Science.gov

Sample records for ii protein kinase

  1. Monoclonal antibodies against type II rat brain protein kinase

    SciTech Connect

    Nakabayashi, C.H.; Huang, K.P.

    1987-05-01

    Three monoclonal antibodies (8/1, 10/10, and 25/3) against rat brain type II protein kinase C (PKC) were used to carry out the immunochemical characterization of this kinase. These antibodies immunoprecipitated the type II PKC in a dose-dependent manner but did neither to type I nor type III isozyme. Purified type II PKC has a molecular weight of 82,000 and consists of heterogeneous isoelectric point species, all of which are cross reactive with these antibodies. Immunoblot analysis of the tryptic fragments from PKC revealed that all three antibodies recognized the 33-38-KDa fragments, the phospholipid/phorbol ester-binding domain, but not the 45-48-KDa fragments, the kinase catalytic domain. The immune complexes of the kinase and the antibodies retained the kinase activity which was dependent on Ca/sup 2 +/ and phosphatidylserine (PS) and further activated by diacylglycerol. With antibody 8/1, the apparent Km values of the kinase for Ca/sup 2 +/ and PS were not influenced. The initial rate and final extent of autophosphorylation were reduced. The concentration of PS required for half-maximal (/sup 3/H)phorbol 12,13-dibutyrate (PDBu) binding was increased and the total PDBu binding was reduced. In the presence of optimum concentrations of Ca/sup 2 +/ and PS, the Kd of PDBu was unaffected by the antibody but the total binding was reduced. These results demonstrate that the PS/PDBu-binding domain contains the major epitope for the antibodies and the antibody mainly influences the PS/PDBu binding to the kinase.

  2. Targeting of calcium/calmodulin-dependent protein kinase II.

    PubMed Central

    Colbran, Roger J

    2004-01-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) has diverse roles in virtually all cell types and it is regulated by a plethora of mechanisms. Local changes in Ca2+ concentration drive calmodulin binding and CaMKII activation. Activity is controlled further by autophosphorylation at multiple sites, which can generate an autonomously active form of the kinase (Thr286) or can block Ca2+/calmodulin binding (Thr305/306). The regulated actions of protein phosphatases at these sites also modulate downstream signalling from CaMKII. In addition, CaMKII targeting to specific subcellular microdomains appears to be necessary to account for the known signalling specificity, and targeting is regulated by Ca2+/calmodulin and autophosphorylation. The present review focuses on recent studies revealing the diversity of CaMKII interactions with proteins localized to neuronal dendrites. Interactions with various subunits of the NMDA (N-methyl-D-aspartate) subtype of glutamate receptor have attracted the most attention, but binding of CaMKII to cytoskeletal and several other regulatory proteins has also been reported. Recent reports describing the molecular basis of each interaction and their potential role in the normal regulation of synaptic transmission and in pathological situations are discussed. These studies have revealed fundamental regulatory mechanisms that are probably important for controlling CaMKII functions in many cell types. PMID:14653781

  3. Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)

    DOE PAGES

    Tan, Li; Nomanbhoy, Tyzoon; Gurbani, Deepak; ...

    2014-07-17

    Here, we developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16more » and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. Lastly, a 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors.« less

  4. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  5. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  6. Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity

    PubMed Central

    Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil

    2015-01-01

    We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity. PMID:26213934

  7. Association of protein kinase Cmu with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase.

    PubMed

    Nishikawa, K; Toker, A; Wong, K; Marignani, P A; Johannes, F J; Cantley, L C

    1998-09-04

    Protein kinase Cmu (PKCmu), also named protein kinase D, is an unusual member of the PKC family that has a putative transmembrane domain and pleckstrin homology domain. This enzyme has a substrate specificity distinct from other PKC isoforms (Nishikawa, K., Toker, A., Johannes, F. J., Songyang, Z., and Cantley, L. C. (1997) J. Biol. Chem. 272, 952-960), and its mechanism of regulation is not yet clear. Here we show that PKCmu forms a complex in vivo with a phosphatidylinositol 4-kinase and a phosphatidylinositol-4-phosphate 5-kinase. A region of PKCmu between the amino-terminal transmembrane domain and the pleckstrin homology domain is shown to be involved in the association with the lipid kinases. Interestingly, a kinase-dead point mutant of PKCmu failed to associate with either lipid kinase activity, indicating that autophosphorylation may be required to expose the lipid kinase interaction domain. Furthermore, the subcellular distribution of the PKCmu-associated lipid kinases to the particulate fraction depends on the presence of the amino-terminal region of PKCmu including the predicted transmembrane region. These results suggest a novel model in which the non-catalytic region of PKCmu acts as a scaffold for assembly of enzymes involved in phosphoinositide synthesis at specific membrane locations.

  8. Calcium/calmodulin-dependent protein kinase II expression in motor neurons: effect of axotomy.

    PubMed

    Lund, L M; McQuarrie, I G

    1997-11-20

    Although Ca2+/calmodulin-dependent (CaM) protein kinase II isoforms are present in the nervous system in high amounts, many aspects of in vivo expression, localization, and function remain unexplored. During development, CaM kinase IIalpha and IIbeta are differentially expressed. Here, we examined CaM kinase II isoforms in Sprague-Dawley rat sciatic motor neurons before and after axotomy. We cut the L4-5 spinal nerves unilaterally and exposed the proximal nerve stumps to a fluoroprobe, to retrogradely label the neurons of origin. Anti-CaM kinase IIbeta antibody showed immunoreactivity in motor neurons, which decreased to low levels by 4 days after axotomy. We found a similar response by in situ hybridization with riboprobes. The decrease in expression of mRNA and protein was confined to fluorescent motor neurons. For CaM kinase IIalpha, in situ hybridization showed that the mRNA was in sciatic motor neurons, with a density unaffected by axotomy. However, these neurons were also enlarged, suggesting an up-regulation of expression. Northern blots confirmed an mRNA increase. We were unable to find CaM kinase IIalpha immunoreactivity before or after axotomy in sciatic motor neuron cell bodies, suggesting that CaM kinase IIalpha is in the axons or dendrites, or otherwise unavailable to the antibody. Using rats with crush lesions, we radiolabeled axonal proteins being synthesized in the cell body and used two-dimensional polyacrylamide gel electrophoresis with Western blots to identify CaM kinase IIalpha as a component of slow axonal transport. This differential regulation and expression of kinase isoforms suggests separate and unique intracellular roles. Because we find CaM kinase IIbeta down-regulates during axonal regrowth, its role in these neurons may be related to synaptic transmission. CaM kinase IIalpha appears to support axonal regrowth.

  9. Tyrosine kinase activity of a Ca{sup 2+}/calmodulin-dependent protein kinase II catalytic fragment

    SciTech Connect

    Sugiyama, Yasunori; Ishida, Atsuhiko; Sueyoshi, Noriyuki; Kameshita, Isamu

    2008-12-12

    A 30-kDa fragment of Ca{sup 2+}/calmodulin-dependent protein kinase II (30K-CaMKII) is a constitutively active protein Ser/Thr kinase devoid of autophosphorylation activity. We have produced a chimeric enzyme of 30K-CaMKII (designated CX{sub 40}-30K-CaMKII), in which the N-terminal 40 amino acids of Xenopus Ca{sup 2+}/calmodulin-dependent protein kinase I (CX{sub 40}) were fused to the N-terminal end of 30K-CaMKII. Although CX{sub 40}-30K-CaMKII exhibited essentially the same substrate specificity as 30K-CaMKII, it underwent significant autophosphorylation. Surprisingly, its autophosphorylation site was found to be Tyr-18 within the N-terminal CX{sub 40} region of the fusion protein, although it did not show any Tyr kinase activity toward exogenous substrates. Several lines of evidence suggested that the autophosphorylation occurred via an intramolecular mechanism. These data suggest that even typical Ser/Thr kinases such as 30K-CaMKII can phosphorylate Tyr residues under certain conditions. The possible mechanism of the Tyr residue autophosphorylation is discussed.

  10. Protein Kinases and Addiction

    PubMed Central

    Lee, Anna M.; Messing, Robert O.

    2011-01-01

    Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharma-cotherapies to treat drug addiction. PMID:18991950

  11. Protein kinase that phosphorylates light-harvesting complex is autophosphorylated and is associated with photosystem II

    SciTech Connect

    Coughlan, S.J.; Hind, G.

    1987-10-06

    Thylakoid membranes were phosphorylated with (..gamma..-/sup 32/P)ATP and extracted with octyl glucoside and cholate. Among the radiolabeled phosphoproteins in the extract was a previously characterized protein kinase of 64-kDa apparent mass. The ability of this enzyme to undergo autophosphorylation in situ was used to monitor its distribution in the membrane. Fractionation studies showed that the kinase is confined to granal regions of the thylakoid, where it appears to be associated with the light-harvesting chlorophyll-protein complex of photosystem II. The kinetics of kinase autophosphorylation were investigated both in situ and in extracted, purified enzyme. In the membrane, autophosphorylation saturated within 20-30 min and was reversed with a half-time of 7-8 min upon removal of ATP or oxidative inactivation of the kinase; the accompanying dephosphorylation of light-harvesting complex was slower and kinetically complex. Fluoride (10 mM) inhibited these dephosphorylations. Autophosphorylation of the isolated kinase was independent of enzyme concentration, indicative of an intramolecular mechanism. A maximum of one serine residue per mole of kinase was esterified. Autophosphorylation was more rapid in the presence of histone IIIs, an exogenous substrate. Dephosphorylation of the isolated enzyme was not observed.

  12. Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stress.

    PubMed

    Ebrahimian, Talin; Li, Melissa Wei; Lemarié, Catherine A; Simeone, Stefania M C; Pagano, Patrick J; Gaestel, Matthias; Paradis, Pierre; Wassmann, Sven; Schiffrin, Ernesto L

    2011-02-01

    Vascular oxidative stress and inflammation play an important role in angiotensin II-induced hypertension, and mitogen-activated protein kinases participate in these processes. We questioned whether mitogen-activated protein kinase-activated protein kinase 2 (MK2), a downstream target of p38 mitogen-activated protein kinase, is involved in angiotensin II-induced vascular responses. In vivo experiments were performed in wild-type and Mk2 knockout mice infused intravenously with angiotensin II. Angiotensin II induced a 30 mm Hg increase in mean blood pressure in wild-type that was delayed in Mk2 knockout mice. Angiotensin II increased superoxide production and vascular cell adhesion molecule-1 in blood vessels of wild-type but not in Mk2 knockout mice. Mk2 knockdown by small interfering RNA in mouse mesenteric vascular smooth muscle cells caused a 42% reduction in MK2 protein and blunted the angiotensin II-induced 40% increase of MK2 expression. Mk2 knockdown blunted angiotensin II-induced doubling of intracellular adhesion molecule-1 expression, 2.4-fold increase of nuclear p65, and 1.4-fold increase in Ets-1. Mk2 knockdown abrogated the angiotensin II-induced 4.7-fold and 1.3-fold increase of monocyte chemoattractant protein-1 mRNA and protein. Angiotensin II enhanced reactive oxygen species levels (by 29%) and nicotinamide adenine dinucleotide phosphate oxidase activity (by 48%), both abolished by Mk2 knockdown. Reduction of MK2 blocked angiotensin II-induced p47phox translocation to the membrane, associated with a 53% enhanced catalase expression. Angiotensin II-induced increase of MK2 was prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor Nox2ds-tat. Mk2 small interfering RNA prevented the angiotensin II-induced 30% increase of proliferation. In conclusion, MK2 plays a critical role in angiotensin II signaling, leading to hypertension, oxidative stress via activation of p47phox and inhibition of antioxidants, and vascular inflammation

  13. Protein kinase C beta II suppresses colorectal cancer by regulating IGF-1 mediated cell survival

    PubMed Central

    Dowling, Catríona M.; Phelan, James; Callender, Julia A.; Cathcart, Mary Clare; Mehigan, Brian; McCormick, Paul; Dalton, Tara; Coffey, John C.; Newton, Alexandra C.; O'sullivan, Jacintha; Kiely, Patrick A.

    2016-01-01

    Despite extensive efforts, cancer therapies directed at the Protein Kinase C (PKC) family of serine/threonine kinases have failed in clinical trials. These therapies have been directed at inhibiting PKC and have, in some cases, worsened disease outcome. Here we examine colon cancer patients and show not only that PKC Beta II is a tumour suppressor, but patients with low levels of this isozyme have significantly decreased disease free survival. Specifically, analysis of gene expression levels of all PKC genes in matched normal and cancer tissue samples from colon cancer patients revealed a striking down-regulation of the gene coding PKC Beta in the cancer tissue (n = 21). Tissue microarray analysis revealed a dramatic down-regulation of PKC Beta II protein levels in both the epithelial and stromal diseased tissue (n = 166). Of clinical significance, low levels of the protein in the normal tissue of patients is associated with a low (10%) 10 year survival compared with a much higher (60%) survival in patients with relatively high levels of the protein. Consistent with PKC Beta II levels protecting against colon cancer, overexpression of PKC Beta II in colon cancer cell lines reveals that PKC Beta II reverses transformation in cell based assays. Further to this, activation of PKC Beta II results in a dramatic downregulation of IGF-I-induced AKT, indicating a role for PKCs in regulating IGF-1 mediated cell survival. Thus, PKC Beta II is a tumour suppressor in colon cancer and low levels serve as a predictor for poor survival outcome. PMID:26989024

  14. Topography of Protein Kinase C βII in Benign and Malignant Melanocytic Lesions.

    PubMed

    Krasagakis, Konstanin; Tsentelierou, Eleftheria; Chlouverakis, Gregory; Stathopoulos, Efstathios N

    2017-09-01

    Protein kinase C βII promotes melanogenesis and affects proliferation of melanocytic cells but is frequently absent or decreased in melanoma cells in vitro. To investigate PKC-βII expression and spatial distribution within a lesion in various benign and malignant melanocytic proliferations. Expression of PKC-βII was semiquantitatively assessed in the various existing compartments (intraepidermal [not nested], junctional [nested], and dermal) of benign (n = 43) and malignant (n = 28) melanocytic lesions by immunohistochemistry. Melanocytes in the basal layer of normal skin or in lentigo simplex stained strongly for PKC-βII. Common nevi lacked completely PKC-βII. All other lesions expressed variably PKC-βII, with cutaneous melanoma metastases displaying the lowest rate of positivity (14%). In the topographical analysis within a lesion, PKC-βII expression was largely retained in the intraepidermal and junctional part of all other lesions (dysplastic nevus, lentigo maligna, and melanoma). Reduced expression of PKC-βII was found in the dermal component of benign and malignant lesions ( P = .041 vs intraepidermal). PKC-βII expression in the various compartments did not differ significantly between benign and malignant lesions. The current study revealed a significant correlation between PKC-βII expression and spatial localization of melanocytes, with the lowest expression found in the dermal compartment and the highest in the epidermal compartment.

  15. Inactivation of Smad-Transforming Growth Factor β Signaling by Ca2+-Calmodulin-Dependent Protein Kinase II

    PubMed Central

    Wicks, Stephen J.; Lui, Stephen; Abdel-Wahab, Nadia; Mason, Roger M.; Chantry, Andrew

    2000-01-01

    Members of the transforming growth factor β (TGF-β) family transduce signals through Smad proteins. Smad signaling can be regulated by the Ras/Erk/mitogen-activated protein pathway in response to receptor tyrosine kinase activation and the gamma interferon pathway and also by the functional interaction of Smad2 with Ca2+-calmodulin. Here we report that Smad–TGF-β-dependent transcriptional responses are prevented by expression of a constitutively activated Ca2+-calmodulin-dependent protein kinase II (Cam kinase II). Smad2 is a target substrate for Cam kinase II in vitro at serine-110, -240, and -260. Cam kinase II induces in vivo phosphorylation of Smad2 and Smad4 and, to a lesser extent, Smad3. A phosphopeptide antiserum raised against Smad2 phosphoserine-240 reacted with Smad2 in vivo when coexpressed with Cam kinase II and by activation of the platelet-derived growth factor receptor, the epidermal growth factor receptor, HER2 (c-erbB2), and the TGF-β receptor. Furthermore, Cam kinase II blocked nuclear accumulation of a Smad2 and induced Smad2-Smad4 hetero-oligomerization independently of TGF-β receptor activation, while preventing TGF-β-dependent Smad2-Smad3 interactions. These findings provide a novel cross-talk mechanism by which Ca2+-dependent kinases activated downstream of multiple growth factor receptors antagonize cell responses to TGF-β. PMID:11027280

  16. Contribution of Ca2+ calmodulin-dependent protein kinase II and mitogen-activated protein kinase kinase to neural activity-induced neurite outgrowth and survival of cerebellar granule cells.

    PubMed

    Borodinsky, Laura N; Coso, Omar A; Fiszman, Mónica L

    2002-03-01

    In this report we describe our studies on intracellular signals that mediate neurite outgrowth and long-term survival of cerebellar granule cells. The effect of voltage-gated calcium channel activation on neurite complexity was evaluated in cultured cerebellar granule cells grown for 48 h at low density; the parameter measured was the fractal dimension of the cell. We explored the contribution of two intracellular pathways, Ca2+ calmodulin-dependent protein kinase II and mitogen-activated protein kinase kinase (MEK1), to the effects of high [K+ ]e under serum-free conditions. We found that 25 mm KCl (25K) induced an increase in calcium influx through L subtype channels. In neurones grown for 24-48 h under low-density conditions, the activation of these channels induced neurite outgrowth through the activation of Ca2+ calmodulin-dependent protein kinase II. This also produced an increase in long-term neuronal survival with a partial contribution from the MEK1 pathway. We also found that the addition of 25K increased the levels of the phosphorylated forms of Ca2+ calmodulin-dependent protein kinase II and of the extracellular signal-regulated kinases 1 and 2. Neuronal survival under resting conditions is supported by the MEK1 pathway. We conclude that intracellular calcium oscillations can triggered different biological effects depending on the stage of maturation of the neuronal phenotype. Ca2+ calmodulin-dependent protein kinase II activation determines the growth of neurites and the development of neuronal complexity.

  17. Angiotensin II-Activated Protein Kinase D Mediates Acute Aldosterone Secretion

    PubMed Central

    Shapiro, Brian A.; Olala, Lawrence; Arun, Senthil Nathan; Parker, Peter M.; George, Mariya V.; Bollag, Wendy B.

    2009-01-01

    Summary Dysregulation of the renin-angiotensin II (AngII)-aldosterone system can contribute to cardiovascular disease, such that an understanding of this system is critical. Diacylglycerol-sensitive serine/threonine protein kinase D (PKD) is activated by AngII in several systems, including the human adrenocortical carcinoma cell line NCI H295R, where this enzyme enhances chronic (24 hours) AngII-evoked aldosterone secretion. However, the role of PKD in acute AngII-elicited aldosterone secretion has not been previously examined. In primary cultures of bovine adrenal glomerulosa cells, which secrete detectable quantities of aldosterone in response to secretagogues within minutes, PKD was activated in response to AngII, but not an elevated potassium concentration or adrenocorticotrophic hormone. This activation was time- and dose-dependent and occurred through the AT1, but not the AT2, receptor. Adenovirus-mediated overexpression of constitutively-active PKD resulted in enhanced AngII-induced aldosterone secretion; whereas overexpression of a dominant-negative PKD construct decreased AngII-stimulated aldosterone secretion. Thus, we demonstrate for the first time that PKD mediates acute AngII-induced aldosterone secretion. PMID:19961896

  18. CREB phosphorylation and melatonin biosynthesis in the rat pineal gland: involvement of cyclic AMP dependent protein kinase type II.

    PubMed

    Maronde, E; Wicht, H; Taskén, K; Genieser, H G; Dehghani, F; Olcese, J; Korf, H W

    1999-10-01

    Phosphorylation of cyclic AMP response element binding protein (CREB) at amino acid serine 133 appears as an important link between the norepinephrine (NE)-induced activation of second messenger systems and the stimulation of melatonin biosynthesis. Here we investigated in the rat pineal gland: 1) the type of protein kinase that mediates CREB phosphorylation: and 2) its impact on melatonin biosynthesis. Immunochemical or immunocytochemical demonstration of serine133-phosphorylated cyclic AMP regulated element binding protein (pCREB) and radioimmunological detection of melatonin revealed that only cyclic AMP-dependent protein kinase (PKA) inhibitors suppressed NE-induced CREB phosphorylation and stimulation of melatonin biosynthesis, whereas inhibitors of cyclic GMP-dependent protein kinase (PKG), mitogen-activated protein kinase kinase, protein kinase C, or calcium-calmodulin-dependent protein kinase (CaMK) were ineffective. Investigations with cyclic AMP-agonist pairs that selectively activate either PKA type I or II link NE-induced CREB phosphorylation and stimulation of melatonin biosynthesis to the activation of PKA type II. Our data suggest that PKA type II plays an important role in the transcriptional control of melatonin biosynthesis in the rat pineal organ.

  19. Roles of an unconventional protein kinase and myosin II in amoeba osmotic shock responses.

    PubMed

    Betapudi, Venkaiah; Egelhoff, Thomas T

    2009-12-01

    The contractile vacuole (CV) is a dynamic organelle that enables Dictyostelium amoeba and other protist to maintain osmotic homeostasis by expelling excess water. In the present study, we have uncovered a mechanism that coordinates the mechanics of the CV with myosin II, regulated by VwkA, an unconventional protein kinase that is conserved in an array of protozoa. Green fluorescent protein (GFP)-VwkA fusion proteins localize persistently to the CV during both filling and expulsion phases of water. In vwkA null cells, the established CV marker dajumin still localizes to the CV, but these structures are large, spherical and severely impaired for discharge. Furthermore, myosin II cortical localization and assembly are abnormal in vwkA null cells. Parallel analysis of wild-type cells treated with myosin II inhibitors or of myosin II null cells also results in enlarged CVs with impaired dynamics. We suggest that the myosin II cortical cytoskeleton, regulated by VwkA, serves a critical conserved role in the periodic contractions of the CV, as part of the osmotic protective mechanism of protozoa.

  20. Mitogen-activated protein kinase is required for the behavioural desensitization that occurs after repeated injections of angiotensin II.

    PubMed

    Vento, Peter J; Daniels, Derek

    2012-12-01

    Angiotensin II (Ang II) acts on central angiotensin type 1 (AT(1)) receptors to increase water and saline intake. Prolonged exposure to Ang II in cell culture models results in a desensitization of the AT(1) receptor that is thought to involve receptor internalization, and a behavioural correlate of this desensitization has been shown in rats after repeated central injections of Ang II. Specifically, rats given repeated injections of Ang II drink less water than control animals after a subsequent test injection of Ang II. In the same conditions, however, repeated injections of Ang II have no effect on Ang II-induced saline intake. Given earlier studies indicating that separate intracellular signalling pathways mediate Ang II-induced water and saline intake, we hypothesized that the desensitization observed in rats may be incomplete, leaving the receptor able to activate mitogen-activated protein (MAP) kinases (ERK1/2), which play a role in Ang II-induced saline intake without affecting water intake. In support of this hypothesis, we found no difference in MAP kinase phosphorylation after an Ang II test injection in rats given prior treatment with repeated injections of vehicle, Ang II or Sar(1),Ile(4),Ile(8)-Ang II (SII), an Ang II analogue that activates MAP kinase without G protein coupling. In addition, we found that pretreatment with the MAP kinase inhibitor U0126 completely blocked the desensitizing effect of repeated Ang II injections on water intake. Furthermore, Ang II-induced water intake was reduced to a similar extent by repeated injections of Ang II or SII. The results suggest that G protein-independent signalling is sufficient to produce behavioural desensitization of the angiotensin system and that the desensitization requires MAP kinase activation.

  1. Ca(2+)/Calmodulin-Dependent Protein Kinase II in Vascular Smooth Muscle.

    PubMed

    Saddouk, F Z; Ginnan, R; Singer, H A

    2017-01-01

    Ca(2+)-dependent signaling pathways are central regulators of differentiated vascular smooth muscle (VSM) contractile function. In addition, Ca(2+) signals regulate VSM gene transcription, proliferation, and migration of dedifferentiated or "synthetic" phenotype VSM cells. Synthetic phenotype VSM growth and hyperplasia are hallmarks of pervasive vascular diseases including hypertension, atherosclerosis, postangioplasty/in-stent restenosis, and vein graft failure. The serine/threonine protein kinase Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous mediator of intracellular Ca(2+) signals. Its multifunctional nature, structural complexity, diversity of isoforms, and splice variants all characterize this protein kinase and make study of its activity and function challenging. The kinase has unique autoregulatory mechanisms, and emerging studies suggest that it can function to integrate Ca(2+) and reactive oxygen/nitrogen species signaling. Differentiated VSM expresses primarily CaMKIIγ and -δ isoforms. CaMKIIγ isoform expression correlates closely with the differentiated phenotype, and some studies link its function to regulation of contractile activity and Ca(2+) homeostasis. Conversely, synthetic phenotype VSM cells primarily express CaMKIIδ and substantial evidence links it to regulation of gene transcription, proliferation, and migration of VSM in vitro, and vascular hypertrophic and hyperplastic remodeling in vivo. CaMKIIδ and -γ isoforms have opposing functions at the level of cell cycle regulation, proliferation, and VSM hyperplasia in vivo. Isoform switching following vascular injury is a key step in promoting vascular remodeling. Recent availability of genetically engineered mice with smooth muscle deletion of specific isoforms and transgenics expressing an endogenous inhibitor protein (CAMK2N) has enabled a better understanding of CaMKII function in VSM and should facilitate future studies. © 2017 Elsevier Inc. All rights reserved.

