energy transfer to O2, improving the understanding of these processes at a molecular level. Our numerical method simulates light propagation and photo-physics in PS using methods that build on techniques previously developed for optical communications and nonlinear optics applications.

  15. Modeling of oxygen transport and cell killing in type-II photodynamic therapy.

    PubMed

    Gkigkitzis, Ioannis; Feng, Yuanming; Yang, Chunmei; Lu, Jun Q; Hu, Xin-Hua

    2012-01-01

    Photodynamic therapy (PDT) provides an effective option for treatment of tumors and other diseases in superficial tissues and attracts attention for in vitro study with cells. In this study, we present a significantly improved model of in vitro cell killing through Type-II PDT for simulation of the molecular interactions and cell killing in time domain in the presence of oxygen transport within a spherical cell. The self-consistency of the approach is examined by determination of conditions for obtaining positive definitive solutions of molecular concentrations. Decay constants of photosensitizers and unoxidized receptors are extracted as the key indices of molecular kinetics with different oxygen diffusion constants and permeability at the cell membrane. By coupling the molecular kinetics to cell killing, we develop a modeling method of PDT cytotoxicity caused by singlet oxygen and obtain the cell survival ratio as a function of light fluence or initial photosensitizer concentration with different photon density or irradiance of incident light and other parameters of oxygen transport. The results show that the present model of Type-II PDT yields a powerful tool to quantitate various events underlying PDT at the molecular and cellular levels and to interpret experimental results of in vitro cell studies.

  16. Noninvasive imaging of absolute PpIX concentration distribution in nonmelanoma skin tumors at pre-PDT

    NASA Astrophysics Data System (ADS)

    Sunar, Ulas; Rohrbach, Daniel; Morgan, Janet; Zeitouni, Natalie

    2013-03-01

    Photodynamic Therapy (PDT) has proven to be an effective treatment option for nonmelanoma skin cancers. The ability to quantify the concentration of drug in the treated area is crucial for effective treatment planning as well as predicting outcomes. We utilized spatial frequency domain imaging for quantifying the accurate concentration of protoporphyrin IX (PpIX) in phantoms and in vivo. We correct fluorescence against the effects of native tissue absorption and scattering parameters. First we quantified the absorption and scattering of the tissue non-invasively. Then, we corrected raw fluorescence signal by compensating for optical properties to get the absolute drug concentration. After phantom experiments, we used basal cell carcinoma (BCC) model in Gli mice to determine optical properties and drug concentration in vivo at pre-PDT.

  17. A study of MRI-guided diffuse fluorescence molecular tomography for monitoring PDT effects in pancreas cancer

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Davis, Scott C.; Srinivasan, Subhadra; O'Hara, Julia A.; Hasan, Tayyaba; Pogue, Brian W.

    2009-06-01

    Over the last several decades little progress has been made in the therapy and treatment monitoring of pancreas adenocarcinoma, a devastating and aggressive form of cancer that has a 5-year patient survival rate of 3%. Currently, investigations for the use of interstitial Verteporfin photodynamic therapy (PDT) are being undertaken in both orthotopic xenograft mouse models and in human clinical trials. In the mouse models, magnetic resonance (MR) imaging has been used as a measure of surrogate response to Verteporfin PDT; however, MR imaging alone lacks the molecular information required to assess the metabolic function and growth rates of the tumor immediately after treatment. We propose the implementation of MR-guided fluorescence tomography in conjunction with a fluorescently labeled (IR-Dye 800 CW, LI-COR) epidermal growth factor (EGF) as a molecular measure of surrogate response. To demonstrate the effectiveness of MR-guided diffuse fluorescence tomography for molecular imaging, we have used the AsPC-1 (+EGFR) human pancreatic adenocarcinoma in an orthotopic mouse model. EGF IRDye 800CW was injected 48 hours prior to imaging. MR image sequences were collected simultaneously with the fluorescence data using a MR-coupled diffuse optical tomography system. Image reconstruction was performed multiple times with varying abdominal organ segmentation in order to obtain a optimal tomographic image. It is shown that diffuse fluorescence tomography of the orthotopic pancreas model is feasible, with consideration of confounding fluorescence signals from the multiple organs and tissues surrounding the pancreas. MR-guided diffuse fluorescence tomography will be used to monitor EGF response after photodynamic therapy. Additionally, it provide the opportunity to individualize subsequent therapies based on response to PDT as well as to evaluate the success of combination therapies, such as PDT with chemotherapy, antibody therapy or even radiation.

  18. Development of image-guided targeted two-photon PDT for the treatment of head and neck cancers

    NASA Astrophysics Data System (ADS)

    Spangler, Charles W.; Starkey, Jean R.; Liang, Bo; Fedorka, Sara; Yang, Hao; Jiang, Huabei

    2014-03-01

    There has been significant effort over the past two decades in the treatment of malignancies of epithelial origin, including some of the most devastating of cancers, such as colorectal cancer (CRC), squamous call carcinoma of the head and neck (HNSCC), and carcinomas of the pancreas, lungs, (both Small Cell and Non-Small Cell), renal cell, prostate, bladder and breast. Recurring, refractory HNSCC is a particularly difficult cancer to treat once the tumors recur due to mutations that are resistant to repeat chemotherapy and radiation. In addition, repeat surgery is often difficult due to the requirement of significant surgical margins that may not be possible due to the attending potential functional deficits (e.g., salivary glands, nerves and major blood vessels in confined areas). In this study FaDu HNSCC xenograft tumors in SCID mice were imaged, and "optical", as opposed to "surgical" margins defined for the tumor being treated. The subsequent two-photon treatment irradiation was computer-controlled to carry out the tumor treatment by rastering the laser beam throughout the tumor volume plus the defined optical margins simultaneously. In our initial studies, up to 85% regression in tumor volume was observed in 5 days post PDT, with complete tumor regression in 18 days. No re-growth was observed up to 41 days post-PDT, with little or no scarring and complete hair re-growth. However, competition between imaging and PDT moieties was also observed in some mouse models, possibly favoring tumor re-growth. Strategies to selectively optimize the PDT effect will be discussed.

  19. Application of Titanium Dioxide (TiO2) Nanoparticles in Photodynamic Therapy (PDT) of an Experimental Tumor

    NASA Astrophysics Data System (ADS)

    Miyoshi, Norio; Kume, Kyo; Tsutumi, Kotaro; Fukunaga, Yukihiro; Ito, Shinnji; Imamura, Yoshiaki; Bibin, Andriana B.

    2011-12-01

    Nano-sized particles has been used for the photodynamic and sonodynamic treatments of pre-clinical cancer study in previous studies [1-7]. In this study, the 5-aminolevulinic acid (5-ALA) solution mixed with TiO2 nanoparticles was oral-administrated into the nude mouse transplanted under the skin with a human prostate cancer cell line. The experimental tumor model tissue (7×7×7 mm3) was measured of the size at different times after the photodynamic therapy (PDT) by laser to take a growth curve of the tumor. The treatment efficacy was jugged from the growth curves comparing different conditions. In the presence of the nanoparticle, the PDT treatment effect was enhanced those in the absence of the particles. Furthermore, the sonodynamic therapy (SDT) effect also enhanced with the nanoparticle to produce more OH radicals by ultrasound irradiation. These combination therapy of PDT and SDT with nanoparticles was very effectively resulted to be useful as a clinical use in future.

  20. Hydrokolloid occlusive dressings for photodynamic therapy (PDT) of cutaneous lesions with endogenous porphyrins induced by 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Gahlen, Johannes; Stern, Josef; Herfarth, Christian

    1995-03-01

    Protoporphyrin (Pp IX) is the final intermediate product before haem and can be stimulated to a phototoxic reaction with light. The presence of 5-aminolevulinic acid can increase the intracellular biosynthesis of Pp IX in certain types of tumor cells. The photosensitizing concentrations of Pp IX make laser light induced fluorescence diagnostics (LIFD) and photodynamic therapy possible. A topical application of a 5-aminolevulinic acid solution requires a waterproof occlusive dressing for several hours. We developed a simple technique for a practical preparation for PDT using a hydrocolloid dressing. The normal surrounding skin can be spared. We present our first therapeutic experience with a case of cutaneous breast cancer in a 65-year-old female patient. Six hours after topical application of 10% isotonic 5- aminolevulinic acid under the hydrocolloid dressing PDT was performed (Ar-Dye Laser, 630 nm wavelength). Twenty four hours after PDT a superficial tumor necrosis could be observed with a maximum depth of tumor necrosis of 2 - 3 mm. The surrounding normal skin was without any inflammation.

  1. Tissue oxygen monitoring by photoacoustic lifetime imaging (PALI) and its application to image-guided photodynamic therapy (PDT)

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai

    2015-03-01

    The oxygen partial pressure (pO2), which results from the balance between oxygen delivery and its consumption, is a key component of the physiological state of a tissue. Images of oxygen distribution can provide essential information for identifying hypoxic tissue and optimizing cancer treatment. Previously, we have reported a noninvasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor on small animals to identify hypoxia area. We also showed that PALI is able monitor changes of tissue oxygen, in an acute ischemia and breathing modulation model. Here we present our work on developing a treatment/imaging modality (PDT-PALI) that integrates PDT and a combined ultrasound/photoacoustic imaging system. The system provides real-time feedback of three essential parameters namely: tissue oxygen, light penetration in tumor location, and distribution of photosensitizer. Tissue oxygen imaging is performed by applying PALI, which relies on photoacoustic probing of oxygen-dependent, excitation lifetime of Methylene Blue (MB) photosensitizer. Lifetime information can also be used to generate image showing the distribution of photosensitizer. The level and penetration depth of PDT illumination can be deduced from photoacoustic imaging at the same wavelength. All images will be combined with ultrasound B-mode images for anatomical reference.

