Science.gov

Sample records for ii post-lbv wolf-rayet

  1. Galactic production of Al-26 - Wolf-Rayet stars against type-II supernovae

    NASA Astrophysics Data System (ADS)

    Signore, M.; Dupraz, C.

    1990-08-01

    We review the nucleosynthesis of 26Al in Type-II supernovae and Wolf-Rayet stars, and analyse their contribution to the galactic production of this species. For this purpose, we use the most recent models of stellar evolution and nucleosynthesis. We also discuss the hypothesis that the molecular material traces the galactic distribution of these objects, and we take into account the metallicity gradient of the Galaxy and its consequences on their 26Al yields. In particular, we pay special attention to the Galactic Centre, namely, its molecular content, star- formation rate and metallicity, and we establish that a careless treatment of this region may lead to substantially overestimate the relative importance of Wolf-Rayet stars as galactic producers of 26Al. We find that the 26Al production of Wolf-Rayet stars is very small even with respect to supernovae, and represents 5% of the total 26Al content of the Galaxy in the most favourable case. On the other hand, core-collapse supernovae appear to be major galactic 26Al producers, and our calculations suggest that they account for about 1/5 of the diffuse galactic emission in the 1809 keV gamma-ray line. In summary, massive stars make more 26Al in death than in life. In addition to these objects, other sources appear however necessary to make out the 3 Msun of 26Al detected in the Galaxy by and SMM. To help us determine the nature of these sources, and thus better understand the large-scale nucleosynthesis at play in the Galaxy, the mapping of the galactic emission in the 1809 keV line is required. The launch of the Gamma Ray Observatory (GRO) satellite, at the end of 1990, might contribute to fulfill this goal.

  2. Uncovering multiple Wolf-Rayet star clusters and the ionized ISM in Mrk 178: the closest metal-poor Wolf-Rayet H II galaxy

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Pérez-Montero, E.; Vílchez, J. M.; Brinchmann, J.; Kunth, D.; García-Benito, R.; Crowther, P. A.; Hernández-Fernández, J.; Durret, F.; Contini, T.; Fernández-Martín, A.; James, B. L.

    2013-07-01

    New integral field spectroscopy (IFS) has been obtained for the nearby metal-poor Wolf-Rayet (WR) galaxy Mrk 178 to examine the spatial correlation between its WR stars and the neighbouring ionized interstellar medium (ISM). The strength of the broad WR features and its low metallicity make Mrk 178 an intriguing object. We have detected the blue and red WR bumps in different locations across the field of view (˜300 pc × 230 pc) in Mrk 178. The study of the WR content has been extended, for the first time, beyond its brightest star-forming knot uncovering new WR star clusters. Using Large/Small Magellanic Cloud-template WR stars, we empirically estimate a minimum of ˜20 WR stars within the region sampled. Maps of the spatial distribution of the emission lines and of the physical-chemical properties of the ionized ISM have been created and analysed. Here, we refine the statistical methodology by Pérez-Montero et al. (2011) to probe the presence of variations in the ISM properties. An error-weighted mean of 12+log(O/H) = 7.72 ± 0.01 is taken as the representative oxygen abundance for Mrk 178. A localized N and He enrichment, spatially correlated with WR stars, is suggested by this analysis. Nebular He II λ4686 emission is shown to be spatially extended reaching well beyond the location of the WR stars. This spatial offset between WRs and He II emission can be explained based on the mechanical energy input into the ISM by the WR star winds, and does not rule out WR stars as the He II ionization source. We study systematic aperture effects on the detection and measurement of the WR features, using Sloan Digital Sky Survey spectra combined with the power of IFS. In this regard, the importance of targeting low metallicity nearby systems is discussed.

  3. O stars and Wolf-Rayet stars.

    NASA Astrophysics Data System (ADS)

    Baade, D.; Conti, P. S.; Divan, L.; Garmany, C. D.; Henrichs, H. F.; Kudritzki, R. P.; Pauldrach, A.; Prévot-Burnichon, M.-L.; Puls, J.; Underhill, A. B.; Thomas, R. N.

    Contents: Perspective (R. N. Thomas).Part I. Introduction (L. Divan, M.-L. Prévot-Burnichon).1. Introducing the O and Wolf-Rayet stars.Part II. One perspective on O, Of, and Wolf-Rayet stars emphasizing winds and mass loss, with remarks on environment and evolution:2. Overview of O, Of, and Wolf-Rayet populations (P. S. Conti). 3. Intrinsic stellar parameters (P. S. Conti, D. Baade). 4. Stellar winds: (a) Introduction (P. S. Conti). (b) Mass loss from O stars (C. D. Garmany). (c) Mass loss in Wolf-Rayetstars (P. S. Conti). (d) Radiation-driven winds of hot luminous stars (R. P. Kudritzki, A. Pauldrach, J. Puls). (e) Intrinsic variability in ultraviolet spectra of early-type stars: the discrete absorption lines (H. Henrichs). 5. Environments and evolution (P. S. Conti).Part III. Another perspective on O, Of, and Wolf-Rayet stars, emphasizing model atmospheres and possibilities for atmospheric heating (A. B. Underhill): 6. Understanding the O and Wolf-Rayet stars. 7. Model Atmospheres and the theoryof spectra for O and Wolf-Rayet stars. 8. The physics of the mantles of hot stars. 9. Summary of processes influencing the spectra of O andWolf-Rayet stars.

  4. Kinematical Structure of Wolf-Rayet Winds. II. Internal Velocity Scatter in WN Stars

    NASA Astrophysics Data System (ADS)

    Niedzielski, A.; Nugis, T.; Skorzynski, W.

    2004-12-01

    The shortward edge of the absorption core velocities - v_black as determined from low resolution archived IUE spectra from the INES database are presented for three P Cyg profiles of NV 1240, HeII 1640 and NIV 1720 for 51 Galactic and 64 LMC Wolf-Rayet stars of the WN subtype. These data, together with v_black of CIV 1550 line presented in Niedzielski and Skorzynski (2002) are discussed. Evidences are presented that v_black of CIV 1550 rarely displays the largest wind velocity among the four lines studied in detail and therefore its application as an estimator of the terminal wind velocity in WN stars is questioned. An average v_black of several lines is suggested instead but it is pointed out that v_black of HeII 1640 usually reveals the highest observable wind velocity in Galactic and LMC WN stars. It is shown that the stratification strength decreases from WNL to WNE stars and that for WNL stars there exists a positive relation between v_black and the Ionization Potential. The velocity scatter between v_black obtained from different UV lines is found to correlate well with the X-ray luminosity of single WN stars (correlation coefficient R=0.82 for the data obtained from the high resolution IUE spectra) and therefore two clumpy wind models of single WN stars are presented that allow the velocity scatter to persist up to very large distances from the stellar surface (r approx 500-1000 R_*). These models are used to explain the specific features of single WN stars like broad absorption troughs of strong lines having different v_black, X-ray fluxes, IR/radio continua and stratification relations.

  5. Ionizing stellar population in the disc of NGC 3310 - II. The Wolf-Rayet population

    NASA Astrophysics Data System (ADS)

    Miralles-Caballero, D.; Rosales-Ortega, F. F.; Díaz, A. I.; Otí-Floranes, H.; Pérez-Montero, E.; Sánchez, S. F.

    2014-12-01

    We use integral field spectroscopy to study in detail the Wolf-Rayet (WR) population in NGC 3310, spatially resolving 18 star-forming knots with typical sizes of 200-300 pc in the disc of the galaxy hosting a substantial population of WRs. The detected emission in the so-called blue bump is attributed mainly to late-type nitrogen WRs (WNL), ranging from a few dozens to several hundreds of stars per region. Our estimated WNL/(WNL+O) ratio is comparable to reported empirical relations once the extinction-corrected emission is further corrected by the presence of dust grains inside the nebula that absorb a non-negligible fraction of UV photons. Comparisons of observables with stellar population models show disagreement by factors larger than 2-3. However, if the effects of interacting binaries and/or photon leakage are taken into account, observations and predictions tend to converge. We estimate the binary fraction of the H II regions hosting WRs to be significant in order to recover the observed X-ray flux, hence proving that the binary channel can be critical when predicting observables. We also explore the connection of the environment with the current hypothesis that WRs can be progenitors to long-duration gamma-ray bursts (GRBs). Galaxy interactions, which can trigger strong episodes of star formation in the central regions, may be a plausible environment where WRs may act as progenitors of GRBs. Finally, even though the chemical abundance is generally homogeneous, we also find weak evidence for rapid N pollution by WR stellar winds at scales of ˜200 pc.

  6. Wolf-Rayet stars in the Small Magellanic Cloud. II. Analysis of the binaries

    NASA Astrophysics Data System (ADS)

    Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A. F. J.; Eldridge, J. J.; Pablo, H.; Oskinova, L. M.; Richardson, N. D.

    2016-06-01

    Context. Massive Wolf-Rayet (WR) stars are evolved massive stars (Mi ≳ 20 M⊙) characterized by strong mass-loss. Hypothetically, they can form either as single stars or as mass donors in close binaries. About 40% of all known WR stars are confirmed binaries, raising the question as to the impact of binarity on the WR population. Studying WR binaries is crucial in this context, and furthermore enable one to reliably derive the elusive masses of their components, making them indispensable for the study of massive stars. Aims: By performing a spectral analysis of all multiple WR systems in the Small Magellanic Cloud (SMC), we obtain the full set of stellar parameters for each individual component. Mass-luminosity relations are tested, and the importance of the binary evolution channel is assessed. Methods: The spectral analysis is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code by superimposing model spectra that correspond to each component. Evolutionary channels are constrained using the Binary Population and Spectral Synthesis (BPASS) evolution tool. Results: Significant hydrogen mass fractions (0.1

  7. Optical spectrophotometry of Wolf-Rayet galaxies

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Conti, Peter S.

    1992-01-01

    We have obtained long-slit optical spectra of 10 Wolf-Rayet galaxies and four other starburst galaxies. Using the nebular emission lines we have determined the electron temperatures, electron densities, extinctions, oxygen abundances, mass of ionized hydrogen, and numbers of ionizing photons due to hot stars in these galaxies. The various forbidden line ratios clearly indicate a stellar origin for the emission-line spectrum. From the flux of the broad He II 4686 A emission feature we have estimated the number of Wolf-Rayet stars present. We have accounted for the contribution of these stars to the total ionizing flux and have calculated the ratio of the number of these stars to the number of O stars. Wolf-Rayet galaxies are among the youngest examples of the starburst phenomenon, which we observed at a propitious moment.

  8. Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Sander, Andreas; Todt, Helge

    Nearly 150 years ago, the French astronomers Charles Wolf and Georges Rayet described stars with very conspicuous spectra that are dominated by bright and broad emission lines. Meanwhile termed Wolf-Rayet Stars after their discoverers, those objects turned out to represent important stages in the life of massive stars. As the first conference in a long time that was specifically dedicated to Wolf-Rayet stars, an international workshop was held in Potsdam, Germany, from 1.-5. June 2015. About 100 participants, comprising most of the leading experts in the field as well as as many young scientists, gathered for one week of extensive scientific exchange and discussions. Considerable progress has been reported throughout, e.g. on finding such stars, modeling and analyzing their spectra, understanding their evolutionary context, and studying their circumstellar nebulae. While some major questions regarding Wolf-Rayet stars still remain open 150 years after their discovery, it is clear today that these objects are not just interesting stars as such, but also keystones in the evolution of galaxies. These proceedings summarize the talks and posters presented at the Potsdam Wolf-Rayet workshop. Moreover, they also include the questions, comments, and discussions emerging after each talk, thereby giving a rare overview not only about the research, but also about the current debates and unknowns in the field. The Scientific Organizing Committee (SOC) included Alceste Bonanos (Athens), Paul Crowther (Sheffield), John Eldridge (Auckland), Wolf-Rainer Hamann (Potsdam, Chair), John Hillier (Pittsburgh), Claus Leitherer (Baltimore), Philip Massey (Flagstaff), George Meynet (Geneva), Tony Moffat (Montreal), Nicole St-Louis (Montreal), and Dany Vanbeveren (Brussels).

  9. The Wolf-Rayet star population in the most massive giant H II regions of M33

    NASA Technical Reports Server (NTRS)

    Drissen, Laurent; Moffat, Anthony F. J.; Shara, Michael M.

    1990-01-01

    Narrow-band images of NGC 604, NGC 595, and NGC 592, the most massive giant H II regions (GHRs) in M33 have been obtained, in order to study their Wolf-Rayet content. These images reveal the presence of nine candidates in NGC 604 (seven WN, two WC), 10 in NGC 595 (nine WN, one WC), and two in NGC 592 (two WN). Precise positions and estimated magnitudes are given for the candidates, half of which have so far been confirmed spectroscopically as genuine W-R stars. The flux in the emission lines of all candidates is comparable to that of normal Galactic W-R stars of similar subtype. A few of the putative superluminous W-R stars are shown to be close visual double or multiple stars; their newly estimated luminosities are now more compatible with those of normal W-R stars. NGC 595 seems to be overabundant in W-R stars for its mass compared to other GHRs, while NGC 604 is normal. Factors influencing the W-R/O number ratio in GHRs are discussed: metallicity and age appear to be the most important.

  10. Wolf-Rayet phenomena

    NASA Technical Reports Server (NTRS)

    Conti, P. S.

    1982-01-01

    The properties of stars showing Wolf-Rayet phenomena are outlined along with the direction of future work. Emphasis is placed on the characteristics of W-R spectra. Specifically the following topics are covered: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions the mass loss rates; and the existence of very luminous and possibly very massive W-R stars. Also, a brief overview of current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R spectra are included.

  11. New Wolf-Rayet stars in Galactic open clusters - Sher 1 and the giant H II region core Westerlund 2

    NASA Technical Reports Server (NTRS)

    Moffat, Anthony F. J.; Shara, Michael M.; Potter, Michael

    1991-01-01

    Two new Galactic Wolf-Rayet stars were found in open clusters: a WN4 star in the O9 cluster Sher 1 and a WN7 star in the O7 cluster Westerlund 2. This confirms a previous trend, namely that fainter, hotter WN stars tend to be older than brighter, cooler WN stars. This may be a consequence of evolution via extreme mass loss.

  12. New Wolf-Rayet stars in Galactic open clusters - Sher 1 and the giant H II region core Westerlund 2

    SciTech Connect

    Moffat, A.F.J.; Shara, M.M.; Potter, M. Space Telescope Science Institute, Baltimore, MD )

    1991-08-01

    Two new Galactic Wolf-Rayet stars were found in open clusters: a WN4 star in the O9 cluster Sher 1 and a WN7 star in the O7 cluster Westerlund 2. This confirms a previous trend, namely that fainter, hotter WN stars tend to be older than brighter, cooler WN stars. This may be a consequence of evolution via extreme mass loss. 18 refs.

  13. X-ray emission from the Wolf-Rayet bubble NGC 6888 - II. XMM-Newton EPIC observations

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Guerrero, M. A.; Chu, Y.-H.; Arthur, S. J.; Tafoya, D.; Gruendl, R. A.

    2016-03-01

    We present deep XMM-Newton European Photon Imaging Camera observations of the Wolf-Rayet (WR) bubble NGC 6888 around the star WR 136. The complete X-ray mapping of the nebula confirms the distribution of the hot gas in three maxima spatially associated with the caps and north-west blowout hinted at by previous Chandra observations. The global X-ray emission is well described by a two-temperature optically thin plasma model (T1 = 1.4 × 106 K, T2 = 8.2 × 106 K) with a luminosity of LX = 7.8 × 1033 erg s-1 in the 0.3-1.5 keV energy range. The rms electron density of the X-ray-emitting gas is estimated to be ne = 0.4 cm-3. The high-quality observations presented here reveal spectral variations within different regions in NGC 6888, which allowed us for the first time to detect temperature and/or nitrogen abundance inhomogeneities in the hot gas inside a WR nebula. One possible explanation for such spectral variations is that the mixing of material from the outer nebula into the hot bubble is less efficient around the caps than in other nebular regions.

  14. A Modern Search for Wolf-Rayet Stars in the Magellanic Clouds. II. A Second Year of Discoveries

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Neugent, Kathryn F.; Morrell, Nidia

    2015-07-01

    The numbers and types of evolved massive stars found in nearby galaxies provide an exacting test of stellar evolution models. Because of their proximity and rich massive star populations, the Magellanic Clouds have long served as the linchpins for such studies. Yet the continued accidental discoveries of Wolf-Rayet (WR) stars in these systems demonstrate that our knowledge is not as complete as usually assumed. Therefore, we undertook a multi-year survey for WRs in the Magellanic Clouds. Our results from our first year (reported previously) confirmed nine new LMC WRs. Of these, six were of a type never before recognized, with WN3-type emission combined with O3-type absorption features. Yet these stars are 2-3 mag too faint to be WN3+O3 V binaries. Here we report on the second year of our survey, including the discovery of four more WRs, two of which are also WN3/O3s, plus two “slash” WRs. This brings the total of known LMC WRs to 152, 13 (8.2%) of which were found by our survey, which is now ˜60% complete. We find that the spatial distribution of the WN3/O3s is similar to that of other WRs in the LMC, suggesting that they are descended from the same progenitors. We call attention to the fact that 5 of the 12 known SMC WRs may in fact be similar WN3/O3s rather than the binaries they have often assumed to be. We also discuss our other discoveries: a newly discovered Onfp-type star, and a peculiar emission-line object. Finally, we consider the completeness limits of our survey. This paper includes data gathered with the 1 m Swope and 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  15. Massive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Borissova, J.; Bonatto, C.; Majaess, D. J.; Baume, G.; Clarke, J. R. A.; Kurtev, R.; Schnurr, O.; Bouret, J.-C.; Catelan, M.; Emerson, J. P.; Feinstein, C.; Geisler, D.; de Grijs, R.; Hervé, A.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mahy, L.; Martins, F.; Mauro, F.; Minniti, D.; Moni Bidin, C.

    2013-01-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 103 M⊙) clusters. They are highly obscured (AV ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M⊙ for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002).

  16. The spectrum of HM Sagittae: A planetary nebula excited by a Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Brown, L. W.; Feibelman, W. A.; Hobbs, R. W.; Mccracken, C. W.

    1977-01-01

    A total of image tube spectrograms of HM Sagittae were obtained. More than 70 emission lines, including several broad emission features, were identified. An analysis of the spectra indicates that HM Sagittae is a planetary nebula excited by a Wolf-Rayet star. The most conspicuous Wolf-Rayet feature is that attributed to a blend of C III at 4650 A and He II at 4686 A.

  17. The Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Sahade, J.

    1981-12-01

    Aspects of the problems of the Wolf-Rayet stars related to their chemical composition, their evolutionary status, and their apparent dichotomy in two spectral sequences are discussed. Dogmas concerning WR stars are critically discussed, including the belief that WR stars lack hydrogen, that they are helium stars evolved from massive close binaries, and the existence of a second WR stage in which the star is a short-period single-lined binary. The relationship of WR stars with planetary nebulae is addressed, as is the membership of these stars in clusters and associations. The division of WR stars into WN and WC sequences is considered, questioning the reasonability of accounting for WR line formation in terms of abundance differences.

  18. NEAR-INFRARED COUNTERPARTS TO CHANDRA X-RAY SOURCES TOWARD THE GALACTIC CENTER. II. DISCOVERY OF WOLF-RAYET STARS AND O SUPERGIANTS

    SciTech Connect

    Mauerhan, J. C.; Stolovy, S. R.; Muno, M. P.; Morris, M. R.; Cotera, A.

    2010-02-10

    We present new identifications of infrared counterparts to the population of hard X-ray sources near the Galactic center detected by the Chandra X-ray Observatory. We have spectroscopically confirmed 16 new massive stellar counterparts to the X-ray population, including nitrogen-type (WN) and carbon-type (WC) Wolf-Rayet stars, and O supergiants. These discoveries increase the total sample of massive stellar X-ray sources in the Galactic center region to 30 (possibly 31). For the majority of these sources, the X-ray photometry is consistent with thermal emission from plasma having temperatures in the range of kT = 1-8 keV or non-thermal emission having power-law indices in the range of -1 {approx}< GAMMA {approx}< 3, and X-ray luminosities in the range of L{sub X} {approx} 10{sup 32}-10{sup 34} erg s{sup -1} (0.5-8.0 keV). Several sources have exhibited X-ray variability of several factors between observations. These X-ray properties are not a ubiquitous feature of single massive stars but are typical of massive binaries, in which the high-energy emission is generated by the collision of supersonic winds, or by accretion onto a compact companion. However, without direct evidence for companions, the possibility of intrinsic hard X-ray generation from single stars cannot be completely ruled out. The spectral energy distributions of these sources exhibit significant infrared excess, attributable to free-free emission from ionized stellar winds, supplemented by hot dust emission in the case of the WC stars. With the exception of one object located near the outer regions of the Quintuplet cluster, most of the new stars appear isolated or in loose associations. Seven hydrogen-rich WN and O stars are concentrated near the Sagittarius B H II region, while other similar stars and more highly evolved hydrogen-poor WN and WC stars lie scattered within {approx}50 pc, in projection, of Sagitarrius A West. We discuss various mechanisms capable of generating the observed X

  19. O stars and Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  20. Photoelectric spectrophotometry of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Bahng, J. D. R.

    1974-01-01

    Photoelectric spectrum scans of five southern Wolf-Rayet stars in the spectral range lambda lambda 4600-4720 were analyzed to study the variability of brightness and of emission line strengths. No variations of any kind in short time scale were found. However, in WC stars night-to-night variations of three to four percent were detected in the emission line strengths.

  1. Multiple rings around Wolf-Rayet evolution

    NASA Technical Reports Server (NTRS)

    Marston, A. P.

    1995-01-01

    We present optical narrow-band imaging of multiple rings existing around galactic Wolf-Rayet (WR) stars. The existence of multiple rings of material around Wolf-Rayet stars clearly illustrates the various phases of evolution that massive stars go through. The objects presented here show evidence of a three stage evolution. O stars produce an outer ring with the cavity being partially filled by ejecta from a red supergiant of luminous blue variable phase. A wind from the Wolf-Rayet star then passes into the ejecta materials. A simple model is presented for this three stage evolution. Using observations of the size and dynamics of the rings allows estimates of time scales for each stage of the massive star evolution. These are consistent with recent theoretical evolutionary models. Mass estimates for the ejecta, from the model presented, are consistent with previous ring nebula mass estimates from IRAS data, showing a number of ring nebulae to have large masses, most of which must in be in the form of neutral material. Finally, we illustrate how further observations will allow the determination of many of the parameters of the evolution of massive stars such as total mass loss, average mass loss rates, stellar abundances, and total time spent in each evolutionary phase.

  2. The Tarantula Massive Binary Monitoring. II. First SB2 orbital and spectroscopic analysis for the Wolf-Rayet binary R145

    NASA Astrophysics Data System (ADS)

    Shenar, T.; Richardson, N. D.; Sablowski, D. P.; Hainich, R.; Sana, H.; Moffat, A. F. J.; Todt, H.; Hamann, W.-R.; Oskinova, L. M.; Sander, A.; Tramper, F.; Langer, N.; Bonanos, A. Z.; de Mink, S. E.; Gräfener, G.; Crowther, P. A.; Vink, J. S.; Almeida, L. A.; de Koter, A.; Barbá, R.; Herrero, A.; Ulaczyk, K.

    2017-02-01

    We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159 d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300 M⊙, making it a candidate for being the most massive star known to date. While the primary is a known late-type, H-rich Wolf-Rayet star (WN6h), the secondary has so far not been unambiguously detected. Using moderate-resolution spectra, we are able to derive accurate radial velocities for both components. By performing simultaneous orbital and polarimetric analyses, we derive the complete set of orbital parameters, including the inclination. The spectra are disentangled and spectroscopically analyzed, and an analysis of the wind-wind collision zone is conducted. The disentangled spectra and our models are consistent with a WN6h type for the primary and suggest that the secondary is an O3.5 If*/WN7 type star. We derive a high eccentricity of e = 0.78 and minimum masses of M1sin3i ≈ M2sin3i = 13 ± 2 M⊙, with q = M2/M1 = 1.01 ± 0.07. An analysis of emission excess stemming from a wind-wind collision yields an inclination similar to that obtained from polarimetry (i = 39 ± 6°). Our analysis thus implies and , excluding M1 > 300 M⊙. A detailed comparison with evolution tracks calculated for single and binary stars together with the high eccentricity suggests that the components of the system underwent quasi-homogeneous evolution and avoided mass-transfer. This scenario would suggest current masses of ≈ 80 M⊙ and initial masses of Mi,1 ≈ 105 and Mi,2 ≈ 90 M⊙, consistent with the upper limits of our derived orbital masses, and would imply an age of ≈ 2.2 Myr. A copy of the disentangled spectra, as either FITS files or tables are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A85

  3. A NEAR-INFRARED SURVEY OF THE INNER GALACTIC PLANE FOR WOLF-RAYET STARS. II. GOING FAINTER: 71 MORE NEW W-R STARS

    SciTech Connect

    Shara, Michael M.; Faherty, Jacqueline K.; Zurek, David; Moffat, Anthony F. J.; Doyon, Rene; Gerke, Jill; Artigau, Etienne; Drissen, Laurent E-mail: jfaherty@amnh.org E-mail: moffat@astro.umontreal.ca E-mail: gerke@astronomy.ohio-state.edu E-mail: ldrissen@phy.ulaval.ca

    2012-06-15

    We are continuing a J, K and narrowband imaging survey of 300 deg{sup 2} of the plane of the Galaxy, searching for new Wolf-Rayet (W-R) stars. Our survey spans 150 Degree-Sign in Galactic longitude and reaches 1 Degree-Sign above and below the Galactic plane. The survey has a useful limiting magnitude of K = 15 over most of the observed Galactic plane, and K = 14 (due to severe crowding) within a few degrees of the Galactic center. Thousands of emission-line candidates have been detected. In spectrographic follow-ups of 146 relatively bright W-R star candidates, we have re-examined 11 previously known WC and WN stars and discovered 71 new W-R stars, 17 of type WN and 54 of type WC. Our latest image analysis pipeline now picks out W-R stars with a 57% success rate. Star subtype assignments have been confirmed with the K-band spectra and distances approximated using the method of spectroscopic parallax. Some of the new W-R stars are among the most distant known in our Galaxy. The distribution of these new W-R stars is beginning to trace the locations of massive stars along the distant spiral arms of the Milky Way.

  4. Comments on using absolute spectrophotometry of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1986-01-01

    Garmany et al. (1984) have conducted a study involving spectrophotometric scans of 13 Wolf-Rayet stars. They have found that the application of a 'standard' reddening law to the observed data gives spurious results in many cases. They concluded also that previous attempts to determine the intrinsic continua and the effective temperatures of Wolf-Rayet stars are inadequate. In the present study the conclusions of Garmany et al. are evaluated. According to this evaluation, it has not been demonstrated by Garmany et al., beyond a reasonble doubt, that the interstellar extinction law varies greatly from Wolf-Rayet star to Wolf-Rayet star. The procedure followed by Garmany et al. to find the apparent shape of the ultraviolet continuum of a Wolf-Rayet star is unsatisfactory for a number of reasons.

  5. Wolf-Rayet Bubbles. I. Analytic Solutions

    NASA Astrophysics Data System (ADS)

    Garcia-Segura, Guillermo; Mac Low, Mordecai-Mark

    1995-12-01

    Stellar wind bubble dynamics are sensitive to the stellar wind velocity and mass-loss history. Observations of ring nebulae can thus strongly constrain theories of stellar winds and massive stellar evolution. Furthermore, ring nebulae are often observed around Wolf-Rayet stars likely to soon become supernovae, so their influence on the circumstellar medium is vital to understanding young supernova remnants such as Cas A. To interpret the observations, the connection between the input wind and the observed gas distribution must be described. This is our goal in this series of papers. In this paper, we present analytic solutions for the dynamics of bubbles expanding into media with power-law density distributions such as r-2. We apply the solutions to Wolf-Rayet bubbles expanding into red supergiant winds. A semianalytic method is used to model aspherical bubbles resulting from nonspherical red supergiant winds. Applying this method, we find, for the case of steady winds, that bubbles expand at nearly constant velocity in each direction, keeping their shapes. We can then make the approximation that the bubbles have constant-eccentricity ellipsoidal shapes to derive a fully analytic dynamical model. From this we derive solutions for the diffuse X-ray luminosities from steady winds, using the assumption of classical conductive evaporation. Useful relationships between observables are also given. The solutions are compared to observations of the Wolf-Rayet ring nebula NGC 6888. We find that with either the assumption of energy conservation or momentum conservation, the dynamics of this nebula cannot be explained if the reported wind kinetic energy of the central star WR 136 is used. The nebular kinematics require an order of magnitude less effective mechanical luminosity from WR 136, demanding a lower mass-loss rate, a lower wind velocity, or both.

  6. A new search for nebulae surrounding Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Heckathorn, J. N.; Bruhweiler, F. C.; Gull, T. R.

    1982-01-01

    A comprehensive narrow band emission line survey of the Milky Way is used in searching for nebulosities surrounding Wolf-Rayet stars. Fifteen ring nebulae are definitely identified, including five previously unreported shell structures. An additional 30 nebulosities are classified as 'probable' or 'possible' ring nebulae. Angular diameter, sharpness or diffuseness, and level of brightness in three emission line bandpasses are determined for each nebulosity detected. Five selected shell structures are discussed in detail. Analysis of these data reveals a tendency for nebulae surrounding early WN stars to be brighter in the forbidden O III than in H-alpha plus the forbidden N II, whereas nebulae surrounding late WN stars tend to be brighter in H-alpha plus the forbidden N II than in the forbidden O III.

  7. Models of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Langer, Norbert

    1990-01-01

    The current status of knowledge about formation, structure and evolution of Wolf-Rayet stars is reviewed, with emphasis on a discussion of corresponding stellar models. The relevance of the LBV-scenario for WR star formation is outlined. Hydrogenless WR stars are shown to closely follow simple relations for the dependence of luminosity, radius, and surface temperature as a function of their mass. The use of these relations for simplified WR evolution calculations is demonstrated. Surface abundance predictions for the different WR types are discussed, with special emphasis to the WN + WC spectral type. Details are presented concerning the WR phase of a recent 60 solar mass evolutionary calculation, which was computed with the same input physics which reproduced the progenitor evolution of SN 1987 A in a 20 solar mass case, and which may be a representative case concerning WR stars in many respects.

  8. A study of the moderately wide Wolf-Rayet spectroscopic binary HD 190918

    NASA Astrophysics Data System (ADS)

    Underhill, Anne B.; Hill, Grant M.

    1994-09-01

    Radial-velocity observations of the Wolf-Rayet spectroscopic binary HD 190918 obtained from 25 spectrograms covering the yellow-green range are presented. In general three absorption lines were measured to determine the line-of-sight motion of the O star and one unblended emission line, He II lambda 5411.52, for the Wolf-Rayet star. A sharp C III lambda 5696 emission line, as seen in most Of type spectra, was detected on each spectrogram and measured. This line follows the predicted radial-velocity curve of the O star fairly well when the radial velocities are shifted by an appropriate amount. New orbital elements have been found for the O star, for the Wolf-Rayet star, and for the C III emission line. The estimated systemic velocity is -20.9 +/- 0.7 km/s for the O star, +70.1 +/- 4.6 km/s for the Wolf-Rayet star, and -34.2 +/- 1.5 km/s for the sharp C III emission line. The systemic velocity of the O star is reasonable considering the expected line-of-sight component of motion due to the peculiar motion of Population I stars, Galactic rotation, and reflex solar motion. We adopt the O-star systemic velocity as a fiducial radial velocity for the binary HD 190918. This shows that the He II lambda 5411 line of the WN4.5 star is displaced longward by 91.1 km/s, while the sharp C III line appears to be formed in a body of gas moving toward the observer by an additional 13.3 km/s. We discuss the implications of each possible solution including the swath traversed by the O star in the outer part of the line emitting region of the Wolf-Rayet star and the possible generation of X-rays. We conclude that our observations of the sharp C III lambda 5696 emission line confirm the hydrodynamic models of Stevens, Blondin, and Pollock which show that extensive, chaotic tongues of cooling plasma are formed perpendicular to the line joining the stars in the case of colliding winds in massive binary systems. We describe observational tests which may be used to confirm what type of

  9. DISCOVERY OF A WOLF-RAYET STAR THROUGH DETECTION OF ITS PHOTOMETRIC VARIABILITY

    SciTech Connect

    Littlefield, Colin; Garnavich, Peter; McClelland, Colin; Rettig, Terrence; Marion, G. H.; Vinko, Jozsef; Wheeler, J. Craig

    2012-06-15

    We report the serendipitous discovery of a heavily reddened Wolf-Rayet star that we name WR 142b. While photometrically monitoring a cataclysmic variable, we detected weak variability in a nearby field star. Low-resolution spectroscopy revealed a strong emission line at 7100 A, suggesting an unusual object and prompting further study. A spectrum taken with the Hobby-Eberly Telescope confirms strong He II emission and an N IV 7112 A line consistent with a nitrogen-rich Wolf-Rayet star of spectral class WN6. Analysis of the He II line strengths reveals no detectable hydrogen in WR 142b. A blue-sensitive spectrum obtained with the Large Binocular Telescope shows no evidence for a hot companion star. The continuum shape and emission line ratios imply a reddening of E(B - V) = 2.2-2.6 mag. We estimate that the distance to WR 142b is 1.4 {+-} 0.3 kpc.

  10. The Multiplicity of Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Wallace, Debra J.

    2004-01-01

    The most massive stars drastically reconfigure their surroundings via their strong stellar winds and powerful ionizing radiation. With this mass fueling their large luminosities, these stars are frequently used as standard candles in distance determination, and as tracers of stellar evolution in different regions and epochs. In their dieing burst, some of the once massive stars will enter a Wolf-Rayet (WR) phase lasting approx.10% of the stellar lifetime. This phase is particularly useful for study because these stars have strong spectroscopic signatures that allow them to be easily identified at great distances. But how accurate are these identifications? Increasingly, the relatively nearby stars we once assumed to be single are revealing themselves to be binary or multiple. New techniques, such as high-resolution imaging and interferometry, are changing our knowledge of these objects. I will discuss recent results in the literature and how this affects the binary distribution of WR stars. I will also discuss the implications of binary vs. single star evolution on evolution through the WR phase. Finally, I will discuss the implications of these revised numbers on both massive stellar evolution itself, and the impact that this has on the role of WR stars as calibrators.

  11. The Multiplicity of Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Wallace, Debra J.

    2004-01-01

    The most massive stars drastically reconfigure their surroundings via their strong stellar winds and powerful ionizing radiation. With this mass fueling their large luminosities, these stars are frequently used as standard candles in distance determination, and as tracers of stellar evolution in different regions and epochs. In their dieing burst, some of the once massive stars will enter a Wolf-Rayet (WR) phase lasting approx.10% of the stellar lifetime. This phase is particularly useful for study because these stars have strong spectroscopic signatures that allow them to be easily identified at great distances. But how accurate are these identifications? Increasingly, the relatively nearby stars we once assumed to be single are revealing themselves to be binary or multiple. New techniques, such as high-resolution imaging and interferometry, are changing our knowledge of these objects. I will discuss recent results in the literature and how this affects the binary distribution of WR stars. I will also discuss the implications of binary vs. single star evolution on evolution through the WR phase. Finally, I will discuss the implications of these revised numbers on both massive stellar evolution itself, and the impact that this has on the role of WR stars as calibrators.

  12. Wolf-Rayet Stars and the Isotopic Anomaly Connection

    NASA Astrophysics Data System (ADS)

    Arnould, M.; Paulus, G.; Meynet, G.

    1993-07-01

    Isotopic anomalies are now known to be carried by high-temperature inclusions of primitive meteorites that formed from solar reservoirs out of equilibrium with the rest of the solar nebula, as well as by various types of grains (diamond, graphite, SiC) that are considered to be of circumstellar origin, and have survived the process of incorporation into the solar system (see e.g. [1] for a recent review). Such anomalies provide new clues to many important astrophysical problems, and raise the question of their nucleosynthetic origin. In fact, they offer the exciting perspective of confronting abundance observations with nucleosynthesis models for a very limited number of events, even possibly a single one. This situation is in marked contrast with the one encountered when trying to understand the bulk solar system composition. Up to now, Red Giant stars, massive mass loosing objects (of the Wolf-Rayet type), novae or supernovae have been proposed as possible contributors to the observed anomalies. In this paper, we revisit the role that could possibly be played in that respect by Wolf-Rayet (WR) stars. Wolf-Rayet stars are appealing isotopic anomaly contributors for many reasons. In particular (1) they are observed to loose mass at very large rates that can exceed 10^-5M solar masses yr^-l, the ejected material being contaminated with the products of hydrogen and helium burning, and (2) certain WR stars are known to make dust episodically in their winds [e.g., 2]. In addition, the role of WR stars would be well in line with the "bing-bang" model for the isotopic anomalies promoted by Reeves [3]. The aim of this contribution is to extent and update previous calculations [4,5] of the isotopic anomalies that could be carried by the wind of WR stars of various masses and initial compositions during different phases of their evolution, those anomalies possibly loading circumstellar WR grains. The calculation of the WR wind composition is performed on grounds of detailed

  13. The Sixth Catalogue of galactic Wolf-Rayet stars, their past and present

    NASA Technical Reports Server (NTRS)

    Van Der Hucht, K. A.; Conti, P. S.; Lundstrom, I.; Stenholm, B.

    1981-01-01

    This paper presents the Sixth Catalogue of galactic Wolf-Rayet stars (Pop. I), a short history on the five earlier WR catalogues, improved spectral classification, finding charts, a discussion on related objects, and a review of the current status of Wolf-Rayet star research. The appendix presents a bibliography on most of the Wolf-Rayet literature published since 1867.

  14. Wolf-Rayet stars with relativistic companions

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.; Fedorova, A. V.; Cherepashchuk, A. M.

    2013-09-01

    The evolution of close binary systems containing Wolf-Rayet (WR) stars and black holes (BHs) is analyzed numerically. Both the stellar wind from the donor star itself and the induced stellar wind due to irradiation of the donor with hard radiation arising during accretion onto the relativistic component are considered. The mass and angular momentum losses due to the stellar wind are also taken into account at phases when the WR star fills its Roche lobe. It is shown that, if a WR star with a mass higher than ˜10 M ⊙ fills its Roche lobe in an initial evolutionary phase, the donor star will eventually lose contact with the Roche lobe as the binary loses mass and angular momentum via the stellar wind, suggesting that the semi-detached binary will become detached. The star will remain a bright X-ray source, since the stellar wind that is captured by the black hole ensures a near-Eddington accretion rate. If the initial mass of the helium donor is below ˜5 M ⊙, the donor may only temporarily detach from its Roche lobe. Induced stellar wind plays a significant role in the evolution of binaries containing helium donors with initial masses of ˜2 M ⊙. We compute the evolution of three observed WR-BH binaries: Cyg X-3, IC 10 X-1, and NGC 300 X-1, as well as the evolution of the SS 433 binary system, which is a progenitor of such systems, under the assumption that this binary will avoid a common-envelope stage in its further evolution, as it does in its current evolutionary phase.

  15. New observations of ultraviolet variability in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Burton, W. M.; Evans, R. G.; Patchett, B.; Wu, C.-C.

    1978-01-01

    Observations of ultraviolet variability in Wolf-Rayet stars have been made with the ANS satellite Ultraviolet Photometer Experiment. Significant variations are detected in several of the observed stars, the timescale of the variability ranging from a few minutes to several months.

  16. Diagnostics of the unstable envelopes of Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Grassitelli, L.; Chené, A.-N.; Sanyal, D.; Langer, N.; St-Louis, N.; Bestenlehner, J. M.; Fossati, L.

    2016-05-01

    Context. The envelopes of stars near the Eddington limit are prone to various instabilities. A high Eddington factor in connection with the iron opacity peak leads to convective instability, and a corresponding envelope inflation may induce pulsational instability. Here, we investigate the occurrence and consequences of both instabilities in models of Wolf-Rayet stars. Aims: We determine the convective velocities in the sub-surface convective zones to estimate the amplitude of the turbulent velocity at the base of the wind that potentially leads to the formation of small-scale wind structures, as observed in several Wolf-Rayet stars. We also investigate the effect of stellar wind mass loss on the pulsations of our stellar models. Methods: We approximated solar metallicity Wolf-Rayet stars in the range 2-17 M⊙ by models of mass-losing helium stars, computed with the Bonn stellar evolution code. We characterized the properties of convection in the envelope of these stars adopting the standard mixing length theory. Results: Our results show the occurrence of sub-surface convective regions in all studied models. Small (≈1 km s-1) surface velocity amplitudes are predicted for models with masses below ≈10 M⊙. For models with M ≳ 10 M⊙, the surface velocity amplitudes are of the order of 10 km s-1. Moreover we find the occurrence of pulsations for stars in the mass range 9-14 M⊙, while mass loss appears to stabilize the more massive Wolf-Rayet stars. We confront our results with observationally derived line variabilities of 17 WN stars, of which we analysed eight here for the first time. The data suggest variability to occur for stars above 10 M⊙, which is increasing linearly with mass above this value, in agreement with our results. We further find our models in the mass range 9-14M⊙ to be unstable to radial pulsations, and predict local magnetic fields of the order of hundreds of gauss in Wolf-Rayet stars more massive than ≈10 M⊙. Conclusions: Our

  17. A new ejecta shell surrounding a Wolf-Rayet star in the LMC

    NASA Technical Reports Server (NTRS)

    Garnett, Donald R.; Chu, You-Hua

    1994-01-01

    We have obtained CCD spectra of newly discovered shell-like nebulae around the WN4 star Breysacher 13 and the WN1 star Breysacher 2 in the Large Magellanic Cloud (LMC). The shell around Br 13 shows definite signs of enrichment in both nitrogen and helium, having much stronger (N II) and He I emission lines than are seen in typical LMC H II regions. From the measured electron temperature of about 17,000 K in the shell, we derive He/H and N/O abundance ratios which are factors of 2 and more than 10 higher, respectively, than the average LMC interstellar values. The derived oxygen abundance in the Br 13 shell is down by a factor of 8 compared to the local LMC interstellar medium (ISM); however, the derived electron temperature is affected by the presence of an incomplete shock arising from the interaction of the stellar wind with photoionized material. This uncertainty does not affect the basic conclusion that the Br 13 shell is enriched by processed material from the Wolf-Rayet star. In contrast, the shell around Br 2 shows no clear evidence of enrichment. The nebular spectrum is characterized by extremely strong (O III) and He II emission and very weak (N II). We derive normal He, O, and N abundances from our spectrum. This object therefore appears to be simply a wind-blown structure associated with a relatively dense cloud near the Wolf-Rayet star, although the very high-ionization state of the gas is unusual for a nebula associated with a Wolf-Rayet star.

  18. A new ejecta shell surrounding a Wolf-Rayet star in the LMC

    NASA Technical Reports Server (NTRS)

    Garnett, Donald R.; Chu, You-Hua

    1994-01-01

    We have obtained CCD spectra of newly discovered shell-like nebulae around the WN4 star Breysacher 13 and the WN1 star Breysacher 2 in the Large Magellanic Cloud (LMC). The shell around Br 13 shows definite signs of enrichment in both nitrogen and helium, having much stronger (N II) and He I emission lines than are seen in typical LMC H II regions. From the measured electron temperature of about 17,000 K in the shell, we derive He/H and N/O abundance ratios which are factors of 2 and more than 10 higher, respectively, than the average LMC interstellar values. The derived oxygen abundance in the Br 13 shell is down by a factor of 8 compared to the local LMC interstellar medium (ISM); however, the derived electron temperature is affected by the presence of an incomplete shock arising from the interaction of the stellar wind with photoionized material. This uncertainty does not affect the basic conclusion that the Br 13 shell is enriched by processed material from the Wolf-Rayet star. In contrast, the shell around Br 2 shows no clear evidence of enrichment. The nebular spectrum is characterized by extremely strong (O III) and He II emission and very weak (N II). We derive normal He, O, and N abundances from our spectrum. This object therefore appears to be simply a wind-blown structure associated with a relatively dense cloud near the Wolf-Rayet star, although the very high-ionization state of the gas is unusual for a nebula associated with a Wolf-Rayet star.

  19. The Masses of Black Holes with Wolf-Rayet Companions

    NASA Astrophysics Data System (ADS)

    Laycock, Silas; Steiner, James F.; Maccarone, Thomas J.; Christodoulou, Dimitris M.; Binder, Breanna A.; Yang, Jun; Cappallo, Rigel

    2016-04-01

    Black Holes with Wolf-Rayet companions represent a channel for forming the most massive stellar BHs. The recent, stunning LIGO detection of the gravitational wave signature from a merging stellar BH binary points to the importance of understanding the progenitor systems formation and evolution. The BH+WR binary IC 10 X-1 holds important clues to the puzzle, by helping establish the upper observed BH mass and pointing to an association between maximum possible BH mass and low metallicity environments. However, securing dynamical mass determiniations for WR+BH binaries appears to be complicated by interaction between the radiation field of the BH and the stellar wind. This causes a substantial change to our understanding of IC 10 X-1, and by extension to the mass distribution of BH binaries. A high precision ephemeris derived from a decade of Chandra/XMM X-ray timing observations, when combined with the optical RV curve, reveals a surprizing simultenaity of mid X-ray eclipse and the maximum blueshift velocity of He II emission lines. The optical emission lines appear to originate in a shielded sector of the WR star's stellar wind which escapes total X-ray ionization by the compact object. Unravelling this projection effect is necessary to obtain the system's true mass function. Complementary Chandra, XMM and NuStar datasets offer new insights into the mass and spin of the BH, and the structure of the photo-ionized wind. We will discuss possible routes toward the mass function in BH+WR binaries via multi-wavelength observations, and the additional leverage provided by further constraining the orbital period derivative.

  20. Searching for Hidden Wolf-Rayet Stars in the Galaxy 15 New Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Hadfield, Lucy J.; van Dyk, S. D.; Morris, P. W.; Smith, J. D.; Marston, A. P.

    2006-12-01

    Hot, massive stars play a vital role in the working of the `cosmic cauldron', living life in the fast lane and ending their evolution via some of the most powerful events in the universe. Wolf-Rayet (WR) stars are the evolved descendants of the most massive stars. Believed to represent the bare He-core of their massive star precursor, their spectra are dominated by impressive emission features. This and the short duration of this evolutionary phase make WR stars excellent tracers of recent star formation in the nearby Universe as well as vital tests for stellar evolutionary models. Our Galaxy provides an excellent laboratory for studying massive stars as we can resolve objects on small scales and so hope to achieve sample completeness. To date 300 WR stars have been observed in our Galaxy but with studies predicting that the Milk Way should host 1000-2500 WR stars, it would appear that a large number of stars are still waiting to be discovered. Here we report the discovery of 15 (11 WN and 4 WC) WR stars found as part of near-mid infrared broad-band study of the Galactic WR population.

  1. Searching for Wolf-Rayet Stars in the Local Group

    NASA Astrophysics Data System (ADS)

    Shara, M. M.; Zurek, D.; Kanarek, G.; Faherty, J.

    2012-12-01

    Tony Moffat has been inspiring the hunt for new Wolf-Rayet stars for over 40 years. These extraordinary objects offer critical tests of stellar evolution theory, and are predicted to be progenitors of type Ib and Ic supernovae. We're only going to know if that prediction is correct (in our lifetimes) by locating and spectrographically confirming of order 10 000 WR stars - a daunting but increasingly doable task. Our 2009 prediction that roughly 6 500 Wolf-Rayet stars live in our Galaxy has been followed by demonstrations in the past few years that, via narrowband infrared imaging and spectroscopy, we can find and confirm almost all Galactic WR stars. The rest of the Local Group is unlikely to contain more than 1 000 WR stars, so the Milky Way is THE place to search exhaustively for them. I briefly describe how we hunt and gather WR stars and give a current (mid-2011) Local Group census of them.

  2. Multiple Shells Around Wolf-Rayet Stars: Space Based Astrometric Observing

    NASA Technical Reports Server (NTRS)

    Marston, Anthony P.

    1995-01-01

    The completion of a complementary optical emission-line survey of the nebulae associated with Wolf-Rayet stars in the southern sky is reported, along with the completion of a survey the large-scale environments of Wolf-Rayet stars using IRAS Skyflux data. HIRES IRAS maps in the four IRAS wavebands for appoximately half of all galactic Wolf-Rayet stars are created.

  3. Le Phénomène Wolf-Rayet au Sein des Etoiles chaudes de Populations I et II: Histoire des Vents stellaires et Impact sur la Structure nébulaire circumstellaire

    NASA Astrophysics Data System (ADS)

    Grosdidier, Yves

    2000-12-01

    Les spectres des étoiles Wolf-Rayet pop. I (WR) présentent de larges raies en émission dues à des vents stellaires chauds en expansion rapide (vitesse terminale de l'ordre de 1000 km/s). Le modèle standard des étoiles WR reproduit qualitativement le profil général et l'intensité des raies observées. Mais la spectroscopie intensive à moyenne résolution de ces étoiles révèle l'existence de variations stochastiques dans les raies (sous-pics mobiles en accélération échelles de temps: environ 10-100 min.). Ces variations ne sont pas comprises dans le cadre du modèle standard et suggèrent une fragmentation intrinsèque des vents. Cette thèse de doctorat présente une étude de la variabilité des raies spectrales en émission des étoiles WR pop. II; la question de l'impact d'un vent WR fragmenté sur le milieu circumstellaire est aussi étudiée: 1) à partir du suivi spectroscopique intensif des raies CIIIl5696 et CIVl5801/12, nous analysons quantitativement (via le calcul des Spectres de Variance Temporelle) les vents issus de 5 étoiles centrales de nébuleuses planétaires (NP) galactiques présentant le phénomène WR; 2) nous étudions l'impact de la fragmentation des vents issus de deux étoiles WR pop. I sur le milieu circumstellaire via: i) l'imagerie IR (NICMOS2/HST) de WR 137, et ii) l'imagerie H-alpha (WFPC2/HST) et l'interférométrie Fabry-Perot H-alpha (SIS-CFHT) de la nébuleuse M 1-67 (étoile centrale: WR 124). Les principaux résultats sont les suivants: VENTS WR POP. II: (1) Nous démontrons la variabilité spectroscopique intrinsèque des vents issus des noyaux de NP HD 826 ([WC 8]), BD +30 3639 ([WC 9]) et LSS 3169 ([WC 9]), observés durant respectivement 22, 15 et 1 nuits, et rapportons des indications de variabilité pour les noyaux [WC 9] HD 167362 et He 2-142. Les variabilités de HD 826 et BD +30 3639 apparaissent parfois plus soutenues (``bursts'' qui se maintiennent durant plusieurs nuits); (2) La cinématique des sous

  4. UV and radiofrequency observations of Wolf-Rayet stars.

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1973-01-01

    Available spectrometric and photometric observations of Wolf-Rayet stars by the OAO 2 spacecraft in the UV range are discussed along with radio astronomical observations of W stars with symmetrical nebulae around them. The scanned spectrum of the WN5 star HD 50896 between 1200 and 1900 A is illustrated together with the photometered spectrum of the WN6 star HD 192163 from 1330 to 3320 A. RF observations of NGC 6888 around HD 192163 are examined relative to interpretation of the properties of a WN6 star ejecting mass into a nebular shell.

  5. X-ray Emission from Wolf-Rayet Nebulae

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.; Arthur, S. J.; Smith, R. C.; Snowden, S. L.

    2013-05-01

    We present the analysis of the hot plasma detected with XMM-Newton and Chandra X-ray observations toward the only two Wolf-Rayet bubbles so far detected: S 308 and NGC 6888. Both nebulae present spectra dominated by soft temperature plasmas of ˜10^{6} K with luminosities of L_{{X}}˜10^{33}-10^{34} erg s^{-1}, but with different X-ray-emitting plasma distribution. In the case of S 308 it presents a limb-brightened morphology, while in the case of NGC 6888, it shows three maxima localized at the Northeast and Southwest caps and another one extending toward the Northwest.

  6. Eleven New Heavily Reddened Field Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Smith, J. D. T.; Cushing, Michael; Barletta, Anthony; McCarthy, Don; Kulesa, Craig; Van Dyk, Schuyler D.

    2012-12-01

    We report the results of a medium-narrowband 2 μm line survey covering 5.8 deg2 near the Galactic plane. We confirm 11 new field Wolf-Rayet stars along three lines of sight probing the inner Galaxy, demonstrating the capability to uncover distant and highly reddened populations of Galactic wind-borne emission-line stars suffering extinction as high as AV ~ 40 and as distant as 9 kpc down to modest magnitude limits of Ks ~ 12.5. All stars are of subtype WC7-8, with median distance d = 6 kpc and median extinction A_{K_s} = 2.5. Over the fields surveyed, the density of Wolf-Rayet stars to limiting magnitude Ks ~ 12.5 was found to be 1.9 deg-2. We compare this to models which predict their distribution within the Galaxy and find that, even neglecting survey and subtype incompleteness, they consistently underpredict the number of newly discovered stars along the surveyed lines of sight.

  7. ELEVEN NEW HEAVILY REDDENED FIELD WOLF-RAYET STARS

    SciTech Connect

    Smith, J. D. T.; Cushing, Michael; Barletta, Anthony; McCarthy, Don; Kulesa, Craig; Van Dyk, Schuyler D.

    2012-12-01

    We report the results of a medium-narrowband 2 {mu}m line survey covering 5.8 deg{sup 2} near the Galactic plane. We confirm 11 new field Wolf-Rayet stars along three lines of sight probing the inner Galaxy, demonstrating the capability to uncover distant and highly reddened populations of Galactic wind-borne emission-line stars suffering extinction as high as A{sub V} {approx} 40 and as distant as 9 kpc down to modest magnitude limits of K{sub s} {approx} 12.5. All stars are of subtype WC7-8, with median distance d = 6 kpc and median extinction A{sub K{sub s}} = 2.5. Over the fields surveyed, the density of Wolf-Rayet stars to limiting magnitude K{sub s} {approx} 12.5 was found to be 1.9 deg{sup -2}. We compare this to models which predict their distribution within the Galaxy and find that, even neglecting survey and subtype incompleteness, they consistently underpredict the number of newly discovered stars along the surveyed lines of sight.

  8. Photometry, polarimetry, spectroscopy, and spectropolarimetry of the enigmatic Wolf-Rayet star EZ Canis Majoris

    NASA Technical Reports Server (NTRS)

    Robert, Carmelle; Moffat, Anthony F. J.; Drissen, Laurent; Lamontagne, Robert; Seggewiss, Wilhelm; Niemela, Virpi S.; Cerruti, Miguel A.; Barrett, Paul; Bailey, Jeremy; Garcia, Jorge

    1992-01-01

    New observations of the peculiar Wolf-Rayet star EZ Canis Majoris collected since 1987 are presented, and photometric, polarimetric, spectroscopic, and spectropolarimetric data are discussed. Linear polarization data are well fitted with an eccentric binary model where an additional free parameter is included to allow for epoch-dependent changes of the geometrical electron distribution in the W-R envelope. This yields a set of basic parameters, including an eccentricity e = 0.39 +/- 0.02 and an orbital inclination i = 114 deg +/- 3 deg. The spectroscopic data show global profile variations for all three observed strong emission lines He II 5412 A, C IV 5807 A, and He I 5876 A. Radial velocities of the lines vary with the 3.766-day period. Radially expanding inhomogeneities are superposed on the line profiles and variable polarization in the lines is observed.

  9. Colliding stellar winds in the eclipsing Wolf-Rayet binary V444 Cygni

    NASA Technical Reports Server (NTRS)

    Brown, Douglas N.; Shore, Steven N.

    1988-01-01

    High resolution spectra of V444 Cygni have been obtained using the International Ultraviolet Explorer Satellite. These spectra span both eclipses and include one observation at third quadrature. Together with seven archival spectra, they provide reasonably complete phase coverage for the system. The variations in the P Cygni profiles of the He(II) and N(IV) lines, imply the existence of a low density region in the WR wind. This region occupies a relatively narrow range of orbital phase coinciding with the highest terminal velocities observed in C IV. These data are interpreted to be evidence of an interaction region separating the winds of the O-star and Wolf-Rayet star.

  10. On the wind geometry of the Wolf-Rayet star EZ Canis Majoris

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, R. E.; Nordsieck, K. H.; Taylor, M.; Nook, M. A.; Bjorkman, K. S.; Magalhaes, A. M.; Anderson, C. M.

    1991-01-01

    Recent models of Wolf-Rayet star winds have been tailored to EZ CMa, and make predictions of the envelope structure and location of line-emitting regions. It is discussed how the wind structure of EZ CMa can be probed observationally through electron distribution integrals as measured by spectropolarimetry, and then present, analyze, and interpret a time-dependent spectropolarimetric data set of EZ CMa. The observations further the view of an electron-scattering wind that is axisymmetric, rotating, and expanding, with a variable mass-loss rate being responsible for the quasi-periodic polarimetric variability. It is demonstrated that the emission lines of EZ CMa are partially polarized, indicating that line photons are electron-scattered in the wind. The polarization in N V lambda 4945 and N IV lambda 4058 is observed to be larger than that of He II lambda 4686 and He I lambda 5876, as expected from ionization stratification.

  11. Photometry, polarimetry, spectroscopy, and spectropolarimetry of the enigmatic Wolf-Rayet star EZ Canis Majoris

    NASA Technical Reports Server (NTRS)

    Robert, Carmelle; Moffat, Anthony F. J.; Drissen, Laurent; Lamontagne, Robert; Seggewiss, Wilhelm; Niemela, Virpi S.; Cerruti, Miguel A.; Barrett, Paul; Bailey, Jeremy; Garcia, Jorge

    1992-01-01

    New observations of the peculiar Wolf-Rayet star EZ Canis Majoris collected since 1987 are presented, and photometric, polarimetric, spectroscopic, and spectropolarimetric data are discussed. Linear polarization data are well fitted with an eccentric binary model where an additional free parameter is included to allow for epoch-dependent changes of the geometrical electron distribution in the W-R envelope. This yields a set of basic parameters, including an eccentricity e = 0.39 +/- 0.02 and an orbital inclination i = 114 deg +/- 3 deg. The spectroscopic data show global profile variations for all three observed strong emission lines He II 5412 A, C IV 5807 A, and He I 5876 A. Radial velocities of the lines vary with the 3.766-day period. Radially expanding inhomogeneities are superposed on the line profiles and variable polarization in the lines is observed.

  12. Investigating the Wolf-Rayet + Black Hole Binary NGC 300 X-1 With Chandra and Hubble

    NASA Astrophysics Data System (ADS)

    Gross, Jacob; Binder, Breanna A.; Williams, Benjamin F.; Laycock, Silas

    2016-01-01

    We observed the Wolf-Rayet + black hole binary NGC 300 X-1 twice with the Chandra X-ray Observatory (~65 ksec each). In the first observation, we observed a secular increase in brightness of the X-ray source, consistent with an eclipse egress. The Chandra data were also used to construct a spectral model of the black hole that could help us better understand how X-rays are being produced in the binary. We observe an X-ray energy dependence on the orbital phase, consistent with the black hole moving through the dense stellar wind of the donor star. Prior to our study, NGC 300 X-1 had only been observed by ground-based telescopes and these images of the system made it difficult to separate the optical source from other nearby stars. We obtained Hubble imaging of NGC 300 X-1 for the first time, and found a bright AGB star withing the X-ray error circle, in addition to the Wolf-Rayet star. We cannot rule out the possibility that the AGB star is the companion. We have compared the X-ray light curve with the He II λ 4648 emission line radial velocity from the literature to the X-ray light curve, and found that the He II emission line likely originates from the black hole accretion disk or from a focused wind from the donor, and not the donor star itself. These observations demonstrates that the mass of the black hole -- previously estimated at ~15 M⊙ -- may not be accurate.

  13. Stagnant Shells in the Vicinity of the Dusty Wolf-Rayet-O/B Binary WR 112

    NASA Astrophysics Data System (ADS)

    Lau, Ryan M.; Hankins, Matthew; Schoedel, R.; Sanchez-Bermudez, Joel; Moffat, Anthony F. J.; Ressler, Michael E.

    2017-01-01

    We present high spatial resolution mid-infrared images of the nebula around the late-type carbon-rich Wolf-Rayet (WC)-O/B binary system WR 112 taken by the recently upgraded VLT spectrometer and imager for the mid-infrared (VISIR) with the PAH1, NeII_2, and Q3 filters. The observations reveal a morphology resembling a series of arc-like filaments and broken shells. Dust temperatures and masses are derived for each of the identified filamentary structures, which exhibit temperatures ranging from 179 ± 8 K at the exterior W2 filament to 355 ± 37 K in the central 3''. The total dust mass summed over all the features is 2.6 ± 0.4 × 10-5 M⊙. A multi-epoch analysis of previous mid-IR photometry of WR 112 over the past ~20 yr reveals no significant variability in the observed dust temperature and mass. The morphology of the mid-IR dust emission from WR 112 also exhibits no significant expansion between archival imaging data taken in 2007 May 7, which disputes the current interpretation of the nebula as a high expansion velocity (~1200 km s-1) "pinwheel"-shaped outflow driven by the colliding winds of the central WC-O/B system. An upper limit of <120 km s-1 is derived for the expansion velocity assuming a distance of 4.15 kpc. The upper limit on the average mass-loss rate from the central 3'' of WR 112 is estimated to be < 8 × 10-6 M⊙ yr-1. Based on these constraints, we suggest that the WR 112 nebula formed in the slow, dense outflow during a previous red supergiant (RSG) phase of the central Wolf-Rayet star.

  14. Stagnant Shells in the Vicinity of the Dusty Wolf-Rayet-OB Binary WR 112

    NASA Astrophysics Data System (ADS)

    Lau, R. M.; Hankins, M. J.; Schödel, R.; Sanchez-Bermudez, J.; Moffat, A. F. J.; Ressler, M. E.

    2017-02-01

    We present high spatial resolution mid-infrared images of the nebula around the late-type carbon-rich Wolf-Rayet (WC)-OB binary system WR 112 taken by the recently upgraded VLT spectrometer and imager for the mid-infrared (VISIR) with the PAH1, Ne ii_2, and Q3 filters. The observations reveal a morphology resembling a series of arc-like filaments and broken shells. Dust temperatures and masses are derived for each of the identified filamentary structures, which exhibit temperatures ranging from {179}-6+8 K at the exterior W2 filament to {355}-25+37 K in the central 3″. The total dust mass summed over the features is 2.6 ± 0.4 × 10-5 M⊙. A multi-epoch analysis of mid-IR photometry of WR 112 over the past ˜20 years reveals no significant variability in the observed dust temperature and mass. The morphology of the mid-IR dust emission from WR 112 also exhibits no significant expansion from imaging data taken in 2001, 2007, and 2016, which disputes the current interpretation of the nebula as a high expansion velocity (˜1200 km s-1) “pinwheel”-shaped outflow driven by the central WC-OB colliding-wind binary. An upper limit of ≲120 km s-1 is derived for the expansion velocity assuming a distance of 4.15 kpc. The upper limit on the average total mass-loss rate from the central 3″ of WR 112 is estimated to be ≲8 × 10-6 M⊙ year-1. We leave its true nature as an open question, but propose that the WR 112 nebula may have formed in the outflow during a previous red or yellow supergiant phase of the central Wolf-Rayet star.

  15. Determinación de abundancia de Hidrógeno en cuatro estrellas Wolf-Rayet

    NASA Astrophysics Data System (ADS)

    Gamen, R. C.; Niemela, V. S.

    Medium resolution optical CCD spectra of four stars with WN type emission lines, have been obtained with the Cassegrain REOSC spectrograph attached to the 2.15 m telescope at CASLEO (San Juan, Argentina), during March 1999. The spectra cover the wavelength range λλ3800 -- 5500Å. From these spectra we have determined the contribution of Hydrogen, detected by oscillation in the Pickering decrement of HeII emission lines, for 4 galactic Wolf-Rayet stars, namely WR 10 = HD 65865, WR 29 = LSS 1964, WR 54 = LSS 3111 and WR 58 = LSS 3162. Our results agree with those previously published by Smith et al. in 1966 (MNRAS, 281, 163).

  16. The 'Baldwin Effect' in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Morris, Patrick; Conti, Peter S.; Lamers, Henny J. G. L. M.; Koenigsberger, Gloria

    1993-01-01

    The equivalent widths of a number of emission lines in the spectra of WN-type Wolf-Rayet stars are found to inversely correlate with the luminosity of the underlying continuum. This is the well-known Baldwin Effect that has previously been observed in quasars and some Seyfert I galaxies. The Effect can be inferred from line and continuum predictions in published non-LTE model helium atmospheres and is explainable in terms of differences in wind density among WN stars. Using a simple wind model, we show that the Effect arises from the fact that both the effective radius for the local continuum and the emission measure of the layers above the continuum-forming region depend on the density in the wind. The Effect provides a new method for distance determinations of W-R stars.

  17. SN 1985f - Death of a Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Begelman, M. C.; Sarazin, C. L.

    1986-01-01

    The optical spectrum of SN 1985f has been analyzed, and the supernova ejecta is shown to contain approximately 5 or more solar masses of oxygen and very little hydrogen. It is suggested that the explosion resulted from the pair instability supernova of a WO Wolf-Rayet star of about 50 solar masses, and that the optical luminosity of the supernova is powered by the radioactive decay of Co-56 synthesized in the explosion. As calculated from the rate of the optical emission decay, the explosion occurred about 350 days before its discovery in February, 1985. It is believed that some of the oxygen-rich supernova remnants may also have been produced by explosions of WO stars.

  18. Nongrayness Effects in Wolf-Rayet Wind Momentum Deposition

    NASA Astrophysics Data System (ADS)

    Onifer, A. J.; Gayley, K. G.

    2004-05-01

    Wolf-Rayet winds are characterized by their large momentum fluxes and optically thick winds. A simple analytic approach that helps to understand the most critical processes is the effecively gray approximation, but this has not been generalized to more realistic nongray opacities. We have developed a simplified theory for describing the interaction of the stellar flux with nongray wind opacity. We replace the detailed line list with a set of statistical parameters that are sensitive to the line strengths as well as the wavelength distribution of lines. We determine these statistical parameters for several real line lists, exploring the effects of temperature and density changes on the efficiency of momentum driving relative to gray opacity. We wish to acknowledge NSF grant AST-0098155.

  19. A search for Wolf-Rayet stars in active star forming regions of low mass galaxies - GR8, NGC 2366, IC 2574, and NGC 1569

    NASA Astrophysics Data System (ADS)

    Drissen, Laurent; Roy, Jean-Rene; Moffat, Anthony F. J.

    1993-10-01

    We report the detection, via narrow-band 4686 A filter imagery, of possible new Wolf-Rayet stars in the most massive giant H II regions of the irregular galaxies NGC 2366 and IC 2574. One stellar knot in the post-starburst galaxy NGC 1569 also appears to contain a weak excess of light at 4686 A. A similar search yielded negative results in the very low mass galaxy GR8. The strongest 4686 A excess is located close to the secondary eastern knot in the core of NGC 2366-I (NGC 2363). If this excess is of stellar origin, about five Wolf-Rayet stars of the luminous late-type can account for the excess emission. Nebular emission wraps around this cluster in the form of a shell. The putative Wolf-Rayet stars appear to be close to the center of the large expanding H II bubble discovered by Roy et al. (1991). A possible nebular origin of the 4686 A excess is also discussed.

  20. A survey of nebulae around galactic wolf-rayet stars in the southern sky, 2.

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Yocum, D. R.; Garcia-Segura, G.; Chu, Y.-H.

    1994-01-01

    We present the second half of a charge coupled device (CCD) narrow-band imaging survey of galactic Wolf-Rayet stars located in the southern hemisphere as listed by van der Hucht et al. (1981). Images of 50 Wolf-Rayet stars were taken using a wide-field CCD and narrowband interference filters centered on H alpha and (O III) 5007 A wavelengths. The first half of the survey (Marston, Chu, & Garcia-Segura 1993, hereafter Paper I) revealed six new ring nebulae residing around Wolf-Rayet stars. Here we reveal a possible 11 new rings and the existence of multiple rings associated with two previously known nebula, RCW 118 and G2.4+1.4 and around the stars WR 16 and WR 43. Combining our results with those of Miller & Chu (1993) and Paper I, 92% of the van der Hucht catalog of Wolf-Rayet stars have now been surveyed. Of the 38 possible ring nebulae found in our surveys to date, 22 reside around WN subtype Wolf-Rayet stars, 13 around WC stars, one around a triplet of Wolf-Rayet stars and one around a WO star (WR 102). One ring exists around a WN/WC star (WR 98). A bias toward rings being observed around W-R + OB binaries is noted. Such pairings are generally bright, and the detection of a ring around them may merely be a function of their combined luminosity. Several Wolf-Rayet stars are shown to be surrounded by multiple rings (two or three) which suggests that a number of ejections of stellar material have taken place during their evolution.

  1. Helium stars: towards an understanding of Wolf-Rayet evolution

    NASA Astrophysics Data System (ADS)

    McClelland, L. A. S.; Eldridge, J. J.

    2016-06-01

    Wolf-Rayet (WR) stars are massive stars that have lost most or all of their hydrogen via powerful stellar winds. Recent observations have indicated that hydrogen-free WR stars have cooler temperatures than those predicted by current evolutionary models. To investigate how varying mass-loss rate affects WR evolution, we have created a grid of pure helium star models. We compare our results with Galactic and Large Magellanic Cloud WR observations and show that the temperature ranges of observed WR stars can be reproduced by varying the mass-loss rate, which effectively determines the size of the helium envelope around the core. We also find that WN and WO stars arise from more massive stars, whereas WC stars come from lower masses. This contradicts the standard Conti scenario by which WN and WC stars evolve in an age sequence. We also predict the magnitudes of our models at core-collapse and compare with observations of nearby progenitors of Type Ib/c supernovae. We confirm the findings of previous studies that suggest WR stars are the progenitors of core-collapse supernovae; the progenitors would remain unobserved except in the cases where the progenitor is a low-mass helium giant, as is the case of iPTF13bvn.

  2. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    SciTech Connect

    Liu Tie; Wu Yuefang; Zhang Huawei; Qin Shengli

    2012-05-20

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  3. Triggered Star Formation Surrounding Wolf-Rayet Star HD 211853

    NASA Astrophysics Data System (ADS)

    Liu, Tie; Wu, Yuefang; Zhang, Huawei; Qin, Sheng-Li

    2012-05-01

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 103 cm-3 and kinematic temperature ~20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core "A," which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the "collect and collapse" process functions in this region. The star-forming activities in core "A" seem to be affected by the "radiation-driven implosion" process.