  2. Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase C and Ca sup 2+ /calmodulin-dependent protein kinase II

    SciTech Connect

    Gandy, S.; Czernik, A.J.; Greengard, P. )

    1988-08-01

    The amino acid sequence of the Alzheimer disease amyloid precursor (ADAP) has been deduced from the corresponding cDNA, and hydropathy analysis of the sequence suggest a receptor-like structure with a single transmembrane domain. The putative cytoplasmic domain of ADAP contains potential sites for serine and threonine phosphorylation. In the present study, synthetic peptides derived from this domain were used as model substrates for various purified protein kinases. Protein kinase C rapidly catalyzed the phosphorylation of a peptide corresponding to amino acid residues 645-661 of ADAP. Ca{sup 2+}/calmodulin-dependent protein kinase II phosphorylated ADAP peptide (645-661) on Thr-654 and Ser-655. Using rat cerebral cortex synaptosomes prelabeled with {sup 32}P{sub i}, a {sup 32}P-labeled phosphoprotein of {approx}135 kDa was immunoprecipitated by using antisera prepared against ADAP peptide(597-624), consistent with the possibility that the holoform of ADAP in rat brain is a phosphoprotein. Based on analogy with the effect of phosphorylation by protein kinase C of juxtamembrane residues in the cytoplasmic domain of the epidermal growth factor receptor and the interleukin 2 receptor, phosphorylation of ADAP may target it for internalization.

  3. Rictor regulates phosphorylation of the novel protein kinase C Apl II in Aplysia sensory neurons.

    PubMed

    Labban, Margaret; Dyer, John R; Sossin, Wayne S

    2012-09-01

    Rapamycin-insensitive companion of TOR (Rictor) is a conserved component of target of rapamycin complex 2 (TORC2), a complex implicated in phosphorylation of a number of signal transduction-related kinases, including protein kinase Cs (PKCs) at their 'hydrophobic' site in the carboxy-terminal extension domain. In the marine mollusk, Aplysia californica, an increase in phosphorylation of the novel PKC, Apl II, at the hydrophobic site is associated with a protein synthesis-dependent increase in synaptic strength seen after continuous application of serotonin. To determine if Rictor plays a role in this increase, we cloned the Aplysia ortholog of Rictor (ApRictor). An siRNA-mediated decrease in ApRictor levels in Aplysia sensory neurons led to a decrease in the phosphorylation of PKC Apl II at the hydrophobic site suggesting a role for ApRictor in hydrophobic site phosphorylation. However, over-expression of ApRictor was not sufficient to increase phosphorylation of PKC Apl II. Continuous application of serotonin increased phosphorylation of PKC Apl II at the hydrophobic site in cultured sensory neurons, and this was blocked by Torin, which inhibits both TORC1 and TORC2. Over-expression of ApRictor did not lead to change in the magnitude of serotonin-mediated phosphorylation, but did lead to a small increase in the membrane localization of phosphorylated PKC Apl II. In conclusion, these studies implicate Rictor in phosphorylation of a novel PKC during synaptic plasticity and suggest an additional role for Rictor in regulating the localization of PKCs.

  4. Regional distribution and subcellular associations of Type II calcium and calmodulin-dependent protein kinase in rat brain

    SciTech Connect

    Erondu, N.E.

    1986-01-01

    Four monoclonal antibodies generated against the Type II CaM kinase have been characterized. Two of these antibodies were used to confirm that both alpha and beta subunits were part of the holoenzyme complex. I also developed liquid phase and solid phase radioimmunoassays for the kinase. With the solid phase radioimmunoassay, the distribution of the kinase in rat brain was examined. This study revealed that the concentration of the kinase varies markedly in different brain regions. It is most highly concentrated in the telencephalon where it comprises approximately 2% of total hippocampal protein, 1.3% of cortical protein and 0.7% of striatal protein. It is less concentrated in lower brain regions ranging from 0.3% of hypothalamic protein to 0.1% of protein in the pons/medulla.

  5. AKAP-independent localization of type-II protein kinase A to dynamic actin microspikes.

    PubMed

    Rivard, Robert L; Birger, Monique; Gaston, Kara J; Howe, Alan K

    2009-09-01

    Regulation of the cyclic AMP-dependent protein kinase (PKA) in subcellular space is required for cytoskeletal dynamics and chemotaxis. Currently, spatial regulation of PKA is thought to require the association of PKA regulatory (R) subunits with A-kinase anchoring proteins (AKAPs). Here, we show that the regulatory RIIalpha subunit of PKA associates with dynamic actin microspikes in an AKAP-independent manner. Both endogenous RIIalpha and a GFP-RIIalpha fusion protein co-localize with F-actin in microspikes within hippocampal neuron growth cones and the leading edge lamellae of NG108-15 cells. Live-cell imaging demonstrates that RIIalpha-associated microspikes are highly dynamic and that the coupling of RIIalpha to actin is tight, as the movement of both actin and RIIalpha are immediately and coincidently stopped by low-dose cytochalasin D. Importantly, co-localization of RIIalpha and actin in these structures is resistant to displacement by a cell-permeable disrupter of PKA-AKAP interactions. Biochemical fractionation confirms that a substantial pool of PKA RIIalpha is associated with the detergent-insoluble cytoskeleton and is resistant to extraction by a peptide inhibitor of AKAP interactions. Finally, mutation of the AKAP-binding domain of RIIalpha fails to disrupt its association with actin microspikes. These data provide the first demonstration of the physical association of a kinase with such dynamic actin structures, as well as the first demonstration of the ability of type-II PKA to localize to discrete subcellular structures independently of canonical AKAP function. This association is likely to be important for microfilament dynamics and cell migration and may prime the investigation of novel mechanisms for localizing PKA activity.

  6. AKAP-Independent Localization of Type-II Protein Kinase A to Dynamic Actin Microspikes

    PubMed Central

    Rivard, Robert L.; Birger, Monique; Gaston, Kara J.; Howe, Alan K.

    2010-01-01

    Regulation of the cyclic AMP-dependent protein kinase (PKA) in subcellular space is required for cytoskeletal dynamics and chemotaxis. Currently, spatial regulation of PKA is thought to require the association of PKA regulatory (R) subunits with A-kinase anchoring proteins (AKAPs). Here, we show that the regulatory RIIα subunit of PKA associates with dynamic actin microspikes in an AKAP-independent manner. Both endogenous RIIα and a GFP-RIIα fusion protein co-localize with F-actin in microspikes within hippocampal neuron growth cones and the leading edge lamellae of NG108-15 cells. Live-cell imaging demonstrates that RIIα-associated microspikes are highly dynamic and that the coupling of RIIα to actin is tight, as the movement of both actin and RIIα are immediately and coincidently stopped by low-dose cytochalasin D. Importantly, co-localization of RIIα and actin in these structures is resistant to displacement by a cell-permeable disrupter of PKA-AKAP interactions. Biochemical fractionation confirms that a substantial pool of PKA RIIα is associated with the detergent-insoluble cytoskeleton and is resistant to extraction by a peptide inhibitor of AKAP interactions. Finally, mutation of the AKAP-binding domain of RIIα fails to disrupt its association with actin microspikes. These data provide the first demonstration of the physical association of a kinase with such dynamic actin structures, as well as the first demonstration of the ability of type-II PKA to localize to discrete subcellular structures independently of canonical AKAP function. This association is likely to be important for microfilament dynamics and cell migration and may prime the investigation of novel mechanisms for localizing PKA activity. PMID:19536823

  7. Structural Basis of Cyclic Nucleotide Selectivity in cGMP-dependent Protein Kinase II*

    PubMed Central

    Campbell, James C.; Kim, Jeong Joo; Li, Kevin Y.; Huang, Gilbert Y.; Reger, Albert S.; Matsuda, Shinya; Sankaran, Banumathi; Link, Todd M.; Yuasa, Keizo; Ladbury, John E.; Casteel, Darren E.; Kim, Choel

    2016-01-01

    Membrane-bound cGMP-dependent protein kinase (PKG) II is a key regulator of bone growth, renin secretion, and memory formation. Despite its crucial physiological roles, little is known about its cyclic nucleotide selectivity mechanism due to a lack of structural information. Here, we find that the C-terminal cyclic nucleotide binding (CNB-B) domain of PKG II binds cGMP with higher affinity and selectivity when compared with its N-terminal CNB (CNB-A) domain. To understand the structural basis of cGMP selectivity, we solved co-crystal structures of the CNB domains with cyclic nucleotides. Our structures combined with mutagenesis demonstrate that the guanine-specific contacts at Asp-412 and Arg-415 of the αC-helix of CNB-B are crucial for cGMP selectivity and activation of PKG II. Structural comparison with the cGMP selective CNB domains of human PKG I and Plasmodium falciparum PKG (PfPKG) shows different contacts with the guanine moiety, revealing a unique cGMP selectivity mechanism for PKG II. PMID:26769964

  8. Bcl10 is phosphorylated on Ser138 by Ca2+/calmodulin-dependent protein kinase II.

    PubMed

    Ishiguro, Kazuhiro; Ando, Takafumi; Goto, Hidemi; Xavier, Ramnik

    2007-03-01

    Ordered assembly of scaffold proteins Carma1-Bcl10-Malt1 determines NF-kappaB activation following T cell receptor (TCR) engagement. Carma1-Bcl10 interaction and the signaling pathway are controlled by Carma1 phosphorylation, which are induced by PKCtheta and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). In addition to Carma1 phosphorylation, previous studies have demonstrated that Bcl10 is phosphorylated in the C-terminal Ser/Thr rich region following TCR engagement. However the kinases that phosphorylate Bcl10 are incompletely understood. Here we show that CaMKII phosphorylates Bcl10 on Ser138. Furthermore, a CaMKII inhibitor, KN93, and CaMKII siRNA substantially reduce Bcl10 phosphorylation induced by phorbol myristate acetate/ionomycin. S138A mutation prolongs Bcl10-induced NF-kappaB activation, suggesting that Bcl10 phosphorylation is involved in attenuation of NF-kappaB activation. These findings suggest that CaMKII modulates NF-kappaB activation via phosphorylating Bcl10 as well as Carma1.

  9. Calcium/calmodulin dependent protein kinase II regulates the phosphorylation of cyclic AMP-responsive element-binding protein of spinal cord in rats following noxious stimulation.

    PubMed

    Fang, Li; Wu, Jing; Zhang, Xuan; Lin, Qing; Willis, William D

    2005-02-01

    We have previously reported that intradermal capsaicin injection causes the phosphorylation of cyclic adenosine monophosphate-responsive element-binding protein (CREB) in the spinal cord of rats. The present study was designed to investigate the role of calcium/camodulin protein dependent protein kinase II (CaM kinase II) in the regulation of phosphorylation of CREB after capsaicin injection. We found that capsaicin injection produces a significant upregulation of phosphorylated CREB in the spinal cord of rat. Intrathecal treatment with a CaM kinase II inhibitor, KN-93, significantly blocked the increased phosphorylation of CREB, but did not affect the CREB protein itself. These results suggest that increased phosphorylation of CREB protein may contribute to central sensitization following acute peripheral noxious stimuli, and the effect may be regulated through the activation of CaM kinase cascades.

  10. Structural Basis of Cyclic Nucleotide Selectivity in cGMP-dependent Protein Kinase II

    DOE PAGES

    Campbell, James C.; Kim, Jeong Joo; Li, Kevin Y.; ...

    2016-01-14

    Membrane-bound cGMP-dependent protein kinase (PKG) II is an important regulator of bone growth, renin secretion, and memory formation. Despite its crucial physiological roles, little is known about its cyclic nucleotide selectivity mechanism due to a lack of structural information. Here, we find that the C-terminal cyclic nucleotide binding (CNB-B) domain of PKGII binds cGMP with higher affinity and selectivity when compared with its N-terminal CNB (CNB-A) domain. To understand the structural basis of cGMP selectivity, we solved co-crystal structures of the CNB domains with cyclic nucleotides. Our structures combined with mutagenesis demonstrate that the guanine-specific contacts at Asp-412 and Arg-415more » of the αC-helix of CNB-B are crucial for cGMP selectivity and activation of PKG II. Structural comparison with the cGMP selective CNB domains of human PKG I and Plasmodium falciparum PKG (PfPKG) shows different contacts with the guanine moiety, revealing a unique cGMP selectivity mechanism for PKG II.« less

  11. Structural Basis of Cyclic Nucleotide Selectivity in cGMP-dependent Protein Kinase II

    SciTech Connect

    Campbell, James C.; Kim, Jeong Joo; Li, Kevin Y.; Huang, Gilbert Y.; Reger, Albert S.; Matsuda, Shinya; Sankaran, Banumathi; Link, Todd M.; Yuasa, Keizo; Ladbury, John E.; Casteel, Darren E.; Kim, Choel

    2016-01-14

    Membrane-bound cGMP-dependent protein kinase (PKG) II is an important regulator of bone growth, renin secretion, and memory formation. Despite its crucial physiological roles, little is known about its cyclic nucleotide selectivity mechanism due to a lack of structural information. Here, we find that the C-terminal cyclic nucleotide binding (CNB-B) domain of PKGII binds cGMP with higher affinity and selectivity when compared with its N-terminal CNB (CNB-A) domain. To understand the structural basis of cGMP selectivity, we solved co-crystal structures of the CNB domains with cyclic nucleotides. Our structures combined with mutagenesis demonstrate that the guanine-specific contacts at Asp-412 and Arg-415 of the αC-helix of CNB-B are crucial for cGMP selectivity and activation of PKG II. Structural comparison with the cGMP selective CNB domains of human PKG I and Plasmodium falciparum PKG (PfPKG) shows different contacts with the guanine moiety, revealing a unique cGMP selectivity mechanism for PKG II.

  12. Role of tyrosine kinase and protein kinase C in the steroidogenic actions of angiotensin II, alpha-melanocyte-stimulating hormone and corticotropin in the rat adrenal cortex.

    PubMed Central

    Kapas, S; Purbrick, A; Hinson, J P

    1995-01-01

    The role of protein kinases in the steroidogenic actions of alpha-melanocyte-stimulating hormone (alpha-MSH), angiotensin II (AngII) and corticotropin (ACTH) in the rat adrenal zona glomerulosa was examined. Ro31-8220, a potent selective inhibitor of protein kinase C (PKC), inhibited both AngII- and alpha-MSH-stimulated aldosterone secretion but had no effect on aldosterone secretion in response to ACTH. The effect of Ro31-8220 on PKC activity was measured in subcellular fractions. Basal PKC activity was higher in cytosol than in membrane or nuclear fractions. Incubation of the zona glomerulosa with either alpha-MSH or AngII resulted in significant increases in PKC activity in the nuclear and cytosolic fractions and decreases in the membrane fraction. These effects were all inhibited by Ro31-8220. ACTH caused a significant increase in nuclear PKC activity only, and this was inhibited by Ro31-8220 without any significant effect on the steroidogenic response to ACTH, suggesting that PKC translocation in response to ACTH may be involved in another aspect of adrenal cellular function. Tyrosine phosphorylation has not previously been considered to be an important component of the response of adrenocortical cells to peptide hormones. Both AngII and alpha-MSH were found to activate tyrosine kinase, but ACTH had no effect, observations that have not been previously reported. Tyrphostin 23, a specific antagonist of tyrosine kinases, inhibited aldosterone secretion in response to AngII and alpha-MSH, but not ACTH. These data confirm the importance of PKC in the adrenocortical response to AngII and alpha-MSH, and, furthermore, indicate that tyrosine kinase may play a critical role in the steroidogenic actions of AngII and alpha-MSH in the rat adrenal zona glomerulosa. PMID:7832756

  13. Hunting increases phosphorylation of calcium/calmodulin-dependent protein kinase type II in adult barn owls.

    PubMed

    Nichols, Grant S; DeBello, William M

    2015-01-01

    Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB) provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII) in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII expression between prism-wearing and control juveniles within the external nucleus of the inferior colliculus (ICX), the major site of plasticity. For prism-wearing adults that hunted live mice and are capable of adaptation, expression of pCaMKII was increased relative to prism-wearing adults that fed passively on dead mice and are not capable of adaptation. This effect did not bear the hallmarks of instructive information: it was not localized to rostral ICX and did not exhibit a patchy distribution reflecting discrete bimodal stimuli. These data are consistent with a role for CaMKII as a permissive rather than an instructive factor. In addition, the paucity of pCaMKII expression in passively fed adults suggests that the permissive default setting is "off" in adults.

  14. Hunting Increases Phosphorylation of Calcium/Calmodulin-Dependent Protein Kinase Type II in Adult Barn Owls

    PubMed Central

    Nichols, Grant S.; DeBello, William M.

    2015-01-01

    Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB) provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII) in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII expression between prism-wearing and control juveniles within the external nucleus of the inferior colliculus (ICX), the major site of plasticity. For prism-wearing adults that hunted live mice and are capable of adaptation, expression of pCaMKII was increased relative to prism-wearing adults that fed passively on dead mice and are not capable of adaptation. This effect did not bear the hallmarks of instructive information: it was not localized to rostral ICX and did not exhibit a patchy distribution reflecting discrete bimodal stimuli. These data are consistent with a role for CaMKII as a permissive rather than an instructive factor. In addition, the paucity of pCaMKII expression in passively fed adults suggests that the permissive default setting is “off” in adults. PMID:25789177

  15. 2,5-hexanedione (HD) treatment alters calmodulin, Ca{sup 2+}/calmodulin-dependent protein kinase II, and protein kinase C in rats' nerve tissues

    SciTech Connect

    Wang Qingshan Hou Liyan; Zhang Cuili; Zhao Xiulan; Yu Sufang; Xie, Ke-Qin

    2008-10-01

    Calcium-dependent mechanisms, particularly those mediated by Ca{sup 2+}/calmodulin (CaM)-dependent protein kinase II (CaMKII), have been implicated in neurotoxicant-induced neuropathy. However, it is unknown whether similar mechanisms exist in 2,5-hexanedione (HD)-induced neuropathy. For that, we investigated the changes of CaM, CaMKII, protein kinase C (PKC) and polymerization ratios (PRs) of NF-L, NF-M and NF-H in cerebral cortex (CC, including total cortex and some gray), spinal cord (SC) and sciatic nerve (SN) of rats treated with HD at a dosage of 1.75 or 3.50 mmol/kg for 8 weeks (five times per week). The results showed that CaM contents in CC, SC and SN were significantly increased, which indicated elevation of Ca{sup 2+} concentrations in nerve tissues. CaMKII contents and activities were also increased in CC and were positively correlated with gait abnormality, but it could not be found in SC and SN. The increases of PKC contents and activities were also observed in SN and were positively correlated with gait abnormality. Except for that of NF-M in CC, the PRs of NF-L, NF-M and NF-H were also elevated in nerve tissues, which was consistent with the activation of protein kinases. The results suggested that CaMKII might be partly (in CC but not in SC and SN) involved in HD-induced neuropathy. CaMKII and PKC might mediate the HD neurotoxicity by altering the NF phosphorylation status and PRs.

  16. Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II.

    PubMed

    Ho, Hsiang-Ting; Belevych, Andriy E; Liu, Bin; Bonilla, Ingrid M; Radwański, Przemysław B; Kubasov, Igor V; Valdivia, Héctor H; Schober, Karsten; Carnes, Cynthia A; Györke, Sándor

    2016-11-01

    Although the effects and the underlying mechanism of sympathetic stimulation on cardiac Ca handling are relatively well established both in health and disease, the modes of action and mechanisms of parasympathetic modulation are poorly defined. Here, we demonstrate that parasympathetic stimulation initiates a novel mode of excitation-contraction coupling that enhances the efficiency of cardiac sarcoplasmic reticulum Ca store utilization. This efficient mode of excitation-contraction coupling involves reciprocal changes in the phosphorylation of ryanodine receptor 2 at Ser-2808 and Ser-2814. Specifically, Ser-2808 phosphorylation was mediated by muscarinic receptor subtype 2 and activation of PKG (protein kinase G), whereas dephosphorylation of Ser-2814 involved activation of muscarinic receptor subtype 3 and decreased reactive oxygen species-dependent activation of CaMKII (Ca/calmodulin-dependent protein kinase II). The overall effect of these changes in phosphorylation of ryanodine receptor 2 is an increase in systolic Ca release at the low sarcoplasmic reticulum Ca content and a paradoxical reduction in aberrant Ca leak. Accordingly, cholinergic stimulation of cardiomyocytes isolated from failing hearts improved Ca cycling efficiency by restoring altered ryanodine receptor 2 phosphorylation balance. © 2016 American Heart Association, Inc.

  17. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase.

    PubMed Central

    Stokoe, D; Campbell, D G; Nakielny, S; Hidaka, H; Leevers, S J; Marshall, C; Cohen, P

    1992-01-01

    A novel protein kinase, which was only active when phosphorylated by the mitogen-activated protein kinase (MAP kinase), has been purified 85,000-fold to homogeneity from rabbit skeletal muscle. This MAP kinase activated protein kinase, termed MAPKAP kinase-2, was distinguished from S6 kinase-II (MAPKAP kinase-1) by its response to inhibitors, lack of phosphorylation of S6 peptides and amino acid sequence. MAPKAP kinase-2 phosphorylated glycogen synthase at Ser7 and the equivalent serine (*) in the peptide KKPLNRTLS*VASLPGLamide whose sequence is similar to the N terminus of glycogen synthase. MAPKAP kinase-2 was resolved into two monomeric species of apparent molecular mass 60 and 53 kDa that had similar specific activities and substrate specificities. Peptide sequences of the 60 and 53 kDa species were identical, indicating that they are either closely related isoforms or derived from the same gene. MAP kinase activated the 60 and 53 kDa forms of MAPKAP kinase-2 by phosphorylating the first threonine residue in the sequence VPQTPLHTSR. Furthermore, Mono Q chromatography of extracts from rat phaeochromocytoma and skeletal muscle demonstrated that two MAP kinase isoforms (p42mapk and p44mapk) were the only enzymes in these cells that were capable of reactivating MAPKAP kinase-2. These results indicate that MAP kinase activates at least two distinct protein kinases, suggesting that it represents a point at which the growth factor-stimulated protein kinase cascade bifurcates. Images PMID:1327754

  18. Type II cyclic guanosine monophosphate-dependent protein kinase inhibits Rac1 activation in gastric cancer cells

    PubMed Central

    WANG, YING; CHEN, YONGCHANG; WU, MIN; LAN, TING; WU, YAN; LI, YUEYING; QIAN, HAI

    2015-01-01

    Enhanced motility of cancer cells is a critical step in promoting tumor metastasis, which remains the major cause of gastric cancer-associated mortality. The small GTPase Rac1 is a key signaling component in the regulation of cell migration. Previous studies have demonstrated that Rac1 activity may be regulated by protein kinase G (PKG); however, the underlying mechanism is not yet clear. The current study aimed to investigate the effect of type II cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG II) on Rac1 activity. The human gastric cancer cell line AGS was infected with adenoviral constructs encoding PKG II to increase the expression of this enzyme, and treated with a cGMP analog (8-pCPT-cGMP) to induce its activation. A Transwell assay was employed to measure cell migration, and the activity of Rac1 was assessed using a pull-down assay. Immunoprecipitation was used to isolate the Rac1 protein. Phosphorylation of phosphatidylinositol 4,5 bisphosphate 3 kinase (PI3K) and its downstream effecter protein kinase B (Akt) are associated with lysophosphatidic acid (LPA)-induced motility/migration of cancer cells. Extracellular signal regulated kinase (ERK) is the major signaling molecule of the Mitogen activated protein kinase (MAPK) mediated signaling pathway. ERK and its upstream activator MAPK kinase (MEK) are also involved in LPA-induced motility/migration of cancer cells. Phosphorylation of PI3K/Akt, MEK/ERK and enriched Rac1 were detected by western blotting. The results revealed that blocking the activation of Rac1 by ectopically expressing an inactive Rac1 mutant (T17N) impeded LPA-induced cell migration. Increased PKG II activity inhibited LPA-induced migration and LPA-induced activation of Rac1; however, it had no effect on the phosphorylation of Rac1. PKG II also inhibited the activation of PI3K/Akt and MEK/ERK mediated signaling, which is important for LPA-induced Rac1 activation. These results suggest that PKG II affects LPA

  19. Catechins inhibit angiotensin II-induced vascular smooth muscle cell proliferation via mitogen-activated protein kinase pathway.