  2. Experience and BCC subtypes as determinants of MAL-PDT response: preliminary results of a national Brazilian project.

    PubMed

    Ramirez, Dora P; Kurachi, Cristina; Inada, Natalia M; Moriyama, Lilian T; Salvio, Ana G; Vollet Filho, José D; Pires, Layla; Buzzá, Hilde H; de Andrade, Cintia Teles; Greco, Clovis; Bagnato, Vanderlei S

    2014-03-01

    Non-melanoma skin cancer is the most prevalent cancer type in Brazil and worldwide. Photodynamic therapy (PDT) is a noninvasive technique with excellent cosmetic outcome and good curative results, when used for the initial stages of skin cancer. A Brazilian program was established to determine the efficacy of methyl aminolevulinate (MAL)-PDT, using Brazilian device and drug. The equipment is a dual device that combines the photodiagnosis, based on widefield fluorescence, and the treatment at 630nm. A protocol was defined for the treatment of basal cell carcinoma with 20% MAL cream application. The program also involves the training of the medical teams at different Brazilian regions, and with distinct facilities and previous PDT education. In this report we present the partial results of 27 centers with 366 treated BCC lesions in 294 patients. A complete response (CR) was observed in 76.5% (280/366). The better response was observed for superficial BCC, with CR 160 lesions (80.4%), when compared with nodular or pigmented BCC. Experienced centers presented CR of 85.8% and 90.6% for superficial and nodular BCC respectively. A high influence of the previous doctor experience on the CR values was observed, especially due to a better tumor selection.

  3. The utilization of a non-invasive fluorescence imaging system to follow clinical dermatological MAL-PDT

    NASA Astrophysics Data System (ADS)

    Tyrrell, Jessica; Campbell, Sandra; Curnow, Alison

    2009-06-01

    This study employed a commercially available, non-invasive, fluorescence imaging system (Dyaderm, Biocam, Germany), to measure protoporphyrin IX (PpIX) concentration at several different stages during clinical dermatological methyl aminolevulinate photodynamic therapy (MAL-PDT). We validated the system prior to use to ensure that the PpIX changes witnessed were accurate and not due to environmental or user induced artifacts. The system was then employed to acquire color (morphological) and fluorescent (physiological) images simultaneously during dermatological PDT. Clinical data was collected from a range of licensed dermatological conditions (actinic keratosis, Bowen's disease and superficial basal cell carcinoma) during initial and subsequent PDT treatment cycles. The initial clinical data indicated that each type of licensed lesion considered responded in a similar manner following the application of Metvix (Galderma, U.K.) and the subsequent light irradiation (Aktilite, Galderma, U.K.). Images acquired three hours after Metvix application showed a significant increase in PpIX concentration within the lesion (P < 0.05), whilst PpIX levels in the surrounding normal tissue remained unaltered. After irradiation, the PpIX concentration was significantly decreased and returned to a level similar to the initial concentration originally observed. Lesions that received subsequent treatment cycles accumulated significantly less PpIX (P < 0.05) prior to irradiation.

  4. Use of EPO as an adjuvant in PDT of brain tumors to reduce damage to normal brain

    NASA Astrophysics Data System (ADS)

    Rendon, Cesar A.; Lilge, Lothar

    2004-10-01

    In order to reduce damage to surrounding normal brain in the treatment of brain tumors with photodynamic therapy (PDT), we have investigated the use of the cytokine erythropoietin (EPO) to exploit its well-established role as a neuroprotective agent. In vitro experiments demonstrated that EPO does not confer protection from PDT to rat glioma cells. In vivo testing of the possibility of EPO protecting normal brain tissue was carried out. The normal brains of Lewis rats were treated with Photofrin mediated PDT (6.25 mg/Kg B.W. 22 hours pre irradiation) and the outcome of the treatment compared between animals that received EPO (5000 U/Kg B.W. 22 hours pre irradiation) and controls. This comparison was made based on the volume of necrosis, as measured with the viability stain 2,3,5- Triphenyl tetrazoium chloride (TTC), and incidence of apoptosis, as measured with in situ end labeling assay (ISEL). Western blotting showed that EPO reaches the normal brain and activates the anti-apoptotic protein PKB/AKT1 within the brain cortex. The comparison based on volume of necrosis showed no statistical significance between the two groups. No clear difference was observed in the ISEL staining between the groups. A possible lack of responsivity in the assays that give rise to these results is discussed and future corrections are described.

  5. Study of the efficacy of photofrin®-Mediated PDT on human hepatocellular carcinoma (HepG2) cell line

    NASA Astrophysics Data System (ADS)

    Atif, M.; Fakhar-e-Alam, M.; Zaidi, S. S. Z.; Suleman, R.

    2011-06-01

    The present study evaluates the effects of photodynamic therapy (PDT) with Photofrin® using human liver cancer cells (HepG2) as an experimental model. We optimized the different PDT parameters, e.g. (time of incubation, optimal dose of light and drug concentration), cytotoxicity, phototoxicity, and cellular viability of the HepG2 cells has also been investigated in this experimental work. The effect of light on the viability of cells without the photosensitizer was examined firstly, HepG2 cell line was irradiated with red light (a diode laser, λ = 635 nm). The toxicity of the photosensitizer in the absence of light in current cell line was investigated secondly, Photofrin® has been used as photosensitizing agent. Optimal dose of light along with suitable concentration of Photofrin® were traced into HepG2 cell line, by means of spectrophotometric measurement. Cells viability was determined by means of neutral red assay (NRA). Finally, it was observed that no toxic effects with the absence of light, and no significant photodamage effect on the cells without the presence of photosensitizer were found, when studied independently. Our results showed that light doses of 100 J/cm2 gives effective PDT outcome for HepG2 cell line at photosensitizer concentration of 100 μg/ml.

  6. Combination of PDT and topical angiogenic inhibitor for treatment of port wine stain (PWS) birthmarks: a novel approach

    NASA Astrophysics Data System (ADS)

    Yuan, Kaihua; Huang, Qiaobing; Huang, Zheng

    2009-06-01

    Port wine stain (PWS) birthmarks are a congenital cutaneous vascular malformation involving ecstatic post-capillary venules. Current standard treatment for PWS is the pulsed dye laser (PDL). Vascular-targeted photodynamic therapy (PDT) has been used for the treatment of PWS in China since the early 1990's. Both can achieve a certain degree of color blanching in various types of PWS lesions. However, the majority of PWS lesions require multiple treatments. Some PWS lesions can recur or become darker after successful treatment. Recently, it has been proposed that this phenomenon might be initiated by neoangiogenesis that can be caused by treatment via wound healing response. The combined use of photothermolysis and a topical application of an angiogenic inhibitor such as Imiquimod and Rapamycin, were evaluated in several pilot studies. It is well-known that PDT can induce various host immune responses VEGF overexpression. Recent clinical data also show that improved clinical outcomes are obtained through the combination of ocular PDT and anti-VEGF therapy. This article will discuss rationales and implications of using such a combination modality and highlight recent progress based on our clinical experience and published data.

  7. Precise determination of muon and electromagnetic shower contents from a shower universality property

    SciTech Connect

    Yushkov, A.; Ambrosio, M.; Aramo, C.; D'Urso, D.; Valore, L.; Guarino, F.

    2010-06-15

    We consider two new aspects of extensive air shower development universality allowing to make an accurate estimation of muon and electromagnetic (EM) shower contents in two independent ways. In the first case, to get the muon (or EM) signal in water Cherenkov tanks or in scintillator detectors, it is enough to know the vertical depth of the shower maximum X{sub max}{sup v} and the total signal in the ground detector. In the second case, the EM signal can be calculated from the primary particle energy and the zenith angle. In both cases, the parametrizations of muon and EM signals are almost independent on the primary particle nature, energy and zenith angle. Implications of the considered properties for mass composition and hadronic interaction studies are briefly discussed. The present study is performed on 28 000 proton, oxygen, and iron showers, generated with CORSIKA 6.735 for the E{sup -1} spectrum in the energy range lg (E/eV)=18.5-20 and uniformly distributed in cos{sup 2{theta}} in the zenith angle interval {theta}=0 deg. - 65 deg. for QGSJET II/Fluka interaction models.

  8. Pulsed dye laser does not seem as effective as red light in Basal cell carcinoma mal-pdt: a small pilot study.

    PubMed

    Fernández-Guarino, M; Harto, A; Jaén, P

    2012-01-01

    Multiple light sources can be used for photodynamic therapy (PDT) with good results, but there are few comparative studies. This study compares the efficacy of treatment of basal cell carcinoma with PDT and two light sources, the non-coherent red light and pulsed dye laser 595 nm. In this small pilot study red light is more effective, but many more studies are needed to draw definitive conclusions.

  9. Pulsed Dye Laser Does Not Seem as Effective as Red Light in Basal Cell Carcinoma Mal-Pdt: A Small Pilot Study

    PubMed Central

    Fernández-Guarino, M.; Harto, A.; Jaén, P.

    2012-01-01

    Multiple light sources can be used for photodynamic therapy (PDT) with good results, but there are few comparative studies. This study compares the efficacy of treatment of basal cell carcinoma with PDT and two light sources, the non-coherent red light and pulsed dye laser 595 nm. In this small pilot study red light is more effective, but many more studies are needed to draw definitive conclusions. PMID:23209908

  10. 18 years long-term results of facial port-wine stain (PWS) after photodynamic therapy (PDT)--a case report.

    PubMed

    Yu, Wenxin; Ma, Gang; Qiu, Yajing; Chen, Hui; Jin, Yunbo; Yang, Xi; Hu, Xiaojie; Chang, Lei; Wang, Tianyou; Zhou, Henghua; Li, Wei; Lin, Xiaoxi

    2015-03-01

    Port-wine stain (PWS) is still a challenging condition for clinician to treat, because in the majority of cases, the stains are not lifted fully by treatment with laser therapy. Photodynamic therapy (PDT) was considered recently as a promising alternative treatment for PWS. We report here long-term follow-up measures 18 years on PWS lesion treated with PDT and the histological data of residual PWS.