  4. A survey of nebulae around Galactic Wolf-Rayet stars in the southern sky, 1

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Chu, Y.-H.; Garcia-Segura, G.

    1994-01-01

    Images are presented from the first half of a survey of all Galactic Wolf-Rayet stars in the catalog of van der Hucht et al. (1981) residing in the southern skies. Previous surveys used only existing broad-band photographic plates. Encouraged by successes using CCD imaging with interference filters of the LMC and northern Galaxy (Miller & Chu 1993), we have expanded the survey to the southern hemisphere. In the first half of our southern survey, H alpha and (O III) narrow-band CCD images of fields centered on known Wolf-Rayet stars have indicated the existence of six new ring nebulae as well as revealing previously unobserved morphological features in the known ring nebulae. An example of this is an almost perfect ring of (O III) emission residing interior to the previously observed H alpha filaments of the Wolf-Rayet ring nebulae RCW 104. Our surveys to date indicate that 21% of all Wolf-Rayet stars have ring nebulae, with WN-type Wolf-Rayet stars having a greater likelihood for an associated ring.

  5. A rotating, expanding disk in the Wolf-Rayet star EZ Canis Majoris?

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, R. E.; Nordsieck, K. H.; Nook, M. A.; Magalhaes, A. M.; Taylor, M.

    1990-01-01

    The discovery of linear polarization changes across the extended wings of He II lines, mainly the strong 4-3 transition at 4686 A, in the WN5 star EZ CMa, is reported. When the polarization across the line profiles is plotted in the Stokes parameters plane, it traces loops clockwise from the blue wing through line center to the red, rather than straight lines. Such polarization loops are reminiscent of what is observed in the Balmer lines of Be stars. The continuum polarization in EZ CMa can be understood by an axisymmetric, electron-scattering envelope, with the decrease in polarization in He II being caused by an increase in absorptive opacity in the lines and dilution by unpolarized line emission, while the variations in position angle are due to the Doppler-shifted absorptive opacity and/or scattered line photons. As the sense of rotation in the loops is also independent of phase of this alleged Wolf-Rayet + compact binary, the polarized line profiles are the signature of a rotating, expanding wind geometry around a single star.

  6. The first transition Wolf-Rayet WN/C star in M31

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Mikołajewska, Joanna; Caldwell, Nelson; Iłkiewicz, Krystian; Drozd, Katarzyna; Zurek, David

    2016-02-01

    Three decades of searches have revealed 154 Wolf-Rayet (WR) stars in M31, with 62 of WC type, 92 of WN type and zero of transition-type WN/C or WC/N. In apparent contrast, about two per cent of the WR stars in the Galaxy, the LMC and M33 simultaneously display strong lines of carbon and nitrogen, i.e. they are transition-type WN/C or WC/N stars. We report here the serendipitous discovery of M31 WR 84-1, the first transition star in M31, located at RA = 00h43m43{^s.}61 Dec. = +41°45'27{^''.}95 (J2000). We present its spectrum, classify it as WN5/WC6, and compare it with other known transition stars. The star is unresolved in Hubble Space Telescope narrow-band and broad-band images, while its spectrum displays strong, narrow emission lines of hydrogen, [N II], [S II] and [O III]; this indicates a nebula surrounding the star. The radial velocity of the nebular lines is consistent with that of gas at the same position in the disc of M31. The metallicity at the 11.8 kpc galactocentric distance of M31 WR 84-1 is approximately solar, consistent with other known transition stars. We suggest that modest numbers of reddened WR stars remain to be found in M31.

  7. A rotating, expanding disk in the Wolf-Rayet star EZ Canis Majoris

    SciTech Connect

    Schulte-Ladbeck, R.E.; Nordsieck, K.H.; Nook, M.A.; Magalhaes, A.M.; Taylor, M. )

    1990-12-01

    The discovery of linear polarization changes across the extended wings of He II lines, mainly the strong 4-3 transition at 4686 A, in the WN5 star EZ CMa, is reported. When the polarization across the line profiles is plotted in the Stokes parameters plane, it traces loops clockwise from the blue wing through line center to the red, rather than straight lines. Such polarization loops are reminiscent of what is observed in the Balmer lines of Be stars. The continuum polarization in EZ CMa can be understood by an axisymmetric, electron-scattering envelope, with the decrease in polarization in He II being caused by an increase in absorptive opacity in the lines and dilution by unpolarized line emission, while the variations in position angle are due to the Doppler-shifted absorptive opacity and/or scattered line photons. As the sense of rotation in the loops is also independent of phase of this alleged Wolf-Rayet + compact binary, the polarized line profiles are the signature of a rotating, expanding wind geometry around a single star. 22 refs.

  8. Wolf-Rayet stars as starting points or as endpoints of the evolution of massive stars?

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.; Maeder, A.; Schmutz, W.; Cassinelli, J. P.

    1991-01-01

    The paper investigates the evidence for the two interpretations of Wolf-Rayet stars suggested in the literature: (1) massive premain-sequence stars with disks and (2) massive stars which have lost most of their H-rich layers in a stellar wind is investigated. The abundance determinations which are done in two different ways and which lead to different conclusions are discussed. The composition is solar, which would suggest interpretation (1), or the CNO abundances are strongly anomalous, which would suggest interpretation (2). Results from evolutionary calculations, stellar statistics, the existence of Ofpe/WN9 transition stars and W-R stars with evolved companions show overwhelming evidence that W-R stars are not premain-sequence stars but that they are in a late stage of evolution. Moreover, the fact that W-R stars are usually in clear regions of space, whereas massive premain-sequence stars are embedded in ultracompact H II regions also shows that W-R stars are not young premain-sequence stars.

  9. Sample of Wolf-Rayet galaxies from the SLOAN digital sky survey

    NASA Astrophysics Data System (ADS)

    Agienko, K. B.; Guseva, N. G.; Izotov, Yu. I.

    2013-05-01

    We have analyzed the spectra of blue compact dwarf galaxies from the SLOAN Digital Sky Survey (SDSS) Data Release 7 and created a sample of 271 galaxies with Wolf-Rayet (WR) spectral features produced by high-velocity stellar winds. A blue WR feature (bump) is a blend of the N V λλ 460.5 and 462.0 nm, N III λλ 463.4 and 464.0 nm, C III λλ 465.0 nm, C IV λ 465.8 nm, and He II λ 468.6 nm emission lines. A red WR feature (bump) is the broad C IV λ 580.8 nm emission. The blue WR bump is mainly due to emissions of nitrogen WR (WN) stars, while the red bump is fully produced by emissions of carbon WR (WC) stars. All the sample spectra show the blue WR bumps, whereas the red WR bumps are only identified in 50% of sample spectra. We have derived the numbers of early-type WC stars (WCE) and late-type WN stars (WNL) in the galaxies using the luminosities of single WC and WN stars in the red and blue bumps, respectively. The number of O stars is estimated using the Hβ luminosity. The ratio of the overall number of WR stars of different types to the number of all massive stars N(WR)/N(O + WR) decreases with decreasing metallicity, corresponding to the evolution population synthesis models.

  10. The IUE spectrum of the Wolf-Rayet system HD 193077.

    NASA Astrophysics Data System (ADS)

    Koenigsberger, G.

    1990-12-01

    The results of a detailed line-identification study of the IUE(1100-1900 A) spectrum of the Wolf-Rayet star HD 193077 (WR 138) is presented. The emission line spectrum is shown to be dominated by Fe V+Fe VI lines below 1500 A. The interstellar-line spectrum contains a large variety of atomic and ionic species, ranging from C I to Si IV and C IV, and CO. Interstellar features displaced by approximately -45 km s-1 are associated with the strong lines arising from the ionized species. The measurable photospheric absorption line spectrum contains lines primarily from Fe V, Fe IV, N IV, N III, C III, Ni IV, Si III, Si II, with an increase in full widhts at continuun intensity (FWCI) with decreasing ionization potential. This progression ranges from values of FWCI of 250 km s-1 for the highest ionization lines, through 800 km s-1 for the lowest ionization lines in the UV to approximately 1500 km s-1 for hydrogen, and is consistent with a rapidly rotating star. It is pointed out that the photospheric lines originating in the polar region will suffer from limb darkening effects which makes them weaker than would be observed in a non-rotating star of equivalent temperature and gravity, thus providing evidence, though not conclusive, that the emission-line and the photospheric-line spectra arise in the same star.

  11. The Wolf-Rayet Content of M31

    NASA Astrophysics Data System (ADS)

    Neugent, Kathryn F.; Massey, Philip; Georgy, Cyril

    2012-11-01

    Wolf-Rayet (WR) stars are evolved massive stars, and the relative number of WC-type and WN-type WRs should vary with the metallicity of the host galaxy, providing a sensitive test of stellar evolutionary theory. However, past studies of the WR content of M31 have been biased toward detecting WC stars, as their emission-line signatures are much stronger than those of WNs. Here, we present the results of a survey covering all of M31's optical disk (2.2 deg2), with sufficient sensitivity to detect the weaker-lined WN types. We identify 107 newly found WR stars, mostly of WN type. This brings the total number of spectroscopically confirmed WRs in M31 to 154, a number we argue is complete to ~95%, except in regions of unusually high reddening. This number is consistent with what we expect from the integrated Hα luminosity compared to that of M33. The majority of these WRs formed in OB associations around the Population I ring, although 5% are truly isolated. Both the relative number of WC- to WN-type stars as well as the WC subtype distribution suggest that most WRs exist in environments with higher-than-solar metallicities, which is consistent with studies of M31's metallicity. Although the WC to WN ratio we find for M31 is much lower than that found by previous studies, it is still higher than what the Geneva evolutionary models predict. This may suggest that Roche-lobe overflow produces the excess of WC stars observed at high metallicity, or that the assumed rotational velocities in the models are too high. The spectroscopic observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution. MMT telescope time was granted by NOAO, through the Telescope System Instrumentation Program (TSIP). TSIP is funded by the National Science Foundation. This paper uses data products produced by the OIR Telescope Data Center, supported by the Smithsonian Astrophysical Observatory.

  12. A Study of Massive Stars Evolving toward the Wolf-Rayet Stage

    NASA Astrophysics Data System (ADS)

    Maryeva, O. V.; Klochkova, V. G.; Chentsov, E. L.; Polcaro, V. F.; Rossi, C.; Viotti, R. F.

    2017-02-01

    We present the results of our study of two massive stars, V1302 Aql (IRC+10420) and GR 290 (M33/V532, Romano's Star), with different initial masses but now approaching the region of Wolf-Rayet stars on the Hertzsprung-Russell diagram, one from the yellow hypergiants side and the other from the Luminous Blue Variables side.

  13. Inhomogeneites dans le Vent des Etoiles Wolf-Rayet

    NASA Astrophysics Data System (ADS)

    Robert, Carmelle

    1992-01-01

    Des mesures spectroscopiques effectuees avec un haut rapport signal sur bruit et une bonne resolution ont demontre l'existence de regions perturbees en mouvement dans le vent d'etoiles Wolf-Rayet (WR). L'echantillon d'objets etudies ici comprend 9 etoiles WR couvrant differents sous-types WN et WC. De nombreuses petites structures variables superposees au profil des raies d'emission formees dans le vent stellaire signalent la presence des perturbations. L'etude des variations globales des raies et l'examen des micro-structures individuelles ont permis de decrire plusieurs caracteristiques des perturbations. Entre autres, on observe des correlations significatives entre le niveau de variabilite des raies et certains parametres des etoiles qui confirment que le phenomene de variabilite est intrinseque au vent stellaire. En comparant les changements des vitesses radiales et des largeurs equivalentes des differentes raies d'une meme etoile, on conclut que les regions perturbees ont une etendue finie par rapport a l'enveloppe des etoiles. On peut facilement suivre les structures individuelles sur une periode de temps couvrant ~eq8 heures (et peut etre meme 24 heures) avant qu'elles ne disparaissent. Durant ce temps les structures se deplacent en s'eloignant du centre de la raie. A partir des differents comportements notes lors de l'analyse des variations globales et lors de l'examen des structures individuelles, on propose de representer les perturbations par un modele d'inhomogeneites discretes en expansion dans le vent. On suppose simplement que les inhomogeneites emettent comme le vent global (et absorbent aussi si le vent global montre un profil P Cyg). La superposition du graphique de l'acceleration radiale moyenne des inhomogeneites de WR140 en fonction de leur vitesse radiale et du modele theorique d'inhomogeneites qui suivent la loi generale de vitesse donne un taux d'acceleration lent, avec beta >= 3 pour les inhomogeneites de cette etoile. On obtient, entre

  14. The Discovery and Analysis of a New Type of Wolf-Rayet Star

    NASA Astrophysics Data System (ADS)

    Neugent, Kathryn F.

    We've recently completed searches for Wolf-Rayet (WR) stars in the Local Group galaxies including M31, M33, and the Magellanic Clouds using a combination of image subtraction techniques and photometry for candidate discovery and spectrophotometric follow-up for candidate confirmation. As part of these surveys, we've discovered a new type of WR star in the Large Magellanic Cloud (LMC). These stars have both strong emission lines as well as He II and Balmer absorption lines and spectroscopically resemble a WN3 and O3V binary pair. However, they are visually too faint to be WN3+O3V binaries. So far we have found nine of these WN3/O3s, making up 6% of the population of LMC WRs. Using CMFGEN, a spectral modeling program, we have successfully modeled their spectra as single stars and have compared the physical parameters with those of more typical LMC WNs. Their temperatures are around 100,000 K, a bit hotter than average LMC WNs (by around 10,000 K), and abundances are what you would expect for a WR star in CNO equilibrium. However, most anomalous are their mass-loss rates which are more like that of an O-type star than a WN. While we are still learning more about their evolutionary status, their low mass-loss rates and wind velocities suggest that they are not products of homogeneous evolution. It is possible instead that these stars represent some sort of intermediate stage between O stars and WNs. There is some indication that there may be a metallicity dependence in their formation environment so we have recently started a survey searching for these WN3/O3s in M33, which has a strong metallicity gradient. By either confirming or denying their existence in other metallicity regimes we hope to gain further insight into their evolution.

  15. The Post-LBV Supernova 2001em

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler D.; Chornock, R.; Filippenko, A. V.; Foley, R. J.; Lewin, W. H. G.; Li, W.; Panagia, N.; Pooley, D.; Stockdale, C. J.; Weiler, K. W.

    2009-12-01

    The supernova (SN) 2001em in UGC 11794 was classified early as Type Ib/c, i.e., as one arising from a hydrogen-stripped star. As part of a radio survey with the Very Large Array of SNe Ib/c at late times (Stockdale et al. 2003, BAAS, 35, 1346), SN 2001em was detected as a highly luminous radio source ˜2 years after explosion. The SN was also subsequently discovered with Chandra to be a very luminous X-ray source. The properties of both the radio and X-ray emission are more characteristic of the Type II-narrow (IIn) SNe, where the SN shock is interacting with dense, massive circumstellar matter, resulting in bright radio synchrotron emission and thermal bremsstrahlung from the interaction region. In fact, SN 2001em has shown to have spectroscopically transformed to a SN IIn. The premise that this might indicate an off-axis gamma-ray burst has been presented (Granot & Ramirez-Ruiz 2004, ApJ, 609, L9) and later, rather convincingly, refuted (e.g., Schinzel et al. 2009, ApJ, 691, 1380). Chugai & Chevalier (2006, ApJ, 641, 1051) have interpreted the spectral transformation and radio/X-ray emission as the SN shock overtaking the detached hydrogen envelope of the progenitor star, which was shed in a superwind episode many years prior to explosion. Chevalier (2007, RMxAC, 30, 41) has further pointed to the required mass-loss rate in the event being equivalent to what would occur in the eruption of a luminous blue variable (LBV). The optical (ground-based and HST) and radio/X-ray data, together with mid-infrared Spitzer observations, tend to support this scenario of a very massive star that experienced a powerful LBV outburst prior to explosion. Such an event may not be unique, with possible parallels in the cases of SNe 2005bf and 2006jc, and may provide valuable new information about massive stellar evolution.

  16. Short-lived radionuclide production by non-exploding Wolf-Rayet stars.

    NASA Astrophysics Data System (ADS)

    Arnould, M.; Paulus, G.; Meynet, G.

    1997-05-01

    This paper presents an extension and update of previous calculations of the production by non-exploding Wolf-Rayet stars of radionuclides that could be responsible for certain isotopic anomalies discovered in meteoritic inclusions, or in meteoritic grains of probable circumstellar origin. Quantitative predictions of the time dependence of the radionuclide composition of the wind of Wolf-Rayet stars with initial masses in the wide 25<=M_i_<=120Msun_ range and for metallicities 0.001<=Z<=0.04 are obtained from a set of revised stellar evolution models. Special emphasis is put on the radionuclides with half-lives between about 10^5^ and 10^8^yr that could be produced by neutron captures during central helium burning and ejected during the WC-WO evolutionary phases. We stress that the radionuclide yield predictions are much more secure for Wolf-Rayet stars than for any other potential source of these species that has been contemplated up to now. This relates directly to the simplicity of these stars compared to highly difficult to model objects like Asymptotic Giant Branch stars, novae or supernovae. Our abundance predictions are confronted with existing observational data, or are hoped to help unravelling cases of potential interest for further laboratory quest when observations are lacking. The case of ^26^Al, of special interest for γ-ray line astronomy as well as for cosmochemistry, is also briefly revisited. In contrast to the other considered radionuclides, ^26^Al is produced during hydrogen burning, and is ejected at the WN evolutionary phase of the Wolf-Rayet stars. Our computed yields are also used as the basis for a qualitative discussion of the astrophysical plausibility of the contamination of the protosolar nebula with the radionuclides loading the Wolf-Rayet winds. Our calculations indicate that ^26^Al, ^41^Ca and ^107^Pd can be produced at a level compatible with the observations from a large variety of Wolf-Rayet stars with different masses and initial

  17. X ray emission from Wolf-Rayet stars with recurrent dust formation

    NASA Technical Reports Server (NTRS)

    Rawley, Gayle L.

    1993-01-01

    We were granted a ROSAT observation of the Wolf-Rayet star WR 137 (equals HD 192641) to test a proposed mechanism for producing the infrared variability reported by Williams et al. (1987). These studies showed one clear infrared outburst preceded by what may be the dimming of a previous outburst. The recurrent dust formation model was put forward by Williams et al. (1990) to account for similar variability seen in WR 140, which varies in both the infrared and X-ray bands. The detected X-ray flux from WR 140 was observed to decrease from its normally high (for Wolf-Rayet stars) level as the infrared flux increased. Observation of two apparently-periodic infrared outbursts led to the hypothesis that WR 140 had an O star companion in an eccentric orbit, and that the increase in infrared flux came from a dust formation episode triggered by the compression of the O star and Wolf-Rayet star winds. The absorption of the X-rays by the increased material explained the decrease in flux at those wavelengths. If the infrared variability in WR 137 were caused by a similar interaction of the Wolf-Rayet star with a companion, we might expect that WR 137 would show corresponding X-ray variability and an X-ray luminosity somewhat higher than typical WC stars, as well as a phase-dependent non-thermal X-ray spectrum. Our goals in this study were to obtain luminosity estimates from our counting rates for comparison with previous observations of WR 137 and other WC class stars, especially WR 140; to compare the luminosity with the IR lightcurve; and to characterize the spectral shape of the X-ray emission, including the column density.

  18. Concerning the Wolf-Rayet and other luminous early-type stars

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1981-01-01

    Effective temperatures, radii, and luminosities were determined from S2/68, ANS, UBV, and uvby photometry for four B0/B1 supergiants, four O4 stars, and four WN7/WN8 stars as well as for four test stars having spectral types between B1.5 V and 09 V and five stars with known angular diameters and effective temperatures. The effective temperatures of B1 Ia+ stars are found to be near 17,000 K, those of O4 stars near 45,000, and those of WN7/WN8 stars near 26,000 K. The question of modeling the atmospheres of hot luminous stars is examined, and it is noted that the photosphere can be modeled adequately using a classical plane-parallel layer model atmosphere. In addition, it is found that the Wolf-Rayet stars of types WN7/WN8 fall in the H-R diagram near the B0 Ia stars, while the others fall near B0.5 III stars. The evolutionary relationship between the Wolf-Rayet and O stars is considered; it is suggested that a Wolf-Rayet spectrum is a short-lived phase in the life of a massive star.

  19. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    SciTech Connect

    Svirski, Gilad; Nakar, Ehud

    2014-06-20

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (≳ 40, 000 km s{sup –1}) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is found to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, νF {sub ν} = Const, in the X-ray range of 0.1 ≲ T ≲ 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.

  20. THE PROPAGATION OF NEUTRINO-DRIVEN JETS IN WOLF-RAYET STARS

    SciTech Connect

    Nagakura, Hiroki

    2013-02-20

    We numerically investigate the jet propagation through a rotating collapsing Wolf-Rayet star with detailed central engine physics constructed based on the neutrino-driven collapsar model. The collapsing star determines the evolution of the mass accretion rate, black hole mass, and spin, all of which are important ingredients for determining the jet luminosity. We reveal that neutrino-driven jets in rapidly spinning Wolf-Rayet stars are capable of breaking out from the stellar envelope, while those propagating in slower rotating progenitors fail to break out due to insufficient kinetic power. For progenitor models with successful jet breakouts, the kinetic energy accumulated in the cocoon could be as large as {approx}10{sup 51} erg and might significantly contribute to the luminosity of the afterglow emission or to the kinetic energy of the accompanying supernova if nickel production takes place. We further analyze the post-breakout phase using a simple analytical prescription and conclude that the relativistic jet component could produce events with an isotropic luminosity L {sub p(iso)} {approx} 10{sup 52} erg s{sup -1} and isotropic energy E {sub j(iso)} {approx} 10{sup 54} erg. Our findings support the idea of rapidly rotating Wolf-Rayet stars as plausible progenitors of GRBs, while slowly rotational ones could be responsible for low-luminosity or failed GRBs.

  1. IC 4663: the first unambiguous [WN] Wolf-Rayet central star of a planetary nebula

    NASA Astrophysics Data System (ADS)

    Miszalski, B.; Crowther, P. A.; De Marco, O.; Köppen, J.; Moffat, A. F. J.; Acker, A.; Hillwig, T. C.

    2012-06-01

    We report on the serendipitous discovery of the first central star of a planetary nebula (PN) that mimics the helium- and nitrogen-rich WN sequence of massive Wolf-Rayet (WR) stars. The central star of IC 4663 (PN G346.2-08.2) is dominated by broad He II and N V emission lines which correspond to a [WN3] spectral type. Unlike previous [WN] candidates, the surrounding nebula is unambiguously a PN. At an assumed distance of 3.5 kpc, corresponding to a stellar luminosity of 4000 L⊙, the V= 16.9 mag central star remains 4-6 mag fainter than the average luminosity of massive WN3 stars even out to an improbable d= 8 kpc. The nebula is typical of PNe with an elliptical morphology, a newly discovered asymptotic giant branch (AGB) halo, a relatively low expansion velocity (vexp= 30 km s-1) and a highly ionized spectrum with an approximately solar chemical abundance pattern. The [WN3] star is hot enough to show Ne VII emission (T*= 140 ± 20 kK) and exhibits a fast wind (v∞= 1900 km s-1), which at d= 3.5 kpc would yield a clumped mass-loss rate of ?= 1.8 × 10-8 M⊙ yr-1 with a small stellar radius (R*= 0.11 R⊙). Its atmosphere consists of helium (95 per cent), hydrogen (<2 per cent), nitrogen (0.8 per cent), neon (0.2 per cent) and oxygen (0.05 per cent) by mass. Such an unusual helium-dominated composition cannot be produced by any extant scenario used to explain the H-deficiency of post-AGB stars. The O(He) central stars share a similar composition and the discovery of IC 4663 provides the first evidence for a second He-rich/H-deficient post-AGB evolutionary sequence [WN] →O(He). This suggests that there is an alternative mechanism responsible for producing the majority of H-deficient post-AGB stars that may possibly be expanded to include other He-rich/H-deficient stars such as R Coronae Borealis stars and AM Canum Venaticorum stars. The origin of the unusual composition of [WN] and O(He) central stars remains unexplained. Based on observations made with Gemini

  2. The Wolf-Rayet star population in the dwarf galaxy NGC 625

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Walsh, J. R.; Iglesias-Páramo, J.; Sandin, C.; Relaño, M.; Pérez-Montero, E.; Vílchez, J.

    2017-07-01

    Context. Quantifying the number, type, and distribution of Wolf-Rayet (W-R) stars is a key component in the context of galaxy evolution, since they put constraints on the age of the star formation bursts. Nearby galaxies (distances ≲5 Mpc) are particularly relevant in this context since they fill the gap between studies in the Local Group, where individual stars can be resolved, and galaxies in the Local Volume and beyond. Aims: We intend to characterise the W-R star population in one of these systems, NGC 625, which is a low-metallicity dwarf galaxy suffering a currently declining burst of star formation. Methods: Optical integral field spectroscopy (IFS) data have been obtained with the VIMOS-IFU and the HR_Orange and HR_Blue gratings at the Very Large Telescope covering the starburst region of NGC 625. Ancillary Hubble Space Telescope (HST) images in the F555W and F814W bands are also used for comparison. We estimate the number of W-R stars using a linear combination of three W-R templates: one early-type nitrogen (WN) star, one late-type WN star, and one carbon-type (WC) star (or oxygen-type (WO) star). Fits using several ensembles of templates were tested. Results were confronted with i) high spatial resolution HST photometry; ii) numbers of W-R stars in nearby galaxies; and iii) model predictions. Results: The W-R star population is spread over the main body of the galaxy and is not necessarily coincident with the overall stellar distribution. Our best estimation for the number of W-R stars yields a total of 28 W-R stars in the galaxy, out of which 17 are early-type WN, six are late-type WN, and five are WC stars. The width of the stellar features nicely correlates with the dominant W-R type found in each aperture. The distribution of the different types of WR in the galaxy is roughly compatible with the way star formation has propagated in the galaxy, according to previous findings using high spatial resolution with the HST. Fits using templates at the

  3. Momentum deposition on Wolf-Rayet winds: Nonisotropic diffusion with effective gray opacity

    NASA Technical Reports Server (NTRS)

    Gayley, Kenneth G.; Owocki, Stanley P.; Cranmer, Steven R.

    1995-01-01

    We derive the velocity and mass-loss rate of a steady state Wolf-Rayet (WR) wind, using a nonisotropic diffusion approximation applied to the transfer between strongly overlapping spectral lines. Following the approach of Friend & Castor (1983), the line list is assumed to approximate a statistically parameterized Poisson distribution in frequency, so that photon transport is controlled by an angle-dependent, effectively gray opacity. We show the nonisotropic diffusion approximation yields good agreement with more accurate numerical treatments of the radiative transfer, while providing analytic insight into wind driving by multiple scattering. We illustrate, in particular, that multiple radiative momentum deposition does not require that potons be repeatedly reflected across substantial distances within the spherical envelope, but indeed is greatest when photons undergo a nearly local diffusion, e.g., through scattering by many lines closely spaced in frequency. Our results reiterate the view that the so-called 'momentum problem' of Wolf-Rayet winds is better characterized as an 'opacity problem' of simply identfying enough lines. One way of increasing the number of thick lines in Wolf-Rayet winds is to transfer opacity from saturated to unsaturated lines, yielding a steeper opacity distribution than that found in OB winds. We discuss the implications of this perspective for extending our approach to W-R wind models that incorporate a more fundamental treatment of the ionization and excitation processes that determine the line opacity. In particular, we argue that developing statistical descriptions of the lines to allow an improved effective opacity for the line ensemble would offer several advantages for deriving such more fundamental W-R wind models.

  4. Momentum deposition on Wolf-Rayet winds: Nonisotropic diffusion with effective gray opacity

    NASA Technical Reports Server (NTRS)

    Gayley, Kenneth G.; Owocki, Stanley P.; Cranmer, Steven R.

    1995-01-01

    We derive the velocity and mass-loss rate of a steady state Wolf-Rayet (WR) wind, using a nonisotropic diffusion approximation applied to the transfer between strongly overlapping spectral lines. Following the approach of Friend & Castor (1983), the line list is assumed to approximate a statistically parameterized Poisson distribution in frequency, so that photon transport is controlled by an angle-dependent, effectively gray opacity. We show the nonisotropic diffusion approximation yields good agreement with more accurate numerical treatments of the radiative transfer, while providing analytic insight into wind driving by multiple scattering. We illustrate, in particular, that multiple radiative momentum deposition does not require that potons be repeatedly reflected across substantial distances within the spherical envelope, but indeed is greatest when photons undergo a nearly local diffusion, e.g., through scattering by many lines closely spaced in frequency. Our results reiterate the view that the so-called 'momentum problem' of Wolf-Rayet winds is better characterized as an 'opacity problem' of simply identfying enough lines. One way of increasing the number of thick lines in Wolf-Rayet winds is to transfer opacity from saturated to unsaturated lines, yielding a steeper opacity distribution than that found in OB winds. We discuss the implications of this perspective for extending our approach to W-R wind models that incorporate a more fundamental treatment of the ionization and excitation processes that determine the line opacity. In particular, we argue that developing statistical descriptions of the lines to allow an improved effective opacity for the line ensemble would offer several advantages for deriving such more fundamental W-R wind models.

  5. Momentum deposition on Wolf-Rayet winds: Nonisotropic diffusion with effective gray opacity

    NASA Astrophysics Data System (ADS)

    Gayley, Kenneth G.; Owocki, Stanley P.; Cranmer, Steven R.

    1995-03-01

    We derive the velocity and mass-loss rate of a steady state Wolf-Rayet (WR) wind, using a nonisotropic diffusion approximation applied to the transfer between strongly overlapping spectral lines. Following the approach of Friend & Castor (1983), the line list is assumed to approximate a statistically parameterized Poisson distribution in frequency, so that photon transport is controlled by an angle-dependent, effectively gray opacity. We show the nonisotropic diffusion approximation yields good agreement with more accurate numerical treatments of the radiative transfer, while providing analytic insight into wind driving by multiple scattering. We illustrate, in particular, that multiple radiative momentum deposition does not require that photons be repeatedly reflected across substantial distances within the spherical envelope, but indeed is greatest when photons undergo a nearly local diffusion, e.g., through scattering by many lines closely spaced in frequency. Our results reiterate the view that the so-called 'momentum problem' of Wolf-Rayet winds is better characterized as an 'opacity problem' of simply identifying enough lines. One way of increasing the number of thick lines in Wolf-Rayet winds is to transfer opacity from saturated to unsaturated lines, yielding a steeper opacity distribution than that found in OB winds. We discuss the implications of this perspective for extending our approach to W-R wind models that incorporate a more fundamental treatment of the ionization and excitation processes that determine the line opacity. In particular, we argue that developing statistical descriptions of the lines to allow an improved effective opacity for the line ensemble would offer several advantages for deriving such more fundamental W-R wind models.

  6. A new survey of nebulae around Galactic Wolf-Rayet stars in the northern sky

    NASA Technical Reports Server (NTRS)

    Miller, Grant J.; Chu, You-Hua

    1993-01-01

    Interference filter CCD images have been obtained in H-alpha and forbidden O III 5007 A for 62 Wolf-Rayet (W-R) stars, representing a complete survey of nebulae around Galactic W-R stars in the northern sky. We find probable new ring nebulae around W-R stars number 113, 116 and 132, and possible new ring nebulae around W-R stars number 133 and 153. All survey images showing nebulosities around W-R stars are presented in this paper. New physical information is derived from the improved images of known ring nebulae. The absence of ring nebulae around most W-R stars is discussed.

  7. C III spectra in WC Wolf-Rayet stars - Does collisional excitation dominate?

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1993-01-01

    A direct comparison of the spectra emitted by an improved collisionally excited C III atomic model, with observations of C III spectra in Wolf-Rayet WC stars, shows agreement for UV, visible, and near-infrared lines including lines usually considered to be recombination lines. The agreement implies high-density and temperature source conditions corresponding to log (Ne Te) is greater than 16 as a lower limit, whereas most current modeling assumes log (Ne Te) is less than 15.5. This raises questions concerning the photoionization/recombination assumptions on which most WR modeling is based. Recent models are discussed from this point of view.

  8. A deep survey for Galactic Wolf-Rayet stars. I - Motivation, search technique, and first results

    NASA Technical Reports Server (NTRS)

    Shara, Michael M.; Smith, Lindsey F.; Potter, Michael; Moffat, Anthony F. J.

    1991-01-01

    Results are presented from a survey of large areas of the southern Milky Way for Wolf-Rayet (WR) stars to 17-18th magnitude, carried out using direct narrowband and broadband Schmidt plates. Thirteen new WR stars were detected in an about 40-deg-sq region in Carina, where 24 WR stars were already known; the new stars were found to be significantly redder, fainter, and farther away than the known stars. Of the new WR stars, 11 are of subtype WN, and two are WC, compared to the 17 WN and seven WC stars among the previously known WR stars in the same area.

  9. The vast population of Wolf-Rayet and red supergiant stars in M101. I. Motivation and first results

    SciTech Connect

    Shara, Michael M.; Bibby, Joanne L.; Zurek, David; Crowther, Paul A.; Moffat, Anthony F. J.; Drissen, Laurent

    2013-12-01

    Assembling a catalog of at least 10,000 Wolf-Rayet (W-R) stars is an essential step in proving (or disproving) that these stars are the progenitors of Type Ib and Type Ic supernovae. To this end, we have used the Hubble Space Telescope (HST) to carry out a deep, He II optical narrowband imaging survey of the ScI spiral galaxy M101. Almost the entire galaxy was imaged with the unprecedented depth and resolution that only the HST affords. Differenced with archival broadband images, the narrowband images allow us to detect much of the W-R star population of M101. We describe the extent of the survey and our images, as well as our data reduction procedures. A detailed broadband-narrowband imaging study of a field east of the center of M101, containing the giant star-forming region NGC 5462, demonstrates our completeness limits, how we find W-R candidates, their properties and spatial distribution, and how we rule out most contaminants. We use the broadband images to locate luminous red supergiant (RSG) candidates. The spatial distributions of the W-R and RSG stars near NGC 5462 are strikingly different. W-R stars dominate the complex core, while RSGs dominate the complex halo. Future papers in this series will describe and catalog more than a thousand W-R and RSG candidates that are detectable in our images, as well as spectra of many of those candidates.

  10. The Vast Population of Wolf-Rayet and Red Supergiant Stars in M101. I. Motivation and First Results

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Bibby, Joanne L.; Zurek, David; Crowther, Paul A.; Moffat, Anthony F. J.; Drissen, Laurent

    2013-12-01

    Assembling a catalog of at least 10,000 Wolf-Rayet (W-R) stars is an essential step in proving (or disproving) that these stars are the progenitors of Type Ib and Type Ic supernovae. To this end, we have used the Hubble Space Telescope (HST) to carry out a deep, He II optical narrowband imaging survey of the ScI spiral galaxy M101. Almost the entire galaxy was imaged with the unprecedented depth and resolution that only the HST affords. Differenced with archival broadband images, the narrowband images allow us to detect much of the W-R star population of M101. We describe the extent of the survey and our images, as well as our data reduction procedures. A detailed broadband-narrowband imaging study of a field east of the center of M101, containing the giant star-forming region NGC 5462, demonstrates our completeness limits, how we find W-R candidates, their properties and spatial distribution, and how we rule out most contaminants. We use the broadband images to locate luminous red supergiant (RSG) candidates. The spatial distributions of the W-R and RSG stars near NGC 5462 are strikingly different. W-R stars dominate the complex core, while RSGs dominate the complex halo. Future papers in this series will describe and catalog more than a thousand W-R and RSG candidates that are detectable in our images, as well as spectra of many of those candidates.

  11. SN 2008D: A WOLF-RAYET EXPLOSION THROUGH A THICK WIND

    SciTech Connect

    Svirski, Gilad; Nakar, Ehud

    2014-06-10

    Supernova (SN) 2008D/XRT 080109 is considered to be the only direct detection of a shock breakout from a regular SN to date. While a breakout interpretation was favored by several papers, inconsistencies remain between the observations and current SN shock breakout theory. Most notably, the duration of the luminous X-ray pulse is considerably longer than expected for a spherical breakout through the surface of a type Ibc SN progenitor, and the X-ray radiation features, mainly its flat spectrum and its luminosity evolution, are enigmatic. We apply a recently developed theoretical model for the observed radiation from a Wolf-Rayet SN exploding through a thick wind and show that it naturally explains all of the observed features of SN 2008D X-ray emission, including the energetics, the spectrum, and the detailed luminosity evolution. We find that the inferred progenitor and SN parameters are typical for an exploding Wolf-Rayet. A comparison of the wind density found at the breakout radius and the density at much larger radii, as inferred by late radio observations, suggests an enhanced mass-loss rate taking effect about 10 days prior to the SN explosion. This finding joins accumulating evidence for a possible late phase in the stellar evolution of massive stars, involving vigorous mass loss a short time before the SN explosion.

  12. Discovery of Twin Wolf-Rayet Stars Powering Double Ring Nebulae

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon C.; Wachter, Stefanie; Morris, Patrick W.; Van Dyk, Schuyler D.; Hoard, D. W.

    2010-11-01

    We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but also may contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that they are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 ± 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars.

  13. Observations of Broad Emission Lines in Wolf-Rayet Winds with Long-Baseline Interferometry

    NASA Astrophysics Data System (ADS)

    Hart, Alexa H.; Jurgenson, C. A.; Creech-Eakman, M. J.; Thompson, R. R.; Stencel, R. E.

    2007-12-01

    We present results of milli-arcsecond (mas) observations of six Wolf-Rayet stars taken in 2003 with the Palomar Testbed Interferometer (PTI) and the Keck Interferometer (KI) in the K band (2.0-2.4 microns). PTI has a nominal fringe spacing of 4 mas in the K band, whereas KI has a fringe spacing of 5.2 mas. The purpose of these observations was to exploit this high resolution to help determine binarity, which is unknown for many Wolf-Rayet in systems. In addition, we have resolved He emission lines in narrowband ( 0.1 micron channel) measurements taken with both interferometers. Reduction of the observations yield visibilities and derived angular sizes in 4 or 5 spectral channels across the K band, revealing stratification of the stellar atmospheres. We have also recorded evolution in some resolved spectral features, indicating structure in the winds; however, follow-up interferometric observations are needed to better quantify this phenomena. We present the observations, some of the narrow-band data and initial conclusions based on our findings. We acknowledge support from the Donald Menzel Memorial Fund and the Rocky Mountain NASA Spacegrant Consortium at the University of Denver.

  14. Lattice Structure in Astrophysics: A reconsideration of White Dwarfs, Variables, and Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Robitaille, Pierre-Marie

    2016-03-01

    Stars of the main sequence display a mass-luminosity relation which indicates that they share a common building block (hydrogen) and lattice structure (hexagonal planar) with the solar photosphere. White dwarfs however display very low luminosity in spite of their elevated color temperature. Rather than postulate that these stars represent degenerate matter, as Eddington and Chandrasekhar were forced to assume given their gaseous models, within the context of a Liquid Metallic Hydrogen Solar Model white dwarfs might simply be thought as possessing a different lattice structure (e.g. body centered cubic) and hence a lowered emissivity. They do not need to possess exceeding densities, reduced radii, and degeneracy in order to account for their lowered emissivity. Similarly, variable stars might well be oscillating between lattices types wherein the energy differences involved in the transformations are small. Other stars, such as Wolf-Rayet stars, which lack photospheric emission, might be too hot to enable a discrete lattice to form. Though condensed, the photosphere in that case would have a lattice which is so poorly organized that its emissivity is trivial. Nonetheless, the broad emission lines of Wolf-Rayet stars indicates that these objects are not breaking apart but rather, are important sites of condensation.

  15. DISCOVERY OF TWIN WOLF-RAYET STARS POWERING DOUBLE RING NEBULAE

    SciTech Connect

    Mauerhan, Jon C.; Wachter, Stefanie; Van Dyk, Schuyler D.; Hoard, D. W.; Morris, Patrick W.

    2010-11-20

    We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but also may contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that they are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 {+-} 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars.

  16. Multiwavelength observations of NaSt1 (WR 122): equatorial mass loss and X-rays from an interacting Wolf-Rayet binary

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon; Smith, Nathan; Van Dyk, Schuyler D.; Morzinski, Katie M.; Close, Laird M.; Hinz, Philip M.; Males, Jared R.; Rodigas, Timothy J.

    2015-07-01

    NaSt1 (aka Wolf-Rayet 122) is a peculiar emission-line star embedded in an extended nebula of [N II] emission with a compact dusty core. The object was previously characterized as a Wolf-Rayet (WR) star cloaked in an opaque nebula of CNO-processed material, perhaps analogous to η Car and its Homunculus nebula, albeit with a hotter central source. To discern the morphology of the [N II] nebula we performed narrow-band imaging using the Hubble Space Telescope and Wide-field Camera 3. The images reveal that the nebula has a disc-like geometry tilted ≈12° from edge-on, composed of a bright central ellipsoid surrounded by a larger clumpy ring. Ground-based spectroscopy reveals radial velocity structure (±10 km s-1) near the outer portions of the nebula's major axis, which is likely to be the imprint of outflowing gas. Near-infrared adaptive-optics imaging with Magellan AO has resolved a compact ellipsoid of Ks-band emission aligned with the larger [N II] nebula, which we suspect is the result of scattered He I line emission (λ2.06 μm). Observations with the Chandra X-ray Observatory have revealed an X-ray point source at the core of the nebula that is heavily absorbed at energies <1 keV and has properties consistent with WR stars and colliding-wind binaries. We suggest that NaSt1 is a WR binary embedded in an equatorial outflow that formed as the result of non-conservative mass transfer. NaSt1 thus appears to be a rare and important example of a stripped-envelope WR forming through binary interaction, caught in the brief Roche lobe overflow phase.

  17. The close binary frequency of Wolf-Rayet stars as a function of metallicity in M31 and M33

    SciTech Connect

    Neugent, Kathryn F.; Massey, Philip E-mail: phil.massey@lowell.edu

    2014-07-01

    Massive star evolutionary models generally predict the correct ratio of WC-type and WN-type Wolf-Rayet stars at low metallicities, but underestimate the ratio at higher (solar and above) metallicities. One possible explanation for this failure is perhaps single-star models are not sufficient and Roche-lobe overflow in close binaries is necessary to produce the 'extra' WC stars at higher metallicities. However, this would require the frequency of close massive binaries to be metallicity dependent. Here we test this hypothesis by searching for close Wolf-Rayet binaries in the high metallicity environments of M31 and the center of M33 as well as in the lower metallicity environments of the middle and outer regions of M33. After identifying ∼100 Wolf-Rayet binaries based on radial velocity variations, we conclude that the close binary frequency of Wolf-Rayets is not metallicity dependent and thus other factors must be responsible for the overabundance of WC stars at high metallicities. However, our initial identifications and observations of these close binaries have already been put to good use as we are currently observing additional epochs for eventual orbit and mass determinations.

  18. Gamma-ray burst progenitors and the population of rotating Wolf-Rayet stars.

    PubMed

    Vink, Jorick S

    2013-06-13

    In our quest for gamma-ray burst (GRB) progenitors, it is relevant to consider the progenitor evolution of normal supernovae (SNe). This is largely dominated by mass loss. We discuss the mass-loss rate for very massive stars up to 300M⊙. These objects are in close proximity to the Eddington Γ limit. We describe the new concept of the transitional mass-loss rate, enabling us to calibrate wind mass loss. This allows us to consider the occurrence of pair-instability SNe in the local Universe. We also discuss luminous blue variables and their link to luminous SNe. Finally, we address the polarization properties of Wolf-Rayet (WR) stars, measuring their wind asphericities. We argue to have found a group of rotating WR stars that fulfil the required criteria to make long-duration GRBs.

  19. Neutron-rich nuclei in cosmic rays and Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Prantzos, N.; Arnould, M.; Arcoragi, J. P.; Casse, M.

    1985-01-01

    Wolf-Rayet stars figure prominently in astrophysical research. As a bonus, they seem to offer, in the recent past, an interesting connection between classical astronomy and high energy astrophysics due to their unusual composition and their huge mechanical power. The material flowing from WC stars (carbon-rich WR stars) contains gas which has been processed through core-helium burning, i.e., considerably enriched into 12C,16O, 22Ne, and 25,26Mg. This composition is reminiscent of the cosmic ray source anomalies. Encouraging agreement is obtained with observation in the mass range 12 A 26 assuming acceleration of wind particles at the shock that delineates the WR cavity, and adequate dilution with normal cosmic rays, but silicon poses.

  20. Estrellas Wolf-Rayet y el medio interestelar: huellas de una fuerte interacción

    NASA Astrophysics Data System (ADS)

    Cichowolski, S.; Arnal, E. M.

    Se presentan resultados observacionales de un estudio de la distribución de hidrógeno neutro en los alrededores de estrellas Wolf-Rayet (WR) galácticas. Los datos de la línea de 21 cm provienen de observaciones de resolución angular intermedia (9') tomadas con el radiotelescopio de Effelsberg. La muestra está compuesta por cuatro WR de la serie del nitrógeno (WN): WR130, WR131, WR155, WR156 y tres WR de la serie del carbono (WC): WR154, WR117 y WR126. Este análisis ha permitido detectar cavidades y envolturas de HI en expansión presumiblemente vinculadas a dichas estrellas.

  1. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  2. Time-Series of Linear Spectropolarimetric Observations of Wolf-Rayet Stars: Results for WR 134

    NASA Astrophysics Data System (ADS)

    St-Louis, N.; de la Chevrotière, A.; Moffat, A. F. J.

    2012-12-01

    We present results from a timeseries of spectropolarimetric observations of the Wolf-Rayet (WR) star WR 134. Our most striking observation so far is that in addition to the depolarization of spectral lines with respect to the continuum, already known to occur for this star, we find excess line polarisation in the red and blue wings at wavelengths clearly in excess of the terminal velocity of the wind. Also, contrary to expectations, we find no line depolarisation for the flat-topped He I λ5876 and C IV λ5804 lines. The excess polarization of the red wing is very likely a consequence of the well known red-shifted electron-scattering wing formed in expanding atmospheres, but the origin of the blue wing polarization still remains to be identified.

  3. Bursting star formation and the overabundance of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Bodigfee, G.; Deloore, C.

    1985-01-01

    The ratio of the number of WR-stars to their OB progenitors appears to be significantly higher in some extragalactic systems than in our Galaxy. This overabundance of Wolf-Rayet-stars can be explained as a consequence of a recent burst of star formation. It is suggested that this burst is the manifestation of a long period nonlinear oscillation in the star formation process, produced by positive feedback effects between young stars and the interstellar medium. Star burst galaxies with large numbers of WR-stars must generate gamma - fluxes but due to the distance, all of them are beyond the reach of present-day ray detectors, except probably 30 Dor.

  4. On the rarity of X-ray binaries with Wolf-Rayet donors

    SciTech Connect

    Linden, T.; Valsecchi, F.; Kalogera, V.

    2012-03-14

    The paucity of High mass X-Ray binaries (HMXB) consisting of a neutron star (NS) accretor and Wolf-Rayet (WR) donor has long been at odds with expectations from population synthesis studies indicating that these systems should survive as the evolved offspring of the observed HMXB population. This tension is particularly troubling in light of recent observations uncovering a preponderance of HMXBs containing loosely bound Be donors which would be expected to naturally evolve into WR-HMXBs. Reconciling the unexpectedly large population of Be-HMXBs with the lack of observed WR-HMXB sources thus serves to isolate the dynamics of CE physics from other binary evolution parameters. We find that binary mergers during CE events must be common in order to resolve tension between these observed populations. Furthermore, future observations which better constrain the background population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE removal.

  5. The Results of the 2013 Pro-Am Wolf-Rayet Campaign

    NASA Astrophysics Data System (ADS)

    Aldoretta, E. J.; St-Louis, N.; Richardson, N. D.; Moffat, A. F. J.; Eversberg, T.; Hill, G. M.; World-Wide WR Pro-Am Campaign Team

    Professional and amateur astronomers around the world contributed to a 4-month long campaign in 2013, mainly in spectroscopy but also in photometry, interferometry and polarimetry, to observe the first 3 Wolf-Rayet stars discovered: WR 134 (WN6b), WR 135 (WC8) and WR 137 (WC7pd+O9). Each of these stars are interesting in their own way, showing a variety of stellar wind structures. The spectroscopic data from this campaign were reduced and analyzed for WR 134 in order to better understand its behavior and long-term periodicity in the context of CIRs in the wind. We will be presenting the results of these spectroscopic data, which include the confirmation of the CIR variability and a time-coherency of ˜ 40 days (half-life of ˜ 20 days).

  6. Westerlund 1 is a Galactic Treasure Chest: The Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, P. A.

    2015-01-01

    The Westerlund 1 Galactic cluster hosts an eclectic mix of coeval massive stars. At a modest distance of 4-5 kpc, it offers a unique opportunity to study the resolved stellar content of a young (~5 Myr) high mass (5.104 M ⊙) star cluster. With the aim of testing single-star evolutionary predictions, and revealing any signatures of binary evolution, we discuss on-going analyses of NTT/SOFI near-IR spectroscopy of Wolf-Rayet stars in Westerlund 1. We find that late WN stars are H-poor compared to their counterparts in the Milky Way field, and nearly all are less luminous than predicted by single-star Geneva isochrones at the age of Westerlund 1.

  7. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  8. Effects of Nongray Opacity on Radiatively Driven Wolf-Rayet Winds

    NASA Astrophysics Data System (ADS)

    Onifer, A. J.; Gayley, K. G.

    2002-05-01

    Wolf-Rayet winds are characterized by their large momentum fluxes, and simulations of radiation driving have been increasingly successful in modeling these winds. Simple analytic approaches that help understand the most critical processes for copious momentum deposition already exist in the effectively gray approximation, but these have not been extended to more realistic nongray opacities. With this in mind, we have developed a simplified theory for describing the interaction of the stellar flux with nongray wind opacity. We replace the detailed line list with a set of statistical parameters that are sensitive not only to the strength but also the wavelength distribution of lines, incorporating as a free parameter the rate of photon frequency redistribution. We label the resulting flux-weighted opacity the statistical Sobolev- Rosseland (SSR) mean, and explore how changing these various statistical parameters affects the flux/opacity interaction. We wish to acknowledge NSF grant AST-0098155

  9. An IRAS-Based Search for New Dusty Late-Type WC Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles, 'ADDSCANs', and two-dimensional full-resolution images, 'FRESCOS'. The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color ([12] - [25], [25] - [60])-plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be ex amined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IPAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for l is greater than 30 degrees, and to 2.9 kpc even in the innermost galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  10. An IRAS-based search for new Dusty Late-Type WC Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles ('ADDSCANs') and two-dimensional full-resolution images ('FRESCOs'). The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be examined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IRAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for the absolute value of l greater than 30 deg, and to 2.9 kpc even in the innermost Galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  11. Searching for a magnetic field in Wolf-Rayet stars using FORS 2 spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Scholz, K.; Hamann, W.-R.; Schöller, M.; Ignace, R.; Ilyin, I.; Gayley, K. G.; Oskinova, L. M.

    2016-05-01

    To investigate if magnetic fields are present in Wolf-Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the European Southern Observatory FORS 2 (FOcal Reducer low dispersion Spectrograph) instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf-Rayet star BAT99 7 and the stars WR 6, WR 7, WR 18, and WR 23 in our Galaxy. The second run in service mode was focused on monitoring the star WR 6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR 6 was measured at a significance level of 3.3σ ( = 258 ± 78 G). Among the other targets, the highest value for the longitudinal magnetic field, = 327 ± 141 G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR 6 revealed a sinusoidal nature of the variations with the known rotation period of 3.77 d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor of 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR 6. BAT99 7, WR 7, and WR 23 do not show variability of the linear polarization over two nights.

  12. The Evolution and Physical Parameters of WN3/O3s: A New Type of Wolf-Rayet Star

    NASA Astrophysics Data System (ADS)

    Neugent, Kathryn F.; Massey, Philip; Hillier, D. John; Morrell, Nidia

    2017-05-01

    As part of a search for Wolf-Rayet (WR) stars in the Magellanic Clouds, we have discovered a new type of WR star in the Large Magellanic Cloud (LMC). These stars have both strong emission lines, as well as He ii and Balmer absorption lines and spectroscopically resemble a WN3 and O3V binary pair. However, they are visually too faint to be WN3+O3V binary systems. We have found nine of these WN3/O3s, making up ˜6% of the population of LMC WRs. Using cmfgen, we have successfully modeled their spectra as single stars and have compared the physical parameters with those of more typical LMC WNs. Their temperatures are around 100,000 K, a bit hotter than the majority of WN stars (by around 10,000 K), though a few hotter WNs are known. The abundances are what you would expect for CNO equilibrium. However, most anomalous are their mass-loss rates, which are more like that of an O-type star than a WN star. While their evolutionary status is uncertain, their low mass-loss rates and wind velocities suggest that they are not products of homogeneous evolution. It is possible instead that these stars represent an intermediate stage between O stars and WNs. Since WN3/O3 stars are unknown in the Milky Way, we suspect that their formation depends upon metallicity, and we are investigating this further by a deep survey in M33, which possesses a metallicity gradient. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. It is additionally based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations were associated with program GO-13780.

  13. Variable dust formation by the colliding-wind Wolf-Rayet system HD 36402 in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Williams, P. M.; Chu, Y.-H.; Gruendl, R. A.; Guerrero, M. A.

    2013-05-01

    Infrared photometry of the probable triple WC4(+O?)+O8I: Wolf-Rayet system HD 36402 (= BAT99-38) in the Large Magellanic Cloud shows emission characteristic of heated dust. The dust emission is variable on a time-scale of years, with a period near 4.7 yr, possibly associated with orbital motion of the O8 supergiant and the inner P ≃ 3.03-d WC4+O binary. The phase of maximum dust emission is close to that of the X-ray minimum, consistent with both processes being tied to colliding wind effects in an elliptical binary orbit. It is evident that Wolf-Rayet dust formation occurs also in metal-poor environments.

  14. Erratum: An Interstellar Conduction Front within a Wolf-Rayet Ring Nebula Observed with the Goddard High Resolution Spectrograph

    NASA Astrophysics Data System (ADS)

    Boroson, Bram; McCray, Richard; Clark, Christina Oelfke; Slavin, Jonathan; Mac Low, Mordecai-Mark; Chu, You-Hua; Van Buren, Dave

    1997-08-01

    In the paper ``An Interstellar Conduction Front within a Wolf-Rayet Ring Nebula Observed with the Goddard High Resolution Spectrograph'' by Bram Boroson, Richard McCray, Christina Oelfke Clark, Jonathan Slavin, Mordecai-Mark Mac Low, You-Hua Chu, and Dave Van Buren (ApJ, 478, 638 [1997]), Figures 5, 6, and 7 were placed in the wrong order. The correct figures should appear as follows:

  15. Wolf-Rayet stars in the Small Magellanic Cloud. I. Analysis of the single WN stars

    NASA Astrophysics Data System (ADS)

    Hainich, R.; Pasemann, D.; Todt, H.; Shenar, T.; Sander, A.; Hamann, W.-R.

    2015-09-01

    Context. Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Aims: Following our comprehensive studies of WR stars in the Milky Way, M 31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. Methods: The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. Results: In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 105.5 to 106.1L⊙. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M 31, and the LMC. Conclusions: By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past. Appendices are available in electronic form at http://www.aanda.org

  16. The origin of extended interstellar shells around Wolf-Rayet stars having bright optical ring nebulae

    NASA Technical Reports Server (NTRS)

    Nichols, J. S.; Fesen, R. A.

    1994-01-01

    Investigations of the interstellar environment around Wolf-Rayet (WR) stars have lead to the discovery of extended shells of gas and dust 50-100 pc in diameter in the lines of sight toward three WR stars. In this paper, several origins for these extended shells are discussed. While positional coincidences cannot be excluded, the locations of the WR stars near the projected centers of the shells, the detection of only shortward-shifted, high-velocity UV absorption line components in their IUE spectra, plus commonality of some WR star properties which are rare in the general WR star population suggest some casual connections between the WR stars and formation of interstellar shells. To access whether the high-velocity UV interstellar absorption lines are a frequent phenomenon related to WR stellar winds, we present a survey of such features in all WR stars observed with IUE through 1991. Of 35 stars studied, only four are found to have components with velocity displacements greater than 45 km/s which are not attributable to previously identified OB association superbubbles. The means a surprising 82% of non-OB association WR stars show no evidence of high-velocity gas in their lines of sight at IUE's spectral resolution, suggesting that high-velocity interstellar absorption lines are not a common consequence of Wolf-Rayet star stellar winds alone. We review the properties of three WR stars (HD 50896, HD 96548, and HD 192163) which may reside inside extended interstellar shells and find that they are similar in terms of spectral class (WN5-8), presence of an optical ring nebula, and reported photometric variability. Evaluation of possible origins of the extended shells suggests these three stars are in a post X-ray binary stage of high-mass binary star evolution. If this is correct, then the large interstellar shells detected might be evidence of either supernova remnant shells generated by the explosion of the binary's primary star, or non-conservative mass transfer

  17. Aperture Synthesis Observations of Molecular Gas in the Wolf-Rayet Galaxy He 2-10

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Chip; Sargent, Anneila; Conti, Peter; Hogg, David; Dickey, John

    1994-05-01

    We present aperture synthesis observations of the prototype Wolf-Rayet galaxy He 2-10 in the line of (12) CO(1-0). These observations represent one of the first aperture synthesis maps of molecular gas in a blue compact dwarf galaxy. He 2-10 contains two starburst regions, A and B, separated by 8 arcsec which corresponds to 350 pc at at distance of 9 Mpc. Optical spectroscopy of region A indicates the presence of some 300 Wolf-Rayet and 4000 O-type stars, consistent with a very young starburst (Vacca & Conti, 1992, ApJ 401, 543). From a line integral of of 165+/-8 K km s(-1) we derive a total molecular gas mass of 1.8 times 10(8) M_sun based on (12) CO(1-0) spectra from the 12m NRAO telescope. The ratio of molecular to atomic gas mass, M(H_2)/M(HI)=0.54, is among the highest of any late type or blue compact dwarf galaxy. (12) CO(1-0) maps made with the Owens valley interferometer show two dynamical systems, suggesting an interaction-triggered starburst. While the CO peak is not conincident with either optical maximum, the CO is more nearly centered on the brighter and younger of the two starburst regions, A. There is no visible concentration of molecular gas near starburst region B which contains only a few hundred O-type stars. A significant fraction of the CO lies well outside the bright optical core, and is thus unaffiliated with the site of active star formation. We find a lower limit to the dynamical mass in the central 70 pc of 3.0times 10(6) M_sun inferred from the CO rotation curve. Conti & Vacca (1994, ref) estimate the combined mass of nine blue starburst knots revealed by HST UV imaging to be 4.5times 10(6) M_sun. Even if the inclination of He 2-10 is as low as 30(deg) , the young clusters, termed proto-globular clusters by Conti & Vacca, comprise at least 75% of the dynamical mass in the inner 70 pc!

  18. Ultraviolet observations of clusters of Wolf-Rayet stars in the SBm3 galaxy NGC 4214 and Ultraviolet and optical observations of LINER's

    NASA Technical Reports Server (NTRS)

    Filippenko, Alexei V.

    1992-01-01

    The purpose of the grant was to obtain and analyze IUE (UV) and ground-based (optical) spectra of the central bar of NGC 4214, which contains several bright H II regions, in order to further explore the properties of the Wolf-Rayet stars in this galaxy. Several spatially distinct regions, with widely different equivalent widths of optical Wolf-Rayet lines, could be sampled by the large IUE entrance aperture. By using newly developed extraction techniques, the spectra of these H II regions could be isolated, and differences in their stellar populations would be systematically studied. Data were obtained with IUE in late February and early March, 1992. Some of the shifts were successful, but a few were not -- apparently the blind offset from the nearby star did not work equally well in all cases. Thus, the signal-to-noise ratio is somewhat lower than we had hoped. This necessitated a more careful extraction of the spectra of individual H II regions from the two-dimensional spectra. (A program that models the point spread function in the spatial direction was used to deblend the distinct H II regions.) The IUE data are currently being analyzed in conjunction with ground-based optical spectra. There appear to be obvious variations in the stellar population over angular scales of only a few arc seconds. The second part of the research performed under this grant was a continuation of a project that uses IUE (UV) and ground-based (optical) spectra to infer the physical conditions in Low-Ionization Nuclear Emission-Line Regions (LINER's). We have obtained spectra of a few key objects that cover a representative range in LINER continuum and emission-line properties. The overall goals are to (1) separate the emission into spatially distinct components, (2) establish whether the observed nuclear ultraviolet continua indicate sufficient photoionizing fluxes to account for the emission lines, (3) determine whether the nuclear emission can be explained by hot stars alone, (4

  19. Using MOST to reveal the secrets of the mischievous Wolf-Rayet binary CV Ser

    NASA Astrophysics Data System (ADS)

    David-Uraz, Alexandre; Moffat, Anthony F. J.; Chené, André-Nicolas; Rowe, Jason F.; Lange, Nicholas; Guenther, David B.; Kuschnig, Rainer; Matthews, Jaymie M.; Rucinski, Slavek M.; Sasselov, Dimitar; Weiss, Werner W.

    2012-11-01

    The Wolf-Rayet (WR) binary CV Serpentis (= WR113, WC8d + O8-9IV) has been a source of mystery since it was shown that its atmospheric eclipses change with time over decades, in addition to its sporadic dust production. The first high-precision time-dependent photometric observations obtained with the Microvariability and Oscillations of STars (MOST) space telescope in 2009 show two consecutive eclipses over the 29-d orbit, with varying depths. A subsequent MOST run in 2010 showed a seemingly asymmetric eclipse profile. In order to help make sense of these observations, parallel optical spectroscopy was obtained from the Mont Megantic Observatory (2009, 2010) and from the Dominion Astrophysical Observatory (2009). Assuming these depth variations are entirely due to electron scattering in a β-law wind, an unprecedented 62 per cent increase in M⊙ is observed over one orbital period. Alternatively, no change in mass-loss rate would be required if a relatively small fraction of the carbon ions in the wind globally recombined and coaggulated to form carbon dust grains. However, it remains a mystery as to how this could occur. There also seems to be evidence for the presence of corotating interaction regions (CIR) in the WR wind: a CIR-like signature is found in the light curves, implying a potential rotation period for the WR star of 1.6 d. Finally, a new circular orbit is derived, along with constraints for the wind collision.

  20. International Ultraviolet Explorer Observations of Wolf-Rayet Binaries: Wind Structures. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Koenigsberger, G.

    1983-01-01

    Spectra of six WN + OB Wolf-Rayet systems obtained with the IUE are analyzed for phase-dependent variations. Periodic variability at emission-line frequencies is detected in V444 Cyg, HD 90657, HD 211853, HD 186943 and HD 94546 on low dispersion SWP images. No changes in the low dispersion spectra of HD 193077 are apparent. We find the variations in the UV to be similar in nature to those observed in optical spectra of various WR sources. That is, there is a strengthening of absorption components in P Cygni-type features at orbital phases in which the O-star is behind the WR wind. With the aid of a computer code which models this type of variations, and through a comparison with HD 193077, the dominant mechanism producing the variations is shown to be selective atmospheric eclipses of the O-star by the WR wind. Based on this interpretation, a straightforward technique is applied to the line of N IV 1718, by which an optical depth distribution in the WN winds of the form tau varies as r(-1) is derived for 16 r 66 solar radii. Phase-dependent variations in the width of the C IV 1550 absorption component in V444 Cyg, HD 90657 and HD 211853 are interpretated as wind-wind collision effects.

  1. An atlas of Copernicus ultraviolet spectra of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1978-01-01

    An atlas of Copernicus UV scans is presented, and line identifications are tabulated, for the Wolf-Rayet stars Gamma-2 Vel (WC 8 + O7), HD 50896 (= EZ CMa; WN 5), and HD 92740 (WN 7). The atlas covers the wavelength ranges from 946.8 to 3182 A for Gamma-2 Vel, from 1012 to 1294 A for HD 50896, and from 1051 to 1243 A for HD 92740. The wavelengths include corrections for components of satellite velocity, earth velocity, and stellar heliocentric velocity; each spectral feature is classified as interstellar, photospheric, emission, UV-displaced P Cygni line absorption, or P Cygni line emission. UV-edge velocities of the P Cygni profiles are estimated, P Cygni profile types are discussed, and the results are compared with Copernicus scans of OB stars exhibiting UV P Cygni profiles. It is noted that: (1) the line-strength ratio of molecular hydrogen to atomic species appears to be substantially greater in the scans of the WN stars than in the Gamma-2 Vel scans; (2) some of the P Cygni profiles in Gamma-2 Vel differ significantly from the corresponding profiles in OB stars; and (3) there may be a slight inverse correlation between ejection velocities and excitation potentials in Gamma-2 Vel.

  2. DISENTANGLING THE NATURE OF THE RADIO EMISSION IN WOLF-RAYET STARS

    SciTech Connect

    Montes, Gabriela; Perez-Torres, Miguel A.; Alberdi, Antonio; Gonzalez, Ricardo F. E-mail: torres@iaa.e E-mail: g.montes@astrosmo.unam.m

    2009-11-01

    We present quasi-simultaneous, multi-frequency Very Large Array observations at 4.8, 8.4, and 22.5 GHz of a sample of 13 Wolf-Rayet (WR) stars, aimed at disentangling the nature of their radio emission and the possible detection of a non-thermal behavior in close binary systems. We detected 12 stars from our sample, for which we derived spectral information and estimated their mass-loss rates. From our data, we identified four thermal sources (WR 89, 113, 138, and 141), and three sources with a composite spectrum (similar contribution of thermal and non-thermal emission; WR 8, 98, and 156). On the other hand, from the comparison with previous observations, we confirm the non-thermal spectrum of one (WR 105), and also found evidence of a composite spectrum for WR 79a, 98a, 104, and 133. Finally, we discuss the possible scenarios to explain the nature of the emission for the observed objects.

  3. Line profiles variations from atmospheric eclipses: Constraints on the wind structure in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Auer, L. H.; Koenigsberger, G.

    1994-01-01

    Binary systems in which one of the components has a stellar wind may present a phenomenon known as 'wind' or 'atmospheric eclipse', in which that wind occults the luminous disk of the companion. The enhanced absorption profile, relative to the spectrum at uneclipsed orbital phases, can be be modeled to yield constraints on the spatial structure of the eclipsing wind. A new, very efficient approach to the radiative transfer problem, which makes no requirements with respect to monotonicity of the velocity gradient or size of that gradient, is presented. The technique recovers both the comoving frame calculation and the Sobolev approximation in the appropiate limits. Sample computer simulations of the line profile variations induced by wind eclipses are presented. It is shown that the location of the wind absorption features in frequency is a diagnostic tool for identifying the size of the wind acceleration region. Comparison of the model profile variations with the observed variations in the Wolf-Rayet (W-R)+6 binary system V444 Cyg illustrate how the method can be used to derive information on the structure of the wind of the W-R star constrain the size of the W-R core radius.

  4. A DEEP CHANDRA OBSERVATION OF THE WOLF-RAYET + BLACK HOLE BINARY NGC 300 X-1

    SciTech Connect

    Binder, B.; Williams, B. F.; Anderson, S. F.; Eracleous, M.; Garcia, M. R.; Gaetz, T. J.

    2011-12-01

    We have obtained a 63 ks Chandra ACIS-I observation of the Wolf-Rayet + black hole binary NGC 300 X-1. We measure rapid low-amplitude variability in the 0.35-8 keV light curve. The power density spectrum has a power-law index {gamma} = 1.02 {+-} 0.15 consistent with an accreting black hole in a steep power-law state. When compared to previous studies of NGC 300 X-1 performed with XMM-Newton, we find the source at the low end of the previously measured 0.3-10 keV luminosity. The spectrum of NGC 300 X-1 is dominated by a power law ({Gamma} = 2.0 {+-} 0.3) with a contribution at low energies by a thermal component. We estimate the 0.3-10 keV luminosity to be 2.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 38} erg s{sup -1}. The timing and spectroscopic properties of NGC 300 X-1 are consistent with being in a steep power-law state, similar to earlier observations performed with XMM-Newton. We additionally compare our observations to known high-mass X-ray binaries and ultraluminous X-ray sources, and find the properties of NGC 300 X-1 are most consistent with black hole high-mass X-ray binaries.

  5. Wolf-Rayet, Yellow and Red Supergiant in the single massive stars perspective

    NASA Astrophysics Data System (ADS)

    Georgy, Cyril; Hirschi, R.; Ekstrom, S.; Meynet, G.

    2013-06-01

    Rotation and mass loss are the key ingredients determining the fate of single massive stars. In recent years, a large effort has been made to compute whole grids of stellar models at different metallicities, including or not the effects of rotation, with the Geneva evolution code. In this talk, I will focus on the evolved stages of massive star evolution (red and yellow supergiants, Wolf-Rayet stars), in the framework of these new grids of models. I will highlight the effects of rotation and mass loss on the post-main sequence evolution of massive stars at solar and lower metallicity. In particular, I will discuss their impact on the maximum mass for a star to end its life as a RSG (leading to a type IIP supernova), on the possibility for a star to finish as a YSG, and on the initial mass ranges leading to various WR star subtypes. I will then compare the results predicted by our code with observed populations of evolved massive stars, bringing constraints on our computations, as well as some indications on the binary star fraction needed to reproduce them.

  6. Line profiles variations from atmospheric eclipses: Constraints on the wind structure in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Auer, L. H.; Koenigsberger, G.

    1994-01-01

    Binary systems in which one of the components has a stellar wind may present a phenomenon known as 'wind' or 'atmospheric eclipse', in which that wind occults the luminous disk of the companion. The enhanced absorption profile, relative to the spectrum at uneclipsed orbital phases, can be be modeled to yield constraints on the spatial structure of the eclipsing wind. A new, very efficient approach to the radiative transfer problem, which makes no requirements with respect to monotonicity of the velocity gradient or size of that gradient, is presented. The technique recovers both the comoving frame calculation and the Sobolev approximation in the appropiate limits. Sample computer simulations of the line profile variations induced by wind eclipses are presented. It is shown that the location of the wind absorption features in frequency is a diagnostic tool for identifying the size of the wind acceleration region. Comparison of the model profile variations with the observed variations in the Wolf-Rayet (W-R)+6 binary system V444 Cyg illustrate how the method can be used to derive information on the structure of the wind of the W-R star constrain the size of the W-R core radius.