    PubMed

    Won, Sun-Mi; Park, Youn-Hee; Kim, Hee-Jung; Park, Kwon-Moo; Lee, Won-Jung

    2006-10-31

    Catechins, components of green tea, reduce the incidence of cardiovascular diseases such as atherosclerosis. Angiotensin II (Ang II) is highly implicated in the proliferation of vascular smooth muscle cells (VSMC), resulting in atherosclerosis. The acting mechanisms of the catechins remain to be defined in the proliferation of VSMC induced by Ang II. Here we report that catechin, epicatechin (EC), epicatechingallate (ECG) or epigallocatechingallate (EGCG) significantly inhibits the Ang II-induced [3H]thymidine incorporation into the primary cultured rat aortic VSMC. Ang II increases the phosphorylation of the extracellular signal-regulated protein kinase 1/2 (ERK 1/2), c-jun-N-terminal kinase 1/2 (JNK 1/2), or p38 mitogen-activated protein kinases (MAPKs) and mRNA expression of c-jun and c-fos. The EGCG pretreatment inhibits the Ang II-induced phosphorylation of ERK 1/2, JNK 1/2, or p38 MAPK, and the expression of c-jun or c-fos mRNA. U0126, a MEK inhibitor, SP600125, a JNK inhibitor, or SB203580, a p38 inhibitor, attenuates the Ang II-induced [3H]thymidine incorporation into the VSMC. In conclusion, catechins inhibit the Ang II-stimulated VSMC proliferation via the inhibition of the Ang II-stimulated activation of MAPK and activator protein-1 signaling pathways. The antiproliferative effect of catechins may be associated with the reduced risk of cardiovascular diseases by the intake of green tea. Catechins may be useful in the development of prevention and therapeutics of vascular diseases.

  20. Syndecan-2 regulates melanin synthesis via protein kinase C βII-mediated tyrosinase activation.

    PubMed

    Jung, Hyejung; Chung, Heesung; Chang, Sung Eun; Choi, Sora; Han, Inn-Oc; Kang, Duk-Hee; Oh, Eok-Soo

    2014-05-01

    Syndecan-2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan-2 in melanogenesis. Syndecan-2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA-mediated knockdown of syndecan-2 was associated with reduced melanin synthesis, whereas overexpression of syndecan-2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan-2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinaseII. Furthermore, UVB caused increased syndecan-2 expression, and this up-regulation of syndecan-2 was required for UVB-induced melanin synthesis. Taken together, these data suggest that syndecan-2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin-associated diseases.

  1. Ca2+/calmodulin-dependent protein kinase II function in vascular remodelling.

    PubMed

    Singer, Harold A

    2012-03-15

    Vascular smooth muscle (VSM) undergoes a phenotypic switch in response to injury, a process that contributes to pathophysiological vascular wall remodelling. VSM phenotype switching is a consequence of changes in gene expression, including an array of ion channels and pumps affecting spatiotemporal features of intracellular Ca(2+) signals. Ca(2+) signalling promotes vascular wall remodelling by regulating cell proliferation, motility, and/or VSM gene transcription, although the mechanisms are not clear. In this review, the functions of multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in VSM phenotype switching and synthetic phenotype function are considered. CaMKII isozymes have complex structural and autoregulatory properties. Vascular injury in vivo results in rapid changes in CaMKII isoform expression with reduced expression of CaMKIIγ and upregulation of CaMKIIδ in medial wall VSM. SiRNA-mediated suppression of CaMKIIδ or gene deletion attenuates VSM proliferation and consequent neointimal formation. In vitro studies support functions for CaMKII in the regulation of cell proliferation, motility and gene expression via phosphorylation of CREB1 and HDACIIa/MEF2 complexes. These studies support the concept, and provide potential mechanisms, whereby Ca(2+) signalling through CaMKIIδ promotes VSM phenotype transitions and vascular remodelling.

  2. Ca2+/calmodulin-dependent protein kinase II function in vascular remodelling

    PubMed Central

    Singer, Harold A

    2012-01-01

    Vascular smooth muscle (VSM) undergoes a phenotypic switch in response to injury, a process that contributes to pathophysiological vascular wall remodelling. VSM phenotype switching is a consequence of changes in gene expression, including an array of ion channels and pumps affecting spatiotemporal features of intracellular Ca2+ signals. Ca2+ signalling promotes vascular wall remodelling by regulating cell proliferation, motility, and/or VSM gene transcription, although the mechanisms are not clear. In this review, the functions of multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) in VSM phenotype switching and synthetic phenotype function are considered. CaMKII isozymes have complex structural and autoregulatory properties. Vascular injury in vivo results in rapid changes in CaMKII isoform expression with reduced expression of CaMKIIγ and upregulation of CaMKIIδ in medial wall VSM. SiRNA-mediated suppression of CaMKIIδ or gene deletion attenuates VSM proliferation and consequent neointimal formation. In vitro studies support functions for CaMKII in the regulation of cell proliferation, motility and gene expression via phosphorylation of CREB1 and HDACIIa/MEF2 complexes. These studies support the concept, and provide potential mechanisms, whereby Ca2+ signalling through CaMKIIδ promotes VSM phenotype transitions and vascular remodelling. PMID:22124148

  3. Regulation of gastrointestinal motility by Ca2+/calmodulin-stimulated protein kinase II.

    PubMed

    Perrino, Brian A

    2011-06-15

    Gastrointestinal (GI) motility ultimately depends upon the contractile activity of the smooth muscle cells of the tunica muscularis. Integrated functioning of multiple tissues and cell types, including enteric neurons and interstitial cells of Cajal (ICC) is necessary to generate coordinated patterns of motor activity that control the movement of material through the digestive tract. The neurogenic mechanisms that govern GI motility patterns are superimposed upon intrinsic myogenic mechanisms regulating smooth muscle cell excitability. Several mechanisms regulate smooth muscle cell responses to neurogenic inputs, including the multifunctional Ca(2+)/calmodulin-stimulated protein kinase II (CaMKII). CaMKII can be activated by Ca(2+) transients from both extracellular and intracellular sources. Prolonging the activities of Ca(2+)-sensitive K(+) channels in the plasma membrane of GI smooth muscle cells is an important regulatory mechanism carried out by CaMKII. Phospholamban (PLN) phosphorylation by CaMKII activates the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA), increasing both the rate of Ca(2+) clearance from the myoplasm and the frequency of localized Ca(2+) release events from intracellular stores. Overall, CaMKII appears to moderate GI smooth muscle cell excitability. Finally, transcription factor activities may be facilitated by the neutralization of HDAC4 by CaMKII phosphorylation, which may contribute to the phenotypic plasticity of GI smooth muscle cells.

  4. Protein kinase C epsilon-dependent extracellular signal-regulated kinase 5 phosphorylation and nuclear translocation involved in cardiomyocyte hypertrophy with angiotensin II stimulation.

    PubMed

    Zhao, Zhuo; Wang, Wei; Geng, Jing; Wang, Liqi; Su, Guohai; Zhang, Yun; Ge, Zhiming; Kang, Weiqiang

    2010-03-01

    Angiotensin II (Ang II) plays a critical role in hypertrophy of cardiomyocytes; however, the molecular mechanism, especially the signaling cascades, in cardiomyocytes remains unclear. In the present study, we examined the mechanism of Ang II in hypertrophy of cardiomyocytes. Ang II rapidly stimulated phosphorylation of protein kinase C epsilon (PKCepsilon) in a time- and dose-dependent manner via Ang II receptor-1 (AT(1)). Furthermore, Ang II-induced extracellular signal-regulated kinase 5 (ERK5) phosphorylation and translocation was mediated through a signal pathway that involves AT(1) and PKCepsilon, which resulted in transcriptional activation of myocyte enhancer factor-2C (MEF2C) and hypertrophy. Consequently, inhibiting PKCepsilon or ERK5 by small interfering RNA (siRNA) significantly attenuated Ang II-induced MEF2C activation and hypertrophy of rat cardiomyocytes. These data provide evidence that PKCepsilon-dependent ERK5 phosphorylation and nucleocytoplasmic traffic mediates Ang II-induced MEF2C activation and cardiomyocyte hypertrophy. PKCepsilon and ERK5 may be potential targets in the treatment of pathological vascular hypertrophy associated with the enhanced renin-angiotensin system. (c) 2010 Wiley-Liss, Inc.

  5. Biodentine induces human dental pulp stem cell differentiation through mitogen-activated protein kinase and calcium-/calmodulin-dependent protein kinase II pathways.

    PubMed

    Luo, Zhirong; Kohli, Meetu R; Yu, Qing; Kim, Syngcuk; Qu, Tiejun; He, Wen-xi

    2014-07-01

    Biodentine (Septodont, Saint-Maur-des-Fossès, France), a new tricalcium silicate cement formulation, has been introduced as a bioactive dentine substitute to be used in direct contact with pulp tissue. The aim of this study was to investigate the response of human dental pulp stem cells (hDPSCs) to the material and whether mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), and calcium-/calmodulin-dependent protein kinase II (CaMKII) signal pathways played a regulatory role in Biodentine-induced odontoblast differentiation. hDPCs obtained from impacted third molars were incubated with Biodentine. Odontoblastic differentiation was evaluated by alkaline phosphatase activity, alizarin red staining, and quantitative real-time reverse-transcriptase polymerase chain reaction for the analysis of messenger RNA expression of the following differentiation gene markers: osteocalcin (OCN), dentin sialophosprotein (DSPP), dentin matrix protein 1 (DMP1), and bone sialoprotein (BSP). Cell cultures in the presence of Biodentine were exposed to specific inhibitors of MAPK (U0126, SB203580, and SP600125), NF-κB (pyrrolidine dithiocarbamate), and CaMKII (KN-93) pathways to evaluate the regulatory effect on the expression of these markers and mineralization assay. Biodentine significantly increased alkaline phosphatase activity and mineralized nodule formation and the expression of OCN, DSPP, DMP1, and BSP. The MAPK inhibitor for extracellular signal-regulated kinase 1/2 (U0126) and Jun N-terminal kinase (SP600125) significantly decreased the Biodentine-induced mineralized differentiation of hDPSCs and OCN, DSPP, DMP1, and BSP messenger RNA expression, whereas p38 MAPK inhibitors (SB203580) had no effect. The CaMKII inhibitor KN-93 significantly attenuated and the NF-κB inhibitor pyrrolidine dithiocarbamate further enhanced the up-regulation of Biodentine-induced gene expression and mineralization. Biodentine is a bioactive and biocompatible material capable

  6. Increased calcium/calmodulin-dependent protein kinase II activity by morphine-sensitization in rat hippocampus.

    PubMed

    Kadivar, Mehdi; Farahmandfar, Maryam; Ranjbar, Faezeh Esmaeli; Zarrindast, Mohammad-Reza

    2014-07-01

    Repeated exposure to drugs of abuse, such as morphine, elicits a progressive enhancement of drug-induced behavioral responses, a phenomenon termed behavioral sensitization. These changes in behavior may reflect long-lasting changes in some of the important molecules involved in memory processing such as calcium/calmodulin-dependent protein kinase II (CaMKII). In the present study, we investigated the effect of morphine sensitization on mRNA expression of α and β isoforms and activity of CaMKII in the hippocampus of male rats. Animals were treated for 3 days with saline or morphine (20mg/kg) and following a washout period of 5 days, a challenge dose of morphine (5mg/kg) were administered. The results indicate that morphine administration in pre-treated animals produces behavioral sensitization, as determined by significant increase in locomotion and oral stereotypy behavior. In addition, repeated morphine treatment increased mRNA expression of both α and β isoforms of CaMKII in the hippocampus. The present study also showed that induction of morphine sensitization significantly increased both Ca2+/calmodulin-independent and Ca2+/calmodulin-dependent activities of CaMK II in the rat hippocampus. However, acute administration of morphine (5mg/kg) did not alter either α and β CaMKII mRNA expression or CaMKII activity in the hippocampus. The stimulation effects of morphine sensitization on mRNA expression and activity of CaMKII were completely abolished by administration of naloxone, 30min prior to s.c. injections of morphine (20mg/kg/day×3 days). Our data demonstrated that induction of morphine sensitization could effectively modulate the activity and the mRNA expression of CaMKII in the hippocampus and this effect of morphine was exerted by the activation of opioid receptors.

  7. Involvement of Amygdalar Protein Kinase A, but not Calcium/Calmodulin-Dependent Protein Kinase II, in the Reconsolidation of Cocaine-Related Contextual Memories in Rats

    PubMed Central

    Arguello, Amy A.; Hodges, Matthew A.; Wells, Audrey M.; Lara, Honorio; Xie, Xiaohu; Fuchs, Rita A.

    2013-01-01

    Rationale Contextual control over drug relapse depends on the successful reconsolidation and retention of context-response-cocaine associations in long-term memory stores. The basolateral amygdala (BLA) plays a critical role in cocaine memory reconsolidation and subsequent drug context-induced cocaine-seeking behavior; however, less is known about the cellular mechanisms of this phenomenon. Objectives The present study evaluated the hypothesis that protein kinase A (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII) activation in the BLA is necessary for the reconsolidation of context-response-cocaine memories that promote subsequent drug context-induced cocaine-seeking behavior. Methods Rats were trained to lever-press for cocaine infusions in a distinct context, followed by extinction training in a different context. Rats were then briefly re-exposed to the previously cocaine-paired context or an unpaired context in order to reactivate cocaine-related contextual memories and initiate their reconsolidation or to provide a similar behavioral experience without explicit cocaine-related memory reactivation, respectively. Immediately after this session, rats received bilateral microinfusions of vehicle, the PKA inhibitor, Rp-Adenosine 3′,5′-cyclic monophosphorothioate triethylammonium salt (Rp-cAMPS), or the CaMKII inhibitor, KN-93, into the BLA or the posterior caudate putamen (anatomical control region). Rats were then tested for cocaine-seeking behavior (responses on the previously cocaine-paired lever) in the cocaine-paired context and the extinction context. Results Intra-BLA infusion of Rp-cAMPS, but not KN-93, following cocaine memory reconsolidation impaired subsequent cocaine-seeking behavior in a dose-dependent, site-specific, and memory reactivation-dependent fashion. Conclusions PKA, but not CaMKII, activation in the BLA is critical for cocaine memory re-stabilization processes that facilitate subsequent drug context-induced instrumental

  8. Function of cGMP-dependent protein kinase II in volume load-induced diuresis.

    PubMed

    Schramm, Andrea; Schinner, Elisabeth; Huettner, Johannes P; Kees, Frieder; Tauber, Philipp; Hofmann, Franz; Schlossmann, Jens

    2014-10-01

    Atrial natriuretic peptide (ANP)/cGMPs cause diuresis and natriuresis. Their downstream effectors beyond cGMP remain unclear. To elucidate a probable function of cGMP-dependent protein kinase II (cGKII), we investigated renal parameters in different conditions (basal, salt diets, starving, water load) using a genetically modified mouse model (cGKII-KO), but did not detect any striking differences between WT and cGKII-KO. Thus, cGKII is proposed to play only a marginal role in the adjustment of renal concentration ability to varying salt loads without water restriction or starving conditions. When WT mice were subjected to a volume load (performed by application of a 10-mM glucose solution (3% of BW) via feeding needle), they exhibited a potent diuresis. In contrast, urine volume was decreased significantly in cGKII-KO. We showed that AQP2 plasma membrane (PM) abundance was reduced for about 50% in WT upon volume load, therefore, this might be a main cause for the enhanced diuresis. In contrast, cGKII-KO mice almost completely failed to decrease AQP2-PM distribution. This significant difference between both genotypes is not induced by an altered p-Ser256-AQP2 phosphorylation, as phosphorylation at this site decreases similarly in WT and KO. Furthermore, sodium excretion was lowered in cGKII-KO mice during volume load. In summary, cGKII is only involved to a minor extent in the regulation of basal renal concentration ability. By contrast, cGKII-KO mice are not able to handle an acute volume load. Our results suggest that membrane insertion of AQP2 is inhibited by cGMP/cGKII.

  9. Reduced Arrhythmia Inducibility with Calcium/Calmodulin-Dependent Protein Kinase II Inhibition in Heart Failure Rabbits

    PubMed Central

    Hoeker, Gregory S.; Hanafy, Mohamed A.; Oster, Robert A.; Bers, Donald M.; Pogwizd, Steven M.

    2015-01-01

    Rationale Calcium/calmodulin-dependent protein kinase II (CaMKII) is activated in heart failure (HF) and can contribute to arrhythmias induced by β-adrenergic receptor-mediated sarcoplasmic reticulum calcium leak. Objective To evaluate the effect of CaMKII inhibition on ventricular tachycardia (VT) induction in conscious HF and naïve rabbits. Methods and Results Nonischemic HF was induced by aortic insufficiency and constriction. Electrocardiograms were recorded in rabbits pretreated with vehicle (saline) or the CaMKII inhibitor KN-93 (300 μg/kg); VT was induced by infusion of increasing doses of norepinephrine (NE, 1.56-25 μg/kg/min) in naïve (n = 8) and HF (n = 7) rabbits. With saline, median VT dose threshold in HF was 6.25 versus 12.5 μg/kg/min NE in naïve rabbits (p = 0.06). Pretreatment with KN-93 significantly increased VT threshold in HF and naïve rabbits (median = 25 μg/kg/min, p < 0.05 versus saline for both groups). Mean cycle length of VT initiation was shorter in HF (221 ± 20 ms) than naïve (296 ± 23 ms, p < 0.05) rabbits with saline; this difference was not significant after treatment with KN-93. Conclusions KN-93 significantly reduced arrhythmia inducibility and slowed initiation of VT, suggesting that CaMKII inhibition may have antiarrhythmic effects in the failing human heart. PMID:26650851

  10. Autophosphorylation of the C2 domain inhibits translocation of the novel protein kinase C (nPKC) Apl II.

    PubMed

    Farah, Carole A; Lindeman, Amanda A; Siu, Vincent; Gupta, Micaela Das; Sossin, Wayne S

    2012-11-01

    Protein kinase Cs (PKCs) are critical signaling molecules controlled by complex regulatory pathways. Herein, we describe an important regulatory role for C2 domain phosphorylation. Novel PKCs (nPKCs) contain an N-terminal C2 domain that cannot bind to calcium. Previously, we described an autophosphorylation site in the Aplysia novel PKC Apl II that increased the binding of the C2 domain to lipids. In this study, we show that the function of this phosphorylation is to inhibit PKC translocation. Indeed, a phosphomimetic serine-glutamic acid mutation reduced translocation of PKC Apl II while blocking phosphorylation with a serine-alanine mutation enhanced translocation and led to the persistence of the kinase at the membrane longer after the end of the stimulation. Consistent with a role for autophosphorylation in regulating kinase translocation, inhibiting PKC activity using bisindolymaleimide 1 increased physiological translocation of PKC Apl II, whereas inhibiting phosphatase activity using calyculin A inhibited physiological translocation of PKC Apl II in neurons. Our results suggest a major role for autophosphorylation-dependent regulation of translocation.

  11. Teaching resources. Protein kinases.

    PubMed

    Caplan, Avrom

    2005-02-22

    This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein kinases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the genomics and evolutionary relationships among kinases and then proceeds to describe the structure-function relationships of specific kinases, the molecular mechanisms underlying substrate specificity, and selected issues in regulation of kinase activity.

  12. Physiological Role for Phosphatidic Acid in the Translocation of the Novel Protein Kinase C Apl II in Aplysia Neurons▿

    PubMed Central

    Farah, Carole A.; Nagakura, Ikue; Weatherill, Daniel; Fan, Xiaotang; Sossin, Wayne S.

    2008-01-01

    In Aplysia californica, the serotonin-mediated translocation of protein kinase C (PKC) Apl II to neuronal membranes is important for synaptic plasticity. The orthologue of PKC Apl II, PKCɛ, has been reported to require phosphatidic acid (PA) in conjunction with diacylglycerol (DAG) for translocation. We find that PKC Apl II can be synergistically translocated to membranes by the combination of DAG and PA. We identify a mutation in the C1b domain (arginine 273 to histidine; PKC Apl II-R273H) that removes the effects of exogenous PA. In Aplysia neurons, the inhibition of endogenous PA production by 1-butanol inhibited the physiological translocation of PKC Apl II by serotonin in the cell body and at the synapse but not the translocation of PKC Apl II-R273H. The translocation of PKC Apl II-R273H in the absence of PA was explained by two additional effects of this mutation: (i) the mutation removed C2 domain-mediated inhibition, and (ii) the mutation decreased the concentration of DAG required for PKC Apl II translocation. We present a model in which, under physiological conditions, PA is important to activate the novel PKC Apl II both by synergizing with DAG and removing C2 domain-mediated inhibition. PMID:18505819

  13. Type II cGMP-dependent protein kinase inhibits epidermal growth factor-induced phosphatidylinositol-3-kinase/Akt signal transduction in gastric cancer cells.

    PubMed

    Wu, Min; Chen, Yongchang; Jiang, Lu; Li, Yueying; Lan, Ting; Wang, Ying; Qian, Hai

    2013-12-01

    Our previous study revealed that Type II cGMP-dependent protein kinase (PKG II) inhibits epidermal growth factor (EGF)-induced MAPK/ERK and MAPK/JNK-mediated signal transduction through the inhibition of the phosphorylation/activation of the EGF receptor (EGFR). As EGFR also mediates several other signal transduction pathways besides MAPK-mediated pathways, the present study was designed to investigate whether PKG II was able to inhibit EGF/EGFR-induced phosphatidylinositol-3-kinase (PI3K)/Akt-mediated signal transduction. The AGS human gastric cancer cell line was infected with adenoviral constructs encoding a cDNA of PKG II (Ad-PKG II) to increase the expression of PKG II, and treated with 8-pCPT-cGMP to activate the enzyme. Western blotting was used to detect the phosphorylation/activation of the key components of the signal transduction pathway, including EGFR, PI3K, Akt, mTOR and NF-κB. The levels of apoptosis-related proteins, including Bax, Bcl-2, caspase 9 and DNA fragment factor (DFF), were also determined by western blotting. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining was used to detect the apoptosis of the AGS cells. The results revealed that EGF treatment increased the phosphorylation (activation) of EGFR, PI3K, Akt and mTOR, and increased the nuclear localization (activation) of NF-κB. EGF treatment also reduced the apoptosis of the AGS cells and increased the expression of the anti-apoptotic protein, Bcl-2, but had no effect on the expression of the pro-apoptotic protein, Bax, and did not alter the levels of caspase 9 and DFF. Increasing the PKG II activity of AGS cells by infecting them with Ad-PKG II and stimulating them with 8-pCPT-cGMP inhibited the EGF-induced activation of EGFR, PI3K, Akt, mTOR and NF-κB; caused an increase in caspase 9 breakdown (activation) and DFF levels; and reversed the anti-apoptotic effect of EGF. The results suggest that PKG II may also inhibit EGF-induced signal transduction of PI3

  14. Angiotensin II stimulates renal proximal tubule Na(+)-ATPase activity through the activation of protein kinase C.

    PubMed

    Rangel, L B A; Caruso-Neves, C; Lara, L S; Lopes, A G

    2002-08-31

    Recently, our group described an AT(1)-mediated direct stimulatory effect of angiotensin II (Ang II) on the Na(+)-ATPase activity of proximal tubules basolateral membranes (BLM) [Am. J. Physiol. 248 (1985) F621]. Data in the present report suggest the participation of a protein kinase C (PKC) in the molecular mechanism of Ang II-mediated stimulation of the Na(+)-ATPase activity due to the following observations: (i) the stimulation of protein phosphorylation in BLM, induced by Ang II, is mimicked by the PKC activator TPA, and is completely reversed by the specific PKC inhibitor, calphostin C; (ii) the Na(+)-ATPase activity is stimulated by Ang II and TPA in the same magnitude, being these effects abolished by the use of the PKC inhibitors, calphostin C and sphingosine; (iii) the Na(+)-ATPase activity is activated by catalytic subunit of PKC (PKC-M), in a similar and nonadditive manner to Ang II; and (iv) Ang II stimulates the phosphorylation of MARCKS, a specific substrate for PKC.

  15. Calcium/Calmodulin-Dependent Protein Kinase II Contributes to Cardiac Arrhythmogenesis in Heart Failure

    PubMed Central

    Sag, Can M.; Wadsack, Daniel P.; Khabbazzadeh, Sepideh; Abesser, Marco; Grefe, Clemens; Neumann, Kay; Opiela, Marie-Kristin; Backs, Johannes; Olson, Eric N.; Brown, Joan Heller; Neef, Stefan; Maier, Sebastian K.G.; Maier, Lars S.