  11. Muon to electron conversion: how to find an electron in a muon haystack.

    PubMed

    Kurup, A

    2010-08-13

    The standard model (SM) of particle physics describes how the Universe works at a fundamental level. Even though this theory has proven to be very successful over the past 50 years, we know it is incomplete. Many theories that go beyond the SM predict the occurrence of certain processes that are forbidden by the SM, such as muon to electron conversion. This paper will briefly review the history of muon to electron conversion and focus on the high-precision experiments currently being proposed, COMET (Coherent Muon to Electron Transition) and Mu2e, and a next-generation experiment, PRISM. The PRISM experiment intends to use a novel type of accelerator called a fixed-field alternating-gradient (FFAG) accelerator. There has recently been renewed interest in FFAGs for the Neutrino Factory and the Muon Collider, and because they have applications in many areas outside of particle physics, such as energy production and cancer therapy. The synergies between these particle physics experiments and other applications will also be discussed.

  12. The g - 2 muon anomaly in di-muon production with the torsion in LHC

    NASA Astrophysics Data System (ADS)

    Syromyatnikov, A. G.

    2016-06-01

    It was considered within the framework of the conformal gauge gravitational theory CGTG coupling of the standard model fermions to the axial torsion and preliminary discusses the impact of extra dimensions, in particular, in a five-dimensional space-time with Randall-Sundrum metric, where the fifth dimension is compactified on an S1/Z 2 orbifold, which as it turns out is conformally to the fifth dimension flat Euclidean space with permanent trace of torsion, with a compactification radius R in terms of the radius of a CGTG gravitational screening, through torsion in a process Z → μ+μ- and LHC data. In general, have come to the correct set of the conformal calibration curvature the Faddeev-Popov diagram technique type, that follows directly from dynamics. This leads to the effect of restrictions on neutral spin currents of gauge fields by helicity and the Regge’s form theory. The diagrams reveals the fact of opening of the fine spacetime structure in a process pp → γ/Z/T → μ+μ- with a center-of-mass energy of 14TeV, indicated by dotted lines and texture columns, as a result of p-p collision on 1.3 ṡ 10-18cm scales from geometric shell gauge bosons of the SM continued by the heavy axial torsion resonance, and even by emerging from the inside into the outside of the ultra-light (freely-frozen in muon’s spin) axial torsion. We then evaluate the contribution of the torsion to the muon anomaly to derive new constraints on the torsion parameters. It was obtained that on the πN scattering through the exchange of axial torsion accounting, the nucleon anomalous magnetic moment in the eikonal phase leads to additive additives which is responsible for the spin-flip in the scattering process, the scattering amplitude is classical and characterized by a strong the torsion coupling ηT≅1. So the scattering of particles, occurs as on the Coulomb center with the charge fT This is the base model which is the g-2 muon anomaly. The muon anomaly contribution due to

  13. Chromaticity correction for a muon collider optics

    SciTech Connect

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.; /Fermilab

    2011-03-01

    Muon Collider (MC) is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 10{sup 34} cm{sup 2}s{sup -1} range the collider lattice designmust satisfy a number of stringent requirements. In particular the expected large momentum spread of the muon beam and the very small {beta}* call for a careful correction of the chromatic effects. Here we present a particular solution for the interaction region (IR) optics whose distinctive feature is a three-sextupole local chromatic correction scheme. The scheme may be applied to other future machines where chromatic effects are expected to be large. The expected large muon energy spread requires the optics to be stable over a wide range of momenta whereas the required luminosity calls for {beta}* in the mm range. To avoid luminosity degradation due to hour-glass effect, the bunch length must be comparatively small. To keep the needed RF voltage within feasible limits the momentum compaction factor must be small over the wide range of momenta. A low {beta}* means high sensitivity to alignment and field errors of the Interaction Region (IR) quadrupoles and large chromatic effects which limit the momentum range of optics stability and require strong correction sextupoles, which eventually limit the Dynamic Aperture (DA). Finally, the ring circumference should be as small as possible, luminosity being inversely proportional to the collider length. A promising solution for a 1.5 TeV center of mass energy MC with {beta}* = 1 m in both planes has been proposed. This {beta}* value has been chosen as a compromise between luminosity and feasibility based on the magnet design and energy deposition considerations. The proposed solution for the IR optics together with a new flexible momentum compaction arc cell design allows to satisfy all requirements and is relatively insensitive to the beam-beam effect.

  14. Densitometric tomography using the measurement of muon flux

    NASA Astrophysics Data System (ADS)

    Hivert, F.; Busto, J.; Brunner, J.; Salin, P.; Gaffet, S.

    2013-12-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g. seismic imaging, electric prospection or gravimetry. The present work develops a recent method to investigate the in situ density of rocks using atmospheric the muon flux measurement , its attenuation depending on the rock density and thickness. This new geophysical technique have been mainly applied in volcanology (Lesparre N., 2011) using scintillator detectors. The present project (T2DM2) aims to realize underground muons flux measurements in order to characterizing the rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measure with a new Muon telescope instrumentation using Micromegas detectors in Time Projection Chambers (TPC) configuration. The first step of the work presented considers the muon flux simulation using the Gaisser model, for the interactions between muons and atmospheric particles, and the MUSIC code (Kudryavtsev V. A., 2008) for the muons/rock interactions. The results show that the muon flux attenuation caused by density variations are enough significant to be observed until around 500 m depth and for period of time in the order of one month. Such a duration scale and depth of investigation is compatible with the duration of the water transfer processes involved within the Karst unsaturated zone where LSBB is located. Our work now concentrates on the optimization of the spatial distribution of detectors that will be deployed in future.

  15. Muon tomography of rock density using Micromegas-TPC telescope

    NASA Astrophysics Data System (ADS)

    Hivert, Fanny; Busto, José; Gaffet, Stéphane; Ernenwein, Jean-Pierre; Brunner, Jurgen; Salin, Pierre; Decitre, Jean-Baptiste; Lázaro Roche, Ignacio; Martin, Xavier

    2014-05-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g., seismic imaging, electric prospection or gravimetry. The current work is based on a recently developed method to investigate in situ the density of rocks using a measurement of the muon flux, whose attenuation depends on the quantity of matter the particles travel through and hence on the rock density and thickness. The present project (T2DM2) aims at performing underground muon flux measurements in order to characterize spatial and temporal rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measured with a new muon telescope device using Micromegas-Time Projection Chamber (TPC) detectors. The first step of the work presented covers the muon flux simulation based on the Gaisser model (Gaisser T., 1990), for the muon flux at the ground level, and on the MUSIC code (Kudryavtsev V. A., 2008) for the propagation of muons through the rock. The results show that the muon flux distortion caused by density variations is enough significant to be observed at 500 m depth for measurement times of about one month. This time-scale is compatible with the duration of the water transfer processes within the unsaturated Karst zone where LSBB is located. The work now focuses on the optimization of the detector layout along the LSBB galleries in order to achieve the best sensitivity.

  16. Preliminary Design of the Gas Cherenkov Muon Monitors for LBNE

    NASA Astrophysics Data System (ADS)

    Pitcher, Craig

    2011-10-01

    I am performing preliminary research for a future neutrino experiment at Fermilab called the Long Baseline Neutrino Experiment (LBNE). More specifically, I am determining the best geometry for the gas Cherenkov muon monitors. The purpose of the monitors is to measure, at least indirectly, the energy spectrum of the muons in the beam. I use computer software to simulate a realistic muon beam going through the monitors. Muons in the particle beam that go through the monitors emit Cherenkov radiation, and this light is detected by PMTs. I then plot the number of photons detected as a function of the muon's energy that emitted the detected photons. My goal is to have a very narrow peak on this plot. This peak shifts depending on the simulated index of refraction. The best design for the monitors is an L-shaped pipe filled with Freon gas of adjustable density. It is the simplest and cheapest to build of all the designs I tried, and it can accurately recover the muon energy spectrum based solely on the total number of photons detected in each pulse: using simulation data from 5 indices of refraction, I can recover the muon energy spectrum (within the uncertainties) of a beam that has 5 discrete muon energies.

  17. Characteristics of neutrons produced by muons in a standard rock

    SciTech Connect

    Malgin, A. S.

    2015-10-15

    Characteristics of cosmogenic neutrons, such as the yield, production rate, and flux, were determined for a standard rock. The dependences of these quantities on the standard-rock depth and on the average muon energy were obtained. These properties and dependences make it possible to estimate easy the muon-induced neutron background in underground laboratories for various chemical compositions of rock.

  18. Silicon meets cyclotron: muon spin resonance of organosilicon radicals.

    PubMed

    West, Robert; Samedov, Kerim; Percival, Paul W

    2014-07-21

    Muons, generated at a high-powered cyclotron, can capture electrons to form muonium atoms. Muon spin resonance spectra can be recorded for organosilyl radicals obtained by addition of muonium atoms to silylenes and silenes. We present a brief summary of progress in this new area since the first such experiments were reported in 2008.

  19. Participation in Muon Collider/Neutrino Factory Research and Development

    SciTech Connect

    Torun, Yagmur

    2013-03-20

    Muon accelerators hold great promise for the future of high energy physics and their construction can be staged to support a broad physics program. Great progress was made over the past decade toward developing the technology for muon beam cooling which is one of the main challenges for building such facilities.

  20. Helical channel design and technology for cooling of muon beams

    SciTech Connect

    Yonehara, K; Derbenev, Y.S.; Johnson, R.P.; /MUONS Inc., Batavia

    2010-08-01

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  1. Detectors for Neutrino Physics at the First Muon Collider

    SciTech Connect

    Harris, D.A.; McFarland, K.S.