  7. A Chandra grating observation of the dusty Wolf-Rayet star WR 48a

    SciTech Connect

    Zhekov, Svetozar A.; Gagné, Marc; Skinner, Stephen L. E-mail: mgagne@wcupa.edu

    2014-04-10

    We present results of a Chandra High-Energy Transmission Grating (HETG) observation of the carbon-rich Wolf-Rayet (WR) star WR 48a. These are the first high-resolution spectra of this object in X-ray. Blueshifted centroids of the spectral lines of ∼ – 360 km s{sup –1} and line widths of 1000-1500 km s{sup –1} (FWHM) were deduced from the analysis of the line profiles of strong emission lines. The forbidden line of Si XIII is strong and not suppressed, indicating that the rarified 10-30 MK plasma forms far from strong sources of far-ultraviolet emission, most likely in a wind collision zone. Global spectral modeling showed that the X-ray spectrum of WR 48a suffered higher absorption in the 2012 October Chandra observation compared with a previous 2008 January XMM-Newton observation. The emission measure of the hot plasma in WR 48a decreased by a factor ∼3 over the same period of time. The most likely physical picture that emerges from the analysis of the available X-ray data is that of colliding stellar winds in a wide binary system with an elliptical orbit. We propose that the unseen secondary star in the system is another WR star or perhaps a luminous blue variable.

  8. FUSE Observations of Neutron-Capture Elements in Wolf-Rayet Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Dinerstein, H.

    We propose to obtain FUSE observations of planetary nebula central stars of the WC Wolf-Rayet ([WC]) class, in order to search for the products of neutron-capture processes in these stars and provide constraints on their evolutionary status. Although the origin of the [WC]'s is controversial, their H-deficient, C-rich surface compositions indicate that they have experienced a high degree of mixing and/or mass loss. Thus one might expect the nebulae they produce to show enhanced concentrations of He-burning and other nuclear products, such as nuclei produced by slow neutron capture during the AGB phase. We have already detected an absorption line from one such element, Germanium (Sterling, Dinerstein, & Bowers 2002), while conducting a search for H2 absorption from nebular molecular material FUSE GI programs A085 and B069). Since the strongest Ge enhancements were found in PNe with [WC] central stars, we propose to enlarge the sample of such objects observed by FUSE. THIS TEMPORARY AND PARTIAL SCRIPT COVERS ONE TARGET, HE 2-99, AND REQUESTS AN EXPOSURE TIME OF 15 KSEC. PHASE 2 INFORMATION FOR THE REMAINDER OF THE PROGRAM'S TOTAL TIME ALLOCATION OF 60 KSEC WILL BE SUBMITTED AT A LATER TIME.

  9. Project Runaway: Calibrating the Spectroscopic Distance Scale Using Runaway O and Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Hartkopf, William I.; Mason, B. D.

    2009-05-01

    Well-determined O star masses are notoriously difficult to obtain, due to such factors as broad spectral lines, larger and less-reliable average distances, high multiplicity rates, crowded fields, and surrounding nebulosity. Some of these difficulties are reduced for the subset of O stars known as runaways, however. They have escaped some of the nebulosity and crowding, and the event leading to their ejection virtually guarantees that these objects are either single stars or extremely hard spectroscopic binaries. The goal of this project is to increase the sample of known runaway stars, using updated proper motions from the soon-to-be-released UCAC3 catalog, as well as published radial velocities and data from recent duplicity surveys of massive stars using AO and speckle interferometry. Input files include the Galactic O Star Catalog of Maiz-Apellaniz et al. (2004 ApJSS 151, 103) as well as the Seventh Catalogue of Galactic Wolf-Rayet Stars and its more recent Annex (van der Hucht 2001 NewAR 45, 135; 2006 A&A 458, 453). The new runaway star sample will form the basis for a list of SIM targets aimed at improving the distances of Galactic O and WR stars, calibrating the spectroscopic distance scale and leading to more accurate mass estimates for these massive stars.

  10. An atlas of Copernicus ultraviolet spectra of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1978-01-01

    An atlas of Copernicus UV scans is presented, and line identifications are tabulated, for the Wolf-Rayet stars Gamma-2 Vel (WC 8 + O7), HD 50896 (= EZ CMa; WN 5), and HD 92740 (WN 7). The atlas covers the wavelength ranges from 946.8 to 3182 A for Gamma-2 Vel, from 1012 to 1294 A for HD 50896, and from 1051 to 1243 A for HD 92740. The wavelengths include corrections for components of satellite velocity, earth velocity, and stellar heliocentric velocity; each spectral feature is classified as interstellar, photospheric, emission, UV-displaced P Cygni line absorption, or P Cygni line emission. UV-edge velocities of the P Cygni profiles are estimated, P Cygni profile types are discussed, and the results are compared with Copernicus scans of OB stars exhibiting UV P Cygni profiles. It is noted that: (1) the line-strength ratio of molecular hydrogen to atomic species appears to be substantially greater in the scans of the WN stars than in the Gamma-2 Vel scans; (2) some of the P Cygni profiles in Gamma-2 Vel differ significantly from the corresponding profiles in OB stars; and (3) there may be a slight inverse correlation between ejection velocities and excitation potentials in Gamma-2 Vel.

  11. A Global Assessment of Wolf-Rayet Binaries in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Moffat, A. F. J.

    2008-08-01

    In the Galaxy, comprehensive empirical studies of advanced massive-star evolution via Wolf-Rayet (WR) stars have been hampered by huge disparities in apparent brightness and interstellar extinction, and by uncertainties in the distances. These problems all but disappear in the Magellanic Clouds (MCs), where one can also systematically probe the effects of lower initial metallicity (Z). Over two decades ago I began, partly involving Virpi Niemela, a vast optical spectroscopic program to examine all of the (then about 100) known MC WR stars for binarity and use them to extract information on general properties of WR stars. Now in 2006 the last step of this project is being wrapped up by the third doctoral student [Olivier Schnurr working on the WNL stars, after Peter Bartzakos (WC) in 1998 and Cédric Foellmi (WNE) in 2002] to embark on this project, now including the 144 known MC WR stars, as defined by the catalogues of Breysacher et al. for the LMC and Massey et al. for the SMC. Here we will summarize the highlights of this work. These include (1) a normal binary WR frequency in both MCs as in the Galaxy, (2) the increased presence of H in WNE stars, even binaries, as one goes to lower Z, (3) colliding winds, and (4) very massive WNLha stars. I will end with some suggestions for future work.

  12. Stationary hydrodynamic models of Wolf-Rayet stars with optically thick winds.

    NASA Astrophysics Data System (ADS)

    Heger, A.; Langer, N.

    1996-11-01

    We investigate the influence of a grey, optically thick wind on the surface and internal structure of Wolf-Rayet (WR) stars. We calculate hydrodynamic models of chemically homogeneous helium stars with stationary outflows, solving the full set of stellar structure equations from the stellar center up to well beyond the sonic point of the wind, including the line force originating from absorption lines in a parameterized way. For specific assumptions about mass loss rate and wind opacity above our outer boundary, we find that the iron opacity peak may lead to local super-Eddington luminosities at the sonic point. By varying the stellar wind parameters over the whole physically plausible range, we show that the radius of the sonic point of the wind flow is always very close to the hydrostatic stellar radius obtained in WR star models which ignore the wind. However, our models confirm the possibility of large values for observable WR radii and correspondingly small effective temperatures found in earlier models. We show further that the energy which is contained in a typical WR wind can not be neglected. The stellar luminosity may be reduced by several 10%, which has a pronounced effect on the mass-luminosity relation, i. e., the WR masses derived for a given luminosity may be considerably larger. Thereby, also the momentum problem of WR winds is considerably reduced, as well as the scatter in the ˙(M) vs. M diagram for observed hydrogen-free WN stars.

  13. First survey of Wolf-Rayet star populations over the full extension of nearby galaxies observed with CALIFA

    NASA Astrophysics Data System (ADS)

    Miralles-Caballero, D.; Díaz, A. I.; López-Sánchez, Á. R.; Rosales-Ortega, F. F.; Monreal-Ibero, A.; Pérez-Montero, E.; Kehrig, C.; García-Benito, R.; Sánchez, S. F.; Walcher, C. J.; Galbany, L.; Iglesias-Páramo, J.; Vílchez, J. M.; González Delgado, R. M.; van de Ven, G.; Barrera-Ballesteros, J.; Lyubenova, M.; Meidt, S.; Falcon-Barroso, J.; Mast, D.; Mendoza, M. A.; Califa Collaboration

    2016-08-01

    The search of extragalactic regions with conspicuous presence of Wolf-Rayet (WR) stars outside the Local Group is challenging task owing to the difficulty in detecting their faint spectral features. In this exploratory work, we develop a methodology to perform an automated search of WR signatures through a pixel-by-pixel analysis of integral field spectroscopy (IFS) data belonging to the Calar Alto Legacy Integral Field Area survey, CALIFA. This procedure has been applied to a sample of nearby galaxies spanning a wide range of physical, morphological, and environmental properties. This technique allowed us to build the first catalogue of regions rich in WR stars with spatially resolved information, and enabled us to study the properties of these complexes in a two-dimensional (2D) context. The detection technique is based on the identification of the blue WR bump (around He iiλ4686 Å, mainly associated with nitrogen-rich WR stars; WN) and the red WR bump (around C ivλ5808 Å, mainly associated with carbon-rich WR stars; WC) using a pixel-by-pixel analysis that maximizes the number of independent regions within a given galaxy. We identified 44 WR-rich regions with blue bumps distributed in 25 out of a total of 558 galaxies. The red WR bump was identified only in 5 of those regions. Most of the WR regions are located within one effective radius from the galaxy centre, and around one-third are located within ~1 kpc or less from the centre. We found that the majority of the galaxies hosting WR populations in our sample are involved in some kind of interaction process. Half of the host galaxies share some properties with gamma-ray burst (GRB) hosts where WR stars, such as potential candidates to the progenitors of GRBs, are found. We also compared the WR properties derived from the CALIFA data with stellar population synthesis models, and confirm that simple star models are generally not able to reproduce the observations. We conclude that other effects, such as

  14. {sup 26}Al AND THE FORMATION OF THE SOLAR SYSTEM FROM A MOLECULAR CLOUD CONTAMINATED BY WOLF-RAYET WINDS

    SciTech Connect

    Gaidos, Eric; Krot, Alexander N.; Williams, Jonathan P.; Raymond, Sean N. E-mail: sasha@higp.hawaii.edu E-mail: sean.raymond@colorado.edu

    2009-05-10

    In agreement with previous work, we show that the presence of the short-lived radionuclide (SLR) {sup 26}Al in the early solar system was unlikely (less than 2% a priori probability) to be the result of direct introduction of supernova (SN) ejecta into the gaseous disk during the Class II stage of protosolar evolution. We also show that Bondi-Hoyle accretion of any contaminated residual gas from the Sun's natal star cluster contributed negligible {sup 26}Al to the primordial solar system. Our calculations are consistent with the absence of the oxygen isotopic signature expected with any late introduction of SN ejecta into the protoplanetary disk. Instead, the presence of {sup 26}Al in the oldest solar system solids (calcium-aluminum-rich inclusions (CAIs)) and its apparent uniform distribution with the inferred canonical {sup 26}Al/{sup 27}Al ratio of (4.5-5) x 10{sup -5} support the inheritance of {sup 26}Al from the Sun's parent giant molecular cloud. We propose that this radionuclide originated in a prior generation of massive stars that formed in the same molecular cloud and contaminated that cloud by Wolf-Rayet winds. We calculated the Galactic distribution of {sup 26}Al/{sup 27}Al ratios that arise from such contamination using the established embedded cluster mass and stellar initial mass functions, published nucleosynthetic yields from the winds of massive stars, and by assuming rapid and uniform mixing into the cloud. Although our model predicts that the majority of stellar systems contain no {sup 26}Al from massive stars, and that the a priori probability that the {sup 26}Al/{sup 27}Al ratio will reach or exceed the canonical solar system value is only {approx}6%, the maximum in the distribution of nonzero values is close to the canonical {sup 26}Al/{sup 27}Al ratio. We find that the Sun most likely formed 4-5 million years (Myr) after the massive stars that were the source of {sup 26}Al. Furthermore, our model can explain the initial solar system

  15. A CHANDRA OBSERVATION OF THE ECLIPSING WOLF-RAYET BINARY CQ Cep

    SciTech Connect

    Skinner, Stephen L.; Zhekov, Svetozar A.; Güdel, Manuel; Schmutz, Werner E-mail: szhekov@space.bas.bg E-mail: werner.schmutz@pmodwrc.ch

    2015-02-01

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ∼1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T ≳ 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ∼ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P {sub orb} = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.

  16. Characterizing Wolf-Rayet stars in the near- and mid-infrared

    SciTech Connect

    Faherty, Jacqueline K.; Shara, Michael M.; Zurek, David; Kanarek, Graham; Moffat, Anthony F. J.

    2014-05-01

    We present refined color-color selection criteria for identifying Wolf-Rayet (WR) stars using available mid-infrared (MIR) photometry from WISE in combination with near-infrared (NIR) photometry from the Two Micron All Sky Survey. Using a sample of spectrally classified objects, we find that WR stars are well distinguished from the field stellar population in the (W1 – W2) versus (J – K{sub s} ) color-color diagram, and further distinguished from other emission line objects such as planetary nebulae, Be, and cataclysmic variable stars using a combination of NIR and MIR color constraints. As proof of concept we applied the color constraints to a photometric sample in the Galactic plane, located WR star candidates, and present five new spectrally confirmed and classified WC (1) and WN (4) stars. Analysis of the 0.8-5.0 μm spectral data for a subset of known, bright WC and WN stars shows that emission lines (primarily He I) extend into the 3.0-5.0 μm spectral region, although their strength is greatly diminished compared to the 0.8-2.5 μm region. The WR population stands out relative to background field stars at NIR and MIR colors due to an excess continuum contribution, likely caused by free-free scattering in dense winds. Mean photometric properties of known WRs are presented and imply that reddened late-type WN and WC sources are easier to detect than earlier-type sources at larger Galactic radii. WISE W3 and W4 images of 10 WR stars show evidence of circumstellar shells linked to mass ejections from strong stellar winds.

  17. The Prevalence and Impact of Wolf-Rayet Stars in Emerging Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy; Massey, Philip

    2016-08-01

    We investigate Wolf-Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point in the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.4 We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ˜50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.

  18. SEARCH FOR A MAGNETIC FIELD VIA CIRCULAR POLARIZATION IN THE WOLF-RAYET STAR EZ CMa

    SciTech Connect

    De la Chevrotiere, A.; St-Louis, N.; Moffat, A. F. J.; Collaboration: MiMeS Collaboration

    2013-02-20

    We report on the first deep, direct search for a magnetic field via the circular polarization of Zeeman splitting in a Wolf-Rayet (W-R) star. Using the highly efficient ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we observed at three different epochs one of the best W-R candidates in the sky expected to harbor a magnetic field, the bright, highly variable WN4 star EZ CMa = WR6 = HD 50896. We looked for the characteristic circular polarization (Stokes V) pattern in strong emission lines that would arise as a consequence of a global, rotating magnetic field with a split monopole configuration. We also obtained nearly simultaneous linear polarization spectra (Stokes Q and U), which are dominated by electron scattering, most likely from a flattened wind with large-scale corotating structures. As the star rotates with a period of 3.766 days, our view of the wind changes, which in turn affects the value of the linear polarization in lines versus continuum at the {approx}0.2% level. Depending on the epoch of observation, our Stokes V data were affected by significant crosstalk from Stokes Q and U to V. We removed this spurious signal from the circular polarization data and experimented with various levels of spectral binning to increase the signal-to-noise ratio of our data. In the end, no magnetic field is unambiguously detected in EZ CMa. Assuming that the star is intrinsically magnetic and harbors a split monopole configuration, we find an upper limit of B {approx} 100 G for the intensity of its field in the line-forming regions of the stellar wind.

  19. The Wolf-Rayet Star Population of the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Kanarek, Graham

    Wolf-Rayet (WR) stars are a late stage in the evolution of massive stars (M ≥ 25 M), characterized by strong stellar winds ( M˙ 10-5 M/yr). Ionizing radiation from the central star heats the expanding outer envelope of material, leading to recombination emission lines of helium, carbon, nitrogen, oxygen, and/or hydrogen in the WR star spectrum. This outflow of material enriches the surrounding ISM, which is further enriched when the WR star likely explodes as a type Ib or Ic supernova. WR stars are also likely progenitors for long soft gamma-ray bursts, and they are excellent tracers of the present sites of massive star formation in our Galaxy. The current Galactic WR star catalog is very incomplete. I discuss three methods of selecting strong WR star candidates from crowded fields in the Galactic plane: image subtraction, narrowband (NB) color, and broadband (BB) color. Using these methods, an extensive near-infrared narrowband survey begun in 2005-2006, and extended by me, has yielded 28% of the known Galactic WR stars to date; I add 59 new WR stars to the total in this thesis. I then compare two recent models of the Galactic population of WR stars, discuss the implications with respect to how many WR stars remain to be found, and use these results to inform an analysis of the remaining 834 strong carbon-rich WC star candidates from the survey. I also provide a listing of these 834 WC star candidates throughout our Galaxy, and map them; a central result of this thesis. Finally, I present selection criteria which may be used to identify [WR] stars (central stars of planetary nebulae which display WR spectral features), and proof of concept observations which led to 7 new confirmed [WC] stars.

  20. A modern search for Wolf-Rayet stars in the Magellanic Clouds: First results

    SciTech Connect

    Massey, Philip; Neugent, Kathryn F.; Morrell, Nidia; Hillier, D. John E-mail: kneugent@lowell.edu E-mail: hillier@pitt.edu

    2014-06-10

    Over the years, directed surveys and incidental spectroscopy have identified 12 Wolf-Rayet (WR) stars in the Small Magellanic Cloud (SMC) and 139 in the Large Magellanic Cloud (LMC), numbers which are often described as 'essentially complete'. Yet, new WRs are discovered in the LMC almost yearly. We have therefore initiated a new survey of both Magellanic Clouds using the same interference-filter imaging technique previously applied to M31 and M33. We report on our first observing season, in which we have successfully surveyed ∼15% of our intended area of the SMC and LMC. Spectroscopy has confirmed nine newly found WRs in the LMC (a 6% increase), including one of WO-type, only the third known in that galaxy and the second to be discovered recently. The other eight are WN3 stars that include an absorption component. In two, the absorption is likely from an O-type companion, but the other six are quite unusual. Five would be classified naively as 'WN3+O3 V', but such a pairing is unlikely given the rarity of O3 stars, the short duration of this phase (which is incommensurate with the evolution of a companion to a WN star), and because these stars are considerably fainter than O3 V stars. The sixth star may also fall into this category. CMFGEN modeling suggests these stars are hot, bolometrically luminous, and N-rich like other WN3 stars, but lack the strong winds that characterize WNs. Finally, we discuss two rare Of?p stars and four Of supergiants we found, and propose that the B[e] star HD 38489 may have a WN companion.

  1. Characterizing Wolf-Rayet Stars in the Near- and Mid-infrared

    NASA Astrophysics Data System (ADS)

    Faherty, Jacqueline K.; Shara, Michael M.; Zurek, David; Kanarek, Graham; Moffat, Anthony F. J.

    2014-05-01

    We present refined color-color selection criteria for identifying Wolf-Rayet (WR) stars using available mid-infrared (MIR) photometry from WISE in combination with near-infrared (NIR) photometry from the Two Micron All Sky Survey. Using a sample of spectrally classified objects, we find that WR stars are well distinguished from the field stellar population in the (W1 - W2) versus (J - Ks ) color-color diagram, and further distinguished from other emission line objects such as planetary nebulae, Be, and cataclysmic variable stars using a combination of NIR and MIR color constraints. As proof of concept we applied the color constraints to a photometric sample in the Galactic plane, located WR star candidates, and present five new spectrally confirmed and classified WC (1) and WN (4) stars. Analysis of the 0.8-5.0 μm spectral data for a subset of known, bright WC and WN stars shows that emission lines (primarily He I) extend into the 3.0-5.0 μm spectral region, although their strength is greatly diminished compared to the 0.8-2.5 μm region. The WR population stands out relative to background field stars at NIR and MIR colors due to an excess continuum contribution, likely caused by free-free scattering in dense winds. Mean photometric properties of known WRs are presented and imply that reddened late-type WN and WC sources are easier to detect than earlier-type sources at larger Galactic radii. WISE W3 and W4 images of 10 WR stars show evidence of circumstellar shells linked to mass ejections from strong stellar winds.

  2. WO-Type Wolf-Rayet Stars: the Last Hurrah of the Most Massive Stars?

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2014-10-01

    WO-type Wolf-Rayet (WR) stars are considered the final evolutionary stage of the highest mass stars, immediate precursors to Type Ic (He-poor) core-collapse supernovae. These WO stars are rare, and until recently only 6 were known. Our knowledge about their physical properties is mostly based on a single object, Sand 2 in the LMC. It was the only non-binary WO star both bright and unreddened enough that its FUV and NUV spectra could be obtained by FUSE and HST/FOS. A non-LTE analysis showed that Sand 2 is very hot and its (C+O)/He abundance ratio is higher than that found in WC-type WRs, suggesting it is indeed highly evolved. However, the O VI resonance doublet in the FUV required a considerably cooler temperature (120,000 K) model than did the optical O VI lines (170,000 K). Further, the enhanced chemical abundances did not match the predictions of stellar evolutionary models. Another non-LTE study found a 3x higher (C+O)/He abundance ratio and a cooler temperature. We have recently discovered two other bright, single, and lightly reddened WOs in the LMC, allowing us to take a fresh look at these important objects. Our newly found WOs span a range in excitation type, from WO1 (the highest) to WO4 (the lowest). Sand 2 is intermediate (WO3). We propose to use COS to obtain FUV and NUV data of all three stars for as comprehensive a study as is currently possible. These UV data will be combined with our optical Magellan spectra for a detailed analysis with CMFGEN with the latest atomic data. Knowing the degree of chemical evolution of these WO stars is crucial to determining their evolutionary status, and thus in understanding the final stages of the most massive stars.

  3. Red Eyes on Wolf-Rayet Stars: New Discoveries via Infrared Color Selection

    NASA Astrophysics Data System (ADS)

    Mauerhan, J. C.; Van Dyk, S.; Morris, P.

    2012-12-01

    We summarize the latest results form our infrared, color-based survey for Galactic Wolf-Rayet (WR) stars. Using photometry from the Spitzer/GLIMPSE and 2MASS databases, we select WRs via a method that exploits their unique infrared colors, which is mainly the result of excess radiation generated by free-free scattering within their dense ionized winds. The selection criterion results in a WR detection rate of ≍20% in spectroscopic follow-up of candidates that comprise a broad color space defined by the color distribution of all known WRs having B > 14 mag, although there are smaller regions within this color space which yield WRs at a rate of >50%. Cross-correlation with archival X-ray catalogs increases the WR detection rate of the broad color space to ≍40%, although with significant bias toward WN types. Although the majority of the new WRs have no obvious association with stellar clusters, two WC8 stars reside in a previously unknown massive-star cluster, in which five OB supergiants were also identified. In addition, two WC and four WN stars, all but one of which are X-ray sources, were identified in association with the stellar clusters Danks 1 and 2. Our 60 latest WR discoveries (out of nearly 100 to date) include 38 WN types and 22 WC types, bringing the total number of known Galactic WRs close to 500, or ≍8% of the total empirically estimated population. An examination of their Galactic distribution reveals an approximate tracing of spiral arms and an enhanced WR surface density toward several massive-star formation sites.

  4. Does the Wolf-Rayet binary CQ Cephei undergo sporadic mass transfer events?

    NASA Astrophysics Data System (ADS)

    Koenigsberger, Gloria; Schmutz, Werner; Skinner, Stephen L.

    2017-05-01

    Context. Stellar wind mass-loss in binary systems carries away angular momentum causing a monotonic increase in the orbital period, Ṗ> 0. Despite possessing a significant stellar wind, the eclipsing Wolf-Rayet (WR) binary system CQ Cep does not show the expected monotonic period increase, in fact, it is sometimes reported to display the opposite behavior. Aims: The objective of this paper is to perform a new analysis of the rate of period change Ṗ and determine the conditions under which Roche-lobe overflow (RLO) mass-transfer combined with wind mass loss can explain the discrepant behavior. Methods: The historic records of times of light curve minima were reviewed and compared with the theoretical values of Ṗ for cases in which both wind mass-loss and RLO occur simultaneously. Results: The observational data indicate that Ṗ alternates between positive and negative values on a timescale of years. The negative values (Ṗ -0.6 to -8.5 s yr-1) are significantly larger in absolute value than the positive ones (Ṗ + 0.2 to +1.2 s yr-1). We find that a plausible scenario for CQ Cep is one in which the O star undergoes intense but sporadic RLO events that lead to accretion onto the WR star, at which times Ṗ< 0. At other times, Ṗ> 0 when the WR wind, and possibly material swept up from the O star, carries angular momentum away from the system. A scenario in which the WR star is the mass donor cannot be excluded, but requires that either the WR wind mass-loss rate undergoes large sporadic enhancements or that an additional process that removes angular momentum from the system be present.

  5. X-RAY EMISSION FROM NITROGEN-TYPE WOLF-RAYET STARS

    SciTech Connect

    Skinner, Stephen L.; Sokal, Kimberly R.; Zhekov, Svetozar A.; Guedel, Manuel; Schmutz, Werner

    2010-03-15

    We summarize new X-ray detections of four nitrogen-type Wolf-Rayet (WR) stars obtained in a limited survey aimed at establishing the X-ray properties of WN stars across their full range of spectral subtypes. None of the detected stars is so far known to be a close binary. We report Chandra detections of WR 2 (WN2), WR 18 (WN4), and WR 134 (WN6), and an XMM-Newton detection of WR79a (WN9ha). These observations clearly demonstrate that both WNE and WNL stars are X-ray sources. We also discuss Chandra archive detections of the WN6h stars WR 20b, WR 24, and WR 136 and ROSAT non-detections of WR 16 (WN8h) and WR 78 (WN7h). The X-ray spectra of all WN detections show prominent emission lines and an admixture of cool (kT < 1 keV) and hot (kT > 2 keV) plasma. The hotter plasma is not predicted by radiative wind shock models and other as yet unidentified mechanisms are at work. Most stars show X-ray absorption in excess of that expected from visual extinction (A {sub V}), likely due to their strong winds or cold circumstellar gas. Existing data suggest a falloff in X-ray luminosity toward later WN7-9 subtypes, which have higher L {sub bol} but slower, denser winds than WN2-6 stars. This provides a clue that wind properties may be a more crucial factor in determining emergent X-ray emission levels than bolometric luminosity.

  6. Search for polycyclic aromatic hydrocarbons in the outflows from dust-producing Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Marchenko, Sergey V.; Moffat, A. F. J.

    2017-06-01

    A combined mid-IR spectrum of five colliding-wind, massive, dust-producing Population I Wolf-Rayet (WR) binaries shows a wealth of absorption and emission details coming from the circumstellar dust envelopes, as well as from the interstellar medium. The prominent absorption features may arise from a mix of interstellar carbonaceous grains formed in high- (e.g. 3.4, 6.8, 7.2 μm ) and low-temperature (e.g. 3.3, 6.9, 9.3 μm) environments. The broad emission complexes around ˜6.5, 8.0 and 8.8 μm could arise from ionized, small polycyclic aromatic hydrocarbon (PAH) clusters and/or amorphous carbonaceous grains. As such, these PAH emissions may represent the long sought-after precursors of amorphous carbon dust. We also detect a strong ˜10.0 μm emission in the spectra of WR48a and WR112 which we tentatively link to ionized PAHs. Upon examining the available archival spectra of prodigious individual WR dust sources, we notice a surprising lack of 7.7 μm PAH band in the spectrum of the binary WR19, in contrast to the apparent strength of the 11.2, 12.7 and 16.4 μm PAH features. Strong PAH emissions are also detected in the λ >10 μm spectrum of another dust-producing system, WR118, pointing to the presence of large, neutral, presumably interstellar PAH molecules towards WR19 and WR118.

  7. An Emerging Wolf-Rayet Massive Star Cluster in NGC 4449

    NASA Astrophysics Data System (ADS)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy; Reines, Amy E.

    2015-03-01

    We present a panchromatic investigation of the partially embedded, emerging massive cluster Source 26 (=S26) in NGC 4449 with optical spectra obtained at Apache Point Observatory and archival Hubble, Spitzer, and Herschel 5 Space Telescope images. First identified as a radio continuum source with a thermal component due to ionized material, the massive cluster S26 also exhibits optical Wolf-Rayet (WR) emission lines that reveal a large evolved massive star population. We find that S26 is host to ˜240 massive stars, of which ˜18 are WR stars; the relative populations are roughly consistent with other observed massive star-forming clusters and galaxies. We construct SEDs over two spatial scales (˜100 and ˜300 pc) that clearly exhibit warm dust and polycyclic aromatic hydrocarbon (PAH) emission. The best fit dust and grain models reveal that both the intensity of the exciting radiation and PAH grain destruction increase toward the cluster center. Given that the timescale of evacuation is important for the future dynamical evolution of the cluster, it is important to determine whether O-type and WR stars can evacuate the material gradually before supernova do so on a much faster timescale. With a minimum age of ≈ 3 Myr, it is clear that S26 has not yet fully evacuated its natal material, which indicates that unevolved O-type stars alone do not provide sufficient feedback to remove the gas and dust. We hypothesize that the feedback of WR stars in this cluster may be necessary for clearing the material from the gravitational potential of the cluster. We find S26 is similar to emission line clusters observed in the Antennae galaxies and may be considered a younger analog to 30 Doradus in the LMC.

  8. Kinematical Structure of Wolf-Rayet Winds. I.Terminal Wind Velocity

    NASA Astrophysics Data System (ADS)

    Niedzielski, A.; Skorzynski, W.

    2002-03-01

    New terminal wind velocities for 164 Wolf-Rayet stars (from the Galaxy and LMC) based on PCyg profiles of lambda1550 CIV resonance line were derived from the archive high and low resolution IUE spectra available form the INES database. The high resolution data on 59 WR stars (39 from the Galaxy and 20 from LMC) were used to calibrate the empirical relation lambda_min^Abs- lambda_peak^Emis vs terminal wind velocity, which was then used for determinations of the terminal wind velocities from the low resolution IUE data. We almost doubled the previous most extended sample of such measurements. Our new measurements, based on high resolution data, are precise within 5-7%. Measurements, based on the low resolution spectra have the formal errors of approx 40-60%. A comparison of the present results with other determinations suggests higher precision of approx 20%. We found that the terminal wind velocities for the Galactic WC and WN stars correlate with the WR spectral subtype. We also found that the LMC WN stars have winds slower than their Galactic counterparts, up to two times in the case of the WNE stars. No influence of binarity on terminal wind velocities was found. Our extended set of measurements allowed us to test application of the radiation driven wind theory to the WR stars. We found that, contrary to OB stars, terminal wind velocities of the WR stars correlate only weakly with stellar temperature. We also note that the terminal to escape velocity ratio for the WR stars is relatively low: 2.55 pm 1.14 for the Galactic WN stars and 1.78 pm 0.70 for the Galactic WCs. This ratio decreases with temperature of WR stars, contrary to what is observed in the case of OB stars. The presented results show complex influence of chemical composition on the WR winds driving mechanism efficiency. Our kinematical data on WR winds suggest evolutionary sequence: WNL --> WNE --> WCE --> WCL.

  9. The Nature of Newly Discovered Wolf-Rayet Stars in the LMC

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2014-10-01

    We have recently discovered five Wolf-Rayet (WR) stars in the LMC which might be naively classified as "WN3+O3 V." However, such a pairing is unlikely for a number of reasons: (a) O3 V stars are very rare, as they are the hottest and most luminous of the dwarfs; (b) the absolute visual magnitudes of our stars are quite faint (Mv=-3) compared to even an O3 V star by itself (Mv=-5.5); (c) these stars do not exhibit radial velocity variations, although our data on this are admittedly limited; and (d) such a pairing would be hard to understand from a stellar evolution point of view, since a massive star will evolve out of the O3 V phase in about a million years, while it takes several million years to form a WN star. We are forced to conclude that we have discoverd a new class of WRs. We have excellent optical spectra with Magellan, and our modeling of these data suggest a very high effective temperature (70,000 K), strongly enhanced nitrogen, and a very low mass-loss rate. However, these physical parameters are poorly constrained by the optical data alone, and we now seek UV spectra that will contain lines that will better determine the temperatures, and the important resonance lines that provide crucial diagnostics of the stellar winds. The results of this modeling will allow us to understand the nature of these objects, and where they fit in the evolution of massive stars. If they are the products of single star evolution, they indicate we have some fundamental misconceptions. If they are the products of binary evolution, how do we explain the absence of any companions? We can only address these questions by having reliable stellar parameters and abundances.

  10. Spatial distribution of Galactic Wolf-Rayet stars and implications for the global population

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, P. A.

    2015-03-01

    We construct revised near-infrared absolute magnitude calibrations for 126 Galactic Wolf-Rayet (WR) stars at known distances, based in part upon recent large-scale spectroscopic surveys. Application to 246 WR stars located in the field permits us to map their Galactic distribution. As anticipated, WR stars generally lie in the thin disc (˜40 pc half-width at half-maximum) between Galactocentric radii 3.5-10 kpc, in accordance with other star formation tracers. We highlight 12 WR stars located at vertical distances of ≥300 pc from the mid-plane. Analysis of the radial variation in WR subtypes exposes a ubiquitously higher NWC/NWN ratio than predicted by stellar evolutionary models accounting for stellar rotation. Models for non-rotating stars or accounting for close binary evolution are more consistent with observations. We consolidate information acquired about the known WR content of the Milky Way to build a simple model of the complete population. We derive observable quantities over a range of wavelengths, allowing us to estimate a total number of 1900 ± 250 Galactic WR stars, implying an average duration of ˜ 0.4 Myr for the WR phase at the current Milky Way star formation rate. Of relevance to future spectroscopic surveys, we use this model WR population to predict follow-up spectroscopy to KS ≃ 17.5 mag will be necessary to identify 95 per cent of Galactic WR stars. We anticipate that ESA's Gaia mission will make few additional WR star discoveries via low-resolution spectroscopy, though will significantly refine existing distance determinations. Appendix A provides a complete inventory of 322 Galactic WR stars discovered since the VIIth catalogue (313 including Annex), including a revised nomenclature scheme.

  11. X-Ray Emission from the Wolf-Rayet Bubble S 308

    NASA Technical Reports Server (NTRS)

    Toala, J. A.; Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.; Arthur, S. J.; Smith, R. C.; Snowden, S. L.

    2012-01-01

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its Northwest quadrant (Chu et al. 2003), map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a 22' in size central cavity and a shell thickness of approx. 8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at approx.0.43 keV and O VII at approx.0.5 keV, and declines towards high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T1 approx.1.1 x 10(exp 6) K, T2 approx.13 x 10(exp 6) K), with a total X-ray luminosity approx.3 x 10(exp 33) erg/s at the assumed distance of 1.8 kpc. Qualitative comparison of the X-ray morphology of S 308 with the results of numerical simulations of wind-blown WR bubbles suggests a progenitor mass of 40 Stellar mass and an age in the WR phase approx.20,000 yrs. The X-ray luminosity predicted by simulatioms including the effects of heat conduction is in agreement with the observations, however, the simulated X-ray spectrum indicates generally hotter gas than is derived from the observations. We suggest that non-equilibrium ionization (NEI) may provide an explanation for this discrepancy.

  12. Hα imaging survey of Wolf-Rayet galaxies: morphologies and star formation rates

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Omar, A.

    2016-10-01

    The Hα and optical broad-band images of 25 nearby Wolf-Rayet (WR) galaxies are presented. The WR galaxies are known to have a recent (≤10 Myr) and massive star formation episode. The photometric Hα fluxes are estimated and corrected for extinction and line contamination in the filter pass-bands. The star formation rates (SFRs) are estimated using Hα images and from archival data in the far-ultraviolet (FUV), far-infrared (FIR) and 1.4-GHz radio continuum wavebands. A comparison of SFRs estimated from different wavebands is made after including similar data available in the literature for other WR galaxies. The Hα-based SFRs are found to be tightly correlated with SFRs estimated from the FUV data. The correlations also exist with SFR estimates based on the radio and FIR data. The WR galaxies also follow the radio-FIR correlation known for normal star-forming galaxies, although it is seen here that the majority of dwarf WR galaxies have a radio deficiency. An analysis using the ratio of non-thermal to thermal radio continuum and the ratio of the FUV to Hα SFRs indicates that WR galaxies have lower non-thermal radio emission compared to normal galaxies, most likely due to a lack of supernovae in the very young star formation episode in the WR galaxies. The morphologies of 16 galaxies in our sample are highly suggestive of an ongoing tidal interaction or a past merger in these galaxies. This survey strengthens the conclusions obtained from previous similar studies indicating the importance of tidal interactions in triggering star-formation in WR galaxies.

  13. A Wolf-Rayet-Like Progenitor of SN 2013cu from Spectral Observations of a Stellar Wind

    NASA Technical Reports Server (NTRS)

    Gal-Yam, Avishay; Arcavi, I.; Ofek, E. O.; Ben-Ami, S.; Cenko, S. B.; Kasliwal, M. M.; Cao, Y.; Yaron, O.; Tal, D.; Silverman, J. M.; hide

    2014-01-01

    The explosive fate of massive Wolf-Rayet stars (WRSs) is a key open question in stellar physics. An appealing option is that hydrogen- deficient WRSs are the progenitors of some hydrogen-poor supernova explosions of types IIb, Ib and Ic. A blue object, having luminosity and colours consistent with those of some WRSs, has recently been identified in pre-explosion images at the location of a supernova of type Ib, but has not yet been conclusively determined to have been the progenitor. Similar work has so far only resulted in non-detections. Comparison of early photometric observations of type Ic supernovae with theoretical models suggests that the progenitor stars had radii of less than 10(exp 12) centimetres, as expected for some WRSs. The signature of WRSs, their emission line spectra, cannot be probed by such studies. Here we report the detection of strong emission lines in a spectrum of type IIb supernova 2013cu (iPTF13ast) obtained approximately 15.5 hours after explosion (by 'flash spectroscopy', which captures the effects of the supernova explosion shock breakout flash on material surrounding the progenitor star).We identify Wolf-Rayet-like wind signatures, suggesting a progenitor of the WN(h) subclass (those WRSs with winds dominated by helium and nitrogen, with traces of hydrogen). The extent of this dense wind may indicate increased mass loss from the progenitor shortly before its explosion, consistent with recent theoretical predictions.

  14. Wolf-Rayet spin at low metallicity and its implication for black hole formation channels

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.; Harries, Tim J.

    2017-07-01

    Context. The spin of Wolf-Rayet (WR) stars at low metallicity (Z) is most relevant for our understanding of gravitational wave sources, such as GW 150914, and of the incidence of long-duration gamma-ray bursts (GRBs). Two scenarios have been suggested for both phenomena: one of them involves rapid rotation and quasi-chemical homogeneous evolution (CHE) and the other invokes classical evolution through mass loss in single and binary systems. Aims: The stellar spin of WR stars might enable us to test these two scenarios. In order to obtain empirical constraints on black hole progenitor spin we infer wind asymmetries in all 12 known WR stars in the Small Magellanic Cloud (SMC) at Z = 1 / 5 Z⊙ and within a significantly enlarged sample of single and binary WR stars in the Large Magellanic Cloud (LMC at Z = 1 / 2 Z⊙), thereby tripling the sample of Vink from 2007. This brings the total LMC sample to 39, making it appropriate for comparison to the Galactic sample. Methods: We measured WR wind asymmetries with VLT-FORS linear spectropolarimetry, a tool that is uniquely poised to perform such tasks in extragalactic environments. Results: We report the detection of new line effects in the LMC WN star BAT99-43 and the WC star BAT99-70, along with the well-known WR LBV HD 5980 in the SMC, which might be undergoing a chemically homogeneous evolution. With the previous reported line effects in the late-type WNL (Ofpe/WN9) objects BAT99-22 and BAT99-33, this brings the total LMC WR sample to four, i.e. a frequency of 10%. Perhaps surprisingly, the incidence of line effects amongst low Z WR stars is not found to be any higher than amongst the Galactic WR sample, challenging the rotationally induced CHE model. Conclusions: As WR mass loss is likely Z-dependent, our Magellanic Cloud line-effect WR stars may maintain their surface rotation and fulfill the basic conditions for producing long GRBs, both via the classical post-red supergiant or luminous blue variable channel, or

  15. How Wolf-Rayet winds are driven by starlight and spectral lines

    NASA Astrophysics Data System (ADS)

    Onifer, Andrew Joseph, III

    Finding the cause of the enormous increase in the mass- loss rate of a Wolf-Rayet (W-R) star, as compared to its O star progenitor, has remained a challenge for many years. This thesis explores the hypothesis that line driving causes the large observed W-R mass-loss rates. Frequency redistribution can cause the photons to filter into gaps in the line spectrum, reducing the efficiency of line driving. Therefore, the role that frequency redistribution plays in lowering the predicted mass-loss rate is explored, both via simple two-domain idealizations of the line list and via a real W-R line list. A simple analytic theory, called the Statistical Sobolev Rosseland (SSR) theory, is developed that calculates the local efficiency of line driving in a completely redistributing wind. In the process a conceptual language is developed to explain the key issues in W-R wind line driving. The results are that with no redistribution, the reduction in radius, and corresponding increase in temperature, of an O star as it evolves into a W-R star causes roughly a six-fold increase in the mass-loss rate. However, with large amounts of redistribution, the efficiency of the wind drops greatly in the presence of spectral gaps. In the most extreme case of SSR, the mass- loss rate drops by a factor of up to an order of magnitude relative to the gray value. To avoid this it is necessary to fill the gaps in the spectrum, and the effect that ionization stratification has in filling the gaps globally over the wind is explored. It is found that with the current line list ionization changes can only fill the gaps sufficiently to cause about a factor of two increase over the SSR value. The conclusion is that in order for line driving to explain the mass-loss rates of W-R winds, more opacity needs to be discovered to fill the gaps, either locally, or globally over a realistic range of ionization strata.

  16. An HST/WFPC2 Survey for Nearby Companions of Galactic Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Wallace, D. J.

    2003-12-01

    Wolf-Rayet (WR) stars provide key insights about the final evolutionary phase of the most massive stars. I present here the results of a new, high angular resolution, imaging survey of 61 Galactic WR stars, which was designed to detect new companions, clusters, and/or associations surrounding these stars. High resolution observations are essential to provide a true census of the number and astrophysical parameters of massive stars, to understand the effects of nearby companions on their evolutionary paths, and to understand the effects of these companions on the stellar environment. The survey is based on images of each WR target made with the Planetary Camera of the Hubble Space Telescope WFPC2 instrument (usually through the F336W, F439W, and F555W filters, which are near counterparts of the Johnson UBV filters). I measured astrometric positions and photometric magnitudes on the HST synthetic system for all the stars found within 15 arcsec of each WR star. I present results on new companions for 23 (38%) of the 61 WR stars in the survey sample. Three WR stars (WR 86, WR 146, and WR 147) are resolved as close colliding-wind binary systems. Another three WR stars (WR 98a, WR 104, and WR 112) are dusty WC9 type stars in hierarchical multiple systems. Six WR stars are members of previously unrecognized stellar groups. Finally, for thirteen WR stars, I determine new stellar parameters based on an analysis of the color-color and color-magnitude diagrams of the nearby cluster/association main sequence stars. My WR sample breaks down into 57% cluster/association members, 33% field stars, and 10% runaways. This agrees reasonably well with the fractions determined by Mason et al. (1998) of 72%, 20%, and 8% for the same categories among the O stars. I find the same trend that the binary fraction decreases from cluster/association to field and to runaway groups in accordance with our expectation that many of the latter were originally binary members that were ejected by

  17. Photometric and spectroscopic studies of star-forming regions within Wolf-Rayet galaxies

    NASA Astrophysics Data System (ADS)

    Karthick, M. Chrisphin; López-Sánchez, Ángel R.; Sahu, D. K.; Sanwal, B. B.; Bisht, Shuchi

    2014-03-01

    We present a study of the properties of star-forming regions within a sample of seven Wolf-Rayet (WR) galaxies. We analyse their morphologies, colours, star-formation rates (SFRs), metallicities and stellar populations, combining broad-band and narrow-band photometry with low-resolution optical spectroscopy. The UBVRI observations were made with the 2-m HCT (Himalayan Chandra Telescope) and 1-m ARIES telescope. The spectroscopic data were obtained using the Hanle Faint Object Spectrograph Camera (HFOSC) mounted on the 2-m HCT. The observed galaxies are NGC 1140, IRAS 07164+5301, NGC 3738, UM 311, NGC 6764, NGC 4861 and NGC 3003. The optical spectra were used to search for the faint WR features, to confirm that the ionization of the gas is caused by the massive stars, and to quantify the oxygen abundance of each galaxy using several independent empirical calibrations. We detected broad features originating in WR stars in NGC 1140 and 4861 and used them to derive the massive star populations. For these two galaxies we also derived the oxygen abundance using a direct estimation of the electron temperature of the ionized gas. The N/O ratio in NGC 4861 is ˜0.25-0.35 dex higher than expected, which may be a consequence of the chemical pollution by N-rich material released by WR stars. Using our Hα images we identified tens of star-forming regions within these galaxies, for which we derived the SFR. Our Hα-based SFR usually agrees with the SFR computed using the far-infrared and the radio-continuum flux. For all regions we found that the most recent star-formation event is 3-6 Myr old. We used the optical broad-band colours in combination with Starburst99 models to estimate the internal reddening and the age of the dominant underlying stellar population within all these regions. Knots in NGC 3738, 6764 and 3003 generally show the presence of an important old (400-1000 Myr) stellar population. However, the optical colours are not able to detect stars older than 20

  18. RED EYES ON WOLF-RAYET STARS: 60 NEW DISCOVERIES VIA INFRARED COLOR SELECTION

    SciTech Connect

    Mauerhan, Jon C.; Van Dyk, Schuyler D.; Morris, Patrick W.

    2011-08-15

    We have spectroscopically identified 60 Galactic Wolf-Rayet (WR) stars, including 38 nitrogen types (WN) and 22 carbon types (WC). Using photometry from the Spitzer/GLIMPSE and Two Micron All Sky Survey databases, the new WRs were selected via a method we have established that exploits their unique infrared colors, which is mainly the result of excess radiation generated by free-free scattering within their dense ionized winds. The selection criterion has been refined since the last report, resulting in a WR detection rate of {approx}20% in spectroscopic follow-up of candidates that comprise a broad color space defined by the color distribution of all known WRs having B > 14 mag. However, there are smaller regions within this color space that yield WRs at a rate of >50% in spectroscopic follow-up. Candidates that are not WRs are mainly Be stars, which is possibly attributable to the physical similarities between the free-free emission parameters of Be disks and WR winds. As an additional selection experiment, the list of WR candidates was cross-correlated with archival X-ray point-source catalogs, which increases the WR detection rate of the broad color space to {approx}40%; 10 new WR X-ray sources have been found in addition to a previously unrecognized X-ray counterpart to a known WR. The extinction values, distances, and Galactocentric radii of all new WRs are calculated using the method of spectroscopic parallax. Although the majority of the new WRs have no obvious association with stellar clusters, two WC8 stars reside in a previously unknown massive-star cluster, in which five OB supergiants were also identified. The new system lies at an estimated distance of {approx}6.1 kpc, near the intersection of the Scutum-Centaurus Arm with the Galaxy's bar. In addition, two WC and four WN stars, all but one of which are X-ray sources, were identified in association with the stellar clusters Danks 1 and 2. A WN9 star has also been associated with the cluster [DBS2003

  19. The onset of Wolf-Rayet wind outflow and the nature of the hot component in the symbiotic nova PU Vulpecula

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Shore, Steven N.; Ready, Christian J.; Scheible, Maureen P.

    1993-01-01

    We have analyzed temporal variations in the far ultraviolet He II (1640), Si IV (1393, 1402), and C IV (1548, 1550) line profiles in eight high dispersion, International Ultraviolet Explorer Short Wavelength Prime spectra of the symbiotic nova PU Vul by comparatively examining these profiles on a common velocity scale. We see clear evidence of the onset of a Wolf-Rayet-like wind outflow from the bloated, contracting white dwarf hot component with terminal velocity of approximately equals -550 to -600 km/s. We have quantitatively analyzed the complicated He II (1640) emission region for the first time and show that the discrete absorption features seen in the He II region occur at precisely the same velocites in each spectrum, thus demonstrating that the absorbing source is steady and not affected by any orbital motion. We demonstrate that there is an underlying He II wind emission feature whose true shape is hidden by superposed absorption due to the foreground red giant wind flowing in front of the white dwarf and abscuring the white dwarf's wind outflow. We present synthetic spectra of He II emission behind an absorbing slab with u = 20 km/s, T = 5000 K, and column densities in the range N = 1 x 10(exp 22) and 1 x 10(exp 23)/sq cm which explain these absorptions. Our analysis of the Si IV and C IV resonance doublets, in velocity space, reveal temporal variations in the profile between 1987 and 1991 with the emergence of clear P Cygni profiles in Si IV by 1990. A nebular emission feature in C III 1909 also appears in the most recent spectra (e.g., SW42538H) while it was absent or extremely weak in the earliest spectra (e.g., SW36332H), thus strengthening evidence that the nebular emission, as seen in permitted and semiforbidden lines, intensities in step with the onset of the hot, fast, wind outflow. We also report the first detection of narrow interstellar (circumbinary shell?) absorption lines near -1 km/s, most strongly in Al III (1854, 1862) and Si IV (1392

  20. Ionization structure and chemical abundances of the Wolf-Rayet nebula NGC 6888 with integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Fernández-Martín, A.; Martín-Gordón, D.; Vílchez, J. M.; Pérez Montero, E.; Riera, A.; Sánchez, S. F.

    2012-05-01

    Context. The study of nebulae around Wolf-Rayet (WR) stars gives us clues about the mass-loss history of massive stars, as well as about the chemical enrichment of the interstellar medium (ISM). Aims: This work aims to search for the observational footprints of the interactions between the ISM and stellar winds in the WR nebula NGC 6888 in order to understand its ionization structure, chemical composition, and kinematics. Methods: We have collected a set of integral field spectroscopy observations across NGC 6888, obtained with PPAK in the optical range performing both 2D and 1D analyses. Attending to the 2D analysis in the northeast part of NGC 6888, we have generated maps of the extinction structure and electron density. We produced statistical frequency distributions of the radial velocity and diagnostic diagrams. Furthermore, we performed a thorough study of integrated spectra in nine regions over the whole nebula. Results: The 2D study has revealed two main behaviours. We have found that the spectra of a localized region to the southwest of this pointing can be represented well by shock models assuming n = 1000 cm-3, twice solar abundances, and shock velocities from 250 to 400 km s-1. With the 1D analysis we derived electron densities ranging from <100 to 360 cm-3. The electron temperature varies from ~7700 K to ~10 200 K. A strong variation of up to a factor 10 between different regions in the nitrogen abundance has been found: N/H appears lower than the solar abundance in those positions observed at the edges and very enhanced in the observed inner parts. Oxygen appears slightly underabundant with respect to solar value, whereas the helium abundance is found to be above it. We propose a scenario for the evolution of NGC 6888 to explain the features observed. This scheme consists of a structure of multiple shells: i) an inner and broken shell with material from the interaction between the supergiant and WR shells, presenting an overabundance in N/H and a

  1. Massive star formation in Wolf-Rayet galaxies. IV. Colours, chemical-composition analysis and metallicity-luminosity relations

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Á. R.; Esteban, C.

    2010-07-01

    Aims: We have performed a comprehensive multiwavelength analysis of a sample of 20 starburst galaxies that show a substantial population of very young massive stars, most of them classified as Wolf-Rayet (WR) galaxies. In this paper, the forth of the series, we present the global analysis of the derived photometric and chemical properties. Methods: We compare optical/NIR colours and the physical properties (reddening coefficient, equivalent widths of the emission and underlying absorption lines, ionization degree, electron density, and electron temperature) and chemical properties (oxygen abundances and N/O, S/O, Ne/O, Ar/O, and Fe/O ratios) with previous observations and galaxy evolution models. We compile 41 independent star-forming regions - with oxygen abundances between 12 + log(O/H) = 7.58 and 8.75 - , of which 31 have a direct estimate of the electron temperature of the ionized gas. Results: According to their absolute B-magnitude, many of them are not dwarf galaxies, but they should be during their quiescent phase. We found that both c(Hβ) and Wabs increase with increasing metallicity. The differences in the N/O ratio is explained assuming differences in the star formation histories. We detected a high N/O ratio in objects showing strong WR features (HCG 31 AC, UM 420, IRAS 0828+2816, III Zw 107, ESO 566-8 and NGC 5253). The ejecta of the WR stars may be the origin of the N enrichment in these galaxies. We compared the abundances provided by the direct method with those obtained through empirical calibrations, finding that (i) the Pilyugin method is the best suited empirical calibration for these star-forming galaxies; (ii) the relations provided by Pettini & Pagel (2004, MNRAS, 348, 59) give acceptable results for objects with 12 + log(O/H) > 8.0; and (iii) the results provided by empirical calibrations based on photoionization models are systematically 0.2-0.3 dex higher than the values derived from the direct method. The O and N abundances and the N

  2. Source-plane reconstruction of the giant gravitational arc in A2667: A candidate Wolf-Rayet galaxy at z ∼ 1

    SciTech Connect

    Cao, Shuo; Zhu, Zong-Hong; Covone, Giovanni; Jullo, Eric; Richard, Johan; Izzo, Luca

    2015-01-01

    We present a new analysis of Hubble Space Telescope, Spitzer Space Telescope, and Very Large Telescope imaging and spectroscopic data of a bright lensed galaxy at z = 1.0334 in the lensing cluster A2667. Using this high-resolution imaging, we present an updated lens model that allows us to fully understand the lensing geometry and reconstruct the lensed galaxy in the source plane. This giant arc gives a unique opportunity to view the structure of a high-redshift disk galaxy. We find that the lensed galaxy of A2667 is a typical spiral galaxy with a morphology similar to the structure of its counterparts at higher redshift, z ∼ 2. The surface brightness of the reconstructed source galaxy in the z {sub 850} band reveals the central surface brightness I(0) = 20.28 ± 0.22 mag arcsec{sup –2} and a characteristic radius r{sub s} = 2.01 ± 0.16 kpc at redshift z ∼ 1. The morphological reconstruction in different bands shows obvious negative radial color gradients for this galaxy. Moreover, the redder central bulge tends to contain a metal-rich stellar population, rather than being heavily reddened by dust due to high and patchy obscuration. We analyze the VIMOS/integral field unit spectroscopic data and find that, in the given wavelength range (∼1800-3200 Å), the combined arc spectrum of the source galaxy is characterized by a strong continuum emission with strong UV absorption lines (Fe II and Mg II) and shows the features of a typical starburst Wolf-Rayet galaxy, NGC 5253. More specifically, we have measured the equivalent widths of Fe II and Mg II lines in the A2667 spectrum, and obtained similar values for the same wavelength interval of the NGC 5253 spectrum. Marginal evidence for [C III] 1909 emission at the edge of the grism range further confirms our expectation.

  3. Source-plane Reconstruction of the Giant Gravitational Arc in A2667: A Candidate Wolf-Rayet Galaxy at z ~ 1

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Covone, Giovanni; Jullo, Eric; Richard, Johan; Izzo, Luca; Zhu, Zong-Hong

    2015-01-01

    We present a new analysis of Hubble Space Telescope, Spitzer Space Telescope, and Very Large Telescope imaging and spectroscopic data of a bright lensed galaxy at z = 1.0334 in the lensing cluster A2667. Using this high-resolution imaging, we present an updated lens model that allows us to fully understand the lensing geometry and reconstruct the lensed galaxy in the source plane. This giant arc gives a unique opportunity to view the structure of a high-redshift disk galaxy. We find that the lensed galaxy of A2667 is a typical spiral galaxy with a morphology similar to the structure of its counterparts at higher redshift, z ~ 2. The surface brightness of the reconstructed source galaxy in the z 850 band reveals the central surface brightness I(0) = 20.28 ± 0.22 mag arcsec-2 and a characteristic radius rs = 2.01 ± 0.16 kpc at redshift z ~ 1. The morphological reconstruction in different bands shows obvious negative radial color gradients for this galaxy. Moreover, the redder central bulge tends to contain a metal-rich stellar population, rather than being heavily reddened by dust due to high and patchy obscuration. We analyze the VIMOS/integral field unit spectroscopic data and find that, in the given wavelength range (~1800-3200 Å), the combined arc spectrum of the source galaxy is characterized by a strong continuum emission with strong UV absorption lines (Fe II and Mg II) and shows the features of a typical starburst Wolf-Rayet galaxy, NGC 5253. More specifically, we have measured the equivalent widths of Fe II and Mg II lines in the A2667 spectrum, and obtained similar values for the same wavelength interval of the NGC 5253 spectrum. Marginal evidence for [C III] 1909 emission at the edge of the grism range further confirms our expectation.

  4. The Wind-Wind Collision Region of the Wolf-Rayet Binary V444 Cygni: How Much Optical Line Emission Does It Produce?

    NASA Astrophysics Data System (ADS)

    Flores, Aaron; Auer, Lawrence H.; Koenigsberger, Gloria; Cardona, Octavio

    2001-12-01

    We model the emission-line profile variations that are expected to be produced by physical and wind eclipses in the Wolf-Rayet (W-R+O) binary system V444 Cyg. A comparison of the theoretical profiles with the He II 4686 Å line observed in V444 Cyg allows us to isolate the effects that are likely to be due to the wind-wind collision region in this particular line. We estimate that the wind-wind collision region contributes no more than ~12% of the equivalent width of the emission line, with smaller values during elongations, when part of the shock cone is being eclipsed by the O star. The upper limit implies a maximum contribution from the wind-wind collision region of ~1×1035 ergs s-1 to the total luminosity of He II 4686 Å line. Using the analytical solution of Cantó et al., we find that the bulk of this emission arises along the shock cone walls where the flow velocity is ~800 km s-1, at a distance of ~8 Rsolar from the O star's surface, and at θ=65°-75° from the line joining the centers of the two stars, with origin in the O star. The derived surface density of this region is σ=0.22 g cm-2, which, together with the He II 4686 Å luminosity, indicates that the thickness of the shock lies in the range 2-10×1010 cm and the total density is 1-6×1012 cm-3.

  5. The Wind-Wind Collision Region of the Wolf-Rayet Binary V444 Cyg: How much optical line emission does it produce ?

    NASA Astrophysics Data System (ADS)

    Flores, A.; Auer, L. H.; Koenigsberger, G.; Cardona, O.

    2001-12-01

    We model the emission line profile variations that are expected to be produced by physical and wind eclipses in the Wolf-Rayet (WR+O) binary system V444 Cyg. A comparison of the theoretical profiles with the He II 4686 Å line observed in V444 Cyg allows us to isolate the effects that are likely to be due to the wind-wind collision region, in this particular line. We estimate that the WWC region contributes no more than ~ 12% of the equivalent width of the emission line, with smaller values during elongations, when part of the shock cone is being eclipsed by the O-star. The upper limit implies a maximum contribution from the wind-wind collision region of ~ 1.*E35 ergs s-1 to the total luminosity of He II 4686 Å line. Using the analytical solution of Cantó et al. (1996), we find that the bulk of this emission seems to be arising along the shock cone walls where the flow velocity is ~ 800 km s-1, at a distance of ~ 8 {Rsun }\\> from the O-star's surface, and at Θ =60-70o from the line joining the centers of the two stars, with origin in the O-star. The derived surface density of this region is σ =0.22 gr cm-2, which together with the He II 4686 Å luminosity, indicates that the thickness of the shock lies in the range 2-10 x 1010 cm and the total density is 1-6 x 1012 cm-3.

  6. X-ray Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen; Gudel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2006-01-01

    We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Ka line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only nondetections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.

  7. Mass loss from Wolf-Rayet stars - an analysis of radio and infrared observations of MR 111 /AS 422/

    NASA Astrophysics Data System (ADS)

    Felli, M.; Panagia, N.

    1982-11-01

    VLA radio observations at 1.3 cm of the Wolf-Rayet star MR 111 are reported. The collected fluxes over a frequency range from 1.65 micron to 6 cm are considered and separated into two components: a stellar blackbody and an extended envelope emission. The envelope emission is interpreted in terms of an ionized accelerated outflow due to mass loss. The parameters that define the outflow, i.e., the mass loss and the shape of the velocity curve, as well as the stellar photospheric radius, are derived from a best fit of the available data. MR 111 is found to be a WN-type star, with a radius of 25 solar radii losing mass at a rate of 0.000025 solar mass/yr with acceleration occurring in the inner part of the outflow.

  8. The first linear polarization spectra of Wolf-Rayet stars in the ultraviolet - EZ Canis Majoris and Theta Muscae

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, R. E.; Nordsieck, K. H.; Code, A. D.; Anderson, C. M.; Babler, B. L.; Bjorkman, K. S.; Clayton, G. C.; Magalhaes, A. M.; Meade, M. R.; Shepherd, D.

    1992-01-01

    During the 1990 December Astro-1 Space Shuttle mission, spectropolarimetry was conducted in the wavelength region from 1400 to 3200 A of the Wolf-Rayet stars EZ CMa (WN5) and Theta Mus (WC6 + O9.5I) with the Wisconsin Ultraviolet Photo-Polarimeter Experiment. The UV polarization of EZ CMa displays features which correspond to emission lines. This indicates a large, about 0.8 percent, intrinsic UV-continuum polarization, and provides further evidence that the wind of EZ CMa is highly distorted. The polarization of Theta Mus does not change across emission lines, or the strong interstellar 2200 A feature. The polarization decreases smoothly to shorter wavelengths, at constant position angle. The combined UV-optical polarization spectrum of Theta Mus can be described well with interstellar polarization following a Serkowski law.

  9. X-ray Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen; Gudel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2006-01-01

    We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Ka line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only nondetections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.

  10. The Galactic hybrid Wolf-Rayet WN7o/CE + O7V((f)) binary system WR145

    NASA Astrophysics Data System (ADS)

    Muntean, V.; Moffat, A. F. J.; Chené, A. N.; de La Chevrotière, A.

    2009-11-01

    A spectroscopic study of the binary Wolf-Rayet (WR)+O system WR145 is performed, in order to determine the radial velocity orbits of the individual stars, the angle of orbital inclination and the stellar masses. The emission and absorption components are separated from the original spectra, allowing us to confirm the spectral classification WN7o/CE of the hybrid WR component and to derive a spectral classification O7V((f)) for the O star. A study of the wind-collision properties is performed. Fitting the radial velocity and full width at half-maximum of the excess emission with Lührs' model results in an inclination angle of i = 63°, leading to estimates of the stellar masses: MWR = 18Msolar and MO = 31Msolar. Both of these masses are compatible with those of other stars of similar types.

  11. Spectral study of the late nitrogen-sequence Wolf-Rayet star FSZ35 in M33

    NASA Astrophysics Data System (ADS)

    Maryeva, O.; Abolmasov, P.

    2012-04-01

    We study and analyse the low-resolution spectra of the unusual late nitrogen-sequence Wolf-Rayet (WN) star FSZ35 in M33. We classify the object as a hydrogen-rich WN8 star. Using the radiative transfer code CMFGEN, we determine the physical parameters of this object and we compare these to the parameters of other WN8 stars, including the luminous blue variable V532 (also known as Romano's star) during the minimum of its brightness. Unlike V532, the object is fairly stable, both spectrally and photometrically, which can be attributed to its more advanced evolutionary stage or lower luminosity. FSZ35 is shown to possess a compact nebula that produces a faint but detectable [O III] emission.

  12. THE DISCOVERY OF A RARE WO-TYPE WOLF-RAYET STAR IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Neugent, Kathryn F.; Massey, Philip; Morrell, Nidia E-mail: phil.massey@lowell.edu

    2012-12-01

    While observing OB stars within the most crowded regions of the Large Magellanic Cloud, we happened upon a new Wolf-Rayet (WR) star in Lucke-Hodge 41, the rich OB association that contains S Doradus and numerous other massive stars. At first glance the spectrum resembled that of a WC4 star, but closer examination showed strong O VI {lambda}{lambda}3811, 34 lines, leading us to classify it as a WO4. This is only the second known WO in the LMC, and the first known WO4 (the other being a WO3). This rarity is to be expected due to these stars' short lifespans as they represent the most advanced evolutionary stage in a massive star's lifetime before exploding as supernovae. This discovery shows that while the majority of WRs within the LMC have been discovered, there may be a few WRs left to be found.

  13. The Statistical Sobolev-Rosseland Mean and the Effects of Frequency Redistribution on Wolf-Rayet Wind Driving

    NASA Astrophysics Data System (ADS)

    Onifer, A. J.; Gayley, K. G.

    2003-06-01

    The optically thick character of Wolf-Rayet winds implies that stellar continuum photons are multiply scattered, as a result of both free electron opacity and overlapping wind-broadened spectral lines. This allows the wind to accumulate a substantial excess in momentum flux relative to the driving radiation field, as is observationally required. Nevertheless, sustaining such a high degree of multiple scattering requires not only a large optical depth spatially but also substantial spectral blanketing. The latter is difficult to maintain when redistribution during scattering allows radiative flux to shift preferentially into spectral regions with fewer lines, since then the channels carrying much of the flux are also the least well blanketed. This paper parameterizes the potential severity of this effect in simple terms, using a generalization of the Rosseland mean treated in the Sobolev approximation. We show that our approach provides an informative starting point for characterizing and conceptualizing nongray effects in optically thick supersonic flows.

  14. Pinwheels in the sky, with dust: 3D modelling of the Wolf-Rayet 98a environment

    NASA Astrophysics Data System (ADS)

    Hendrix, Tom; Keppens, Rony; van Marle, Allard Jan; Camps, Peter; Baes, Maarten; Meliani, Zakaria

    2016-08-01

    The Wolf-Rayet 98a (WR 98a) system is a prime target for interferometric surveys, since its identification as a `rotating pinwheel nebulae', where infrared images display a spiral dust lane revolving with a 1.4 yr periodicity. WR 98a hosts a WC9+OB star, and the presence of dust is puzzling given the extreme luminosities of Wolf-Rayet stars. We present 3D hydrodynamic models for WR 98a, where dust creation and redistribution are self-consistently incorporated. Our grid-adaptive simulations resolve details in the wind collision region at scales below one percent of the orbital separation (˜4 au), while simulating up to 1300 au. We cover several orbital periods under conditions where the gas component alone behaves adiabatic, or is subject to effective radiative cooling. In the adiabatic case, mixing between stellar winds is effective in a well-defined spiral pattern, where optimal conditions for dust creation are met. When radiative cooling is incorporated, the interaction gets dominated by thermal instabilities along the wind collision region, and dust concentrates in clumps and filaments in a volume-filling fashion, so WR 98a must obey close to adiabatic evolutions to demonstrate the rotating pinwheel structure. We mimic Keck, ALMA or future E-ELT observations and confront photometric long-term monitoring. We predict an asymmetry in the dust distribution between leading and trailing edge of the spiral, show that ALMA and E-ELT would be able to detect fine-structure in the spiral indicative of Kelvin-Helmholtz development, and confirm the variation in photometry due to the orientation. Historic Keck images are reproduced, but their resolution is insufficient to detect the details we predict.

  15. ISOLATED WOLF-RAYET STARS AND O SUPERGIANTS IN THE GALACTIC CENTER REGION IDENTIFIED VIA PASCHEN-{alpha} EXCESS

    SciTech Connect

    Mauerhan, J. C.; Stolovy, S. R.; Cotera, A.; Dong, H.; Wang, Q. D.; Morris, M. R.; Lang, C.

    2010-12-10

    We report the discovery of 19 hot, evolved, massive stars near the Galactic center region (GCR). These objects were selected for spectroscopy owing to their detection as strong sources of Paschen-{alpha} (P{alpha}) emission-line excess, following a narrowband imaging survey of the central 0.{sup 0}65 x 0.{sup 0}25 (l, b) around Sgr A* with the Hubble Space Telescope. Discoveries include six carbon-type (WC) and five nitrogen-type (WN) Wolf-Rayet stars, six O supergiants, and two B supergiants. Two of the O supergiants have X-ray counterparts having properties consistent with solitary O stars and colliding-wind binaries. The infrared photometry of 17 stars is consistent with the Galactic center distance, but 2 of them are located in the foreground. Several WC stars exhibit a relatively large infrared excess, which is possibly thermal emission from hot dust. Most of the stars appear scattered throughout the GCR, with no relation to the three known massive young clusters; several others lie near the Arches and Quintuplet clusters and may have originated within one of these systems. The results of this work bring the total sample of Wolf-Rayet (WR) stars in the GCR to 88. All sources of strong P{alpha} excess have been identified in the area surveyed with HST, which implies that the sample of WN stars in this region is near completion, and is dominated by late (WNL) types. The current WC sample, although probably not complete, is almost exclusively dominated by late (WCL) types. The observed WR subtype distribution in the GCR is a reflection of the intrinsic rarity of early subtypes (WNE and WCE) in the inner Galaxy, an effect that is driven by metallicity.

  16. An extensive spectroscopic time series of three Wolf-Rayet stars - I. The lifetime of large-scale structures in the wind of WR 134

    NASA Astrophysics Data System (ADS)

    Aldoretta, E. J.; St-Louis, N.; Richardson, N. D.; Moffat, A. F. J.; Eversberg, T.; Hill, G. M.; Shenar, T.; Artigau, É.; Gauza, B.; Knapen, J. H.; Kubát, J.; Kubátová, B.; Maltais-Tariant, R.; Muñoz, M.; Pablo, H.; Ramiaramanantsoa, T.; Richard-Laferrière, A.; Sablowski, D. P.; Simón-Díaz, S.; St-Jean, L.; Bolduan, F.; Dias, F. M.; Dubreuil, P.; Fuchs, D.; Garrel, T.; Grutzeck, G.; Hunger, T.; Küsters, D.; Langenbrink, M.; Leadbeater, R.; Li, D.; Lopez, A.; Mauclaire, B.; Moldenhawer, T.; Potter, M.; dos Santos, E. M.; Schanne, L.; Schmidt, J.; Sieske, H.; Strachan, J.; Stinner, E.; Stinner, P.; Stober, B.; Strandbaek, K.; Syder, T.; Verilhac, D.; Waldschläger, U.; Weiss, D.; Wendt, A.