    2010-01-01

    Background Transgenic (TG) Ca/calmodulin-dependent protein kinase II (CaMKII)δC mice have heart failure and isoproterenol (ISO)-inducible arrhythmias. We hypothesized that CaMKII contributes to arrhythmias and underlying cellular events and that inhibition of CaMKII reduces cardiac arrhythmogenesis in vitro and in vivo. Methods and Results Under baseline conditions, isolated cardiac myocytes from TG mice showed an increased incidence of early afterdepolarizations compared with wild-type myocytes (P<0.05). CaMKII inhibition (AIP) completely abolished these afterdepolarizations in TG cells (P<0.05). Increasing intracellular Ca stores using ISO (10−8 M) induced a larger amount of delayed afterdepolarizations and spontaneous action potentials in TG compared with wild-type cells (P<0.05). This seems to be due to an increased sarcoplasmic reticulum (SR) Ca leak because diastolic [Ca]i rose clearly on ISO in TG but not in wild-type cells (+20±5% versus +3±4% at 10−6 M ISO, P<0.05). In parallel, SR Ca leak assessed by spontaneous SR Ca release events showed an increased Ca spark frequency (3.9±0.5 versus 2.0±0.4 sparks per 100 μm−1·s−1, P<0.05). However, CaMKII inhibition (either pharmacologically using KN-93 or genetically using an isoform-specific CaMKIIδ-knockout mouse model) significantly reduced SR Ca spark frequency, although this rather increased SR Ca content. In parallel, ISO increased the incidence of early (54% versus 4%, P<0.05) and late (86% versus 43%, P<0.05) nonstimulated events in TG versus wild-type myocytes, but CaMKII inhibition (KN-93 and KO) reduced these proarrhythmogenic events (P<0.05). In addition, CaMKII inhibition in TG mice (KN-93) clearly reduced ISO-induced arrhythmias in vivo (P<0.05). Conclusions We conclude that CaMKII contributes to cardiac arrhythmogenesis in TG CaMKIIδC mice having heart failure and suggest the increased SR Ca leak as an important mechanism. Moreover, CaMKII inhibition reduces cardiac arrhythmias in

  16. Modulation of calcium-mediated inactivation of ionic currents by Ca2+/calmodulin-dependent protein kinase II.

    PubMed Central

    Sakakibara, M; Alkon, D L; DeLorenzo, R; Goldenring, J R; Neary, J T; Heldman, E

    1986-01-01

    Iontophoretic injection of Ca2+ causes reduction of I0A (an early rapidly activating and inactivating K+ current) and I0C (a late Ca2+-dependent K+ current) measured across the isolated type B soma membrane (Alkon et al., 1984, 1985; Alkon and Sakakibara, 1984, 1985). Similarly, voltage-clamp conditions which cause elevation of [Ca2+]i are followed by reduction of I0A and I0C lasting 1-3 min. Iontophoretic injection of highly purified Ca2+/CaM-dependent protein kinase II (CaM kinase II) isolated from brain tissue (Goldenring et al., 1983) enhanced and prolonged this Ca2+-mediated reduction of I0A and I0C. ICa2+, a voltage-dependent Ca2+ current, also showed some persistent reduction under these conditions. Iontophoretic injection of heat-inactivated enzyme had no effect. Agents that inhibit or block Ca2+/CaM-dependent phosphorylation produced increased I0A and I0C amplitudes and prevented the effects of CaM kinase II injection. The results reported here and in other studies implicate Ca2+-stimulated phosphorylation in the regulation of type B soma ionic currents. PMID:2427133

  17. Angiotensin II Triggered p44/42 Mitogen-Activated Protein Kinase Mediates Sympathetic Excitation in Heart Failure Rats

    PubMed Central

    Wei, Shun-Guang; Yu, Yang; Zhang, Zhi-Hua; Weiss, Robert M.; Felder, Robert B.

    2009-01-01

    Angiotensin II (ANG II), acting via angiotensin type 1 receptors (AT1-R) in the brain, activates the sympathetic nervous system in heart failure (HF). We recently reported that ANG II stimulates mitogen-activated protein kinase (MAPK) to upregulate brain AT1-R in HF rats. In this study we tested the hypothesis that ANG II-activated MAPK signaling pathways contribute to sympathetic excitation in HF. Intracerebroventricular (ICV) administration of PD98059 and UO126, two selective p44/42 MAPK inhibitors, induced significant decreases in mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) in HF rats, but had no effect on these variables in SHAM rats. Pretreatment with losartan attenuated the effects of PD98059. ICV administration of the p38 MAPK inhibitor SB203580 and the c-Jun N-terminal kinase inhibitor SP600125 had no effect on MAP, HR or RSNA in HF. The phosphatidylinositol-3 kinase inhibitor LY294002 induced a small decrease in MAP and HR, but no change in RSNA. Immunofluorescent staining demonstrated increased p44/42 MAPK activity in neurons of the paraventricular nucleus of the hypothalamus (PVN) of HF rats, co-localized with Fra-like activity (indicating chronic neuronal excitation). ICV PD98059 and UO126 reduced Fra-like activity in PVN neurons in HF rats. In confirmatory acute studies, ICV ANG II increased MAP, HR and RSNA in baroreceptor-denervated rats and Fra-LI immunoreactivity in the PVN of neurally intact rats. Central administration of PD98059 markedly reduced these responses. These data demonstrate that intracellular p44/42 MAPK activity contributes to ANG II-induced PVN neuronal excitation and augmented sympathetic nerve activity in rats with HF. PMID:18574076

  18. Identification of peptides in wheat germ hydrolysate that demonstrate calmodulin-dependent protein kinase II inhibitory activity.

    PubMed

    Kumrungsee, Thanutchaporn; Akiyama, Sayaka; Guo, Jian; Tanaka, Mitsuru; Matsui, Toshiro

    2016-12-15

    Hydrolysis of wheat germ by proteases resulted in bioactive peptides that demonstrated an inhibitory effect against the vasoconstrictive Ca(2+)-calmodulin (CaM)-dependent protein kinase II (CaMK II). The hydrolysate by thermolysin (1.0wt%, 5h) showed a particularly potent CaMK II inhibition. As a result of mixed mode high-performance liquid chromatography of thermolysin hydrolysate with pH elution gradient ranging between 4.8 and 8.9, the fraction eluted at pH 8.9 was the most potent CaMK II inhibitor. From this fraction, Trp-Val and Trp-Ile were identified as CaMK II inhibitors. In Sprague-Dawley rats, an enhanced aortic CaMK II activity by 1μM phenylephrine was significantly (p<0.05) suppressed by 15-min incubation with 300μM Trp-Val or Trp-Ile. On the basis of Ca(2+)-chelating fluorescence and CaMK II activity assays, it was concluded that Trp-Val and Trp-Ile competed with Ca(2+)-CaM complex to bind to CaMK II with Ki values of 5.4 and 3.6μM, respectively.

  19. Protein kinase C phosphorylates topoisomerase II: topoisomerase activation and its possible role in phorbol ester-induced differentiation of HL-60 cells

    SciTech Connect

    Sahyoun, N.; Wolf, M.; Besterman, J.; Hsieh, T.S.; Sander, M.; LeVine H. III; Chang, K.J.; Cuatrecasas, P.

    1986-03-01

    DNA topoisomerase II from Drosophila was phosphorylated effectively by protein kinase C. With a K/sub m/ of about 100 nM, the reaction was rapid, occurring at 4/sup 0/C as well as at 30/sup 0/C and requiring as little as 0.6 ng of the protein kinase per 170 ng of topoisomerase. About 0.85 mol of phosphate could be incorporated per mol of topoisomerase II, with phosphoserine as the only phospho amino acid produced. The reaction was dependent on Ca/sup 2 +/ and phosphatidylserine and was stimulated by phorbol esters. Calmodulin-dependent protein kinase II, but not cyclic AMP-dependent protein kinase, was also able to phosphorylate the topoisomerase. Phosphorylation of topoisomerase II by protein kinase C resulted in appreciable activation of the topoisomerase, suggesting that it may represent a possible target for the regulation of nuclear events by protein kinase C. This possibility is supported by the finding that the phorbol ester-induced differentiation of HL-60 cells was blocked by the topoisomerase II inhibitors novobiocin and 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA), but not by the inactive analog o-AMSA.

  20. The octopamine receptor OAMB mediates ovulation via Ca2+/calmodulin-dependent protein kinase II in the Drosophila oviduct epithelium.

    PubMed

    Lee, Hyun-Gwan; Rohila, Suman; Han, Kyung-An

    2009-01-01

    Ovulation is an essential physiological process in sexual reproduction; however, the underlying cellular mechanisms are poorly understood. We have previously shown that OAMB, a Drosophila G-protein-coupled receptor for octopamine (the insect counterpart of mammalian norepinephrine), is required for ovulation induced upon mating. OAMB is expressed in the nervous and reproductive systems and has two isoforms (OAMB-AS and OAMB-K3) with distinct capacities to increase intracellular Ca2+ or intracellular Ca2+ and cAMP in vitro. Here, we investigated tissue specificity and intracellular signals required for OAMB's function in ovulation. Restricted OAMB expression in the adult oviduct epithelium, but not the nervous system, reinstated ovulation in oamb mutant females, in which either OAMB isoform was sufficient for the rescue. Consistently, strong immunoreactivities for both isoforms were observed in the wild-type oviduct epithelium. To delineate the cellular mechanism by which OAMB regulates ovulation, we explored protein kinases functionally interacting with OAMB by employing a new GAL4 driver with restricted expression in the oviduct epithelium. Conditional inhibition of Ca2+/Calmodulin-dependent protein kinase II (CaMKII), but not protein kinase A or C, in the oviduct epithelium inhibited ovulation. Moreover, constitutively active CaMKII, but not protein kinase A, expressed only in the adult oviduct epithelium fully rescued the oamb female's phenotype, demonstrating CaMKII as a major downstream molecule conveying the OAMB's ovulation signal. This is consistent with the ability of both OAMB isoforms, whose common intracellular signal in vitro is Ca2+, to reinstate ovulation in oamb females. These observations reveal the critical roles of the oviduct epithelium and its cellular components OAMB and CaMKII in ovulation. It is conceivable that the OAMB-mediated cellular activities stimulated upon mating are crucial for secretory activities suitable for egg transfer from

  1. The Octopamine Receptor OAMB Mediates Ovulation via Ca2+/Calmodulin-Dependent Protein Kinase II in the Drosophila Oviduct Epithelium

    PubMed Central

    Lee, Hyun-Gwan; Rohila, Suman; Han, Kyung-An

    2009-01-01

    Ovulation is an essential physiological process in sexual reproduction; however, the underlying cellular mechanisms are poorly understood. We have previously shown that OAMB, a Drosophila G-protein-coupled receptor for octopamine (the insect counterpart of mammalian norepinephrine), is required for ovulation induced upon mating. OAMB is expressed in the nervous and reproductive systems and has two isoforms (OAMB-AS and OAMB-K3) with distinct capacities to increase intracellular Ca2+ or intracellular Ca2+ and cAMP in vitro. Here, we investigated tissue specificity and intracellular signals required for OAMB's function in ovulation. Restricted OAMB expression in the adult oviduct epithelium, but not the nervous system, reinstated ovulation in oamb mutant females, in which either OAMB isoform was sufficient for the rescue. Consistently, strong immunoreactivities for both isoforms were observed in the wild-type oviduct epithelium. To delineate the cellular mechanism by which OAMB regulates ovulation, we explored protein kinases functionally interacting with OAMB by employing a new GAL4 driver with restricted expression in the oviduct epithelium. Conditional inhibition of Ca2+/Calmodulin-dependent protein kinase II (CaMKII), but not protein kinase A or C, in the oviduct epithelium inhibited ovulation. Moreover, constitutively active CaMKII, but not protein kinase A, expressed only in the adult oviduct epithelium fully rescued the oamb female's phenotype, demonstrating CaMKII as a major downstream molecule conveying the OAMB's ovulation signal. This is consistent with the ability of both OAMB isoforms, whose common intracellular signal in vitro is Ca2+, to reinstate ovulation in oamb females. These observations reveal the critical roles of the oviduct epithelium and its cellular components OAMB and CaMKII in ovulation. It is conceivable that the OAMB-mediated cellular activities stimulated upon mating are crucial for secretory activities suitable for egg transfer from

  2. [Changes of mitogen-activated protein kinase activity in cardiac tissues, Ang II and cardiac hypertrophy in spontaneously hypertensive rats].

    PubMed

    He, K L; Zheng, Q F; Mu, S C; Li, T C; Pang, Y Z; Tang, C S

    1998-10-01

    Mitogen-activated protein kinases (MAPKs) are thought to be critical components in signal transduction pathways in regulation of cell growth and differentiation. The purpose of the present investigation is to study possible involvement of MAPKs in the progress of cardiac hypertrophy in spontaneously hypertensive rats (SHRs) and effects of age on Angiotensin II (Ang II), MAPK activity and cardiac hypertrophy. The animals were divided into three groups: 4 months old WKY rats (n = 8), 4 month old SHRs (n = 8) and 15 month old SHRs (n = 6). Ratio of heart to body weight was measured. Ang II was determined by RIA. MAPK activity in cardiac tissue was assayed by the "in-gel" myelin basic protein phosphorylation. The results show that in comparison with 4 month old WKY rats, Ang II in plasma and cardiac tissues were elevated (216.4%, P < 0.01; 101.2%, P < 0.01) in 4 months old SHRs, while the MAPK activity was increased 107.0% (P < 0.01) with a parallel cardiac hypertrophy (P < 0.01). In comparison with 4 month old SHRs, Ang II and MAPK activity in cardiac tissue of the 15 months old SHRs were decreased (31.3%, P < 0.01; 29.7%, P < 0.05) but the cardiac hypertrophy increased by 38.5% (P < 0.01). MAPK may be involved in the progress of cardiac hypetrophy in SHR and the increased MAPK activity may be partly induced by Ang II.

  3. Renoprotective and blood pressure-lowering effect of dietary soy protein via protein kinase C beta II inhibition in a rat model of metabolic syndrome.

    PubMed

    Palanisamy, Nallasamy; Viswanathan, Periyasamy; Ravichandran, Mambakkam Katchapeswaran; Anuradha, Carani Venkataraman

    2010-01-01

    We studied whether substitution of soy protein for casein can improve insulin sensitivity, lower blood pressure (BP), and inhibit protein kinase C betaII (PKCbetaII) activation in kidney in an acquired model of metabolic syndrome. Adult male rats were fed 4 different diets: (i) starch (60%) and casein (20%) (CCD), (ii) fructose (60%) and casein (20%) (FCD), (iii) fructose (60%) and soy protein (20%) (FSD), and (iv) starch (60%) and soy protein (20%) (CSD). Renal function parameters, BP, pressor mechanisms, PKCbetaII expression, oxidative stress, and renal histology were evaluated after 60 days. FCD rats displayed insulin resistance and significant changes in body weight, kidney weight, urine volume, plasma and urine electrolytes accompanied by significant changes in renal function parameters compared with CCD rats. Elevated BP, plasma angiotensin-converting enzyme (ACE) activity, renal oxidative stress, and reduced nitrite (NO) and kallikrein activity were observed. Western blot analysis revealed enhanced renal expression of membrane-associated PKCbetaII in the FCD group. Histology showed fatty infiltration and thickening of glomeruli while urinary protein profile revealed a 5-fold increase in albumin. Substitution of soy protein for casein improved insulin sensitivity, lowered BP and PKCbetaII activation and restored renal function. Antioxidant action, inhibitory effect on ACE and PKCbetaII activation, and increased availability of kinins and NO could be contributing mechanisms for the benefits of dietary soy protein.

  4. Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase.

    PubMed

    Stuck, Bettina Johanna; Lenski, Matthias; Böhm, Michael; Laufs, Ulrich

    2008-11-21

    Angiotensin II induces cardiomyocyte hypertrophy, but its consequences on cardiomyocyte metabolism and energy supply are not completely understood. Here we investigate the effect of angiotensin II on glucose and fatty acid utilization and the modifying role of AMP-activated protein kinase (AMPK), a key regulator of metabolism and proliferation. Treatment of H9C2 cardiomyocytes with angiotensin II (Ang II, 1 microm, 4 h) increased [(3)H]leucine incorporation, up-regulated the mRNA expression of the hypertrophy marker genes MLC, ANF, BNP, and beta-MHC, and decreased the phosphorylation of the negative mTOR-regulator tuberin (TSC-2). Rat neonatal cardiomyocytes showed similar results. Western blot analysis revealed a time- and concentration-dependent down-regulation of AMPK-phosphorylation in the presence of angiotensin II, whereas the protein expression of the catalytic alpha-subunit remained unchanged. This was paralleled by membrane translocation of glucose-transporter type 4 (GLUT4), increased uptake of [(3)H]glucose and transient down-regulation of phosphorylation of acetyl-CoA carboxylase (ACC), whereas fatty acid uptake remained unchanged. Similarly, short-term transaortic constriction in mice resulted in down-regulation of P-AMPK and P-ACC but up-regulation of GLUT4 membrane translocation in the heart. Preincubation of cardiomyocytes with the AMPK stimulator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR; 1 mM, 4 h) completely prevented the angiotensin II-induced cardiomyocytes hypertrophy. In addition, AICAR reversed the metabolic effects of angiotensin II: GLUT4 translocation was reduced, but ACC phosphorylation and TSC phosphorylation were elevated. In summary, angiotensin II-induced hypertrophy of cardiomyocytes is accompanied by decreased activation of AMPK, increased glucose uptake, and decreased mTOR inhibition. Stimulation with the AMPK activator AICAR reverses these metabolic changes, increases fatty acid utilization, and inhibits

  5. Myristoylated alanine-rich C kinase substrate, but not Ca2+/calmodulin-dependent protein kinase II, is the mediator in cortical granules exocytosis.

    PubMed

    Tsaadon, Lina; Kaplan-Kraicer, Ruth; Shalgi, Ruth

    2008-05-01

    Sperm-egg fusion induces cortical granules exocytosis (CGE), a process that ensures the block to polyspermy. CGE can be induced independently by either a rise in intracellular calcium concentration or protein kinase C (PKC) activation. We have previously shown that myristoylated alanine-rich C kinase substrate (MARCKS) cross-links filamentous actin (F-actin) and regulates its reorganization. This activity is reduced either by PKC-induced MARCKS phosphorylation (PKC pathway) or by its direct binding to calmodulin (CaM; CaM pathway), both inducing MARCKS translocation, F-actin reorganization, and CGE. Currently, we examine the involvement of Ca(2)(+)/CaM-dependent protein kinase II (CaMKII) and MARCKS in promoting CGE and show that PKC pathway can compensate for lack of Ca(2)(+)/CaM pathway. Microinjecting eggs with either overexpressed protein or complementary RNA of constitutively active alphaCaMKII triggered resumption of second meiotic division, but induced CGE of an insignificant magnitude compared with CGE induced by wt alphaCaMKII. Microinjecting eggs with mutant-unphosphorylatable MARCKS reduced the intensity of 12-O-tetradecanoylphorbol 13-acetate or ionomycin-induced CGE by 50%, indicating that phosphorylation of MARCKS by novel and/or conventional PKCs (n/cPKCs) is a pivotal event associated with CGE. Moreover, we were able to demonstrate cPKCs involvement in ionomycin-induced MARCKS translocation and CGE. These results led us to propose that MARCKS, rather than CaMKII, as a key mediator of CGE.

  6. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-d-aspartate receptor

    PubMed Central

    Leonard, A. Soren; Lim, Indra A.; Hemsworth, Daniel E.; Horne, Mary C.; Hell, Johannes W.

    1999-01-01

    The molecular basis of long-term potentiation (LTP), a long-lasting change in synaptic transmission, is of fundamental interest because of its implication in learning. Usually LTP depends on Ca2+ influx through postsynaptic N-methyl-d-aspartate (NMDA)-type glutamate receptors and subsequent activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII). For a molecular understanding of LTP it is crucial to know how CaMKII is localized to its postsynaptic targets because protein kinases often are targeted to their substrates by adapter proteins. Here we show that CaMKII directly binds to the NMDA receptor subunits NR1 and NR2B. Moreover, activation of CaMKIIα by stimulation of NMDA receptors in forebrain slices increase this association. This interaction places CaMKII not only proximal to a major source of Ca2+ influx but also close to α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors, which become phosphorylated upon stimulation of NMDA receptors in these forebrain slices. Identification of the postsynaptic adapter for CaMKII fills a critical gap in the understanding of LTP because CaMKII-mediated phosphorylation of AMPA receptors is an important step during LTP. PMID:10077668

  7. Calcium/calmodulin-dependent protein kinase II-delta isoform regulation of vascular smooth muscle cell proliferation.

    PubMed

    House, Suzanne J; Ginnan, Roman G; Armstrong, Shayn E; Singer, Harold A

    2007-06-01

    There is accumulating evidence that Ca(2+)-dependent signaling pathways regulate proliferation and migration of vascular smooth muscle (VSM) cells, contributing to the intimal accumulation of VSM that is a hallmark of many vascular diseases. In this study we investigated the role of the multifunctional serine/threonine kinase, calmodulin (CaM)-dependent protein kinase II (CaMKII), as a mediator of Ca(2+) signals regulating VSM cell proliferation. Differentiated VSM cells acutely isolated from rat aortic media express primarily CaMKIIgamma gene products, whereas passaged primary cultures of de-differentiated VSM cells express primarily CaMKIIdelta(2), a splice variant of the delta gene. Experiments examining the time course of CaMKII isoform modulation revealed the process was rapid in onset following initial dispersion and primary culture of aortic VSM with a significant increase in CaMKIIdelta(2) protein and a significant decrease in CaMKIIgamma protein within 30 h, coinciding with the onset of DNA synthesis and cell proliferation. Attenuating the initial upregulation of CaMKIIdelta(2) in primary cultured cells using small-interfering RNA (siRNA) resulted in decreased serum-stimulated DNA synthesis and cell proliferation in primary culture. In passaged VSM cells, suppression of CaMKIIdelta(2) activity by overexpression of a kinase-negative mutant, or suppression of endogenous CaMKII content using multiple siRNAs, significantly attenuated serum-stimulated DNA synthesis and cell proliferation. Cell cycle analysis following either inhibitory approach indicated decreased proportion of cells in G1, an increase in proportion of cells in G2/M, and an increase in polyploidy, corresponding with accumulation of multinucleated cells. These results indicate that CaMKIIdelta(2) is specifically induced during modulation of VSM cells to the synthetic phenotypic and is a positive regulator of serum-stimulated proliferation.

  8. Cross-Linking Proteins To Show Complex Formation: A Laboratory That Visually Demonstrates Calmodulin Binding to Calmodulin Kinase II.

    ERIC Educational Resources Information Center

    Porta, Angela R.

    2003-01-01

    Presents a laboratory experiment demonstrating the binding of calcium/calmodulin to calmodulin kinase II, which is important in the metabolic and physiological activities of the cell. Uses SDS polyacrylamide gel electrophoresis (PAGE). (YDS)

  9. Cross-Linking Proteins To Show Complex Formation: A Laboratory That Visually Demonstrates Calmodulin Binding to Calmodulin Kinase II.

    ERIC Educational Resources Information Center

    Porta, Angela R.

    2003-01-01

    Presents a laboratory experiment demonstrating the binding of calcium/calmodulin to calmodulin kinase II, which is important in the metabolic and physiological activities of the cell. Uses SDS polyacrylamide gel electrophoresis (PAGE). (YDS)

  10. Angiotensin II-induced oxidative stress resets the Ca2+ dependence of Ca2+-calmodulin protein kinase II and promotes a death pathway conserved across different species.

    PubMed

    Palomeque, Julieta; Rueda, Omar Velez; Sapia, Luciana; Valverde, Carlos A; Salas, Margarita; Petroff, Martin Vila; Mattiazzi, Alicia

    2009-12-04

    Angiotensin (Ang) II-induced apoptosis was reported to be mediated by different signaling molecules. Whether these molecules are either interconnected in a single pathway or constitute different and alternative cascades by which Ang II exerts its apoptotic action, is not known. To investigate in cultured myocytes from adult cat and rat, 2 species in which Ang II has opposite inotropic effects, the signaling cascade involved in Ang II-induced apoptosis. Ang II (1 micromol/L) reduced cat/rat myocytes viability by approximately 40%, in part, because of apoptosis (TUNEL/caspase-3 activity). In both species, apoptosis was associated with reactive oxygen species (ROS) production, Ca(2+)/calmodulin-dependent protein kinase (CaMK)II, and p38 mitogen-activated protein kinase (p38MAPK) activation and was prevented by the ROS scavenger MPG (2-mercaptopropionylglycine) or the NADPH oxidase inhibitor DPI (diphenyleneiodonium) by CaMKII inhibitors (KN-93 and AIP [autocamtide 2-related inhibitory peptide]) or in transgenic mice expressing a CaMKII inhibitory peptide and by the p38MAPK inhibitor, SB202190. Furthermore, p38MAPK overexpression exacerbated Ang II-induced cell mortality. Moreover, although KN-93 did not affect Ang II-induced ROS production, it prevented p38MAPK activation. Results further show that CaMKII can be activated by Ang II or H(2)O(2), even in the presence of the Ca(2+) chelator BAPTA-AM, in myocytes and in EGTA-Ca(2+)-free solutions in the presence of the calmodulin inhibitor W-7 in in vitro experiments. (1) The Ang II-induced apoptotic cascade converges in both species, in a common pathway mediated by ROS-dependent CaMKII activation which results in p38MAPK activation and apoptosis. (2) In the presence of Ang II or ROS, CaMKII may be activated at subdiastolic Ca(2+) concentrations, suggesting a new mechanism by which ROS reset the Ca(2+) dependence of CaMKII to extremely low Ca(2+) levels.