    1998-04-01

    We consider possible detector designs for short-baseline neutrino experiments using neutrino beams produced at the First Muon Collider complex. The high fluxes available at the muon collider make possible high statistics deep-inelastic scattering neutrino experiments with a low-mass target. A design of a low-energy neutrino oscillation experiment on the ``tabletop`` scale is also discussed.

  2. Ultra Slow Muon Project at J-PARC, MUSE

    SciTech Connect

    Miyake, Y.; Nakahara, K.; Shimomura, K.; Strasser, P.; Kawamura, N.; Koda, A.; Makimura, S.; Fujimori, H.; Nishiyama, K.; Matsuda, Y.; Bakule, P.; Adachi, T.; Ogitsu, T.

    2009-03-17

    The muon science facility (MUSE), along with the neutron, hadron, and neutrino facilities, is one of the experimental areas of the J-PARC project, which was approved for construction at the Tokai JAEA site. The MUSE facility is located in the Materials and Life Science Facility (MLF), which is a building integrated to include both neutron and muon science programs. Construction of the MLF building was started in the beginning of 2004, and first muon beam is expected in the autumn of 2008.As a next step, we are planning to install, a Super Omega muon channel with a large acceptance of 400 msr, to extract the world strongest pulsed surface muon beam. Its goal is to extract 4x10{sup 8} surface muons/s for the generation of the intense ultra slow muons, utilizing laser resonant ionization of Mu by applying an intense pulsed VUV laser system. As maximum 1x10{sup 6} ultra slow muons/s will be expected, which will allow for the extension of {mu}SR into the field of thin film and surface science.

  3. Atmospheric effects on the underground muon intensity

    NASA Technical Reports Server (NTRS)

    Fenton, A. G.; Fenton, K. B.; Humble, J. E.; Hyland, G. B.

    1985-01-01

    It has previously been reported that the barometric pressure coefficient observed for muons at Poatina (vertical absorber depth 357 hg/sq cm) appears to be appreciably higher than would be expected from atmospheric absorption alone. There is a possibility that the effect is due to an upper atmospheric temperature effect arising from an inverse correlation of surface pressure with stratospheric temperature. A new proportional telescope is discussed which has been operating at Poatina since about the beginning of 83 and which has a long term stability suitable for studying variations of atmospheric origin.

  4. Leptomeson contribution to the muon g -2

    NASA Astrophysics Data System (ADS)

    Zhuridov, Dmitry

    2016-02-01

    Many models on the market allow for particles carrying both lepton number and color, e.g., leptoquarks and leptogluons. Some of the models with this feature can also accommodate color-singlet leptohadrons. We have found that the long-standing discrepancy between the experimental result and the Standard Model prediction for the muon anomalous magnetic moment can be explained by the effect of leptomesons with masses of a few hundred GeV and couplings to the leptons and mesons either of O (1 0-2) (vector-meson case) or of O (1 ) (scalar case). These new particles are testable at the current run of the LHC.

  5. Improved limit on the muon electric dipole moment

    SciTech Connect

    Bennett, G. W.; Brown, H. N.; Bunce, G.; Danby, G. T.; Larsen, R.; Lee, Y. Y.; Meng, W.; Mi, J.; Morse, W. M.; Nikas, D.; Prigl, R.; Semertzidis, Y. K.; Warburton, D.; Bousquet, B.; Cushman, P.; Duong, L.; Giron, S.; Kindem, J.; Kronkvist, I.; Qian, T.

    2009-09-01

    Three independent searches for an electric dipole moment (EDM) of the positive and negative muons have been performed, using spin precession data from the muon g-2 storage ring at Brookhaven National Laboratory. Details on the experimental apparatus and the three analyses are presented. Since the individual results on the positive and negative muons, as well as the combined result, d{sub {mu}}=(0.0{+-}0.9)x10{sup -19}e cm, are all consistent with zero, we set a new muon EDM limit, |d{sub {mu}}|<1.8x10{sup -19}e cm (95% C.L.). This represents a factor of 5 improvement over the previous best limit on the muon EDM.

  6. Noise reduction in muon tomography for detecting high density objects

    NASA Astrophysics Data System (ADS)

    Benettoni, M.; Bettella, G.; Bonomi, G.; Calvagno, G.; Calvini, P.; Checchia, P.; Cortelazzo, G.; Cossutta, L.; Donzella, A.; Furlan, M.; Gonella, F.; Pegoraro, M.; Rigoni Garola, A.; Ronchese, P.; Squarcia, S.; Subieta, M.; Vanini, S.; Viesti, G.; Zanuttigh, P.; Zenoni, A.; Zumerle, G.

    2013-12-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented.

  7. Bayesian image reconstruction for improving detection performance of muon tomography.

    PubMed

    Wang, Guobao; Schultz, Larry J; Qi, Jinyi

    2009-05-01

    Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.

  8. Cosmic rays muon flux measurements at Belgrade shallow underground laboratory

    SciTech Connect

    Veselinović, N. Dragić, A. Maletić, D. Joković, D. Savić, M. Banjanac, R. Udovičić, V. Aničin, I.

    2015-02-24

    The Belgrade underground laboratory is a shallow underground one, at 25 meters of water equivalent. It is dedicated to low-background spectroscopy and cosmic rays measurement. Its uniqueness is that it is composed of two parts, one above ground, the other bellow with identical sets of detectors and analyzing electronics thus creating opportunity to monitor simultaneously muon flux and ambient radiation. We investigate the possibility of utilizing measurements at the shallow depth for the study of muons, processes to which these muons are sensitive and processes induced by cosmic rays muons. For this purpose a series of simulations of muon generation and propagation is done, based on the CORSIKA air shower simulation package and GEANT4. Results show good agreement with other laboratories and cosmic rays stations.

  9. Gravitational effects on measurements of the muon dipole moments

    NASA Astrophysics Data System (ADS)

    Kobach, Andrew

    2016-10-01

    If the technology for muon storage rings one day permits sensitivity to precession at the order of 10-8 Hz, the local gravitational field of Earth can be a dominant contribution to the precession of the muon, which, if ignored, can fake the signal for a nonzero muon electric dipole moment (EDM). Specifically, the effects of Earth's gravity on the motion of a muon's spin is indistinguishable from it having a nonzero EDM of magnitude dμ ∼10-29 ecm in a storage ring with vertical magnetic field of ∼ 1 T, which is significantly larger than the expected upper limit in the Standard Model, dμ ≲10-36 ecm. As a corollary, measurements of Earth's local gravitational field using stored muons would be a unique test to distinguish classical gravity from general relativity with a bonafide quantum mechanical entity, i.e., an elementary particle's spin.

  10. Production of muons for fusion catalysis using a migma configuration

    NASA Astrophysics Data System (ADS)

    Chapline, George F.; Moir, Ralph W.

    1988-08-01

    Muon-catalyzed fusion requires a very efficient means of producing muons. We describe a muon-producing magnetic-mirror scheme with triton migma that may be more energy efficient than any heretofore proposed. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of 10, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%. The self-colliding arrangement of triton orbits will result in many π-'s being produced near the axis of the magnetic mirror. The pions quickly decay into muons, which are transported into a small (few cm diameter) reactor chamber producing approximately 1 MW/m2 neutron flux on the chamber walls.

  11. Cosmic ray energy spectrum measurement with the Antarctic Muon and Neutrino Detector Array (AMANDA)

    NASA Astrophysics Data System (ADS)

    Chirkin, Dmitry Aleksandrovich

    AMANDA-II is a neutrino telescope composed of 677 optical sensors organized along 19 strings buried deep in the Antarctic ice cap. It is designed to detect Cherenkov light produced by cosmic-ray- and neutrino-induced charged leptons. The majority of events recorded by AMANDA-II are caused by muons which are produced in the atmosphere by high-energy cosmic rays. The leading uncertainties in simulating such events come from the choice of the high-energy model used to describe the first interaction of the cosmic rays, uncertainties in our knowledge and implementation of the ice properties at the depth of the detector, and individual optical module sensitivities. Contributions from uncertainties in the atmospheric conditions and muon cross sections in ice are smaller. The downgoing muon simulation was substantially improved by using the extensive air shower generator CORSIKA to describe the shower development in the atmosphere, and by writing a new software package for the muon propagation (MMC), which reduced computational and algorithm errors below the level of uncertainties of the muon cross sections in ice. A method was developed that resulted in a flux measurement of cosmic rays with energies 1.5--200 TeV per nucleon (95% of primaries causing low-multiplicity events in AMANDA-II have energies in this range) independent of ice model and optical module sensitivities. Predictions of six commonly used high-energy interaction models (QGSJET, VENUS, NEXUS, DPMJET, HDPM, and SIBYLL) are compared to data. The best agreement with direct measurements is achieved with QGSJET, VENUS, and NEXUS. Assuming a power-law energy spectrum (phi0,i · E -gammai) for cosmic-ray components from hydrogen to iron (i = H,..., Fe) and their mass distribution according to Wiebel-South (Wiebel-South & Biermann, 1999), phi 0,i and gammai were corrected to achieve the best description of the data. For the hydrogen component, values of phi0,H = 0.106 +/- 0.007 m-2 sr-1s-1TeV-1 , gammaH = 2

  12. Muon background studies for shallow depth Double - Chooz near detector

    SciTech Connect

    Gómez, H.

    2015-08-17

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.

  13. Muon background studies for shallow depth Double - Chooz near detector

    NASA Astrophysics Data System (ADS)

    Gómez, H.

    2015-08-01

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.