    2016-08-01

    During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analysed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analysing the variability of the He II λ5411 emission line, the previously identified period was refined to P = 2.255 ± 0.008 (s.d.) d. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 ± 6 d, or ˜18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grey-scale difference images with theoretical grey-scales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of Δφ ≃ 90° was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C IV λλ5802,5812 and He I λ5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He I λ5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist.

  17. RE-EXAMINING HIGH ABUNDANCE SLOAN DIGITAL SKY SURVEY MASS-METALLICITY OUTLIERS: HIGH N/O, EVOLVED WOLF-RAYET GALAXIES?

    SciTech Connect

    Berg, Danielle A.; Skillman, Evan D.; Marble, Andrew R. E-mail: skillman@astro.umn.edu

    2011-09-01

    We present new MMT spectroscopic observations of four dwarf galaxies representative of a larger sample observed by the Sloan Digital Sky Survey and identified by Peeples et al. as low-mass, high oxygen abundance outliers from the mass-metallicity relation. Peeples showed that these four objects (with metallicity estimates of 8.5 {<=} 12 + log(O/H) {<=} 8.8) have oxygen abundance offsets of 0.4-0.6 dex from the M{sub B} luminosity-metallicity relation. Our new observations extend the wavelength coverage to include the [O II] {lambda}{lambda}3726, 3729 doublet, which adds leverage in oxygen abundance estimates and allows measurements of N/O ratios. All four spectra are low excitation, with relatively high N/O ratios (N/O {approx}> 0.10), each of which tend to bias estimates based on strong emission lines toward high oxygen abundances. These spectra all fall in a regime where the 'standard' strong-line methods for metallicity determinations are not well calibrated either empirically or by photoionization modeling. By comparing our spectra directly to photoionization models, we estimate oxygen abundances in the range of 7.9 {<=} 12 + log (O/H) {<=} 8.4, consistent with the scatter of the mass-metallicity relation. We discuss the physical nature of these galaxies that leads to their unusual spectra (and previous classification as outliers), finding their low excitation, elevated N/O, and strong Balmer absorption are consistent with the properties expected from galaxies evolving past the 'Wolf-Rayet galaxy' phase. We compare our results to the 'main' sample of Peeples and conclude that they are outliers primarily due to enrichment of nitrogen relative to oxygen and not due to unusually high oxygen abundances for their masses or luminosities.

  18. The Wolf-Rayet stars in the Large Magellanic Cloud. A comprehensive analysis of the WN class

    NASA Astrophysics Data System (ADS)

    Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W.-R.

    2014-05-01

    Context. Massive stars, although being important building blocks of galaxies, are still not fully understood. This especially holds true for Wolf-Rayet (WR) stars with their strong mass loss, whose spectral analysis requires adequate model atmospheres. Aims: Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods: For the quantitative analysis of the wind-dominated emission-line spectra, we employ the Potsdam Wolf-Rayet (PoWR) model atmosphere code. By fitting synthetic spectra to the observed spectral energy distribution and the available spectra (ultraviolet and optical), we obtain the physical properties of 107 stars. Results: We present the fundamental stellar and wind parameters for an almost complete sample of WN stars in the LMC. Among those stars that are putatively single, two different groups can be clearly distinguished. While 12% of our sample are more luminous than 106L⊙ and contain a significant amount of hydrogen, 88% of the WN stars, with little or no hydrogen, populate the luminosity range between log (L/L⊙) = 5.3 ... 5.8. Conclusions: While the few extremely luminous stars (log (L/L⊙) > 6), if indeed single stars, descended directly from the main sequence at very high initial masses, the bulk of WN stars have gone through the red-supergiant phase. According to their luminosities in the range of log (L/L⊙) = 5.3 ... 5.8, these stars originate from initial masses between 20 and 40 M⊙. This mass range is similar to the one found in the Galaxy, i.e. the expected metallicity dependence of the evolution is not seen. Current stellar evolution tracks, even when accounting for rotationally induced mixing, still partly fail to reproduce the observed ranges of luminosities and initial masses. Moreover, stellar radii are generally larger and effective temperatures correspondingly lower than predicted from stellar evolution models, probably due to

  19. Wolf-Rayet stars in M81: detection and characterization using GTC/OSIRIS spectra and HST/ACS images

    NASA Astrophysics Data System (ADS)

    Gómez-González, V. M. A.; Mayya, Y. D.; Rosa-González, D.

    2016-08-01

    We here report the properties of Wolf-Rayet (W-R) stars in 14 locations in the nearby spiral galaxy M81. These locations were found serendipitously while analysing the slit spectra of a sample of ˜150 star-forming complexes, taken using the long-slit and multiobject spectroscopic modes of the OSIRIS instrument at the 10.4-m Gran Telescopio Canarias. Colours and magnitudes of the identified point sources in the Hubble Space Telescope images compare well with those of individual W-R stars in the Milky Way. Using templates of individual W-R stars, we infer that the objects responsible for the observed W-R features are single stars in 12 locations, comprising of three WNLs, three WNEs, two WCEs and four transitional WN/C types. In diagrams involving bump luminosities and the width of the bumps, the W-R stars of the same sub-class group together, with the transitional stars occupying locations intermediate between the WNE and WCE groups, as expected from the evolutionary models. However, the observed number of 4 transitional stars out of our sample of 14 is statistically high as compared to the 4 per cent expected in stellar evolutionary models.

  20. High-resolution X-Ray Spectroscopy Reveals the Special Nature of Wolf-Rayet Star Winds

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Gayley, K. G.; Hamann, W.-R.; Huenemoerder, D. P.; Ignace, R.; Pollock, A. M. T.

    2012-03-01

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, "cool" stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at ≈6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow "sticky clumps" that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.

  1. A RUNAWAY WOLF-RAYET STAR AS THE ORIGIN OF {sup 26}Al IN THE EARLY SOLAR SYSTEM

    SciTech Connect

    Tatischeff, Vincent; Duprat, Jean; De Sereville, Nicolas

    2010-05-01

    Establishing the origin of the short-lived radionuclide (SLR) {sup 26}Al, which was present in refractory inclusions in primitive meteorites, has profound implications for the astrophysical context of solar system formation. Recent observations that {sup 26}Al was homogeneously distributed in the inner solar system prove that this SLR has a stellar origin. In this Letter, we address the issue of the incorporation of hot {sup 26}Al-rich stellar ejecta into the cold protosolar nebula. We first show that the {sup 26}Al atoms produced by a population of massive stars in an OB association cannot be injected into protostellar cores with enough efficiency. We then show that this SLR likely originated in a Wolf-Rayet star that escaped from its parent cluster and interacted with a neighboring molecular cloud. The explosion of this runaway star as a supernova probably triggered the formation of the solar system. This scenario also accounts for the meteoritic abundance of {sup 41}Ca.

  2. POPULATION I WOLF-RAYET RUNAWAY STARS: THE CASE OF WR124 AND ITS EXPANDING NEBULA M1-67

    SciTech Connect

    Marchenko, S. V.; Moffat, A. F. J.; Crowther, P. A. E-mail: moffat@astro.umontreal.c

    2010-11-20

    In 1997 and 2008 we used the WFPC2 camera on board the Hubble Space Telescope to obtain two sets of narrow-band H{alpha} images of the runaway Wolf-Rayet (WR) star WR 124 surrounded by its nebula M1-67. This two-epoch imaging provides an expansion parallax and thus a practically assumption-free geometric distance to the nebula, d = 3.35 {+-} 0.67 kpc. Combined with the global velocity distribution in the ejected nebula, this confirms the extreme runaway status of WR 124. WR stars embedded within such ejection nebulae at the point of core collapse would produce different supernova characteristics from those expected for stars surrounded by wind-filled cavities. In galaxies with extremely low ambient metallicity, Z {<=} 10{sup -3} Z {sub sun}, {gamma}-ray bursts originating from fast-moving runaway WR stars may produce afterglows which appear to be coming from regions with a relatively homogeneous circumburst medium.

  3. VizieR Online Data Catalog: Rotating Wolf-Rayet stars in post RSG/LBV phase (Graefener+, 2012)

    NASA Astrophysics Data System (ADS)

    Graefener, G.; Vink, J. S.; Harries, T. J.; Langer, N.

    2013-01-01

    Wolf-Rayet (WR) stars with fast rotating cores are thought to be the direct progenitors of long-duration gamma-ray bursts (LGRBs). A well accepted evolutionary channel towards LGRBs is chemically-homogeneous evolution at low metallicities, which completely avoids a red supergiant (RSG), or luminous blue variable (LBV) phase. On the other hand, strong absorption features with velocities of several hundred km/s have been found in some LGRB afterglow spectra (GRB 020813 and GRB 021004), which have been attributed to dense circumstellar (CS) material that has been ejected in a previous RSG or LBV phase, and is interacting with a fast WR-type stellar wind. Here we investigate the properties of Galactic WR stars and their environment to identify similar evolutionary channels that may lead to the formation of LGRBs. We compile available information on the spectropolarimetric properties of 29 WR stars, the presence of CS ejecta for 172 WR stars, and the CS velocities in the environment of 34 WR stars in the Galaxy. We use linear line-depolarization as an indicator of rotation, nebular morphology as an indicator of stellar ejecta, and velocity patterns in UV absorption features as an indicator of increased velocities in the CS environment. (2 data files).

  4. Detached dust shell around Wolf-Rayet star WR60-6 in the young stellar cluster VVV CL036

    SciTech Connect

    Borissova, J.; Amigo, P.; Kurtev, R.; Kumar, M. S. N.; Chené, A.-N.; Minniti, D.

    2014-01-01

    The discovery of a detached dust shell around the Wolf-Rayet (WR) star WR60-6 in the young stellar cluster VVV CL036 is reported. This shell is uncovered through the Spitzer-MIPS 24 μm image, where it appears brightest, and it is invisible at shorter wavelengths. Using new APEX observations and other data available from the literature, we have estimated some of the shell parameters: the inner and outer radii of 0.15 and 0.90 pc, respectively; the overall systemic velocity of the molecular {sup 12}CO(3 → 2) emission of –45.7 ± 2.3 km s{sup –1}; an expansion velocity of the gas of 16.3 ± 1 km s{sup –1}; the dust temperature and opacity of 122 ± 12 K and 1.04, respectively; and an age of 2.8 × 10{sup 4} yr. The WR star displays some cyclic variability. The mass computed for the WR60-6 nebula indicates that the material was probably ejected during its previous stages of evolution. In addition, we have identified a bright spot very close to the shell, which can be associated with the Midcourse Space Experiment source G312.13+00.20.

  5. CHANDRA DETECTS THE RARE OXYGEN-TYPE WOLF-RAYET STAR WR 142 AND OB STARS IN BERKELEY 87

    SciTech Connect

    Sokal, Kimberly R.; Skinner, Stephen L.; Zhekov, Svetozar A.; Guedel, Manuel; Schmutz, Werner E-mail: stephen.skinner@colorado.ed

    2010-06-01

    We present first results of a Chandra X-ray observation of the rare oxygen-type Wolf-Rayet (WR) star WR 142 (= Sand 5 = St 3) harbored in the young, heavily obscured cluster Berkeley 87. Oxygen-type WO stars are thought to be the most evolved of the WRs and progenitors of supernovae or gamma-ray bursts. As part of an X-ray survey of supposedly single WR stars, we observed WR 142 and the surrounding Berkeley 87 region with Chandra ACIS-I. We detect WR 142 as a faint yet extremely hard X-ray source. Due to weak emission, its nature as a thermal or non-thermal emitter is unclear and thus we discuss several emission mechanisms. Additionally, we report seven detections and eight non-detections by Chandra of massive OB stars in Berkeley 87, two of which are bright yet soft X-ray sources whose spectra provide a dramatic contrast to the hard emission from WR 142.

  6. NEW CONSTRAINTS ON THE ORIGIN OF THE SHORT-TERM CYCLICAL VARIABILITY OF THE WOLF-RAYET STAR WR 46

    SciTech Connect

    Henault-Brunet, V.; St-Louis, N.; Marchenko, S. V.; Pollock, A. M. T.; Talavera, A.; Carpano, S. E-mail: stlouis@astro.umontreal.ca E-mail: andy.pollock@esa.int E-mail: scarpano@rssd.esa.int

    2011-07-01

    The Wolf-Rayet star WR 46 is known to exhibit a very complex variability pattern on relatively short timescales of a few hours. Periodic but intermittent radial velocity shifts of optical lines as well as multiple photometric periods have been found in the past. Non-radial pulsations, rapid rotational modulation, or the presence of a putative low-mass companion have been proposed to explain the short-term behavior. In an effort to unveil its true nature, we observed WR 46 with the Far Ultraviolet Spectroscopic Explorer (FUSE) over several short-term variability cycles. We found significant variations on a timescale of {approx}8 hr in the far-ultraviolet (FUV) continuum, in the blue edge of the absorption trough of the O VI {lambda}{lambda}1032, 1038 doublet P Cygni profile and in the S VI {lambda}{lambda}933, 944 P Cygni absorption profile. We complemented these observations with X-ray and UV light curves and an X-ray spectrum from archival X-ray Multi-Mirror Mission-Newton Space Telescope (XMM-Newton) data. The X-ray and UV light curves show variations on a timescale similar to the variability found in the FUV. We discuss our results in the context of the different scenarios suggested to explain the short-term variability of this object and reiterate that non-radial pulsations is the scenario most likely to occur.

  7. Chemical self-enrichment of HII regions by the Wolf-Rayet phase of an 85 M⊙ star

    NASA Astrophysics Data System (ADS)

    Kröger, D.; Hensler, G.; Freyer, T.

    2006-04-01

    It is clear from stellar evolution and from observations of WR stars that massive stars are releasing metal-enriched gas through their stellar winds in the Wolf-Rayet phase. Although Hii region spectra serve as diagnostics to determine the present-day chemical composition of the interstellar medium, it is far from being understood to what extent the Hii gas is already contaminated by chemically processed stellar wind. Therefore, we analyzed our models of radiative and wind bubbles of an isolated 85 M⊙ star with solar metallicity (Kröger et al. 2006, A&A, in preparation) with respect to the chemical enrichment of the circumstellar Hii region. Plausibly, the hot stellar wind bubble (SWB) is enriched with 14N during the WN phase and even much higher with 12C and 16O during the WC phase of the star. During the short period that the 85 M⊙ star spends in the WC stage enriched SWB material mixes with warm Hii gas of solar abundances and thus enhances the metallicity in the Hii region. However, at the end of the stellar lifetime the mass ratios of the traced elements N and O in the warm ionized gas are insignificantly higher than solar, whereas an enrichment of 22% above solar is found for C. Important issues from the presented study comprise a steeper radial gradient of C than O and a decreasing effect of self-enrichment for metal-poor galaxies.

  8. HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS

    SciTech Connect

    Oskinova, L. M.; Hamann, W.-R.; Gayley, K. G.; Huenemoerder, D. P.; Ignace, R.; Pollock, A. M. T.

    2012-03-10

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, 'cool' stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at Almost-Equal-To 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow 'sticky clumps' that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.

  9. The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Shenar, Tomer; Roy-Loubier, Olivier; Schaefer, Gail; Moffat, Anthony F. J.; St-Louis, Nicole; Gies, Douglas R.; Farrington, Chris; Hill, Grant M.; Williams, Peredur M.; Gordon, Kathryn; Pablo, Herbert; Ramiaramanantsoa, Tahina

    2016-10-01

    We report on interferometric observations with the CHARA Array of two classical Wolf-Rayet (WR) stars in suspected binary systems, namely WR 137 and WR 138. In both cases, we resolve the component stars to be separated by a few milliarcseconds. The data were collected in the H band, and provide a measure of the fractional flux for both stars in each system. We find that the WR star is the dominant H-band light source in both systems (fWR,137 = 0.59 ± 0.04; fWR,138 = 0.67 ± 0.01), which is confirmed through both comparisons with estimated fundamental parameters for WR stars and O dwarfs, as well as through spectral modelling of each system. Our spectral modelling also provides fundamental parameters for the stars and winds in these systems. The results on WR 138 provide evidence that it is a binary system which may have gone through a previous mass-transfer episode to create the WR star. The separation and position of the stars in the WR 137 system together with previous results from the IOTA interferometer provides evidence that the binary is seen nearly edge-on. The possible edge-on orbit of WR 137 aligns well with the dust production site imaged by the Hubble Space Telescope during a previous periastron passage, showing that the dust production may be concentrated in the orbital plane.

  10. The binary systems IC 10 X-1 and NGC 300 X-1: Accretion of matter from an intense Wolf-Rayet stellar wind onto a black hole

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.; Fedorova, A. V.

    2016-01-01

    The current evolutionary stage of the binary systems IC 10 X-1 and NGC 300 X-1, which contain a massive black hole and a Wolf-Rayet star with a strong stellar wind that does not fill its Roche lobe, is considered. The high X-ray luminosity and X-ray properties testify to the presence of accretion disks in these systems. The consistency of the conditions for the existence of such a disk and the possibility of reproducing the observed X-ray luminosity in the framework of the Bondi-Hoyle-Littleton theory for a spherically symmetric stellar wind is analyzed. A brief review of information about the mass-loss rates of Wolf-Rayet stars and the speeds of their stellar winds is given. The evolution of these systems at the current stage is computed. Estimates made using the derived parameters show that it is not possible to achieve consistency, since the conditions for the existence of an accretion disk require that the speed of the Wolf-Rayetwind be appreciably lower than is required to reproduce the observedX-ray luminosity. Several explanations of this situation are possible: (1) the real pattern of the motion of the stellar-wind material in the binary is substantially more complex than is assumed in the Bondi-Hoyle-Littleton theory, changing the conditions for the formation of an accretion disk and influencing the accretion rate onto the black hole; (2) some of the accreting material leaves the accretor due to X-ray heating; (3) the accretion efficiency in these systems is nearly an order of magnitude lower than in the case of accretion through a thin disk onto a non-rotating black hole; (4) the intensity of the Wolf-Rayet wind is one to two orders of magnitude lower than has been suggested by modern studies.

  11. The X-ray light curve of the massive colliding wind Wolf-Rayet + O binary WR 21a

    NASA Astrophysics Data System (ADS)

    Gosset, Eric; Nazé, Yaël

    2016-05-01

    Our dedicated XMM-Newton monitoring, as well as archival Chandra and Swift datasets, were used to examine the behaviour of the WN5h+O3V binary WR 21a at high energies. For most of the orbit, the X-ray emission exhibits few variations. However, an increase in strength of the emission is seen before periastron, following a 1 /D relative trend, where D is the separation between both components. This increase is rapidly followed by a decline due to strong absorption as the Wolf-Rayet (WR) comes in front. The fitted local absorption value appears to be coherent with a mass-loss rate of about 1 × 10-5 M⊙ yr-1 for the WR component. However, absorption is not the only parameter affecting the X-ray emission at periastron as even the hard X-ray emission decreases, suggesting a possible collapse of the colliding wind region near to or onto the photosphere of the companion just before or at periastron. An eclipse may appear as another potential scenario, but it would be in apparent contradiction with several lines of evidence, notably the width of the dip in the X-ray light curve and the absence of variations in the UV light curve. Afterwards, the emission slowly recovers, with a strong hysteresis effect. The observed behaviour is compatible with predictions from general wind-wind collision models although the absorption increase is too shallow. Based on observations collected at ESO as well as with Swift, Chandra, and the ESA science mission XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

  12. Modelling the thermal X-ray emission around the Galactic centre from colliding Wolf-Rayet winds

    NASA Astrophysics Data System (ADS)

    Russell, Christopher M. P.; Wang, Q. Daniel; Cuadra, Jorge

    2017-01-01

    The Galactic centre is a hotbed of astrophysical activity, with the injection of wind material from ~30 massive Wolf-Rayet (WR) stars orbiting within 12'' of the super-massive black hole (SMBH) playing an important role. Hydrodynamic simulations of such colliding and accreting winds produce a complex density and temperature structure of cold wind material shocking with the ambient medium, creating a large reservoir of hot, X-ray-emitting gas. This work aims to confront the 3Ms of Chandra X-ray Visionary Program (XVP) observations of this diffuse emission by computing the X-ray emission from these hydrodynamic simulations of the colliding WR winds, amid exploring a variety of SMBH feedback mechanisms. The major success of the model is that it reproduces the spectral shape from the 2''-5'' ring around the SMBH, where most of the stellar wind material that is ultimately captured by Sgr A* is shock-heated and thermalised. This naturally explains that the hot gas comes from colliding WR winds, and that the wind speeds of these stars are in general well constrained. The flux level of these spectra, as well as 12''×12'' images of 4-9 keV, show the X-ray flux is tied to the SMBH feedback strength; stronger feedback clears out more hot gas, thereby decreasing the thermal X-ray emission. The model in which Sgr A* produced an intermediate-strength outflow during the last few centuries best matches the observations to within about 10%, showing SMBH feedback is required to interpret the X-ray emission in this region.

  13. Modelling the thermal X-ray emission around the Galactic Centre from colliding Wolf-Rayet winds

    NASA Astrophysics Data System (ADS)

    Russell, Christopher M. P.; Wang, Q. Daniel; Cuadra, Jorge

    2017-02-01

    The Galactic Centre is a hotbed of astrophysical activity, with the injection of wind material from ˜30 massive Wolf-Rayet (WR) stars orbiting within 12 arcsec of the supermassive black hole (SMBH) playing an important role. Hydrodynamic simulations of such colliding and accreting winds produce a complex density and temperature structure of cold wind material shocking with the ambient medium, creating a large reservoir of hot, X-ray-emitting gas. This work aims to confront the 3 Ms of Chandra X-ray Visionary Program observations of this diffuse emission by computing the X-ray emission from these hydrodynamic simulations of the colliding WR winds, amid exploring a variety of SMBH feedback mechanisms. The major success of the model is that it reproduces the spectral shape from the 2-5 arcsec ring around the SMBH, where most of the stellar wind material that is ultimately captured by Sgr A* is shock-heated and thermalized. This naturally explains that the hot gas comes from colliding WR winds, and that the wind speeds of these stars are, in general, well constrained. The flux level of these spectra, as well as 12 × 12-arcsec2 images of 4-9 keV, shows that the X-ray flux is tied to the SMBH feedback strength; stronger feedback clears out more hot gas, thereby decreasing the thermal X-ray emission. The model in which Sgr A* produced an intermediate-strength outflow during the last few centuries best matches the observations to within about 10 per cent, showing that SMBH feedback is required to interpret the X-ray emission in this region.

  14. Modelling the thermal X-ray emission around the Galactic center from colliding Wolf-Rayet winds

    NASA Astrophysics Data System (ADS)

    Post Russell, Christopher Michael; Wang, Q. Daniel; Cuadra, Jorge

    2017-01-01

    The Galactic center is a hotbed of astrophysical activity, with the injection of wind material from ˜30 massive Wolf-Rayet (WR) stars orbiting within 12" of the super-massive black hole (SMBH) playing an important role. Hydrodynamic simulations of such colliding and accreting winds produce a complex density and temperature structure of cold wind material shocking with the ambient medium, creating a large reservoir of hot, X-ray-emitting gas. This work aims to confront the 3Ms of Chandra X-ray Visionary Program (XVP) observations of this diffuse emission by computing the X-ray emission from these hydrodynamic simulations of the colliding WR winds, amid exploring a variety of SMBH feedback mechanisms. The major success of the model is that it reproduces the spectral shape from the 2"-5" ring around the SMBH, where most of the stellar wind material that is ultimately captured by Sgr A* is shock-heated and thermalized. This naturally explains that the hot gas comes from colliding WR winds, and that the wind speeds of these stars are in general well constrained. The flux level of these spectra, as well as 12"x12" images of 4-9 keV, show the X-ray flux is tied to the SMBH feedback strength; stronger feedback clears out more hot gas, thereby decreasing the thermal X-ray emission. The model in which Sgr A* produced an intermediate-strength outflow during the last few centuries best matches the observations to within about 10%, showing SMBH feedback is required to interpret the X-ray emission in this region.

  15. Towards a better understanding of the evolution of Wolf-Rayet stars and Type Ib/Ic supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Chul

    2017-10-01

    Hydrogen-deficient Wolf-Rayet (WR) stars are potential candidates of Type Ib/Ic supernova (SN Ib/Ic) progenitors and their evolution is governed by mass-loss. Stellar evolution models with the most popular prescription for WR mass-loss rates given by Nugis & Lamers have difficulties in explaining the luminosity distribution of WR stars of WC and WO types and the SN Ic progenitor properties. Here, we suggest some improvements in the WR mass-loss rate prescription and discuss its implications for the evolution of WR stars and SN Ib/Ic progenitors. Recent studies on Galactic WR stars clearly indicate that the mass-loss rates of WC stars are systematically higher than those of WNE stars for a given luminosity. The luminosity and initial metallicity dependences of WNE mass-loss rates are also significantly different from those of WC stars. These factors have not been adequately considered together in previous stellar evolution models. We also find that an overall increase of WR mass-loss rates by about 60 per cent compared to the empirical values obtained with a clumping factor of 10 is needed to explain the most faint WC/WO stars. This moderate increase with our new WR mass-loss rate prescription results in SN Ib/Ic progenitor models more consistent with observations than those given by the Nugis & Lamers prescription. In particular, our new models predict that the properties of SN Ib and SN Ic progenitors are distinctively different, rather than they form a continuous sequence.

  16. Modelling the thermal X-ray emission around the Galactic center from colliding Wolf-Rayet winds

    NASA Astrophysics Data System (ADS)

    Russell, Christopher Michael Post; Wang, Q. Daniel; Cuadra, Jorge

    2017-01-01

    The Galactic center is a hotbed of astrophysical activity, with the injection of wind material from ˜30 massive Wolf-Rayet (WR) stars orbiting within 12" of the super-massive black hole (SMBH) playing an important role. Hydrodynamic simulations of such colliding and accreting winds produce a complex density and temperature structure of cold wind material shocking with the ambient medium, creating a large reservoir of hot, X-ray-emitting gas. This work aims to confront the 3Ms of Chandra X-ray Visionary Program (XVP) observations of this diffuse emission by computing the X-ray emission from these hydrodynamic simulations of the colliding WR winds, amid exploring a variety of SMBH feedback mechanisms. The major success of the model is that it reproduces the spectral shape from the 2"-5" ring around the SMBH, where most of the stellar wind material that is ultimately captured by Sgr A* is shock-heated and thermalized. This naturally explains that the hot gas comes from colliding WR winds, and that the wind speeds of these stars are in general well constrained. The flux level of these spectra, as well as 12"x12" images of 4-9 keV, show the X-ray flux is tied to the SMBH feedback strength; stronger feedback clears out more hot gas, thereby decreasing the thermal X-ray emission. The model in which Sgr A* produced an intermediate-strength outflow during the last few centuries best matches the observations to within about 10%, showing SMBH feedback is required to interpret the X-ray emission in this region.

  17. Searching for magnetic fields in 11 Wolf-Rayet stars: Analysis of circular polarization measurements from ESPaDOnS

    SciTech Connect

    De la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J.; Collaboration: MiMeS Collaboration

    2014-02-01

    With recent detections of magnetic fields in some of their progenitor O stars, combined with known strong fields in their possible descendant neutron stars, it is natural to search for magnetic fields in Wolf-Rayet (WR) stars, despite the problems associated with the presence of winds enhanced by an order of magnitude over those of O stars. We continue our search among a sample of 11 bright WR stars following our introductory study in a previous paper of WR6 = EZ CMa using the spectropolarimeter ESPaDOnS at Canada-France-Hawaii Telescope, most of them in all four Stokes parameters. This sample includes six WN stars and five WC stars encompassing a range of spectral subclasses. Six are medium/long-period binaries and three show corotating interaction regions. We report no definite detections of a magnetic field in the winds in which the lines form (which is about the same distance from the center of the star as it is from the surface of the progenitor O star) for any of the eleven stars. Possible reasons and their implications are discussed. Nonetheless, the data show evidence supporting marginal detections for WR134, WR137, and WR138. According to the Bayesian analysis, the most probable field intensities are B {sub wind} ∼ 200, 130, and 80 G, respectively, with a 95.4% probability that the magnetic fields present in the observable parts of their stellar wind, if stronger, does not exceed B{sub wind}{sup max}∼1900 G, ∼1500 G, and ∼1500 G, respectively. In the case of non-detections, we report an average field strength upper limit of B{sub wind}{sup max}∼500 G.

  18. REVEALING THE ASYMMETRY OF THE WIND OF THE VARIABLE WOLF-RAYET STAR WR1 (HD 4004) THROUGH SPECTROPOLARIZATION

    SciTech Connect

    St-Louis, N.

    2013-11-01

    In this paper, high quality spectropolarimetric observations of the Wolf-Rayet (WR) star WR1 (HD 4004) obtained with ESPaDOnS at the Canada-France-Hawaii Telescope are presented. All major emission lines present in the spectrum show depolarization in the relative Stokes parameters Q/I and U/I. From the behavior of the amount of line depolarization as a function of line strength, the intrinsic continuum light polarization of WR1 is estimated to be P/I = 0.443% ± 0.028% with an angle of θ = –26.°2. Although such a level of polarization could in principle be caused by a wind flattened by fast rotation, the scenario in which it is a consequence of the presence of corotating interaction regions (CIRs) in the wind is preferred. This is supported by previous photometric and spectroscopic observations showing periodic variations with a period of 16.9 days. This is now the third WR star thought to exhibit CIRs in its wind that is found to have line depolarization. Previous authors have found a strong correlation between line depolarization and the presence of an ejected nebula, which they interpret as a sign that the star has relatively recently reached the WR phase since the nebula are thought to dissipate very fast. In cases where the presence of CIRs in the wind is favored to explain the depolarization across spectral lines, the above-mentioned correlation may indicate that those massive stars have only very recently transited from the previous evolutionary phase to the WR phase.

  19. X-ray emission from the Wolf-Rayet bubble NGC 6888. I. Chandra ACIS-S observations

    SciTech Connect

    Toalá, J. A.; Guerrero, M. A.

    2014-02-01

    We analyze Chandra observations of the Wolf-Rayet (W-R) bubble NGC 6888. This W-R bubble presents similar spectral and morphological X-ray characteristics to those of S 308, the only other W-R bubble also showing X-ray emission. The observed spectrum is soft, peaking at the N VII line emission at 0.5 keV, with additional line emission at 0.7-0.9 keV and a weak tail of harder emission up to ∼1.5 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T {sub 1} ∼ 1.4 × 10{sup 6} K, T {sub 2} ∼ 7.4 × 10{sup 6} K). We confirm the results of previous X-ray observations that no noticeable temperature variations are detected in the nebula. The X-ray-emitting plasma is distributed in three apparent morphological components: two caps along the tips of the major axis and an extra contribution toward the northwest blowout not reported in previous analyses of the X-ray emission toward this W-R nebula. Using the plasma model fits of the Chandra ACIS spectra for the physical properties of the hot gas and the ROSAT PSPC image to account for the incomplete coverage of Chandra observations, we estimate a luminosity of L {sub X} = (7.7 ± 0.1) ×10{sup 33} erg s{sup –1} for NGC 6888 at a distance of 1.26 kpc. The average rms electron density of the X-ray-emitting gas is ≳ 0.4 cm{sup –3} for a total mass ≳ 1.2 M {sub ☉}.

  20. Sur la nature de la variabilite spectrale et photometrique periodique d'etoiles Wolf-Rayet apparemment isolees

    NASA Astrophysics Data System (ADS)

    Morel, Thierry

    Il est depuis longtemps suspecté que les étoiles Wolf-Rayet apparemment isolées présentant des variations périodiques dans le profil de leurs raies spectrales, en photométrie ou en polarimétrie sont associées à un compagnon dégénéré (étoile à neutron ou trou noir), et constituent ainsi une phase évolutive dont l'existence, bien que prédite par les modèles évolutifs des systèmes binaires massifs rapprochés, n'a pas encore été catégoriquement confirmée observationnellement. Cependant, de récentes études ayant trait à la variabilité spectrale des étoiles OB laissent émettre quelques doutes quant à la pertinence de ce modèle, en démontrant que des vents largement asphériques peuvent se développer dans les étoiles de type précoce. Le scénario alternatif serait donc de considérer que la variabilité périodique observée n'est pas due à la présence d'un compagnon dégénéré affectant la structure à grande échelle du vent de l'étoile Wolf-Rayet, mais est au contraire induite par la modulation par rotation d'un vent nettement anisotropique. Cet ouvrage présente les résultats d'un vaste programme d'observations spectroscopiques et photométriques (généralement simultanées) se proposant de lever l'ambiguïté sur la nature précise des étoiles Wolf-Rayet apparemment isolées dont la périodicité des variations est. soit depuis longtemps établie (WR 6), soit suspectée (WR 1, WR 134, WR 136). Notre étude a permis de confirmer l'existence d'une périodicité de 2.3 jours pour l'étoile WR 134. En outre, nous présentons des arguments mettant en doute l'éventuelle association de WR 6 et WR 134 avec un compagnon dégénéré. Alternativement, nous proposons que la variabilité périodique observée serait plutôt induite, à l'instar de nombreuses étoiles OB, par la rotation de structures azimutalement étendues dans le vent. Ce modèle est plus à même d'appréhender certains aspects de la variabilité, notamment la

  1. Large-scale Periodic Variability of the Wind of the Wolf-Rayet Star WR 1 (HD 4004)

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; St-Louis, N.

    2010-06-01

    We present the results of an intensive photometric and spectroscopic monitoring campaign of the WN4 Wolf-Rayet (WR) star WR 1 = HD 4004. Our broadband V photometry covering a timespan of 91 days shows variability with a period of P = 16.9+0.6 -0.3 days. The same period is also found in our spectral data. The light curve is non-sinusoidal with hints of a gradual change in its shape as a function of time. The photometric variations nevertheless remain coherent over several cycles and we estimate that the coherence timescale of the light curve is of the order of 60 days. The spectroscopy shows large-scale line-profile variability which can be interpreted as excess emission peaks moving from one side of the profile to the other on a timescale of several days. Although we cannot unequivocally exclude the unlikely possibility that WR 1 is a binary, we propose that the nature of the variability we have found strongly suggests that it is due to the presence in the wind of the WR star of large-scale structures, most likely corotating interaction regions (CIRs), which are predicted to arise in inherently unstable radiatively driven winds when they are perturbed at their base. We also suggest that variability observed in WR 6, WR 134, and WR 137 is of the same nature. Finally, assuming that the period of CIRs is related to the rotational period, we estimate the rotation rate of the four stars for which sufficient monitoring has been carried out, i.e., v rot = 6.5, 40, 70, and 275 km s-1 for WR 1, WR 6, WR 134, and WR 137, respectively. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de Recherche Scientifique of France, and the University of Hawaii. Also based on observations obtained at the Observatoire du Mont Mégantic with is operated by the Centre de Recherche en Astrophysique du Québec and the Observatoire de

  2. The ionized gas at the centre of IC 10: a possible localized chemical pollution by Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Á. R.; Mesa-Delgado, A.; López-Martín, L.; Esteban, C.

    2011-03-01

    We present results from integral field spectroscopy with the Potsdam Multi-Aperture Spectrograph at the 3.5-m telescope at Calar Alto Observatory of the intense star-forming region [HL90] 111 at the centre of the starburst galaxy IC 10. We have obtained maps with a spatial sampling of 1 × 1 arcsec2= 3.9× 3.9 pc2 of different emission lines and analysed the extinction, physical conditions, nature of the ionization and chemical abundances of the ionized gas, as well determined locally the age of the most recent star formation event. By defining several apertures, we study the main integrated properties of some regions within [HL90] 111. Two contiguous spaxels show an unambiguous detection of the broad He IIλ4686 emission line, this feature seems to be produced by a single late-type WN star. We also report a probable N and He enrichment in the precise spaxels where the Wolf-Rayet (WR) features are detected. The enrichment pattern is roughly consistent with that expected for the pollution of the ejecta of a single or a very small number of WR stars. Furthermore, this chemical pollution is very localized (˜2 arcsec ˜7.8 pc) and it should be difficult to detect in star-forming galaxies beyond the Local Volume. We also discuss the use of the most common empirical calibrations to estimate the oxygen abundances of the ionized gas in nearby galaxies from 2D spectroscopic data. The ionization degree of the gas plays an important role when applying these empirical methods, as they tend to give lower oxygen abundances with increasing ionization degree. Based on observations collected at the Centro Astrónomico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Plank Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Visiting Astronomer at the Instituto de Astrofísica de Canarias.

  3. Integral field spectroscopy of M1-67. A Wolf-Rayet nebula with luminous blue variable nebula appearance

    NASA Astrophysics Data System (ADS)

    Fernández-Martín, A.; Vílchez, J. M.; Pérez-Montero, E.; Candian, A.; Sánchez, S. F.; Martín-Gordón, D.; Riera, A.

    2013-06-01

    Aims: This work aims to disentangle the morphological, kinematic, and chemical components of the nebula M1-67 to shed light on its process of formation around the central Wolf-Rayet (WR) star WR124. Methods: We have carried out integral field spectroscopy observations over two regions of M1-67, covering most of the nebula in the optical range. Maps of electron density, line ratios, and radial velocity were created to perform a detailed analysis of the two-dimensional structure. We studied the physical and chemical properties by means of integrated spectra selected over the whole nebula. Photoionization models were performed to confirm the empirical chemical results theoretically. In addition, we obtained and analysed infrared spectroscopic data and the MIPS 24 μm image of M1-67 from Spitzer. Results: We find that the ionized gas of M1-67 is condensed in knots aligned in a preferred axis along the NE-SW direction, like a bipolar structure. Both electron density and radial velocity decrease in this direction when moving away from the central star. From the derived electron temperature, Te ~ 8200 K, we have estimated chemical abundances, obtaining that nitrogen appears strongly enriched and oxygen depleted. From the last two results, we infer that this bipolarity is the consequence of an ejection of an evolved stage of WR124 with material processed in the CNO cycle. Furthermore, we find two regions placed outside of the bipolar structure with different spectral and chemical properties. The infrared study has revealed that the bipolar axis is composed of ionized gas with a low ionization degree that is well mixed with warm dust and of a spherical bubble surrounding the ejection at 24 μm. Taking the evolution of a 60 M⊙ star and the temporal scale of the bipolar ejection into account, we propose that the observed gas was ejected during an eruption in the luminous blue variable stage. The star has entered the WR phase recently without apparent signs of interaction

  4. Searching for Magnetic Fields in 11 Wolf-Rayet Stars: Analysis of Circular Polarization Measurements from ESPaDOnS

    NASA Astrophysics Data System (ADS)

    de la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J.; MiMeS Collaboration

    2014-02-01

    With recent detections of magnetic fields in some of their progenitor O stars, combined with known strong fields in their possible descendant neutron stars, it is natural to search for magnetic fields in Wolf-Rayet (WR) stars, despite the problems associated with the presence of winds enhanced by an order of magnitude over those of O stars. We continue our search among a sample of 11 bright WR stars following our introductory study in a previous paper of WR6 = EZ CMa using the spectropolarimeter ESPaDOnS at Canada-France-Hawaii Telescope, most of them in all four Stokes parameters. This sample includes six WN stars and five WC stars encompassing a range of spectral subclasses. Six are medium/long-period binaries and three show corotating interaction regions. We report no definite detections of a magnetic field in the winds in which the lines form (which is about the same distance from the center of the star as it is from the surface of the progenitor O star) for any of the eleven stars. Possible reasons and their implications are discussed. Nonetheless, the data show evidence supporting marginal detections for WR134, WR137, and WR138. According to the Bayesian analysis, the most probable field intensities are B wind ~ 200, 130, and 80 G, respectively, with a 95.4% probability that the magnetic fields present in the observable parts of their stellar wind, if stronger, does not exceed B_{{wind}}^{{max}}\\sim 1900 G, ~1500 G, and ~1500 G, respectively. In the case of non-detections, we report an average field strength upper limit of B_{{wind}}^{{max}}\\sim 500 G. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the

  5. New HST Observations of the Wolf-Rayet Nebula NGC 6888

    NASA Astrophysics Data System (ADS)

    Dufour, R. J.; Moore, B. D.; Hester, J. J.; Scowen, P. A.; Buckalew, B. A.

    2002-05-01

    HST/WFPC2 imagery and STIS spectra of the circumstellar shell NGC 6888 are presented. The nebula was formed by the collision of the stellar wind of the WN6 star HD 192163 with material shed during its preceding red supergiant phase. The resulting nebula is an 8 pc x 5 pc photoionized shell enveloped in a shock-heated skin of emission powered by the internal pressure of the wind-blown bubble. We present color-coded pictures of our new WFPC2 imagery along the shell's northern perimeter. These included three fields imaged using the F502N, F656N, and F658N filters, and a previously studied region using F487N and F658N. STIS spectra covering the ~1650-9500 Å wavelength range of four knots and surrounding medium were obtained for comprehensive studies of spatial variations in various emission lines. Collectively the new data permit a global view of the shell material at different times relative to the breakout of the hot bubble interior. The NE pointing was observed previously with WFPC2, and analyzed by comparison with photoionization models. The earlier work, presented in Moore, Hester and Scowen 2000 (MHS00) relied on ground-based observations. Our new observations show that previous estimates of [N II]/Hα were low by 20-50%. The lower gas density in the new models is in better agreement with the evolutionary scenario discussed in MHS00. The new ionizing flux is closer to that of the stellar model of Crowther & Smith 1996. The absence of the UV C II] & C III] lines in our STIS spectra allows only an upper limit on the carbon abundance in the nebula. Support for the observations came from AURA/STScI to Rice & ASU as General Observer Program GO-08568.

  6. Observations and 3D hydrodynamical models of planetary nebulae with Wolf-Rayet type central stars

    NASA Astrophysics Data System (ADS)

    Rechy-García, J. S.; Velázquez, P. F.; Peña, M.; Raga, A. C.

    2017-01-01

    We present high-resolution, long-slit spectroscopic observations of two planetary nebulae, M 1-32 and M 3-15, with [WC] central stars located near the Galactic bulge. The observations were obtained with the 2.1-m telescope of the Observatorio Astronómico Nacional, San Pedro Mártir. M 1-32 shows wide wings on the base of its emission lines and M 3-15 has two very faint high-velocity knots. In order to model both planetary nebulae, we built a three-dimensional model consisting of a jet interacting with an equatorially concentrated slow wind, emulating the presence of a dense torus, using the Yguazú hydrodynamical code. From our hydrodynamical models, we obtained position-velocity diagrams in the [N II]λ6583 line for comparison with the observations. We find that the spectral characteristics of M 1-32 and M 3-15 can be explained with the same physical model - a jet moving inside an asymptotic giant branch wind - using different parameters (physical conditions and position angles of the jet). In agreement with our model and observations, these objects contain a dense torus seeing pole-on and a bipolar jet escaping through the poles. Then, we propose to classify this kind of objects as spectroscopic bipolar nebulae, although they have been classified morphologically as compact, round, or elliptical nebulae or with `close collimated lobes'.

  7. The central star of the planetary nebula PB 8: a Wolf-Rayet-type wind of an unusual WN/WC chemical composition

    NASA Astrophysics Data System (ADS)

    Todt, H.; Peña, M.; Hamann, W.-R.; Gräfener, G.

    2010-06-01

    A considerable fraction of the central stars of planetary nebulæ (CSPNe) are hydrogen-deficient. As a rule, these CSPNe exhibit a chemical composition of helium, carbon, and oxygen with the majority showing Wolf-Rayet-like emission line spectra. These stars are classified as CSPNe of a spectral type [WC]. We perform a spectral analysis of CSPN PB 8 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. The source PB 8 displays wind-broadened emission lines from strong mass loss. Most strikingly, we find that its surface composition is hydrogen-deficient, but not carbon-rich. With mass fractions of 55% helium, 40% hydrogen, 1.3% carbon, 2% nitrogen, and 1.3% oxygen, it differs greatly from the 30-50% of carbon which are typically seen in [WC]-type central stars. The atmospheric mixture in PB 8 has an analogy in the WN/WC transition type among the massive Wolf-Rayet stars. Therefore we suggest to introduce a new spectral type [WN/WC] for CSPNe, with PB 8 as its first member. The central star of PB 8 has a relatively low temperature of T* = 52 kK, as expected for central stars in their early evolutionary stages. Its surrounding nebula is less than 3000 years old, i.e. relatively young. Existing calculations for the post-AGB evolution can produce hydrogen-deficient stars of the [WC] type, but do not predict the composition found in PB 8. We discuss various scenarios that might explain the origin of this unique object. This paper includes data gathered with the 6.5-m Magellan Telescopes located at Las Campanas Observatory, Chile.Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the AURA, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided mainly by the NASA Office of Space Science via grant NAG5-7584. Based on INES data from the IUE satellite.

  8. Rotating Wolf-Rayet stars in a post RSG/LBV phase. An evolutionary channel towards long-duration GRBs?

    NASA Astrophysics Data System (ADS)

    Gräfener, G.; Vink, J. S.; Harries, T. J.; Langer, N.

    2012-11-01

    Context. Wolf-Rayet (WR) stars with fast rotating cores are thought to be the direct progenitors of long-duration gamma-ray bursts (LGRBs). A well accepted evolutionary channel towards LGRBs is chemically-homogeneous evolution at low metallicities, which completely avoids a red supergiant (RSG), or luminous blue variable (LBV) phase. On the other hand, strong absorption features with velocities of several hundred km s-1 have been found in some LGRB afterglow spectra (GRB 020813 and GRB 021004), which have been attributed to dense circumstellar (CS) material that has been ejected in a previous RSG or LBV phase, and is interacting with a fast WR-type stellar wind. Aims: Here we investigate the properties of Galactic WR stars and their environment to identify similar evolutionary channels that may lead to the formation of LGRBs. Methods: We compile available information on the spectropolarimetric properties of 29 WR stars, the presence of CS ejecta for 172 WR stars, and the CS velocities in the environment of 34 WR stars in the Galaxy. We use linear line-depolarization as an indicator of rotation, nebular morphology as an indicator of stellar ejecta, and velocity patterns in UV absorption features as an indicator of increased velocities in the CS environment. Results: Based on previous nebular classifications, we determine an incidence rate of ~23% of WR stars with "possible ejecta nebulae" in the Galaxy. We find that this group of objects dominates the population of WR stars with spectropolarimetric signatures of rotation, while WR stars without such nebulae only rarely show indications of rotation. This confirms the correlation between rotation and CS ejecta from our previous work. The corresponding objects are most likely in an early stage after a preceding RSG or LBV phase, and have not yet lost their angular momenta due to the strong mass-loss in the WR phase. From their photometric periods we estimate rotation parameters in the range ω = νrot/νcrit = 0

  9. Line formation in winds with enhanced equatorial mass-loss rates and its application to the Wolf-Rayet star HD 50896

    NASA Technical Reports Server (NTRS)

    Rumpl, W. M.

    1980-01-01

    A model having a spherically symmetric velocity distribution with a higher density at the equatorial region was developed to simulate the UV spectrum of the Wolf-Rayet star HD 50896. The spectrum showed P Cygni-shaped profiles whose emissions are stronger than expected in a spherically symmetric stellar wind. The model was studied varying the inclination angle of the star-wind system and the polar to equatorial density ratios; it was shown that HD 50896 could possess a nonspherically symmetric wind and that its symmetry axis is inclined between 60 and 90 deg. It is possible that the velocity distribution of the wind could include an inner constant velocity plateau beyond which the wind accelerates to its terminal velocity as indicated by infrared continuum investigations.

  10. GRO source candidates: (A) Nearby modest-size molecular clouds; (B) Pulsar with Wolf-Rayet companion that has lost its H-envelope

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Murphy, Ronald J.

    1989-01-01

    Within 100 pc of the sun there are over a hundred cirrus clouds with masses of approx. 60 solar mass and dense molecular clouds with masses of approx. 4 solar mass. If the local interstellar density of cosmic rays is also present in these clouds, the flux of neutral pion from the decay of gamma rays from the core of a cloud at a distance of 20 pc is approx. 13 x 10(exp -8) photons/sq cm/s. The flux from the more extensive cirrus cloud is approx 4 x 10(exp -7) photons/sq cm/s. A relativistic beam of particles generated by a compact stellar object and incident upon a large, close companion can be a strong gamma ray line source if more of the beam energy is used in interactions with C and O and heavier nuclei and less with H and He. This would be the case if the companion has lost its hydrogen envelope and nucleosynthesized much of its He into C, O, and Ne. Such objects are Wolf-Rayet stars and it is believed that some Wolf-Rayet stars do, in fact, have compact companions. For a beam of protons of 10(exp 37) erg/s, the flux at 1 kpc of the 4.4 MeV C-12 line could be as high as 5 x 10(exp -6) photons/sq cm/s. The fluxes of the deexcitation lines from the spallation products of O-16 are also presented.

  11. First Ever Polarimetric Detection of a Wind-Wind Interaction Region and a Misaligned Flattening of the Wind in the Wolf-Rayet Binary CQ Cephei

    NASA Astrophysics Data System (ADS)

    Villar-Sbaffi, A.; St-Louis, N.; Moffat, Anthony F. J.; Piirola, Vilppu

    2005-04-01

    In this paper we present unfiltered and multiband (i.e., UBVRI) polarimetric observations of the short-period Wolf-Rayet binary CQ Cep. Using the basic assumptions of an optically thin, corotating envelope and pointlike sources (i.e., BME78 assumptions), we determined the orbital parameters of the system (i.e., i=99deg+/-1deg and Ω=76deg+/-2deg at the 2 σ level) with an accuracy many times better than any previous work. Residual non-BME78 variability around phase 0.0 was present in our data, which we associate with the polarimetric eclipse of the dense central parts of the Wolf-Rayet (W-R) wind by the orbiting O star. We attribute the observed phase lag of -0.15 between our residuals and those expected for a standard polarimetric eclipse to a wind-wind interaction (WWI) region distorted by Coriolis forces using the model presented by Marchenko et al. This model was also able to explain the strong wavelength dependence of the polarimetric amplitudes in our multiband observations. Our analysis also reveals important epoch-dependent departures of the matter distribution from spherical symmetry that were not related to the orbital plane and therefore cannot be the result of tidal interaction. We conclude that binarity is not playing an important role in driving the wind of the W-R star in CQ Cep and contributing to the observed nonspherical matter distribution. On the other hand, this asymmetry could be explained by a rotationally induced disk misaligned with the orbital plane.

  12. In pursuit of gamma-ray burst progenitors: the identification of a sub-population of rotating Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Vink, J. S.; Gräfener, G.; Harries, T. J.

    2011-12-01

    Long-duration gamma-ray bursts (GRBs) involve the most powerful cosmic explosions since the Big Bang. Whilst it has been established that GRBs are related to the death throes of massive stars, the identification of their elusive progenitors has proved challenging. Theoretical modelling suggests that rotating Wolf-Rayet (WR) stars are the best candidates. Wolf-Rayet stars are thought to be in advanced core burning stages, just prior to explosion, but their strong stellar winds shroud their surfaces, preventing a direct measurement of their rotation. Fortunately, linear spectropolarimetry may be used to probe the flattening of their winds because of stellar spin. Spectropolarimetry surveys have shown that the vast majority of WR stars (80%) have spherically symmetric winds and are therefore rotating slowly, yet a small minority (of 20%) display a spectropolarimetric signature indicative of rotation. Here we find a highly significant correlation between WR objects that carry the signature of stellar rotation and the small subset of WR stars with ejecta nebulae that have only recently transitioned from a previous red sugergiant or luminous blue variable phase. As these youthful WR stars have yet to spin-down because of mass loss, they are the best candidate GRB progenitors identified to date. When we take recently published WR ejecta nebula numbers (of Stock & Barlow 2010, MNRAS, 409, 1429), we find that five out of the six line-effect WR stars are surrounded by ejecta nebulae. The statistics imply that the null hypothesis of no correlation between line-effect WR stars and ejecta nebulae can be rejected at the 0.0004% level. Given that four line-effect and WR ejecta nebula have spectroscopically been confirmed to contain nucleo-synthetic products, we argue that the correlation is both statistically significant and physically convincing. The implication is that we have identified a sub-population of WR stars that fulfils the necessary criteria for making GRBs. Finally

  13. A NEAR-INFRARED SURVEY OF THE INNER GALACTIC PLANE FOR WOLF-RAYET STARS. I. METHODS AND FIRST RESULTS: 41 NEW WR STARS

    SciTech Connect

    Shara, Michael M.; Gerke, Jill; Zurek, David; Moffat, Anthony F. J.; Doyon, Rene; Villar-Sbaffi, Alfredo; Stanonik, Kathryn; Artigau, Etienne; Drissen, Laurent E-mail: jgerke@amnh.org E-mail: moffat@astro.umontreal.ca E-mail: alfredovs@hotmail.com E-mail: eartigau@gemini.edu

    2009-08-15

    The discovery of new Wolf-Rayet (WR) stars in our Galaxy via large-scale narrowband optical surveys has been severely limited by dust extinction. Recent improvements in infrared technology have made narrowband-broadband imaging surveys viable again. We report a new J, K, and narrowband imaging survey of 300 deg{sup 2} of the plane of the Galaxy, spanning 150 degrees in Galactic longitude and reaching 1 degree above and below the Galactic plane. The survey has a useful limiting magnitude of K = 15 over most of the observed Galactic plane, and K = 14 within a few degrees of the Galactic center. Thousands of emission line candidates have been detected. In spectrographic follow-ups of 173 WR star candidates we have discovered 41 new WR stars, 15 of type WN and 26 of type WC. Star subtype assignments have been confirmed with K-band spectra, and distances approximated using the method of spectroscopic parallax. A few of the new WR stars are among the most distant known in our Galaxy. The distribution of these new WR stars is seen to follow that of previously known WR stars along the spiral arms of the Galaxy. Tentative radial velocities were also measured for most of the new WR stars.

  14. Outflow-Induced Dynamical and Radiative Instability in Stellar Envelopes with an Application to Luminous Blue Variables and Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Hansen, James E. (Technical Monitor)

    2002-01-01

    Theoretical models of the remnants of massive stars in a very hot, post-red-supergiant phase display no obvious instability if standard assumptions are made. However, the brightest observed classical luminous blue variables (LBVs) may well belong to such a phase. A simple time-dependent theory of moving stellar envelopes is developed in order to treat deep hydrodynamical disturbances caused by surface mass loss and to test the moving envelopes for dynamical instability. In the case of steady-state outflow, the theory reduces to the equivalent of the Castor, Abbott, and Klein formulation for optically thick winds at distances well above the sonic point. The time-dependent version indicates that the brightest and hottest LBVs are both dynamically and radiatively unstable, as a result of the substantial lowering of the generalized Eddington luminosity limit by the mass-loss acceleration. It is suggested that dynamical instability, by triggering secular cycles of mass loss, is primarily what differentiates LBVs from the purely radiatively unstable Wolf-Rayet stars. Furthermore, when accurate main-sequence mass-loss rates are used to calculate the evolutionary tracks, the predicted surface hydrogen and nitrogen abundances of the blue remnants agree much better with observations of the brightest LBVs than before.

  15. X-Ray Imaging of Planetary Nebulae with Wolf-Rayet-type Central Stars: Detection of the Hot Bubble in NGC 40

    NASA Astrophysics Data System (ADS)

    Montez, Rodolfo, Jr.; Kastner, Joel H.; De Marco, Orsola; Soker, Noam

    2005-12-01

    We present the results of Chandra X-Ray Observatory observations of the planetary nebulae (PNs) NGC 40 and Hen 2-99. Both PNs feature late-type Wolf-Rayet central stars that are currently driving fast (~1000 km s-1), massive winds into denser, slow-moving (~10 km s-1) material ejected during recently terminated asymptotic giant branch (AGB) evolutionary phases. Hence, these observations provide key tests of models of wind-wind interactions in PNs. In NGC 40, we detect faint, diffuse X-ray emission distributed within a partial annulus that lies nested within a ~40" diameter ring of nebulosity observed in optical and near-infrared images. Hen 2-99 is not detected. The inferred X-ray temperature (TX~106 K) and luminosity (LX~2×1030 ergs s-1) of NGC 40 are the lowest measured thus far for any PN displaying diffuse X-ray emission. These results, combined with the ringlike morphology of the X-ray emission from NGC 40, suggest that its X-ray emission arises from a ``hot bubble'' that is highly evolved and is generated by a shocked, quasi-spherical fast wind from the central star, as opposed to AGB or post-AGB jet activity. In contrast, the lack of detectable X-ray emission from Hen 2-99 suggests that this PN has yet to enter a phase of strong wind-wind shocks.

  16. A Search for X-Ray Evidence of a Compact Companion to the Unusual Wolf-Rayet Star HD 50896 (EZ CMa)

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Itoh, Masayuki; Nagase, Fumiaki

    1998-01-01

    We analyze results of a approx.25 ksec ASCA X-ray observation of the unusual Wolf-Rayet star HD 50896 (= EZ CMa). This WN5 star shows optical and ultraviolet variability at a 3.766 day period, which has been interpreted as a possible signature of a compact companion. Our objective was to search for evidence of hard X-rays (greater than or equal to 5 keV) which could be present if the WN5 wind is accreting onto a compact object. The ASCA spectra are dominated by emission below 5 keV and show no significant emission in the harder 5-10 keV range. Weak emission lines are present, and the X-rays arise in an optically thin plasma which spans a range of temperatures from less than or equal to 0.4 keV up to at least approx. 2 keV. Excess X-ray absorption above the interstellar value is present, but the column density is no larger than N(sub H) approx. 10(exp 22)/sq cm. The absorption-corrected X-ray luminosity L(sub x)(0.5 - 10 keV) = 10(exp 32.85) erg/s gives L(sub x)/ L(sub bol) approx. 10(exp -6), a value that is typical of WN stars. No X-ray variability was detected. Our main conclusion is that the X-ray properties of HD 50896 are inconsistent with the behavior expected for wind accretion onto a neutron star or black hole companion. Alternative models based on wind shocks can explain most aspects of the X-ray behavior, and we argue that the hotter plasma near approx. 2 keV could be due to the WR wind shocking onto a normal (nondegenerate) companion.

  17. A Clue to the Extent of Convective Mixing Inside Massive Stars: The Surface Hydrogen Abundances of Luminous Blue Variables and Hydrogen-Poor Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Chin, Chao-wen

    1999-01-01

    Interior layers of stars that have been exposed by surface mass loss reveal aspects of their chemical and convective histories that are otherwise inaccessible to observation. It must be significant that the surface hydrogen abundances of luminous blue variables (LBVs) show a remarkable uniformity, specifically X(sub surf) = 0.3 - 0.4, while those of hydrogen-poor Wolf-Rayet (WN) stars fall, almost without exception, below these values, ranging down to X(sub surf) = 0. According to our stellar model calculations, most LBVs are post-red-supergiant objects in a late blue phase of dynamical instability, and most hydrogen-poor WN stars are their immediate descendants. If this is so, stellar models constructed with the Schwarzschild (temperature-gradient) criterion for convection account well for the observed hydrogen abundances, whereas models built with the Ledoux (density-gradient) criterion fail. At the brightest luminosities, the observed hydrogen abundances of LBVs are too large to be explained by any of our highly evolved stellar models, but these LBVs may occupy transient blue loops that exist during an earlier phase of dynamical instability when the star first becomes a yellow supergiant. Independent evidence concerning the criterion for convection, which is based mostly on traditional color distributions of less massive supergiants on the Hertzsprung-Russell diagram, tends to favor the Ledoux criterion. It is quite possible that the true criterion for convection changes over from something like the Ledoux criterion to something like the Schwarzschild criterion as the stellar mass increases.

  18. SN 2015bh: NGC 2770's 4th supernova or a luminous blue variable on its way to a Wolf-Rayet star?

    NASA Astrophysics Data System (ADS)

    Thöne, C. C.; de Ugarte Postigo, A.; Leloudas, G.; Gall, C.; Cano, Z.; Maeda, K.; Schulze, S.; Campana, S.; Wiersema, K.; Groh, J.; de la Rosa, J.; Bauer, F. E.; Malesani, D.; Maund, J.; Morrell, N.; Beletsky, Y.

    2017-03-01

    Very massive stars in the final phases of their lives often show unpredictable outbursts that can mimic supernovae, so-called, "SN impostors", but the distinction is not always straightforward. Here we present observations of a luminous blue variable (LBV) in NGC 2770 in outburst over more than 20 yr that experienced a possible terminal explosion as type IIn SN in 2015, named SN 2015bh. This possible SN (or "main event") had a precursor peaking 40 days before maximum. The total energy release of the main event is 1.8 × 1049 erg, consistent with a <0.5 M⊙ shell plunging into a dense CSM. The emission lines show a single narrow P Cygni profile during the LBV phase and a double P Cygni profile post maximum suggesting an association of the second component with the possible SN. Since 1994 the star has been redder than an LBV in an S-Dor-like outburst. SN 2015bh lies within a spiral arm of NGC 2770 next to several small star-forming regions with a metallicity of 0.5 solar and a stellar population age of 7-10 Myr. SN 2015bh shares many similarities with SN 2009ip and may form a new class of objects that exhibit outbursts a few decades prior to a "hyper eruption" or final core-collapse. If the star survives this event it is undoubtedly altered, and we suggest that these "zombie stars" may evolve from an LBV to a Wolf-Rayet star over the timescale of only a few years. The final fate of these stars can only be determined with observations a decade or more after the SN-like event.

  19. XMM-NEWTON OBSERVATIONS REVEAL VERY HIGH X-RAY LUMINOSITY FROM THE CARBON-RICH WOLF-RAYET STAR WR 48a

    SciTech Connect

    Zhekov, Svetozar A.; Gagne, Marc; Skinner, Stephen L. E-mail: mgagne@wcupa.edu

    2011-01-20

    We present XMM-Newton observations of the dusty Wolf-Rayet (W-R) star WR 48a. This is the first detection of this object in X-rays. The XMM-Newton EPIC spectra are heavily absorbed and the presence of numerous strong emission lines indicates a thermal origin of the WR 48a X-ray emission, with dominant temperature components at kT{sub cool} {approx} 1 keV and kT{sub hot} {approx} 3 keV, the hotter component dominating the observed flux. No significant X-ray variability was detected on timescales {<=}1 day. Although the distance to WR 48a is uncertain, if it is physically associated with Open clusters Danks 1 and 2 at d {approx}4 kpc, then the resultant X-ray luminosity L{sub X}{approx} 10{sup 35} erg s{sup -1} makes it the most X-ray luminous W-R star in the Galaxy detected so far, after the black hole candidate Cyg X-3. We assume the following scenarios as the most likely explanation for the X-ray properties of WR 48a: (1) colliding stellar winds in a wide WR+O binary system, or in a hierarchical triple system with non-degenerate stellar components and (2) accretion shocks from the WR 48a wind onto a close companion (possibly a neutron star). More specific information about WR 48a and its wind properties will be needed to distinguish between the above possibilities.

  20. The putative nebula of the Wolf-Rayet WR 60 star: a case of mistaken identity and reclassification as a new supernova remnant G310.5+0.8

    NASA Astrophysics Data System (ADS)

    Stupar, M.; Parker, Q. A.; Filipović, M. D.

    2011-04-01

    We present narrow band AAO/UKST H α images and medium and low resolution optical spectra of a nebula shell putatively associated with the Wolf-Rayet star WR 60. We also present the first identification of this shell in the radio regime at 843 MHz and at 4850 MHz from the Sydney University Molonglo Sky Survey (SUMSS), and from the Parkes-MIT-NRAO (PMN) survey respectively. This radio emission closely follows the optical emission. The optical spectra from the shell exhibits the typical shock excitation signatures sometimes seen in Wolf-Rayet stellar ejecta but also common to supernova remnants. A key finding however, is that the WR 60 star, is not, in fact, anywhere near the geometrical centre of the putative arcuate nebula ejecta as had been previously stated. This was due to an erroneous positional identification for the star in the literature which we now correct. This new identification calls into serious question any association of the nebula with WR 60 as such nebula are usually quite well centred on the WR stars themselves. We now propose that this fact combined with our new optical spectra, deeper H α imaging and newly identified radio structures actually imply that the WR 60 nebula should be reclassified as an unassociated new supernova remnant which we designate G310.5+0.8.

  1. The rise and fall of the Type Ib supernova iPTF13bvn. Not a massive Wolf-Rayet star

    NASA Astrophysics Data System (ADS)

    Fremling, C.; Sollerman, J.; Taddia, F.; Ergon, M.; Valenti, S.; Arcavi, I.; Ben-Ami, S.; Cao, Y.; Cenko, S. B.; Filippenko, A. V.; Gal-Yam, A.; Howell, D. A.

    2014-05-01

    Context. We investigate iPTF13bvn, a core-collapse (CC) supernova (SN) in the nearby spiral galaxy NGC 5806. This object was discovered by the intermediate Palomar Transient Factory (iPTF) very close to the estimated explosion date and was classified as a stripped-envelope CC SN, likely of Type Ib. Furthermore, a possible progenitor detection in pre-explosion Hubble Space Telescope (HST) images was reported, making this the only SN Ib with such an identification. Based on the luminosity and color of the progenitor candidate, as well as on early-time spectra and photometry of the SN, it was argued that the progenitor candidate is consistent with a single, massive Wolf-Rayet (WR) star. Aims: We aim to confirm the progenitor detection, to robustly classify the SN using additional spectroscopy, and to investigate if our follow-up photometric and spectroscopic data on iPTF13bvn are consistent with a single-star WR progenitor scenario. Methods: We present a large set of observational data, consisting of multi-band light curves (UBVRI, g'r'i'z') and optical spectra. We perform standard spectral line analysis to track the evolution of the SN ejecta. We also construct a bolometric light curve and perform hydrodynamical calculations to model this light curve to constrain the synthesized radioactive nickel mass and the total ejecta mass of the SN. Late-time photometry is analyzed to constrain the amount of oxygen. Furthermore, image registration of pre- and post-explosion HST images is performed. Results: Our HST astrometry confirms the location of the progenitor candidate of iPTF13bvn, and follow-up spectra securely classify this as a SN Ib. We use our hydrodynamical model to fit the observed bolometric light curve, estimating the total ejecta mass to be 1.9 M⊙ and the radioactive nickel mass to be 0.05 M⊙. The model fit requires the nickel synthesized in the explosion to be highly mixed out in the ejecta. We also find that the late-time nebular r'-band luminosity is not

  2. FUSE Observations of the SMC 16 day Wolf-Rayet Binary Sanduleak 1 (WO4+O4): Atmospheric Eclipses and Colliding Stellar Winds

    NASA Astrophysics Data System (ADS)

    St-Louis, Nicole; Moffat, Anthony F. J.; Marchenko, Sergey; Pittard, Julian Mark

    2005-08-01

    In this paper we present the results of a FUSE monitoring campaign of the SMC WO4+O4 V Wolf-Rayet binary Sanduleak 1. Our 18 spectra obtained during a little more than one orbital cycle in 2000 October combined with four archival spectra show variability in the S VI, C III, C IV, and O VI P Cygni profiles, which we attribute to emission from the shock cone resulting from the collision between the two strong winds and to atmospheric eclipses of the O star continuum light by the W-R wind. All the lines vary in concert indicating that the cooling is such that even lines such as the OVI λλ1032, 1038 doublet form in the linear part of the cone. We have also applied both a simple geometrical model and profile fits, including emission from the normal wind, extra emission from the shock cone, and the atmospheric eclipse. Adopting an orbital inclination of ~40°, we deduce a total cone opening angle of ~80° and a streaming velocity for the gas along the shock cone of ~3000 km s-1. The luminosity ratio required to fit our spectra is LO/LW-R=3.5, and the stellar radii are 3.5 and 12 Rsolar, respectively, for the W-R and O stars. We also present radiative driving models for this binary system having two massive stars with strong winds and discuss radiative inhibition and braking effects. In particular, we address the coupling of the O star radiation with the W-R star wind. Finally, we present a PICA hydrodynamic colliding-wind model for Sand 1. We find an opening angle for the shock cone similar to that deduced from the line-profile fitting, but significantly longer cooling lengths along the shock cone. However, the model reveals some cold gas that is stripped off the O4 surface and mixed with the hotter WO4 material, thereby accelerating its cooling. This could very well explain why shorter cooling lengths are inferred from the profile fits. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by Johns Hopkins

  3. The Rise and Fall of the Type Ib Supernova iPTF13bvn Not a Massive Wolf-Rayet Star

    NASA Technical Reports Server (NTRS)

    Fremling, C.; Sollerman, J.; Taddia, F.; Ergon, M.; Valenti, S.; Arcavi, I.; Ben-Ami, S.; Cao, Y.; Cenko, S. B.; Filippenko, A. V.; Gal-Yam, A.; Howell, D. A.