  11. Protein kinase A-mediated CREB phosphorylation is an oxidant-induced survival pathway in alveolar type II cells

    PubMed Central

    Barlow, Christy A.; Kitiphongspattana, Kajorn; Siddiqui, Nazli; Roe, Michael W.; Mossman, Brooke T.

    2008-01-01

    Oxidant stress plays a role in the pathogenesis of pulmonary diseases, including fibrotic lung disease and cancer. We previously found that hydrogen peroxide (H2O2) initiates an increase in Ca2+/cAMP-response element binding protein (CREB) phosphorylation in C10 alveolar type II cells that requires activation of extracellular regulated kinases 1/2 (ERK1/2). Here, we investigated the role of crosstalk between protein kinase A (PKA) and epidermal growth factor receptor (EGFR) in oxidant-induced signaling to ERK1/2 and CREB in C10 cells. Application of H2O2 increased nuclear accumulation of PKA, and inhibition of PKA with H89 reduced oxidant-mediated phosphorylation of both CREB and ERK1/2. Single cell measurements of cAMP and redox status, using a FRET-based biosensor and a redox-sensitive GFP, respectively, indicated that H2O2 increases production of cAMP that correlates with redox state. Inhibition of EGFR activity decreased both H2O2-induced CREB phosphorylation and translocation of PKA to the nucleus, suggesting that crosstalk between PKA and EGFR underlies the oxidant-induced CREB response. Furthermore, knockdown of CREB expression using siRNA led to a decrease in bcl-2 and an increase in oxidant-induced apoptosis. Together these data reveal a novel role for crosstalk between PKA, ERK1/2 and CREB that mediates cell survival during oxidant stress. PMID:18392938

  12. Behavioral modulation of neuronal calcium/calmodulin-dependent protein kinase II activity: differential effects on nicotine-induced spinal and supraspinal antinociception in mice.

    PubMed

    Damaj, M Imad

    2007-10-15

    Recent studies have implicated the involvement of Ca(2+)-dependent mechanisms, in particular calcium/calmodulin-dependent protein kinase II (CaM kinase II) in nicotine-induced antinociception using the tail-flick test. The spinal cord was suggested as a possible site of this involvement. The present study was undertaken to investigate the hypothesis that similar mechanisms exist for nicotine-induced antinociception in the hot-plate test, a response thought to be centrally mediated. In order to assess these mechanisms, i.c.v. administered CaM kinase II inhibitors were evaluated for their effects on antinociception produced by either i.c.v. or s.c. administration of nicotine in both tests. In addition, nicotine's analgesic effects were tested in mice lacking half of their CaM kinase II (CaM kinase II heterozygous) and compare it to their wild-type counterparts. Our results showed that although structurally unrelated CaM kinase II inhibitors blocked nicotine's effects in the tail-flick test in a dose-related manner, they failed to block the hot-plate responses. In addition, the antinociceptive effects of systemic nicotine in the tail-flick but not the hot-plate test were significantly reduced in CaM kinase II heterozygous mice. These observations indicate that in contrast to the tail-flick response, the mechanism of nicotine-induced antinociception in the hot-plate test is not mediated primarily via CaM kinase II-dependent mechanisms at the supraspinal level.

  13. Conserved herpesvirus protein kinases

    PubMed Central

    Gershburg, Edward; Pagano, Joseph S.

    2008-01-01

    Conserved herpesviral protein kinases (CHPKs) are a group of enzymes conserved throughout all subfamilies of Herpesviridae. Members of this group are serine/threonine protein kinases that are likely to play a conserved role in viral infection by interacting with common host cellular and viral factors; however along with a conserved role, individual kinases may have unique functions in the context of viral infection in such a way that they are only partially replaceable even by close homologues. Recent studies demonstrated that CHPKs are crucial for viral infection and suggested their involvement in regulation of numerous processes at various infection steps (primary infection, nuclear egress, tegumentation), although the mechanisms of this regulation remain unknown. Notwithstanding, recent advances in discovery of new CHPK targets, and studies of CHPK knockout phenotypes have raised their attractiveness as targets for antiviral therapy. A number of compounds have been shown to inhibit the activity of human cytomegalovirus (HCMV)-encoded UL97 protein kinase and exhibit a pronounced antiviral effect, although the same compounds are inactive against Epstein-Barr Virus (EBV)-encoded protein kinase BGLF4, illustrating the fact that low homology between the members of this group complicates development of compounds targeting the whole group, and suggesting that individualized, structure-based inhibitor design will be more effective. Determination of CHPK structures will greatly facilitate this task. PMID:17881303

  14. Targeting of a novel Ca+2/calmodulin-dependent protein kinase II is essential for extracellular signal-regulated kinase-mediated signaling in differentiated smooth muscle cells.

    PubMed

    Marganski, William A; Gangopadhyay, Samudra S; Je, Hyun-Dong; Gallant, Cynthia; Morgan, Kathleen G

    2005-09-16

    Subcellular targeting of kinases controls their activation and access to substrates. Although Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to regulate differentiated smooth muscle cell (dSMC) contractility, the importance of targeting in this regulation is not clear. The present study investigated the function in dSMCs of a novel variant of the gamma isoform of CaMKII that contains a potential targeting sequence in its association domain (CaMKIIgamma G-2). Antisense knockdown of CaMKIIgamma G-2 inhibited extracellular signal-related kinase (ERK) activation, myosin phosphorylation, and contractile force in dSMCs. Confocal colocalization analysis revealed that in unstimulated dSMCs CaMKIIgamma G-2 is bound to a cytoskeletal scaffold consisting of interconnected vimentin intermediate filaments and cytosolic dense bodies. On activation with a depolarizing stimulus, CaMKIIgamma G-2 is released into the cytosol and subsequently targeted to cortical dense plaques. Comparison of phosphorylation and translocation time courses indicates that, after CaMKIIgamma G-2 activation, and before CaMKIIgamma G-2 translocation, vimentin is phosphorylated at a CaMKII-specific site. Differential centrifugation demonstrated that phosphorylation of vimentin in dSMCs is not sufficient to cause its disassembly, in contrast to results in cultured cells. Loading dSMCs with a decoy peptide containing the polyproline sequence within the association domain of CaMKIIgamma G-2 inhibited targeting. Furthermore, prevention of CaMKIIgamma G-2 targeting led to significant inhibition of ERK activation as well as contractility. Thus, for the first time, this study demonstrates the importance of CaMKII targeting in dSMC signaling and identifies a novel targeting function for the association domain in addition to its known role in oligomerization.

  15. Functional identification of the promoter for the gene encoding the alpha subunit of calcium/calmodulin-dependent protein kinase II.

    PubMed Central

    Olson, N J; Massé, T; Suzuki, T; Chen, J; Alam, D; Kelly, P T

    1995-01-01

    To examine the expression of the alpha subunit of calcium/calmodulin-dependent protein kinase II, various 5' flanking genomic sequences were inserted into a chloramphenicol acetyltransferase (CAT) reporter plasmid and CAT enzyme activities were analyzed in transfected NB2a neuroblastoma cells and mRNA transcription was analyzed by nuclease protection assays. A core promoter was identified which contained an essential TATA element located 162 nt 5' to the transcription start site. Sequences 3' to the transcription start site, as well as 5' to the TATA element, increased levels of CAT activity in transfected cells. The alpha-subunit gene promoter displayed higher CAT activities, relative to a simian virus 40 promoter, in transfected neuronal cell lines than in nonneuronal cell lines. Results also suggested that sequence surrounding the natural alpha-gene transcription initiation site may be important for targeting transcription initiation 162 nt downstream of its TATA element. Images Fig. 1 Fig. 3 PMID:7878035

  16. Endogenous expression of type II cGMP-dependent protein kinase mRNA and protein in rat intestine. Implications for cystic fibrosis transmembrane conductance regulator.

    PubMed Central

    Markert, T; Vaandrager, A B; Gambaryan, S; Pöhler, D; Häusler, C; Walter, U; De Jonge, H R; Jarchau, T; Lohmann, S M

    1995-01-01

    Certain pathogenic bacteria produce a family of heat stable enterotoxins (STa) which activate intestinal guanylyl cyclases, increase cGMP, and elicit life-threatening secretory diarrhea. The intracellular effector of cGMP actions has not been clarified. Recently we cloned the cDNA for a rat intestinal type II cGMP dependent protein kinase (cGK II) which is highly enriched in intestinal mucosa. Here we show that cGK II mRNA and protein are restricted to the intestinal segments from the duodenum to the proximal colon, with the highest amounts of cGK II protein in duodenum and jejunum. cGK II mRNA and protein decreased along the villus to crypt axis in the small intestine, whereas substantial amounts of both were found in the crypts of cecum. In intestinal epithelia, cGK II was specifically localized in the apical membrane, a major site of ion transport regulation. In contrast to cGK II, cGK I was localized in smooth muscle cells of the villus lamina propria. Short circuit current (ISC), a measure of Cl- secretion, was increased to a similar extent by STa and by 8-Br-cGMP, a selective activator of cGK, except in distal colon and in monolayers of T84 human colon carcinoma cells in which cGK II was not detected. In human and mouse intestine, the cyclic nucleotide-regulated Cl- conductance can be exclusively accounted for by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Viewed collectively, the data suggest that cGK II is the mediator of STa and cGMP effects on Cl- transport in intestinal-epithelia. Images PMID:7543493

  17. Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice.

    PubMed

    Moriguchi, Shigeki; Yamamoto, Yui; Ikuno, Tatsuya; Fukunaga, Kohji

    2011-06-01

    Dehydroepiandrosterone (DHEA) is one of the most abundant neurosteroids synthesized de novo in the CNS. We here found that sigma-1 receptor stimulation by DHEA improves cognitive function through phosphorylation of synaptic proteins in olfactory bulbectomized (OBX) mouse hippocampus. We have previously reported that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) were impaired in OBX mouse hippocampus. OBX mice were administered once a day for 7-8 days with DHEA (30 or 60 mg/kg p.o.) 10 days after operation. The spatial, cognitive and conditioned fear memories in OBX mice were significantly improved as assessed by Y-maze, novel object recognition and passive avoidance task, respectively. DHEA also improved impaired hippocampal long-term potentiation in OBX mice. Notably, DHEA treatment restored PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) and myristoylated alanine-rich protein kinase C substrate (Ser-152/156) phosphorylation to the control levels in the hippocampal CA1 region. Likewise, DHEA treatment improved CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation to the control levels in the CA1 region. Furthermore, DHEA treatment improved ERK and cAMP-responsive element-binding protein (Ser-133) phosphorylation to the control levels. Finally, NE-100, sigma-1 receptor antagonist, significantly inhibited the DHEA-induced improvement of memory-related behaviors and CaMKII, PKC and ERK phosphorylation in CA1 region. Taken together, sigma-1 receptor stimulation by DHEA ameliorates OBX-induced impairment in memory-related behaviors and long-term potentiation in the hippocampal CA1 region through activation of CaMKII, PKC and ERK. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  18. Molecular mechanism of activation-triggered subunit exchange in Ca2+/calmodulin-dependent protein kinase II

    PubMed Central

    Bhattacharyya, Moitrayee; Stratton, Margaret M; Going, Catherine C; McSpadden, Ethan D; Huang, Yongjian; Susa, Anna C; Elleman, Anna; Cao, Yumeng Melody; Pappireddi, Nishant; Burkhardt, Pawel; Gee, Christine L; Barros, Tiago; Schulman, Howard; Williams, Evan R; Kuriyan, John

    2016-01-01

    Activation triggers the exchange of subunits in Ca2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones. DOI: http://dx.doi.org/10.7554/eLife.13405.001 PMID:26949248

  19. Molecular mechanism of activation-triggered subunit exchange in Ca 2+ /calmodulin-dependent protein kinase II

    DOE PAGES

    Bhattacharyya, Moitrayee; Stratton, Margaret M.; Going, Catherine C.; ...

    2016-03-07

    Activation triggers the exchange of subunits in Ca2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts themore » hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.« less

  20. Molecular mechanism of activation-triggered subunit exchange in Ca 2+ /calmodulin-dependent protein kinase II

    SciTech Connect

    Bhattacharyya, Moitrayee; Stratton, Margaret M.; Going, Catherine C.; McSpadden, Ethan D.; Huang, Yongjian; Susa, Anna C.; Elleman, Anna; Cao, Yumeng Melody; Pappireddi, Nishant; Burkhardt, Pawel; Gee, Christine L.; Barros, Tiago; Schulman, Howard; Williams, Evan R.; Kuriyan, John

    2016-03-07

    Activation triggers the exchange of subunits in Ca2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.

  1. Resveratrol Inhibits Neuronal Apoptosis and Elevated Ca2+/Calmodulin-Dependent Protein Kinase II Activity in Diabetic Mouse Retina

    PubMed Central

    Kim, Young-Hee; Kim, Yoon-Sook; Kang, Sang-Soo; Cho, Gyeong-Jae; Choi, Wan-Sung

    2010-01-01

    OBJECTIVE This study investigated the effects of resveratrol, a natural polyphenol with neuroprotective properties, on retinal neuronal cell death mediated by diabetes-induced activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII). RESEARCH DESIGN AND METHODS Diabetes was induced in C57BL/6 mice by five consecutive intraperitoneal injections of 55 mg/kg streptozotocin (STZ). Control mice received buffer. All mice were killed 2 months after the injections, and the extent of neuronal cell death, CaMKII, and phospho-CaMKII protein expression levels and CaMKII kinase activity were examined in the retinas. To assess the role of CaMKII in the death of retinal neurons, a small-interfering RNA (siRNA) or specific inhibitor of CaMKII was injected into the right vitreous humor, and vehicle only was injected into the left vitreous humor, 2 days before death. Resveratrol (20 mg/kg) was administered by oral gavage daily for 4 weeks, beginning 1 month after the fifth injection of either STZ or buffer. RESULTS The death of retinal ganglion cells (RGCs), CaMKII, phospho-CaMKII protein levels, and CaMKII activity were all greatly increased in the retinas of diabetic mice compared with controls, 2 months after induction of diabetes. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)-positive signals co-localized with CaMKII- and phospho-CaMKII immunoreactive RGCs. However, in addition to CaMKII knockdown and inhibition by siRNA or a specific inhibitor, respectively, resveratrol provided complete protection from diabetes-induced retinal cell death. CONCLUSIONS In the present study, resveratrol prevented diabetes-induced RGC death via CaMKII downregulation, implying that resveratrol may have potential therapeutic applications for prevention of diabetes-induced visual dysfunction. PMID:20424226

  2. Melatonin synthesis in the bovine pineal gland is regulated by type II cyclic AMP-dependent protein kinase.

    PubMed

    Maronde, E; Middendorff, R; Telgmann, R; Müller, D; Hemmings, B; Taskén, K; Olcese, J

    1997-02-01

    We investigated the expression of regulatory (R) and catalytic (C) subunits of cyclic AMP-dependent protein kinase (cAK; ATP:protein phosphotransferase; EC 2.7.1.37) in the bovine pineal gland. In total RNA extracts of bovine pineal glands moderate levels of RI alpha/RII beta and high levels of C alpha and C beta mRNA were found. We were able to detect a strong signal for RII and C subunit at the protein level, whereas RI was apparently absent. Probing sections of the intact bovine pineal gland with RI and RII antibodies stained only RII in pinealocytes. Pairs of cyclic AMP analogues complementing each other in activation of type II cAK, but not cAKI-directed analogue pairs, showed synergistic stimulation of melatonin synthesis. Moreover, melatonin synthesis stimulated by the physiological activator norepinephrine in pineal cell cultures was inhibited by cAK antagonists. Taken together these results show the presence of RII regulatory and both C alpha and C beta catalytic subunits and thus cAKII holoenzyme in the bovine pineal gland. The almost complete inhibition of norepinephrine-mediated melatonin synthesis by the cAK antagonists emphasizes the dominant role of cyclic AMP as the second messenger and cAK as the transducer in bovine pineal signal transduction.

  3. Non-photic phase shifting of the circadian clock: role of the extracellular signal-responsive kinases I/II/mitogen-activated protein kinase pathway.

    PubMed

    Antle, Michael C; Tse, Floria; Koke, Sydney J; Sterniczuk, Roxanne; Hagel, Kimberly

    2008-12-01

    The master circadian clock, located in the suprachiasmatic nucleus (SCN), is synchronized to the external world primarily through exposure to light. A second class of stimuli based on arousal or activity can also reset the hamster circadian clock in a manner distinct from light. The mechanism underlying these non-photic phase shifts is unknown, although suppression of canonical clock genes and immediate early genes has been implicated. Recently, suppression of one of the mitogen-activated protein kinases (MAPK), namely extracellular signal-responsive kinases I/II (ERK), has been implicated in phase shifts to dark pulses, a stimulus with both photic and non-photic components. We investigated the involvement of the ERK/MAPK pathway in phase shifts in response to 3 h of sleep deprivation initiated at mid-day. About three-quarters of animals subjected to this procedure demonstrated large phase advances of about 3 h. Those that shifted exhibited a significant decrease in phosphorylated ERK (p-ERK) in the SCN. Those animals that were perfused during the sleep deprivation also exhibited immunoreactivity for p-ERK in a distinct portion of the ventrolateral SCN. Finally, injections of U0126 to the SCN to prevent phosphorylation of ERK significantly decreased levels of p-ERK but did not produce phase shifts. These data demonstrate that a purely non-photic manipulation is able to alter the activity of the MAPK pathway in the SCN, with downregulation in the SCN shell and activation in a portion of the SCN core.

  4. Linaclotide activates guanylate cyclase-C/cGMP/protein kinase-II-dependent trafficking of CFTR in the intestine.

    PubMed

    Ahsan, Md Kaimul; Tchernychev, Boris; Kessler, Marco M; Solinga, Robert M; Arthur, David; Linde, Cristina I; Silos-Santiago, Inmaculada; Hannig, Gerhard; Ameen, Nadia A

    2017-06-01

    The transmembrane receptor guanylyl cyclase-C (GC-C), expressed on enterocytes along the intestine, is the molecular target of the GC-C agonist peptide linaclotide, an FDA-approved drug for treatment of adult patients with Irritable Bowel Syndrome with Constipation and Chronic Idiopathic Constipation. Polarized human colonic intestinal cells (T84, CaCo-2BBe) rat and human intestinal tissues were employed to examine cellular signaling and cystic fibrosis transmembrane conductance regulator (CFTR)-trafficking pathways activated by linaclotide using confocal microscopy, in vivo surface biotinylation, and protein kinase-II (PKG-II) activity assays. Expression and activity of GC-C/cGMP pathway components were determined by PCR, western blot, and cGMP assays. Fluid secretion as a marker of CFTR cell surface translocation was determined using in vivo rat intestinal loops. Linaclotide treatment (30 min) induced robust fluid secretion and translocation of CFTR from subapical compartments to the cell surface in rat intestinal loops. Similarly, linaclotide treatment (30 min) of T84 and CaCo-2BBe cells increased cell surface CFTR levels. Linaclotide-induced activation of the GC-C/cGMP/PKGII signaling pathway resulted in elevated intracellular cGMP and pVASP(ser239) phosphorylation. Inhibition or silencing of PKGII significantly attenuated linaclotide-induced CFTR trafficking to the apical membrane. Inhibition of protein kinase-A (PKA) also attenuated linaclotide-induced CFTR cell surface trafficking, implying cGMP-dependent cross-activation of PKA pathway. Together, these findings support linaclotide-induced activation of the GC-C/cGMP/PKG-II/CFTR pathway as the major pathway of linaclotide-mediated intestinal fluid secretion, and that linaclotide-dependent CFTR activation and recruitment/trafficking of CFTR from subapical vesicles to the cell surface is an important step in this process. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on

  5. Curcumin Attenuates Opioid Tolerance and Dependence by Inhibiting Ca2+/Calmodulin-Dependent Protein Kinase II α Activity

    PubMed Central

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena

    2015-01-01

    Chronic use of opioid analgesics has been hindered by the development of opioid addiction and tolerance. We have reported that curcumin, a natural flavonoid from the rhizome of Curcuma longa, attenuated opioid tolerance, although the underlying mechanism remains unclear. In this study, we tested the hypothesis that curcumin may inhibit Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα), a protein kinase that has been previously proposed to be critical for opioid tolerance and dependence. In this study, we used state-of-the-art polymeric formulation technology to produce poly(lactic-co-glycolic acid) (PLGA)-curcumin nanoparticles (nanocurcumin) to overcome the drug’s poor solubility and bioavailability, which has made it extremely difficult for studying in vivo pharmacological actions of curcumin. We found that PLGA-curcumin nanoparticles reduced the dose requirement by 11- to 33-fold. Pretreatment with PLGA-curcumin (by mouth) prevented the development of opioid tolerance and dependence in a dose-dependent manner, with ED50 values of 3.9 and 3.2 mg/kg, respectively. PLGA-curcumin dose-dependently attenuated already-established opioid tolerance (ED50 = 12.6 mg/kg p.o.) and dependence (ED50 = 3.1 mg/kg p.o.). Curcumin or PLGA-curcumin did not produce antinociception by itself or affect morphine (1–10 mg/kg) antinociception. Moreover, we found that the behavioral effects of curcumin on opioid tolerance and dependence correlated with its inhibition of morphine-induced CaMKIIα activation in the brain. These results suggest that curcumin may attenuate opioid tolerance and dependence by suppressing CaMKIIα activity. PMID:25515789

  6. Rac2 GTPase activation by angiotensin II is modulated by Ca2+/calcineurin and mitogen-activated protein kinases in human neutrophils.

    PubMed

    El Bekay, Rajaa; Alba, Gonzalo; Reyes, M Edith; Chacón, Pedro; Vega, Antonio; Martín-Nieto, José; Jiménez, Juan; Ramos, Eladio; Oliván, Josefina; Pintado, Elízabeth; Sobrino, Francisco

    2007-11-01

    Angiotensin II (Ang II) highly stimulates superoxide anion production by neutrophils. The G-protein Rac2 modulates the activity of NADPH oxidase in response to various stimuli. Here, we describe that Ang II induced both Rac2 translocation from the cytosol to the plasma membrane and Rac2 GTP-binding activity. Furthermore, Clostridium difficile toxin A, an inhibitor of the Rho-GTPases family Rho, Rac and Cdc42, prevented Ang II-elicited O2-/ROS production, phosphorylation of the mitogen-activated protein kinases (MAPKs) p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase 1/2, and Rac2 activation. Rac2 GTPase inhibition by C. difficile toxin A was accompanied by a robust reduction of the cytosolic Ca(2)(+) elevation induced by Ang II in human neutrophils. Furthermore, SB203580 and PD098059 act as inhibitors of p38MAPK and ERK1/2 respectively, wortmannin, an inhibitor of phosphatidylinositol-3-kinase, and cyclosporin A, a calcineurin inhibitor, hindered both translocation of Rac2 from the cytosol to the plasma membrane and enhancement of Rac2 GTP-binding elicited by Ang II. These results provide evidence that the activation of Rac2 by Ang II is exerted through multiple signalling pathways, involving Ca(2)(+)/calcineurin and protein kinases, the elucidation of which should be insightful in the design of new therapies aimed at reversing the inflammation of vessel walls found in a number of cardiovascular diseases.

  7. Role of protein kinase C delta in angiotensin II induced cardiac fibrosis

    PubMed Central

    Chintalgattu, Vishnu; Katwa, Laxmansa C

    2009-01-01

    Previous studies have demonstrated a role for angiotensin II (AngII) and myofibroblasts (myoFb) in cardiac fibrosis. However, the role of PKC-δ in AngII mediated cardiac fibrosis is unclear. Therefore, the present study was designed to investigate the role of PKC-δ in AngII induced cardiac collagen expression and fibrosis. AngII treatment significantly (p<0.05) increased myoFb collagen expression, whereas PKC-δ siRNA treatment or rottlerin, a PKC-δ inhibitor abrogated (p<0.05) AngII induced collagen expression. MyoFb transfected with PKC-δ over expression vector showed significant increase (p<0.05) in the collagen expression as compared to control. Two-weeks of chronic AngII infused rats showed significant (p<0.05) increase in collagen expression compared to sham operated rats. This increase in cardiac collagen expression was abrogated by rottlerin treatment. In conclusion, both in vitro and in vivo data strongly suggest a role for PKC-δ in AngII induced cardiac fibrosis. PMID:19540196

  8. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    SciTech Connect

    Muchir, Antoine; Wu, Wei; Sera, Fusako; Homma, Shunichi; Worman, Howard J.