  14. Frontiers of muon spectroscopy—25 years of muon science at ISIS

    NASA Astrophysics Data System (ADS)

    Cottrell, Stephen

    2013-12-01

    The ISIS muon source developed with support from the European Community (EC) and groups at Grenoble, Parma, Uppsala and Munich in the late 1980s, with a single instrument providing many scientists with their first opportunity to explore the unique capabilities of muon spectroscopy. The timing was opportune, as the muon technique was making an important contribution to the study of the then recently discovered cuprate high T c superconductors. The ISIS user community developed rapidly over subsequent years, with the technique finding a broad range of applications in condensed matter physics, materials science and chemistry. The single instrument was hugely oversubscribed, and the importance of the technique was recognized in 1993 with a further grant from the EC to develop the triple beamline facility that is currently available at ISIS. During 2009 the suite of spectrometers available at the facility received a major upgrade, with the Science and Technology Facilities Council funding the development of a 5 T high field instrument that has enabled entirely new applications of muon spectroscopy to be explored. The facility continues to flourish, with a strong user community exploiting the technique to support research across an increasingly broad range of subject areas. Condensed matter science continues to be a major area of interest, with applications including semiconductors and dielectrics, superconductors, magnetism, interstitial diffusion and charge transport. Recently, however, molecular science and radical chemistry have become prominent in the ISIS programme, applications where the availability of high magnetic fields is frequently vital to the success of the experiments. For ISIS, 23 March 2012 marked a significant milestone, it being 25 years since muons were first produced at the facility for research in condensed matter and molecular science. To celebrate, the ISIS muon group organized a science symposium with the theme 'Frontiers of Muon Spectroscopy

  15. Studies of superconducting materials with muon spin rotation

    NASA Technical Reports Server (NTRS)

    Davis, Michael R.; Stronach, Carey E.; Kossler, W. J.; Schone, H. E.; Yu, X. H.; Uemura, Y. J.; Sternlieb, B. J.; Kempton, J. R.; Oostens, J.; Lankford, W. F.

    1989-01-01

    The muon spin rotation/relaxation technique was found to be an exceptionally effective means of measuring the magnetic properties of superconductors, including the new high temperature superconductor materials, at the microscopic level. The technique directly measures the magnetic penetration depth (type II superconductors (SC's)) and detects the presence of magnetic ordering (antiferromagnetism or spin-glass ordering were observed in some high temperature superconductor (HTSC's) and in many closely related compounds). Extensive studies of HTSC materials were conducted by the Virginia State University - College of William and Mary - Columbia University collaboration at Brookhaven National Laboratory and TRIUMF (Vancouver). A survey of LaSrCuO and YBaCaCuO systems shows an essentially linear relationship between the transition temperature T(sub c) and the relaxation rate. This appears to be a manifestation of the proportionality between T(sub c) and the Fermi energy, which suggests a high energy scale for the SC coupling, and which is not consistent with the weak coupling of phonon-mediated SC. Studies of LaCuO and YBaCuO parent compounds show clear evidence of antiferromagnetism. YBa2Cu(3-x)CO(x)O7 shows the simultaneous presence of spin-glass magnetic ordering and superconductivity. Three-dimensional SC, (Ba, K) BiO3, unlike the layered CuO-based compounds, shows no suggestion of magnetic ordering. Experimental techniques and theoretical implications are discussed.

  16. Status of the International Muon Ionization Cooling Experiment (MICE)

    SciTech Connect

    Zisman, Michael S.; Zisman, Michael S.

    2007-02-02

    An international experiment to demonstrate muonionization cooling is scheduled for beam at RutherfordAppleton Laboratory (RAL) in 2007. The experimentcomprises one cell of the Study II cooling channel [1],along with upstream and downstream detectors to identifyindividual muons and measure their initial and final 6Dphase-space parameters to a precision of 0.1percent. Magneticdesign of the beam line and cooling channel are completeand portions are under construction. The experiment willbe described, including cooling channel hardware designs,fabrication status, and running plans. Phase 1 of theexperiment will prepare the beam line and providedetector systems, including time-of-flight, Cherenkov,scintillating-fiber trackers and their spectrometersolenoids, and an electromagnetic calorimeter. The Phase2 system will add the cooling channel components,including liquid-hydrogen absorbers embedded insuperconducting Focus Coil solenoids, 201-MHz normalconductingRF cavities, and their surrounding CouplingCoil solenoids. The MICE Collaboration goal is tocomplete the experiment by 2010; progress toward this isdiscussed.

  17. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    NASA Astrophysics Data System (ADS)

    Kurebayashi, Y.; Sakurai, H.; Takahashi, Y.; Doshita, N.; Kikuchi, S.; Tokanai, F.; Horiuchi, K.; Tajima, Y.; Oe, T.; Sato, T.; Gunji, S.; Inui, E.; Kondo, K.; Iwata, N.; Sasaki, N.; Matsuzaki, H.; Kunieda, S.

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10-9 PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×1013 was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  18. Muon simulations for Super-Kamiokande, KamLAND, and CHOOZ

    SciTech Connect

    Tang, Alfred; Horton-Smith, Glenn; Kudryavtsev, Vitaly A.; Tonazzo, Alessandra

    2006-09-01

    Muon backgrounds at Super-Kamiokande, KamLAND, and CHOOZ are calculated using MUSIC. A modified version of the Gaisser sea-level muon distribution and a well-tested Monte Carlo integration method are introduced. Average muon energy, flux, and rate are tabulated. Plots of average energy and angular distributions are given. Implications for muon tracker design in future experiments are discussed.

  19. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J. J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J. P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J. P.; Schüssler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, T.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-05-01

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  20. Towards a compensatable Muon Collider calorimeter with manageable backgrounds

    SciTech Connect

    Raja, R.; /Fermilab

    2012-04-01

    Muon Collider detectors pose very challenging problems in detector technology due to extremely large backgrounds present in the detector volume as a result of muon decays. Current designs of a 750 GeV/c per beam Muon Collider envisage 4.28 x 10{sup 5} muon decays per meter in the beam pipe close to the interaction region. The decay electrons after intense shielding still manage to produce large backgrounds in the detector volume of low energy photons, neutrons and higher energy Bethe Heitler muons. There are 170/184/6.8/177 TeVs energy entering the detector volume per crossing due to EM particles/Muons/Mesons/Baryons respectively. We investigate the capabilities of an iron calorimeter with pixelated readout where each pixel gives a yes/no answer as to whether a charged particle passed through it or not, to solve this problem. Each pixel is individually triggered by a 'travelling gate trigger' with a gate of 2 ns where the beginning of the gate is the time of arrival of a light signal from the interaction region to the pixel. We show that such a calorimeter is compensatable and propose two schemes to compensate the digital output in software to improve the resolution of the calorimeter. We show that such a calorimeter is capable of digitizing physics signals from the interaction region and as a result, the backgrounds from the muon decays are much reduced and under control.

  1. Muon spin spectroscopy of ferrocene: characterization of muoniated ferrocenyl radicals.

    PubMed

    McKenzie, Iain

    2014-06-14

    Radicals formed by the reaction of muonium (Mu), a light isotope of hydrogen, with ferrocene and ferrocene-d10 have been studied with the avoided level crossing muon spin resonance (ALC-μSR) and longitudinal field muon spin relaxation (LF-μSR) techniques between 10 and 100 K. A single type of radical was observed in each compound and the muon hyperfine coupling constants (hfcc) and the muon spin relaxation rates were measured as a function of temperature. A previous report concerning the observation of Mu adducts of ferrocene (U. A. Jayasooriya et al. Chem. - Eur. J., 2007, 13, 2266-2276) appears to be incorrect. DFT calculations were performed to aid in the assignment of the ALC-μSR spectra. A tentative assignment is that the observed radicals were formed by Mu addition to the exterior of the cyclopentadienyl rings and that the structures are distorted due to interactions with neighbouring molecules. The temperature dependence of the muon hfcc can be explained assuming the population of two levels with different muon hfccs separated by 1.4 ± 0.1 kJ mol(-1). The temperature dependence of the width and amplitude of the Δ1 resonance and the muon spin relaxation rate suggests that the electron spin relaxation rate increase with temperature, but the relaxation mechanism is unknown.

  2. High field - low energy muon ionization cooling channel

    NASA Astrophysics Data System (ADS)

    Kamal Sayed, Hisham; Palmer, Robert B.; Neuffer, David

    2015-09-01

    Muon beams are generated with large transverse and longitudinal emittances. In order to achieve the low emittances required by a muon collider, within the short lifetime of the muons, ionization cooling is required. Cooling schemes have been developed to reduce the muon beam 6D emittances to ≈300 μ m -rad in transverse and ≈1 - 1.5 mm in longitudinal dimensions. The transverse emittance has to be further reduced to ≈50 - 25 μ m -rad with an upper limit on the longitudinal emittance of ≈76 mm in order to meet the high-energy muon collider luminosity requirements. Earlier studies of the transverse cooling of low energy muon beams in high field magnets showed a promising performance, but did not include transverse or longitudinal matching between the stages. In this study we present the first complete design of the high field-low energy ionization cooling channel with transverse and longitudinal matching. The channel design was based on strong focusing solenoids with fields of 25-30 T and low momentum muon beam starting at 135 MeV /c and gradually decreasing. The cooling channel design presented here is the first to reach ≈50 micron scale emittance beam. We present the channel's optimized design parameters including the focusing solenoid fields, absorber parameters and the transverse and longitudinal matching.