    2014-01-01

    Context. We investigate iPTF13bvn, a core-collapse (CC) supernova (SN) in the nearby spiral galaxy NGC 5806. This object was discovered by the intermediate Palomar Transient Factory (iPTF) very close to the estimated explosion date and was classified as a stripped-envelope CC SN, likely of Type Ib. Furthermore, a possible progenitor detection in pre-explosion Hubble Space Telescope (HST) images was reported, making this the only SN Ib with such an identification. Based on the luminosity and color of the progenitor candidate, as well as on early-time spectra and photometry of the SN, it was argued that the progenitor candidate is consistent with a single, massive Wolf-Rayet (WR) star. Aims. We aim to confirm the progenitor detection, to robustly classify the SN using additional spectroscopy, and to investigate if our follow-up photometric and spectroscopic data on iPTF13bvn are consistent with a single-star WR progenitor scenario. Methods. We present a large set of observational data, consisting of multi-band light curves (UBVRI, g'r'i'z') and optical spectra. We perform standard spectral line analysis to track the evolution of the SN ejecta. We also construct a bolometric light curve and perform hydrodynamical calculations to model this light curve to constrain the synthesized radioactive nickel mass and the total ejecta mass of the SN. Late-time photometry is analyzed to constrain the amount of oxygen. Furthermore, image registration of pre- and post-explosion HST images is performed. Results. Our HST astrometry confirms the location of the progenitor candidate of iPTF13bvn, and follow-up spectra securely classify this as a SN Ib. We use our hydrodynamical model to fit the observed bolometric light curve, estimating the total ejecta mass to be 1.9 solar mass and the radioactive nickel mass to be 0.05 solar mass. The model fit requires the nickel synthesized in the explosion to be highly mixed out in the ejecta. We also find that the late-time nebular r

  4. Mesure du taux de rotation des etoiles Wolf-Rayet a partir de la variabilite periodique a grande echelle des vents stellaires

    NASA Astrophysics Data System (ADS)

    Chene, Andre-Nicolas

    The aim of this thesis is to determine the rotation rates of Wolf-Rayet (WR) stars. Since these stars have a very dense stellar winds, it is impossible to directly observe their photosphere. Consequently, it is also impossible to measure their rotation velocity directly from the widning of absorption photospheric line profiles. Therefore, we propose instead to determine the rotation period of WR stars from large-scale periodic wind variations an adopted stellar radius from the literature. The type of large-scale variability that is related to stellar rotation is due to the presence in some WR winds of density structures called Corotating Interaction Regions (CIR). CIRs are caused by perturbations at the base of the wind, which in turn could be caused e.g. by a magnetic field or by pulsations. These perturbations propagate through the wind while being carried around by rotation. This generates spiral-like structures in the density distribution that can lead to a characteristic, large-scale variability pattern in WR-wind emission lines. Since the density distribution changes periodically according to the stellar rotation, the period of the resulting large-scale spectral variability corresponds directly to the period of rotation. In this thesis, I present the results of a systematic search for large-scale spectroscopic variability in the brightest, apparently single WR stars. Such a variability was found in 10 WR stars among the 25 northern and 43 southern stars of our sample. In order to determine if all of these 10 stars are variable due to the presence of CIRs, one needs to carry out intensive monitoring and verify if the spectral variabilities is periodic. In the literature, two cases of WR stars presenting CIR-type variability have been established; WR 6 (P=3.77 days) and WR 134 (P=2.25 days). In this thesis, another case is found, WR 1, with a period of 16.89 days. Also in this thesis, another star showing large-scale spectroscopic variability has been monitored

  5. Relación física entre el cúmulo abierto Hogg 15 y la estrella Wolf-Rayet WR 47

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Bica, E.; Santos, J. F. C., Jr.; Clariá, J. J.

    We revise the fundamental parameters of the faint open cluster Hogg 15, for which two recent colour-magnitude diagram (CMD) studies have obtained significantly different ages (Sagar et al. 2001, MNRAS, 327, 23; Piatti & Clariá 2001, A&A, 370, 931). In the present study, we combine a series of methods trying to constrain age, together with other fundamental parameters. We employ spatial extractions to construct the CMDs, and the cluster integrated spectrum to compare the latter with those of templates of known age. For Hogg 15 we derive an age of (20 ± 10) Myr, a reddening of (1.10 ± 0.05) mag, and a distance of (3.1 ± 0.5) kpc. We conclude that the estimation of an older age in the study of Piatti & Clariá can be accounted for in terms of main sequence/turnoff curvature being blurred in the CMDs, an effect mainly caused by field contamination. To clarify the issue of whether the Wolf-Rayet star HDE 311884 (WR 47), known to be a WN6 + O5V binary system, is associated or not with Hogg 15, we discuss its fundamental parameters, particularly its distance. Based on the WR 47 spectrum and available photometry, we assume that the underestimated distance implied by the Hipparcos parallax (216 pc) is affected by its binary character. By comparing the WR 47 spectrum with those of WR stars of a similar type, we conclude that WR 47 is not affected by a E(B-V) colour excess much higher than that associated with Hogg 15, namely E(B-V) = 1.10. On the basis of the WR 47's resulting distance of (5.2 ± 0.9) kpc, which largely surpasses that of the cluster, we conclude that WR 47 is not related to Hogg 15 from the point of view of origin, since the cluster and the star do not belong to the same formation event.

  6. THE DUST PROPERTIES OF TWO HOT R CORONAE BOREALIS STARS AND A WOLF-RAYET CENTRAL STAR OF A PLANETARY NEBULA: IN SEARCH OF A POSSIBLE LINK

    SciTech Connect

    Clayton, Geoffrey C.; Gallagher, J. S.; Freeman, W. R.; Camp, K. A. E-mail: wfreem2@lsu.edu

    2011-08-15

    We present new Spitzer/IRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy, V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects may constitute a link between the RCB stars and the late Wolf-Rayet ([WCL]) class of central stars of planetary nebulae (CSPNe), such as CPD -56{sup 0} 8032, that has little or no hydrogen in their atmospheres. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but shares the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPN star, CPD -56{sup 0} 8032, displays evidence of dual-dust chemistry showing both polycyclic aromatic hydrocarbons (PAHs) and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from that of CPD -56{sup 0} 8032 and HV 2671. The PAH emission seen strongly in the other two stars is not present. Instead, the spectrum is dominated by a broad emission centered at about 8.2 {mu}m. This feature is not identified with either PAHs or silicates. Several other cool RCB stars, novae, and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56{sup 0} 8032 shows emission features that may be associated with C{sub 60}. The other two stars do not show evidence of C{sub 60}. The different nature of the dust around these stars does not help us in establishing further links that may indicate a common origin. HV 2671 has also been detected by Herschel/PACS and SPIRE. V348 Sgr and CPD -56{sup 0} 8032 have been detected by AKARI/Far-Infrared Surveyor. These data were combined with Spitzer, IRAS, Two Micron All Sky Survey, and other photometry to produce their spectral energy distributions (SEDs) from the visible to the far-IR. Monte Carlo radiative transfer modeling was used to study the circumstellar dust

  7. Discovery and Characterization of Luminous Blue Variables, Wolf-Rayet Stars, and Massive Supergiants and Their Shells Using Spitzer, WISE, and Herschel Data

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy

    The extensive WISE all-sky 12 and 22 micron survey data, the Herschel PACS and SPIRE imaging archive (including the GTO and OT Key Programs), as well as the Spitzer IRAC 8 and MIPS 24 micron imaging archival data (GO, GTO, and Legacy Surveys) are being mined for the discovery of new shell and ring-nebulae. Combined with 2MASS data, the progenitor stars are also being identified, and optical and near-IR spectroscopy obtained to confirm their spectral types. Origin of the nebulae arise from a variety of progenitors that include very massive stars, with the vast majority not having been previously identified. Representative classes for the progenitor stars are Luminous Blue Variables (LBVs), Wolf-Rayet (WR), B[e], OB, and Supergiant stars. The discovery potential for these rare massive evolved stars from the mid-IR imaging archives is greater than any other technique utilized over the past several decades, including extensive broadband infrared photometry-color determinations (Hadfield et al. 2007), and near-IR narrowband methods (Shara et al. 2009). The statistics being provided on this new, previously hidden population of evolved stars may very well enable evolutionary pathways to be better delineated, thereby identifying the physics operating in these extreme stars. The data being collected will more tightly define the evolutionary models that apply to these stars, and that enter into modeling and interpretation of extragalactic massive star formation regions (starbursts). Multi-wavelength color-color maps wil be constructed and used to analyze the dust distribution, the energetics of the nebulae and its interaction with the ISM, and identification of nearby star formation perhaps being triggered by the massive stars and the nebulae they produce. As demonstrated in a recent publication presenting the discovery and analysis of two new candidate LBVs found in the early WISE data release (Gvaramadze et al. 2012), much discovery potential yet resides within the

  8. Copernicus observations of distant unreddened stars. II - Line of sight to HD 50896

    NASA Technical Reports Server (NTRS)

    Shull, J. M.

    1977-01-01

    Copernicus UV data on interstellar lines toward HD 50896, a Wolf-Rayet star, are analyzed to study abundances and physical conditions in the line of sight. About 20% of the low-velocity neutral gas is contained in a dense cloud with 10% to 50% of its hydrogen in molecular form; the atomic abundances show typical interstellar depletions. The low-velocity H II gas may be associated with the high ionizing flux of the Wolf-Rayet star or with H II regions along the line of sight. Si III exhibits strong absorption shortward of the low-velocity H II gas, characteristic of a collisionally ionized component at 30,000 to 80,000 K; the possible connections with an unobserved supernova remnant or stellar mass loss are discussed. High-velocity features at 78 and -96 km/sec, in which Fe and Si are near their cosmic abundances, are also indicative of strong shocks.

  9. A radial velocity survey for post-common-envelope Wolf-Rayet central stars of planetary nebulae: first results and discovery of the close binary nucleus of NGC 5189

    NASA Astrophysics Data System (ADS)

    Manick, Rajeev; Miszalski, Brent; McBride, Vanessa

    2015-04-01

    The formation of Wolf-Rayet central stars of planetary nebulae ([WR] CSPNe) whose spectroscopic appearance mimics massive WR stars remains poorly understood. Least understood is the nature and frequency of binary companions to [WR] CSPNe that may explain their H-deficiency. We have conducted a systematic radial velocity (RV) study of six [WR] CSPNe to search for post-common-envelope (post-CE) [WR] binaries. We used a cross-correlation method to construct the RV time series as successfully done for massive close binary WR stars. No significant RV variability was detected for the late-[WC] type nuclei of Hen 2-113, Hen 3-1333, PMR 2 and Hen 2-99. Significant, large-amplitude variability was found in the [WC4] nucleus of NGC 5315. In the [WO1] nucleus of NGC 5189, we discovered significant periodic variability that reveals a close binary with Porb = 4.04 ± 0.1 d. We measured a semi-amplitude of 62.3 ± 1.3 km s-1 that gives a companion mass of m2 ≥ 0.5 M⊙ or m2 = 0.84 M⊙ (assuming i = 45°). The most plausible companion type is a massive white dwarf (WD) as found in Fleming 1. The spectacular nebular morphology of NGC 5189 fits the pattern of recently discovered post-CE PNe extremely well with its dominant low-ionization structures (e.g. as in NGC 6326) and collimated outflows (e.g. as in Fleming 1). The long 4.04 d orbital period is either anomalous (e.g. NGC 2346) or it may indicate that there is a sizeable population of [WR] binaries with massive WD companions in relatively wide orbits, perhaps influenced by interactions with the strong [WR] wind.

  10. Subluminous Wolf-Rayet stars - Observations

    NASA Technical Reports Server (NTRS)

    Heap, S. R.

    1982-01-01

    Even though the loss of the outer, H-rich envelope may be a necessary condition for forming WR stars, it is clearly not a sufficient one. This is because the majority of planetary nuclei do not have a WR-type spectrum. The question why some central stars are WR stars while others are, say, O stars is addressed here. The question is approached by ascertaining how the properties of WR-type central stars differ from those of O-type stars. The study therefore begins with the classification and calibration of WR spectra. It is found that whereas the WR phenomenon may occur in stars of any mass, it is limited to stars that have been stripped (or mixed) down to their cores. The fact of prior envelope loss, however, is not sufficient to predict which stars will develop WR characteristics. Instead, a comprehensive description of envelope loss, including a detailed accounting of interior conditions and processes at the core envelope interface, will be required to explain the onset of WR characteristics.

  11. UV and radiofrequency observations of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1971-01-01

    Observations of W stars in the ultraviolet by OAO 2 and at 750 and 1400 MHz with the Green Bank telescopes are discussed. The emphasis is on the Green Bank observations of W stars with symmetric nebulae around them, their interpretation, and comparisons with other data. The implications regarding mass distribution, internal motion, flux density, ejected mass, velocity dispersion, and expanding envelopes are considered in detail.

  12. The oxygen emission lines in Wolf-Rayet spectra

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Underhill, Anne B.

    1990-01-01

    The statistical equilibrium of oxygen in the line-emitting regions of WR stars is studied using the one-representative point theory of Castor and van Blerkom (1970) for a wider range of the radiation temperature, electron temperature, and electron density. Radiative processes, collisional processes, and electronic recombination are studied for a 59-level model atom. The level populations depart by large factors from those expected for LTE at the electron temperature and electron density. When the parameters have the values found previously by Bhatia and Underhill to be representative for WR stars, the oxygen atoms are strongly concentrated in the lower levels of O(2+), O(3+), and O(4+). The predicted relative energies in typical lines of O III, O IV, and O V for a solar abundance ratio of O to H are compatible with what is observed in WC and WN spectra.

  13. The Unusual Wolf-Rayet Star EZ CMa

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2002-01-01

    The XMM-Newton observations were obtained on 29 - 30 October 2001 during the AO-1 Guest Observer program. Our X-ray analysis focused on data from the European Photon Imaging Camera (EPIC). The VLA observations were obtained during a 3.5 hour interval on 1999 Oct. 19 with the array in hybrid BnA configuration. Radio continuum data were acquired at five different frequencies 1.42 GHz (21 cm), 4.86 GHz (6 cm), 8.44 GHz (3.6 cm), 14.94 GHz (2 cm), and 22.46 GHz (1.3 cm). These radio data are unique since they provide an excellent snapshot picture of the dependence of the radio flux on frequency obtained over a short time interval and are thus immune to the variability effects which can distort results obtained from non-contemporaneous observations at different frequencies.

  14. Spectrophotometry of Wolf-Rayet stars. I - Continuum energy distributions

    NASA Technical Reports Server (NTRS)

    Morris, Patrick W.; Brownsberger, Kenneth R.; Conti, Peter S.; Massey, Philip; Vacca, William D.

    1993-01-01

    All available low-resolution IUE spectra are assembled for Galactic, LMC, and SMC W-R stars and are merged with ground-based optical and NIR spectra in order to collate in a systematic fashion the shapes of these energy distributions over the wavelength range 0.1-1 micron. They can be consistently fitted by a power law of the form F(lambda) is approximately equal to lambda exp -alpha over the range 1500-9000 A to derive color excesses E(B-V) and spectral indices by removing the 2175-A interstellar absorption feature. The WN star color excesses derived are found to be in good agreement with those of Schmutz and Vacca (1991) and Koesterke et al. (1991). Significant heterogeneity in spectral index values was generally seen with any given subtype, but the groups consisting of the combined set of Galactic and LMC W-R stars, the separate WN and WC sequences, and the Galactic and LMC W-R stars all showed a striking and consistent Gaussian-like frequency distribution of values.

  15. Spectrophotometry of Wolf-Rayet stars. I - Continuum energy distributions

    NASA Technical Reports Server (NTRS)

    Morris, Patrick W.; Brownsberger, Kenneth R.; Conti, Peter S.; Massey, Philip; Vacca, William D.

    1993-01-01

    All available low-resolution IUE spectra are assembled for Galactic, LMC, and SMC W-R stars and are merged with ground-based optical and NIR spectra in order to collate in a systematic fashion the shapes of these energy distributions over the wavelength range 0.1-1 micron. They can be consistently fitted by a power law of the form F(lambda) is approximately equal to lambda exp -alpha over the range 1500-9000 A to derive color excesses E(B-V) and spectral indices by removing the 2175-A interstellar absorption feature. The WN star color excesses derived are found to be in good agreement with those of Schmutz and Vacca (1991) and Koesterke et al. (1991). Significant heterogeneity in spectral index values was generally seen with any given subtype, but the groups consisting of the combined set of Galactic and LMC W-R stars, the separate WN and WC sequences, and the Galactic and LMC W-R stars all showed a striking and consistent Gaussian-like frequency distribution of values.

  16. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-lived Radioisotopes with a Shock Wave. II. Varied Shock Wave and Cloud Core Parameters

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.; Keiser, Sandra A.

    2013-06-01

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of ~10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  17. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A. E-mail: keiser@dtm.ciw.edu

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  18. The Astronomical Zoo in MIPSGAL I and II

    NASA Astrophysics Data System (ADS)

    Kuchar, Thomas A.; Mizuno, D.; Shenoy, S.; Paladini, R.; Kraemer, K.; Price, S.; Marleau, F.; Padgett, D.; Indebetouw, R.; Ingalls, J.; Ali, B.; Berriman, B.; Boulanger, F.; Cutri, R.; Latter, W.; Miville-Deschenes, M.; Molinari, S.; Rebull, L.; Testi, L.; Shipman, R.; Martin, P.; Carey, S.; Noriega-Crespo, A.

    2006-12-01

    The view of the Galactic Plane at 24 µm is breathtaking. A great part of this beauty arises from the complexity of the Interstellar Medium shaped by endless energetic events driven by HII regions, supernova explosions, Wolf-Rayets, Luminous Blue Variables, and evolved and new born massive stars. A sample of these objects is presented in this poster, gathered from the Multiband Imaging Photometer for Spitzer (MIPS) Survey of the Galactic Plane I and II (MIPSGAL; see Carey et al. 2006, this meeting). The global color properties of these objects are derived by combining the data at 24 and 70um with that from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), and following similar schemes as those used in the Spitzer Surveys of the Magellanic Clouds (Bolatto et al. 2006, astroph-0608561; Meixner et al. 2006, astroph-0606356). This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA in part through an award issued by JPL/Caltech.

  19. A Study of Massive Stars with an Initial Mass of 50 M⊙ at Different Evolutionary Stages

    NASA Astrophysics Data System (ADS)

    Maryeva, O.

    2017-06-01

    We present the results of the studies of several massive stars at different evolutionary stages but with similar initial masses: O supergiants from the Cyg OB2 association, unique LBV/post-LBV Romano's star, and two Wolf-Rayet stars WR156 and FSZ35. All these stars have similar initial masses of about 50 M⊙. It allows us to consider them a single star at different moments of life, which gives the opportunity to track the changes in physical parameters (such as effective temperature, luminosity, mass loss rate, wind velocity) and chemical abundances during the life of a massive star. It is important to test current evolution theories for such objects.

  20. The ionization state and possible ragged structured of the atmospheres of Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Antokhin, I. I.; Kholtygin, A. F.; Cherepashchuk, A. M.

    1988-06-01

    Calculations of the ionization structure of WR atmospheres are made in terms of Beal's model (1944), taking into account the outward decrease of matter density. It is found that the simultaneous existence of zones with various stages of ionization is possible only in a very narrow interval for the effective core temperature, which is inconsistent with observations. A qualitative model for the WR atmosphere is proposed, consisting of several thousand clots (clouds) of matter with possible dimensions of 1-2 solar radii and with densities of the order of ten times that of intercloud density. This model allows for the simultaneous existence of different stages of ionization in a wide range of effective temperatures. Observational evidence for this model would be the discovery of fast variability (on a time scale of 10 h) of WR emission line profiles with an amplitude of several percent.

  1. Ionization state and a possible cloudy structure of the atmospheres of Wolf-Rayet stars.

    NASA Astrophysics Data System (ADS)

    Antokhin, I. I.; Cherepashchuk, A. M.; Kholtygin, A. F.

    Calculations of the ionization structure of the WR atmosphere have been carried out in terms of Beals' model. It has been obtained that the simultaneous existence of zones with various ionization stages of matter is possible only in a very narrow interval for Teff. This confirms the qualitative model for the WR atmosphere consisting of some thousand dense clouds and low-dense intercloud matter.

  2. WR 110: A Single Wolf-Rayet Star with Corotating Interaction Regions in its Wind?

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Moffat, A. F. J.; Cameron, C.; Fahed, R.; Gamen, R. C.; Lefèvre, L.; Rowe, J. F.; St-louis, N.; Muntean, V.; De La Chevrotière, A.; Guenther, D. B.; Kuschnig, R.; Matthews, J. M.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2011-07-01

    A 30 day contiguous photometric run with the Microvariability and Oscillations of STars (MOST) satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 ± 0.55 days along with a number of harmonics at periods P/n, with n ≈ 2, 3, 4, 5, and 6, and a few other possible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic radial velocity studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude ~0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base, of a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs ~two-thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna.

  3. Remarkable long-term changes in the small Magellanic Cloud Wolf-Rayet system HD 5980

    NASA Technical Reports Server (NTRS)

    Koenigsberger, G.; Moffat, A. F. J.; St-Louis, N.; Auer, L. H.; Drissen, L.; Seggewiss, W.

    1994-01-01

    In this paper we report the remarkable changes which occured in the Small Magellanic Cloud W-R system HD5980 = AB5 between 1978 and 1991. Within this timescale, there has been a systematic enhancement (by factors of 2-10 depending on the line) in the equivalent widths of all emission lines, and a change in the relative strengths of N III, N IV, and N V lines. Currently, the W-R spectrum is more typical of a WN6 star than a WN3 or WN4, as it was originally classified. The terminal speed of the wind has diminished by approximately 600 km/s, while the system has brightened in the visual by 0.45 mag. The UV (1850 A) continuum changed by less than 0.13 mag. The change from WN3 or WN4 to WN6 is unprecedented. The system appears to be composed at least three stars: two WNs in mutual 19.266 day orbit and an O-type supergiant. We propose that the changes observed in HD 5980 are related to an increase in wind density of one (or both?) of the W-R components, where the brighter WN6 component will dominate the W-R spectrum after the change, and we speculate that this modification of the wind structure is driven by tidal interaction induced by a possible current periastron passage of the third component in the system.

  4. Carbon and helium abundances in Wolf-Rayet WC stars determined from optical recombination lines

    NASA Technical Reports Server (NTRS)

    Torres, Ana V.

    1988-01-01

    Carbon to helium ratios and ionization fractions are derived for 74 WC stars in the Galaxy and the LMC from optically thin recombination lines at visual wavelengths. The range of C/He ratios is 0.13 to 0.79 by number, similar to the ratios calculated by Nugis (1975) and about 20 times greater than the ratios of Smith and Willis (1982). These ratios also agree with the abundances determined in the most recent evolutionary models of massive stars, which include mass loss, convective dredge-up, and new nuclear reaction rates. The range of values found for the C/He ratios implies that the convective cores of WC stars do not occupy a very large mass fraction. The C/He ratio differs within a subtype by a factor of three or less, but the mean tends to increase toward earlier subtypes, although the standard deviation from the mean is large enough to allow the interpretation that the C/He ratio is constant for all WC subtypes.

  5. An atlas of optical spectrophotometry of Wolf-Rayet carbon and oxygen stars

    NASA Technical Reports Server (NTRS)

    Torres, Ana V.; Massey, Philip

    1987-01-01

    The atlas contains a homogeneous set of optical spectrophotometric observations (3300-7300 A) at moderate resolution (about 10 A) of almost all WC and WO stars in the Galaxy, the LMC, and the SMC. The data are presented in the form of spectral tracings (in magnitude units) arranged by subtype, with no correction for interstellar reddening. A montage of prototype stars of each spectral class is also shown. Comprehensive line identifications are given for the optical lines of WC and WO spectra, with major contributions tabulated and unidentified lines noted.

  6. Remarkable long-term changes in the small Magellanic Cloud Wolf-Rayet system HD 5980

    NASA Technical Reports Server (NTRS)

    Koenigsberger, G.; Moffat, A. F. J.; St-Louis, N.; Auer, L. H.; Drissen, L.; Seggewiss, W.

    1994-01-01

    In this paper we report the remarkable changes which occured in the Small Magellanic Cloud W-R system HD5980 = AB5 between 1978 and 1991. Within this timescale, there has been a systematic enhancement (by factors of 2-10 depending on the line) in the equivalent widths of all emission lines, and a change in the relative strengths of N III, N IV, and N V lines. Currently, the W-R spectrum is more typical of a WN6 star than a WN3 or WN4, as it was originally classified. The terminal speed of the wind has diminished by approximately 600 km/s, while the system has brightened in the visual by 0.45 mag. The UV (1850 A) continuum changed by less than 0.13 mag. The change from WN3 or WN4 to WN6 is unprecedented. The system appears to be composed at least three stars: two WNs in mutual 19.266 day orbit and an O-type supergiant. We propose that the changes observed in HD 5980 are related to an increase in wind density of one (or both?) of the W-R components, where the brighter WN6 component will dominate the W-R spectrum after the change, and we speculate that this modification of the wind structure is driven by tidal interaction induced by a possible current periastron passage of the third component in the system.

  7. Gamma-ray line emission from Al-26 produced by Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Prantzos, N.; Casse, M.; Gros, M.; Doom, C.; Arnould, M.

    1985-01-01

    The recent satellite observations of the 1.8 MeV line from the decay of Al-26 has given a new impetus to the study of the nucleosynthesis of Al-26. The production and ejection of Al-26 by massive mass-losing stars (Of and WR stars) is discussed in the light of recent stellar models. The longitude distribution of the Al-26 gamma ray line emission produced by the galactic collection of WR stars is derived based on various estimates of their radial distribution. This longitude profile provides: (1) a specific signature of massive stars on the background of other potential Al-26 sources, as novae, supernovae, certain red giants and possibly AGB stars; and (2) a possible tool to improve the data analysis of the HEAO 3 and SMM experiments.

  8. Stratification of the extended atmosphere of the Wolf-Rayet component of V444 Cygni

    NASA Technical Reports Server (NTRS)

    Eaton, J. A.; Cherepashchuk, A. M.; Khaliullin, Kh. F.

    1985-01-01

    Ultraviolet spectra covering both eclipses of V444 Cygni have been obtained. Longward of 1570 angstroms, the continuum brightness showed essentially the same variation seen in the optical (at 4244 angstroms). Striking atmospheric eclipses of up to 0.7 mag in depth were detected, however, in individual strong lines as well as over large ranges of the continuum shortward of 1500 angstroms. IUE data are used to estimate the degree of interstellar extinction and terminal expansion velocity of the system and to study the phase dependence of the continuum and line absorptions.

  9. Modeling hydrogen-rich Wolf-Rayet stars in M33

    NASA Astrophysics Data System (ADS)

    Maryeva, Olga

    2013-05-01

    We present the results of a spectral variability study of two very luminous stars in the M33 galaxy - LBV V532 and late WN star(possibly, dormant LBV) FSZ35. We studied the spectral variability of V532, derived its atmosphere parameters and showed that the bolometric luminosity varied between the two states by a factor of ˜1.5. Using the non-LTE radiative transfer code CMFGEN, we determined the wind parameters for both objects. Since both stars are located at distances of about 100 pc from the nearest association, we supposed that they may be massive runaway stars with velocities of the order 100 kms.

  10. Carbon and helium abundances in Wolf-Rayet WC stars determined from optical recombination lines

    NASA Technical Reports Server (NTRS)

    Torres, Ana V.

    1988-01-01

    Carbon to helium ratios and ionization fractions are derived for 74 WC stars in the Galaxy and the LMC from optically thin recombination lines at visual wavelengths. The range of C/He ratios is 0.13 to 0.79 by number, similar to the ratios calculated by Nugis (1975) and about 20 times greater than the ratios of Smith and Willis (1982). These ratios also agree with the abundances determined in the most recent evolutionary models of massive stars, which include mass loss, convective dredge-up, and new nuclear reaction rates. The range of values found for the C/He ratios implies that the convective cores of WC stars do not occupy a very large mass fraction. The C/He ratio differs within a subtype by a factor of three or less, but the mean tends to increase toward earlier subtypes, although the standard deviation from the mean is large enough to allow the interpretation that the C/He ratio is constant for all WC subtypes.

  11. Integral field spectroscopy of H II regions in M33

    NASA Astrophysics Data System (ADS)

    López-Hernández, Jesús; Terlevich, Elena; Terlevich, Roberto; Rosa-González, Daniel; Díaz, Ángeles; García-Benito, Rubén; Vílchez, José; Hägele, Guillermo

    2013-03-01

    Integral field spectroscopy is presented for star-forming regions in M33. A central area of 300 × 500 pc2 and the external H II region IC 132, at a galactocentric distance ˜19 arcmin (4.69 kpc), were observed with the Potsdam Multi-Aperture Spectrophotometer instrument at the 3.5-m telescope of the Centro Astronómico Hispano-Alemán (CAHA, aka Calar Alto Observatory). The spectral coverage goes from 3600 Å to 1 μm to include from [O II] λ3727 Å to the near-infrared lines required for deriving sulphur electron temperature and abundance diagnostics. Local conditions within individual H II regions are presented in the form of emission-line fluxes and physical conditions for each spatial resolution element (spaxel) and for segments with similar Hα surface brightness. A clear dichotomy is observed when comparing the central to outer disc H II regions. While the external H II region has higher electron temperature plus larger Hβ equivalent width, size and excitation, the central region has higher extinction and metal content. The dichotomy extends to the Baldwin-Phillips-Terlevich (BPT) diagnostic diagrams that show two orthogonal broad distributions of points. By comparing with pseudo-3D photoionization models, we conclude that the bulk of observed differences are probably related to a different ionization parameter and metallicity. Wolf-Rayet (WR) features are detected in IC 132, and resolved into two concentrations whose integrated spectra were used to estimate the characteristic number of WR stars. No WR features were detected in the central H II regions despite their higher metallicity.

  12. Planetary Nebulae and H ii Regions in the Starburst Irregular Galaxy NGC 4449 from LBT MODS Data

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Tosi, M.; Romano, D.; Buzzoni, A.; Cusano, F.; Fumana, M.; Marchetti, A.; Mignoli, M.; Pasquali, A.; Aloisi, A.

    2017-07-01

    We present deep 3500-10000 Å spectra of H ii regions and planetary nebulae (PNe) in the starburst irregular galaxy NGC 4449, acquired with the Multi Object Double Spectrograph at the Large Binocular Telescope. Using the “direct” method, we derived the abundance of He, N, O, Ne, Ar, and S in six H ii regions and in four PNe in NGC 4449. This is the first case of PNe studied in a starburst irregular outside the Local Group. Our H ii region and PN sample extends over a galactocentric distance range of ≈2 kpc and spans ≈0.2 dex in oxygen abundance, with average values of 12+{log}({{O}}/{{H}})=8.37+/- 0.05 and 8.3 ± 0.1 for H ii regions and PNe, respectively. PNe and H ii regions exhibit similar oxygen abundances in the galactocentric distance range of overlap, while PNe appear more than ˜1 dex enhanced in nitrogen with respect to H ii regions. The latter result is the natural consequence of N being mostly synthesized in intermediate-mass stars and brought to the stellar surface during dredge-up episodes. On the other hand, the similarity in O abundance between H ii regions and PNe suggests that NGC 4449’s interstellar medium has been poorly enriched in α-elements since the progenitors of the PNe were formed. Finally, our data reveal the presence of a negative oxygen gradient for both H ii regions and PNe, while nitrogen does not exhibit any significant radial trend. We ascribe the (unexpected) nitrogen behavior to local N enrichment by the conspicuous Wolf-Rayet population in NGC 4449.

  13. Properties of the giant H II regions and bar in the nearby spiral galaxy NGC 5430

    NASA Astrophysics Data System (ADS)

    Brière, É.; Cantin, S.; Spekkens, K.

    2012-09-01

    In order to better understand the impact of the bar on the evolution of spiral galaxies, we measure the properties of giant H II regions and the bar in the SB(s)b galaxy NGC 5430. We use two complementary data sets, both obtained at the Observatoire du Mont-Mégantic: a hyperspectral data cube from the imaging Fourier transform spectrograph SpIOMM (Spectromètre-Imageur à transformée de Fourier de l-Observatoire du Mont-Mégantic) and high-resolution spectra across the bar from a long-slit spectrograph. We flux-calibrate SpIOMM spectra for the first time, and produce Hα and [N II]λ6584 Å intensity maps from which we identify 51 giant H II regions in the spiral arms and bar. We evaluate the type of activity, the oxygen abundance and the age of the young populations contained in these giant H II regions and in the bar. Thus, we confirm that NGC 5430 does not harbour a strong active galactic nucleus, and that its Wolf-Rayet knot shows a pure H II region nature. We find no variation in abundance or age between the bar and spiral arms, nor as a function of galactocentric radius. These results are consistent with the hypothesis that a chemical mixing mechanism is at work in the galaxy's disc to flatten the oxygen abundance gradient. Using the STARBURST99 model, we estimate the ages of the young populations, and again find no variations in age between the bar and the arms or as a function of radius. Instead, we find evidence for two galaxy-wide waves of star formation, about 7.1 and 10.5 Myr ago. While the bar in NGC 5430 is an obvious candidate to trigger these two episodes, it is not clear how the bar could induce widespread star formation on such a short time-scale.

  14. PTF11iqb: Bridging the gap between Type IIN and normal Type II

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Mauerhan, Jon; Ofek, Eran; Cenko, Stephen B.; Kasliwal, Mansi M.; Silverman, Jeffrey M.; Filippenko, Alexei V.; Gal-Yam, Avishay

    2015-01-01

    The recent supernova (SN) PTF11iqb was classified as a Type IIn event caught very early after explosion. It showed narrow Wolf-Rayet (WR) spectral features on day 2, but the narrow emission weakened quickly and the spectrum morphed through several stages resembling normal Types II-P and II-L. At late times, Hα emission ex- hibited a complex, multi-peaked profile reminiscent of SN 1998S. Overall, we find that PTF11iqb was a near twin of the classic object SN 1998S, except with a factor of 2- 4 weaker interaction with circumstellar material (CSM) at early times, and stronger CSM interaction at late times. We match the main light curve with a simple model for weak CSM interaction (with a mass loss rate of roughly 10-4 M⊙ yr-1 ) added to the light curve of a normal SN II-P (the relatively weak CSM interaction allowed this plateau to be seen more clearly than in other SNe IIn). This plateau in the underlying light curve requires that the progenitor had an extended hydrogen envelope like a cool (red or yellow) supergiant at the moment that it exploded. The likely cool supergiant progenitor is significant because PTF11iqb showed WR features in its early spectrum. Overall, PTF11iqb seems to bridge SNe IIn with weaker pre-SN mass loss seen in SNe II-L and II-P, thereby implying that episodic pre-SN mass loss on a wide range of time and mass scales could be more frequent than implied by standard SNe IIn.

  15. GR 290 (Romano’s Star). II. Light History and Evolutionary State

    NASA Astrophysics Data System (ADS)

    Polcaro, V. F.; Maryeva, O.; Nesci, R.; Calabresi, M.; Chieffi, A.; Galleti, S.; Gualandi, R.; Haver, R.; Mills, O. F.; Osborn, W. H.; Pasquali, A.; Rossi, C.; Vasilyeva, T.; Viotti, R. F.

    2016-06-01

    We have investigated the past light history of the luminous variable star GR 290 (M33/V532, Romano’s Star) in the M33 galaxy, and collected new spectrophotometric observations in order to analyze links between this object, the LBV category, and the Wolf-Rayet stars of the nitrogen sequence. We have built the historical light curve of GR 290 back to 1901, from old observations of the star found in several archival plates of M33. These old recordings together with published and new data on the star allowed us to infer that for at least half a century the star was in a low luminosity state, with B ≃ 18-19, most likely without brighter luminosity phases. After 1960, five large variability cycles of visual luminosity were recorded. The amplitude of the oscillations was seen increasing toward the 1992-1994 maximum, then decreasing during the last maxima. The recent light curve indicates that the photometric variations have been quite similar in all the bands and that the B - V color index has been constant within ±0.1m despite the 1.5m change of the visual luminosity. The spectrum of GR 290 at the large maximum of 1992-94 was equivalent to late-B-type, while, during 2002-2014, it varied between WN10h-11h near the visual maxima to WN8h-9h at the luminosity minima. We have detected, during this same period, a clear anti-correlation between the visual luminosity, the strength of the He ii 4686 Å emission line, the strength of the 4600-4700 Å lines’ blend, and the spectral type. From a model analysis of the spectra collected during the whole 2002-2014 period, we find that the Rosseland radius R2/3, changed between the minimum and maximum luminosity phases by a factor of three while Teff varied between about 33,000 and 23,000 K. We confirm that the bolometric luminosity of the star has not been constant, but has increased by a factor of ˜1.5 between minimum and maximum luminosity, in phase with the apparent luminosity variations. Presently, GR 290 falls in the H

  16. SMM Observations of Interstellar 26Al: A Status Report

    DTIC Science & Technology

    1988-01-01

    explosive nucleosynthesis; massive Of and Wolf-Rayet stars (Dearborn and Blake 1984) and massive pulsing red giant stars (Norgaard 1980), all of which...Population I objects, including type II supernovae, Of and Wolf-Rayet stars , and massive (M Z 3 Me) red giants; and 2) Population II objects, of which novae... luminosity . If the observed 26A1 was produced by a single event, its distribution would be expected to follow roughly that of a face-on disk centered on

  17. The Variability of the BRITE-est Wolf-Rayet star gamma Velorum. Photometric and Spectroscopic Evidence of Colliding Winds.

    NASA Astrophysics Data System (ADS)

    Richardson, Noel; St-Jean, Lucas; Moffat, Anthony F. J.; St. Louis, Nicole; Post Russell, Christopher Michael; Shenar, Tomer; Pablo, Herbert; Hill, Grant M.; Ramiaramanantsoa, Tahina; Hamaguchi, Kenji; Corcoran, Michael F.

    2017-01-01

    We report on the first results of an intensive photometric and spectroscopic campaign on the bright WC+O binary, gamma Velorum. The system was observed with two-color photometry with the BRITE-Constellation nanosatellites for six months, while we collected ~500 optical spectra in parallel from ground-based observatories. We report on the spectroscopic orbit and the evidence of colliding winds, both spectroscopically and photometrically. We find evidence of an inverse relationship between the orbital separation and the observed flux. Through a comparison with multiple spectra and the red/blue filter responses, we find that the flux excess seen photometrically is caused by the excess line emission at periastron. We have begun to quantify these variations and will compare them with smoothed-particle hydrodynamics simulations. We will further constrain these processes using XMM-Newton X-ray spectroscopy that will be obtained in late-2016 in parallel with further optical photometric and spectroscopic observations.

  18. A 2007 photometric study and UV spectral analysis of the Wolf-Rayet binary V444 Cyg

    NASA Astrophysics Data System (ADS)

    Eriş, F. Z.; Ekmekçi, F.

    2011-07-01

    Photometric and spectroscopic characteristics of the WN5+O6 binary system, V444 Cyg, were studied. The Wilson-Devinney (WD) analysis, using new BV observations carried out at the Ankara University Observatory, revealed the masses, radii, and temperatures of the components of the system as MWR=10.64 M⊙, MO=24.68 M⊙, RWR=7.19 R⊙, RO=6.85 R⊙, TWR=31 000 K, and TO=40 000 K , respectively. It was found that both components had a full spherical geometry, whereas the circumstellar envelope of the WR component had an asymmetric structure. The O-C analysis of the system revealed a period lengthening of 0.139±0.018 s yr-1, implying a mass loss rate of (6.76 ± 0.39) × 10-6 M⊙ yr-1 for the WR component. Moreover, 106 IUE-NEWSIPS spectra were obtained from NASA's IUE archive for line identification and determination of line profile variability with phase, wind velocities and variability in continuum fluxes. The integrated continuum flux level (between 1200-2000 \\rA) showed a mild and regular increase from orbital phase 0.00 up to 0.50 and then a decrease in the same way back to phase 0.00. This is evaluated as the O component making a constant and regular contribution to the system's UV light as the dominant source. The C IV line, originating in the circumstellar envelope, had the highest velocity while N IV line, originating in deeper layers of the envelope, had the lowest velocity. The average radial velocity calculated by using the C IV line (wind velocity) was found as 2326 km s-1. Tables 2 and 3 and Figs. 4 and 8 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr or via http:://cdsweb.u-strasbg.fr/AN/332/616

  19. Color excesses, intrinsic colors, and absolute magnitudes of Galactic and Large Magellanic Cloud Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Torres-Dodgen, Ana V.

    1990-01-01

    A new method of determining the color excesses of WR stars in the Galaxy and the LMC has been developed and is used to determine the excesses for 44 Galactic and 32 LMC WR stars. The excesses are combined with line-free, narrow-band spectrophotometry to derive intrinsic colors of the WR stars of nearly all spectral subtypes. No correlation of UV spectral index or intrinsic colors with spectral subtype is found for the samples of single WN or WC stars. There is evidence that early WN stars in the LMC have flatter UV continua and redder intrinsic colors than early WN stars in the Galaxy. No separation is found between the values derived for Galactic WC stars and those obtained for LMC WC stars. The intrinsic colors are compared with those calculated from model atmospheres of WR stars and generally good agreement is found. Absolute magnitudes are derived for WR stars in the LMC and for those Galactic WR stars located in clusters and associations for which there are reliable distance estimates.

  20. Polarimetric study of the very close eclipsing binary system of the Wolf-Rayet type CX Cep

    NASA Astrophysics Data System (ADS)

    Kartasheva, T. A.

    The results of polarization observations of CX Cep carried out at SAO RAS in August, 1998 were compared with the results of its earlier investigations by Schulte-Ladbeck and Van der Hucht (1989). The mean level of linear polarization of the system is noted to sharply increase (from ≍6.1%, in observations of the first researchers, to ≍7%, in ours) which was accompanied by a rise in the amplitude of polarization variations over the orbital period (from ≍0.3% to ≍1%, respectively). A Fourier analysis of the new polarization curve of CX Cep was made by the universally accepted method. The results of the analysis were compared with the analogous results of our repeat analysis of the observations made by Schulte-Ladbeck and Van der Hucht (Kartasheva, 2002). The comparison showed that by 1998 an abrupt increase (≍3 times) occurred in the degree of asymmetry of scattering matter relative to the orbital plane of the system. This increase was accompanied by a sharp rise (≍5 times) of the degree of matter concentration towards this plane and by a growth of more than 3 times of the electron density of the WR envelope. All this suggests that CX Cep was in the state of excitation in 1998 August. This is also evidenced by the revealed in the analysis of our observations rough violation of orthogonality of the axes of ellipses described by the first and second harmonics of expansion, which does not allow the estimate of the orbit inclination of the system obtained in this analysis to be trusted. An identity is noted of the state of CX Cep in the observations of August, 1998 with the state of the closest of the WR binaries CQ Cep in 1994 July.

  1. Narrow He II emission in star-forming galaxies at low metallicity. Stellar wind emission from a population of very massive stars

    NASA Astrophysics Data System (ADS)

    Gräfener, G.; Vink, J. S.

    2015-06-01

    Context. In a recent study, star-forming galaxies with He ii λ1640 emission at moderate redshifts between 2 and 4.6 have been found to occur in two modes that are distinguished by the width of their He ii emission lines. Broad He ii emission has been attributed to stellar emission from a population of evolved Wolf-Rayet (WR) stars. The origin of narrow He ii emission is less clear but has been attributed to nebular emission excited by a population of very hot Pop III stars formed in pockets of pristine gas at moderate redshifts. Aims: We propose an alternative scenario for the origin of the narrow He ii emission, namely very massive stars (VMS) at low metallicity (Z), which form strong but slow WR-type stellar winds due to their proximity to the Eddington limit. Methods: We estimated the expected He ii line fluxes and equivalent widths based on wind models for VMS and Starburst99 population synthesis models and compared the results with recent observations of star-forming galaxies at moderate redshifts. Results: The observed He ii line strengths and equivalent widths are in line with what is expected for a population of VMS in one or more young super-clusters located within these galaxies. Conclusions: In our scenario the two observed modes of He ii emission originate from massive stellar populations in distinct evolutionary stages at low Z (~0.01 Z⊙). If this interpretation is correct, there is no need to postulate the existence of Pop III stars at moderate redshifts to explain the observed narrow He ii emission. An interesting possibility is the existence of self-enriched VMS with similar WR-type spectra at extremely low Z. Stellar He ii emission from such very early generations of VMS may be detectable in future studies of star-forming galaxies at high redshifts with the James Webb Space Telescope (JWST). The fact that the He ii emission of VMS is largely neglected in current population synthesis models will generally affect the interpretation of the

  2. STIS Spectral Imagery of the OB Stars in NGC 604. II. The Most Luminous Stars

    NASA Astrophysics Data System (ADS)

    Bruhweiler, Fred C.; Miskey, Cherie L.; Smith Neubig, Margaret

    2003-06-01

    We present results using two-dimensional spectral imagery and photometry obtained with the Hubble Space Telescope (HST) for the starburst H II region NGC 604, in the nearby galaxy M33. The spectral imagery was acquired with the Space Telescope Imaging Spectrograph (STIS) using the MAMA-G140L configuration, which provided wavelength coverage spanning 1170-1730 Å. From a single 1720 s STIS exposure, we have extracted spectra for 49 stars and derived individual UV spectral types for 40 stars in the crowded 25"×2" stellar field sampled by the STIS aperture. These stars represent a significant fraction of the young, luminous O and B stars in NGC 604. Three objects have pronounced He II λ1640 emission, the signature of Wolf-Rayet (W-R) or luminous Of stars. By combining UV fluxes with HST WF/PC-1 and WFPC2 photometry at visible wavelengths, we derive the extinction curve for NGC 604. We use this extinction curve, together with the available accurate distance for M33, derived UV spectral types, and HST photometry, to determine positions of the luminous stars in the upper Hertzsprung-Russell diagram for NGC 604. The revision to the O star effective temperature scale by Martins et al., based on non-LTE, line-blanketed model atmospheres, is essential in obtaining reliable positions in the logL*-logTeff plane. These stars are quite young, with a characteristic age of ~3 Myr. The spectra and photometry indicate that three objects are exceedingly luminous. Their inferred locations in the H-R diagram relative to theoretical evolutionary tracks indicate stellar masses >=120 Msolar. High spatial resolution HST imagery provides no evidence of multiple stars composing these objects. Still, we cannot eliminate the possibility that these objects are not unresolved multiple stars of lower mass, possibly W-R stars. Simple tests demonstrate that the 10 most luminous stars predominantly determine the UV spectral features seen in the total light of NGC 604. We conclude that the

  3. MOST: A Powerful Tool to Reveal the True Nature of the Mysterious Dust-Forming Wolf-Rayet Binary CV Ser

    NASA Astrophysics Data System (ADS)

    David-Uraz, A.; Moffat, A. F. J.; Chené, A.-N.; MOST Collaboration

    2012-12-01

    The WR + O binary CV Ser has been a source of mystery since it was shown that its atmospheric eclipses change with time over decades, in addition to its sporadic dust production. However, the first high-precision time-dependent photometric observations obtained with the MOST space telescope in 2009 show two consecutive eclipses over the 29 day orbit, with varying depths. A subsequent MOST run in 2010 showed a somewhat asymmetric eclipse profile. Parallel optical spectroscopy was obtained from the Observatoire du Mont-Mégantic (2009 and 2010) and from the Dominion Astrophysical Observatory (2009).

  4. The Dust Properties of Hot R Coronae Borealis Stars and a Wolf-Rayet Central Star of a Planetary Nebula: In Search of the Missing Link

    NASA Technical Reports Server (NTRS)

    Clayton, Geoffrey C.; De Marco, O.; Whitney, B. A.; Babler, B.; Gallagher, J. S.; Nordhaus, J.; Speck, A. K.; Wolff, M. J.; Freeman, W. R.; Camp, K. A.; hide

    2012-01-01

    We present new Spitzer IIRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy,V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects constitute a link between the RCB stars and the [WCL] class of central stars of planetary nebula (CSPNe) that has little or no hydrogen in their atmospheres such as CPD -560 8032. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but sharing the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPNe star, CPD -560 8032, displays evidence for dual-dust chemistry showing both PAHs and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but shows no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from those of CPD -56deg 8032 and HV 2671. The PAH emission seen strongly in the other two stars is only weakly present. Instead, the spectrum is dominated by a broad emission centered at about 8.5 microns. This feature is not identified with either PAHs or silicates. Several other novae and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56deg 8032 shows emission features associated with C60 . The other two stars do not show evidence for C60. The nature of the dust around these stars does not help us in establishing further links that may indicate a common origin.

  5. Progenitors of supernova Ibc: a single Wolf-Rayet star as the possible progenitor of the SN Ib iPTF13bvn

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.; Georgy, Cyril; Ekström, Sylvia

    2013-10-01

    Core-collapse supernova (SN) explosions mark the end of the tumultuous life of massive stars. Determining the nature of their progenitors is a crucial step towards understanding the properties of SNe. Until recently, no progenitor has been directly detected for SN of type Ibc, which are believed to come from massive stars that lose their hydrogen envelope through stellar winds and from binary systems where the companion has stripped the H envelope from the primary. Here we analyze recently reported observations of iPTF13bvn, which could possibly be the first detection of a SN Ib progenitor based on pre-explosion images. Very interestingly, the recently published Geneva models of single stars can reproduce the observed photometry of the progenitor candidate and its mass-loss rate, confirming a recently proposed scenario. We find that a single WR star with initial mass in the range 31-35 M⊙ fits the observed photometry of the progenitor of iPTF13bvn. The progenitor likely has a luminosity of log (L⋆/L⊙) ~ 5.55, surface temperature ~45 000 K, and mass of ~10.9 M⊙ at the time of explosion. Our non-rotating 32 M⊙ model overestimates the derived radius of the progenitor, although this could likely be reconciled with a fine-tuned model of a more massive (between 40 and 50 M⊙), hotter, and luminous progenitor. Our models indicate a very uncertain ejecta mass of ~8 M⊙, which is higher than the average of the SN Ib ejecta mass that is derived from the lightcurve (2-4 M⊙). This possibly high ejecta mass could produce detectable effects in the iPTF13bvn lightcurve and spectrum. If the candidate is indeed confirmed to be the progenitor, our results suggest that stars with relatively high initial masses (> 30 M⊙) can produce visible SN explosions at their deaths and do not collapse directly to a black hole.

  6. High-velocity interstellar gas in the lines of sight to the Wolf-Rayet stars HD 97152 and HD 96548

    NASA Technical Reports Server (NTRS)

    Nichols-Bohlin, Joy; Fesen, Robert A.

    1990-01-01

    The interstellar medium was studied in the direction to the WR stars HD 96548 and HD 97152, and the results are reported. New observational data on the UV spectra of several field stars near both these WR stars are presented. The high-velocity gas seen in the spectra of these stars suggests that the detected expanding interstellar gas structure consists of two OB cluster supershells. The presence of high-velocity absorption components in one of five field star spectra in the direction of the more isolated WR star HD 96548 suggests that this expanding gas does not originate from the optical ring nebula RCW 58 surrounding HD 96548, as previously believed, but instead indicates the detection of a previously unknown expanding interstellar shell in this line of sight.

  7. Erratum: ``X-Ray Emission from Colliding Wind Shocks in the Wolf-Rayet Binary WR 140'' (ApJ, 538, 808 [2000])

    NASA Astrophysics Data System (ADS)

    Zhekov, Svetozar A.; Skinner, Stephen L.

    2002-09-01

    There is a typographic error concerning the flux units in Table 3. Footnote e in Table 3 should read: ``Observed value (0.5-10 keV) followed in parentheses by intrinsic (unabsorbed) value. Units are 10-11 ergs cm-2 s-1.''

  8. Massive stars exploding in a He-rich circumstellar medium - II. The transitional case of SN 2005la

    NASA Astrophysics Data System (ADS)

    Pastorello, A.; Quimby, R. M.; Smartt, S. J.; Mattila, S.; Navasardyan, H.; Crockett, R. M.; Elias-Rosa, N.; Mondol, P.; Wheeler, J. C.; Young, D. R.

    2008-09-01

    We present photometric and spectroscopic data of the peculiar SN 2005la, an object which shows an optical light curve with some luminosity fluctuations and spectra with comparably strong narrow hydrogen and helium lines, probably of circumstellar nature. The increasing full width at half-maximum velocity of these lines is indicative of an acceleration of the circumstellar material. SN 2005la exhibits hybrid properties, sharing some similarities with both Type IIn supernovae and 2006jc-like (Type Ibn) events. We propose that the progenitor of SN 2005la was a very young Wolf-Rayet (WN-type) star which experienced mass ejection episodes shortly before core collapse.

  9. He II emitters in the VIMOS VLT Deep Survey: Population III star formation or peculiar stellar populations in galaxies at 2 < z < 4.6?

    NASA Astrophysics Data System (ADS)

    Cassata, P.; Le Fèvre, O.; Charlot, S.; Contini, T.; Cucciati, O.; Garilli, B.; Zamorani, G.; Adami, C.; Bardelli, S.; Le Brun, V.; Lemaux, B.; Maccagni, D.; Pollo, A.; Pozzetti, L.; Tresse, L.; Vergani, D.; Zanichelli, A.; Zucca, E.

    2013-08-01

    Aims: The aim of this work is to identify He II emitters at 2 < z < 4.6 and to constrain the source of the hard ionizing continuum that powers the He II emission. Methods: We assembled a sample of 277 galaxies with a highly reliable spectroscopic redshift at 2 < z < 4.6 from the VIMOS-VLT Deep Survey (VVDS) Deep and Ultra-Deep data, and we identified 39 He II λ1640 emitters. We studied their spectral properties, measuring the fluxes, equivalent widths (EW), and full width at half maximum (FWHM) for most relevant lines, including He II λ1640, Lyα line, Si II λ1527, and C IV λ1549. Results: About 10% of galaxies at z ~ 3 and iAB ≤ 24.75 show He II in emission, with rest frame equivalent widths EW0 ~ 1-7 Å, equally distributed between galaxies with Lyα in emission or in absorption. We find 11 (3.9% of the global population) reliable He II emitters with unresolved He II lines (FWHM0 < 1200 km s-1), 13 (4.6% of the global population) reliable emitters with broad He II emission (FWHM0 > 1200 km s-1), 3 active galactic nuclei (AGN), and an additional 12 possible He II emitters. The properties of the individual broad emitters are in agreement with expectations from a Wolf-Rayet (W-R) model. Instead, the properties of the narrow emitters are not compatible with this model, nor with predictions of gravitational cooling radiation produced by gas accretion, unless this is severely underestimated by current models by more than two orders of magnitude. Rather, we find that the EW of the narrow He II line emitters are in agreement with expectations for a Population III (PopIII) star formation, if the episode of star formation is continuous, and we calculate that a PopIII star formation rate (SFR) of 0.1-10 M⊙ yr-1 alone is enough to sustain the observed He II flux. Conclusions: We conclude that narrow He II emitters are powered either by the ionizing flux from a stellar population rare at z ~ 0 but much more common at z ~ 3, or by PopIII star formation. As proposed by

  10. A giant outburst two years before the core-collapse of a massive star.

    PubMed

    Pastorello, A; Smartt, S J; Mattila, S; Eldridge, J J; Young, D; Itagaki, K; Yamaoka, H; Navasardyan, H; Valenti, S; Patat, F; Agnoletto, I; Augusteijn, T; Benetti, S; Cappellaro, E; Boles, T; Bonnet-Bidaud, J-M; Botticella, M T; Bufano, F; Cao, C; Deng, J; Dennefeld, M; Elias-Rosa, N; Harutyunyan, A; Keenan, F P; Iijima, T; Lorenzi, V; Mazzali, P A; Meng, X; Nakano, S; Nielsen, T B; Smoker, J V; Stanishev, V; Turatto, M; Xu, D; Zampieri, L

    2007-06-14

    The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations.

  11. GRB 980425 host: [C II], [O I], and CO lines reveal recent enhancement of star formation due to atomic gas inflow

    NASA Astrophysics Data System (ADS)

    Michałowski, M. J.; Castro Cerón, J. M.; Wardlow, J. L.; Karska, A.; Messias, H.; van der Werf, P.; Hunt, L. K.; Baes, M.; Castro-Tirado, A. J.; Gentile, G.; Hjorth, J.; Le Floc'h, E.; Pérez-Martínez, R.; Nicuesa Guelbenzu, A.; Rasmussen, J.; Rizzo, J. R.; Rossi, A.; Sánchez-Portal, M.; Schady, P.; Sollerman, J.; Xu, D.

    2016-11-01

    Context. Accretion of gas from the intergalactic medium is required to fuel star formation in galaxies. We have recently suggested that this process can be studied using host galaxies of gamma-ray bursts (GRBs). Aims: Our aim is to test this possibility by studying in detail the properties of gas in the closest galaxy hosting a GRB (980425). Methods: We obtained the first ever far-infrared (FIR) line observations of a GRB host, namely Herschel/PACS resolved [C ii] 158 μm and [O i] 63 μm spectroscopy, and an APEX/SHeFI CO(2-1) line detection and ALMA CO(1-0) observations of the GRB 980425 host. Results: The GRB 980425 host has elevated [C ii]/FIR and [O i]/FIR ratios and higher values of star formation rates (SFR) derived from line ([C ii], [O i], Hα) than from continuum (UV, IR, radio) indicators. [C ii] emission exhibits a normal morphology, peaking at the galaxy centre, whereas [O i] is concentrated close to the GRB position and the nearby Wolf-Rayet region. The high [O i] flux indicates that there is high radiation field and high gas density at these positions, as derived from modelling of photo-dissociation regions. The [C ii]/CO luminosity ratio of the GRB 980425 host is close to the highest values found for local star-forming galaxies. Indeed, its CO-derived molecular gas mass is low given its SFR and metallicity, but the [C ii]-derived molecular gas mass is close to the expected value. Conclusions: The [O i] and H i concentrations and the high radiation field and density close to the GRB position are consistent with the hypothesis of a very recent (at most a few tens of Myr ago) inflow of atomic gas triggering star formation. In this scenario dust has not had time to build up (explaining high line-to-continuum ratios). Such a recent enhancement of star formation activity would indeed manifest itself in high SFRline/SFRcontinuum ratios because the line indicators are sensitive only to recent (≲10 Myr) activity, whereas the continuum indicators measure

  12. GEMINI 3D spectroscopy of BAL + IR + FeII QSOs - I. Decoupling the BAL, QSO, starburst, NLR, supergiant bubbles and galactic wind in Mrk 231

    NASA Astrophysics Data System (ADS)

    Lipari, S.; Sanchez, S. F.; Bergmann, M.; Terlevich, R.; Garcia-Lorenzo, B.; Punsly, B.; Mediavilla, E.; Taniguchi, Y.; Ajiki, M.; Zheng, W.; Acosta, J.; Jahnke, K.

    2009-02-01

    In this paper we present the first results of a study of BAL QSOs (at low and high redshift), based on very deep Gemini GMOS integral field spectroscopy. In particular, the results obtained for the nearest BAL IR-QSO Mrk 231 are presented. For the nuclear region of Mrk 231, the QSO and host galaxy components were modelled, using a new technique of decoupling 3D spectra. From this study, the following main results were found: (i) in the pure host galaxy spectrum an extreme nuclear starburst component was clearly observed, as a very strong increase in the flux, at the blue wavelengths; (ii) the BAL system I is observed in the spectrum of the host galaxy; (iii) in the clean/pure QSO emission spectrum, only broad lines were detected. 3D GMOS individual spectra (specially in the near-infrared CaII triplet) and maps confirm the presence of an extreme and young nuclear starburst (8 < age < 15 Myr), which was detected in a ring or toroid with a radius r = 0.3arcsec ~ 200 pc, around the core of the nucleus. The extreme continuum blue component was detected only to the south of the core of the nucleus. This area is coincident with the region where we previously suggested that the galactic wind is cleaning the nuclear dust. Very deep 3D spectra and maps clearly show that the BAL systems I and II - in the strong `absorption lines' NaIDλ5889-95 and CaII Kλ3933 - are extended (reaching ~1.4-1.6 arcsec ~ 1.2-1.3 kpc, from the nucleus) and clearly elongated at the position angle (PA) close to the radio jet PA, which suggest that the BAL systems I and II are `both' associated with the radio jet. The physical properties of the four expanding nuclear bubbles were analysed, using the GMOS 3D spectra and maps. In particular, we found strong multiple LINER/OF emission-line systems and Wolf-Rayet features in the main knots of the more external super bubble S1 (r = 3.0 kpc). The kinematics of these knots - and the internal bubbles - suggest that they are associated with an area of

  13. Mass loss and stellar superwinds

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.

    2017-09-01

    Mass loss bridges the gap between massive stars and supernovae (SNe) in two major ways: (i) theoretically, it is the amount of mass lost that determines the mass of the star prior to explosion and (ii) observations of the circumstellar material around SNe may teach us the type of progenitor that made the SN. Here, I present the latest models and observations of mass loss from massive stars, both for canonical massive O stars, as well as very massive stars that show Wolf-Rayet type features. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  14. CARBON STARS WITH INFRARED SPECTRA IN GROUP P OF THE IRAS/LRS DATABASE

    SciTech Connect

    Chen, P. S.

    2012-10-01

    Sources with infrared spectra in Group P of the IRAS/LRS database all show polycyclic aromatic hydrocarbon features. They are often planetary nebulae, H II regions, reflection/dark nebulae, Wolf-Rayet stars, or external galaxies. However, we noted that some carbon stars are also included in this group. We searched for and investigated all infrared spectra in Group P of the IRAS/LRS database. Finally, we found 11 previously known carbon stars and identified 8 new candidate carbon stars in Group P. Infrared spectra of these stars may present the 11.2 {mu}m SiC emission features indicative of their carbon-rich properties.

  15. Sources of High-Energy Emission in the Green Pea Galaxies: New Constraints from Magellan Spectra

    NASA Astrophysics Data System (ADS)

    Carroll, Derek Alexander

    2016-01-01

    The recently discovered Green Pea galaxies display extreme starburst activity and may be some of the only possible Lyman continuum emitting galaxies at low redshift. Green Peas are characterized by their unusually high [O III]/[O II] ratios, similar to the ratios observed in high-redshift galaxies. In addition, the presence of the high-energy He II 4686 line shows that the Green Peas are highly ionized. However, the origin of the He II emission in the Green Peas, and many other starburst galaxies, is still an open question. We analyze IMACS and MagE spectra from the Magellan telescopes in order to evaluate the most probable cause of this He II emission. We also analyze other properties like dust content, temperature and density, and kinematic components. Our IMACS spectra show no Wolf-Rayet (WR) features. We set upper limits on the WR populations in our sample and conclude that Wolf-Rayet stars are not a likely candidate for the He II emission. With deeper MagE spectra we investigate energetic shocks as a possible source of the He II, and move one step closer to uncovering the origin of high-energy photons in these unique starbursts.

  16. A multiwavelength study of evolved massive stars in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Dong, H.; Wang, Q. D.; Morris, M. R.

    2012-09-01

    The central region of the Milky Way Galaxy provides a unique laboratory for a systematic, spatially resolved population study of evolved massive stars of various types in a relatively high-metallicity environment. We have conducted a multiwavelength data analysis of 180 such stars or candidates, most of which were drawn from a recent large-scale Hubble Space Telescope (HST)/Near-Infrared Camera and MultiObject Spectrometer (NICMOS) narrow-band Paschen α survey, plus additional 14 Wolf-Rayet stars identified in earlier ground-based spectroscopic observations of the same field. The multiwavelength data include broad-band infrared (IR) photometry measurements from HST/NIC2, Simultaneous three-colour InfraRed Imager for Unbiased Surveys (SIRIUS), Two-Micron All-Sky Survey (2MASS), Spitzer/IRAC and X-ray observations from Chandra. We correct for extinctions towards individual stars, improve the Paschen α line equivalent width measurements, quantify the substantial mid-IR dust emission associated with carbon sequence Wolf-Rayet (WC) stars and find X-ray counterparts. In the process, we identify 10 foreground sources, some of which may be nearby cataclysmic variables. The nitrogen sequence Wolf-Rayet (WN) stars in the Arches and Central clusters show correlations between the Paschen α equivalent width and the adjacent continuum emission. However, the WN stars in the latter cluster are systematically dimmer than those in the Arches cluster, presumably due to the different ages of the two clusters. In the equivalent width-magnitude plot, late-type nitrogen sequence Wolf-Rayet (WNL) stars, WC stars and OB supergiants roughly fall into three distinct regions. We estimate that the dust mass associated with individual WC stars in the quintuplet cluster can reach 10-5 M⊙, or more than one order of magnitude larger than previous estimates. Thus, WC stars could be a significant source of dust in the galaxies of the early Universe. Nearly half of the evolved massive stars in

  17. Photometry of the 4686 A emission line of gamma(2) Velorum from the South Pole

    NASA Technical Reports Server (NTRS)

    Taylor, Maryjane

    1990-01-01

    An automated optical telescope located at the Amundsen-Scott South Pole station on Antarctica, has been used to obtain more than 78 h of photometry of the He II emission line (4686 A) of the spectroscopic binary gamma(2) Velorum. These data were obtained on seven different days during the 1987 austral winter; the longest continuous run spans 19 h. Two independent period search techniques have been used to search for periodic behavior in the strength of the He II emission line of this Wolf-Rayet star. They are: (1) power spectrum analysis and (2) a first-order sine function fit to the data using least squares. Various multiplicities of a period on the order of 1.3 h with amplitudes of a few percent are found in most of these data. According to recent theoretical models of Wolf-Rayet stars, fluctuations in the He II emission line may indicate vibrational instability in gamma(2) Vel. These pulsations may, in turn, give rise to shocks which propagate outward and which may provide the necessary conditions for periodic changes in the state of a given region of the atmosphere to occur.

  18. Photometry of the 4686 A emission line of gamma(2) Velorum from the South Pole

    SciTech Connect

    Taylor, M. Florida Univ., Gainesville )

    1990-10-01

    An automated optical telescope located at the Amundsen-Scott South Pole station on Antarctica, has been used to obtain more than 78 h of photometry of the He II emission line (4686 A) of the spectroscopic binary gamma(2) Velorum. These data were obtained on seven different days during the 1987 austral winter; the longest continuous run spans 19 h. Two independent period search techniques have been used to search for periodic behavior in the strength of the He II emission line of this Wolf-Rayet star. They are: (1) power spectrum analysis and (2) a first-order sine function fit to the data using least squares. Various multiplicities of a period on the order of 1.3 h with amplitudes of a few percent are found in most of these data. According to recent theoretical models of Wolf-Rayet stars, fluctuations in the He II emission line may indicate vibrational instability in gamma(2) Vel. These pulsations may, in turn, give rise to shocks which propagate outward and which may provide the necessary conditions for periodic changes in the state of a given region of the atmosphere to occur. 15 refs.

  19. Chemical evolution of fluorine in the bulge. High-resolution K-band spectra of giants in three fields

    NASA Astrophysics Data System (ADS)

    Jönsson, H.; Ryde, N.; Harper, G. M.; Cunha, K.; Schultheis, M.; Eriksson, K.; Kobayashi, C.; Smith, V. V.; Zoccali, M.

    2014-04-01

    Context. Possible main formation sites of fluorine in the Universe include asymptotic giant branch (AGB) stars, the ν-process in Type II supernova, and/or Wolf-Rayet stars. The importance of the Wolf-Rayet stars has theoretically been questioned and they are probably not needed in modeling the chemical evolution of fluorine in the solar neighborhood. It has, however, been suggested that Wolf-Rayet stars are indeed needed to explain the chemical evolution of fluorine in the bulge. The molecular spectral data, needed to determine the fluorine abundance, of the often used HF-molecule has not been presented in a complete and consistent way and has recently been debated in the literature. Aims: We intend to determine the trend of the fluorine-oxygen abundance ratio as a function of a metallicity indicator in the bulge to investigate the possible contribution from Wolf-Rayet stars. Additionally, we present here a consistent HF line list for the K- and L-bands including the often used 23 358.33 Å line. Methods: High-resolution near-infrared spectra of eight K giants were recorded using the spectrograph CRIRES mounted at the VLT. A standard setting was used that covered the HF molecular line at 23 358.33 Å. The fluorine abundances were determined using spectral fitting. We also re-analyzed five previously published bulge giants observed with the Phoenix spectrograph on Gemini using our new HF molecular data. Results: We find that the fluorine-oxygen abundance in the bulge probably cannot be explained with chemical evolution models that only include AGB stars and the ν-process in supernovae Type II, that is a significant amount of fluorine production in Wolf-Rayet stars is most likely needed to explain the fluorine abundance in the bulge. For the HF line data, we find that a possible reason for the inconsistencies in the literature, where two different excitation energies were used, is two different definitions of the zero-point energy for the HF molecule and therefore

  20. STELLAR POPULATIONS IN THE CENTRAL 0.5 pc OF THE GALAXY. II. THE INITIAL MASS FUNCTION

    SciTech Connect

    Lu, J. R.; Do, T.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Matthews, K. E-mail: tuan.do@uci.edu E-mail: morris@astro.ucla.edu

    2013-02-20

    The supermassive black hole at the center of the Milky Way plays host to a massive, young cluster that may have formed in one of the most inhospitable environments in the Galaxy. We present new measurements of the global properties of this cluster, including the initial mass function (IMF), age, and cluster mass. These results are based on Keck laser-guide-star adaptive optics observations used to identify the young stars and measure their Kp-band luminosity function as presented in Do et al. A Bayesian inference methodology is developed to simultaneously fit the global properties of the cluster utilizing the observations and extensive simulations of synthetic star clusters. We find that the slope of the mass function for this cluster is {alpha} = 1.7 {+-} 0.2, which is steeper than previously reported, but still flatter than the traditional Salpeter slope of 2.35. The age of the cluster is between 2.5 and 5.8 Myr with 95% confidence, which is a younger age than typically adopted but consistent within the uncertainties of past measurements. The exact age of the cluster is difficult to determine since our results show two distinct age solutions (3.9 Myr and 2.8 Myr) due to model degeneracies in the relative number of Wolf-Rayet and OB stars. The total cluster mass is between 14,000 and 37,000 M {sub Sun} above 1 M {sub Sun} and it is necessary to include multiple star systems in order to fit the observed luminosity function and the number of observed Wolf-Rayet stars. The new IMF slope measurement is now consistent with X-ray observations indicating a factor of 10 fewer X-ray emitting pre-main-sequence stars than expected when compared with a Salpeter IMF. The young cluster at the Galactic center is one of the few definitive examples of an IMF that deviates significantly from the near-universal IMFs found in the solar neighborhood.

  1. Massive star population in M 31 OB associations

    NASA Astrophysics Data System (ADS)

    Cananzi, K.

    1992-06-01

    From data taken at the 3.60 m CFHT in the U, B, V and I bands and in interference filters centered on the HeII, CIII lines and at 4749 A (continuum), we perform stellar photometry on several OB associations in the Andromeda galaxy, using DAOPHOT. This allows us to build H-R diagrams from which we deduce for V magnitudes between 16 and 22, the slope of the differential Luminosity Function (LF) and derive from it an Initial Mass Function (IMF). We used the HeII, CIII, and 'continuum' narrow bands to detect the Wolf-Rayet candidates by an 'ON LINE-OFF LINE' method. In the absence of confirmation spectra, we retain only 3 probable ones, plus 5 recently confirmed in two of our common fields by Armandroff and Massey and 2 already found by Moffat and Shara (1987), to obtain an estimation of the ratio WR/O.

  2. Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Maeda, K.; Bersten, M. C.; Folatelli, G.; Morrell, N.; Hsiao, E. Y.; González-Gaitán, S.; Anderson, J. P.; Hamuy, M.; de Jaeger, T.; Gutiérrez, C. P.; Kawabata, K. S.