    2014-10-03

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  9. Structural Properties of Human CaMKII Ca2+ /Calmodulin-Dependent Protein Kinase II using X-ray Crystallography

    NASA Astrophysics Data System (ADS)

    Cao, Yumeng Melody; McSpadden, Ethan; Kuriyan, John; Department of Molecular; Cell Biology; Department of Chemistry Team

    To this day, human memory storage remains a mystery as we can at most describe the process vaguely on a cellular level. Switch-like properties of Calcium/Calmodulin-Dependent Protein Kinase II make it a leading candidate in understanding the molecular basis of human memory. The protein crystal was placed in the beam of a synchrotron source and the x-ray crystallography data was collected as reflections on a diffraction pattern that undergo Fourier transform to obtain the electron density. We observed two drastic differences from our solved structure at 2.75Å to a similar construct of the mouse CaMKII association domain. Firstly, our structure is a 6-fold symmetric dodecamer, whereas the previously published construct was a 7-fold symmetric tetradecamer. This suggests the association domain of human CaMKII is a dynamic structure that is triggered subunit exchange process. Secondly, in our structure the N-terminal tag is docked as an additional beta-strand on an uncapped beta-sheet present in each association domain protomer. This is concrete evidence of the involvement of the polypeptide docking site in the molecular mechanism underlining subunit exchange. In the future, we would like to selectively inhibit the exchange process while not disrupting the other functionalities of CaMKII.

  10. A nonsense mutation in cGMP-dependent type II protein kinase (PRKG2) causes dwarfism in American Angus cattle.

    PubMed

    Koltes, James E; Mishra, Bishnu P; Kumar, Dinesh; Kataria, Ranjit S; Totir, Liviu R; Fernando, Rohan L; Cobbold, Rowland; Steffen, David; Coppieters, Wouter; Georges, Michel; Reecy, James M

    2009-11-17

    Historically, dwarfism was the major genetic defect in U.S. beef cattle. Aggressive culling and sire testing were used to minimize its prevalence; however, neither of these practices can eliminate a recessive genetic defect. We assembled a 4-generation pedigree to identify the mutation underlying dwarfism in American Angus cattle. An adaptation of the Elston-Steward algorithm was used to overcome small pedigree size and missing genotypes. The dwarfism locus was fine-mapped to BTA6 between markers AFR227 and BM4311. Four candidate genes were sequenced, revealing a nonsense mutation in exon 15 of cGMP-dependant type II protein kinase (PRKG2). This C/T transition introduced a stop codon (R678X) that truncated 85 C-terminal amino acids, including a large portion of the kinase domain. Of the 75 mutations discovered in this region, only this mutation was 100% concordant with the recessive pattern of inheritance in affected and carrier individuals (log of odds score = 6.63). Previous research has shown that PRKG2 regulates SRY (sex-determining region Y) box 9 (SOX9)-mediated transcription of collagen 2 (COL2). We evaluated the ability of wild-type (WT) or R678X PRKG2 to regulate COL2 expression in cell culture. Real-time PCR results confirmed that COL2 is overexpressed in cells that overexpressed R678X PRKG2 as compared with WT PRKG2. Furthermore, COL2 and COL10 mRNA expression was increased in dwarf cattle compared with unaffected cattle. These experiments indicate that the R678X mutation is functional, resulting in a loss of PRKG2 regulation of COL2 and COL10 mRNA expression. Therefore, we present PRKG2 R678X as a causative mutation for dwarfism cattle.

  11. A nonsense mutation in cGMP-dependent type II protein kinase (PRKG2) causes dwarfism in American Angus cattle

    PubMed Central

    Koltes, James E.; Mishra, Bishnu P.; Kumar, Dinesh; Kataria, Ranjit S.; Totir, Liviu R.; Fernando, Rohan L.; Cobbold, Rowland; Steffen, David; Coppieters, Wouter; Georges, Michel; Reecy, James M.

    2009-01-01

    Historically, dwarfism was the major genetic defect in U.S. beef cattle. Aggressive culling and sire testing were used to minimize its prevalence; however, neither of these practices can eliminate a recessive genetic defect. We assembled a 4-generation pedigree to identify the mutation underlying dwarfism in American Angus cattle. An adaptation of the Elston-Steward algorithm was used to overcome small pedigree size and missing genotypes. The dwarfism locus was fine-mapped to BTA6 between markers AFR227 and BM4311. Four candidate genes were sequenced, revealing a nonsense mutation in exon 15 of cGMP-dependant type II protein kinase (PRKG2). This C/T transition introduced a stop codon (R678X) that truncated 85 C-terminal amino acids, including a large portion of the kinase domain. Of the 75 mutations discovered in this region, only this mutation was 100% concordant with the recessive pattern of inheritance in affected and carrier individuals (log of odds score = 6.63). Previous research has shown that PRKG2 regulates SRY (sex-determining region Y) box 9 (SOX9)-mediated transcription of collagen 2 (COL2). We evaluated the ability of wild-type (WT) or R678X PRKG2 to regulate COL2 expression in cell culture. Real-time PCR results confirmed that COL2 is overexpressed in cells that overexpressed R678X PRKG2 as compared with WT PRKG2. Furthermore, COL2 and COL10 mRNA expression was increased in dwarf cattle compared with unaffected cattle. These experiments indicate that the R678X mutation is functional, resulting in a loss of PRKG2 regulation of COL2 and COL10 mRNA expression. Therefore, we present PRKG2 R678X as a causative mutation for dwarfism cattle. PMID:19887637

  12. Cyclic-GMP-dependent protein kinase inhibits the Ras/Mitogen-activated protein kinase pathway.

    PubMed

    Suhasini, M; Li, H; Lohmann, S M; Boss, G R; Pilz, R B

    1998-12-01

    Agents which increase the intracellular cyclic GMP (cGMP) concentration and cGMP analogs inhibit cell growth in several different cell types, but it is not known which of the intracellular target proteins of cGMP is (are) responsible for the growth-suppressive effects of cGMP. Using baby hamster kidney (BHK) cells, which are deficient in cGMP-dependent protein kinase (G-kinase), we show that 8-(4-chlorophenylthio)guanosine-3', 5'-cyclic monophosphate and 8-bromoguanosine-3',5'-cyclic monophosphate inhibit cell growth in cells stably transfected with a G-kinase Ibeta expression vector but not in untransfected cells or in cells transfected with a catalytically inactive G-kinase. We found that the cGMP analogs inhibited epidermal growth factor (EGF)-induced activation of mitogen-activated protein (MAP) kinase and nuclear translocation of MAP kinase in G-kinase-expressing cells but not in G-kinase-deficient cells. Ras activation by EGF was not impaired in G-kinase-expressing cells treated with cGMP analogs. We show that activation of G-kinase inhibited c-Raf kinase activation and that G-kinase phosphorylated c-Raf kinase on Ser43, both in vitro and in vivo; phosphorylation of c-Raf kinase on Ser43 uncouples the Ras-Raf kinase interaction. A mutant c-Raf kinase with an Ala substitution for Ser43 was insensitive to inhibition by cGMP and G-kinase, and expression of this mutant kinase protected cells from inhibition of EGF-induced MAP kinase activity by cGMP and G-kinase, suggesting that Ser43 in c-Raf is the major target for regulation by G-kinase. Similarly, B-Raf kinase was not inhibited by G-kinase; the Ser43 phosphorylation site of c-Raf is not conserved in B-Raf. Activation of G-kinase induced MAP kinase phosphatase 1 expression, but this occurred later than the inhibition of MAP kinase activation. Thus, in BHK cells, inhibition of cell growth by cGMP analogs is strictly dependent on G-kinase and G-kinase activation inhibits the Ras/MAP kinase pathway (i) by

  13. Spontaneous Ca Waves in Ventricular Myocytes from Failing Hearts Depend on Ca2+-calmodulin-dependent Protein Kinase II

    PubMed Central

    Curran, Jerry; Brown, Kathy Hayes; Santiago, Demetrio J.; Pogwizd, Steve; Bers, Donald M.; Shannon, Thomas R.

    2010-01-01

    Increased cardiac ryanodine receptor (RyR)-dependent diastolic SR Ca leak is present in heart failure and in conditions when adrenergic tone is high. Increasing Ca leak from the SR could result in spontaneous Ca wave (SCaW) formation. SCaWs activate the inward Na/Ca exchanger (NCX) current causing a delayed afterdepolarization (DAD), potentially leading to arrhythmia. Here we examine SCaWs in ventricular myocytes isolated from failing and healthy rabbit hearts. Myocytes from healthy hearts did not exhibit SCaWs under baseline conditions versus 43% of those exposed to isoproterenol (ISO). This ISO-induced increase in activity was reversed by inhibition of Ca-calmodulin-dependent protein kinase II (CaMKII) by KN93. Inhibition of cAMP-dependent protein kinase (PKA) by H89 had no observed effect. Of myocytes treated with forskolin 50% showed SCaW activity, attributable to a large increase in SR Ca load ([Ca]SRT) versus control. At similar [Ca]SRT (121 µM) myocytes treated with ISO plus KN93 had significantly fewer SCaWs versus those treated with ISO or ISO plus H89 (0.2±0.28 vs. 1.1±0.28 & 1.29±0.39 SCaWs cell−1, respectively). In myocytes isolated from failing hearts ISO induced an increase in the percentage of cells generating SCaWs vs. baseline (74% vs. 11%) with no increase in [Ca]SRT. Inhibiting CaMKII reversed this effect (14%). At similar [Ca]SRT (71 µM) myocytes treated with ISO or ISO plus H89 had significantly more SCaWs per cell vs. untreated (2.5±0.5; 1.6±0.7 vs. 0.36±0.3, respectively). Treatment with ISO plus KN93 completely abolished this effect. The evidence suggests the ISO-dependent increase in SCaW activity in both healthy and failing myocytes is CaMKII-dependent, implicating CaMKII in arrhythmogenesis. PMID:20353795

  14. Neuronal angiotensin II type 1 receptor upregulation in heart failure: activation of activator protein 1 and Jun N-terminal kinase.

    PubMed

    Liu, Dongmei; Gao, Lie; Roy, Shyamal K; Cornish, Kurtis G; Zucker, Irving H

    2006-10-27

    Chronic heart failure (CHF) is a leading cause of mortality in developed countries. Angiotensin II (Ang II) plays an important role in the development and progression of CHF. Many of the important functions of Ang II are mediated by the Ang II type 1 receptor (AT(1)R), including the increase in sympathetic nerve activity in CHF. However, the central regulation of the AT(1)R in the setting of CHF is not well understood. This study investigated the AT(1)R in the rostral ventrolateral medulla (RVLM) of rabbits with CHF, its downstream pathway, and its gene regulation by the transcription factor activator protein 1 (AP-1). Studies were performed in 5 groups of rabbits: sham (n=5), pacing-induced (3 to 4 weeks) CHF (n=5), CHF with intracerebroventricular (ICV) losartan treatment (n=5), normal with ICV Ang II treatment (n=5), and normal with ICV Ang II plus losartan treatment (n=5). AT(1)R mRNA and protein expressions, plasma Ang II, and AP-1-DNA binding activity were significantly higher in RVLM of CHF compared with Sham rabbits (240.4+/-30.2%, P<0.01; 206.6+/-25.8%, P<0.01; 280+/-36.5%, P<0.05; 207+/-16.4%, P<0.01, respectively). Analysis of the stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK) pathway showed that phosphorylated c-Jun proteins, phosphorylated JNK proteins, and JNK activity increased significantly in RVLM of CHF compared with sham (262.9+/-48.1%, 213.8+/-27.7%, 148.2+/-10.1% of control, respectively). Importantly, ICV losartan in CHF rabbits attenuated these increases. ICV Ang II in normal rabbits simulated the molecular changes seen in CHF. This effect was blocked by concomitant ICV losartan. In addition, Ang II-induced AT(1)R expression was blocked by losartan and a JNK inhibitor, but not by extracellular signal-regulated kinase or p38 MAP kinase inhibitors in a neuronal cell culture. These data suggest that central Ang II activates the AT(1)R, SAPK/JNK pathway. AP-1 may further regulate gene expression in RVLM in the CHF state.

  15. Diabetes mellitus affects activity of calcium/calmodulin-dependent protein kinase II alpha in rat trigeminal ganglia.

    PubMed

    Jerić, Milka; Vuica, Ana; Borić, Matija; Puljak, Livia; Jeličić Kadić, Antonia; Grković, Ivica; Filipović, Natalija

    2015-01-01

    The activity of calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) may play a critical role in the modulation of nociceptor activity and plasticity of primary sensory trigeminal neurons. The aim of this study was to investigate the immunoreactivity of phosphorylated CaMKIIα (pCaMKIIα) in subpopulations of trigeminal ganglion (TG) neurons in rat models of early diabetes type 1 (dm1) and 2 (dm2). DM1 model was induced with intraperitoneally (i.p.) injected streptozotocin (STZ) (55mg/kg). DM2 rats were fed with the high fat diet (HFD) for 2 weeks and then received 35mg/kg of STZ i.p. Two weeks and 2 months after the STZ-diabetes induction, rats were sacrificed and immunohistochemical analysis for detection of pCaMKIIα immunoreactivity and double immunofluorescence labelling with isolectin (IB4) was performed. Increased intensity of pCaMKIIα immunofluorescence, restricted to IB4-negative small-diameter neurons, was seen in TG neurons two months after STZ-DM1 induction. DM1 model, as well as the obesity (control dm2 groups) resulted in neuronal impaired growth while dm2 model led to neuron hypertrophy in TG. Observed changes may play a critical role in the modulation of nociceptor activity and plasticity of primary sensory trigeminal neurons. In future, innovative strategies for modulation of CaMKIIα activity in specific subpopulations of neurons could be a novel approach in therapy of diabetic trigeminal neuropathy. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Insulin receptors mediate growth effects in cultured fetal neurons. II. Activation of a protein kinase that phosphorylates ribosomal protein S6

    SciTech Connect

    Heidenreich, K.A.; Toledo, S.P. )

    1989-09-01

    As an initial attempt to identify early steps in insulin action that may be involved in the growth responses of neurons to insulin, we investigated whether insulin receptor activation increases the phosphorylation of ribosomal protein S6 in cultured fetal neurons and whether activation of a protein kinase is involved in this process. When neurons were incubated for 2 h with 32Pi, the addition of insulin (100 ng/ml) for the final 30 min increased the incorporation of 32Pi into a 32K microsomal protein. The incorporation of 32Pi into the majority of other neuronal proteins was unaltered by the 30-min exposure to insulin. Cytosolic extracts from insulin-treated neurons incubated in the presence of exogenous rat liver 40S ribosomes and (gamma-32P)ATP displayed a 3- to 8-fold increase in the phosphorylation of ribosomal protein S6 compared to extracts from untreated cells. Inclusion of cycloheximide during exposure of the neurons to insulin did not inhibit the increased cytosolic kinase activity. Activation of S6 kinase activity by insulin was dose dependent (seen at insulin concentration as low as 0.1 ng/ml) and reached a maximum after 20 min of incubation. Addition of phosphatidylserine, diolein, and Ca2+ to the in vitro kinase reaction had no effect on the phosphorylation of ribosomal protein S6. Likewise, treatment of neurons with (Bu)2cAMP did not alter the phosphorylation of ribosomal protein S6 by neuronal cytosolic extracts. We conclude that insulin activates a cytosolic protein kinase that phosphorylates ribosomal S6 in neurons and is distinct from protein kinase-C and cAMP-dependent protein kinase. Stimulation of this kinase may play a role in insulin signal transduction in neurons.

  17. Molecular basis for the modulation of native T-type Ca2+ channels in vivo by Ca2+/calmodulin-dependent protein kinase II.

    PubMed

    Yao, Junlan; Davies, Lucinda A; Howard, Jason D; Adney, Scott K; Welsby, Philip J; Howell, Nancy; Carey, Robert M; Colbran, Roger J; Barrett, Paula Q

    2006-09-01

    Ang II receptor activation increases cytosolic Ca2+ levels to enhance the synthesis and secretion of aldosterone, a recently identified early pathogenic stimulus that adversely influences cardiovascular homeostasis. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a downstream effector of the Ang II-elicited signaling cascade that serves as a key intracellular Ca2+ sensor to feedback-regulate Ca2+ entry through voltage-gated Ca2+ channels. However, the molecular mechanism(s) by which CaMKII regulates these important physiological targets to increase Ca2+ entry remain unresolved. We show here that CaMKII forms a signaling complex with alpha1H T-type Ca2+ channels, directly interacting with the intracellular loop connecting domains II and III of the channel pore (II-III loop). Activation of the kinase mediated the phosphorylation of Ser1198 in the II-III loop and the positive feedback regulation of channel gating both in intact cells in situ and in cells of the native adrenal zona glomerulosa stimulated by Ang II in vivo. These data define the molecular basis for the in vivo modulation of native T-type Ca2+ channels by CaMKII and suggest that the disruption of this signaling complex in the zona glomerulosa may provide a new therapeutic approach to limit aldosterone production and cardiovascular disease progression.

  18. Regulation of the multifunctional Ca2+/calmodulin-dependent protein kinase II by the PP2C phosphatase PPM1F in fibroblasts.

    PubMed

    Harvey, Bohdan P; Banga, Satnam S; Ozer, Harvey L

    2004-06-04

    The regulation of the multifunctional calcium/calmodulin dependent protein kinase II (CaMKII) by serine/threonine protein phosphatases has been extensively studied in neuronal cells; however, this regulation has not been investigated previously in fibroblasts. We cloned a cDNA from SV40-transformed human fibroblasts that shares 80% homology to a rat calcium/calmodulin-dependent protein kinase phosphatase that encodes a PPM1F protein. By using extracts from transfected cells, PPM1F, but not a mutant (R326A) in the conserved catalytic domain, was found to dephosphorylate in vitro a peptide corresponding to the auto-inhibitory region of CaMKII. Further analyses demonstrated that PPM1F specifically dephosphorylates the phospho-Thr-286 in autophosphorylated CaMKII substrate and thus deactivates the CaMKII in vitro. Coimmunoprecipitation of CaMKII with PPM1F indicates that the two proteins can interact intracellularly. Binding of PPM1F to CaMKII involves multiple regions and is not dependent on intact phosphatase activity. Furthermore, overexpression of PPM1F in fibroblasts caused a reduction in the CaMKII-specific phosphorylation of the known substrate vimentin(Ser-82) following induction of the endogenous CaM kinase. These results identify PPM1F as a CaM kinase phosphatase within fibroblasts, although it may have additional functions intracellularly since it has been presented elsewhere as POPX2 and hFEM-2. We conclude that PPM1F, possibly together with the other previously described protein phosphatases PP1 and PP2A, can regulate the activity of CaMKII. Moreover, because PPM1F dephosphorylates the critical autophosphorylation site of CaMKII, we propose that this phosphatase plays a key role in the regulation of the kinase intracellularly.

  19. Catalytic unit-independent phosphorylation and dephosphorylation of type II regulatory subunit of cyclic AMP-dependent protein kinase in rat liver plasma membranes.

    PubMed Central

    Kiss, Z; Luo, Y; Vereb, G

    1986-01-01

    Rat liver plasma membranes contain a 55 kDa protein which proved to be identical with type II regulatory subunit (RII) of the cyclic AMP-dependent protein kinase (kinase A) by several criteria (gel electrophoretic behaviour, peptide map, position of the autophosphorylated site). Analysis of phosphopeptide maps revealed that the membrane-bound RII was phosphorylated by a kinase which is unrelated to the catalytic unit (C) of kinase A. Dephosphorylation of the membrane-bound RII by an endogenous phosphatase was stimulated by both cyclic AMP and fluoride. Addition of C did not stimulate dephosphorylation even in the presence of ADP; moreover, protein inhibitor of C did not modify the effects of cyclic AMP or fluoride. The effects of both cyclic AMP and fluoride were, however, inhibited by C. Results indicate that rat liver plasma membranes contain a phosphorylation-dephosphorylation system for which RII is a relatively specific substrate. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3010951

  20. Molecular basis for the modulation of native T-type Ca2+ channels in vivo by Ca2+ /calmodulin-dependent protein kinase II

    PubMed Central

    Yao, Junlan; Davies, Lucinda A.; Howard, Jason D.; Adney, Scott K.; Welsby, Philip J.; Howell, Nancy; Carey, Robert M.; Colbran, Roger J.; Barrett, Paula Q.

    2006-01-01

    Ang II receptor activation increases cytosolic Ca2+ levels to enhance the synthesis and secretion of aldosterone, a recently identified early pathogenic stimulus that adversely influences cardiovascular homeostasis. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a downstream effector of the Ang II–elicited signaling cascade that serves as a key intracellular Ca2+ sensor to feedback-regulate Ca2+ entry through voltage-gated Ca2+ channels. However, the molecular mechanism(s) by which CaMKII regulates these important physiological targets to increase Ca2+ entry remain unresolved. We show here that CaMKII forms a signaling complex with α1H T-type Ca2+ channels, directly interacting with the intracellular loop connecting domains II and III of the channel pore (II-III loop). Activation of the kinase mediated the phosphorylation of Ser1198 in the II-III loop and the positive feedback regulation of channel gating both in intact cells in situ and in cells of the native adrenal zona glomerulosa stimulated by Ang II in vivo. These data define the molecular basis for the in vivo modulation of native T-type Ca2+ channels by CaMKII and suggest that the disruption of this signaling complex in the zona glomerulosa may provide a new therapeutic approach to limit aldosterone production and cardiovascular disease progression. PMID:16917542

  1. Transcriptional mechanism of vascular endothelial growth factor-induced expression of protein kinaseII in chronic lymphocytic leukaemia cells

    PubMed Central

    Al-Sanabra, Ola; Duckworth, Andrew D.; Glenn, Mark A.; Brown, Benjamin R. B.; Angelillo, Piera; Lee, Kelvin; Herbert, John; Falciani, Francesco; Kalakonda, Nagesh; Slupsky, Joseph R.

    2017-01-01

    A key feature of chronic lymphocytic leukaemia (CLL) cells is overexpressed protein kinaseII (PKCβII), an S/T kinase important in the pathogenesis of this and other B cell malignancies. The mechanisms contributing to enhanced transcription of the gene coding for PKCβII, PRKCB, in CLL cells remain poorly described, but could be important because of potential insight into how the phenotype of these cells is regulated. Here, we show that SP1 is the major driver of PKCβII expression in CLL cells where enhanced association of this transcription factor with the PRKCB promoter is likely because of the presence of histone marks permissive of gene activation. We also show how vascular endothelial growth factor (VEGF) regulates PRKCB promoter function in CLL cells, stimulating PKCβ gene transcription via increased association of SP1 and decreased association of STAT3. Taken together, these results are the first to demonstrate a clear role for SP1 in the up regulation of PKCβII expression in CLL cells, and the first to link SP1 with the pathogenesis of this and potentially other B cell malignancies where PKCβII is overexpressed. PMID:28233872

  2. Early interference with p44/42 mitogen-activated protein kinase signaling in hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension.

    PubMed

    Yu, Yang; Xue, Bao-Jian; Zhang, Zhi-Hua; Wei, Shun-Guang; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2013-04-01

    Blood-borne angiotensin II (ANG II) can upregulate p44/42 mitogen-activated protein kinase (MAPK) signaling and ANG II type-1 receptors in the hypothalamic paraventricular nucleus (PVN), a critical cardiovascular and autonomic center. We tested the hypothesis that brain p44/42 MAPK signaling contributes to the development of ANG II-induced hypertension. The ANG II infusion (120 ng/kg per min, subcutaneously) induced increases in phosphorylated p44/42 MAPK and ANG II type-1 receptors in the PVN after 1 week, before the onset of hypertension, that were sustained as hypertension developed during a 2- or 3-week infusion protocol. Bilateral PVN microinjections of small interfering RNAs for p44/42 MAPK, at the onset of the ANG II infusion or 1 week later, prevented the early increase in p44/42 MAPK activity. The early treatment normalized ANG II type-1 receptor expression in the PVN and attenuated the hypertensive response to the 2-week infusion of ANG II. The later small interfering RNA microinjections had a transient effect on ANG II type-1 receptor expression in PVN and no effect on the hypertensive response to the 3-week infusion of ANG II. The early treatment also normalized the pressure response to ganglionic blockade. The ANG II infusion induced increases in mRNA for proinflammatory cytokines that were not affected by either small interfering RNA treatment. These results suggest that the full expression of ANG II-induced hypertension depends on p44/42 MAPK-mediated effects. A potential role for p44/42 MAPK in modulating the ANG II-induced central inflammatory response might also be considered. MAPK signaling in PVN may be a novel target for early intervention in the progression of ANG II-dependent hypertension.

  3. Redox Regulation of Protein Kinases

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2015-01-01

    Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous H2O2 by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiologic and pathological H2O2 responses. PMID:23639002

  4. Current theories of neuronal information processing performed by Ca2+/calmodulin-dependent protein kinase II with support and insights from computer modelling and simulation.

    PubMed

    Coomber, C

    1998-01-01

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) is concentrated in brain, and is particularly enriched in synaptic structures where it comprises 20-50% of all proteins. The abundant nature of CaMKII and its ability to phosphorylate a wide range of substrate proteins, including itself, earmarks it as a protein kinase that may have a vital role in neuronal information processing and memory. A computer model of CaMKII is investigated that incorporates recent findings about the geometrical arrangement of subunits, the mechanism of Ca(2+)-dependent subunit activation, and Ca(2+)-independent autophosphorylation. The model is framed as a system of nonlinear differential equations. It is demonstrated numerically that (1) CaMKII is tuned to be activated by stimulation protocols associated with the induction of long-term potentiation; (2) the observed slow dissociation of trapped Ca2+/calmodulin may require the autonomy site to be protected from dephosphorylation; and (3) Ca(2+)-independent kinase activity is expressed in a manner akin to a graded switch. The model validates current theories concerning how CaMKII may be a Ca2+ pulse frequency detector, a molecular switch, or a mediator of the threshold for long-term synaptic plasticity.