  3. Where to place the positive muon in the Periodic Table?

    PubMed

    Goli, Mohammad; Shahbazian, Shant

    2015-03-14

    In a recent study it was suggested that the positively charged muon is capable of forming its own "atoms in molecules" (AIM) in the muonic hydrogen-like molecules, composed of two electrons, a muon and one of the hydrogen's isotopes, thus deserves to be placed in the Periodic Table [Phys. Chem. Chem. Phys., 2014, 16, 6602]. In the present report, the capacity of the positively charged muon in forming its own AIM is considered in a large set of molecules replacing muons with all protons in the hydrides of the second and third rows of the Periodic Table. Accordingly, in a comparative study the wavefunctions of both sets of hydrides and their muonic congeners are first derived beyond the Born-Oppenheimer (BO) paradigm, assuming protons and muons as quantum waves instead of clamped particles. Then, the non-BO wavefunctions are used to derive the AIM structures of both hydrides and muonic congeners within the context of the multi-component quantum theory of atoms in molecules. The results of the analysis demonstrate that muons are generally capable of forming their own atomic basins and the properties of these basins are not fundamentally different from those AIM containing protons. Particularly, the bonding modes in the muonic species seem to be qualitatively similar to their congener hydrides and no new bonding model is required to describe the bonding of muons to a diverse set of neighboring atoms. All in all, the positively charged muon is similar to a proton from the structural and bonding viewpoint and deserves to be placed in the same box of hydrogen in the Periodic Table. This conclusion is in line with a large body of studies on the chemical kinetics of the muonic molecules portraying the positively charged muon as a lighter isotope of hydrogen.

  4. Where to place the positive muon in the Periodic Table?

    PubMed

    Goli, Mohammad; Shahbazian, Shant

    2015-03-14

    In a recent study it was suggested that the positively charged muon is capable of forming its own "atoms in molecules" (AIM) in the muonic hydrogen-like molecules, composed of two electrons, a muon and one of the hydrogen's isotopes, thus deserves to be placed in the Periodic Table [Phys. Chem. Chem. Phys., 2014, 16, 6602]. In the present report, the capacity of the positively charged muon in forming its own AIM is considered in a large set of molecules replacing muons with all protons in the hydrides of the second and third rows of the Periodic Table. Accordingly, in a comparative study the wavefunctions of both sets of hydrides and their muonic congeners are first derived beyond the Born-Oppenheimer (BO) paradigm, assuming protons and muons as quantum waves instead of clamped particles. Then, the non-BO wavefunctions are used to derive the AIM structures of both hydrides and muonic congeners within the context of the multi-component quantum theory of atoms in molecules. The results of the analysis demonstrate that muons are generally capable of forming their own atomic basins and the properties of these basins are not fundamentally different from those AIM containing protons. Particularly, the bonding modes in the muonic species seem to be qualitatively similar to their congener hydrides and no new bonding model is required to describe the bonding of muons to a diverse set of neighboring atoms. All in all, the positively charged muon is similar to a proton from the structural and bonding viewpoint and deserves to be placed in the same box of hydrogen in the Periodic Table. This conclusion is in line with a large body of studies on the chemical kinetics of the muonic molecules portraying the positively charged muon as a lighter isotope of hydrogen. PMID:25684734

  5. Performance of new 8-inch photomultiplier tube used for the Tibet muon-detector array

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Huang, J.; Chen, D.; Zhai, L.-M.; Chen, X.; Hu, X.-B.; Lin, Y.-H.; Jin, H.-B.; Zhang, X.-Y.; Feng, C.-F.; Jia, H.-Y.; Zhou, X.-X.; Danzengluobu; Chen, T.-L.; Labaciren; Liu, M.-Y.; Gao, Q.; Zhaxiciren

    2016-06-01

    Since 2014, a new hybrid experiment consisting of a high-energy air-shower-core array (YAC-II), a high-density air-shower array (Tibet-III) and a large underground water-Cherenkov muon-detector array (MD) has been continued by the Tibet ASγ collaboration to measure the chemical composition of cosmic rays in the wide energy range including the ``knee''. In this experiment, YAC-II is used to select high energy core events induced by cosmic rays in the above energy region, while MD is used to estimate the type of nucleus of primary particles by measuring the number of muons contained in the air showers. However, the dynamic range of each MD cell is only 5 to 2000 photoelectrons (PEs) which is mainly designed for observation of high-energy celestial gamma rays. In order to obtain the primary proton, helium and iron spectra and their ``knee'' positions with energy up to 1016 eV, each of PMTs equipped to the MD cell is required to measure the number of photons capable of covering a wide dynamic range of 100–106 PEs according to Monte Carlo simulations. In this paper, we firstly compare the characteristic features between R5912-PMT made by Japan Hamamatsu and CR365-PMT made by Beijing Hamamatsu. If there exists no serious difference, we will then add two 8-inch-in-diameter PMTs to meet our requirements in each MD cell, which are responsible for the range of 100–10000 PEs and 2000–1000000 PEs, respectively. That is, MD cell is expected to be able to measure the number of muons over 6 orders of magnitudes.

  6. Performance of new 8-inch photomultiplier tube used for the Tibet muon-detector array

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Huang, J.; Chen, D.; Zhai, L.-M.; Chen, X.; Hu, X.-B.; Lin, Y.-H.; Jin, H.-B.; Zhang, X.-Y.; Feng, C.-F.; Jia, H.-Y.; Zhou, X.-X.; Danzengluobu; Chen, T.-L.; Labaciren; Liu, M.-Y.; Gao, Q.; Zhaxiciren

    2016-06-01

    Since 2014, a new hybrid experiment consisting of a high-energy air-shower-core array (YAC-II), a high-density air-shower array (Tibet-III) and a large underground water-Cherenkov muon-detector array (MD) has been continued by the Tibet ASγ collaboration to measure the chemical composition of cosmic rays in the wide energy range including the ``knee''. In this experiment, YAC-II is used to select high energy core events induced by cosmic rays in the above energy region, while MD is used to estimate the type of nucleus of primary particles by measuring the number of muons contained in the air showers. However, the dynamic range of each MD cell is only 5 to 2000 photoelectrons (PEs) which is mainly designed for observation of high-energy celestial gamma rays. In order to obtain the primary proton, helium and iron spectra and their ``knee'' positions with energy up to 1016 eV, each of PMTs equipped to the MD cell is required to measure the number of photons capable of covering a wide dynamic range of 100-106 PEs according to Monte Carlo simulations. In this paper, we firstly compare the characteristic features between R5912-PMT made by Japan Hamamatsu and CR365-PMT made by Beijing Hamamatsu. If there exists no serious difference, we will then add two 8-inch-in-diameter PMTs to meet our requirements in each MD cell, which are responsible for the range of 100-10000 PEs and 2000-1000000 PEs, respectively. That is, MD cell is expected to be able to measure the number of muons over 6 orders of magnitudes.

  7. Composite (pseudo) scalar contributions to muon g - 2

    NASA Astrophysics Data System (ADS)

    Hong, Deog Ki; Kim, Du Hwan

    2016-07-01

    We have calculated the composite (pseudo) scalar contributions to the anomalous magnetic moment of muons in models of walking technicolor. By the axial or scale anomaly the light scalars such as techni-dilaton, techni-pions or techni-eta have anomalous couplings to two-photons, which make them natural candidates for the recent 750 GeV resonance excess, observed at LHC. Due to the anomalous couplings, their contributions to muon (g - 2) are less suppressed and might explain the current deviation in muon (g - 2) measurements from theory.

  8. Prototype Performance of Novel Muon Telescope Detector at STAR.

    SciTech Connect

    Ruan,L.

    2008-04-05

    Research on a large-area, cost-effective Muon Telescope Detector (MTD) has been carried out for RHIC and for next generation detectors at future QCD Lab. We utilize state-of-the-art multi-gap resistive plate chambers with large modules and long readout strips in detector design. The results from cosmic ray and beam test will be presented to address intrinsic timing and spatial resolution for a Long-MRPC. The prototype performance of a novel muon telescope detector at STAR will be reported, including muon identification capability, timing and spatial resolution.

  9. Prototype performance of novel muon telescope detector at STAR

    SciTech Connect

    Ruan,L.; Ames, V.

    2008-02-04

    Research on a large-area, cost-effective Muon Telescope Detector has been carried out for RHIC and for next generation detectors at future QCD Lab. We utilize state-of-the-art multi-gap resistive plate chambers with large modules and long readout strips in detector design [l]. The results from cosmic ray and beam test will be presented to address intrinsic timing and spatial resolution for a Long-MRF'C. The prototype performance of a novel muon telescope detector at STAR will be reported, including muon identification capability, timing and spatial resolution.

  10. First Results from the Brookhaven Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Semertzidis, Yannis

    1998-04-01

    The Brookhaven muon g-2 experiment had its first run with pion injection during the months of May, June, and July of 1997. The major components of the experiment, the superferric storage ring, superconducting inflector magnet, pion/muon beam line, pulsed electrostatic quadrupoles, magnetic field measuring system, detector calorimeters, data acquisition system, and the traceback system were commissioned. The expected relative accuracy in the (g - 2)_μ of the 1997 data is of the order of the CERN experiment running with positive muons of ± 10ppm. The analysis is in progress and the first results will be presented.

  11. Range fluctuations of high energy muons passing through matter

    NASA Technical Reports Server (NTRS)

    Minorikawa, Y.; Mitsui, K.

    1985-01-01

    The information about energy spectrum of sea level muons at high energies beyond magnetic spectrographs can be obtained from the underground intensity measurements if the fluctuations problems are solved. The correction factor R for the range fluctuations of high energy muons were calculated by analytical method of Zatsepin, where most probable energy loss parameter are used. It is shown that by using the R at great depth together with the slope, lambda, of the vertical depth-intensity (D-I) curve in the form of exp(-t/lambda), the spectral index, gamma, in the power law energy spectrum of muons at sea level can be obtained.

  12. The muon content of gamma-ray showers

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a calculation of the expected number of muons in gamma ray initiated and cosmic ray initiated air showers using a realistic model of hadronic collisions in an effort to understand the available experimental results and to assess the feasibility of using the muon content of showers as a veto to reject cosmic ray initiated showers in ultra-high energy gamma ray astronomy are reported. The possibility of observing very-high energy gamma-ray sources by detecting narrow angle anisotropies in the high energy muon background radiation are considered.