    2015-07-01

    Aims: We present and analyse late-time observations of the Type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, which were done ~300 days after the explosion. We discuss them in the context of constraints on the supernova's progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in a close binary system. Methods: Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg I]λλ4571, [O I]λλ6300, 6364, and [Ca II]λλ7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compared the [O I]/[Ca II] line ratio with other supernovae. Results.The core oxygen mass of the supernova progenitor was estimated to be ≲0.7 M⊙, which implies initial progenitor mass that does not exceed ~15-17 M⊙.Since the derived mass is too low for a single star to become a Wolf-Rayet star, this result lends more support to the binary nature of the progenitor star of iPTF13bvn. The comparison of [O I]/[Ca II] line ratio with other supernovae also shows that iPTF13bvn appears to be in close association with the lower mass progenitors of stripped-envelope and Type-II supernovae. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); Chilean Telescope Time Allocation Committee proposal CN2014A-91.

  3. Is the Extraordinary Super Star Cluster NGC 3125-1 an Imposter?

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus

    2010-09-01

    We propose a short, 4 orbit COS+STIS spectroscopic program to observe the extraordinary super star cluster in the local starburst galaxy NGC 3125. The cluster has the strongest He II 1640 emission ever observed in a starburst region in the local universe. This line is the tell-tale sign of Wolf-Rayet stars, the evolved descendants of very massive O stars. Taken at face value, the anomalous He II 1640 line indciates a Wolf-Rayet population that is very different from other starburst regions. However, previous attempts to interpret the observational data of the super star cluster were hampered by the low resolution of the ultraviolet spectra and the lack of co-spatial panchromatic data. As a result, the suggestion of the extraordinary nature of this super star cluster is still not unambiguous. The proposed program will settle the matter. We will test the upper initial mass function from several angles: the N V and Si IV stellar wind-lines, the elusive O V line associated with the hottest, most massive stars, and the ionizing radiation as probed by recombination lines. We will determine the dust redening with three independent methods: the SED, the Balmer decrement, and the He II 4686/1640 ratio. The STIS long-slit capabilities will allow us to perform a comparative study with a nearby super star cluster in the host galaxy. The ultraviolet spectrum of the super star cluster may be the missing link between local starbursts and star-forming galaxies at cosmological redshift. The UV spectra of the two classes of objects are rather similar, except for the He II 1640 line, which is much stronger at high redshift. Detailed observations of NGC 3125 may help shed light on understanding the details of star-formation at high redshift.

  4. Spectropolarimetry of hot, luminous stars

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, Regina E.

    1994-01-01

    I review polarimetric observations of presumably single, hot luminous stars. The stellar types discussed are OB stars. B(e) supergiants, Luminous Blue Variables (LBV), Wolf-Rayet (W-R) stars, and type II supernovae (SN). It is shown that variable, intrinsic polarization is a common phenomenon in that part of the Hertzsprung-Russell (HR) diagram which these stars occupy. However, much observational work remains to be done before we can answer the most basic, statistical questions about the polarimetric properties of different groups of hot, luminous stars. Insight into the diagnostic power of polarization observations has been gained, but cannot be exploited without detailed models. Thus, while polarimetric observations do tell us that the mass-loss processes of all types of massive stars are time-dependent and anisotropic, the significance that this might have for the accuracy of their stellar parameters and evolutionary paths remains elusive.

  5. Catalog of far-ultraviolet objective-prism spectrophotometry: Skylab experiment S-019, ultraviolet steller astronomy

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Wray, J. D.; Parsons, S. B.; Benedict, G. F.

    1979-01-01

    Ultraviolet stellar spectra in the wavelength region from 1300 to 5000 A (130 to 500) were photographed during the three manned Skylab missions using a 15 cm aperture objective-prism telescope. The prismatic dispersion varied from 58 A mm/1 at 1400 A to 1600 A mm/1 at 3000 A. Approximately 1000 spectra representing 500 stars were measured and reduced to observed fluxes. About 100 stars show absorption lines of Si IV, C IV, or C II. Numerous line features are also recorded in supergiant stars, shell stars, A and F stars, and Wolf-Rayet stars. Most of the stars in the catalog are of spectral class B, with a number of O and A type stars and a sampling of WC, WN, F and C type stars. Spectrophotometric results are tabulated for these 500 stars.

  6. DISSECTION OF H{alpha} EMITTERS : LOW-z ANALOGS OF z > 4 STAR-FORMING GALAXIES

    SciTech Connect

    Shim, Hyunjin; Chary, Ranga-Ram

    2013-03-01

    Strong H{alpha} emitters (HAEs) dominate the z {approx} 4 Lyman-break galaxy (LBG) population. We have identified local analogs of these HAEs using the Sloan Digital Sky Survey. At z < 0.4, only 0.04% of the galaxies are classified as HAEs with H{alpha} equivalent widths ({approx}> 500 A) comparable to that of z {approx} 4 HAEs. Local HAEs have lower stellar mass and lower ultraviolet (UV) luminosity than z {approx} 4 HAEs, yet the H{alpha}-to-UV luminosity ratio, as well as their specific star formation rate, is consistent with that of z {approx} 4 HAEs, indicating that they are scaled-down versions of high-z star-forming galaxies. Compared to the previously studied local analogs of LBGs selected using rest-frame UV properties, local HAEs show similar UV luminosity surface density, weaker D{sub n} (4000) break, lower metallicity, and lower stellar mass. This implies that the local HAEs are less evolved galaxies than the traditional Lyman break analogs. In the stacked spectrum, local HAEs show a significant He II {lambda}4686 emission line suggesting a population of hot, massive stars similar to that seen in some Wolf-Rayet galaxies. Low [N II]/[O III] line flux ratios imply that local HAEs are inconsistent with being systems that host bright active galactic nuclei. Instead, it is highly likely that local HAEs are galaxies with an elevated ionization parameter, either due to a high electron density or large escape fraction of hydrogen ionizing photons as in the case of Wolf-Rayet galaxies.

  7. The trace of the CNO cycle in the ring nebula NGC 6888

    SciTech Connect

    Mesa-Delgado, A.; Esteban, C.; García-Rojas, J.; Reyes-Pérez, J.; Morisset, C.; Bresolin, F.

    2014-04-20

    We present new results on the chemical composition of the Galactic ring nebula NGC 6888 surrounding the WN6(h) star WR136. The data are based on deep spectroscopical observations taken with the High Dispersion Spectrograph at the 8.2 m Subaru Telescope. The spectra cover the optical range from 3700 to 7400 Å. The effect of the CNO cycle is well-identified in the abundances of He, N, and O, while elements not involved in the synthesis such as Ar, S, and Fe present values consistent with the solar vicinity and the ambient gas. The major achievement of this work is the first detection of the faint C II λ4267 recombination line in a Wolf-Rayet nebula. This allows us to estimate the C abundance in NGC 6888 and therefore investigate for the first time the trace of the CNO cycle in a ring nebula around a Wolf-Rayet star. Although the detection of the C II line has a low signal-to-noise ratio, the C abundance seems to be higher than the predictions of recent stellar evolution models of massive stars. The Ne abundance also shows a puzzling pattern with an abundance of about 0.5 dex lower than the solar vicinity, which may be related to the action of the NeNa cycle. Attending to the constraints imposed by the dynamical timescale and the He/H and N/O ratios of the nebula, the comparison with stellar evolution models indicates that the initial mass of the stellar progenitor of NGC 6888 is between 25 M {sub ☉} and 40 M {sub ☉}.

  8. γ2 Velorum: orbital solution and fundamental parameter determination with SUSI

    NASA Astrophysics Data System (ADS)

    North, J. R.; Tuthill, P. G.; Tango, W. J.; Davis, J.

    2007-05-01

    The first complete orbital solution for the double-lined spectroscopic binary system γ2 Velorum, obtained from measurements with the Sydney University Stellar Interferometer (SUSI), is presented. This system contains the closest example of a Wolf-Rayet star and the promise of full characterization of the basic properties of this exotic high-mass system has subjected it to intense study as an archetype for its class. In combination with the latest radial-velocity results, our orbital solution produces a distance of 336+8-7pc, significantly more distant than the Hipparcos estimation. The ability to fully specify the orbital parameters has enabled us to significantly reduce uncertainties and our result is consistent with the Very Large Telescope Interferometer (VLTI) observational point, but not with their derived distance. Our new distance, which is an order of magnitude more precise than prior work, demands critical reassessment of all distance-dependent fundamental parameters of this important system. In particular, membership of the Vela OB2 association has been re-established, and the age and distance are also in good accord with the population of young stars reported by Pozzo et al. We determine the O-star primary component parameters to be MV(O) = -5.63 +/- 0.10mag, R(O) = 17 +/- 2Rsolar and . These values are consistent with calibrations found in the literature if a luminosity class of II-III is adopted. The parameters of the Wolf-Rayet (WR) component are Mv(WR) = -4.33 +/- 0.17mag and .

  9. Photobilirubin II.

    PubMed Central

    Bonnett, R; Buckley, D G; Hamzetash, D; Hawkes, G E; Ioannou, S; Stoll, M S

    1984-01-01

    An improved preparation of photobilirubin II in ammoniacal methanol is described. Evidence is presented which distinguishes between the two structures proposed earlier for photobilirubin II in favour of the cycloheptadienyl structure. Nuclear-Overhauser-enhancement measurements with bilirubin IX alpha and photobilirubin II in dimethyl sulphoxide are complicated by the occurrence of negative and zero effects. The partition coefficient of photobilirubin II between chloroform and phosphate buffer (pH 7.4) is 0.67. PMID:6743241

  10. SAGE II

    Atmospheric Science Data Center

    2016-02-16

    SAGE II Data and Information The goals of the Stratospheric Aerosol and Gas Experiment ( SAGE ) II are to determine the spatial distributions of stratospheric ... profiles and calculating monthly averages of each. The SAGE II sensor (a Sun Photometer) was launched into a 57-degree inclination ...

  11. BASS II

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047576 (14 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  12. BASS II

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047582 (14 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  13. Photosystem II

    ScienceCinema

    James Barber

    2016-07-12

    James Barber, Ernst Chain Professor of Biochemistry at Imperial College, London, gives a BSA Distinguished Lecture titled, "The Structure and Function of Photosystem II: The Water-Splitting Enzyme of Photosynthesis."

  14. Delta II

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Delta II expendable launch vehicle with the ROSAT (Roentgen Satellite), cooperative space X-ray astronomy mission between NASA, Germany and United Kingdom, was launched from the Cape Canaveral Air Force Station on June 1, 1990.

  15. FAQs II

    ERIC Educational Resources Information Center

    Kezar, Adrianna; Frank, Vikki; Lester, Jaime; Yang, Hannah

    2008-01-01

    In their paper entitled "Why should postsecondary institutions consider partnering to offer (Individual Development Accounts (IDAs)?" the authors reviewed frequently asked questions they encountered from higher education professionals about IDAs, but as their research continued so did the questions. FAQ II has more in-depth questions and…

  16. Gamma II

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, M.; Cline, J.; Owen, L.; Boehme, J.; Rottler, L.; Whitworth, C.; Clavier, D.

    2011-05-01

    GAMMA II is the Guide Star Automatic Measuring MAchine relocated from STScI to the Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI). GAMMA II is a multi-channel laser-scanning microdensitometer that was used to measure POSS and SERC plates to create the Guide Star Catalog and the Digital Sky Survey. The microdensitometer is designed with submicron accuracy in x and y measurements using a HP 5507 laser interferometer, 15 micron sampling, and the capability to measure plates as large as 0.5-m across. GAMMA II is a vital instrument for the success of digitizing the direct, objective prism, and spectra photographic plate collections in APDA for research. We plan several targeted projects. One is a collaboration with Drs. P.D. Hemenway and R. L. Duncombe who plan to scan 1000 plates of 34 minor planets to identify systematic errors in the Fundamental System of celestial coordinates. Another is a collaboration with Dr. R. Hudec (Astronomical Institute, Academy of Sciences of the Czech Republic) who is working within the Gaia Variability Unit CU7 to digitize objective prism spectra on the Henize plates and Burrell-Schmidt plates located in APDA. These low dispersion spectral plates provide optical counterparts of celestial high-energy sources and cataclysmic variables enabling the simulation of Gaia BP/RP outputs. The astronomical community is invited to explore the more than 140,000 plates from 20 observatories now archived in APDA, and use GAMMA II. The process of relocating GAMMA to APDA, re-commissioning, and starting up the production scan programs will be described. Also, we will present planned research and future upgrades to GAMMA II.

  17. Feedback from winds and supernovae in massive stellar clusters - II. X-ray emission

    NASA Astrophysics Data System (ADS)

    Rogers, H.; Pittard, J. M.

    2014-06-01

    The X-ray emission from a simulated massive stellar cluster is investigated. The emission is calculated from a 3D hydrodynamical model which incorporates the mechanical feedback from the stellar winds of three O stars embedded in a giant molecular cloud (GMC) clump containing 3240 M⊙ of molecular material within a 4 pc radius. A simple prescription for the evolution of the stars is used, with the first supernova (SN) explosion at t = 4.4 Myr. We find that the presence of the GMC clump causes short-lived attenuation effects on the X-ray emission of the cluster. However, once most of the material has been ablated away by the winds, the remaining dense clumps do not have a noticeable effect on the attenuation compared with the assumed interstellar medium (ISM) column. We determine the evolution of the cluster X-ray luminosity, LX, and spectra, and generate synthetic images. The intrinsic X-ray luminosity drops from nearly 1034 erg s-1 while the winds are `bottled up', to a near-constant value of 1.7 × 1032 erg s-1 between t = 1 and 4 Myr. LX reduces slightly during each star's red supergiant stage due to the depressurization of the hot gas. However, LX increases to ≈1034 erg s-1 during each star's Wolf-Rayet stage. The X-ray luminosity is enhanced by two to three orders of magnitude to ˜1037 erg s-1 for at least 4600 yr after each SN explosion, at which time the blast wave leaves the grid and the X-ray luminosity drops. The X-ray luminosity of our simulation is generally considerably fainter than predicted from spherically symmetric bubble models, due to the leakage of hot gas material through gaps in the outer shell. This process reduces the pressure within our simulation and thus the X-ray emission. However, the X-ray luminosities and temperatures which we obtain are comparable to similarly powerful massive young clusters.

  18. PORT II

    NASA Technical Reports Server (NTRS)

    Muniz, Beau

    2009-01-01

    One unique project that the Prototype lab worked on was PORT I (Post-landing Orion Recovery Test). PORT is designed to test and develop the system and components needed to recover the Orion capsule once it splashes down in the ocean. PORT II is designated as a follow up to PORT I that will utilize a mock up pressure vessel that is spatially compar able to the final Orion capsule.

  19. BORE II

    SciTech Connect

    2015-08-01

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migrate upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolution than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.

  20. PESTICINS II. I and II

    PubMed Central

    Brubaker, Robert R.; Surgalla, Michael J.

    1962-01-01

    Brubaker, Robert R. (Fort Detrick, Frederick, Md.) and Michael J. Surgalla. Pesticins. II. Production of pesticin I and II. J. Bacteriol. 84:539–545. 1962.—Pesticin I was separated from pesticin I inhibitor by ion-exchange chromatography of cell-free culture supernatant fluids and by acid precipitation of soluble preparations obtained from mechanically disrupted cells. The latter procedure resulted in formation of an insoluble pesticin I complex which, upon removal by centrifugation and subsequent dissolution in neutral buffer, exhibited a 100- to 1,000-fold increase in antibacterial activity over that originally observed. However, activity returned to the former level upon addition of the acid-soluble fraction, which contained pesticin I inhibitor. Since the presence of pesticin I inhibitor leads to serious errors in the determination of pesticin I, an assay medium containing ethylenediaminetetraacetic acid in excess Ca++ was developed; this medium eliminated the effect of the inhibitor. By use of the above medium, sufficient pesticin I was found to be contained within 500 nonirradiated cells to inhibit growth of a suitable indicator strain; at least 107 cells were required to effect a corresponding inhibition by pesticin II. Although both pesticins are located primarily within the cell during growth, pesticin I may arise extracellularly during storage of static cells. Slightly higher activity of pesticin I inhibitor was found in culture supernatant fluids than occurred in corresponding cell extracts of equal volume. The differences and similarities between pesticin I and some known bacteriocins are discussed. PMID:14016110

  1. Fluorine in the Solar Neighborhood: No Evidence for the Neutrino Process

    NASA Astrophysics Data System (ADS)

    Jönsson, H.; Ryde, N.; Spitoni, E.; Matteucci, F.; Cunha, K.; Smith, V.; Hinkle, K.; Schultheis, M.

    2017-01-01

    Asymptotic giant branch (AGB) stars are known to produce “cosmic” fluorine, but it is uncertain whether these stars are the main producers of fluorine in the solar neighborhood or if any of the other proposed formation sites, Type II supernovae (SNe II) and/or Wolf-Rayet (W-R) stars, are more important. Recent articles have proposed both AGB stars and SNe II as the dominant sources of fluorine in the solar neighborhood. In this paper we set out to determine the fluorine abundance in a sample of 49 nearby, bright K giants for which we previously have determined the stellar parameters, as well as alpha abundances homogeneously from optical high-resolution spectra. The fluorine abundance is determined from a 2.3 μm HF molecular line observed with the spectrometer Phoenix. We compare the fluorine abundances with those of alpha-elements mainly produced in SNe II and find that fluorine and the alpha-elements do not evolve in lockstep, ruling out SNe II as the dominating producers of fluorine in the solar neighborhood. Furthermore, we find a secondary behavior of fluorine with respect to oxygen, which is another evidence against the SNe II playing a large role in the production of fluorine in the solar neighborhood. This secondary behavior of fluorine will put new constraints on stellar models of the other two suggested production sites: AGB stars and W-R stars.

  2. OPTICAL SPECTROPHOTOMETRIC MONITORING OF THE EXTREME LUMINOUS BLUE VARIABLE STAR GR 290 (ROMANO's STAR) IN M 33

    SciTech Connect

    Polcaro, V. F.; Viotti, R. F.; Rossi, C.; Galleti, S.; Gualandi, R.; Norci, L.

    2011-01-15

    We study the long-term, S Dor-type variability and the present hot phase of the luminous blue variable (LBV) star GR 290 (Romano's Star) in M 33 in order to investigate possible links between the LBV and the late, nitrogen sequence Wolf-Rayet Stars (WNL) stages of very massive stars. We use intermediate-resolution spectra, obtained with the William Herschel Telescope (WHT) in 2008 December, when GR 290 was at minimum (V = {approx}18.6), as well as new low-resolution spectra and BVRI photometry obtained with the Loiano and Cima Ekar telescopes during 2007-2010. We identify more than 80 emission lines in the 3100-10000 A range covered by the WHT spectra, belonging to different species: the hydrogen Balmer and Paschen series, neutral and ionized helium, C III, N II-III, S IV, Si III-IV, and many forbidden lines of [N II], [O III], [S III], [A III], [Ne III], and [Fe III]. Many lines, especially the He I triplets, show a P Cygni profile with an a-e radial velocity difference of -300 to -500 km s{sup -1}. The shape of the 4630-4713 A emission blend and of other emission lines resembles that of WN9 stars; the blend deconvolution shows that the He II 4686 A has a strong broad component with FWHM {approx_equal} 1700 km s{sup -1}. During 2003-2010 the star underwent large spectral variations, best seen in the 4630-4686 A emission feature. Using the late-WN spectral types of Crowther and Smith, GR 290 apparently varied between the WN11 and WN8-9 spectral types; the hotter the star was the fainter its visual magnitude was. This spectrum-visual luminosity anticorrelation of GR 290 is reminiscent of the behavior of the best-studied LBVs, such as S Dor and AG Car. During the 2008 minimum, we found a significant decrease in bolometric luminosity, which could be attributed to absorption by newly formed circumstellar matter. We suggest that the broad 4686 A line and the optical continuum formed in a central Wolf-Rayet region, while the narrow emission line spectrum originated in an

  3. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    shells typical of luminous blue variable and late WN-type Wolf-Rayet stars.

  4. The Metal-Rich Universe

    NASA Astrophysics Data System (ADS)

    Israelian, Garik; Meynet, Georges

    2012-10-01

    Preface; Part I. Abundances in the Galaxy: Field Stars: 1. Metal-rich stars and stellar populations: A brief history and new results; 2. The metal-rich nature of stars with planets; 3. Solar chemical peculiarities; 4. Kinematics of metal-rich stars with and without planets; 5. Elemental abundance trends in the metal-rich thin and thick disks; 6. Metal-rich massive stars - how metal-rich are they?; 7. Hercules stream stars and the metal-rich thick disk; 8. Abundance survey of the galactic thick disk; Part II. Abundances in the Galaxy: Galactic Stars in Clusters, Bulges and Centre: 9. Galactic open clusters with super solar metallicities; 10. Old and very metal-rich open clusters in the BOCCE project; 11. Massive stars vs. nebular abundances in the Orion nebula; 12. Abundance surveys of metal-rich bulge stars; 13. Metal abundances in the galactic center; 14. Light elements in the galactic bulge; 15. Metallicity and ages of selected G-K giants; Part III. Observations - Abundances in Extragalactic Contexts: 16. Stellar abundances of early-type galaxies and galactic spheroids: Evidence for metal-rich stars; 17. Measuring chemical abundances in extragalactic metal-rich HII regions; 18. On the maximum oxygen abundance in metal-rich spiral galaxies; 19. Starbursts and their contribution to metal enrichment; 20. High metallicities at high redshifts; 21. Evolution of dust and elemental abundances in quasar DLAs and GRB afterglows as a function of cosmic time; 22. Dust, metals and diffuse interstellar bands in damped Lyman Alpha systems; 23. Tracing metallicities in the Universe with the James Webb Space Telescope; Part IV. Stellar Populations and Mass Functions: 24. The stellar initial mass function of metal-rich populations; 25. IMF effects on the metallicity and colour evolution of disk galaxies; 26. The metallicity of circumnuclear star forming regions; 27. The stellar population of bulges; 28. The metallicity distribution of the stars in elliptical galaxies; 29. Wolf-Rayet

  5. Chemical abundances in high-redshift galaxies: a powerful new emission line diagnostic

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Kewley, Lisa J.; Sutherland, Ralph S.; Nicholls, David C.

    2016-02-01

    This Letter presents a new, remarkably simple diagnostic specifically designed to derive chemical abundances for high redshift galaxies. It uses only the Hα, [N ii] and [S ii] emission lines, which can usually be observed in a single grating setting, and is almost linear up to an abundance of 12+log (O/H) = 9.05. It can be used over the full abundance range encountered in high redshift galaxies. By its use of emission lines located close together in wavelength, it is also independent of reddening. Our diagnostic depends critically on the calibration of the N/O ratio. However, by using realistic stellar atmospheres combined with the N/O vs. O/H abundance calibration derived locally from stars and H ii regions, and allowing for the fact that high-redshift H ii regions have both high ionisation parameters and high gas pressures, we find that the observations of high-redshift galaxies can be simply explained by the models without having to invoke arbitrary changes in N/O ratio, or the presence of unusual quantities of Wolf-Rayet stars in these galaxies.

  6. The VLT-FLAMES Tarantula Survey. XVII. Physical and wind properties of massive stars at the top of the main sequence

    NASA Astrophysics Data System (ADS)

    Bestenlehner, J. M.; Gräfener, G.; Vink, J. S.; Najarro, F.; de Koter, A.; Sana, H.; Evans, C. J.; Crowther, P. A.; Hénault-Brunet, V.; Herrero, A.; Langer, N.; Schneider, F. R. N.; Simón-Díaz, S.; Taylor, W. D.; Walborn, N. R.

    2014-10-01

    The evolution and fate of very massive stars (VMS) is tightly connected to their mass-loss properties. Their initial and final masses differ significantly as a result of mass loss. VMS have strong stellar winds and extremely high ionising fluxes, which are thought to be critical sources of both mechanical and radiative feedback in giant H ii regions. However, how VMS mass-loss properties change during stellar evolution is poorly understood. In the framework of the VLT-Flames Tarantula Survey (VFTS), we explore the mass-loss transition region from optically thin O star winds to denser WNh Wolf-Rayet star winds, thereby testing theoretical predictions. To this purpose we select 62 O, Of, Of/WN, and WNh stars, an unprecedented sample of stars with the highest masses and luminosities known. We perform a spectral analysis of optical VFTS as well as near-infrared VLT/SINFONI data using the non-LTE radiative transfer code CMFGEN to obtain both stellar and wind parameters. For the first time, we observationally resolve the transition between optically thin O star winds and optically thick hydrogen-rich WNh Wolf-Rayet winds. Our results suggest the existence of a "kink" between both mass-loss regimes, in agreement with recent Monte Carlo simulations. For the optically thick regime, we confirm the steep dependence on the classical Eddington factor Γe from previous theoretical and observational studies. The transition occurs on the main sequence near a luminosity of 106.1L⊙, or a mass of 80 ... 90 M⊙. Above this limit, we find that - even when accounting for moderate wind clumping (with fv = 0.1) - wind mass-loss rates are enhanced with respect to standard prescriptions currently adopted in stellar evolution calculations. We also show that this results in substantial helium surface enrichment. Finally, based on our spectroscopic analyses, we are able to provide the most accurate ionising fluxes for VMS known to date, confirming the pivotal role of VMS in ionising and

  7. Fluorine Abundances in the Large Magellanic Cloud and ω Centauri: Evidence for Neutrino Nucleosynthesis?

    NASA Astrophysics Data System (ADS)

    Cunha, Katia; Smith, Verne V.; Lambert, David L.; Hinkle, Kenneth H.

    2003-09-01

    The behavior of fluorine with metallicity has not yet been probed in any stellar population. In this work, we present the first fluorine abundances measured outside of the Milky Way from a sample of red giants in the Large Magellanic Cloud (LMC), as well the Galactic globular cluster ω Centauri. The fluorine abundances are derived from vibration-rotation transitions of HF using infrared spectra obtained with the Phoenix spectrograph on the Gemini South 8.1 m telescope. It is found that the abundance ratio of F/O declines as the oxygen abundance decreases. The values of F/O are especially low in the two ω Cen giants; this very low value of F/O probably indicates that 19F synthesis in asymptotic giant branch (AGB) stars is not the dominant source of fluorine in stellar populations. The observed decline in F/O with lower O abundances is in qualitative agreement with what is expected if 19F is produced via H- and He-burning sequences in very massive stars, with this fluorine then ejected in high mass-loss rate Wolf-Rayet winds. A quantitative comparison of observations with this process awaits results from more detailed chemical evolution models incorporating the yields from Wolf-Rayet winds. Perhaps of more significance is the quantitative agreement between the Galactic and LMC results with predictions from models in which 19F is produced from neutrino nucleosynthesis during core collapse in supernovae of Type II. The very low values of F/O in ω Cen are also in agreement with neutrino nucleosynthesis models if the ``peculiar'' star formation history of ω Cen, with two to four distinct episodes of star formation, is considered. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreeement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom

  8. A nonthermal superbubble in the irregular galaxy IC 10

    NASA Technical Reports Server (NTRS)

    Yang, Hui; Skillman, Evan D.

    1993-01-01

    We present synthesis radio continuum observations of the nearby irregular galaxy IC 10. These observations, at 6, 20, and 49 cm, allow us to measure the flux and spectral index of a number of resolved sources in IC 10. While most of these are easily identified as thermal emission from H II regions and a few are nonthermal background sources, one extended, nonthermal source appears to be a superbubble in IC 10. Its large size (about 250 pc) implies that it is most likely the product of several supernovae. Comparisons of these radio observations with Halpha, H I, and optical imaging observations reveal that the large nonthermal superbubble is associated with a region of star formation containing two of the most luminous H II regions and the most massive H I cloud in IC 10. We tentatively identify a stellar cluster with two Wolf-Rayet stars in the center of the superbubble. We propose that this superbubble in IC 10 represents a bridge between the giant H II regions and the H I shells and supershells observed in our Galaxy and external galaxies.

  9. FLUORINE ABUNDANCES OF GALACTIC LOW-METALLICITY GIANTS

    SciTech Connect

    Li, H. N.; Zhao, G.; Ludwig, H.-G.; Caffau, E.; Christlieb, N. E-mail: gzhao@nao.cas.cn E-mail: ecaffau@lsw.uni-heidelberg.de

    2013-03-01

    With abundances and 2{sigma} upper limits of fluorine (F) in seven metal-poor field giants, nucleosynthesis of stellar F at low metallicity is discussed. The measurements are derived from the HF(1-0) R9 line at 23358 A using near-infrared K-band high-resolution spectra obtained with CRIRES at the Very Large Telescope. The sample reaches lower metallicities than previous studies on F of field giants, ranging from [Fe/H] = -1.56 down to -2.13. Effects of three-dimensional model atmospheres on the derived F and O abundances are quantitatively estimated and shown to be insignificant for the program stars. The observed F yield in the form of [F/O] is compared with two sets of Galactic chemical evolution models, which quantitatively demonstrate the contribution of Type II supernova (SN II) {nu}-process and asymptotic giant branch/Wolf-Rayet stars. It is found that at this low-metallicity region, models cannot well predict the observed distribution of [F/O], while the observations are better fit by models considering an SN II {nu}-process with a neutrino energy of E {sub {nu}} = 3 Multiplication-Sign 10{sup 53} erg. Our sample contains HD 110281, a retrograde orbiting low-{alpha} halo star, showing a similar F evolution as globular clusters. This supports the theory that such halo stars are possibly accreted from dwarf galaxy progenitors of globular clusters in the halo.

  10. HUBBLE SPACE TELESCOPE EMISSION-LINE GALAXIES AT z ∼ 2: THE MYSTERY OF NEON

    SciTech Connect

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry; Gronwall, Caryl; Hagen, Alex; Trump, Jonathan R.; Bridge, Joanna S.; Luo, Bin; Schneider, Donald P.

    2015-01-01

    We use near-infrared grism spectroscopy from the Hubble Space Telescope to examine the strength of [Ne III] λ3869 relative to Hβ, [O II] λ3727, and [O III] λ5007 in 236 low-mass (7.5 ≲ log (M {sub *}/M {sub ☉}) ≲ 10.5) star-forming galaxies in the redshift range 1.90 < z < 2.35. By stacking the data by stellar mass, we show that the [Ne III]/[O II] ratios of the z ∼ 2 universe are marginally higher than those seen in a comparable set of local Sloan Digital Sky Survey galaxies, and that [Ne III]/[O III] is enhanced by ∼0.2 dex. We consider the possible explanations for this ∼4σ result, including higher oxygen depletion out of the gas phase, denser H II regions, higher production of {sup 22}Ne via Wolf-Rayet stars, and the existence of a larger population of X-ray obscured active galactic nuclei at z ∼ 2 compared to z ∼ 0. None of these simple scenarios, alone, are favored to explain the observed line ratios. We conclude by suggesting several avenues of future observations to further explore the mystery of enhanced [Ne III] emission.

  11. The Origin and Optical Depth of Ionizing Photons in the Green Pea Galaxies

    NASA Astrophysics Data System (ADS)

    Jaskot, A. E.; Oey, M. S.

    2014-09-01

    Our understanding of radiative feedback and star formation in galaxies at high redshift is hindered by the rarity of similar systems at low redshift. However, the recently identified Green Pea (GP) galaxies are similar to high-redshift galaxies in their morphologies and star formation rates and are vital tools for probing the generation and transmission of ionizing photons. The GPs contain massive star clusters that emit copious amounts of high-energy radiation, as indicated by intense [OIII] 5007 emission and HeII 4686 emission. We focus on six GP galaxies with high ratios of [O III] 5007,4959/[O II] 3727 ~10 or more. Such high ratios indicate gas with a high ionization parameter or a low optical depth. The GP line ratios and ages point to chemically homogeneous massive stars, Wolf-Rayet stars, or shock ionization as the most likely sources of the He II emission. Models including shock ionization suggest that the GPs may have low optical depths, consistent with a scenario in which ionizing photons escape along passageways created by recent supernovae. The GPs and similar galaxies can shed new light on cosmic reionization by revealing how ionizing photons propagate from massive star clusters to the intergalactic medium.

  12. Integral-Field Spectroscopy of the Post-Red Supergiant IRC +10420: Evidence for an Axisymmetric Wind

    NASA Astrophysics Data System (ADS)

    Davies, Ben; Oudmaijer, René D.; Sahu, Kailash C.

    2007-12-01

    We present NAOMI/OASIS adaptive-optics-assisted integral-field spectroscopy of the transitional massive hypergiant IRC +10420, an extreme mass-losing star apparently in the process of evolving from a red supergiant toward the Wolf-Rayet phase. To investigate the present-day mass-loss geometry of the star, we study the appearance of the line emission from the inner wind as viewed when reflected off the surrounding nebula. We find that, contrary to previous work, there is strong evidence for wind axisymmetry, based on the equivalent width and velocity variations of Hα and Fe II λ6516. We attribute this behavior to the appearance of the complex line profiles when viewed from different angles. We also speculate that the Ti II emission originates in the outer nebula in a region analogous to the strontium filament of η Carinae, based on the morphology of the line emission. Finally, we suggest that the present-day axisymmetric wind of IRC +10420, combined with its continued blueward evolution, is evidence that the star is evolving toward the B[e] supergiant phase.

  13. Luminous blue variables and the fates of very massive stars.

    PubMed

    Smith, Nathan

    2017-10-28

    Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40 M⊙ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  14. High-resolution CCD spectra of stars in globular clusters. III - M4, M13, and M22

    NASA Technical Reports Server (NTRS)

    Wallerstein, George; Leep, E. Myckky; Oke, J. B.

    1987-01-01

    Spectra of 0.3 and 0.6 A resolution of stars in M4, M13 and M22 to derive abundances of various atomic species and the CN molecule. For M13, the usual Fe/H ratio and a surprisingly high aluminum abundance is found. The CN lines indicate a larger column density in the oxygen-rich star III-63 than in the oxygen-poor star II-67 by a factor of 10. It appears that II-67 is deficient in C, N, and O by about a factor 3 relative to iron for all three elements. For M4, Fe/H = -1.2 using solar f values derived via the Bell et al. (1976) model. This Fe abundance lies between earlier echelle values and photometric values. For two stars, CN data are obtained that can be understood if there was a slight excess of C/Fe and N/Fe prior to CN cycling and mixing. For M22, a large difference in CN is found between stars III-3 and IV-102. The origin of the CNO elements is discussed in terms of mass loss from an early generation of red giants and possibly Wolf-Rayet stars.

  15. Luminous blue variables and the fates of very massive stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2017-09-01

    Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40 Mȯ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  16. High-resolution CCD spectra of stars in globular clusters. III - M4, M13, and M22

    NASA Technical Reports Server (NTRS)

    Wallerstein, George; Leep, E. Myckky; Oke, J. B.

    1987-01-01

    Spectra of 0.3 and 0.6 A resolution of stars in M4, M13 and M22 to derive abundances of various atomic species and the CN molecule. For M13, the usual Fe/H ratio and a surprisingly high aluminum abundance is found. The CN lines indicate a larger column density in the oxygen-rich star III-63 than in the oxygen-poor star II-67 by a factor of 10. It appears that II-67 is deficient in C, N, and O by about a factor 3 relative to iron for all three elements. For M4, Fe/H = -1.2 using solar f values derived via the Bell et al. (1976) model. This Fe abundance lies between earlier echelle values and photometric values. For two stars, CN data are obtained that can be understood if there was a slight excess of C/Fe and N/Fe prior to CN cycling and mixing. For M22, a large difference in CN is found between stars III-3 and IV-102. The origin of the CNO elements is discussed in terms of mass loss from an early generation of red giants and possibly Wolf-Rayet stars.

  17. A Rare Encounter with Very Massive Stars in NGC~3125-A1

    NASA Astrophysics Data System (ADS)

    Wofford, A.; Leitherer, C.; Chandar, R.; Bouret, J. C.

    2014-09-01

    Super star cluster A1 in the nearby starburst galaxy NGC~3125 shows broad He II λ1640 emission (FWHM ~ 1200 km/s) of unprecedented strength (equivalent width, EW = 7.1+/-0.4 angstroms). Previous attempts to characterize A1's massive star content were hampered by the low resolution of the UV spectrum and the lack of co-spatial panchromatic data. We obtained far-UV to near-IR spectroscopy of the two principal emitting regions in the galaxy with the Space Telescope Imaging Spectrograph and the Cosmic Origins Spectrograph on board the Hubble Space Telescope. We use these data to derive the ages, reddenings, masses, and Wolf-Rayet (WR) to O star ratios of three compact clusters in the galaxy. We rule out that the extraordinary HeII lambda 1640 emission and OV lambda 1371 absorption in A1 are due to an extremely flat upper Initial Mass Function (IMF), and suggest that they originate in the winds of Very Massive Stars ( > 120 Msun, VMS). In order to reproduce the properties of peculiar clusters such as A1, the stellar evolution tracks implemented in Starburst99 need to be extended to masses >120 Msun.

  18. Workshop on Colliding Winds in Binary Stars to Honor Jorge Sahade

    NASA Astrophysics Data System (ADS)

    Niemela, Virpi; Morrell, Nidia; Pismis, Paris; Torres-Peimbert, Silvia

    1996-12-01

    Topics considered include: the beginning of the story; mass flow in and out of close binaries; winds of massive, main sequence close binaries; chromospheric activity, stellar winds and red stragglers; uv observations of mass transfer in algols; the circumstellar matter in pre-supernovae of type Ia; observations of colliding winds in O-type binaries; colliding winds in massive binaries involving Wolf-Rayet stars; episodic dust formation by Wolf-Rayet stars: smoke signals from colliding winds; x-ray emission from colliding wind binaries; colliding stellar winds: a new method of determining mass-loss rates via x-ray spectroscopy; sudden radiative braking in colliding hot-star winds; optical observations of colliding winds in gamma2 velorum; left overs for dinner; HD 5980: the Wolf-Rayet binary that became a luminous blue variable; the erupting Wolf-Rayet binary HD 5980 in the small magellanic cloud: spectral transition from B1.5Ia(+) to WN6 and the accompanying light curve; the elliptic orbit of the WR binary system CV serpentis; evidence for colliding winds in WR 146; is there wind-wind collision in WR 141 (HD 193928)?; search for interacting winds in the WN7 + O binary; line formation in CH Cyg: a symbiotic binary; period analysis of radial velocity of pleione; H(alpha) detection of colliding winds in O-type binaries; HD 5980 in the infrared; photometric and polarimetric observations of the Wolf-Rayet eclipsing binary HD 5980 in the small magellanic cloud, and analysis of linear polarization in two Wolf-Rayet binary systems.

  19. Factor II deficiency

    MedlinePlus

    ... if one or more of these factors are missing or are not functioning like they should. Factor II is one such coagulation factor. Factor II deficiency runs in families (inherited) and is very rare. Both parents must ...

  20. Investigation of ultraviolet fluxes of normal and peculiar stars

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A.; Schild, R. E.

    1974-01-01

    Data from Project Celescope, a program that photographed the ultraviolet sky, in order to study several problems in current astrophysics are analyzed. Two star clusters, the Pleiades and the Hyades, reveal differences between the two that we are unable to explain simply from their differences in chemical abundance, rotation, or reddening. Data for Orion show large scatter, which appears to be in the sense that the Orion stars are too faint for their ground-based photometry. Similarly, many supergiants in the association Sco OB1 are too faint in the ultraviolet, but the ultraviolet brightness appears to be only poorly correlated with spectral type. Ultraviolet Celescope data for several groups of peculiar stars have also been analyzed. The strong He I stars are too faint in the ultraviolet, possibly owing to enhancement of O II continuous opacity due to oxygen overabundance. The Be stars appear to have ultraviolet colors normal for their MK spectral types. The P Cygni stars are considerably fainter than main-sequence stars of comparable spectral type, probably owing, at least in part, to line blocking by resonance lines of multiply ionized light metals. The Wolf-Rayet stars have ultraviolet color temperatures of O stars.

  1. The emission-line regions in the nucleus of NGC 1313 probed with GMOS-IFU: a supergiant/hypergiant candidate and a kinematically cold nucleus

    NASA Astrophysics Data System (ADS)

    Menezes, R. B.; Steiner, J. E.

    2017-04-01

    NGC 1313 is a bulgeless nearby galaxy, classified as SB(s)d. Its proximity allows high spatial resolution observations. We performed the first detailed analysis of the emission-line properties in the nuclear region of NGC 1313, using an optical data cube obtained with the Gemini Multi-object Spectrograph. We detected four main emitting areas, three of them (regions 1, 2 and 3) having spectra typical of H II regions. Region 1 is located very close to the stellar nucleus and shows broad spectral features characteristic of Wolf-Rayet stars. Our analysis revealed the presence of one or two WC4-5 stars in this region, which is compatible with results obtained by previous studies. Region 4 shows spectral features (as a strong Hα emission line, with a broad component) typical of a massive emission-line star, such as a luminous blue variable, a B[e] supergiant or a B hypergiant. The radial velocity map of the ionized gas shows a pattern consistent with rotation. A significant drop in the values of the gas velocity dispersion was detected very close to region 1, which suggests that the young stars there were formed from this cold gas, possibly keeping low values of velocity dispersion. Therefore, although detailed measurements of the stellar kinematics were not possible (due to the weak stellar absorption spectrum of this galaxy), we predict that NGC 1313 may also show a drop in the values of the stellar velocity dispersion in its nuclear region.

  2. International Ultraviolet Explorer (IUE) ultraviolet spectral atlas of selected astronomical objects

    NASA Technical Reports Server (NTRS)

    Wu, Chi-Chao; Reichert, Gail A.; Ake, Thomas B.; Boggess, Albert; Holm, Albert V.; Imhoff, Catherine L.; Kondo, Yoji; Mead, Jaylee M.; Shore, Steven N.

    1992-01-01

    The IUE Ultraviolet Spectral Atlas of Selected Astronomical Objects (or 'the Atlas'), is based on the data that were available in the IUE archive in 1986, and is intended to be a quick reference for the ultraviolet spectra of many categories of astronomical objects. It shows reflected sunlight from the Moon, planets, and asteroids, and also shows emission from comets. Comprehensive compilations of UV spectra for main sequence, subgiant, giant, bright giant, and supergiant stars are published elsewhere. This Atlas contains the spectra for objects occupying other areas of the Hertzsprung-Russell diagram: pre-main sequence stars, chemically peculiar stars, pulsating variables, subluminous stars, and Wolf-Rayet stars. This Atlas also presents phenomena such as the chromospheric and transition region emissions from late-type stars; composite spectra of stars, gas streams, accretion disks and gas envelopes of binary systems; the behavior of gas ejecta shortly after the outburst of novac and supernovac; and the H II regions, planetary nebulae, and supernova remnants. Population 2 stars, globular clusters, and luminous stars in the Magellanic Clouds, M31, and M33, are also included in this publication. Finally, the Atlas gives the ultraviolet spectra of galaxies of different Hubble types and of active galaxies.

  3. Erratum: The 2.27 day period of WR-134 (HD 191765)

    NASA Technical Reports Server (NTRS)

    Mccandliss, Stephan R.; Bohannan, Bruce; Robert, Carmelle; Moffat, Anthony F. J.

    1994-01-01

    The original temporal analysis of a 12 night spectral timeseries of Wolf-Rayet (WR)-134 has been found to be flawed and a re-analysis shows that the line profile variations are indeed periodic. When combined with a 4 night timeseries taken 45 days earlier, a period near 2.27 d is found in periodograms of the He II lambda 5412 line centroid, rms line width, and line skew variations. When the emission line residuals are ordered as a function of phase, a sinuous feature appears to 'snake' about the line center with an amplitude of +/-500 km/s. This is approximately equal to 20 larger than the line centroid amplitude; the calculation of which is heavily weighted by static portions of the line profile. In addition to the 'snake,' emission residuals appear that move away from line center on unbound trajectories and are thought to result from the interaction of a periodic driver with the unstable flow of the radiation driven wind.

  4. Time variations of UV emission features of Be stars

    NASA Technical Reports Server (NTRS)

    Bahng, J. D. R.

    1975-01-01

    The UV spectra of three Be stars (gamma Cas, sigma Tau, eta Cen) were studied. Of the six Be stars observed in the first four lines of the Balmer series, three stars showed at least one of the Balmer lines to be variable in the equivalent width amounting to a few percent with time scales of 3 to 30 minutes. Photoelectric spectrum scans of five southern Wolf-Rayet stars showed night-to-night variations. A simple model is proposed to account for the behavior of these emission lines. Scans of gamma square Vel showed rapid variations of emission strengths of He II 4686 and C III - IV 4650. These variations have time scales of 1 minute and longer. Night-to-night variations were also found. Scans of four Be stars in H alpha showed a definite variation of 3 to 4 percent, with time scales of 1 minute and longer in sigma Tau. In 48 Per and kappa Dra the variations are not as well established. No variation of any significance was found for nu Gem.

  5. FLUORINE IN THE SOLAR NEIGHBORHOOD: IS IT ALL PRODUCED IN ASYMPTOTIC GIANT BRANCH STARS?

    SciTech Connect

    Jönsson, H.; Ryde, N.; Harper, G. M.; Richter, M. J.; Hinkle, K. H.

    2014-07-10

    The origin of ''cosmic'' fluorine is uncertain, but there are three proposed production sites/mechanisms for the origin: asymptotic giant branch (AGB) stars, ν nucleosynthesis in Type II supernovae, and/or the winds of Wolf-Rayet stars. The relative importance of these production sites has not been established even for the solar neighborhood, leading to uncertainties in stellar evolution models of these stars as well as uncertainties in the chemical evolution models of stellar populations. We determine the fluorine and oxygen abundances in seven bright, nearby giants with well determined stellar parameters. We use the 2.3 μm vibrational-rotational HF line and explore a pure rotational HF line at 12.2 μm. The latter has never been used before for an abundance analysis. To be able to do this, we have calculated a line list for pure rotational HF lines. We find that the abundances derived from the two diagnostics agree. Our derived abundances are well reproduced by chemical evolution models including only fluorine production in AGB stars and, therefore, we draw the conclusion that this might be the main production site of fluorine in the solar neighborhood. Furthermore, we highlight the advantages of using the 12 μm HF lines to determine the possible contribution of the ν process to the fluorine budget at low metallicities where the difference between models including and excluding this process is dramatic.

  6. Far Ultraviolet Spectroscopic Explorer Measurements of Interstellar Fluorine

    NASA Astrophysics Data System (ADS)

    Federman, S. R.; Sheffer, Yaron; Lambert, David L.; Smith, V. V.

    2005-02-01

    The source of fluorine is not well understood, although core-collapse supernovae, Wolf-Rayet stars, and asymptotic giant branch stars have been suggested. A search for evidence of the ν-process during Type II supernovae is presented. Absorption from interstellar F I is seen in spectra of HD 208440 and HD 209339A acquired with the Far Ultraviolet Spectroscopic Explorer. In order to extract the column density for F I from the line at 954 Å, absorption from H2 has to be modeled and then removed. Our analysis indicates that for H2 column densities less than about 3×1020 cm-2, the amount of F I can be determined from λ954. For these two sight lines, there is no clear indication for enhanced F abundances resulting from the ν-process in a region shaped by past supernovae. Based on observations made with the NASA/CNES/CSA Far Ultraviolet Spectroscopic Explorer (FUSE), which is operated for NASA by the Johns Hopkins University under NASA contract NAS 5-32985.

  7. Superluminous object in the Large Cloud of Magellan

    SciTech Connect

    Mathis, J.S.; Savage, B.D.; Cassinelli, J.P.

    1984-08-01

    A superluminous and possibly supermassive object has been observed in the Large Cloud of Magellan. The object is designated R136 and is in the Tarantula Nebula. In 1980, it was discovered that R136 actually has 3 distinct components. The brightest was designated R136a. The ultraviolet spectra of R136a implies that it is a very hot star, similar to 03 stars, and that it has a steller wind of speeds up 3500 km/sec., also similar to 03 stars. The broad emission lines of the II are similar to those found in the spectrum of Wolf-Rayet stars. In 1983, Y.H. Chu of the University of Wisconsin after analyzing many images of R136 concluded that within the R136a component one can identify four steller objects. The dominate object was labeled R136a1 and it is this object that is now the candidate for a superluminous star. If R136a1 is a single star, it must have a mass of between 400 and 1000 solar masses. The ultraviolet spectroscopic data are consistent with a single-star hypothesis. However, the data do not rule out other possibilities.

  8. Spitzer infrared spectrograph point source classification in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ruffle, Paul M. E.; Kemper, F.; Jones, O. C.; Sloan, G. C.; Kraemer, K. E.; Woods, Paul M.; Boyer, M. L.; Srinivasan, S.; Antoniou, V.; Lagadec, E.; Matsuura, M.; McDonald, I.; Oliveira, J. M.; Sargent, B. A.; Sewiło, M.; Szczerba, R.; van Loon, J. Th.; Volk, K.; Zijlstra, A. A.

    2015-08-01

    The Magellanic Clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust. We have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring-mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects, 4 post-AGB objects, 22 red supergiants, 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10 Wolf-Rayet stars, 3 H II regions, 3 R Coronae Borealis stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature.

  9. Probing a GRB Progenitor at a Redshift of z=2: A Comprehensive Observing Campaign of the Afterglow of GRB 030226l

    NASA Technical Reports Server (NTRS)

    Klose, S.; Greiner, J.; Rau, A.; Henden, A. A.; Hartmann, D. H.; Zeh, A.; Ries, C.; Masetti, N.; Malesani, D.; Guenther, E.

    2004-01-01

    We report results from a comprehensive optical/near-infrared follow-up observing campaign of the afterglow of GRB 030226, including VLT spectroscopy and polarimetry, supplemented by Chandra X-ray and BOOTES-1 rapid response observations. First observations at ESO started 0.2 days after the burst when the afterglow was at a magnitude of R approx. 19. The multi-color light curve of the afterglow, with a break around 1 day after the burst, is achromatic within the observational uncertainties even during episodes of short-term fluctuations. Close to the break time the degree of linear polarization of the afterglow light was less than 1.1%, consistent with low intrinsic polarization observed in other afterglows. VLT spectra show a foreground absorber of Mg II at a redshift z=1.042 and two absorption line systems at redshifts z=1.962+/-0.001 and at z=1.986+/-0.001, placing the lower limit for the redshift of the GRB close to 2. The kinematics and the composition of the absorbing clouds is very similar to those observed in the afterglow of GRB 021004, supporting the view that at least some GRBs are physically related to the explosion of a Wolf-Rayet star.

  10. Probing a GRB Progenitor at a Redshift of z=2: A Comprehensive Observing Campaign of the Afterglow of GRB 030226l

    NASA Technical Reports Server (NTRS)

    Klose, S.; Greiner, J.; Rau, A.; Henden, A. A.; Hartmann, D. H.; Zeh, A.; Ries, C.; Masetti, N.; Malesani, D.; Guenther, E.

    2004-01-01

    We report results from a comprehensive optical/near-infrared follow-up observing campaign of the afterglow of GRB 030226, including VLT spectroscopy and polarimetry, supplemented by Chandra X-ray and BOOTES-1 rapid response observations. First observations at ESO started 0.2 days after the burst when the afterglow was at a magnitude of R approx. 19. The multi-color light curve of the afterglow, with a break around 1 day after the burst, is achromatic within the observational uncertainties even during episodes of short-term fluctuations. Close to the break time the degree of linear polarization of the afterglow light was less than 1.1%, consistent with low intrinsic polarization observed in other afterglows. VLT spectra show a foreground absorber of Mg II at a redshift z=1.042 and two absorption line systems at redshifts z=1.962+/-0.001 and at z=1.986+/-0.001, placing the lower limit for the redshift of the GRB close to 2. The kinematics and the composition of the absorbing clouds is very similar to those observed in the afterglow of GRB 021004, supporting the view that at least some GRBs are physically related to the explosion of a Wolf-Rayet star.

  11. Failed Collapsar Jets to Explain Low Luminosity GRB Properties

    NASA Astrophysics Data System (ADS)

    Hamidani, Hamid; Umeda, Hideyuki; Takahashi, Koh

    Using the collapsar scenario for long GRBs [1], we present series of numerical simulations to investigate properties of expanding jets, driven by engines deploying the same total energy (1052 erg), differently. We include a wide range of engine durations (Tinj), from 0.1 to 100 s, as well as different initial opening angles (θ0) for the deployed energy. We employ an AMR 2D special relativistic hydrodynamical code, using a 25 solar mass Wolf-Rayet star as the progenitor [2]. We analyze the effect of the engine duration on the jet's hydrodynamic properties, and discuss the implications on GRB and SN emissions. Our results show that the expanding jet's hydrodynamical properties significantly differ, in particular outflow collimation and relativistic acceleration. The implication of this is that brief engines (with Tinj < Tbreakout, either due to a short Tinj or to a large θ0) represent excellent systems to explain the debated low-luminosity GRBs (llGRBs), displaying two of llGRBs peculiar features: i) the estimated llGRBs rate at least about 100 times higher than that of GRBs [3,4,5], and ii) potentially energetic SN emission [6]. We find that these two features only arise from brief engines. The conclusion is that brief engines dominate collapsars, at least at low redshift.

  12. Erratum: The 2.27 day period of WR-134 (HD 191765)

    NASA Technical Reports Server (NTRS)

    Mccandliss, Stephan R.; Bohannan, Bruce; Robert, Carmelle; Moffat, Anthony F. J.

    1994-01-01

    The original temporal analysis of a 12 night spectral timeseries of Wolf-Rayet (WR)-134 has been found to be flawed and a re-analysis shows that the line profile variations are indeed periodic. When combined with a 4 night timeseries taken 45 days earlier, a period near 2.27 d is found in periodograms of the He II lambda 5412 line centroid, rms line width, and line skew variations. When the emission line residuals are ordered as a function of phase, a sinuous feature appears to 'snake' about the line center with an amplitude of +/-500 km/s. This is approximately equal to 20 larger than the line centroid amplitude; the calculation of which is heavily weighted by static portions of the line profile. In addition to the 'snake,' emission residuals appear that move away from line center on unbound trajectories and are thought to result from the interaction of a periodic driver with the unstable flow of the radiation driven wind.

  13. IUE spectrophotometry of the hot helium-rich PG1159 DO degenerates

    NASA Astrophysics Data System (ADS)

    Sion, E. M.; Liebert, J.; Starrfield, S.; Wesemael, F.

    1984-12-01

    The PG1159 degenerates represent the hottest spectroscopic subgroup of DO stars. Their optical spectra are characterized by broad HeII (lambda 4686) absorption and several transitions of CIV, NIII and CIII. High resolution MMT scans reveal central emission reversals. The discovery of complex, non-radial pulsations in four members of the class underscores the need for accurate temperatures, gravities and abundances for these object. Low resolution IUE spectra of four PG1159 stars, PG1151-029, PG1424+535, PG1520+525 were obtained, as well as an additional image of PG1159-035 and an optical ultraviolet spectrum of PG2131+066. IUE (SWP) spectra suggest the presence of numerous metallic absorption features of CIV (lambda 1550), NV (lambda 1240) and a few unidentified features. The metal absorption lines and HEII (lambda 1640) have equivalent widths of a few angstroms. IUE/optical energy distributions are considered. Tentative identifications of CIV absorptions and possibly, weak OVI features in optical ultraviolet reticon spectra suggest a probable link to the subluminous Wolf-Rayet OV5 I planetary nuclei. The PG1159 DO degenerates are the hottest known (Te 100,000K), high gravity (log g 7 ) objects.

  14. Optical observations of the fast declining Type Ib supernova iPTF13bvn

    NASA Astrophysics Data System (ADS)

    Srivastav, Shubham; Anupama, G. C.; Sahu, D. K.

    2014-12-01

    We present optical UBVRI photometry and medium resolution spectroscopy of the Type Ib supernova iPTF13bvn, spanning a phase of ˜-13 d to +71 d with respect to B-band maximum. The post-maximum decline rates indicate a fast decline with Δm15(B) = 1.82. Correcting for a Galactic extinction E(B - V)MW = 0.045 and host galaxy extinction of E(B - V)host = 0.17, the absolute V-band magnitude peaks at MV = -17.23 ± 0.20. The bolometric light curve indicates that ˜0.09 M⊙ of 56Ni was synthesized in the explosion. The earliest spectrum (-13 d) shows the presence of He I 5876 Å feature at a velocity of ˜15 000 km s-1, which falls rapidly by the time the SN approaches the epoch of B-band maximum. The photospheric velocity near maximum light, as indicated by the Fe II 5169 Å feature, is ˜9000 km s-1. The estimate for the 56Ni mass, together with the estimates for the ejected mass (Mej) and kinetic energy of the explosion (Ek) indicate that iPTF13bvn is a low-luminosity Type Ib supernova, with a lower than average ejected mass and kinetic energy. Our results suggest that the progenitor of iPTF13bvn is inconsistent with a single Wolf-Rayet star.

  15. Erratum: The 2.27 day period of WR-134 (HD 191765)

    NASA Astrophysics Data System (ADS)

    McCandliss, Stephan R.; Bohannan, Bruce; Robert, Carmelle; Moffat, Anthony F. J.

    1994-11-01

    The original temporal analysis of a 12 night spectral timeseries of Wolf-Rayet (WR)-134 has been found to be flawed and a re-analysis shows that the line profile variations are indeed periodic. When combined with a 4 night timeseries taken 45 days earlier, a period near 2.27 d is found in periodograms of the He II lambda 5412 line centroid, rms line width, and line skew variations. When the emission line residuals are ordered as a function of phase, a sinuous feature appears to 'snake' about the line center with an amplitude of +/-500 km/s. This is approximately equal to 20 larger than the line centroid amplitude; the calculation of which is heavily weighted by static portions of the line profile. In addition to the 'snake,' emission residuals appear that move away from line center on unbound trajectories and are thought to result from the interaction of a periodic driver with the unstable flow of the radiation driven wind.

  16. Near-infrared variability study of the central 2.3 arcmin × 2.3 arcmin of the Galactic Centre - I. Catalogue of variable sources

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Morris, Mark R.; Do, Tuan; Ghez, Andrea

    2017-09-01

    We used 4-yr baseline Hubble Space Telescope/Wide Field Camera 3 IR observations of the Galactic Centre in the F153M band (1.53 μm) to identify variable stars in the central ∼2.3 arcmin × 2.3 arcmin field. We classified 3845 long-term (periods from months to years) and 76 short-term (periods of a few days or less) variables among a total sample of 33 070 stars. For 36 of the latter ones, we also derived their periods (<3 d). Our catalogue not only confirms bright long period variables and massive eclipsing binaries identified in previous works but also contains many newly recognized dim variable stars. For example, we found δ Scuti and RR Lyrae stars towards the Galactic Centre for the first time, as well as one BL Her star (period < 1.3 d). We cross-correlated our catalogue with previous spectroscopic studies and found that 319 variables have well-defined stellar types, such as Wolf-Rayet, OB main sequence, supergiants and asymptotic giant branch stars. We used colours and magnitudes to infer the probable variable types for those stars without accurately measured periods or spectroscopic information. We conclude that the majority of unclassified variables could potentially be eclipsing/ellipsoidal binaries and Type II Cepheids. Our source catalogue will be valuable for future studies aimed at constraining the distance, star formation history and massive binary fraction of the Milky Way nuclear star cluster.

  17. IGRINS on the DCT

    NASA Astrophysics Data System (ADS)

    Prato, Lisa A.

    2017-01-01

    Through an agreement with the University of Texas at Austin and the Korea Astronomy and Space Science Institute, the Immersion Grating Infrared Spectrograph (IGRINS) saw first light on the Lowell Observatory 4.3 m Discovery Channel Telescope (DCT) telescope on September 8, 2016. IGRINS, originally commissioned at the McDonald Observatory 2.7 m telescope, provides a spectral resolution of 45,000 and a simultaneous spectral grasp of 1.45 to 2.45 microns, recording all of the H and K bands with no gaps in wavelength coverage on two H2RG detectors in a single exposure. The instrument design minimizes optical surfaces, optimizing throughput, and has no moving parts, key for stability. IGRINS on the DCT attains a signal to noise of 100 per resolution element in one hour of integration time on a K=12 magnitude source, currently making it the most sensitive high-resolution spectrograph in the world at H and K. Science programs in the fourth quarter, 2016, include such diverse topics as abundance measurements in M dwarfs and population II stars, studies of ices and atmospheres in outer solar system bodies, measurement of fundamental properties of pre-main sequence stars, calibrating young star evolution, defining the substellar boundary at the youngest ages, outflow characteristics in Wolf-Rayet stars, finding the first generation of exoplanets, gas dynamics in planetary nebulae, and structure of the ISM in molecular clouds. In this talk I will report on initial results from selected programs.

  18. BASS-II Experiment

    NASA Image and Video Library

    2014-08-02

    Image taken on card 8 during BASS-II flame test session with reduced O2 partial pressure. Session conducted on GMT 213. The Burning and Suppression of Solids - II (BASS-II) investigation examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The BASS-II experiment will guide strategies for materials flammability screening for use in spacecraft as well as provide valuable data on solid fuel burning behavior in microgravity. BASS-II results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.

  19. IPHAS and the symbiotic stars . II. New discoveries and a sample of the most common mimics

    NASA Astrophysics Data System (ADS)

    Corradi, R. L. M.; Valentini, M.; Munari, U.; Drew, J. E.; Rodríguez-Flores, E. R.; Viironen, K.; Greimel, R.; Santander-García, M.; Sabin, L.; Mampaso, A.; Parker, Q.; DePew, K.; Sale, S. E.; Unruh, Y. C.; Vink, J. S.; Rodríguez-Gil, P.; Barlow, M. J.; Lennon, D. J.; Groot, P. J.; Giammanco, C.; Zijlstra, A. A.; Walton, N. A.

    2010-01-01

    Context. Knowledge of the total population of symbiotic stars in the Galaxy is important for understanding basic aspects of stellar evolution in interacting binaries and the relevance of this class of objects in the formation of supernovae of type Ia. Aims: In a previous paper, we presented the selection criteria needed to search for symbiotic stars in IPHAS, the INT Hα survey of the Northern Galactic plane. IPHAS gives us the opportunity to make a systematic, complete search for symbiotic stars in a magnitude-limited volume. Methods: Follow-up spectroscopy at different telescopes worldwide of a sample of sixty two symbiotic star candidates is presented. Results: Seven out of nineteen S-type candidates observed spectroscopically are confirmed to be genuine symbiotic stars. The spectral type of their red giant components, as well as reddening and distance, were computed by modelling the spectra. Only one new D-type symbiotic system, out of forty-three candidates observed, was found. This was as expected (see discussion in our paper on the selection criteria). The object shows evidence for a high density outflow expanding at a speed ≥65 km s-1. Most of the other candidates are lightly reddened classical T Tauri stars and more highly reddened young stellar objects that may be either more massive young stars of HAeBe type or classical Be stars. In addition, a few notable objects have been found, such as three new Wolf-Rayet stars and two relatively high-luminosity evolved massive stars. We also found a helium-rich source, possibly a dense ejecta hiding a WR star, which is surrounded by a large ionized nebula. Conclusions: These spectroscopic data allow us to refine the selection criteria for symbiotic stars in the IPHAS survey and, more generally, to better understand the behaviour of different Hα emitters in the IPHAS and 2MASS colour-colour diagrams. Based on observations obtained at; the 2.6 m Nordic Optical Telescope operated by NOTSA; the 2.5 m INT and 4.2 m

  20. Photosensitization of HNS II

    SciTech Connect

    Rhoton, N.O.

    1981-01-01

    The feasibility of photosensitization of HNS II was evaluated using an electrically driven flyer in vacuum, air and xenon. Preliminary experiments, without HNS II acceptors, indicated increased ultraviolet light generation by the flyer in argon, krypton and xenon atmospheres relative to air while no ultraviolet light was detectable in vacuum. HNS II initiation threshold tests in vacuum, air and xenon showed only a slight difference in threshold level between air and vacuum, and a higher threshold level in xenon. Thus no relationship was evident from these tests between ultraviolet energy level and the initiation sensitivity of HNS II.

  1. World War II Homefront.

    ERIC Educational Resources Information Center

    Garcia, Rachel

    2002-01-01

    Presents an annotated bibliography that provides Web sites focusing on the U.S. homefront during World War II. Covers various topics such as the homefront, Japanese Americans, women during World War II, posters, and African Americans. Includes lesson plan sources and a list of additional resources. (CMK)

  2. Ovarian Cancer Stage II

    MedlinePlus

    ... hyphen, e.g. -historical Searches are case-insensitive Ovarian Cancer Stage II Add to My Pictures View /Download : ... 1650x675 View Download Large: 3300x1350 View Download Title: Ovarian Cancer Stage II Description: Three-panel drawing of stage ...

  3. World War II Homefront.

    ERIC Educational Resources Information Center

    Garcia, Rachel

    2002-01-01

    Presents an annotated bibliography that provides Web sites focusing on the U.S. homefront during World War II. Covers various topics such as the homefront, Japanese Americans, women during World War II, posters, and African Americans. Includes lesson plan sources and a list of additional resources. (CMK)

  4. Belle II production system

    NASA Astrophysics Data System (ADS)

    Miyake, Hideki; Grzymkowski, Rafal; Ludacka, Radek; Schram, Malachi

    2015-12-01

    The Belle II experiment will record a similar quantity of data to LHC experiments and will acquire it at similar rates. This requires considerable computing, storage and network resources to handle not only data created by the experiment but also considerable amounts of simulated data. Consequently Belle II employs a distributed computing system to provide the resources coordinated by the the DIRAC interware. DIRAC is a general software framework that provides a unified interface among heterogeneous computing resources. In addition to the well proven DIRAC software stack, Belle II is developing its own extension called BelleDIRAC. BelleDIRAC provides a transparent user experience for the Belle II analysis framework (basf2) on various environments and gives access to file information managed by LFC and AMGA metadata catalog. By unifying DIRAC and BelleDIRAC functionalities, Belle II plans to operate an automated mass data processing framework named a “production system”. The Belle II production system enables large-scale raw data transfer from experimental site to raw data centers, followed by massive data processing, and smart data delivery to each remote site. The production system is also utilized for simulated data production and data analysis. Although development of the production system is still on-going, recently Belle II has prepared prototype version and evaluated it with a large scale simulated data production. In this presentation we will report the evaluation of the prototype system and future development plans.

  5. UVIS G280 Wavelength Calibration

    NASA Astrophysics Data System (ADS)

    Bushouse, Howard

    2009-07-01

    Wavelength calibration of the UVIS G280 grism will be established using observations of the Wolf Rayet star WR14. Accompanying direct exposures will provide wavelength zeropoints for dispersed exposures. The calibrations will be obtained at the central position of each CCD chip and at the center of the UVIS field. No additional field-dependent variations will be obtained.

  6. Mass loss of massive stars

    NASA Astrophysics Data System (ADS)

    Martins, F.

    2015-12-01

    In this contribution we review the properties of the winds of massive stars. We focus on OB stars, red supergiants, Luminous Blue Variables (LBVs) and Wolf-Rayet stars. For each type of star, we summarize the main wind properties and we give a brief description of the physical mechanism(s) responsible for mass loss.

  7. Meteoritic Constraints on the Origins of Our Solar System

    NASA Astrophysics Data System (ADS)

    Dwarkadas, V. V.; Boyajian, P. H.; Bojazi, M.; Meyer, B. S.; Dauphas, N.

    2017-05-01

    Analysis of primordial meteorites shows a high abundance of 26Al, accompanied by low 60Fe. We suggest that our solar system originated within a Wolf-Rayet bubble formed by stellar mass-loss from a massive star that was the main source of 26Al.

  8. Hydrogen-deficient Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Pena, M.; Graefener, G.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2015-06-01

    A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient and are considered as the progenitors of H-deficient white dwarfs. Almost all of these H-deficient CSPNe show a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8 (spectral type [WN/WC]), IC 4663 and Abell 48 (spectral type [WN]). We performed spectral analyses for a number of Wolf-Rayet type central stars of different evolutionary stages with the help of our Potsdam Wolf-Rayet (PoWR) model code for expanding atmospheres to determine relevant stellar parameters. The results of our recent analyses will be presented in the context of stellar evolution and white dwarf formation. Especially the problems of a uniform evolutionary channel for [WC] stars as well as constraints to the formation of [WN] or [WN/WC] subtype stars will be addressed.

  9. Hubble Observes One-of-a-Kind Star Nicknamed ‘Nasty’

    NASA Image and Video Library

    2015-03-21

    Astronomers using NASA’s Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is so weird that astronomers have nicknamed it “Nasty 1,” a play on its catalog name of NaSt1. The star may represent a brief transitory stage in the evolution of extremely massive stars. First discovered several decades ago, Nasty 1 was identified as a Wolf-Rayet star, a rapidly evolving star that is much more massive than our sun. The star loses its hydrogen-filled outer layers quickly, exposing its super-hot and extremely bright helium-burning core. But Nasty 1 doesn’t look like a typical Wolf-Rayet star. The astronomers using Hubble had expected to see twin lobes of gas flowing from opposite sides of the star, perhaps similar to those emanating from the massive star Eta Carinae, which is a Wolf-Rayet candidate. Instead, Hubble revealed a pancake-shaped disk of gas encircling the star. The vast disk is nearly 2 trillion miles wide, and may have formed from an unseen companion star that snacked on the outer envelope of the newly formed Wolf-Rayet. Based on current estimates, the nebula surrounding the stars is just a few thousand years old, and as close as 3,000 light-years from Earth. Credits: NASA/Hubble

  10. FIRE II Cirrus Info

    Atmospheric Science Data Center

    2014-03-18

    ... Page:  FIRE II Main Grouping:  Cirrus Description:  First ISCCP Regional Experiment (FIRE) ... stratocumulus systems, the radiative properties of these clouds and their interactions. Data Products:  Cirrus ...

  11. Angiotensin II Receptor Blockers

    MedlinePlus

    ... side effects include: Dizziness Elevated blood potassium level (hyperkalemia) Localized swelling of tissues (angioedema) There have been ... 31, 2016. Townsend RR. Major side effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers. http://www.uptodate. ...

  12. Mod II engine development

    NASA Technical Reports Server (NTRS)

    Karl, David W.

    1987-01-01

    The Mod II engine, a four-cylinder, automotive Stirling engine utilizing the Siemens-Rinia double-acting concept, was assembled and became operational in January 1986. This paper describes the Mod II engine, its first assembly, and the subsequent development work done on engine components up to the point that engine performance characterization testing took place. Performance data for the engine are included.

  13. START II and beyond

    SciTech Connect

    Mendelsohn, J.