  5. Role of Calmodulin-Calmodulin Kinase II, cAMP/Protein Kinase A and ERK 1/2 on Aeromonas hydrophila-Induced Apoptosis of Head Kidney Macrophages

    PubMed Central

    Banerjee, Chaitali; Khatri, Preeti; Raman, Rajagopal; Bhatia, Himanshi; Datta, Malabika; Mazumder, Shibnath

    2014-01-01

    The role of calcium (Ca2+) and its dependent protease calpain in Aeromonas hydrophila-induced head kidney macrophage (HKM) apoptosis has been reported. Here, we report the pro-apoptotic involvement of calmodulin (CaM) and calmodulin kinase II gamma (CaMKIIg) in the process. We observed significant increase in CaM levels in A. hydrophila-infected HKM and the inhibitory role of BAPTA/AM, EGTA, nifedipine and verapamil suggested CaM elevation to be Ca2+-dependent. Our studies with CaM-specific siRNA and the CaM inhibitor calmidazolium chloride demonstrated CaM to be pro-apoptotic that initiated the downstream expression of CaMKIIg. Using the CaMKIIg-targeted siRNA, specific inhibitor KN-93 and its inactive structural analogue KN-92 we report CaM-CaMKIIg signalling to be critical for apoptosis of A. hydrophila-infected HKM. Inhibitor studies further suggested the role of calpain-2 in CaMKIIg expression. CaMK Kinase (CaMKK), the other CaM dependent kinase exhibited no role in A. hydrophila-induced HKM apoptosis. We report increased production of intracellular cAMP in infected HKM and our results with KN-93 or KN-92 implicate the role of CaMKIIg in cAMP production. Using siRNA to PKACA, the catalytic subunit of PKA, anti-PKACA antibody and H-89, the specific inhibitor for PKA we prove the pro-apoptotic involvement of cAMP/PKA pathway in the pathogenicity of A. hydrophila. Our inhibitor studies coupled with siRNA approach further implicated the role of cAMP/PKA in activation of extracellular signal-regulated kinase 1 and 2 (ERK 1/2). We conclude that the alteration in intracellular Ca2+ levels initiated by A. hydrophila activates CaM and calpain-2; both pathways converge on CaMKIIg which in turn induces cAMP/PKA mediated ERK 1/2 phosphorylation leading to caspase-3 mediated apoptosis of infected HKM. PMID:24763432

  6. G protein-coupled receptor kinase and beta-arrestin-mediated desensitization of the angiotensin II type 1A receptor elucidated by diacylglycerol dynamics.

    PubMed

    Violin, Jonathan D; Dewire, Scott M; Barnes, William G; Lefkowitz, Robert J

    2006-11-24

    Receptor desensitization progressively limits responsiveness of cells to chronically applied stimuli. Desensitization in the continuous presence of agonist has been difficult to study with available assay methods. Here, we used a fluorescence resonance energy transfer-based live cell assay for the second messenger diacylglycerol to measure desensitization of a model seven-transmembrane receptor, the Gq-coupled angiotensin II type 1(A) receptor, expressed in human embryonic kidney 293 cells. In response to angiotensin II, we observed a transient diacylglycerol response reflecting activation and complete desensitization of the receptor within 2-5 min. By utilizing a variety of approaches including graded tetracycline-inducible receptor expression, mutated receptors, and overexpression or short interfering RNA-mediated silencing of putative components of the cellular desensitization machinery, we conclude that the rate and extent of receptor desensitization are critically determined by the following: receptor concentration in the plasma membrane; the presence of phosphorylation sites on the carboxyl terminus of the receptor; kinase activity of G protein-coupled receptor kinase 2, but not of G protein-coupled receptor kinases 3, 5, or 6; and stoichiometric expression of beta-arrestin. The findings introduce the use of the biosensor diacylglycerol reporter as a powerful means for studying Gq-coupled receptor desensitization and document that, at the levels of receptor overexpression commonly used in such studies, the properties of the desensitization process are markedly perturbed and do not reflect normal cellular physiology.

  7. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    SciTech Connect

    Grose, C.; Jackson, W. ); Traugh, J.A. )

    1989-09-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing ({gamma}-{sup 32}P)ATP. The same glycoprotein was phosphorylated when ({sup 32}P)GTP was substituted for ({sup 32}P)ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein.

  8. Neuronal migration and protein kinases

    PubMed Central

    Ohshima, Toshio

    2015-01-01

    The formation of the six-layered structure of the mammalian cortex via the inside-out pattern of neuronal migration is fundamental to neocortical functions. Extracellular cues such as Reelin induce intracellular signaling cascades through the protein phosphorylation. Migrating neurons also have intrinsic machineries to regulate cytoskeletal proteins and adhesion properties. Protein phosphorylation regulates these processes. Moreover, the balance between phosphorylation and dephosphorylation is modified by extracellular cues. Multipolar-bipolar transition, radial glia-guided locomotion and terminal translocation are critical steps of radial migration of cortical pyramidal neurons. Protein kinases such as Cyclin-dependent kinase 5 (Cdk5) and c-Jun N-terminal kinases (JNKs) involve these steps. In this review, I shall give an overview the roles of protein kinases in neuronal migration. PMID:25628530

  9. Type II CaS /calmodulin-dependent kinase phosphorylates tau protein in the region of the mouse repeat

    SciTech Connect

    Kosik, K.S.; Lee, G.; Kennedy, M.B.

    1987-05-01

    Tau is a phosphoprotein associated with the subset of microtubules present in the axonal domain of neurons and is a component of the Alzheimer neurofibrillary tangle. Tau protein was purified from bovine brain by the taxol method followed by gel filtration of the heat-stable microtubule fraction CaS /calmodulin-dependent kinase was purified from rat brain as previously described. Incubation of tau in the kinase-containing reaction mixture resulted in intense incorporation of TSP into the protein. Labeled tau protein was trypsinized and separated into discrete fragments by reverse-phase HPLC. The chromatogram contained two radioactive peaks, sequenced on a gas phase sequenator. The first peak was eluted into two tubes, with more radioactivity in the second tube. The sequence in the second tube contained 16 residues which corresponded to an identical sequence in mouse tau that is part of a longer stretch which repeats three times with greater than 50% homology. The highest CPM's were located on a PTH-conjugated threonine. The first tube contained the identical amino acid sequence and a lower level of radioactivity throughout unassociated with any single amino acid. About 1/3 of the total peptide was phosphorylated. A second radioactive peak contained an unidentifiable PTH-amino acid present at a level below the yield obtained for tau.

  10. The protein kinase C family.

    PubMed

    Azzi, A; Boscoboinik, D; Hensey, C

    1992-09-15

    Protein kinase C represents a structurally homologous group of proteins similar in size, structure and mechanism of activation. They can modulate the biological function of proteins in a rapid and reversible manner. Protein kinase C participates in one of the major signal transduction systems triggered by the external stimulation of cells by various ligands including hormones, neurotransmitters and growth factors. Hydrolysis of membrane inositol phospholipids by phospholipase C or of phosphatidylcholine, generates sn-1,2-diacylglycerol, considered the physiological activator of this kinase. Other agents, such as arachidonic acid, participate in the activation of some of these proteins. Activation of protein kinase C by phorbol esters and related compounds is not physiological and may be responsible, at least in part, for their tumor-promoting activity. The cellular localization of the different calcium-activated protein kinases, their substrate and activator specificity are dissimilar and thus their role in signal transduction is unlike. A better understanding of the exact cellular function of the different protein kinase C isoenzymes requires the identification and characterization of their physiological substrates.

  11. Activation of AMP-activated protein kinase by metformin ablates angiotensin II-induced endoplasmic reticulum stress and hypertension in mice in vivo.

    PubMed

    Duan, Quanlu; Song, Ping; Ding, Ye; Zou, Ming-Hui

    2017-07-01

    Metformin, one of the most frequently prescribed medications for type 2 diabetes, reportedly exerts BP-lowering effects in patients with diabetes. However, the effects and underlying mechanisms of metformin on BP in non-diabetic conditions remain to be determined. The aim of the present study was to determine the effects of metformin on angiotensin II (Ang II) infusion-induced hypertension in vivo. The effects of metformin on BP were investigated in wild-type (WT) C57BL/6J mice and in mice lacking AMP-activated protein kinase α2 (AMPKα2) mice with or without Ang II infusion. Also, the effect of metformin on Ang II-induced endoplasmic reticulum (ER) stress was explored in cultured human vascular smooth muscle cells (hVSMCs). Metformin markedly reduced BP in Ang II-infused WT mice but not in AMPKα2-deficient mice. In cultured hVSMCs, Ang II treatment resulted in inactivation of AMPK, as well as the subsequent induction of spliced X-box binding protein-1, phosphorylation of eukaryotic translation initiation factor 2α and expression of glucose-regulated protein 78 kDa, representing three well-characterized ER stress biomarkers. Moreover, AMPK activation by metformin ablated Ang II-induced ER stress in hVSMCs. Mechanistically, metformin-activated AMPKα2 suppressed ER stress by increasing phospholamban phosphorylation. Metformin alleviates Ang II-triggered hypertension in mice by activating AMPKα2, which mediates phospholamban phosphorylation and inhibits Ang II-induced ER stress in vascular smooth muscle cells. © 2017 The British Pharmacological Society.

  12. Gating of long-term depression by Ca2+/calmodulin-dependent protein kinase II through enhanced cGMP signalling in cerebellar Purkinje cells

    PubMed Central

    Kawaguchi, Shin-ya; Hirano, Tomoo

    2013-01-01

    Long-term depression (LTD) at parallel fibre synapses on a cerebellar Purkinje cell has been regarded as a cellular basis for motor learning. Although Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the LTD induction as an important Ca2+-sensing molecule, the underlying signalling mechanism remains unclear. Here, we attempted to explore the potential signalling pathway underlying the CaMKII involvement in LTD using a systems biology approach, combined with validation by electrophysiological and FRET imaging experiments on a rat cultured Purkinje cell. Model simulation predicted the following cascade as a candidate mechanism for the CaMKII contribution to LTD: CaMKII negatively regulates phosphodiesterase 1 (PDE1), subsequently facilitates the cGMP/protein kinase G (PKG) signalling pathway and down-regulates protein phosphatase 2A (PP-2A), thus supporting the LTD-inducing positive feedback loop consisting of mutual activation of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). This model suggestion was corroborated by whole-cell patch clamp recording experiments. In addition, FRET measurement of intracellular cGMP concentration revealed that CaMKII activation causes sustained increase of cGMP, supporting the signalling mechanism of LTD induction by CaMKII. Furthermore, we found that activation of the cGMP/PKG pathway by nitric oxide (NO) can support LTD induction without activation of CaMKII. Thus, this study clarified interaction between NO and Ca2+/CaMKII, two important factors required for LTD. PMID:23297306

  13. Heart failure-specific changes in protein kinase signalling.

    PubMed

    Lorenz, Kristina; Stathopoulou, Konstantina; Schmid, Evelyn; Eder, Petra; Cuello, Friederike

    2014-06-01

    Among the myriad of molecular alterations occurring in heart failure development, aggravation of the disease is often attributed to global or local changes in protein kinase activity, thus making protein kinases attractive targets for therapeutic intervention. Since protein kinases do not only have maladaptive roles, but also contribute to the physiological integrity of cells, it is a challenging task to circumvent undesired inhibition of protein kinase activity. Identification of posttranslational modifications and/or protein-protein interactions that are exclusively apparent under pathophysiological conditions provides exciting information for alternative non-kinase inhibitory treatment strategies that eliminate maladaptive functions of a protein kinase, but preserve the beneficial ones. Here, we focus on the disease-specific regulation of a number of protein kinases, namely, Ca(2+)/calmodulin-dependent protein kinase II isoform δ (CaMKIIδ), G protein-coupled receptor kinase 2 (GRK2), extracellular signal-regulated kinase 1 and 2 (ERK1/2), protein kinase D (PKD) and protein kinase C isoform β2 (PKCβ2), which are embedded in complex signal transduction pathways implicated in heart failure development, and discuss potential avenues for novel treatment strategies to combat heart disease.

  14. Phosphatidylinositol-4-Kinase Type II α Is a Component of Adaptor Protein-3-derived VesiclesD⃞

    PubMed Central

    Salazar, Gloria; Craige, Branch; Wainer, Bruce H.; Guo, Jun; De Camilli, Pietro; Faundez, Victor

    2005-01-01

    A membrane fraction enriched in vesicles containing the adaptor protein (AP) -3 cargo zinc transporter 3 was generated from PC12 cells and was used to identify new components of these organelles by mass spectrometry. Proteins prominently represented in the fraction included AP-3 subunits, synaptic vesicle proteins, and lysosomal proteins known to be sorted in an AP-3-dependent way or to interact genetically with AP-3. A protein enriched in this fraction was phosphatidylinositol-4-kinase type IIα (PI4KIIα). Biochemical, pharmacological, and morphological analyses supported the presence of PI4KIIα in AP-3-positive organelles. Furthermore, the subcellular localization of PI4KIIα was altered in cells from AP-3-deficient mocha mutant mice. The PI4KIIα normally present both in perinuclear and peripheral organelles was substantially decreased in the peripheral membranes of AP-3-deficient mocha fibroblasts. In addition, as is the case for other proteins sorted in an AP-3-dependent way, PI4KIIα content was strongly reduced in nerve terminals of mocha hippocampal mossy fibers. The functional relationship between AP-3 and PI4KIIα was further explored by PI4KIIα knockdown experiments. Reduction of the cellular content of PI4KIIα strongly decreased the punctate distribution of AP-3 observed in PC12 cells. These results indicate that PI4KIIα is present on AP-3 organelles where it regulates AP-3 function. PMID:15944223

  15. Neuronal calcium/calmodulin-dependent protein kinase II mediates nicotine reward in the conditioned place preference test in mice.

    PubMed

    Jackson, Kia J; Muldoon, Pretal P; Walters, Carrie; Damaj, Mohamad Imad

    2016-02-01

    Several recent studies have indicated the involvement of calcium-dependent mechanisms, in particular the abundant calcium-activated kinase, calcium/calmodulin-dependent kinase II (CaMKII), in behaviors associated with nicotine dependence in mice. Behavioral and biochemical studies have shown that CaMKII is involved in acute and chronic nicotine behaviors and nicotine withdrawal; however, evidence of a role for CaMKII in nicotine reward is lacking. Thus, the goal of the current study was to examine the role of CaMKII in nicotine reward. Using pharmacological and genetic tools, we tested nicotine conditioned place preference (CPP) in C57Bl/6 mice after administration of CaMKII antagonists and in α-CaMKII wild-type (+/+) and heterozygote (±) mice. CaMKII antagonists blocked expression of nicotine CPP, and the preference score was significantly reduced in α-CaMKII ± mice compared with their +/+ counterparts. Further, we assessed CaMKII activity in the ventral tegmental area (VTA), nucleus accumbens (NAc), prefrontal cortex, and hippocampus after nicotine CPP and found significant increases in CaMKII activity in the mouse VTA and NAc that were blocked by CaMKII antagonists. The findings from this study show that CaMKII mediates nicotine reward and suggest that increases in CaMKII activity in the VTA and NAc are relevant to nicotine reward behaviors.

  16. The fine-structural distribution of G-protein receptor kinase 3, beta-arrestin-2, Ca2+/calmodulin-dependent protein kinase II and phosphodiesterase PDE1C2, and a Cl(-)-cotransporter in rodent olfactory epithelia.

    PubMed

    Menco, Bert Ph M

    2005-03-01

    The sequentially activated molecules of olfactory signal-onset are mostly concentrated in the long, thin distal parts of olfactory epithelial receptor cell cilia. Is this also true for molecules of olfactory signal-termination and -regulation? G-protein receptor kinase 3 (GRK3) supposedly aids in signal desensitization at the level of odor receptors, whereas beta-arrestin-2, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and phosphodiesterase (PDE) PDE1C2 are thought to do so at the level of the adenylyl cyclase, ACIII. The Na+, K(+)-2Cl(-)-cotransporter NKCC1 regulates Cl(-)-channel activity. In an attempt to localize the subcellular sites olfactory signal-termination and -regulation we used four antibodies to GRK3, two to beta-arrestin-2, five to CaMKII (one to both the alpha and beta form, and two each specific to CaMKII alpha and beta), two to PDE1C2, and three to Cl(-)-cotransporters. Only antibodies to Cl(-)-cotransporters labeled cytoplasmic compartments of, especially, supporting cells but also those of receptor cells. For all other antibodies, immunoreactivity was mostly restricted to the olfactory epithelial luminal border, confirming light microscopic studies that had shown that antibodies to GRK3, beta- arrestin-2, CaMKII, and PDE1C2 labeled this region. Labeling did indeed include receptor cell cilia but occurred in microvilli of neighboring supporting cells as well. Apical parts of microvillous cells that are distinct from supporting cells, and also of ciliated respiratory cells, immunoreacted slightly with most antibodies. When peptides were available, antibody preabsorption with an excess of peptide reduced labeling intensities. Though some of the antibodies did label apices and microvilli of vomeronasal (VNO) supporting cells, none immunoreacted with VNO sensory structures.

  17. Atlas of transgenic Tet-Off Ca2+/calmodulin-dependent protein kinase II and prion protein promoter activity in the mouse brain.

    PubMed

    Odeh, Francis; Leergaard, Trygve B; Boy, Jana; Schmidt, Thorsten; Riess, Olaf; Bjaalie, Jan G

    2011-02-14

    Conditional transgenic mouse models are important tools for investigations of neurodegenerative diseases and evaluation of potential therapeutic interventions. A popular conditional transgenic system is the binary tetracycline-responsive gene (Tet-Off) system, in which the expression of the gene of interest depends on a tetracycline-regulatable transactivator (tTA) under the control of a specific promoter construct. The most frequently used Tet-Off promoter mouse lines are the Ca(2+)/calmodulin-dependent protein kinase II (CamKII) and prion protein (PrP) promoter lines, respectively. To target the regulated gene of interest to relevant brain regions, a priori knowledge about the spatial distribution of the regulated gene expression in the brain is important. Such distribution patterns can be investigated using double transgenic mice in which the promoter construct regulates a LacZ reporter gene encoding the marker β-galactosidase which can be histologically detected using its substrate X-gal. We have previously published an atlas showing the brain-wide expression mediated by the Tet-Off PrP promoter mouse line, but the distribution of activity in the Tet-Off CamKII promoter mouse line is less well known. To compare promoter activity distributions in these two Tet-Off mouse lines, we have developed an online digital atlas tailored for side-by-side comparison of histological section images. The atlas provides a comprehensive list of brain regions containing X-gal labeling and an interactive dual image viewer tool for panning and zooming of corresponding section images. Comparison of spatial expression patterns between the two lines show considerable regional and cellular differences, relevant in context of generation and analysis of inducible models based on these two tetracycline responsive promoter mouse lines. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. CUL3 and protein kinases

    PubMed Central

    Metzger, Thibaud; Kleiss, Charlotte; Sumara, Izabela

    2013-01-01

    Posttranslational mechanisms drive fidelity of cellular processes. Phosphorylation and ubiquitination of substrates represent very common, covalent, posttranslational modifications and are often co-regulated. Phosphorylation may play a critical role both by directly regulating E3-ubiquitin ligases and/or by ensuring specificity of the ubiquitination substrate. Importantly, many kinases are not only critical regulatory components of these pathways but also represent themselves the direct ubiquitination substrates. Recent data suggest the role of CUL3-based ligases in both proteolytic and non-proteolytic regulation of protein kinases. Our own recent study identified the mitotic kinase PLK1 as a direct target of the CUL3 E3-ligase complex containing BTB-KELCH adaptor protein KLHL22.1 In this study, we aim at gaining mechanistic insights into CUL3-mediated regulation of the substrates, in particular protein kinases, by analyzing mechanisms of interaction between KLHL22 and PLK1. We find that kinase activity of PLK1 is redundant for its targeting for CUL3-ubiquitination. Moreover, CUL3/KLHL22 may contact 2 distinct motifs within PLK1 protein, consistent with the bivalent mode of substrate targeting found in other CUL3-based complexes. We discuss these findings in the context of the existing knowledge on other protein kinases and substrates targeted by CUL3-based E3-ligases. PMID:24067371

  19. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK.

    PubMed

    Feaver, W J; Svejstrup, J Q; Henry, N L; Kornberg, R D

    1994-12-16

    KIN28, a member of the p34cdc2/CDC28 family of protein kinases, is identified as a subunit of yeast RNA polymerase transcription factor IIH (TFIIH) on the basis of sequence determination, immunological reactivity, and copurification. KIN28 is, moreover, one of three subunits of TFIIK, a subassembly of TFIIH with protein kinase activity directed toward the C-terminal repeat domain (CTD) of the largest subunit of RNA polymerase II. Itself a phosphoprotein, KIN28 interacts specifically with the two largest subunits of RNA polymerase II. Previous work of others points to two further associations: KIN28 interacts in vivo with the cyclin CCL1, and KIN28 and CCL1 are homologous to human MO15 and cyclin H, which form the cyclin-dependent kinase-activating kinase (CAK). We show that human CAK possesses the CTD kinase activity characteristic of TFIIH.

  20. p38 Mitogen-Activated Protein Kinase (MAPK) Increases Arginase Activity and Contributes to Endothelial Dysfunction in Corpora Cavernosa from Angiotensin-II Treated Mice

    PubMed Central

    Toque, Haroldo A.; Romero, Maritza J.; Tostes, Rita C.; Shatanawi, Alia; Chandra, Surabhi; Carneiro, Zidonia N.; Inscho, Edward W.; Webb, R. Clinton; Caldwell, Ruth B.; Caldwell, R. William

    2010-01-01

    Introduction Angiotensin II (AngII) activates p38 mitogen-activated protein kinase (MAPK) and elevates arginase activity in endothelial cells. Upregulation of arginase activity has been implicated in endothelial dysfunction by reducing NO bioavailability. However, signaling pathways activated by AngII in the penis are largely unknown. Aim We hypothesized that activation of p38 MAPK increases arginase activity and thus impairs penile vascular function in AngII-treated mice. Methods Male C57BL/6 mice were implanted with osmotic minipumps containing saline or AngII (42 μg/kg/h) for 14 days and co-treated with p38 MAPK inhibitor, SB 203580 (5 μg/kg/day), beginning 2 days before minipump implantation. Systolic blood pressure (SBP) was measured. Corpus cavernosum (CC) tissue was used for vascular functional studies and protein expression levels of p38 MAPK, arginase and constitutive NOS, and arginase activity. Main Outcome Measures Arginase expression and activity; expression of phospho-p38 MAPK, -eNOS and nNOS proteins; endothelium-dependent and nitrergic nerve-mediated relaxations were determined in CC from control and AngII-infused mice. Results AngII increased SBP (22%) and increased CC arginase activity and expression (~2-fold), and phosphorylated P38 MAPK levels (30%) over control. Treatment with SB 203580 prevented these effects. Endothelium-dependent NO-mediated relaxation to acetylcholine was significantly reduced by AngII and this effect was prevented by SB 203580 (P<0.01). AngII (2-week) did not alter nitrergic function. However, SB 203580 significantly increased nitrergic relaxation in both control and AngII tissue at lower frequencies. Maximum contractile responses for phenylephrine and electrical field stimulation were increased by AngII (56% and 171%, respectively), and attenuated by SB 203580 treated. AngII treatment also decreased eNOS phosphorylation at Ser-1177 compared to control. Treatment with SB 203580 prevented all these changes. Conclusion p38

  1. Angiotensin II-induced protein kinase D activates the ATF/CREB family of transcription factors and promotes StAR mRNA expression.

    PubMed

    Olala, Lawrence O; Choudhary, Vivek; Johnson, Maribeth H; Bollag, Wendy B

    2014-07-01

    Aldosterone synthesis is initiated upon the transport of cholesterol from the outer to the inner mitochondrial membrane, where the cholesterol is hydrolyzed to pregnenolone. This process is the rate-limiting step in acute aldosterone production and is mediated by the steroidogenic acute regulatory (StAR) protein. We have previously shown that angiotensin II (AngII) activation of the serine/threonine protein kinase D (PKD) promotes acute aldosterone production in bovine adrenal glomerulosa cells, but the mechanism remains unclear. Thus, the purpose of this study was to determine the downstream signaling effectors of AngII-stimulated PKD activity. Our results demonstrate that overexpression of the constitutively active serine-to-glutamate PKD mutant enhances, whereas the dominant-negative serine-to-alanine PKD mutant inhibits, AngII-induced StAR mRNA expression relative to the vector control. PKD has been shown to phosphorylate members of the activating transcription factor (ATF)/cAMP response element binding protein (CREB) family of leucine zipper transcription factors, which have been shown previously to bind the StAR proximal promoter and induce StAR mRNA expression. In primary glomerulosa cells, AngII induces ATF-2 and CREB phosphorylation in a time-dependent manner. Furthermore, overexpression of the constitutively active PKD mutant enhances the AngII-elicited phosphorylation of ATF-2 and CREB, and the dominant-negative mutant inhibits this response. Furthermore, the constitutively active PKD mutant increases the binding of phosphorylated CREB to the StAR promoter. Thus, these data provide insight into the previously reported role of PKD in AngII-induced acute aldosterone production, providing a mechanism by which PKD may be mediating steroidogenesis in primary bovine adrenal glomerulosa cells.