  13. Measuring the Disappearance of Muon Neutrinos with the MINOS Detector

    SciTech Connect

    Radovic, Alexander

    2013-08-01

    MINOS is a long baseline neutrino oscillation experiment. It measures the flux from the predominately muon neutrino NuMI beam first 1 km from beam start and then again 735 km later using a pair of steel scintillator tracking calorimeters. The comparison of measured neutrino energy spectra at our Far Detector with the prediction based on our Near Detector measurement allows for a measurement of the parameters which define neutrino oscillations. This thesis will describe the most recent measurement of muon neutrino disappearance in the NuMI muon neutrino beam using the MINOS experiment.

  14. Novel Muon Beam Facilities for Project X at Fermilab

    SciTech Connect

    Neuffer, D.V.; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01

    Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

  15. Front End and HFOFO Snake for a Muon Facility

    SciTech Connect

    Neuffer, D.; Alexahin, Y.

    2015-09-01

    A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ’s produced from a proton source target have been developed, for neutrino factory and muon collider scenarios. They require a drift section from the target, a bunching section and a $\\phi-\\delta E$ rotation section leading into the cooling channel. The currently preferred cooling channel design is an “HFOFO Snake” configuration that cools both $\\mu^+$ and $\\mu^-$ transversely and longitudinally. The status of the design is presented and variations are discussed.

  16. Toward the Computational Prediction of Muon Sites and Interaction Parameters

    NASA Astrophysics Data System (ADS)

    Bonfà, Pietro; De Renzi, Roberto

    2016-09-01

    The rapid developments of computational quantum chemistry methods and supercomputing facilities motivate the renewed interest in the analysis of the muon/electron interactions in μSR experiments with ab initio approaches. Modern simulation methods seem to be able to provide the answers to the frequently asked questions of many μSR experiments: where is the muon? Is it a passive probe? What are the interaction parameters governing the muon-sample interaction? In this review we describe some of the approaches used to provide quantitative estimations of the aforementioned quantities and we provide the reader with a short discussion on the current developments in this field.

  17. Spin and Beam Dynamics in the Muon (g - 2) Experiments

    NASA Astrophysics Data System (ADS)

    Semertzidis, Yannis K.

    2016-09-01

    A number of recent advances in the Physics of the Muon (g - 2) experiments are described outlining the expectations of future improvements of the statistical and systematic errors of the technique. A comparison between the spin and beam dynamics of the two muon (g - 2) experiments under preparation at FNAL and at J-PARC shows that they are both well under control. It may be possible to use magnetic focusing for the FNAL experiment, especially if a decision is made to run with negative muons. Finally, a polarized proton beam could be used to measure the B-field in case of magnetic focusing.

  18. Overview of the Fermilab Muon g-2 Experiment

    SciTech Connect

    Kim, SeungCheon

    2015-01-01

    The measurement of the anomalous magnetic moment of muon provides a precision test of the Standard Model. The Brookhaven muon g-2 experiment (E821) measured the muon magnetic moment anomaly with 0.54 ppm precision, a more than 3 deviation from the Standard Model predictions, spurring speculation about the possibility of new physics. The new g-2 experiment at Fermilab (E989) will reduce the combined statistical and systematic error of the BNL experiment by a factor of 4. An overview of the new experiment is described in this article.

  19. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE PAGES

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; et al

    2014-10-05

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  20. Helical FOFO Snake for 6D Ionization Cooling of Muons

    SciTech Connect

    Alexahin, Y.

    2010-03-30

    A channel for 6D ionization cooling of muons is described which consists of periodically inclined solenoids of alternating polarity, liquid hydrogen absorbers placed inside the solenoids and RF cavities between them. An important feature of such a channel (called Helical FOFO snake) is that it can cool simultaneously muons of both signs. Theoretical considerations as well as results of simulations with G4beamline are presented which show that a 200 MHz HFOFO snake has sufficient acceptance to be used for initial 6D cooling in muon colliders and neutrino factories.

  1. The muon system of the Daya Bay Reactor antineutrino experiment

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. E.; Butorov, I.; Cao, G. F.; Cao, J.; Carr, R.; Chan, Y. L.; Chang, J. F.; Chang, L.; Chang, Y.; Chasman, C.; Chen, H. S.; Chen, H. Y.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, Y.; Chen, Y. X.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; Dale, E.; de Arcos, J.; Deng, Z. Y.; Ding, Y. Y.; Diwan, M. V.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fu, J. Y.; Ge, L. Q.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gu, W. Q.; Guan, M. Y.; Guo, X. H.; Hackenburg, R. W.; Han, G. H.; Hans, S.; He, M.; He, Q.; Heeger, K. M.; Heng, Y. K.; Hinrichs, P.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. J.; Hu, L. M.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, H. Z.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jetter, S.; Ji, X. L.; Ji, X. P.; Jiang, H. J.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kebwaro, J. M.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, W. C.; Lai, W. H.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, A.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. C.; Liu, J. L.; Liu, S. S.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Luk, K. B.; Ma, Q. M.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Nemchenok, I.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Patton, S.; Pec, V.; Pearson, C. E.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tam, Y. H.; Tang, X.; Themann, H.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wilhelmi, J.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, G. H.; Xu, J.; Xu, J. L.; Xu, J. Y.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Young, B. L.; Yu, G. Y.; Yu, J. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. M.; Zhang, S. H.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, Z. Y.; Zhuang, H. L.; Zou, J. H.

    2015-02-01

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described.

  2. Muonic alchemy: Transmuting elements with the inclusion of negative muons

    NASA Astrophysics Data System (ADS)

    Moncada, Félix; Cruz, Daniel; Reyes, Andrés

    2012-06-01

    In this Letter we present a theoretical study of atoms in which one electron has been replaced by a negative muon. We have treated these muonic systems with the Any Particle Molecular Orbital (APMO) method. A comparison between the electronic and muonic radial distributions revealed that muons are much more localized than electrons. Therefore, the muonic cloud is screening effectively one positive charge of the nucleus. Our results have revealed that by replacing an electron in an atom by a muon there is a transmutation of the electronic properties of that atom to those of the element with atomic number Z - 1.

  3. Helical FOFO snake for 6D ionization cooling of muons

    SciTech Connect

    Alexahin, Y.; /Fermilab

    2009-10-01

    A channel for 6D ionization cooling of muons is described which consists of periodically inclined solenoids of alternating polarity, liquid hydrogen absorbers placed inside solenoids and RF cavities between them. Important feature of such channel (called Helical FOFO snake) is that it can cool simultaneously muons of both signs. Theoretical considerations as well as results of simulations with G4Beamline are presented which show that 200MHz HFOFO snake has sufficient acceptance to be used for initial 6D cooling in muon colliders and neutrino factories.

  4. Muon multiplicities measured using an underground cosmic-ray array

    NASA Astrophysics Data System (ADS)

    Kuusiniemi, P.; Enqvist, T.; Bezrukov, L.; Fynbo, H.; Inzhechik, L.; Joutsenvaara, J.; Loo, K.; Lubsandorzhiev, B.; Petkov, V.; Slupecki, M.; Trzaska, W. H.; Virkajärvi, A.

    2016-05-01

    EMMA (Experiment with Multi-Muon Array) is an underground detector array designed for cosmic-ray composition studies around the knee energy (or ~ 1 — 10 PeV). It operates at the shallow depth in the Pyhasalmi mine, Finland. The array consists of eleven independent detector stations ~ 15 m2 each. Currently seven stations are connected to the DAQ and the rest will be connected within the next few months. EMMA will determine the multiplicity, the lateral density distribution and the arrival direction of high-energy muons event by event. The preliminary estimates concerning its performance together with an example of measured muon multiplicities are presented.

  5. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    SciTech Connect

    Bogomilov, M.; et al.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  6. Muon tracking system with Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Arneodo, F.; Benabderrahmane, M. L.; Dahal, S.; Di Giovanni, A.; Pazos Clemens, L.; Candela, A.; D`Incecco, M.; Sablone, D.; Franchi, G.

    2015-11-01

    We report the characterisation and performance of a low cost muon tracking system consisting of plastic scintillator bars and Silicon Photomultipliers equipped with a customised front-end electronics based on a fast preamplifier network. This system can be used as a detector test bench for astroparticle physics and for educational and outreach purposes. We investigated the device behaviour in self-trigger and coincidence mode, without using LED and pulse generators, showing that with a relatively simple set up a complete characterisation work can be carried out. A high definition oscilloscope, which can easily be found in many university physics or engineering departments, has been used for triggering and data acquisition. Its capabilities have been exploited to discriminate real particles from the background.

  7. IDR Muon Capture Front End and Variations

    NASA Astrophysics Data System (ADS)

    Neuffer, D.; Prior, G.; Rogers, C.; Snopok, P.; Yoshikawa, C.

    2011-10-01

    The (International Design Report) IDR neutrino factory scenario for capture, bunching, phase-energy rotation and initial cooling of μ's produced from a proton source target is explored. It requires a drift section from the target, a bunching section and a φ-δE rotation section leading into the cooling channel. The rf frequency changes along the bunching and rotation transport in order to form the 's into a train of equal-energy bunches suitable for cooling and acceleration. Optimization and variations are discussed. An important concern is rf limitations within the focusing magnetic fields; mitigation procedures are described. The method can be extended to provide muons for a μ+-μ- Collider; variations toward optimizing that extension are discussed.