    1996-10-01

    The second Strategic Arms Reduction Treaty (START II), signed by President George Bush and Russian President Boris yeltsin in January 1993, was ratified by the US Senate in January 1996 by and overwhelming vote of 87-4. The treaty, which will slash the strategic arsenals of the United States and Russia to 3,000-3,500 warheads each, is now before the two houses of the Russian Parliament (the Duma and the Federation Council) awaiting ratification amidst confusion and criticism. The Yeltsin administration supports START II and spoke in favor of Russian ratification after the Senate acted on the treaty. The Russian foreign minister and the Russian military believed that START II should be ratified as soon as possible. During the recent presidential campaign and his subsequent illness, President Yeltsin has been virtually silent on the subject of START II and nuclear force reductions. Without a push from the Yeltsin administration, the tone among Duma members, has been sharply critical of START II. Voices across the Russian political spectrum have questioned the treaty and linked it to constraints on highly capable theater missile defense (TMD) systems and the continued viability of the ABM Treaty. And urged that START II ratification be held hostage until NATO abandons its plans to expand eastward. Although the START I and START II accords have generated the momentum, opportunity and expectation-both domestic and international-for additional nuclear arms reductions, the current impasse over ratification in the Duma has cast a shadow over the future of START II and raised questions about the chances for any follow-on (START III) agreement.

  14. Mod II engine development

    NASA Technical Reports Server (NTRS)

    Karl, David W.

    1987-01-01

    The Mod II engine, a four-cylinder, automotive Stirling engine utilizing the Siemens-Rinia double-acting concept, was assembled and became operational in January 1986. This paper describes the Mod II engine, its first assembly, and the subsequent development work done on engine components up to the point that engine performance characterization testing took place. Performance data for the engine are included.

  15. RESOLVING IONIZATION AND METALLICITY ON PARSEC SCALES ACROSS MRK 71 WITH HST-WFC3

    SciTech Connect

    James, Bethan L.; Auger, Matthew; Aloisi, Alessandra; Calzetti, Daniela; Kewley, Lisa

    2016-01-01

    Blue compact dwarf (BCD) galaxies in the nearby universe provide a means for studying feedback mechanisms and star formation processes in low-metallicity environments in great detail. Owing to their vicinity, these local analogs to primordial young galaxies are well suited for high-resolution studies that are unfeasible for high-redshift galaxies. Here we present Hubble Space Telescope Wide Field Camera 3 observations of one such BCD, Mrk 71, one of the most powerful local starbursts known, in the light of [O ii], He ii, Hβ, [O iii], Hα, and [S ii]. At D ≃ 3.44 Mpc, this extensive suite of emission-line images enables us to explore the chemical and physical conditions of Mrk 71 on ∼2 pc scales. We use emission-line diagnostics to distinguish ionization mechanisms on a pixel-by-pixel basis and show that despite the previously reported hypersonic gas and superbubble blowout, the gas in Mrk 71 is photoionized, with no sign of shock-excited emission. He ii emission line images are used to identify up to six Wolf-Rayet stars, three of which lie on the edge of a blowout region. Using strong-line metallicity diagnostics, we present the first “metallicity image” of a galaxy, revealing chemical inhomogeneity on scales of <50 pc. We additionally demonstrate that while chemical structure can be lost at large scales, metallicity diagnostics can break down on spatial scales smaller than an H ii region. This study highlights not only the benefits of high-resolution spatially resolved observations in assessing the effects of feedback mechanisms but also the potential limitations when employing emission-line diagnostics; these results are particularly relevant as we enter the era of extremely large telescopes.

  16. Radiative properties of pair-instability supernova explosions

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Waldman, Roni; Livne, Eli; Hillier, D. John; Blondin, Stéphane

    2013-02-01

    We present non-local thermodynamic equilibrium time-dependent radiative transfer simulations of pair-instability supernovae (PISNe) stemming from red-supergiant (RSG), blue-supergiant and Wolf-Rayet star rotation-free progenitors born in the mass range 160-230 M⊙, at 10-4 Z⊙. Although subject to uncertainties in convection and stellar mass-loss rates, our initial conditions come from physically-consistent models that treat evolution from the main sequence, the onset of the pair-production instability, and the explosion phase. With our set of input models characterized by large 56Ni and ejecta masses, and large kinetic energies, we recover qualitatively the Type II-Plateau, II-peculiar and Ib/c light-curve morphologies, although they have larger peak bolometric luminosities (˜109 to 1010 L⊙) and a longer duration (˜200 d). We discuss the spectral properties for each model during the photospheric and nebular phases, including Balmer lines in II-P and II-pec at early times, the dominance of lines from intermediate-mass elements near the bolometric maximum, and the strengthening of metal line blanketing thereafter. Having similar He-core properties, all models exhibit similar post-peak spectra that are strongly blanketed by Fe ii and Fe i lines, characterized by red colours, and that arise from photospheres/ejecta with a temperature of ≲4000 K. Combined with the modest linewidths after the bolometric peak, these properties contrast with those of known superluminous SNe, suggesting that PISNe are yet to be discovered. Being reddish, PISNe will be difficult to observe at high redshift except when they stem from RSG explosions, in which case they could be used as metallicity probes and distance indicators.

  17. PTF11iqb: cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Mauerhan, Jon C.; Cenko, S. Bradley; Kasliwal, Mansi M.; Silverman, Jeffrey M.; Filippenko, Alexei V.; Gal-Yam, Avishay; Clubb, Kelsey I.; Graham, Melissa L.; Leonard, Douglas C.; Horst, J. Chuck; Williams, G. Grant; Andrews, Jennifer E.; Kulkarni, Shrinivas R.; Nugent, Peter; Sullivan, Mark; Maguire, Kate; Xu, Dong; Ben-Ami, Sagi

    2015-05-01

    The supernova (SN) PTF11iqb was initially classified as a Type IIn event caught very early after explosion. It showed narrow Wolf-Rayet (WR) spectral features on day 2 (as in SN 1998S and SN 2013cu), but the narrow emission weakened quickly and the spectrum morphed to resemble Types II-L and II-P. At late times, Hα exhibited a complex, multipeaked profile reminiscent of SN 1998S. In terms of spectroscopic evolution, we find that PTF11iqb was a near twin of SN 1998S, although with somewhat weaker interaction with circumstellar material (CSM) at early times, and stronger interaction at late times. We interpret the spectral changes as caused by early interaction with asymmetric CSM that is quickly (by day 20) enveloped by the expanding SN ejecta photosphere, but then revealed again after the end of the plateau when the photosphere recedes. The light curve can be matched with a simple model for CSM interaction (with a mass-loss rate of roughly 10-4 M⊙ yr-1) added to the light curve of a normal SN II-P. The underlying plateau requires a progenitor with an extended hydrogen envelope like a red supergiant at the moment of explosion, consistent with the slow wind speed (<80 km s-1) inferred from narrow Hα emission. The cool supergiant progenitor is significant because PTF11iqb showed WR features in its early spectrum - meaning that the presence of such WR features does not necessarily indicate a WR-like progenitor. Overall, PTF11iqb bridges SNe IIn with weaker pre-SN mass-loss seen in SNe II-L and II-P, implying a continuum between these types.

  18. Resolving Ionization and Metallicity on Parsec Scales across Mrk 71 with HST-WFC3

    NASA Astrophysics Data System (ADS)

    James, Bethan L.; Auger, Matthew; Aloisi, Alessandra; Calzetti, Daniela; Kewley, Lisa

    2016-01-01

    Blue compact dwarf (BCD) galaxies in the nearby universe provide a means for studying feedback mechanisms and star formation processes in low-metallicity environments in great detail. Owing to their vicinity, these local analogs to primordial young galaxies are well suited for high-resolution studies that are unfeasible for high-redshift galaxies. Here we present Hubble Space Telescope Wide Field Camera 3 observations of one such BCD, Mrk 71, one of the most powerful local starbursts known, in the light of [O ii], He ii, Hβ, [O iii], Hα, and [S ii]. At D ≃ 3.44 Mpc, this extensive suite of emission-line images enables us to explore the chemical and physical conditions of Mrk 71 on ∼2 pc scales. We use emission-line diagnostics to distinguish ionization mechanisms on a pixel-by-pixel basis and show that despite the previously reported hypersonic gas and superbubble blowout, the gas in Mrk 71 is photoionized, with no sign of shock-excited emission. He ii emission line images are used to identify up to six Wolf-Rayet stars, three of which lie on the edge of a blowout region. Using strong-line metallicity diagnostics, we present the first “metallicity image” of a galaxy, revealing chemical inhomogeneity on scales of <50 pc. We additionally demonstrate that while chemical structure can be lost at large scales, metallicity diagnostics can break down on spatial scales smaller than an H ii region. This study highlights not only the benefits of high-resolution spatially resolved observations in assessing the effects of feedback mechanisms but also the potential limitations when employing emission-line diagnostics; these results are particularly relevant as we enter the era of extremely large telescopes.

  19. Carnitine palmitoyltransferase II deficiency

    PubMed Central

    Roe, C R.; Yang, B-Z; Brunengraber, H; Roe, D S.; Wallace, M; Garritson, B K.

    2008-01-01

    Background: Carnitine palmitoyltransferase II (CPT II) deficiency is an important cause of recurrent rhabdomyolysis in children and adults. Current treatment includes dietary fat restriction, with increased carbohydrate intake and exercise restriction to avoid muscle pain and rhabdomyolysis. Methods: CPT II enzyme assay, DNA mutation analysis, quantitative analysis of acylcarnitines in blood and cultured fibroblasts, urinary organic acids, the standardized 36-item Short-Form Health Status survey (SF-36) version 2, and bioelectric impedance for body fat composition. Diet treatment with triheptanoin at 30% to 35% of total daily caloric intake was used for all patients. Results: Seven patients with CPT II deficiency were studied from 7 to 61 months on the triheptanoin (anaplerotic) diet. Five had previous episodes of rhabdomyolysis requiring hospitalizations and muscle pain on exertion prior to the diet (two younger patients had not had rhabdomyolysis). While on the diet, only two patients experienced mild muscle pain with exercise. During short periods of noncompliance, two patients experienced rhabdomyolysis with exercise. None experienced rhabdomyolysis or hospitalizations while on the diet. All patients returned to normal physical activities including strenuous sports. Exercise restriction was eliminated. Previously abnormal SF-36 physical composite scores returned to normal levels that persisted for the duration of the therapy in all five symptomatic patients. Conclusions: The triheptanoin diet seems to be an effective therapy for adult-onset carnitine palmitoyltransferase II deficiency. GLOSSARY ALT = alanine aminotransferase; AST = aspartate aminotransferase; ATP = adenosine triphosphate; BHP = β-hydroxypentanoate; BKP = β-ketopentanoate; BKP-CoA = β-ketopentanoyl–coenzyme A; BUN = blood urea nitrogen; CAC = citric acid cycle; CoA = coenzyme A; CPK = creatine phosphokinase; CPT II = carnitine palmitoyltransferase II; LDL = low-density lipoprotein; MCT

  20. Keck II status report

    NASA Astrophysics Data System (ADS)

    Smith, Gerald M.

    1997-03-01

    The second of two 10-meter telescopes comprising the W. M. Keck Observatory is nearing completion. Functionally, the Keck II telescope is a twin of Keck I, but in detail, many improvements have been made. Observatory and scientific instrument budgets are presented for the two telescopes. A new software system was developed for Keck II using EPICS-based architecture. Computer architecture for Keck II was also completely changed from the Keck I design using VMS and VAX computers to UNIX and SUN computers. The new telescope is completely assembled on the site on Mauna Kea, Hawaii. Design, construction, and testing of the Keck II telescope has taken significantly less time due to the experience and tools developed for the first telescope. An adaptive optics system is currently being developed for Keck II. Preliminary design of this system is complete and the system is expected to be commissioned in 1998. Configuration of the twin 10-meter telescopes was designed to allow combining of the optical beams from the two telescopes and to add smaller satellite telescopes for interferometry. Plans for this phase are being developed in detail.

  1. Topoisomerase II and leukemia

    PubMed Central

    Pendleton, MaryJean; Lindsey, R. Hunter; Felix, Carolyn A.; Grimwade, David; Osheroff, Neil

    2014-01-01

    Type II topoisomerases are essential enzymes that modulate DNA under- and overwinding, knotting, and tangling. Beyond their critical physiological functions, these enzymes are the targets for some of the most widely prescribed anticancer drugs (topoisomerase II poisons) in clinical use. Topoisomerase II poisons kill cells by increasing levels of covalent enzyme-cleaved DNA complexes that are normal reaction intermediates. Drugs such as etoposide, doxorubicin, and mitoxantrone are frontline therapies for a variety of solid tumors and hematological malignancies. Unfortunately, their use is also associated with the development of specific leukemias. Regimens that include etoposide or doxorubicin are linked to the occurrence of acute myeloid leukemias that feature rearrangements at chromosomal band 11q23. Similar rearrangements are seen in infant leukemias and are associated with gestational diets that are high in naturally occurring topoisomerase II–active compounds. Finally, regimens that include mitoxantrone and epirubicin are linked to acute promyelocytic leukemias that feature t(15;17) rearrangements. The first part of this article will focus on type II topoisomerases and describe the mechanism of enzyme and drug action. The second part will discuss how topoisomerase II poisons trigger chromosomal breaks that lead to leukemia and potential approaches for dissociating the actions of drugs from their leukemogenic potential. PMID:24495080

  2. THE MAGELLAN/IMACS CATALOG OF OPTICAL SUPERNOVA REMNANT CANDIDATES IN M83

    SciTech Connect

    Blair, William P.; Winkler, P. Frank; Long, Knox S. E-mail: winkler@middlebury.edu

    2012-11-15

    We present a new optical imaging survey of supernova remnants (SNRs) in M83, using data obtained with the Magellan I 6.5 m telescope and IMACS instrument under conditions of excellent seeing. Using the criterion of strong [S II] emission relative to H{alpha}, we confirm all but three of the 71 SNR candidates listed in our previous survey, and expand the SNR candidate list to 225 objects, more than tripling the earlier sample. Comparing the optical survey with a new deep X-ray survey of M83 with Chandra, we find that 61 of these SNR candidates have X-ray counterparts. We also identify an additional list of 46 [O III]-selected nebulae for follow-up as potential ejecta-dominated remnants, seven of which have associated X-ray emission that makes them strong candidates. Some of the other [O III]-bright objects could also be normal interstellar medium (ISM) dominated SNRs with shocks fast enough to doubly ionize oxygen, but with H{alpha} and [S II] emission faint enough to have been missed. A few of these objects may also be H II regions with abnormally high [O III] emission compared with the majority of M83 H II regions, compact nebulae excited by young Wolf-Rayet stars, or even background active galactic nuclei. The SNR H{alpha} luminosity function in M83 is shifted by a factor of {approx}4.5 times higher than for M33 SNRs, indicative of a higher mean ISM density in M83. We describe the search technique used to identify the SNR candidates and provide basic information and finder charts for the objects.

  3. THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE 'GREEN PEA' GALAXIES

    SciTech Connect

    Jaskot, A. E.; Oey, M. S.

    2013-04-01

    Although Lyman-continuum (LyC) radiation from star-forming galaxies likely drove the reionization of the universe, observations of star-forming galaxies at low redshift generally indicate low LyC escape fractions. However, the extreme [O III]/[O II] ratios of the z = 0.1-0.3 Green Pea galaxies may be due to high escape fractions of ionizing radiation. To analyze the LyC optical depths and ionizing sources of these rare, compact starbursts, we compare nebular photoionization and stellar population models with observed emission lines in the Peas' Sloan Digital Sky Survey (SDSS) spectra. We focus on the six most extreme Green Peas, the galaxies with the highest [O III]/[O II] ratios and the best candidates for escaping ionizing radiation. The Balmer line equivalent widths and He I {lambda}3819 emission in the extreme Peas support young ages of 3-5 Myr, and He II {lambda}4686 emission in five extreme Peas signals the presence of hard ionizing sources. Ionization by active galactic nuclei or high-mass X-ray binaries is inconsistent with the Peas' line ratios and ages. Although stacked spectra reveal no Wolf-Rayet (WR) features, we tentatively detect WR features in the SDSS spectra of three extreme Peas. Based on the Peas' ages and line ratios, we find that WR stars, chemically homogeneous O stars, or shocks could produce the observed He II emission. If hot stars are responsible, then the Peas' optical depths are ambiguous. However, accounting for emission from shocks lowers the inferred optical depth and suggests that the Peas may be optically thin. The Peas' ages likely optimize the escape of LyC radiation; they are old enough for supernovae and stellar winds to reshape the interstellar medium, but young enough to possess large numbers of UV-luminous O or WR stars.

  4. Spectropolarimetry of the Type Ib Supernova iPTF 13bvn: revealing the complex explosion geometry of a stripped-envelope core-collapse supernova

    NASA Astrophysics Data System (ADS)

    Reilly, Emma; Maund, Justyn R.; Baade, Dietrich; Wheeler, J. Craig; Silverman, Jeffrey M.; Clocchiatti, Alejandro; Patat, Ferdinando; Höflich, Peter; Spyromilio, Jason; Wang, Lifan; Zelaya, Paula

    2016-03-01

    We present six epochs of spectropolarimetric observations and one epoch of spectroscopy of the Type Ib SN iPTF 13bvn. The epochs of these observations correspond to -10 to +61 d with respect to the r-band light-curve maximum. The continuum is intrinsically polarized to the 0.2-0.4 per cent level throughout the observations, implying asphericities of ˜10 per cent in the shape of the photosphere. We observe significant line polarization associated with the spectral features of Ca II IR3, He I/Na I D, He I λλ6678, 7065, Fe II λ4924 and O I λ7774. We propose that an absorption feature at ˜6200 Å, usually identified as Si II λ6355, is most likely to be high-velocity H α at -16 400 km s-1. Two distinctly polarized components, separated in velocity, are detected for both He I/Na I D and Ca II IR3 , indicating the presence of two discrete line-forming regions in the ejecta in both radial velocity space and in the plane of the sky. We use the polarization of He I λ5876 as a tracer of sources of non-thermal excitation in the ejecta; finding that the bulk of the radioactive nickel was constrained to lie interior to ˜50-65 per cent of the ejecta radius. The observed polarization is also discussed in the context of the possible progenitor system of iPTF 13bvn, with our observations favouring the explosion of a star with an extended, distorted envelope rather than a compact Wolf-Rayet star.

  5. Mod II engine performance

    NASA Technical Reports Server (NTRS)

    Richey, Albert E.; Huang, Shyan-Cherng

    1987-01-01

    The testing of a prototype of an automotive Stirling engine, the Mod II, is discussed. The Mod II is a one-piece cast block with a V-4 single-crankshaft configuration and an annular regenerator/cooler design. The initial testing of Mod II concentrated on the basic engine, with auxiliaries driven by power sources external to the engine. The performance of the engine was tested at 720 C set temperature and 820 C tube temperature. At 720 C, it is observed that the power deficiency is speed dependent and linear, with a weak pressure dependency, and at 820 C, the power deficiency is speed and pressure dependent. The effects of buoyancy and nozzle spray pattern on the heater temperature spread are investigated. The characterization of the oil pump and the operating cycle and temperature spread tests are proposed for further evaluation of the engine.

  6. PEP-II Status

    SciTech Connect

    Sullivan, M.; Bertsche, K.; Browne, M.; Cai, Y.; Cheng, W.; Colocho, W.; Decker, F.-J.; Donald, M.; Ecklund, S.; Erickson, R.; Fisher, A.S.; Fox, J.; Heifets, S.; Himel, T.; Iverson, R.; Kulikov, A.; Novokhatski, A.; Pacak, V.; Pivi, M.; Rivetta, C.; Ross, M.; /SLAC /Saclay /Frascati

    2008-07-25

    PEP-II and BaBar have just finished run 7, the last run of the SLAC B-factory. PEP-II was one of the few high-current e+e- colliding accelerators and holds the present world record for stored electrons and stored positrons. It has stored 2.07 A of electrons, nearly 3 times the design current of 0.75 A and it has stored 3.21 A of positrons, 1.5 times more than the design current of 2.14 A. High-current beams require careful design of several systems. The feedback systems that control instabilities, the RF system stability loops, and especially the vacuum systems have to handle the higher power demands. We present here some of the accomplishments of the PEP-II accelerator and some of the problems we encountered while running high-current beams.

  7. Mod II engine performance

    NASA Technical Reports Server (NTRS)

    Richey, Albert E.; Huang, Shyan-Cherng

    1987-01-01

    The testing of a prototype of an automotive Stirling engine, the Mod II, is discussed. The Mod II is a one-piece cast block with a V-4 single-crankshaft configuration and an annular regenerator/cooler design. The initial testing of Mod II concentrated on the basic engine, with auxiliaries driven by power sources external to the engine. The performance of the engine was tested at 720 C set temperature and 820 C tube temperature. At 720 C, it is observed that the power deficiency is speed dependent and linear, with a weak pressure dependency, and at 820 C, the power deficiency is speed and pressure dependent. The effects of buoyancy and nozzle spray pattern on the heater temperature spread are investigated. The characterization of the oil pump and the operating cycle and temperature spread tests are proposed for further evaluation of the engine.

  8. About APPLE II Operation

    SciTech Connect

    Schmidt, T.; Zimoch, D.

    2007-01-19

    The operation of an APPLE II based undulator beamline with all its polarization states (linear horizontal and vertical, circular and elliptical, and continous variation of the linear vector) requires an effective description allowing an automated calculation of gap and shift parameter as function of energy and operation mode. The extension of the linear polarization range from 0 to 180 deg. requires 4 shiftable magnet arrrays, permitting use of the APU (adjustable phase undulator) concept. Studies for a pure fixed gap APPLE II for the SLS revealed surprising symmetries between circular and linear polarization modes allowing for simplified operation. A semi-analytical model covering all types of APPLE II and its implementation will be presented.

  9. SAGE II Ozone Analysis

    NASA Technical Reports Server (NTRS)

    Cunnold, Derek; Wang, Ray

    2002-01-01

    Publications from 1999-2002 describing research funded by the SAGE II contract to Dr. Cunnold and Dr. Wang are listed below. Our most recent accomplishments include a detailed analysis of the quality of SAGE II, v6.1, ozone measurements below 20 km altitude (Wang et al., 2002 and Kar et al., 2002) and an analysis of the consistency between SAGE upper stratospheric ozone trends and model predictions with emphasis on hemispheric asymmetry (Li et al., 2001). Abstracts of the 11 papers are attached.

  10. SAGE II Ozone Analysis

    NASA Technical Reports Server (NTRS)

    Cunnold, Derek; Wang, Ray

    2002-01-01

    Publications from 1999-2002 describing research funded by the SAGE II contract to Dr. Cunnold and Dr. Wang are listed below. Our most recent accomplishments include a detailed analysis of the quality of SAGE II, v6.1, ozone measurements below 20 km altitude (Wang et al., 2002 and Kar et al., 2002) and an analysis of the consistency between SAGE upper stratospheric ozone trends and model predictions with emphasis on hemispheric asymmetry (Li et al., 2001). Abstracts of the 11 papers are attached.

  11. Periodontics II: Course Proposal.

    ERIC Educational Resources Information Center

    Dordick, Bruce

    A proposal is presented for Periodontics II, a course offered at the Community College of Philadelphia to give the dental hygiene/assisting student an understanding of the disease states of the periodontium and their treatment. A standardized course proposal cover form is given, followed by a statement of purpose for the course, a list of major…

  12. Periodontics II: Course Proposal.

    ERIC Educational Resources Information Center

    Dordick, Bruce

    A proposal is presented for Periodontics II, a course offered at the Community College of Philadelphia to give the dental hygiene/assisting student an understanding of the disease states of the periodontium and their treatment. A standardized course proposal cover form is given, followed by a statement of purpose for the course, a list of major…

  13. Reflections on Excellence II.

    ERIC Educational Resources Information Center

    Smith, Ralph A.

    1998-01-01

    Highlights the book "Excellence II," the new version of "Excellence in Art Education: Ideas and Initiatives," by summarizing each of the nine chapters. Identifies the new features and/or discussions; in particular, the additions of two chapters, one on multiculturalism and cultural pluralism and another on modernism and postmodernism. (CMK)

  14. Instant Insanity II

    ERIC Educational Resources Information Center

    Richmond, Tom; Young, Aaron

    2013-01-01

    "Instant Insanity II" is a sliding mechanical puzzle whose solution requires the special alignment of 16 colored tiles. We count the number of solutions of the puzzle's classic challenge and show that the more difficult ultimate challenge has, up to row permutation, exactly two solutions, and further show that no…

  15. A la Mode II.

    ERIC Educational Resources Information Center

    Stowe, Richard A.

    This paper describes two modes of educational decision-making: Mode I, in which the instructor makes such decisions as what to teach, to whom, when, in what order, at what pace, and at what complexity level; and Mode II, in which the learner makes the decisions. While Mode I comprises most of what is regarded as formal education, the learner in…

  16. Class II Microcins

    NASA Astrophysics Data System (ADS)

    Vassiliadis, Gaëlle; Destoumieux-Garzón, Delphine; Peduzzi, Jean

    Class II microcins are 4.9- to 8.9-kDa polypeptides produced by and active against enterobacteria. They are classified into two subfamilies according to their structure and their gene cluster arrangement. While class IIa microcins undergo no posttranslational modification, class IIb microcins show a conserved C-terminal sequence that carries a salmochelin-like siderophore motif as a posttranslational modification. Aside from this C-terminal end, which is the signature of class IIb microcins, some sequence similarities can be observed within and between class II subclasses, suggesting the existence of common ancestors. Their mechanisms of action are still under investigation, but several class II microcins use inner membrane proteins as cellular targets, and some of them are membrane-active. Like group B colicins, many, if not all, class II microcins are TonB- and energy-dependent and use catecholate siderophore receptors for recognition/­translocation across the outer membrane. In that context, class IIb microcins are considered to have developed molecular mimicry to increase their affinity for their outer membrane receptors through their salmochelin-like posttranslational modification.

  17. Listen & Learn II.

    ERIC Educational Resources Information Center

    Community Building Resources, Spruce Grove (Alberta).

    Six community builders in Edmonton, Alberta, planned, developed, and implemented Listen and Learn II, a reflective research project in asset-based community building, over a 6-month period in 1998. They met regularly over 2 months to plan the research and design a method that was open to participation at any stage, encouraged exchange of…

  18. Dissecting Diversity Part II

    ERIC Educational Resources Information Center

    Matthews, Frank

    2005-01-01

    This article presents "Dissecting Diversity, Part II," the conclusion of a wide-ranging two-part roundtable discussion on diversity in higher education. The participants were as follows: Lezli Baskerville, J.D., President and CEO of the National Association for Equal Opportunity (NAFEO); Dr. Gerald E. Gipp, Executive Director of the…

  19. Dissecting Diversity Part II

    ERIC Educational Resources Information Center

    Matthews, Frank

    2005-01-01

    This article presents "Dissecting Diversity, Part II," the conclusion of a wide-ranging two-part roundtable discussion on diversity in higher education. The participants were as follows: Lezli Baskerville, J.D., President and CEO of the National Association for Equal Opportunity (NAFEO); Dr. Gerald E. Gipp, Executive Director of the…

  20. Instant Insanity II

    ERIC Educational Resources Information Center

    Richmond, Tom; Young, Aaron

    2013-01-01

    "Instant Insanity II" is a sliding mechanical puzzle whose solution requires the special alignment of 16 colored tiles. We count the number of solutions of the puzzle's classic challenge and show that the more difficult ultimate challenge has, up to row permutation, exactly two solutions, and further show that no…

  1. Computing at Belle II

    NASA Astrophysics Data System (ADS)

    Pardi, Silvio; de Nardo, Guglielmo; Russo, Guido; Belle II computing Group

    2016-04-01

    The existence of large matter-antimatter asymmetry (CP violation) in the b-quark system as predicted in the Kobayashi-Maskawa theory was established by the B-Factory experiments, Belle and BaBar. However, this cannot explain the magnitude of the matter-antimatter asymmetry of the universe we live in today. This indicates undiscovered new physics exists. The Belle II experiment, the next generation of the B-Factory, is expected to reveal the new physics by accumulating 50 times more data (˜ 50ab-1) than Belle by 2023. The Belle II computing system has to handle an amount of beam data eventually corresponding to several tens of PetaByte per year under an operation of the SuperKEKB accelerator with a designed instantaneous luminosity. Under this situation, it cannot be expected that one site, KEK, will be able to provide all computing resources for the whole Belle II collaboration including the resources not only for the raw data processing but also for the MC production and physics analysis done by users. In order to solve this problem, Belle II employed the distributed computing system based on DIRAC, which provides us the interoperability of heterogeneous computing systems such as grids with different middleware, clouds and the local computing clusters. Since the last year, we performed the MC mass production campaigns to confirm the feasibility and find out the possible bottleneck of our computing system. In parallel, we also started the data transfer challenge through the transpacific and transatlantic networks. This presentation describes the highlights of the Belle II computing and the current status. We will also present the experience of the latest MC production campaign in 2014.

  2. Inhibitory role of peroxiredoxin II (Prx II) on cellular senescence.

    PubMed

    Han, Ying-Hao; Kim, Hyun-Sun; Kim, Jin-Man; Kim, Sang-Keun; Yu, Dae-Yeul; Moon, Eun-Yi

    2005-08-29

    Reactive oxygen species (ROS) were generated in all oxygen-utilizing organisms. Peroxiredoxin II (Prx II) as one of antioxidant enzymes may play a protective role against the oxidative damage caused by ROS. In order to define the role of Prx II in organismal aging, we evaluated cellular senescence in Prx II(-/-) mouse embryonic fibroblast (MEF). As compared to wild type MEF, cellular senescence was accelerated in Prx II(-/-) MEF. Senescence-associated (SA)-beta-galactosidase (Gal)-positive cell formation was about 30% higher in Prx II(-/-) MEF. N-Acetyl-l-cysteine (NAC) treatment attenuated SA-beta-Gal-positive cell formation. Prx II(-/-) MEF exhibited the higher G2/M (41%) and lower S (1.6%) phase cells as compared to 24% and 7.3% [corrected] in wild type MEF, respectively. A high increase in the p16 and a slight increase in the p21 and p53 levels were detected in PrxII(-/-) MEF cells. The cellular senescence of Prx II(-/-) MEF was correlated with the organismal aging of Prx II(-/-) mouse skin. While extracellular signal-regulated kinase (ERK) and p38 activation was detected in Prx II(-/-) MEF, ERK and c-Jun N-terminal kinase (JNK) activation was detected in Prx II(-/-) skin. These results suggest that Prx II may function as an enzymatic antioxidant to prevent cellular senescence and skin aging.

  3. Massive stars exploding in a He-rich circumstellar medium - VIII. PSN J07285387+3349106, a highly reddened supernova Ibn

    NASA Astrophysics Data System (ADS)

    Pastorello, A.; Tartaglia, L.; Elias-Rosa, N.; Morales-Garoffolo, A.; Terreran, G.; Taubenberger, S.; Noebauer, U. M.; Benetti, S.; Cappellaro, E.; Ciabattari, F.; Dennefeld, M.; Dimai, A.; Ishida, E. E. O.; Harutyunyan, A.; Leonini, S.; Ochner, P.; Sollerman, J.; Taddia, F.; Zaggia, S.

    2015-12-01

    We present spectroscopic and photometric observations for the Type Ibn supernova (SN) dubbed PSN J07285387+3349106. Using data provided by amateur astronomers, we monitored the photometric rise of the SN to maximum light, occurred on 2015 February 18.8 UT (JDmax(V) = 245 7072.0 ± 0.8). PSN J07285387+3349106 exploded in the inner region of an infrared luminous galaxy, and is the most reddened SN Ibn discovered so far. We apply multiple methods to derive the total reddening to the SN, and determine a total colour excess E(B - V)tot = 0.99 ± 0.48 mag. Accounting for the reddening correction, which is affected by a large uncertainty, we estimate a peak absolute magnitude of MV = -20.30 ± 1.50. The spectra are dominated by continuum emission at early phases, and He I lines with narrow P-Cygni profiles are detected. We also identify weak Fe III and N II features. All these lines show an absorption component which is blueshifted by about 900-1000 km s-1. The spectra also show relatively broad He I line wings with low contrast, which extend to above 3000 km s-1. From about two weeks past maximum, broad lines of O I, Mg II and the Ca II near-infrared triplet are identified. The composition and the expansion velocity of the circumstellar material, and the presence of He I and α-elements in the SN ejecta indicate that PSN J07285387+3349106 was produced by the core collapse of a stripped-envelope star. We suggest that the precursor was WNE-type Wolf-Rayet star in its dense, He-rich circumstellar cocoon.

  4. Evidence for a [WR] or WEL-type binary nucleus in the bipolar planetary nebula Vy 1-2

    NASA Astrophysics Data System (ADS)

    Akras, S.; Boumis, P.; Meaburn, J.; Alikakos, J.; López, J. A.; Gonçalves, D. R.

    2015-09-01

    We present high-dispersion spectroscopic data of the compact planetary nebula Vy 1-2, where high expansion velocities up to 100 km s-1 are found in the Hα, [N II] and [O III] emission lines. Hubble Space Telescope images reveal a bipolar structure. Vy 1-2 displays a bright ring-like structure with a size of 2.4 arcsec × 3.2 arcsec and two faint bipolar lobes in the east-west direction. A faint pair of knots is also found, located almost symmetrically on opposite sides of the nebula at position angle = 305°. Furthermore, deep low-dispersion spectra are also presented and several emission lines are detected for the first time in this nebula, such as the doublet [Cl III] 5517, 5537, [K IV] 6101, C II 6461 and the doublet C IV 5801, 5812Å. By comparison with the solar abundances, we find enhanced N, depleted C and solar O. The central star must have experienced the hot-bottom burning (CN-cycle) during the second dredge-up phase, implying a progenitor star of M ≥ 3 M⊙. The very low C/O and N/O abundance ratios suggest a likely post-common envelope close binary system. A simple spherically symmetric geometry with either a blackbody or an H-deficient stellar atmosphere model is not able to reproduce the ionization structure of Vy 1-2. The effective temperature and luminosity of its central star indicate a young nebula located at a distance of ˜9.7 kpc with an age of ˜3500 yr. The detection of stellar emission lines, C II 6461, the doublet C IV λλ 5801, 5812 and O III 5592 Å, emitted from an H-deficient star, indicates the presence of a late-type Wolf-Rayet or a WEL-type central star.

  5. The Detection Rate of Early UV Emission from Supernovae: A Dedicated Galex/PTF Survey and Calibrated Theoretical Estimates

    NASA Astrophysics Data System (ADS)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran. O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer; Kulkarni, Shrinivas R.; Ben-Ami, Sagi; Kasliwal, Mansi M.; The ULTRASAT Science Team; Chelouche, Doron; Rafter, Stephen; Behar, Ehud; Laor, Ari; Poznanski, Dovi; Nakar, Ehud; Maoz, Dan; Trakhtenbrot, Benny; WTTH Consortium, The; Neill, James D.; Barlow, Thomas A.; Martin, Christofer D.; Gezari, Suvi; the GALEX Science Team; Arcavi, Iair; Bloom, Joshua S.; Nugent, Peter E.; Sullivan, Mark; Palomar Transient Factory, The

    2016-03-01

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R ⊙, explosion energies of 1051 erg, and ejecta masses of 10 M ⊙. Exploding blue supergiants and Wolf-Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (˜0.5 SN per deg2), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.

  6. EXTENDED NARROW-LINE EMISSION IN THE BRIGHT SEYFERT 1.5 GALAXY HE 2211-3903

    SciTech Connect

    Scharwaechter, J.; Dopita, M. A.; Zuther, J.; Fischer, S.; Eckart, A.; Komossa, S.

    2011-08-15

    Extended narrow-line regions (ENLRs) and extended emission-line regions have been the focus of integral field spectroscopy aiming at the inner kiloparsecs of nearby Seyfert galaxies as well as the larger environment of high-redshift QSOs. Based on observations with the Wide Field Spectrograph at the 2.3 m telescope of the Australian National University, we present spatially resolved emission-line diagnostics of the bright Seyfert 1.5 galaxy HE 2211-3903 which is drawn from a sample of the brightest Seyfert galaxies at z < 0.06 with luminosities around the classical Seyfert/QSO demarcation. In addition to the previously known spiral arms of HE 2211-3903, the emission-line maps reveal a large-scale ring with a radius of about 6 kpc which is connected to the active galactic nucleus (AGN) through a bar-like structure. The overall gas kinematics indicates a disk rotation pattern. The emission-line ratios show Seyfert-type, H II region-type, and composite classifications, while there is no strong evidence of LINER-type ratios. Shock ionization is likely to be negligible throughout the galaxy. The composite line ratios are explained via a mixing line between AGN and H II region photoionization. Composite line ratios are predominantly found in between the H II regions in the circum-nuclear region, the bar-like structure to the east of the nucleus, and the eastern half of the ring, suggesting AGN photoionization of the low-density interstellar medium in an ENLR on galaxy scales. The line ratios in the nucleus indicate N enrichment, which is discussed in terms of chemical enrichment by Wolf-Rayet and asymptotic giant branch stars during past and ongoing nuclear starburst activity.

  7. European Telecommunications Satellite II (EUTELSAT II)

    NASA Technical Reports Server (NTRS)

    Laemmel, G.; Brittinger, P.

    1991-01-01

    EUTELSAT II is a regional public telecommunications system for Europe. The services which will be provided are telephone and television. The satellites will be placed at a geostationary orbit within the arcs of 6 degrees east to 19 degrees east or 26 degrees to 36 degrees east. The designed lifetime is 7 years. After separation of the satellites from the launch vehicles, telemetry, telecommand, and ranging will be performed within the S-band frequencies. After positioning of the satellite at its final geostationary orbit, the Ku-band telecommunication equipment will be activated. From this time on, all satellite control operations will be performed in Ku-band. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. The coverage will consist of the 26-m antennas at Goldstone and Canberra as prime support for the transfer and drift orbits. Maximum support will consist of a 7-day period, plus 14 days of contingency support. Information is given in tabular form for DSN support, frequency assignments, telemetry, command, and tracking support responsibility.

  8. Role of Bound Zn(II) in the CadC Cd(II)/Pb(II)/Zn(II)-Responsive Repressor

    SciTech Connect

    Kandegedara, A.; Thiyagarajan, S; Kondapalli, K; Stemmler, T; Rosen, B

    2009-01-01

    The Staphylococcus aureus plasmid pI258 cadCA operon encodes a P-type ATPase, CadA, that confers resistance to Cd(II)/Pb(II)/Zn(II). Expression is regulated by CadC, a homodimeric repressor that dissociates from the cad operator/promoter upon binding of Cd(II), Pb(II), or Zn(II). CadC is a member of the ArsR/SmtB family of metalloregulatory proteins. The crystal structure of CadC shows two types of metal binding sites, termed Site 1 and Site 2, and the homodimer has two of each. Site 1 is the physiological inducer binding site. The two Site 2 metal binding sites are formed at the dimerization interface. Site 2 is not regulatory in CadC but is regulatory in the homologue SmtB. Here the role of each site was investigated by mutagenesis. Both sites bind either Cd(II) or Zn(II). However, Site 1 has higher affinity for Cd(II) over Zn(II), and Site 2 prefers Zn(II) over Cd(II). Site 2 is not required for either derepression or dimerization. The crystal structure of the wild type with bound Zn(II) and of a mutant lacking Site 2 was compared with the SmtB structure with and without bound Zn(II). We propose that an arginine residue allows for Zn(II) regulation in SmtB and, conversely, a glycine results in a lack of regulation by Zn(II) in CadC. We propose that a glycine residue was ancestral whether the repressor binds Zn(II) at a Site 2 like CadC or has no Site 2 like the paralogous ArsR and implies that acquisition of regulatory ability in SmtB was a more recent evolutionary event.

  9. Ribosomal Database Project II

    DOE Data Explorer

    The Ribosomal Database Project (RDP) provides ribosome related data and services to the scientific community, including online data analysis and aligned and annotated Bacterial small-subunit 16S rRNA sequences. As of March 2008, RDP Release 10 is available and currently (August 2009) contains 1,074,075 aligned 16S rRNA sequences. Data that can be downloaded include zipped GenBank and FASTA alignment files, a histogram (in Excel) of the number of RDP sequences spanning each base position, data in the Functional Gene Pipeline Repository, and various user submitted data. The RDP-II website also provides numerous analysis tools.[From the RDP-II home page at http://rdp.cme.msu.edu/index.jsp

  10. Results from SAGE II

    SciTech Connect

    Nico, J.S.

    1994-10-01

    The Russian-American Gallium solar neutrino Experiment (SAGE) began the second phase of operation (SAGE II) in September of 1992. Monthly measurements of the integral flux of solar neutrinos have been made with 55 tonnes of gallium. The K-peak results of the first nine runs of SAGE II give a capture rate of 66{sub -13}{sup +18} (stat) {sub -7}{sup +5} (sys) SNU. Combined with the SAGE I result of 73{sub -16}{sup +18} (stat) {sub -7}{sup 5} (sys) SNU, the capture rate is 69{sub -11}{sup +11} (stat) {sub -7}{sup +5} (sys) SNU. This represents only 52%--56% of the capture rate predicted by different Standard Solar Models.

  11. RADTRAN II user guide

    SciTech Connect

    Madsen, M M; Wilmot, E L; Taylor, J M

    1983-02-01

    RADTRAN II is a flexible analytical tool for calculating both the incident-free and accident impacts of transporting radioactive materials. The consequences from incident-free shipments are apportioned among eight population subgroups and can be calculated for several transport modes. The radiological accident risk (probability times consequence summed over all postulated accidents) is calculated in terms of early fatalities, early morbidities, latent cancer fatalities, genetic effects, and economic impacts. Groundshine, inhalation, direct exposure, resuspension, and cloudshine dose pathways are modeled to calculate the radiological health risks from accidents. Economic impacts are evaluated based on costs for emergency response, cleanup, evacuation, income loss, and land use. RADTRAN II can be applied to specific scenario evaluations (individual transport modes or specified combinations), to compare alternative modes or to evaluate generic radioactive material shipments. Unit-risk factors can easily be evaluated to aid in performing generic analyses when several options must be compared with the amount of travel as the only variable.

  12. FIRE II - Cirrus Data Sets

    Atmospheric Science Data Center

    2013-07-26

    FIRE II - Cirrus Data Sets First ISCCP Regional Experiment (FIRE) II Cirrus was conducted in southeastern Kansas. It was designed to improve the ... stratocumulus systems, the radiative properties of these clouds and their interactions. Relevant Documents:  FIRE ...

  13. Multiple endocrine neoplasia (MEN) II

    MedlinePlus

    Sipple syndrome; MEN II; Pheochromocytoma - MEN II; Thyroid cancer - pheochromocytoma; Parathyroid cancer - pheochromocytoma ... is most often with a tumor called a pheochromocytoma . Involvement of the thyroid gland is most often ...

  14. Marine Resiliency Study II

    DTIC Science & Technology

    2016-07-06

    the Army Study of Risk and Resilience (Army STARRS) program, by evaluating the physical , family, social, cognitive and mental health status of...MRS II) is to identify the individual, social. and deployment factors that predict trajectories of mental health response, particularly posttraumatic...with an overarching ob ject ive co develop a platform to provide an early analysis of predictors of mental health outcomes , such as Post Traumatic

  15. Operation Everest II.

    PubMed

    Wagner, Peter D

    2010-01-01

    In October 1985, 25 years ago, 8 subjects and 27 investigators met at the United States Army Research Institute for Environmental Medicine (USARIEM) altitude chambers in Natick, Massachusetts, to study human responses to a simulated 40-day ascent of Mt. Everest, termed Operation Everest II (OE II). Led by Charlie Houston, John Sutton, and Allen Cymerman, these investigators conducted a large number of investigations across several organ systems as the subjects were gradually decompressed over 40 days to the Everest summit equivalent. There the subjects reached a V(O)(2)max of 15.3 mL/kg/min (28% of initial sea-level values) at 100 W and arterial P(O(2)) and P(CO(2)) of approximately 28 and approximately 10 mm Hg, respectively. Cardiac function resisted hypoxia, but the lungs could not: ventilation-perfusion inequality and O(2) diffusion limitation reduced arterial oxygenation considerably. Pulmonary vascular resistance was increased, was not reversible after short-term hyperoxia, but was reduced during exercise. Skeletal muscle atrophy occurred, but muscle structure and function were otherwise remarkably unaffected. Neurological deficits (cognition and memory) persisted after return to sea level, more so in those with high hypoxic ventilatory responsiveness, with motor function essentially spared. Nine percent body weight loss (despite an unrestricted diet) was mainly (67%) from muscle and exceeded the 2% predicted from energy intake-expenditure balance. Some immunological and lipid metabolic changes occurred, of uncertain mechanism or significance. OE II was unique in the diversity and complexity of studies carried out on a single, courageous cohort of subjects. These studies could never have been carried out in the field, and thus complement studies such as the American Medical Research Expedition to Everest (AMREE) that, although more limited in scope, serve as benchmarks and reality checks for chamber studies like OE II.

  16. Operation Everest II

    PubMed Central

    2010-01-01

    Abstract Wagner, Peter D. Operation Everest II. High Alt. Med. Biol. 11:111–119, 2010.—In October 1985, 25 years ago, 8 subjects and 27 investigators met at the United States Army Research Institute for Environmental Medicine (USARIEM) altitude chambers in Natick, Massachusetts, to study human responses to a simulated 40-day ascent of Mt. Everest, termed Operation Everest II (OE II). Led by Charlie Houston, John Sutton, and Allen Cymerman, these investigators conducted a large number of investigations across several organ systems as the subjects were gradually decompressed over 40 days to the Everest summit equivalent. There the subjects reached a \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland,xspace}\\usepackage{amsmath,amsxtra}\\pagestyle{empty}\\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\begin{align*} \\dot{\\rm V}{\\sc O}_2{\\rm max} \\end{align*} \\end{document} of 15.3 mL/kg/min (28% of initial sea-level values) at 100 W and arterial Po2 and Pco2 of ∼28 and ∼10 mm Hg, respectively. Cardiac function resisted hypoxia, but the lungs could not: ventilation–perfusion inequality and O2 diffusion limitation reduced arterial oxygenation considerably. Pulmonary vascular resistance was increased, was not reversible after short-term hyperoxia, but was reduced during exercise. Skeletal muscle atrophy occurred, but muscle structure and function were otherwise remarkably unaffected. Neurological deficits (cognition and memory) persisted after return to sea level, more so in those with high hypoxic ventilatory responsiveness, with motor function essentially spared. Nine percent body weight loss (despite an unrestricted diet) was mainly (67%) from muscle and exceeded the 2% predicted from energy intake–expenditure balance. Some immunological and lipid metabolic changes occurred, of uncertain

  17. Chandra and XMM monitoring of the black hole X-ray binary IC 10 X-1

    NASA Astrophysics Data System (ADS)

    Laycock, Silas G. T.; Cappallo, Rigel C.; Moro, Matthew J.

    2015-01-01

    The massive black hole (BH)+Wolf-Rayet (WR) binary IC 10 X-1 was observed in a series of 10 Chandra and two XMM-Newton observations spanning 2003-2012, showing consistent variability around 7 × 1037 erg s-1, with a spectral hardening event in 2009. We phase connected the entire light curve by folding the photon arrival times on a series of trial periods spanning the known orbital period and its uncertainty, refining the X-ray period to P = 1.45175(1) d. The duration of minimum flux in the X-ray eclipse is ˜5 h which together with the optical radial velocity (RV) curve for the companion yields a radius for the eclipsing body of 8-10 R⊙ for the allowed range of masses. The orbital separation (a1 + a2) = 18.5-22 R⊙ then provides a limiting inclination i > 63° for total eclipses to occur. The eclipses are asymmetric (egress duration ˜0.9 h) and show energy dependence, suggestive of an accretion disc hotspot and corona. The eclipse is much (˜5×) wider than the 1.5-2 R⊙ WR star, pointing to absorption/scattering in the dense wind of the WR star. The same is true of the close analog NGC 300 X-1. RV measurements of the He II [λλ4686] line from the literature show a phase shift with respect to the X-ray ephemeris such that the velocity does not pass through zero at mid-eclipse. The X-ray eclipse leads inferior conjunction of the RV curve by ˜90°, so either the BH is being eclipsed by a trailing shock/plume, or the He II line does not directly trace the motion of the WR star and instead originates in a shadowed partially ionized region of the stellar wind.

  18. The physical conditions, metallicity and metal abundance ratios in a highly magnified galaxy at z = 3.6252

    SciTech Connect

    Bayliss, Matthew B.; Rigby, Jane R.; Sharon, Keren; Johnson, Traci; Wuyts, Eva; Florian, Michael; Gladders, Michael D.; Oguri, Masamune

    2014-08-01

    We present optical and near-IR imaging and spectroscopy of SGAS J105039.6+001730, a strongly lensed galaxy at z = 3.6252 magnified by >30×, and derive its physical properties. We measure a stellar mass of log(M{sub *}/M{sub ☉}) = 9.5 ± 0.35, star formation rates from [O II] λλ3727 and Hβ of 55 ± 25 and 84 ± 24 M{sub ☉} yr{sup –1}, respectively, an electron density of n{sub e} ≤ 10{sup 3} cm{sup –2}, an electron temperature of T{sub e} ≤ 14,000 K, and a metallicity of 12 + log(O/H) = 8.3 ± 0.1. The strong C III] λλ1907,1909 emission and abundance ratios of C, N, O, and Si are consistent with well-studied starbursts at z ∼ 0 with similar metallicities. Strong P Cygni lines and He II λ1640 emission indicate a significant population of Wolf-Rayet stars, but synthetic spectra of individual populations of young, hot stars do not reproduce the observed integrated P Cygni absorption features. The rest-frame UV spectral features are indicative of a young starburst with high ionization, implying either (1) an ionization parameter significantly higher than suggested by rest-frame optical nebular lines, or (2) differences in one or both of the initial mass function and the properties of ionizing spectra of massive stars. We argue that the observed features are likely the result of a superposition of star forming regions with different physical properties. These results demonstrate the complexity of star formation on scales smaller than individual galaxies, and highlight the importance of systematic effects that result from smearing together the signatures of individual star forming regions within galaxies.

  19. Optical Spectrophotometric Monitoring of the Extreme Luminous Blue Variable Star GR 290 (Romano's Star) in M 33

    NASA Astrophysics Data System (ADS)

    Polcaro, V. F.; Rossi, C.; Viotti, R. F.; Galleti, S.; Gualandi, R.; Norci, L.

    2011-01-01

    We study the long-term, S Dor-type variability and the present hot phase of the luminous blue variable (LBV) star GR 290 (Romano's Star) in M 33 in order to investigate possible links between the LBV and the late, nitrogen sequence Wolf-Rayet Stars (WNL) stages of very massive stars. We use intermediate-resolution spectra, obtained with the William Herschel Telescope (WHT) in 2008 December, when GR 290 was at minimum (V = ~18.6), as well as new low-resolution spectra and BVRI photometry obtained with the Loiano and Cima Ekar telescopes during 2007-2010. We identify more than 80 emission lines in the 3100-10000 Å range covered by the WHT spectra, belonging to different species: the hydrogen Balmer and Paschen series, neutral and ionized helium, C III, N II-III, S IV, Si III-IV, and many forbidden lines of [N II], [O III], [S III], [A III], [Ne III], and [Fe III]. Many lines, especially the He I triplets, show a P Cygni profile with an a-e radial velocity difference of -300 to -500 km s-1. The shape of the 4630-4713 Å emission blend and of other emission lines resembles that of WN9 stars; the blend deconvolution shows that the He II 4686 Å has a strong broad component with FWHM ~= 1700 km s-1. During 2003-2010 the star underwent large spectral variations, best seen in the 4630-4686 Å emission feature. Using the late-WN spectral types of Crowther & Smith, GR 290 apparently varied between the WN11 and WN8-9 spectral types; the hotter the star was the fainter its visual magnitude was. This spectrum-visual luminosity anticorrelation of GR 290 is reminiscent of the behavior of the best-studied LBVs, such as S Dor and AG Car. During the 2008 minimum, we found a significant decrease in bolometric luminosity, which could be attributed to absorption by newly formed circumstellar matter. We suggest that the broad 4686 Å line and the optical continuum formed in a central Wolf-Rayet region, while the narrow emission line spectrum originated in an extended, slowly expanding

  20. AWIPS II Extended - Data Delivery

    NASA Astrophysics Data System (ADS)

    Henry, R.; Schotz, S.; Calkins, J.; Gockel, B.; Ortiz, C.; Peter, R.

    2012-12-01

    AWIPS II Technology Infusion is a multiphase program. The first phase is the migration of the Weather Forecast Offices (WFOs) and River Forecast Centers (RFCs) AWIPS I capabilities into a Service Oriented Architecture (SOA), referred to as AWIPS II. AWIPS II is currently being deployed to Operational Test and Evaluation (OTE) and other select deployment sites. The subsequent phases of AWIPS Technology Infusion, known as AWIPS II Extended, include several projects that will improve technological capabilities of AWIPS II in order to enhance the NWS enterprise and improve services to partners. This paper summarizes AWIPS II Extended - Data Delivery project and reports on its status. Data Delivery enables AWIPS II users to discover, subscribe and access web-enabled data provider systems including the capability to subset datasets by space, time and parameter.

  1. ARICH for Belle II

    NASA Astrophysics Data System (ADS)

    Yusa, Y.

    2014-10-01

    We report development and current status of Aerogel Ring Imaging Cherenkov counter (ARICH) which is a particle identification detector in the next generation B-factory experiment, the Belle II. The main components of the ARICH are aerogel radiator and photon sensor. When a charged particle goes through the radiator, it emits Cherenkov light photons to the direction which depends on the particle velocity. Combining observables in the Belle II detector, such as a momentum measured with tracker installed inside of the ARICH, and directions of the Cherenkov light photons with the ARICH, we obtain the charged particle mass information. A new photon sensor named Hybrid Avalanche Photon Detector (HAPD) is used to collect a small number of the Cherenkov light photons distributed in the large area effectively. We set up a small part of the ARICH detector and perform the measurement using electron and hadron beam lines at KEK, CERN and DESY. From the obtained results, we expect that it is possible to separate K- and π-mesons by more than 5σ significance level with the ARICH design. The HAPD and its readout electronics production has been started and several kinds of the quality testing for them are ongoing. We also simulate the whole ARICH detector with a GEANT4-based program and expected performance of the particle identification is sufficient for charged tracks in a wide momentum range. After finishing the production of the all components, the construction of the ARICH detector will start in this year and installation to the Belle II detector will be completed in 2015.

  2. Delta II Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Final preparations for lift off of the DELTA II Mars Pathfinder Rocket are shown. Activities include loading the liquid oxygen, completing the construction of the Rover, and placing the Rover into the Lander. After the countdown, important visual events include the launch of the Delta Rocket, burnout and separation of the three Solid Rocket Boosters, and the main engine cutoff. The cutoff of the main engine marks the beginning of the second stage engine. After the completion of the second stage, the third stage engine ignites and then cuts off. Once the third stage engine cuts off spacecraft separation occurs.

  3. Run II luminosity progress

    SciTech Connect

    Gollwitzer, K.; /Fermilab

    2007-06-01

    The Fermilab Tevatron Collider Run II program continues at the energy and luminosity frontier of high energy particle physics. To the collider experiments CDF and D0, over 3 fb{sup -1} of integrated luminosity has been delivered to each. Upgrades and improvements in the Antiproton Source of the production and collection of antiprotons have led to increased number of particles stored in the Recycler. Electron cooling and associated improvements have help make a brighter antiproton beam at collisions. Tevatron improvements to handle the increased number of particles and the beam lifetimes have resulted in an increase in luminosity.

  4. The Belle II Detector

    NASA Astrophysics Data System (ADS)

    Piilonen, Leo; Belle Collaboration, II

    2017-01-01

    The Belle II detector is now under construction at the KEK laboratory in Japan. This project represents a substantial upgrade of the Belle detector (and the KEKB accelerator). The Belle II experiment will record 50 ab-1 of data, a factor of 50 more than that recorded by Belle. This large data set, combined with the low backgrounds and high trigger efficiencies characteristic of an e+e- experiment, should provide unprecedented sensitivity to new physics signatures in B and D meson decays, and in τ lepton decays. The detector comprises many forefront subsystems. The vertex detector consists of two inner layers of silicon DEPFET pixels and four outer layers of double-sided silicon strips. These layers surround a beryllium beam pipe having a radius of only 10 mm. Outside of the vertex detector is a large-radius, small-cell drift chamber, an ``imaging time-of-propagation'' detector based on Cerenkov radiation for particle identification, and scintillating fibers and resistive plate chambers used to identify muons. The detector will begin commissioning in 2017.

  5. Discovery of a [WO] central star in the planetary nebula Th 2-A

    NASA Astrophysics Data System (ADS)

    Weidmann, W. A.; Gamen, R.; Díaz, R. J.; Niemela, V. S.

    2008-09-01

    Context: About 2500 planetary nebulae are known in our Galaxy but only 224 have central stars with reported spectral types in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (Acker et al. 1992; Acker et al. 1996). Aims: We have started an observational program aiming to increase the number of PN central stars with spectral classification. Methods: By means of spectroscopy and high resolution imaging, we identify the position and true nature of the central star. We carried out low resolution spectroscopic observations at CASLEO telescope, complemented with medium resolution spectroscopy performed at Gemini South and Magellan telescopes. Results: As a first outcome of this survey, we present for the first time the spectra of the central star of the PN Th 2-A. These spectra show emission lines of ionized C and O, typical in Wolf-Rayet stars. Conclusions: We identify the position of that central star, which is not the brightest one of the visual central pair. We classify it as of type [WO 3]pec, which is consistent with the high excitation and dynamical age of the nebula. Based on data collected at (i) the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina; (ii) the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile; (iii) the 8 m Gemini South Telescope, Chile.

  6. HOST GALAXIES OF LUMINOUS TYPE 2 QUASARS AT z {approx} 0.5

    SciTech Connect

    Liu Xin; Greene, Jenny E.; Strauss, Michael A.; Zakamska, Nadia L.; Krolik, Julian H.; Heckman, Timothy M.

    2009-09-10

    We present deep Gemini GMOS optical spectroscopy of nine luminous quasars at redshifts z {approx} 0.5, drawn from the Sloan Digital Sky Survey type 2 quasar sample. Our targets were selected to have high intrinsic luminosities (M{sub V} < -26 mag) as indicated by the [O III] {lambda}5007 A emission-line luminosity (L[{sub OIII}]). Our sample has a median black hole mass of {approx}10{sup 8.8} M{sub sun} inferred assuming the local M {sub BH}-{sigma}{sub *} relation and a median Eddington ratio of {approx}0.7, using stellar velocity dispersions {sigma}{sub *} measured from the G band. We estimate the contamination of the stellar continuum from scattered quasar light based on the strength of broad H{beta}, and provide an empirical calibration of the contamination as a function of L {sub [OIII]}; the scattered-light fraction is {approx}30% of L{sub 5100} for objects with L {sub [OIII]} = 10{sup 9.5} L{sub sun}. Population synthesis indicates that young poststarburst populations (<0.1 Gyr) are prevalent in luminous type 2 quasars, in addition to a relatively old population (>1 Gyr) which dominates the stellar mass. Broad emission complexes around He II {lambda}4686 A with luminosities up to 10{sup 8.3} L{sub sun} are unambiguously detected in three out of the nine targets, indicative of Wolf-Rayet (WR) populations. Population synthesis shows that {approx}5 Myr poststarburst populations contribute substantially to the luminosities (>50% of L{sub 5100}) of all three objects with WR detections. We find two objects with double cores and four with close companions. Our results may suggest that luminous type 2 quasars trace an early stage of galaxy interaction, perhaps responsible for both the quasar and the starburst activity.

  7. Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters?

    SciTech Connect

    Van den Heuvel, E. P. J.; Portegies Zwart, S. F.

    2013-12-20

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  8. Medium-resolution spectroscopy of FORJ0332-3557: probing the interstellar medium and stellar populations of a lensed Lyman-break galaxy at z = 3.77

    NASA Astrophysics Data System (ADS)

    Cabanac, Rémi A.; Valls-Gabaud, David; Lidman, Chris

    2008-06-01

    We recently reported the discovery of FORJ0332-3557, a lensed Lyman-break galaxy at z = 3.77 in a remarkable example of strong galaxy-galaxy gravitational lensing. We present here a medium-resolution rest-frame ultraviolet (UV) spectrum of the source, which appears to be similar to the well-known Lyman-break galaxy MS1512-cB58 at z = 2.73. The spectral energy distribution is consistent with a stellar population of less than 30Ma, with an extinction of Av = 0.5 mag and an extinction-corrected star formation rate SFRUV of 200-300h-170Msolara-1. The Lyα line exhibits a damped profile in absorption produced by a column density of about NHI = (2.5 +/- 1.0) × 1021cm-2, superimposed on an emission line shifted both spatially (0.5 arcsec with respect to the UV continuum source) and in velocity space (+830kms-1 with respect to the low-ionization absorption lines from its interstellar medium), a clear signature of outflows with an expansion velocity of about 270kms-1. A strong emission line from HeII λ164.04 nm indicates the presence of Wolf-Rayet stars and reinforces the interpretation of a very young starburst. The metallic lines indicate subsolar abundances of elements Si, Al and C in the ionized gas phase. Based on observations made at the ESO VLT under programmes 74.A-0536 and 78.A-0240. E-mail: remi.cabanac@ast.obs-mip.fr (RAC); david.valls-gabaud@obspm.fr (DV-G); clidman@eso.org (CL)

  9. The Interstellar Medium and Feedback in the Progenitors of the Compact Passive Galaxies at z ~ 2

    NASA Astrophysics Data System (ADS)

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee; Tundo, Elena; Mobasher, Bahram; Nayyeri, Hooshang; Ferguson, Henry C.; Koekemoer, Anton; Trump, Jonathan R.; Cassata, Paolo; Dekel, Avishai; Guo, Yicheng; Lee, Kyoung-Soo; Pentericci, Laura; Bell, Eric F.; Castellano, Marco; Finkelstein, Steven L.; Fontana, Adriano; Grazian, Andrea; Grogin, Norman; Kocevski, Dale; Koo, David C.; Lucas, Ray A.; Ravindranath, Swara; Santini, Paola; Vanzella, Eros; Weiner, Benjamin J.

    2015-02-01

    Quenched galaxies at z > 2 are nearly all very compact relative to z ~ 0, suggesting a physical connection between high stellar density and efficient, rapid cessation of star-formation. We present rest-frame UV spectra of Lyman-break galaxies (LBGs) at z ~ 3 selected to be candidate progenitors of the quenched galaxies at z ~ 2 based on their compact rest-frame-optical sizes and high ΣSFR. We compare their UV properties to those of more extended LBGs of similar mass and star-formation rate (non-candidates). We find that candidate progenitors have faster bulk interstellar medium (ISM) gas velocities and higher equivalent widths of interstellar absorption lines, implying larger velocity spread among absorbing clouds. Candidates deviate from the relationship between equivalent widths of Lyα and interstellar absorption lines in that their Lyα emission remains strong despite high interstellar absorption, possibly indicating that the neutral H I fraction is patchy, such that Lyα photons can escape. We detect stronger C IV P-Cygni features (emission and absorption) and He II emission in candidates, indicative of larger populations of metal-rich Wolf-Rayet stars compared to non-candidates. The faster bulk motions, broader spread of gas velocity, and Lyα properties of candidates are consistent with their ISM being subject to more energetic feedback than non-candidates. Together with their larger metallicity (implying more evolved star-formation activity) this leads us to propose, if speculatively, that they are likely to quench sooner than non-candidates, supporting the validity of selection criteria used to identify them as progenitors of z ~ 2 passive galaxies. We propose that massive, compact galaxies undergo more rapid growth of their stellar mass content, perhaps because the gas accretion mechanisms are different, and quench sooner than normally sized LBGs at these (early) epochs.

  10. THE SPITZER ATLAS OF STELLAR SPECTRA (SASS)

    SciTech Connect

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech; Stauffer, John; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D. W.; Wachter, Stefanie; Song, Inseok

    2010-12-15

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 {mu}m; R {approx} 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  11. THE STAR FORMATION HISTORY AND METAL CONTENT OF THE GREEN PEAS. NEW DETAILED GTC-OSIRIS SPECTROPHOTOMETRY OF THREE GALAXIES

    SciTech Connect

    Amorin, R.; Perez-Montero, E.; Vilchez, J. M.

    2012-04-20

    We present deep broadband imaging and long-slit spectroscopy of three compact, low-mass starburst galaxies at redshift z {approx} 0.2-0.3, also referred to as Green Peas (GP). We measure physical properties of the ionized gas and derive abundances for several species with high precision. We find that the three GPs display relatively low extinction, low oxygen abundances, and remarkably high nitrogen-to-oxygen ratios. We also report on the detection of clear signatures of Wolf-Rayet (W-R) stars in these galaxies. We carry out a pilot spectral synthesis study using a combination of both population and evolutionary synthesis models. Their outputs are in qualitative agreement, strongly suggesting a formation history dominated by starbursts. In agreement with the presence of W-R stars, these models show that these GPs currently undergo a major starburst producing between {approx}4% and {approx}20% of their stellar mass. However, as models imply, they are old galaxies that formed most of their stellar mass several Gyr ago. The presence of old stars has been spectroscopically verified in one of the galaxies by the detection of Mg I {lambda}{lambda}5167, 5173 absorption lines. Additionally, we perform a surface photometry study based on Hubble Space Telescope data, which indicates that the three galaxies possess an exponential low surface brightness envelope. If due to stellar emission, the latter is structurally compatible with the evolved hosts of luminous blue compact dwarf (BCD)/H II galaxies, suggesting that GPs are identifiable with major episodes in the assembly history of local BCDs. These conclusions highlight the importance of these objects as laboratories for studying galaxy evolution at late cosmic epochs.

  12. Detecting a Hot Companion to the Progenitor of the Type Ic Supernova 1994I in M51

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler

    2013-10-01

    Core-collapse supernovae {SNe} are the endpoints of the lives of massive stars {with initial mass > 8 solar masses}. We are reasonably confident that the progenitor stars for most hydrogen-rich Type II SNe are red supergiants, based in part on direct identifications with HST. However, the progenitors of the stripped-envelope He-rich Type Ib and He-poor Type Ic SNe have yet to be directly identified. These SNe are thought to arise from either single, high-mass stars in the Wolf-Rayet phase or, alternatively, from lower-mass stars in interacting binary systems. Both models can account for the required extensive envelope stripping. Until a progenitor is identified for these SN types, our best hope of testing these progenitor models is to detect the companion star to the progenitor, if the binary model holds. This star is predicted to be a hot supergiant. Therefore, it is best detected in the ultraviolet. The only SN which is sufficiently nearby and experienced low enough reddening to be a viable target for this detection is the SN Ic 1994I in M51. Furthermore, the SN was imaged by HST when it was still bright, so we can pinpoint its location. We therefore propose, as part of the UV Initiative in Cycle 21, to image the site in F275W and F336W to levels deep enough to significantly detect a putative progenitor companion, if it exists. The proposed observations will provide an important test of the binary progenitor hypothesis.

  13. Recent results on the connection between massive stars and supernovae

    NASA Astrophysics Data System (ADS)

    Hillier, D. John

    2015-08-01

    With the dramatic increase in observational data on supernovae (SNe), SN studies are undergoing a renaissance. It is known that Type II SN IIP arise from the explosion of a red supergiant (RSG). In several cases the RSG is seen in pre-explosion images, but it is absent in post-SN images — unambiguous proof that the RSG has exploded. Surprisingly, all RSG progenitors identified have a mass less than approximately 20 M⊙. To date, there has been no direct detection of the progenitor of a Type Ib or Ic SN. Because their ejecta masses are generally low (3 to 5 M⊙), these SNe are believed to arise from a relatively low mass star in a binary system. Such systems dominate the statistics due to the initial mass function. The broad-lined Ic SNe tend to have higher mass, and some of these may be associated with classic Wolf-Rayet (W-R) stars. Type IIn SNe are a heterogeneous class of SN — they arise when the SN ejecta interacts with preexisting circumstellar material. Their spectra often exhibit narrow emission lines, and they can be particularly luminous due to the efficient conversion of kinetic energy into radiation. The origin of Type IIn SN and their connection to stellar evolution is the subject of fierce debate and controversy. The final class to be discussed are the pair-instability supernovae (PISNe) which arise from a nuclear detonation. PISNe have a distinct chemical signature, and the observational evidence for the existence of this class of SN is ambiguous and controversial. While much progress has been made, it is still difficult to get models of core-collapse SNe to explode from first principles. The problem is inherently 3D and numerous questions remain unanswered. How much material falls back onto the core? What is the nature and extent of mixing in the ejecta? What are the chemical yields? Do all massive stars end their life as a luminous SN?

  14. SPITZER/INFRARED SPECTROGRAPH INVESTIGATION OF MIPSGAL 24 {mu}m COMPACT BUBBLES

    SciTech Connect

    Flagey, N.; Noriega-Crespo, A.; Carey, S. J.; Billot, N.

    2011-11-01

    The MIPSGAL 24 {mu}m Galactic Plane Survey has revealed more than 400 compact-extended objects. Less than 15% of these MIPSGAL bubbles (MBs) are known and identified as evolved stars. We present Spitzer observations of four MBs obtained with the InfraRed Spectrograph to determine the origin of the mid-IR emission. We model the mid-IR gas lines and the dust emission to infer physical conditions within the MBs and consequently their nature. Two MBs show a dust-poor spectrum dominated by highly ionized gas lines of [O IV], [Ne III], [Ne V], [S III], and [S IV]. We identify them as planetary nebulae with a density of a few 10{sup 3} cm{sup -3} and a central white dwarf of {approx}>200,000 K. The mid-IR emission of the two other MBs is dominated by a dust continuum and lower-excitation lines. Both of them show a central source in the near-IR (Two Micron All Sky Survey and IRAC) broadband images. The first dust-rich MB matches a Wolf-Rayet star of {approx}60,000 K at 7.5 kpc with dust components of {approx}170 and {approx}1750 K. Its mass is about 10{sup -3} M{sub sun} and its mass loss is about 10{sup -6} M{sub sun} yr{sup -1}. The second dust-rich MB has recently been suggested as a Be/B[e]/luminous blue variable candidate. The gas lines of [Fe II] as well as hot continuum components ({approx}300 and {approx}1250 K) arise from the inside of the MB while its outer shell emits a colder dust component ({approx}75 K). The distance to the MB remains highly uncertain. Its mass is about 10{sup -3} M{sub sun} and its mass loss is about 10{sup -5} M{sub sun} yr{sup -1}.