  8. IDR muon capture front end and variations

    SciTech Connect

    Neuffer, David; Prior, Gersende; Rogers, Christopher; Snopok, Pavel; Yoshikawa, Cary; /MUONS Inc., Batavia

    2010-12-01

    The (International Design Report) IDR neutrino factory scenario for capture, bunching, phase-energy rotation and initial cooling of {mu}'s produced from a proton source target is explored. It requires a drift section from the target, a bunching section and a {phi}-{delta}E rotation section leading into the cooling channel. The rf frequency changes along the bunching and rotation transport in order to form the {mu}'s into a train of equal-energy bunches suitable for cooling and acceleration. Optimization and variations are discussed. An important concern is rf limitations within the focusing magnetic fields; mitigation procedures are described. The method can be extended to provide muons for a {mu}{sup +}-{mu}{sup -} Collider; variations toward optimizing that extension are discussed.

  9. D-Zero muon readout electronics design

    SciTech Connect

    Baldin, B.; Hansen, S.; Los, S.; Matveev, M.; Vaniev, V.

    1996-11-01

    The readout electronics designed for the D{null} Muon Upgrade are described. These electronics serve three detector subsystems and one trigger system. The front-ends and readout hardware are synchronized by means of timing signals broadcast from the D{null} Trigger Framework. The front-end electronics have continuously running digitizers and two levels of buffering resulting in nearly deadtimeless operation. The raw data is corrected and formatted by 16- bit fixed point DSP processors. These processors also perform control of the data buffering. The data transfer from the front-end electronics located on the detector platform is performed by serial links running at 160 Mbit/s. The design and test results of the subsystem readout electronics and system interface are discussed.

  10. nuSTORM: Neutrinos from STORed Muons

    SciTech Connect

    Bross, Alan

    2015-05-15

    The results of LSND and MiniBooNE, along with the recent papers on a possible reactor neutrino flux anomaly, give tantalizing hints of new physics. Models beyond the νSM have been developed to explain these results and involve one or more additional neutrinos that are non-interacting or “sterile.” Neutrino beams produced from the decay of muons in a racetrack-like decay ring provide a powerful way to study this potential new physics. In this paper, I will describe the facility, nuSTORM, and an appropriate far detector for neutrino oscillation searches at short baseline. I will present sensitivity plots that indicated that this experimental approach can provide well over 5 σ confirmation or rejection of the LSND/MinBooNE results.

  11. Extending theories on muon-specific interactions

    DOE PAGES

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance ofmore » the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.« less

  12. Extending theories on muon-specific interactions

    SciTech Connect

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance of the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.

  13. HIGH FIELD SOLENOID FOR MUON COOLING.

    SciTech Connect

    KAHN, S.A.; ALSHARO'A, M.; HANLET, P.; JOHNSON, R.P.; KUCHNIR, M.; NEWSHAM, F.; GUPTA, R.C.; PALMER, R.B.; WILLEN, E.

    2006-06-26

    Magnets made with high-temperature superconducting (HTS) coils operating at low temperatures have the potential to produce extremely high fields for use in accelerators and beam lines. The specific application of interest that we are proposing is to use a very high field (of the order of 50 Tesla) solenoid to provide a very small beta region for the final stages of cooling for a muon collider. With the commercial availability of HTS conductor based on BSCCO technology with high current carrying capacity at 4.2 K, very high field solenoid magnets should be possible. In this paper we will evaluate the technical issues associated with building this magnet. In particular we address how to mitigate the high Lorentz stresses associated with this high field magnet.

  14. Low energy stages - 'dogbone' muon RLA

    SciTech Connect

    Alex Bogacz

    2005-12-01

    A conceptual design of lower energy stages of muon accelerator is presented. The scheme is based on two superconducting, 200 MHz linacs: a single pass linear pre-accelerator followed by a multi-pass ''dogbone'' recirculating linac (RLA). In the presented scenario, acceleration starts after ionization cooling at 273 MeV/c and proceeds to 5 GeV, where the beam is injected into a complex of FFAG rings for further acceleration. The key conceptual issues are addressed and implemented in the overall acceleration scheme: capture, acceleration, transport and preservation of large phase space of fast decaying species. Beam transport of large-momentum-spread beams is facilitated through appropriate lattice design choices. The proposed linear optics for ''droplet'' return arcs optics is further supplemented with a sextupole correction to suppress chromatic effects contributing to the horizontal emittance dilution.

  15. Low-dose Photofrin-induced PDT offers excellent clinical response with minimal morbidity in chest wall recurrence of breast cancer

    NASA Astrophysics Data System (ADS)

    Allison, Ron; Mang, Thomas S.

    2000-03-01

    Limited therapeutic options exist when chest wall recurrence form breast cancer progresses despite standard salvage treatment. As photodynamic therapy offers excellent response for cutaneous lesions this may be a possible indication for PDT. A total of 102 treatment fields were illuminated on 9 women with biopsy proven chest wall recurrence of breast cancer which was progressing despite salvage surgery, radiation, and chemi-hormonal therapy. PDT consisted of outpatient IV infusion of Photofrin at 0.8 mg/kg followed 48 hours laser by illumination at 140-170 J/cm2 via a KTP Yag laser coupled to a dye unit. No patient was lost to follow up. At 6 months post PDT; complete response, defined as total lesion elimination was 89 percent, partial response 8 percent, and no response 3 percent. No photosensitivity was seen and no patient developed scarring, fibrosis, or healing difficulties. Low dose Photofrin induced PDT is very active against chest wall lesions. Despite fragile and heavily pre-treated tissues, excellent clinical and cosmetic outcome was obtained. PDT is an underutilized modality for this indication.

  16. Searching for New Physics with Top Quarks and Upgrade to the Muon Spectrometer at ATLAS

    SciTech Connect

    Schwarz, Thomas Andrew

    2015-06-29

    Over the funding period of this award, my research has focused on searching for new physics with top quarks and in the Higgs sector. The highly energetic top quark events at the LHC are an excellent venue to search for new physics, as well as make standard model measurements. Further, the recent discovery of the Higgs boson motivates searching for new physics that could be associated with it. This one-year award has facilitated the beginning of my research program, which has resulted in four publications, several conference talks, and multiple leadership positions within physics groups. Additionally, we are contributing to ATLAS upgrades and operations. As part of the Phase I upgrade, I have taken on the responsibility of the design, prototyping, and quality control of a signal packet router for the trigger electronics of the New Small Wheel. This is a critical component of the upgrade, as the router is the main switchboard for all trigger signals to track finding processors. I am also leading the Phase II upgrade of the readout electronics of the muon spectrometer, and have been selected as the USATLAS Level-2 manager of the Phase II upgrade of the muon spectrometer. The award has been critical in these contributions to the experiment.

  17. When will we know a muon collider is feasible? Status and directions of muon accelerator R&D

    SciTech Connect

    Shiltsev, Vladimir; /Fermilab

    2010-03-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture, accelerate and collide high intensity beams of muons. At present, a high-luminosity multi-TeV muon collider presents a viable option for the next generation of lepton-lepton collider, which is believed to be needed to fully explore high energy physics in the era following the LHC discoveries. This paper briefly reviews the status of the accelerator R&D, addresses the question of the feasibility of a Muon Collider, what needs to be done to prove it and presents projected timeline of the project.

  18. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector

    NASA Astrophysics Data System (ADS)

    Riggi, S.; Antonuccio-Delogu, V.; Bandieramonte, M.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; Sciacca, E.; Vitello, F.

    2013-11-01

    Muon tomographic visualization techniques try to reconstruct a 3D image as close as possible to the real localization of the objects being probed. Statistical algorithms under test for the reconstruction of muon tomographic images in the Muon Portal Project are discussed here. Autocorrelation analysis and clustering algorithms have been employed within the context of methods based on the Point Of Closest Approach (POCA) reconstruction tool. An iterative method based on the log-likelihood approach was also implemented. Relative merits of all such methods are discussed, with reference to full GEANT4 simulations of different scenarios, incorporating medium and high-Z objects inside a container.

  19. The tracker systems for the muon ionization cooling experiment

    NASA Astrophysics Data System (ADS)

    Heidt, C.

    2013-08-01

    The Muon Ionization Cooling Experiment (MICE) will be the first experiment to demonstrate muon ionization cooling in the momentum range of 140-240 MeV/c. The experiment is a single-particle experiment where the input and output beam emittances are constructed from an ensemble of selected single-muon candidates. The fiber trackers are placed in a solenoidal field of 4 T (one before and one after the cooling channel) to measure the muon 4-momentum and provide the basic information for determining the emittances. This paper gives a brief overview of MICE and then describes the details of the fiber tracker assemblies, the unique construction technique used (which for the first time used 350 μm diameter scintillating fiber), the readout electronics and performance with respect to light yield, hit resolution and tracking efficiency as measured in a recent cosmic-ray test of the two final tracker systems.

  20. Muon-decay medium-baseline neutrino beam facility

    NASA Astrophysics Data System (ADS)

    Cao, Jun; He, Miao; Hou, Zhi-Long; Jing, Han-Tao; Li, Yu-Feng; Li, Zhi-Hui; Song, Ying-Peng; Tang, Jing-Yu; Wang, Yi-Fang; Wu, Qian-Fan; Yuan, Ye; Zheng, Yang-Heng

    2014-09-01

    Neutrino beam with about 300 MeV in energy, high-flux and medium baseline is considered a rational choice for measuring CP violation before the more powerful Neutrino Factory is to be built. Following this concept, a unique neutrino beam facility based on muon-decayed neutrinos is proposed. The facility adopts a continuous-wave proton linac of 1.5 GeV and 10 mA as the proton driver, which can deliver an extremely high beam power of 15 MW. Instead of pion-decayed neutrinos, unprecedentedly intense muon-decayed neutrinos are used for better background discrimination. The schematic design for the facility is presented here, including the proton driver, the assembly of a mercury-jet target and capture superconducting solenoids, a pion /muon beam transport line, a long muon decay channel of about 600 m and the detector concept. The physics prospects and the technical challenges are also discussed.