  15. UNUSUAL {sup 29,30}Si-RICH SiCs OF MASSIVE STAR ORIGIN FOUND WITHIN GRAPHITES FROM THE MURCHISON METEORITE

    SciTech Connect

    Croat, T. K.; Stadermann, F. J.; Bernatowicz, T. J.

    2010-06-15

    Correlated transmission electron microscopy and NanoSIMS isotopic studies have revealed two unusual SiCs with large {sup 29,30}Si enrichments within micron-sized graphites from the Murchison meteorite. Such anomalies are rare among the overall SiC population (in <<0.01% of SiCs yet measured), whereas two of the three SiCs found within graphite show {sup 29,30}Si enrichments, in one case as large as {sup 29}Si/{sup 28}Si = (2.28 {+-} 0.03) x solar and {sup 30}Si/{sup 28}Si = (2.03 {+-} 0.03)x solar. C-burning and Ne-burning in massive stars (>8 M{sub sun} initial mass) during their post-main-sequence development are the only processes capable of producing sufficiently large {sup 29,30}Si enrichments. This material with heavy Si isotopic enrichments from the O/Ne and O/Si layers is later incorporated into carbonaceous stardust, either in ejecta from Type II supernovae or perhaps in the colliding winds of Wolf-Rayet binaries. Although often too small for Si isotopic measurements, four other SiC-containing graphites show other signatures of a massive star origin. Abundance estimates suggest that such unusual SiCs are present within {approx}1% of high-density graphites. This abundance can be reconciled with the much lower abundance in the overall SiC population if these unusual SiCs are naturally smaller ({approx}200 nm or less) than SiCs from other isotopic subgroups and if differential destruction of small unusual SiCs occurs in massive star outflows unless these SiCs are encapsulated in graphite.

  16. OT2_nflagey_2: Capturing missing evolved stars in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Flagey, N.

    2011-09-01

    We discovered more than 400 compact shells in the MIPSGAL 24 microns survey of the Galactic plane. About 15% of all these objects were already known as planetary nebulae, supernova remnants, Wolf-Rayet stars, and luminous blue variables. The unknown bubbles are expected to be envelopes of evolved stars that could account for the ``missing massive stars in the Galaxy. Indeed, recent spectroscopic follow-ups in the near-IR and mid-IR have revealed several dust-free planetary nebulae with very hot central white dwarf and significantly increased the number of WR and LBV candidates. Our OT1 Priority 1 proposal just provided us with a first observation in the PACS-SED B2A mode of one object, revealing only a strong [N II] 122 microns line. Without further spectral information, identification and modeling of the target are impossible. However, analysis of the PACS and SPIRE data from the HiGal survey has recently enabled us to measure much higher detection rates of the shells in the far-IR than with MIPS 70 microns. We are thus very confident that dust features and/or gas lines can be detected with the PACS and SPIRE spectrometers. Therefore, we request complementary PACS-SED B2B and SPIRE-FTS observations on our OT1 sample. The complete far-IR/submm spectrum of each target will allow its unequivocal identification thanks to comparison with spectra of known evolved stars from the MESS key program. We will also model with much detail the different phases of the envelopes, thanks to our expertise in circumstellar envelopes, dust models and photoionization codes.

  17. Determination of Mass-Loss Rates of PG 1159 Stars from Far-Ultraviolet Spectroscopy

    NASA Astrophysics Data System (ADS)

    Koesterke, Lars; Werner, Klaus

    1998-06-01

    We determine the mass-loss rates of four hot, low-gravity PG 1159 stars that are regarded as immediate descendants of Wolf-Rayet central stars of planetary nebulae (i.e., early spectral type [WCE]). The sample consists of classical hydrogen-deficient PG 1159 stars (K1-16, NGC 246, and RX J2117.1+3412) as well as one object of the very rare ``hybrid'' subtype, which also exhibits hydrogen lines (NGC 7094). The sample is complemented by the famous [WC]-PG 1159 transition object Abell 78. Our analysis is based on the O VI λλ1032, 1038 resonance line, which is the strongest wind feature in these objects. Far-UV observations were performed with the Berkeley spectrograph during the ORFEUS-SPAS II mission. One spectrum is taken from archive data of the ORFEUS-SPAS I mission, and another one was obtained with the Hopkins Ultraviolet Telescope during the Astro-2 mission. We find mass-loss rates in the range log(Ṁ/Msolar yr-1)=-8,...,-7, as compared to the [WCE] stars that have mass-loss rates of about log(Ṁ/Msolar yr-1)=-5.5,...,-6.5. By comparing with theory, we conclude that the wind of PG 1159 stars is driven by radiation pressure. Based on the development and utilization of ORFEUS (Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometers), a collaboration of the Institute for Astronomy and Astrophysics at the University of Tübingen, the Space Astrophysics Group of the University of California at Berkeley, and the Landessternwarte Heidelberg.

  18. THE INTERSTELLAR MEDIUM AND FEEDBACK IN THE PROGENITORS OF THE COMPACT PASSIVE GALAXIES AT z ∼ 2

    SciTech Connect

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee; Tundo, Elena; Mobasher, Bahram; Nayyeri, Hooshang; Ferguson, Henry C.; Koekemoer, Anton; Grogin, Norman; Trump, Jonathan R.; Cassata, Paolo; Dekel, Avishai; Guo, Yicheng; Pentericci, Laura; Castellano, Marco; Fontana, Adriano; Grazian, Andrea; Bell, Eric F.; Finkelstein, Steven L.; and others

    2015-02-10

    Quenched galaxies at z > 2 are nearly all very compact relative to z ∼ 0, suggesting a physical connection between high stellar density and efficient, rapid cessation of star-formation. We present rest-frame UV spectra of Lyman-break galaxies (LBGs) at z ∼ 3 selected to be candidate progenitors of the quenched galaxies at z ∼ 2 based on their compact rest-frame-optical sizes and high Σ{sub SFR}. We compare their UV properties to those of more extended LBGs of similar mass and star-formation rate (non-candidates). We find that candidate progenitors have faster bulk interstellar medium (ISM) gas velocities and higher equivalent widths of interstellar absorption lines, implying larger velocity spread among absorbing clouds. Candidates deviate from the relationship between equivalent widths of Lyα and interstellar absorption lines in that their Lyα emission remains strong despite high interstellar absorption, possibly indicating that the neutral H I fraction is patchy, such that Lyα photons can escape. We detect stronger C IV P-Cygni features (emission and absorption) and He II emission in candidates, indicative of larger populations of metal-rich Wolf-Rayet stars compared to non-candidates. The faster bulk motions, broader spread of gas velocity, and Lyα properties of candidates are consistent with their ISM being subject to more energetic feedback than non-candidates. Together with their larger metallicity (implying more evolved star-formation activity) this leads us to propose, if speculatively, that they are likely to quench sooner than non-candidates, supporting the validity of selection criteria used to identify them as progenitors of z ∼ 2 passive galaxies. We propose that massive, compact galaxies undergo more rapid growth of their stellar mass content, perhaps because the gas accretion mechanisms are different, and quench sooner than normally sized LBGs at these (early) epochs.

  19. Modeling the X-ray light curves of Cygnus X-3. Possible role of the jet

    NASA Astrophysics Data System (ADS)

    Vilhu, O.; Hannikainen, D. C.

    2013-02-01

    Context. We address the physics behind the soft X-ray light curve asymmetries in Cygnus X-3, a well-known microquasar. Aims: Observable effects of the jet close to the line-of-sight were investigated and interpreted within the frame of light curve physics. Methods: The path of a hypothetical imprint of the jet, advected by the Wolf-Rayet-wind, was computed and its crossing with the line-of-sight during the binary orbit determined. We explored the possibility that physically this "imprint" is a formation of dense clumps triggered by jet bow shocks in the wind ("clumpy trail"). Models for X-ray continuum and emission line light curves were constructed using two absorbers: mass columns along the line-of-sight of i) the WR wind and ii) the clumpy trail, as seen from the compact star. These model light curves were compared with the observed ones from the RXTE/ASM (continuum) and Chandra/HETG (emission lines). Results: We show that the shapes of the Cyg X-3 light curves can be explained by the two absorbers using the inclination and true anomaly angles of the jet as derived from gamma-ray Fermi/LAT observations. The clumpy trail absorber is much larger for the lines than for the continuum. We suggest that the clumpy trail is a mixture of equilibrium and hot (shock heated) clumps. Conclusions: A possible way for studying jets in binary stars when the jet axis and the line-of-sight are close to each other is demonstrated. The X-ray continuum and emission line light curves of Cygnus X-3 can be explained by two absorbers: the WR companion wind plus an absorber lying in the jet path (clumpy trail). We propose that the clumpy trail absorber is due to dense clumps triggered by jet bow shocks.

  20. Kupier prize lecture: Sources of solar-system carbon

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Zinner, Ernst

    1994-01-01

    We have tried to deconvolve Solar-System carbon into its sources, on the basis of C-12/C-13 ratios (equivalent to R). Interstellar SiC in meteorites, representing greater than 4.6-Ga-old stardust from carbon stars, is isotopically heavier (bar R = 38 +/- 2) than Solar-System carbon (89), implying that the latter contains an additional, light component. A likely source are massive stars, mainly Type II supernovae and Wolf-Rayet stars, which, being O-rich, eject their C largely as CO rather than carbonaceous dust. The fraction of such light C in the Solar System depends on R(sub light) in the source. For R(sub light) = 180-1025 (as in 'Group 4' meteoritic graphite spherules, which apparently came from massive stars greater than 4.6 Ga ago), the fraction of light C is 0.79-0.61. Similar results are obtained for present-day data on red giants and interstellar gas. Although both have become enriched in C-13 due to galactic evolution (to bar-R = 20 and 57), the fraction of the light component in interstellar gas again is near 0.7. (Here bar R represents the mean of a mixture calculated via atom fractions; it is not identical to the arithmetic mean R). Interstellar graphite, unlike SiC, shows a large peak at R approximately equal 90, near the solar value. Although some of the grains may be of local origin, others show anomalies in other elements and hence are exotic. Microdiamonds, with R = 93, also are exotic on the basis of their Xe and N. Apparently R approximately 90 was a fairly common composition 4.6 Ga ago, of stars as well as the ISM.

  1. The Spectrum of EZ Canis Majoris (HD 50896) to the Lyman Limit with the Hopkins Ultraviolet Telescope

    NASA Astrophysics Data System (ADS)

    McCandliss, Stephan R.; Buss, Richard H., Jr.; Blair, William P.; Bowers, Charles W.; Davidsen, Arthur F.; Feldman, Paul D.; Kruk, Jeffrey W.

    1993-10-01

    A unique flux-calibrated spectrum, extending to the Lyman limit of the Wolf-Rayet star EZ CMa (also known as WR 6, HD 50896, spectral type WN5) has been recorded by the Hopkins Ultraviolet Telescope. We compare the spectrum to a pure He continuum model with the stellar parameters L* = 105.2 Lsun, R* = 4.5 Rsun, Teff = 57,000 K, V∞ = 1700 km s-1, and Mṡ = 10-4 yr-1. These parameters are very close to those derived by Hamann et al. (1988) from quantitative spectroscopy of ultraviolet, visual, and infrared He emission lines (although they represent only one solution from a locus of solutions that scale with distance). After correcting for interstellar atomic and molecular H absorption, assuming a reddening of EB-V = 0.06±0.03 and a distance of 2.1 kpc, we find the model is a fairly good representation of the visual and near-UV continuum flux, but it underestimates the flux at the Lyman limit by a factor of ≍1.5. The lower limit in EB-V might account for this discrepancy. However, part of the discrepancy may also be due to blends of wind-broadened He II, N III-V, O VI, S III-IV and VI, P V, and Fe V-VI emission lines creating an elevated pseudo-continuum, an effect not accounted for in the pure He model. The precise balance of these two effects remains to be determined. We conclude that the model given above provides an adequate fit to the data.

  2. The chemical composition of Galactic ring nebulae around massive stars

    NASA Astrophysics Data System (ADS)

    Esteban, C.; Mesa-Delgado, A.; Morisset, C.; García-Rojas, J.

    2016-08-01

    We present deep spectra of ring nebulae associated with Wolf-Rayet (WR) and O-type stars: NGC 6888, G2.4+1.4, RCW 58, S 308, NGC 7635 and RCW 52. The data have been taken with the 10m Gran Telescopio Canarias and the 6.5m Clay Telescope. We extract spectra of several apertures in some of the objects. We derive C2+ and O2+ abundances from faint recombination lines in NGC 6888 and NGC 7635, permitting to derive their C/H and C/O ratios and estimate the abundance discrepancy factor (ADF) of O2+. The ADFs are larger than the typical ones of normal H II regions but similar to those found in the ionized gas of star-forming dwarf galaxies. We find that chemical abundances are rather homogeneous in the nebulae where we have spectra of several apertures: NGC 6888, NGC 7635 and G2.4+1.4. We obtain very high values of electron temperature in a peripheral zone of NGC 6888, finding that shock excitation can reproduce its spectral properties. We find that all the objects associated with WR stars show N enrichment. Some of them also show He enrichment and O deficiency as well as a lower Ne/O than expected, this may indicate the strong action of the ON and NeNa cycles. We have compared the chemical composition of NGC 6888, G2.4+1.4, RCW 58 and S 308 with the nucleosynthesis predicted by stellar evolution models of massive stars. We find that non-rotational models of stars of initial masses between 25 and 40 M⊙ seem to reproduce the observed abundance ratios of most of the nebulae.

  3. Kupier prize lecture: Sources of solar-system carbon

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Zinner, Ernst

    1994-01-01

    We have tried to deconvolve Solar-System carbon into its sources, on the basis of C-12/C-13 ratios (equivalent to R). Interstellar SiC in meteorites, representing greater than 4.6-Ga-old stardust from carbon stars, is isotopically heavier (bar R = 38 +/- 2) than Solar-System carbon (89), implying that the latter contains an additional, light component. A likely source are massive stars, mainly Type II supernovae and Wolf-Rayet stars, which, being O-rich, eject their C largely as CO rather than carbonaceous dust. The fraction of such light C in the Solar System depends on R(sub light) in the source. For R(sub light) = 180-1025 (as in 'Group 4' meteoritic graphite spherules, which apparently came from massive stars greater than 4.6 Ga ago), the fraction of light C is 0.79-0.61. Similar results are obtained for present-day data on red giants and interstellar gas. Although both have become enriched in C-13 due to galactic evolution (to bar-R = 20 and 57), the fraction of the light component in interstellar gas again is near 0.7. (Here bar R represents the mean of a mixture calculated via atom fractions; it is not identical to the arithmetic mean R). Interstellar graphite, unlike SiC, shows a large peak at R approximately equal 90, near the solar value. Although some of the grains may be of local origin, others show anomalies in other elements and hence are exotic. Microdiamonds, with R = 93, also are exotic on the basis of their Xe and N. Apparently R approximately 90 was a fairly common composition 4.6 Ga ago, of stars as well as the ISM.

  4. Unusual 29,30Si-rich SiCs of Massive Star Origin Found Within Graphites from the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Stadermann, F. J.; Bernatowicz, T. J.

    2010-06-01

    Correlated transmission electron microscopy and NanoSIMS isotopic studies have revealed two unusual SiCs with large 29,30Si enrichments within micron-sized graphites from the Murchison meteorite. Such anomalies are rare among the overall SiC population (in Lt0.01% of SiCs yet measured), whereas two of the three SiCs found within graphite show 29,30Si enrichments, in one case as large as 29Si/28Si = (2.28 ± 0.03) × solar and 30Si/28Si = (2.03 ± 0.03)× solar. C-burning and Ne-burning in massive stars (>8 M sun initial mass) during their post-main-sequence development are the only processes capable of producing sufficiently large 29,30Si enrichments. This material with heavy Si isotopic enrichments from the O/Ne and O/Si layers is later incorporated into carbonaceous stardust, either in ejecta from Type II supernovae or perhaps in the colliding winds of Wolf-Rayet binaries. Although often too small for Si isotopic measurements, four other SiC-containing graphites show other signatures of a massive star origin. Abundance estimates suggest that such unusual SiCs are present within ~1% of high-density graphites. This abundance can be reconciled with the much lower abundance in the overall SiC population if these unusual SiCs are naturally smaller (~200 nm or less) than SiCs from other isotopic subgroups and if differential destruction of small unusual SiCs occurs in massive star outflows unless these SiCs are encapsulated in graphite.

  5. Probing Shock Breakout and Progenitors of Stripped-envelope Supernovae through their Early Radio Emissions

    NASA Astrophysics Data System (ADS)

    Maeda, Keiichi

    2013-01-01

    We study properties of early radio emission from stripped-envelope supernovae (SNe; those of Type IIb/Ib/Ic). We suggest there is a sub-class of stripped-envelope SNe based on their radio properties, including the optically well-studied Type Ic SNe (SNe Ic) 2002ap and 2007gr, showing a rapid rise to a radio peak within ~10 days and reaching a low luminosity (at least an order of magnitude fainter than a majority of SNe IIb/Ib/Ic). They show a decline after the peak that is shallower than that of other stripped-envelope SNe while their spectral index is similar. We show that all these properties are naturally explained if the circumstellar material (CSM) density is low and therefore the forward shock is expanding into the CSM without deceleration. Since the forward shock velocity in this situation, as estimated from the radio properties, still records the maximum velocity of the SN ejecta following the shock breakout, observing these SNe in radio wavelengths provides new diagnostics on the nature of both the breakout and the progenitor which otherwise require a quite rapid follow-up in other wavelengths. The inferred post-shock breakout velocities of SNe Ic 2002ap and 2007gr are sub-relativistic, ~0.3c. These are higher than that inferred for SN II 1987A, in line with suggested compact progenitors. However, these are lower than expected for a Wolf-Rayet (W-R) progenitor. It may reflect an as yet unresolved nature of the progenitors just before the explosion, and we suggest that the W-R progenitor envelopes might have been inflated which could quickly reduce the maximum ejecta velocity from the initial shock breakout velocity.

  6. PROBING SHOCK BREAKOUT AND PROGENITORS OF STRIPPED-ENVELOPE SUPERNOVAE THROUGH THEIR EARLY RADIO EMISSIONS

    SciTech Connect

    Maeda, Keiichi

    2013-01-01

    We study properties of early radio emission from stripped-envelope supernovae (SNe; those of Type IIb/Ib/Ic). We suggest there is a sub-class of stripped-envelope SNe based on their radio properties, including the optically well-studied Type Ic SNe (SNe Ic) 2002ap and 2007gr, showing a rapid rise to a radio peak within {approx}10 days and reaching a low luminosity (at least an order of magnitude fainter than a majority of SNe IIb/Ib/Ic). They show a decline after the peak that is shallower than that of other stripped-envelope SNe while their spectral index is similar. We show that all these properties are naturally explained if the circumstellar material (CSM) density is low and therefore the forward shock is expanding into the CSM without deceleration. Since the forward shock velocity in this situation, as estimated from the radio properties, still records the maximum velocity of the SN ejecta following the shock breakout, observing these SNe in radio wavelengths provides new diagnostics on the nature of both the breakout and the progenitor which otherwise require a quite rapid follow-up in other wavelengths. The inferred post-shock breakout velocities of SNe Ic 2002ap and 2007gr are sub-relativistic, {approx}0.3c. These are higher than that inferred for SN II 1987A, in line with suggested compact progenitors. However, these are lower than expected for a Wolf-Rayet (W-R) progenitor. It may reflect an as yet unresolved nature of the progenitors just before the explosion, and we suggest that the W-R progenitor envelopes might have been inflated which could quickly reduce the maximum ejecta velocity from the initial shock breakout velocity.

  7. Mod II Stirling engine overviews

    NASA Technical Reports Server (NTRS)

    Farrell, Roger A.

    1988-01-01

    The Mod II engine is a second-generation automotive Stirling engine (ASE) optimized for part-power operation. It has been designed specifically to meet the fuel economy and exhaust emissions objectives of the ASE development program. The design, test experience, performance, and comparison of data to analytical performance estimates of the Mod II engine to date are reviewed. Estimates of Mod II performance in its final configuration are also given.

  8. II Zwicky 23 and Family

    NASA Astrophysics Data System (ADS)

    Wehner, E. H.; Gallagher, J. S.; Rudie, G. C.; Cigan, P. J.

    II Zwicky 23 (UGC 3179) is a luminous (MB ~ -21) nearby compact narrow emission line st arburst galaxy with blue optical colors and strong emission lines. We present a photometric and morphological study of II Zw 23 and its interacting companions using data obtained with the WIYN 3.5-m telescope in Kitt Peak, Arizona. II Zwicky 23 has a highly disturbed outer structure with long trails of debris that may be feeding tidal dwarfs.

  9. Belle II Software

    NASA Astrophysics Data System (ADS)

    Kuhr, T.; Ritter, M.; Belle Software Group, II

    2016-10-01

    Belle II is a next generation B factory experiment that will collect 50 times more data than its predecessor, Belle. The higher luminosity at the SuperKEKB accelerator leads to higher background levels and requires a major upgrade of the detector. As a consequence, the simulation, reconstruction, and analysis software must also be upgraded substantially. Most of the software has been redesigned from scratch, taking into account the experience from Belle and other experiments and utilizing new technologies. The large amount of experimental and simulated data requires a high level of reliability and reproducibility, even in parallel environments. Several technologies, tools, and organizational measures are employed to evaluate and monitor the performance of the software during development.

  10. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  11. Phase II Final Report

    SciTech Connect

    Schuknecht, Nate; White, David; Hoste, Graeme

    2014-09-11

    The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

  12. Mode II fatigue crack propagation.

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Kibler, J. J.

    1971-01-01

    Fatigue crack propagation rates were obtained for 2024-T3 bare aluminum plates subjected to in-plane, mode I, extensional loads and transverse, mode II, bending loads. These results were compared to the results of Iida and Kobayashi for in-plane mode I-mode II extensional loads. The engineering significance of mode I-mode II fatigue crack growth is considered in view of the present results. A fatigue crack growth equation for handling mode I-mode II fatigue crack growth rates from existing mode I data is also discussed.

  13. He II-Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.

    2014-01-01

    A small fraction of star-forming galaxies at redshift, 3, show He II at 1640 A as a narrow emission line (Cassata et al. 2012), but the source of this emission is not understood. Does the He II emission arise in the stars or in the surrounding nebula? To answer this question, we use I Zw 18, a well studied blue compact dwarf galaxy showing narrow He II line emission as a test case. We consider if/how He II narrow emission lines could originate in the nearby nebulosity, or in the winds of hot, massive stars, both those on the main sequence and post-MS evolutionary phases.

  14. Symbiotic stars and other Hα emission-line stars towards the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Miszalski, Brent; Mikołajewska, Joanna; Udalski, Andrzej

    2013-07-01

    identified. These include central stars of planetary nebulae (PNe) [one (WC10-11) Wolf-Rayet and five with high-density cores], two novae, two WN6 Wolf-Rayet stars, two possible Be stars, a B[e] star with a bipolar outflow, an ultracompact H II region and a dMe flare star. Dust obscuration events were found in two central stars of PNe, increasing the known cases to five, as well as one WN6 star. There is considerable scope to uncover several more symbiotic stars towards the bulge, many of which are currently misclassified as PNe, provided that deep spectroscopy is combined with optical and near-infrared light curves.

  15. The global structure of hot star winds: Constraints from spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Eversberg, Thomas

    2000-11-01

    Chapter 1. We present time-series of ultra-high S/N, high resolution spectra of the He II λ 4686 Å emission line in the O4I(n)f supergiant ζ Puppis, the brightest early-type O-star in the sky. These reveal stochastic, variable substructures in the line, which tend to move away from the line-center with time. Similar scaled-up features are well established in the strong winds of Wolf-Rayet stars (the presumed descendants of O stars), where they are explained by outward moving inhomogeneities (e.g., blobs, clumps, shocks) in the winds. If all hot-star winds are clumped like that of ζ Pup, as is plausible, then mass-low rates based on recombination-line intensities will have to be revised downwards. Using a standard `β' velocity law we deduce a value of β = 1.0-1.2 to account for the kinematics of these structures in the wind of ζ Pup. In addition to the small-scale stochastic variations we also find a slow systematic variation of the mean central absorption reversal. Chapter 2. We introduce a new polarimeter unit which, mounted at the Cassegrain focus of any telescope and fiber-connected to a fixed CCD spectrograph, is able to measure all Stokes parameters I, Q, U and V across spectral lines of bright stellar targets and other point sources in a quasi-simultaneous manner. Applying standard reduction techniques for linearly and circularly polarized light we are able to obtain photon-noise limited line polarization. We briefly outline the technical design of the polarimeter unit and the linear algebraic Mueller calculus for obtaining polarization parameters of any point source. In addition, practical limitations of the optical elements are outlined. We present first results obtained with our spectropolarimeter for four bright, hot-star targets: We confirm previous results for Hα in the bright Be star γ Cas and find linear depolarization features across the emission line complex C III/C IV (λ 5696/λ 5808 Å) of the WR+O binary γ2 Vel. We also find circular

  16. Solar Type II Radio Bursts and IP Type II Events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.

    2005-01-01

    We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.

  17. PARIS II: DESIGNING GREENER SOLVENTS

    EPA Science Inventory

    PARIS II (the program for assisting the replacement of industrial solvents, version II), developed at the USEPA, is a unique software tool that can be used for customizing the design of replacement solvents and for the formulation of new solvents. This program helps users avoid ...

  18. Mastracchio during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046391 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  19. Mastracchio during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046381 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  20. Hopkins during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046393 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  1. Hopkins during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046394 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  2. Mastracchio during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046387 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  3. PARIS II: DESIGNING GREENER SOLVENTS

    EPA Science Inventory

    PARIS II (the program for assisting the replacement of industrial solvents, version II), developed at the USEPA, is a unique software tool that can be used for customizing the design of replacement solvents and for the formulation of new solvents. This program helps users avoid ...

  4. National Synchrotron Light Source II

    SciTech Connect

    Steve Dierker

    2008-03-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  5. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2016-07-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  6. SAM II Data and Information

    Atmospheric Science Data Center

    2016-07-06

    SAM II Data and Information Data obtained from the Stratospheric Aerosol Measurement (SAM) II instrument, which flew on board the Nimbus-7 satellite, are used to ... Guide Readme Files:  Data Set (Text file) Read Software Files :  C Code ...

  7. Annex II technical documentation assessed.

    PubMed

    van Drongelen, A W; Roszek, B; van Tienhoven, E A E; Geertsma, R E; Boumans, R T; Kraus, J J A M

    2005-12-01

    Annex II of the Medical Device Directive (MDD) is used frequently by manufacturers to obtain CE-marking. This procedure relies on a full quality assurance system and does not require an assessment of the individual medical device by a Notified Body. An investigation into the availability and the quality of technical documentation for Annex II devices revealed severe shortcomings, which are reported here.

  8. Division II: Sun and Heliosphere

    NASA Astrophysics Data System (ADS)

    Melrose, Donald B.; Martínez Pillet, Valentin; Webb, David F.; van Driel-Gesztelyi, Lidia; Bougeret, Jean-Louis; Klimchuk, James A.; Kosovichev, Alexander; von Steiger, Rudolf

    Division II of the IAU provides a forum for astronomers and astrophysicists studying a wide range of phenomena related to the structure, radiation and activity of the Sun, and its interaction with the Earth and the rest of the solar system. Division II encompasses three Commissions, 10, 12 and 49, and four Working Groups.

  9. Technology II: Implementation Planning Guide.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    The California Community Colleges (CCC) are facing a number of challenges, including the explosive use of the Internet, the digital divide, the need for integrating technology into teaching and learning, the impact of Tidal Wave II, and the need to ensure that technology is accessible to persons with disabilities. The CCCs' Technology II Strategic…

  10. Nonequilibrium Positive Column II.

    NASA Astrophysics Data System (ADS)

    Ingold, John H.

    1998-10-01

    Previous work has shown that the first principles nonlocal kinetic method [1] is closely approximated by the nonlocal moment method [2] in positive column analysis. In the present paper, the nonlocal moment method is compared with two of the most often used local moment methods: (i) local moment method with Maxwell EEDF; (ii) local moment method with 0D EEDF. The form of the Boltzmann equation for electrons in a positive column discharge suggests that each gas has a characteristic curve of positive column E/N versus NR (E is axial electric field, N is gas density, and R is tube radius). This characteristic curve affords a systematic way of comparing various methods because its course depends on the form of the EEDF used to calculate transport coefficients and inelastic collision rates, on whether or not it is assumed that the electrons are in equilibrium with the axial field, on whether or not ion inertia is taken into account, etc. Using an argon-like gas for illustration, it is shown that the characteristic curve based on equilibrium with 0D EEDF is a poor approximation to that based on nonequilibrium for NR less than 1× 10^17 cm-2 (PR<3 Torr-cm), while that based on equilibrium with Maxwell EEDF is an extremely poor approximation at any value of NR. [1]D. Uhrlandt and R. Winkler, J. Phys. D 29, 115 (1996). [2]J. H. Ingold, Phys. Rev. E 56, 5932 (1997).

  11. Photoinhibition of Photosystem II.

    PubMed

    Tyystjärvi, Esa

    2013-01-01

    Photoinhibition of Photosystem II (PSII) is the light-induced loss of PSII electron-transfer activity. Although photoinhibition has been studied for a long time, there is no consensus about its mechanism. On one hand, production of singlet oxygen ((1)O(2)) by PSII has promoted models in which this reactive oxygen species (ROS) is considered to act as the agent of photoinhibitory damage. These chemistry-based models have often not taken into account the photophysical features of photoinhibition-like light response and action spectrum. On the other hand, models that reproduce these basic photophysical features of the reaction have not considered the importance of data about ROS. In this chapter, it is shown that the evidence behind the chemistry-based models and the photophysically oriented models can be brought together to build a mechanism that confirms with all types of experimental data. A working hypothesis is proposed, starting with inhibition of the manganese complex by light. Inability of the manganese complex to reduce the primary donor promotes recombination between the oxidized primary donor and Q(A), the first stable quinone acceptor of PSII. (1)O(2) production due to this recombination may inhibit protein synthesis or spread the photoinhibitory damage to another PSII center. The production of (1)O(2) is transient because loss of activity of the oxygen-evolving complex induces an increase in the redox potential of Q(A), which lowers (1)O(2) production. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Mycotoxins revisited: Part II.

    PubMed

    Berger, Kyan J; Guss, David A

    2005-02-01

    Mushrooms are ubiquitous in nature. They are an important source of nutrition, however, certain varieties contain chemicals that can be highly toxic to humans. Industrially cultivated mushrooms are historically very safe, whereas foraging for mushrooms or accidental ingestion of mushrooms in the environment can result in serious illness and death. The emergency department is the most common site of presentation for patients suffering from acute mushroom poisoning. Although recognition can be facilitated by identification of a characteristic toxidrome, the presenting manifestations can be variable and have considerable overlap with more common and generally benign clinical syndromes. The goal of this two-part article is to review the knowledge base on this subject and provide information that will assist the clinician in the early consideration, diagnosis and treatment of mushroom poisoning. Part I reviewed the epidemiology and demographics of mushroom poisoning, the physical characteristics of the most toxic varieties, the classification of the toxic species, and presented an overview of the cyclopeptide-containing mushroom class. Part II is focused on the presentation of the other classes of toxic mushrooms along with an up-to-date review of the most recently identified poisonous varieties.

  13. Angiotensin II receptor heterogeneity

    SciTech Connect

    Herblin, W.F.; Chiu, A.T.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L. )

    1991-04-01

    The possibility of receptor heterogeneity in the angiotensin II (AII) system has been suggested previously, based on differences in Kd values or sensitivity to thiol reagents. One of the authors earliest indications was the frequent observation of incomplete inhibition of the binding of AII to adrenal cortical membranes. Autoradiographic studies demonstrated that all of the labeling of the rat adrenal was blocked by unlabeled AII or saralasin, but not by DuP 753. The predominant receptor in the rat adrenal cortex (80%) is sensitive to dithiothreitol (DTT) and DuP 753, and is designated AII-1. The residual sites in the adrenal cortex and almost all of the sites in the rat adrenal medulla are insensitive to both DTT and DuP 753, but were blocked by EXP655. These sites have been confirmed by ligand binding studies and are designated AII-2. The rabbit adrenal cortex is unique in yielding a nonuniform distribution of AII-2 sites around the outer layer of glomerulosa cells. In the rabbit kidney, the sites on the glomeruli are AII-1, but the sites on the kidney capsule are AII-2. Angiotensin III appears to have a higher affinity for AII-2 sites since it inhibits the binding to the rabbit kidney capsule but not the glomeruli. Elucidation of the distribution and function of these diverse sites should permit the development of more selective and specific therapeutic strategies.

  14. Rhizobium etli asparaginase II

    PubMed Central

    Huerta-Saquero, Alejandro; Evangelista-Martínez, Zahaed; Moreno-Enriquez, Angélica; Perez-Rueda, Ernesto

    2013-01-01

    Bacterial l-asparaginase has been a universal component of therapies for childhood acute lymphoblastic leukemia since the 1970s. Two principal enzymes derived from Escherichia coli and Erwinia chrysanthemi are the only options clinically approved to date. We recently reported a study of recombinant l-asparaginase (AnsA) from Rhizobium etli and described an increasing type of AnsA family members. Sequence analysis revealed four conserved motifs with notable differences with respect to the conserved regions of amino acid sequences of type I and type II l-asparaginases, particularly in comparison with therapeutic enzymes from E. coli and E. chrysanthemi. These differences suggested a distinct immunological specificity. Here, we report an in silico analysis that revealed immunogenic determinants of AnsA. Also, we used an extensive approach to compare the crystal structures of E. coli and E. chrysantemi asparaginases with a computational model of AnsA and identified immunogenic epitopes. A three-dimensional model of AsnA revealed, as expected based on sequence dissimilarities, completely different folding and different immunogenic epitopes. This approach could be very useful in transcending the problem of immunogenicity in two major ways: by chemical modifications of epitopes to reduce drug immunogenicity, and by site-directed mutagenesis of amino acid residues to diminish immunogenicity without reduction of enzymatic activity. PMID:22895060

  15. Airborne Laser Hydrography II

    NASA Astrophysics Data System (ADS)

    Philpot, W.; Wozencraft, J.

    2016-02-01

    In 1985, Dr. Gary Guenther assembled the text, "Airborne Laser Hydrography" which quickly became a heavily used manual and guide for any and all scientists and engineers involved with airborne lidar bathymetry (ALB). It was a remarkable book that captured a snapshot of the state of the art of ALB and included historical developments, theoretical and modeling efforts as well as design characteristics and constraints, ending with accuracy assessment and a discussion of design tradeoffs. Known familiarly as the "Blue Book" it served the community remarkably well for many years. At 30 years of age, it is still a valued reference, but unavoidably dated in a field that has developed rapidly and nonstop over the intervening years. It is time for an update. The new text is attempt by the ALB community to update and expand upon Guenther's text. Like the original, Blue Book II reviews the historical developments in ALB, extending them into the 21st century, considers basic environmental water optical properties, theoretical developments, data processing and performance evaluation. All have progressed dramatically in the past 30 years. This paper presents an outline of the new book, a description of the contents, with emphasis on the theoretical models of the lidar waveform and its propagation through, and interaction with the water.

  16. Crystal Structure of Rat Carnitine Palmitoyltransferase II (CPT-II)

    SciTech Connect

    Hsiao,Y.; Jogl, G.; Esser, V.; Tong, L.

    2006-01-01

    Carnitine palmitoyltransferase II (CPT-II) has a crucial role in the {beta}-oxidation of long-chain fatty acids in mitochondria. We report here the crystal structure of rat CPT-II at 1.9 Angstroms resolution. The overall structure shares strong similarity to those of short- and medium-chain carnitine acyltransferases, although detailed structural differences in the active site region have a significant impact on the substrate selectivity of CPT-II. Three aliphatic chains, possibly from a detergent that is used for the crystallization, were found in the structure. Two of them are located in the carnitine and CoA binding sites, respectively. The third aliphatic chain may mimic the long-chain acyl group in the substrate of CPT-II. The binding site for this aliphatic chain does not exist in the short- and medium-chain carnitine acyltransferases, due to conformational differences among the enzymes. A unique insert in CPT-II is positioned on the surface of the enzyme, with a highly hydrophobic surface. It is likely that this surface patch mediates the association of CPT-II with the inner membrane of the mitochondria.

  17. MIME: Microprogrammable Minicomputer Emulator. Phase II. Volume II.

    DTIC Science & Technology

    1979-12-01

    unlimited. — ~~~~~~~~~~~ ~~~~ —- , — - - _I _ ~~ ~~ j”— -~j~~$,’ 4~4 AFIT/GCS/EE/79_11 MIME MICROPROGRAMMAB LE MINICOMPUTER EMULATOR PHASE II VOLUME... II THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University (ATC) in Partial Fulfillment...L— ~—~-__— -- _ _ _ _ -~~~~~~~~~~~~~~ onterit~- Volume II Appendix A

  18. Options Study - Phase II

    SciTech Connect

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to

  19. Biosatellite II mission.

    PubMed

    Reynolds, O E

    1969-01-01

    Biosatellite B was launched from Cape Kennedy, Florida, on a two-stage DELTA launch vehicle at 6:04 p.m. on 7 September, 1967. Approximately nine minutes later the 435 kg spacecraft biological laboratory was placed into a satisfactory 315 km near-circular earth orbit, successfully separated from the launch vehicle's second stage and was designated Biosatellite II. The scientific payload consisting of thirteen selected general biology and radiation experiments were subjected to planned, carefully controlled environmental conditions during 45 hours of earth-orbital flight. The decision was made to abbreviate the scheduled 3-day mission by approximately one day because of a threatening tropical storm in the recovery area, and a problem of communication with the spacecraft from the tracking stations. Highest priority was placed on recovery which was essential to obtain the scientific results on all the experiments. The operational phase of the mission came to a successful conclusion with the deorbit of the recovery capsule, deployment of the parachute system and air recovery by the United States Air Force. The 127 kg recovery capsule was returned to biology laboratories at Hickam Air Force Base, Hawaii, for disassembly and immediate inspection and analysis of the biological materials by the experimenters. It was evident immediately that the quality of the biology was excellent and this fact gave promise of a high return of scientific data. The environmental conditions provided to the experimental material in the spacecraft, provisions for experimental controls, and operational considerations are presented as they relate to interpretation of the experimental results.

  20. Retrovirus Epidemiology Donor Study-II (REDS-II)

    ClinicalTrials.gov

    2016-04-14

    Acquired Immunodeficiency Syndrome; Blood Donors; Blood Transfusion; HIV Infections; HIV-1; HIV-2; HTLV-I; HTLV-II; Retroviridae Infections; Hepatitis, Viral, Human; Hepatitis B; Hepacivirus; West Nile Virus

  1. Quininium tetra-chloridozinc(II).

    PubMed

    Chen, Li-Zhuang

    2009-09-05

    The asymmetric unit of the title compound {systematic name: 2-[hydr-oxy(6-meth-oxy-quinolin-1-ium-4-yl)meth-yl]-8-vinyl-quinuclidin-1-ium tetra-chlorido-zinc(II)}, (C(20)H(26)N(2)O(2))[ZnCl(4)], consists of a double proton-ated quininium cation and a tetra-chloridozinc(II) anion. The Zn(II) ion is in a slightly distorted tetra-hedral coordination environment. The crystal structure is stabilized by inter-molecular N-H⋯Cl and O-H⋯Cl hydrogen bonds.

  2. BASS-II Hardware Repair

    NASA Image and Video Library

    2014-03-27

    ISS039-E-005726 (27 March 2014) --- Expedition 39 Flight Engineer Rick Mastracchio performs inflight maintenance on an experiment called Burning and Suppression of Solids (BASS)-II. The investigation examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The BASS-II experiment will guide strategies for materials flammability screening for use in spacecraft as well as provide valuable data on solid fuel burning behavior in microgravity. BASS-II results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.

  3. Tier II Forms and Instructions

    EPA Pesticide Factsheets

    Facilities must comply with the new requirements on the Tier II emergency and hazardous chemical inventory form starting reporting year 2013, which is due by March 1, 2014. Some states may have specific requirements for reporting and submission.

  4. Antibacterial Co(II), Cu(II), Ni(II) and Zn(II) Complexes of Thiadiazoles Schiff Bases

    PubMed Central

    Jaffery, Maimoon F.; Supuran, Claudiu T.

    2001-01-01

    Schiff bases were obtained by condensation of 2-amino-l,3,4-thiadiazole with 5-substituted-salicylaldehydes which were further used to obtain complexes of the type [M(L)2]Cl2, where M=Co(II), Cu(II), Ni(II) or Zn(II). The new compounds described here have been characterized by physical, spectral and analytical data, and have been screened for antibacterial activity against several bacterial strains such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antibacterial potency of these Schiff bases increased upon chelation/complexation, against the tested bacterial species, opening new aproaches in the fight against antibiotic resistant strains. PMID:18475981

  5. The Monomeric Pentacyanocobaltate (II) Anion.

    ERIC Educational Resources Information Center

    Mosha, Donnati M. S.

    1982-01-01

    Laboratory procedures, background information, and discussion of experimental results are provided for the preparation of Thallium (I) Pentacyanocobaltate (II). The preparation of this pale green salt is carried out in an aqueous medium. (Author/JN)

  6. Division II: Sun and Heliosphere

    NASA Astrophysics Data System (ADS)

    Webb, David F.; Melrose, Donald B.; Benz, Arnold O.; Bogdan, Thomas J.; Bougeret, Jean-Louis; Klimchuk, James A.; Martinez-Pillet, Valentin

    2007-12-01

    Division II provides a forum for astronomers studying a wide range of problems related to the structure, radiation and activity of the Sun, and its interaction with the Earth and the rest of the solar system.

  7. Optical Waveguide Scattering Reduction. II.

    DTIC Science & Technology

    1980-12-01

    FAD-AOAR 815 BATTELLEWCOLUMBUS LABS ON F/S 20/6 OPTICAL WAVEGUIDE SCATTER ING REDUC TION. II.(U) 7 DEC 80 0 W VAHEY, N F HARTMAN, R C SHERMAN F3361... OPTICAL WAVEGUIDE SCATTERING REDUCTION II M BATTELLE COLUMBUS LABORATORIES 505 KING AVENUE COLUMBUS, OHIO 43201 DTIC ELECTEf MAY 12 198111 December...reviewed and is approved for publication. DOUGLAS AWIWILLE, Project Engineer KENNETH R. HUTCHINSON, Chief Electro- Optics Techniques and Electro- Optics

  8. Mastracchio during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046385 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, uses a computer while setting up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  9. Preparation, characterization and biological activity of Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO 2(II) complexes of new cyclodiphosph(V)azane of sulfaguanidine

    NASA Astrophysics Data System (ADS)

    Sharaby, Carmen M.

    2005-11-01

    Novel hexachlorocyclodiphosph(V)azane of sulfaguanidine, H 4L, l,3-[ N'-amidino-sulfanilamide]-2,2,2,4,4,4-hexachlorocyclodiphosph(V)azane was prepared and its coordination behaviour towards the transition metal ions Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO 2(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-vis, 1H NMR, mass spectra, reflectance, magnetic susceptibility measurements and thermogravimetric analysis (TGA). The hyperfine interactions in the isolated complex compounds were studied using 14.4 keV γ-ray from radioactive 57Co (Mössbauer spectroscopy). The data show that the ligand are coordinated to the metal ions via the sulfonamide O and deprotonated NH atoms in an octahedral manner. The H 4L ligand forms complexes of the general formulae [(MX z) 2(H 2L)H 2O) n] and [(FeSO 4) 2 (H 4L) (H 2O) 4], where X = NO 3 in case of UO 2(II) and Cl in case of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). The molar conductance data show that the complexes are non-electrolytes. The thermal behaviour of the complexes was studied and different thermodynamic parameters were calculated using Coats-Redfern method. Most of the prepared complexes showed high bactericidal activity and some of the complexes show more activity compared with the ligand and standards.

  10. Randomized phase II clinical trials.

    PubMed

    Jung, Sin-Ho; Sargent, Daniel J

    2014-01-01

    Traditionally, Phase II trials have been conducted as single-arm trials to compare the response probabilities between an experimental therapy and a historical control. Historical control data, however, often have a small sample size, are collected from a different patient population, or use a different response assessment method, so that a direct comparison between a historical control and an experimental therapy may be severely biased. Randomized Phase II trials entering patients prospectively to both experimental and control arms have been proposed to avoid any bias in such cases. The small sample sizes for typical Phase II clinical trials imply that the use of exact statistical methods for their design and analysis is appropriate. In this article, we propose two-stage randomized Phase II trials based on Fisher's exact test, which does not require specification of the response probability of the control arm for testing. Through numerical studies, we observe that the proposed method controls the type I error accurately and maintains a high power. If we specify the response probabilities of the two arms under the alternative hypothesis, we can identify good randomized Phase II trial designs by adopting the Simon's minimax and optimal design concepts that were developed for single-arm Phase II trials.

  11. Synthesis and spectroscopic studies of novel Cu(II), Co(II), Ni(II) and Zn(II) mixed ligand complexes with saccharin and nicotinamide

    NASA Astrophysics Data System (ADS)

    Çakır, S.; Bulut, İ.; Naumov, P.; Biçer, E.; Çakır, O.

    2001-01-01

    Four novel mixed ligand complexes of Cu(II), Co(II), Ni(II) and Zn(II) with saccharin and nicotinamide were synthesised and characterised on the basis of elemental analysis, FT-IR spectroscopic study, UV-Vis spectrometric and magnetic susceptibility data. The structure of the Cu (II) complex is completely different from those of the Co(II), Ni(II) and Zn(II) complexes. From the frequencies of the saccharinato CO and SO2 modes, it has been proven that the saccharinato ligands in the structure of the Cu complex are coordinated to the metal ion ([Cu(NA)2(Sac)2(H2O)], where NA - nicotinamide, Sac - saccharinato ligand or ion), whilst in the Co(II), Ni(II) and Zn(II) complexes are uncoordinated and exist as ions ([M(NA)2(H2O)4](Sac)2).

  12. Cohort profile: The Berlin Aging Study II (BASE-II).

    PubMed

    Bertram, Lars; Böckenhoff, Anke; Demuth, Ilja; Düzel, Sandra; Eckardt, Rahel; Li, Shu-Chen; Lindenberger, Ulman; Pawelec, Graham; Siedler, Thomas; Wagner, Gert G; Steinhagen-Thiessen, Elisabeth

    2014-06-01

    Similar to other industrialized countries, Germany's population is ageing. Whereas some people enjoy good physical and cognitive health into old age, others suffer from a multitude of age-related disorders and impairments which reduce life expectancy and affect quality of life. To identify and characterize the factors associated with 'healthy' vs. 'unhealthy' ageing, we have launched the Berlin Aging Study II (BASE-II), a multidisciplinary and multi-institutional project that ascertains a large number of ageing-related variables from a wide range of different functional domains. Phenotypic assessments include factors related to geriatrics and internal medicine, immunology, genetics, psychology, sociology and economics. Baseline recruitment of the BASE-II cohort was recently completed and has led to the sampling of 1600 older adults (age range 60-80 years), as well as 600 younger adults (20-35 years) serving as the basic population for in-depth analyses. BASE-II data are linked to the German Socio-Economic Panel Study (SOEP), a long-running panel survey representative of the German population, to estimate sample selectivity. A major goal of BASE-II is to facilitate collaboration with other research groups by freely sharing relevant phenotypic and genotypic data with qualified outside investigators. Published by Oxford University Press on behalf of the International Epidemiological Association © The Author 2013; all rights reserved.

  13. Determination of Fe(II)Fe(II) ratio in glass

    SciTech Connect

    Baumann, E.W.

    1989-07-26

    The procedure was designed for the simple, rapid determination of the Fe(II)/Fe(III) ratio in glass samples. The procedure consists of the following steps: dissolution of the pulverized glass sample in a sulfuric-hydrofluoric acid mixture, containing ammonium vanadate, which preserves the Fe(II) content; addition of boric acid to destroy iron-fluoride complexes, making the iron available for color formation with Ferrozine; addition of pH 5 buffer and Ferrozine reagent to form the magenta-colored ferrous-Ferrozine complex, with measurement of the absorbance for the determination of Fe(II) content; and, addition of ascorbic acid to reduce Fe(III) to Fe(II), with a second absorbance measurement that determines total Fe. Directions for the preparation of glass from non-radioactive sludge samples are provided. The analysis of this prepared glass for the Fe(II)/Fe(III) ratio is an indication of the ratio that would be in a plant batch of glass if made from this sludge.

  14. Confrontación observacional de teorías de evolución de estrellas masivas

    NASA Astrophysics Data System (ADS)

    Morrell, N. I.

    2015-08-01

    Some recent observational devlopments aimed at testing specific theoretical predictions about massive star evolution are briefly mentioned. A more detailed description is presented on a current project devoted to improve our knowledge of the massive star contents (at different evolutionary stages) in stellar associations of both Magellanic Clouds in comparison with the expectations based on the most recent theoretical evolutionary models. This project has already allowed the identification of a probably new class of Wolf-Rayet stars (that we will call WN3+O3V), two new Wolf-Rayet + O binaries, two new stars of the rare WO class, and two new magnetic O stars (belonging to the Of?p class); among other interesting objects from the point of view ot massive star studies.

  15. A temperature correction method for expanding atmospheres

    NASA Astrophysics Data System (ADS)

    Hamann, W.-R.; Gräfener, G.

    2003-11-01

    Model atmospheres form the basis for the interpretation of stellar spectra. A major problem in those model calculations is to establish the temperature stratification from the condition of radiative equilibrium. Dealing with non-LTE models for spherically expanding atmospheres of Wolf-Rayet stars, we developed a new temperature correction method. Its basic idea dates back to 1955 when it was proposed by Unsöld for grey, static and plane-parallel atmospheres in LTE. The equations were later generalized to the non-grey case by Lucy. In the present paper we furthermore drop the Eddington approximation, proceed to spherical geometry and allow for expansion of the atmosphere. Finally the concept of an ``approximate lambda operator'' is employed to speed up the convergence. Tests for Wolf-Rayet type models demonstrate that the method works fine even in situations of strong non-LTE.

  16. Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres.

    PubMed

    Shukla, S R; Pai, Roshan S

    2005-09-01

    The potential of a lignocellulosic fibre, jute, was assessed for adsorption of heavy metal ions like Cu(II), Ni(II) and Zn(II) from their aqueous solutions. The fibre was also used as adsorbent after chemically modifying it by two different techniques viz, loading of a dye with specific structure, C.I. Reactive Orange 13, and oxidising with hydrogen peroxide. Both the modified jute fibres gave higher metal ion adsorption. Thus, the dye loaded jute fibres showed metal ion uptake values of 8.4, 5.26 and 5.95 mg/g for Cu(II), Ni(II) and Zn(II), respectively, while the corresponding values for oxidised jute fibres were 7.73, 5.57 and 8.02 mg/g, as against 4.23, 3.37 and 3.55 mg/g for unmodified jute fibres. Adsorption isotherm models indicated best fit for Langmuir model for the modified jute fibres. The adsorption values decreased with lowering of pH. The desorption efficiency, regenerative and reuse capacity of these adsorbents were also assessed for three successive adsorption-desorption cycles. The adsorptive capacity was retained only when the caustic soda regeneration is carried out as an intermediate step after desorption. Possible mechanism has been given.

  17. Heavy Stars Thrive among Heavy Elements

    NASA Astrophysics Data System (ADS)

    2002-08-01

    VLT Observes Wolf-Rayet Stars in Virgo Cluster Galaxies [1] Summary Do very massive stars form in metal-rich regions of the Universe and in the nuclei of galaxies ? Or does "heavy element poisoning" stop stellar growth at an early stage, before young stars reach the "heavyweight class"? What may at the first glance appear as a question for specialists actually has profound implications for our understanding of the evolution of galaxies, those systems of billions of stars - the main building blocks of the Universe. With an enormous output of electromagnetic radiation and energetic elementary particles, massive stars exert a decisive influence on the surrounding (interstellar) gas and dust clouds . They also eject large amounts of processed elements, thereby participating in the gradual build-up of the many elements we see today. Thus the presence or absence of such stars at the centres of galaxies can significantly change the overall development of those regions and hence, presumably, that of the entire galaxy. A team of European astronomers [2] has now directly observed the presence of so-called Wolf-Rayet stars (born with masses of 60 - 90 times that of the Sun or more) within metal-rich regions in some galaxies in the Virgo cluster, some 50 million light-years away. This is the first unambiguous detection of such massive stellar objects in metal-rich regions . PR Photo 20a/02 : H II regions in the Virgo cluster galaxy NGC 4254 . PR Photo 20b/02 : Multi-object-slit observation of galaxy NGC 4303 . PR Photo 20c/02 : Spectrum of H II region in NGC 4254 with Wolf-Rayet signatures. Production of heavy elements in the Universe Most scientists agree that the Universe in which we live underwent a dramatic event, known as the Big Bang , approximately 15,000 million years ago. During the early moments, elementary particles were formed which after some time united into more complex nuclei and in turn resulted in the production of hydrogen and helium atoms and their isotopes

  18. The CDF SVX II upgrade for the Tevatron Run II

    SciTech Connect

    Bortoletto, Daniela

    1997-04-01

    A microstrip silicon detector SVX II has been proposed for the upgrade of CDF to be installed in 1999 for Run II of the Tevatron. Three barrels of five layers of double-sided silicon microstrip detectors will cover the interaction region. A description of the project status will be presented. Emphasis will be given to the R&D program for silicon sensors which includes capacitance minimization, the study of coupling capacitor integrity, the operation of the detectors in conjunction with the SVXH and SVX2 readout chips in two beam tests and the determination of the detectors performance deterioration due to radiation damage.

  19. BEATRIX-II, phase II: Data summary report

    SciTech Connect

    Slagle, O.D.; Hollenberg, G.W.

    1996-05-01

    The BEATRIX-II experimental program was an International Energy Agency sponsored collaborative effort between Japan, Canada, and the United States to evaluate the performance of ceramic solid breeder materials in a fast-neutron environment at high burnup levels. This report addresses the Phase II activities, which included two in situ tritium-recovery canisters: temperature-change and temperature-gradient. The temperature-change canister contained a Li{sub 2}O ring specimen that had a nearly uniform temperature profile and was capable of temperature changes between 530 and 640{degrees}C. The temperature-gradient canister contained a Li{sub 2}ZrO{sub 3} pebble bed operating under a thermal gradient of 440 to 1100{degrees}C. Postirradiation examination was carried out to characterize the Phase II in situ specimens and a series of nonvented capsules designed to address the compatibility of beryllium with lithium-ceramic solid-breeder materials. The results of the BEATRIX-II, Phase II, irradiation experiment provided an extensive data base on the in situ tritium-release characteristics of Li{sub 2}O and Li{sub 2}ZrO{sub 3} for lithium burnups near 5%. The composition of the sweep gas was found to be a critical parameter in the recovery of tritium from both Li{sub 2}O and Li{sub 2}ZrO{sub 3}. Tritium inventories measured confirmed that Li{sub 2}O and Li{sub 2}ZrO{sub 3} exhibited very low tritium retention during the Phase II irradiation. Tritium inventories in Li{sub 2}ZrO{sub 3} after Phase II tended to be larger than those found for Li{sub 2}ZrO{sub 3} in other in situ experiments, but the larger values may reflect the larger generation rates in BEATRIX-II. A series of 20 capsules was irradiated to determine the compatibility of lithium ceramics and beryllium under conditions similar to a fusion blanket. It is concluded that Li{sub 2}O and Li{sub 2}ZrO{sub 3} should remain leading candidates for use in a solid-breeder fusion-blanket application.

  20. EBR-II Data Digitization

    SciTech Connect

    Yoon, Su-Jong; Rabiti, Cristian; Sackett, John

    2014-08-01

    1. Objectives To produce a validation database out of those recorded signals it will be necessary also to identify the documents need to reconstruct the status of reactor at the time of the beginning of the recordings. This should comprehends the core loading specification (assemblies type and location and burn-up) along with this data the assemblies drawings and the core drawings will be identified. The first task of the project will be identify the location of the sensors, with respect the reactor plant layout, and the physical quantities recorded by the Experimental Breeder Reactor-II (EBR-II) data acquisition system. This first task will allow guiding and prioritizing the selection of drawings needed to numerically reproduce those signals. 1.1 Scopes and Deliverables The deliverables of this project are the list of sensors in EBR-II system, the identification of storing location of those sensors, identification of a core isotopic composition at the moment of the start of system recording. Information of the sensors in EBR-II reactor system was summarized from the EBR-II system design descriptions listed in Section 1.2.

  1. The evolution of massive stars: bridging the gap in the Local Group

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Neugent, Kathryn F.; Levesque, Emily M.

    2017-09-01

    The nearby galaxies of the Local Group can act as our laboratories in helping to bridge the gap between theory and observations. In this review, we will describe the complications of identifying samples of OB stars, yellow and red supergiants, and Wolf-Rayet stars, and what we have so far learned from these studies. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  2. Origin of Kepler's supernova remnant

    SciTech Connect

    Bandiera, R.

    1987-08-01

    A bow shock model for Kepler's SNR is presented and the motion of the progenitor star with respect to the interstellar medium is examined. The runaway nature of the progenitor is discussed as well as similarities with known runaway objects. It is maintained that binary Wolf-Rayet stars, P Cygni stars, and some binary pulsars could belong to the same evolutionary track leading to Keppler's SNR. 52 references.

  3. Massive stars in the galaxies of the Local Group

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2013-07-01

    The star-forming galaxies of the Local Group act as our laboratories for testing massive star evolutionary models. In this review, I briefly summarize what we believe we know about massive star evolution, and the connection between OB stars, Luminous Blue Variables, yellow supergiants, red supergiants, and Wolf-Rayet stars. The difficulties and recent successes in identifying these various types of massive stars in the neighboring galaxies of the Local Group will be discussed.

  4. 3D numerical model for NGC 6888 Nebula

    NASA Astrophysics Data System (ADS)

    Reyes-Iturbide, J.; Velázquez, P. F.; Rosado, M.

    We present 3D numerical simulations of the NGC6888 nebula considering the proper motion and the evolution of the star, from the red supergiant (RSG) to the Wolf-Rayet (WR) phase. Our simulations reproduce the limb-brightened morphology observed in [OIII] and X-ray emission maps. The synthetic maps computed by the numerical simulations show filamentary and clumpy structures produced by instabilities triggered in the interaction between the WR wind and the RSG shell.

  5. Spectroscopic Monitoring of Southern Galactic O and WN Stars

    NASA Astrophysics Data System (ADS)

    Gamen, R.; Barbá, R. H.; Morrell, N. I.; Arias, J.; Maíz Apellániz, J.

    2008-08-01

    We are conducting a spectroscopic monitoring of O- and WN-type stars for which there is no indication of multiplicity in the Galactic O-Stars Catalog (Maíz-Apellániz et al. 2004) or in the VIIth Catalog of Galactic Wolf-Rayet Stars (van der Hucht 2001). We search for radial-velocity (RV) variations indicative of orbital motion.

  6. A study of spectra of Cyg X-3 observed by BeppoSAX

    NASA Astrophysics Data System (ADS)

    Szostek, A.; Zdziarski, A. A.

    2005-06-01

    We model the ~1-200 keV spectra of Cygnus X-3 observed by BeppoSAX. The continuum, modeled by Comptonization in a hybrid plasma, is modified by the strongly ionized plasma of the stellar wind of the Wolf-Rayet companion star. Discrete absorption and emission spectral features are modeled with XSTAR. The model has been applied to phase-resolved spectra in the hard and soft spectral states.

  7. The changing spectrum of the LMC planetary N66

    NASA Technical Reports Server (NTRS)

    Cowley, A. P.; Crampton, D.; Schmidtke, P. C.; Mcgrath, T. K.; Hutchings, J. B.

    1994-01-01

    Recent spectroscopy and photometry of the planetary nebula N66 (SMP 83) in the Large Magellanic Cloud show a continuing evolution, with a central WR spectrum becoming more visible. The planetary nebula shell and Wolf-Rayet (WR) star have velocities which differ by approximately 240 km/s. Properties of this interesting object are reviewed, and we discuss its possible X-ray detection by ROSAT.

  8. Titan II secondary payload capability

    NASA Astrophysics Data System (ADS)

    Butts, Aubrey J.; Nance, Milo; Odle, Roger C.

    Small satellite programs are often faced with the prospect of flying as a secondary payload because of size or funding considerations. This paper discusses a concept for flying such payloads on flights already scheduled on the Titan II SLV program over the next decade. The Titan II has the capability of inserting over 4200 lbs into LEO and larger payloads on ballistic trajectories from which higher orbits can be achieved when kick motors are used. Orbit changes are possible depending on the specific altitudes and payloads involved. Of the existing 13 remaining missions currently scheduled to fly on the Titan II SLV, excess performance is available on several missions that could be used to insert secondary payloads of up to 3000 lbs into their final orbit. This paper outlines an approach that would implement a secondary payload mission and allow small satellites to schedule a launch at a predetermined date through the year 2000.

  9. NSLS-II INJECTION CONCEPT.

    SciTech Connect

    SHAFTAN, T.; PINAYEV, I.; ROSE, J.; WANG, X.J.; ET AL.

    2005-05-16

    Currently the facility upgrade project is in progress at the NSLS (at Brookhaven National Laboratory). The goal of the NSLS-II is a 3 GeV ultra-low-emittance storage ring that will increase radiation brightness by three orders of magnitude over that of the present NSLS X-ray ring. The low emittance of the high brightness ring's lattice results in a short lifetime, so that a top-off injection mode becomes an operational necessity. Therefore, the NSLS-II injection system must provide, and efficiently inject, an electron beam at a high repetition rate. In this paper, we present our concept of the NSLS-II injection system and discuss the conditions for, and constraints on, its design.

  10. The Belle II Physics Program

    NASA Astrophysics Data System (ADS)

    Piilonen, Leo; Belle Collaboration, II

    2017-01-01

    The Belle II experiment at the asymmetric e+e- SuperKEKB collider is a major upgrade of the Belle experiment, which ran at the KEKB collider at the KEK laboratory in Japan. The design luminosity of SuperKEKB is 8 ×1035 cm-2 s-1, which is about 40 times higher than that of KEKB. The expected integrated luminosity of Belle II is 50 ab-1 in five years of running. The experiment will focus on searches for new physics beyond the Standard Model via high precision measurements of heavy flavor decays, and searches for rare signals. To reach these goals, the accelerator, detector, electronics, software, and computing systems are all being substantially upgraded. In this talk we discuss the physics program and the expected sensitivity to new physics of the Belle II data set.

  11. Belle II Silicon Vertex Detector

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Bulla, L.; Caria, G.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; De Pietro, G.; Divekar, S. T.; Doležal, Z.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kambara, N.; Kang, K. H.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kumar, R.; Kun, W.; Kvasnička, P.; La Licata, C.; Lanceri, L.; Lettenbicher, J.; Libby, J.; Lueck, T.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Resmi, P. K.; Rozanska, M.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Watanuki, S.; Watanabe, M.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.; Zani, L.

    2017-02-01

    The Belle II experiment at the SuperKEKB asymmetric energy e+e‑ collider in KEK, Japan will operate at an instantaneous luminosity 40 times larger than that of its predecessor, Belle. It is built with an aim of collecting a huge amount of data (50 ab‑1 by 2025) for precise CP violation measurements and new physics search. Thus, we need an accurate vertex determination and reconstruction of low momentum tracks which will be achieved with the help of vertex detector (VXD). The Belle II VXD consists of two layers of DEPFET pixels (`Pixel Detector') and four layers of double-sided silicon microstrip sensors (`Silicon Vertex Detector'), assembled over carbon fibre ribs. In this paper, we discuss about the Belle II Silicon Vertex Detector, especially its design and key features; we also present its module (`ladder') assembly and testing procedures.

  12. Administrative Plans. STIP II (Skill Training Improvement Programs Round II).

    ERIC Educational Resources Information Center

    Los Angeles Community Coll. District, CA.

    Personnel policies, job responsibilities, and accounting procedures are summarized for the Los Angeles Community College District's Skill Training Improvement Programs (STIP II). This report first cites references to the established personnel and affirmative action procedures governing the program and then presents an organizational chart for the…

  13. Propulsion Systems for Aircraft. Aerospace Education II. Instructional Unit II.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This curriculum guide accompanies another publication in the Aerospace Education II series entitled "Propulsion Systems for Aircraft." The guide includes specific guidelines for teachers on each chapter in the textbook. Suggestions are included for objectives (traditional and behavioral), suggested outline, orientation, suggested key…

  14. First results from SAGE II

    SciTech Connect

    Abdurashitov, J.N.; Faizov, E.L.; Gavrin, V.N.

    1994-07-01

    The Russian-American Gallium solar neutrino Experiment (SAGE) began the second phase of operation (SAGE II) in September of 1992. Monthly measurements of the integral flux of solar neutrinos have been made with 55 tonnes of gallium. The K-peak results of the first five runs of SAGE II give a capture rate of 76{sub {minus}18}{sup +21} (stat) {sub {minus}7}{sup +5} (sys) SNU. combined with the SAGE I result, the capture rate is 74{sub {minus}12}{sup +13} (stat) {sub {minus}7}{sup +5} (sys) SNU. This represents only 56%--60% of the capture rate predicted by different Standard Solar Models.

  15. Helium II level measurement techniques

    NASA Astrophysics Data System (ADS)

    Celik, D.; Hilton, D. K.; Zhang, T.; Van Sciver, S. W.

    2001-05-01

    In this paper, a survey of cryogenic liquid level measurement techniques applicable to superfluid helium (He II) is given. The survey includes both continuous and discrete measurement techniques. A number of different probes and controlling circuits for this purpose have been described in the literature. They fall into one of the following categories: capacitive liquid level gauges, superconducting wire liquid level gauges, thermodynamic (heat transfer-based) liquid level gauges, resistive gauges, ultrasound and transmission line-based level detectors. The present paper reviews these techniques and their suitability for He II service. In addition to these methods, techniques for measuring the total liquid volume and mass gauging are also discussed.

  16. Belle II Early Physics Program

    NASA Astrophysics Data System (ADS)

    Stottler, Zachary; Belle Collaboration, II

    2017-01-01

    The Belle II experiment at the SuperKEKB collider is a major upgrade of the KEK `` B factory'' facility in Tsukuba, Japan. First beams are planned for early 2017 and first physics data will be recorded in the middle of 2018 during Phase 2 commissioning, while the Belle II detector is still missing its vertex detector system. In this talk we describe the physics program for this early data. The program will focus on bottomonium spectroscopy at different center-of-mass energies, in particular at the ϒ(3 S) and ϒ(6 S) resonances, amongst other energy points.

  17. Distributed Computing at Belle II

    NASA Astrophysics Data System (ADS)

    Bansal, Vikas; Belle Collaboration, II

    2016-03-01

    The Belle II experiment at the SuperKEKB collider in Tsukuba, Japan, will start physics data taking in 2018 and will accumulate 50 ab-1 of e+e- collision data, about 50 times larger than the data set of the earlier Belle experiment. The computing requirements of Belle II are comparable to those of a RUN I high-pT LHC experiment. Computing will make full use of high speed networking and of the Computing Grids in North America, Asia and Europe. Results of an initial MC simulation campaign with 5 ab-1 equivalent luminosity will be described.

  18. The PEP-II design

    SciTech Connect

    Sullivan, M.K.

    1995-05-01

    The Stanford Linear Accelerator Center (SLAC), Lawrence Berkeley Laboratory (LBL), Lawrence Livermore National Laboratory (LLNL) Positron Electron Project-II (PEP-II) is a design for a high-luminosity, asymmetric energy, electron-positron colliding beam accelerator that will operate at the center-of-mass energy of the {Upsilon}4S (10.58 GeV). The goal of the design is to achieve a large enough integrated luminosity with a moving center-of-mass reference frame to he able to observe the predicted rare decay modes of the {Upsilon}4S that do not conserve charge parity (CP).

  19. Division II: Sun and Heliosphere

    NASA Astrophysics Data System (ADS)

    Webb, David F.; Melrose, Donald B.; Benz, Arnold O.; Bogdan, Thomas J.; Bougeret, Jean-Louis; Klimchuk, James A.; Martinez Pillet, Valentin

    2007-03-01

    Division II of the IAU provides a forum for astronomers studying a wide range of phenomena related to the structure, radiation and activity of the Sun, and its interaction with the Earth and the rest of the solar system. Division II encompasses three Commissions, 10, 12 and 49, and four working groups. During the last triennia the activities of the division involved some reorganization of the division and its working groups, developing new procedures for election of division and commission officers, promoting annual meetings from within the division and evaluating all the proposed meetings, evaluating the division's representatives for the IAU to international scientific organizations, and participating in general IAU business.

  20. A new chelating resin for preconcentration and determination of Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) by flame atomic absorption spectrometry.

    PubMed

    Maheswari, Mohan A; Subramanian, Mandakolathur S

    2003-01-01

    A new polychelatogen, AXAD-16-1,2-diphenylethanolamine, was developed by chemically modifying Amberlite XAD-16 with 1,2-diphenylethanolamine to produce an effective metal-chelating functionality for the preconcentration of Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) and their determination by flame atomic absorption spectrometry. Various physiochemical parameters that influence the quantitative preconcentration and recovery of metal were optimized by both static and dynamic techniques. The resin showed superior extraction efficiency with high-metal loading capacity values of 0.73, 0.80, 0.77, 0.87, 0.74, and 0.81 mmol/g for Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The system also showed rapid metal-ion extraction and stripping, with complete saturation in the sorbent phase within 15 min for all the metal ions. The optimum condition for effective metal-ion extraction was found to be a neutral pH, which is a great advantage in the preconcentration of trace metal ions from natural water samples without any chemical pretreatment of the sample. The resin also demonstrated exclusive ion selectivity toward targeted metal ions by showing greater resistivity to various complexing species and more common metal ions during analyte concentration, which ultimately led to high preconcentration factors of 700 for Cu(II); 600 for Mn(II), Ni(II), and Zn(II); and 500 for Cd(II) and Pb(II), arising from a larger sample breakthrough volume. The lower limits of metal-ion detection were 7 ng/mL for Mn(II) and Ni(II); 5 ng/mL for Cu(II), Zn(II), and Cd(II), and 10 ng/mL for Pb(II). The developed resin was successful in preconcentrating metal ions from synthetic and real water samples, multivitamin-multimineral tablets, and curry leaves (Murraya koenigii) with relative standard deviations of < or = 3.0% for all analytical measurements, which demonstrated its practical utility.