  2. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Linn, Anning

    1996-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK.

  3. Phosphorylation of the Yeast Choline Kinase by Protein Kinase C

    PubMed Central

    Choi, Mal-Gi; Kurnov, Vladlen; Kersting, Michael C.; Sreenivas, Avula; Carman, George M.

    2005-01-01

    The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work, we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent, and dependent on the concentrations of choline kinase (Km = 27 μg/ml) and ATP (Km = 15 μM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSS25QRRHS (Vmax/Km = 17.5 mM-1 μmol min-1 mg-1) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo, the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Whereas the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHS30LTRQ) containing Ser30 was a substrate (Vmax/Km = 3.0 mM−1 μmol min−1 mg−1) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. PMID:15919656

  4. Oncoprotein protein kinase

    DOEpatents

    Karin, M.; Hibi, M.; Lin, A.

    1997-02-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

  5. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2004-03-16

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  6. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Lin, Anning

    1999-11-30

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  7. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1998-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  8. Oncoprotein protein kinase

    DOEpatents

    Davis, Roger; Derijard, Benoit; Karin, Michael; Hibi, Masahiko; Lin, Anning

    2005-01-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  9. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  10. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  11. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2005-03-08

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  12. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1999-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  13. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  14. Ca2+/calmodulin-dependent protein kinase II-γ (CaMKIIγ) negatively regulates vascular smooth muscle cell proliferation and vascular remodeling

    PubMed Central

    Saddouk, Fatima Z.; Sun, Li-Yan; Liu, Yong Feng; Jiang, Miao; Singer, Diane V.; Backs, Johannes; Van Riper, Dee; Ginnan, Roman; Schwarz, John J.; Singer, Harold A.

    2016-01-01

    Vascular smooth muscle (VSM) expresses calcium/calmodulin-dependent protein kinase II (CaMKII)-δ and -γ isoforms. CaMKIIδ promotes VSM proliferation and vascular remodeling. We tested CaMKIIγ function in vascular remodeling after injury. CaMKIIγ protein decreased 90% 14 d after balloon injury in rat carotid artery. Intraluminal transduction of adenovirus encoding CaMKIIγC rescued expression to 35% of uninjured controls, inhibited neointima formation (>70%), inhibited VSM proliferation (>60%), and increased expression of the cell-cycle inhibitor p21 (>2-fold). Comparable doses of CaMKIIδ2 adenovirus had no effect. Similar dynamics in CaMKIIγ mRNA and protein expression were observed in ligated mouse carotid arteries, correlating closely with expression of VSM differentiation markers. Targeted deletion of CaMKIIγ in smooth muscle resulted in a 20-fold increase in neointimal area, with a 3-fold increase in the cell proliferation index, no change in apoptosis, and a 60% decrease in p21 expression. In cultured VSM, CaMKIIγ overexpression induced p53 mRNA (1.7 fold) and protein (1.8-fold) expression; induced the p53 target gene p21 (3-fold); decreased VSM cell proliferation (>50%); and had no effect on expression of apoptosis markers. We conclude that regulated CaMKII isoform composition is an important determinant of the injury-induced vasculoproliferative response and that CaMKIIγ and -δ isoforms have nonequivalent, opposing functions.—Saddouk, F. Z., Sun, L.-Y., Liu, Y. F., Jiang, M., Singer, D. V., Backs, J., Van Riper, D., Ginnan, R., Schwarz, J. J., Singer, H. A. Ca2+/calmodulin-dependent protein kinase II-γ (CaMKIIγ) negatively regulates vascular smooth muscle cell proliferation and vascular remodeling. PMID:26567004

  15. Expanding the Functional Repertoire of CTD Kinase I and RNA Polymerase II: Novel PhosphoCTD-Associating Proteins in the Yeast Proteome†

    PubMed Central

    Phatnani, Hemali P.; Jones, Janice C.; Greenleaf, Arno L.

    2009-01-01

    CTD kinase I (CTDK-I) of Saccharomyces cerevisiae is required for normal phosphorylation of the C-terminal repeat domain (CTD) on elongating RNA polymerase II. To elucidate cellular roles played by this kinase and the hyperphosphorylated CTD (phosphoCTD) it generates, we systematically searched yeast extracts for proteins that bound to the phosphoCTD made by CTDK-I in vitro. Initially, using a combination of far-western blotting and phosphoCTD affinity chromatography, we discovered a set of novel phosphoCTD-associating proteins (PCAPs) implicated in a variety of nuclear functions. We identified the phosphoCTD-interacting domains of a number of these PCAPs, and in several test cases (namely, Set2, Ssd1, and Hrr25) adduced evidence that phosphoCTD binding is functionally important in vivo. Employing surface plasmon resonance (BIACORE) analysis, we found that recombinant versions of these and other PCAPs bind preferentially to CTD repeat peptides carrying SerPO4 residues at positions 2 and 5 of each seven amino acid repeat, consistent with the positional specificity of CTDK-I in vitro [Jones, J. C., et al. (2004) J. Biol. Chem. 279, 24957–24964]. Subsequently, we used a synthetic CTD peptide with three doubly phosphorylated repeats (2,5P) as an affinity matrix, greatly expanding our search for PCAPs. This resulted in identification of approximately 100 PCAPs and associated proteins representing a wide range of functions (e.g., transcription, RNA processing, chromatin structure, DNA metabolism, protein synthesis and turnover, RNA degradation, snRNA modification, and snoRNP biogenesis). The varied nature of these PCAPs and associated proteins points to an unexpectedly diverse set of connections between Pol II elongation and other processes, conceptually expanding the role played by CTD phosphorylation in functional organization of the nucleus. PMID:15595826

  16. cAMP-dependent protein kinase types I and II differentially regulate cAMP response element-mediated gene expression: implications for neuronal responses to ethanol.

    PubMed

    Constantinescu, Anastasia; Gordon, Adrienne S; Diamond, Ivan

    2002-05-24

    We have shown that ethanol induces translocation of cAMP-dependent protein kinase (PKA) to the nucleus, cAMP response element-binding protein (CREB) phosphorylation, and cAMP response element-mediated gene transcription in NG108-15 cells. However, little is known about which PKA types regulate this process. We show here that under basal conditions NG108-15 cells contain type I PKA (CbetaRIbeta) primarily in cytosol and type II PKA (CalphaRIIbeta) in the particulate and nuclear fractions. Antagonists of both type I and type II PKA inhibit forskolin- and ethanol-induced cAMP response element-mediated gene transcription. However, only the type II PKA antagonist inhibits forskolin-induced Calpha and ethanol-induced Calpha and RIIbeta translocation to the nucleus and CREB phosphorylation; the type I antagonist is without effect. Our data suggest that forskolin- and ethanol-induced CREB phosphorylation and gene activation are differentially mediated by the two types of PKA. We propose that type II PKA is translocated and activated in the nucleus and induces CREB phosphorylation that is necessary but not sufficient for gene transcription. By contrast, type I PKA is activated in the cytoplasm, turning on a downstream pathway that activates other transcription cofactors that interact with phosphorylated CREB to induce gene transcription.

  17. Enterovirus 71 VP1 activates calmodulin-dependent protein kinase II and results in the rearrangement of vimentin in human astrocyte cells.

    PubMed

    Haolong, Cong; Du, Ning; Hongchao, Tian; Yang, Yang; Wei, Zhang; Hua, Zhang; Wenliang, Zhang; Lei, Song; Po, Tien

    2013-01-01

    Enterovirus 71 (EV71) is one of the main causative agents of foot, hand and mouth disease. Its infection usually causes severe central nervous system diseases and complications in infected infants and young children. In the present study, we demonstrated that EV71 infection caused the rearrangement of vimentin in human astrocytoma cells. The rearranged vimentin, together with various EV71 components, formed aggresomes-like structures in the perinuclear region. Electron microscopy and viral RNA labeling indicated that the aggresomes were virus replication sites since most of the EV71 particles and the newly synthesized viral RNA were concentrated here. Further analysis revealed that the vimentin in the virus factories was serine-82 phosphorylated. More importantly, EV71 VP1 protein is responsible for the activation of calmodulin-dependent protein kinase II (CaMK-II) which phosphorylated the N-terminal domain of vimentin on serine 82. Phosphorylation of vimentin and the formation of aggresomes were required for the replication of EV71 since the latter was decreased markedly after phosphorylation was blocked by KN93, a CaMK-II inhibitor. Thus, as one of the consequences of CaMK-II activation, vimentin phosphorylation and rearrangement may support virus replication by playing a structural role for the formation of the replication factories. Collectively, this study identified the replication centers of EV71 in human astrocyte cells. This may help us understand the replication mechanism and pathogenesis of EV71 in human.

  18. The rate of nuclear cytoplasmic protein transport is determined by the casein kinase II site flanking the nuclear localization sequence of the SV40 T-antigen.

    PubMed Central

    Rihs, H P; Jans, D A; Fan, H; Peters, R

    1991-01-01

    We have previously demonstrated [Rihs, H.-P. and Peters, R. (1989) EMBO J., 8, 1479-1484] that the nuclear transport of recombinant proteins in which short fragments of the SV40 T-antigen are fused to the amino terminus of Escherichia coli beta-galactosidase is dependent on both the nuclear localization sequence (NLS, T-antigen residues 126-132) and a phosphorylation-site-containing sequence (T-antigen residues 111-125). While the NLS determines the specificity, the rate of transport is controlled by the phosphorylation-site-containing sequence. The present study furthers this observation and examines the role of the various phosphorylation sites. Purified, fluorescently labeled recombinant proteins were injected into the cytoplasm of Vero or hepatoma (HTC) cells and the kinetics of nuclear transport measured by laser microfluorimetry. By replacing serine and threonine residues known to be phosphorylated in vivo, we identified the casein kinase II (CK-II) site S111/S112 to be the determining factor in the enhancement of the transport. Either of the residues 111 or 112 was sufficient to elicit the maximum transport enhancement. The other phosphorylation sites (S120, S123, T124) had no influence on the transport rate. Examination of the literature suggested that many proteins harboring a nuclear localization sequence also contain putative CK-II sites at a distance of approximately 10-30 amino acid residues from the NLS. CK-II has been previously implicated in the transmission of growth signals to the nucleus. Our results suggest that CK-II may exert this role by controlling the rate of nuclear protein transport. Images PMID:1848177

  19. Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, densin-180, and alpha-actinin-2.

    PubMed

    Robison, A J; Bass, Martha A; Jiao, Yuxia; MacMillan, Leigh B; Carmody, Leigh C; Bartlett, Ryan K; Colbran, Roger J

    2005-10-21

    Dendritic calcium/calmodulin-dependent protein kinase II (CaMKII) is dynamically targeted to the synapse. We show that CaMKIIalpha is associated with the CaMKII-binding proteins densin-180, the N-methyl-D-aspartate receptor NR2B subunit, and alpha-actinin in postsynaptic density-enriched rat brain fractions. Residues 819-894 within the C-terminal domain of alpha-actinin-2 constitute the minimal CaMKII-binding domain. Similar amounts of Thr286-autophosphorylated CaMKIIalpha holoenzyme [P-T286]CaMKII bind to alpha-actinin-2 as bind to NR2B (residues 1260-1339) or to densin-180 (residues 1247-1495) in glutathione-agarose cosedimentation assays, even though the CaMKII-binding domains share no amino acid sequence similarity. Like NR2B, alpha-actinin-2 binds to representative splice variants of each CaMKII gene (alpha, beta, gamma, and delta), whereas densin-180 binds selectively to CaMKIIalpha. In addition, C-terminal truncated CaMKIIalpha monomers can interact with NR2B and alpha-actinin-2, but not with densin-180. Soluble alpha-actinin-2 does not compete for [P-T286]CaMKII binding to immobilized densin-180 or NR2B. However, soluble densin-180, but not soluble NR2B, increases CaMKII binding to immobilized alpha-actinin-2 by approximately 10-fold in a PDZ domain-dependent manner. A His6-tagged NR2B fragment associates with GST-densin or GST-actinin but only in the presence of [P-T286]CaMKII. Similarly, His6-tagged densin-180 or alpha-actinin fragments associate with GST-NR2B in a [P-T286]CaMKII-dependent manner. In addition, GST-NR2B and His6-tagged alpha-actinin can bind simultaneously to monomeric CaMKII subunits. In combination, these data support a model in which [P-T286]CaMKIIalpha can simultaneously interact with multiple dendritic spine proteins, possibly stabilizing the synaptic localization of CaMKII and/or nucleating a multiprotein synaptic signaling complex.

  20. Calcium/calmodulin-dependent protein kinase II regulates Caenorhabditis elegans locomotion in concert with a G(o)/G(q) signaling network.

    PubMed Central

    Robatzek, M; Thomas, J H

    2000-01-01

    Caenorhabditis elegans locomotion is a complex behavior generated by a defined set of motor neurons and interneurons. Genetic analysis shows that UNC-43, the C. elegans Ca(2+)/calmodulin protein kinase II (CaMKII), controls locomotion rate. Elevated UNC-43 activity, from a gain-of-function mutation, causes severely lethargic locomotion, presumably by inappropriate phosphorylation of targets. In a genetic screen for suppressors of this phenotype, we identified multiple alleles of four genes in a G(o)/G(q) G-protein signaling network, which has been shown to regulate synaptic activity via diacylglycerol. Mutations in goa-1, dgk-1, eat-16, or eat-11 strongly or completely suppressed unc-43(gf) lethargy, but affected other mutants with reduced locomotion only weakly. We conclude that CaMKII and G(o)/G(q) pathways act in concert to regulate synaptic activity, perhaps through a direct interaction between CaMKII and G(o). PMID:11063685

  1. Probing the cyclic nucleotide binding sites of cAMP-dependent protein kinases I and II with analogs of adenosine 3',5'-cyclic phosphorothioates.

    PubMed

    Dostmann, W R; Taylor, S S; Genieser, H G; Jastorff, B; Døskeland, S O; Ogreid, D

    1990-06-25

    A set of cAMP analogs were synthesized that combined exocyclic sulfur substitutions in the equatorial (Rp) or the axial (Sp) position of the cyclophosphate ring with modifications in the adenine base of cAMP. The potency of these compounds to inhibit the binding of [3H]cAMP to sites A and B from type I (rabbit skeletal muscle) and type II (bovine myocardium) cAMP-dependent protein kinase was determined quantitatively. On the average, the Sp isomers had a 5-fold lower affinity for site A and a 30-fold lower affinity for site B of isozyme I than their cyclophosphate homolog. The mean reduction in affinities for the equivalent sites of isozyme II were 20- and 4-fold, respectively. The Rp isomers showed a decrease in affinity of approximately 400-fold and 200-fold for site A and B, respectively, of isozyme I, against 200-fold and 45-fold for site A and B of isozyme II. The Sp substitutions therefore increased the relative preference for site A of isozyme I and site B of isozyme II. The Rp substitution, on the other hand, increased the relative preference for site B of both isozymes. These data show that the Rp and Sp substitutions are tolerated differently by the two intrachain sites of isozymes I and II. They also support the hypothesis that it is the axial, and not the previously proposed equatorial oxygen that contributes the negative charge for the ionic interaction with an invariant arginine in all four binding sites. In addition, they demonstrate that combined modifications in the adenine ring and the cyclic phosphate ring of cAMP can enhance the ability to discriminate between site A and B of one isozyme as well as to discriminate between isozyme I and II. Since Rp analogs of cAMP are known to inhibit activation of cAMP-dependent protein kinases, the findings of the present study have implications for the synthesis of analogs having a very high selectivity for isozyme I or II.

  2. Leishmania MAP kinases--familiar proteins in an unusual context.

    PubMed

    Wiese, Martin

    2007-08-01

    Mitogen-activated protein kinases are well-known mediators of signal transduction of higher eukaryotes regulating important processes like proliferation, differentiation, stress response and apoptosis. In Leishmania, the typical three-tiered module of MAP kinase signal transduction pathways is present. However, typical activators like cell surface receptors and substrates such as RNA polymerase II transcription factors are missing. Here, I describe the set of 15 putative mitogen-activated protein kinases encoded in the Leishmania genome and discuss their potential function.

  3. Phase II study of paclitaxel plus the protein kinase C inhibitor bryostatin-1 in advanced pancreatic carcinoma.

    PubMed

    Lam, Anthony P; Sparano, Joseph A; Vinciguerra, Vincent; Ocean, Allyson J; Christos, Paul; Hochster, Howard; Camacho, Fernando; Goel, Sanjay; Mani, Sridhar; Kaubisch, Andreas

    2010-04-01

    To determine the efficacy and toxicity of the protein kinase C inhibitor bryostatin-1 plus paclitaxel in patients with advanced pancreatic carcinoma. Each treatment cycle consisted of paclitaxel 90 mg/m by intravenous infusion over 1 hour on days 1, 8, and 16, plus bryostatin 25 mcg/m as a 1-hour intravenous infusion on days 2, 9, and 15, given every 28 days. Patients were evaluated for response after every 2 treatment cycles, and continued therapy until disease progression or prohibitive toxicity. The primary objective was to determine whether the combination produced a response rate of at least 30%. Nineteen patients with locally advanced or metastatic pancreatic adenocarcinoma received a total of 52 cycles of therapy (range: 1-10). Patients received the combination as first-line therapy for advanced disease (N = 5) or after prior chemotherapy used alone or in combination with local therapy. No patients had a confirmed objective response. The median time to treatment failure was 1.9 months (95% confidence intervals: 1.2, 2.6 months). Reasons for discontinuing therapy included progressive disease or death in 14 patients (74%) or because of adverse events or patient choice in 5 patients (26%). The most common grade 3 to 4 toxicities included leukopenia in 26%, anemia in 11%, myalgias in 11%, gastrointestinal bleeding in 11%, infection in 10%, and thrombosis in 10%. The combination of weekly paclitaxel and bryostatin-1 is not an effective therapy for patients with advanced pancreatic carcinoma.

  4. Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cgamma and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages.

    PubMed

    Makranz, Chen; Cohen, Goni; Baron, Ayellet; Levidor, Lital; Kodama, Tatsuhiko; Reichert, Fanny; Rotshenker, Shlomo

    2004-03-01

    Complement-receptor-3 (CR3/MAC-1), scavenger-receptor-AI/II (SRAI/II) and Fcgamma-receptor (FcgammaR) can mediate phagocytosis of degenerated myelin in macrophages and microglia. However, CR3/MAC-1 and SRAI/II, but not FcgammaR, mediate phagocytosis after axonal injury. We tested for phosphatidylinositol 3-kinase (PI3K), phosphoinositide-specific phospholipase-Cgamma (PLCgamma) and protein kinase-C (PKC) signaling in myelin phagocytosis mediated by CR3/MAC-1 alone and by CR3/MAC-1 combined with SRAI/II. Phagocytosis was inhibited by PI3K inhibitors wortmannin and LY-294002, PLCgamma inhibitor U-73122, classical PKC (cPKC) inhibitor Go-6976, general PKC inhibitors Ro-318220 and calphostin-C, and BAPTA/AM which chelates intracellular Ca(2+) required for cPKC activation. PKC activator PMA augmented phagocytosis and further alleviated inhibitions induced by PI3K and PLCgamma inhibitors. Overall, altering PKC activity modulated phagocytosis 4- to 6-fold between inhibition and augmentation. PLCgamma activation did not require tyrosine phosphorylation. Thus, signaling of myelin phagocytosis mediated by CR3/MAC-1 alone and by CR3/MAC-1 combined with SRAI/II involves PI3K, PLCgamma and cPKC, the cascade PI3K-->PLCgamma-->cPKC, and wide-range modulation by PKC. This pathway may thus be targeted for in vivo modulation, which may explain differences in the efficiency of CR3/MAC-1-mediated myelin phagocytosis in different pathological conditions.

  5. AMP-activated protein kinase inhibits TGF-β-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition.

    PubMed

    Lee, Jang Han; Kim, Ji Hyun; Kim, Ja Seon; Chang, Jai Won; Kim, Soon Bae; Park, Jung Sik; Lee, Sang Koo

    2013-03-15

    The epithelial-mesenchymal transition (EMT) is a novel mechanism that promotes renal fibrosis. Transforming growth factor-β (TGF-β), angiotensin II, aldosterone, high glucose, and urinary albumin are well-known causes of EMT and renal fibrosis. We examined whether and how activation of AMP-activated protein kinase (AMPK) suppressed EMT induced by the above agents in tubular epithelial cells. All experiments were performed using HK-2 cells. Protein expression was measured by Western blot analysis. Intracellular reactive oxygen species (ROS) were analyzed by flow cytometry. Exposure of tubular cells to TGF-β (10 ng/ml), angiotensin II (1 μM), aldosterone (100 nM), high glucose (30 mM), and albumin (5 mg/ml) for 5 days induced EMT, as shown by upregulation of α-smooth muscle actin and downregulation of E-cadherin. ROS and NADPH oxidase 4 (Nox4) expression were increased, and antioxidants such as tiron and N-acetylcysteine inhibited EMT induction. Metformin (the best known clinical activator of AMPK) suppressed EMT induction through inhibition of ROS via induction of heme oxygenase-1 and endogenous antioxidant thioredoxin. An AMPK inhibitor (compound C) and AMPK small interfering RNA blocked the effect of metformin, and another AMPK activator [5-aminoimidazole-4-carboxamide-1β riboside (AICAR)] exerted the same effects as metformin. In conclusion, AMPK activation might be beneficial in attenuating the tubulointerstitial fibrosis induced by TGF-β, angiotensin II, aldosterone, high glucose, and urinary albumin.

  6. Inhibition of protein kinase C α/βII and activation of c-Jun NH2-terminal kinase mediate glycyrrhetinic acid induced apoptosis in non-small cell lung cancer NCI-H460 cells.

    PubMed

    Song, Junho; Ko, Hyun-suk; Sohn, Eun Jung; Kim, Bonglee; Kim, Jung Hyo; Kim, Hee Jeong; Kim, Chulwoo; Kim, Jai-eun; Kim, Sung-Hoon

    2014-02-15

    Though glycyrrhetinic acid (GA) from Glycyrrhiza glabra was known to exert antioxidant, antifilarial, hepatoprotective, anti-inflammatory and anti-tumor effects, the antitumor mechanism of GA was not clearly elucidated in non-small cell lung cancer cells (NSCLCCs). Thus, in the present study, the underlying apoptotic mechanism of GA was examined in NCI-H460 NSCLCCs. GA significantly suppressed the viability of NCI-H460 and A549 non-small lung cancer cells. Also, GA significantly increased the sub G1 population by cell cycle analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells in a concentration dependent manner in NCI-H460 non-small lung cancer cells. Consistently, GA cleaved poly (ADP-ribosyl) polymerase (PARP), caspase 9/3, attenuated the expression of Bcl-XL, Bcl-2, Cyclin D1 and Cyclin E in NCI-H460 cells. Interestingly, GA attenuated the phosphorylation of protein kinase C (PKC) α/βII and extracellular activated protein kinase (ERK) as well as activated the phosphorylation of PKC δ and c-Jun NH2-terminal kinase in NCI-H460 cells. Conversely, PKC promoter phorbol 12-myristate 13-acetate (PMA) and JNK inhibitor SP600125 reversed the cleavages of caspase 3 and PARP induced by GA in NCI-H460 cells. Overall, our findings suggest that GA induces apoptosis via inhibition of PKC α/βII and activation of JNK in NCI-H460 non-small lung cancer cells as a potent anticancer candidate for lung cancer treatment.

  7. Type III Transforming Growth Factor-β Receptor Drives Cardiac Hypertrophy Through β-Arrestin2-Dependent Activation of Calmodulin-Dependent Protein Kinase II.

    PubMed

    Lou, Jie; Zhao, Dan; Zhang, Ling-Ling; Song, Shu-Ying; Li, Yan-Chao; Sun, Fei; Ding, Xiao-Qing; Yu, Chang-Jiang; Li, Yuan-Yuan; Liu, Mei-Tong; Dong, Chang-Jiang; Ji, Yong; Li, Hongliang; Chu, Wenfeng; Zhang, Zhi-Ren

    2016-09-01

    The role of type III transforming growth factor-β receptor (TβRIII) in the pathogenesis of heart diseases remains largely unclear. Here, we investigated the functional role and molecular mechanisms of TβRIII in the development of myocardial hypertrophy. Western blot and quantitative real time-polymerase chain reaction analyses revealed that the expression of TβRIII was significantly elevated in human cardiac hypertrophic samples. Consistently, TβRIII expression was substantially increased in transverse aortic constriction (TAC)- and isoproterenol-induced mouse cardiac hypertrophy in vivo and in isoproterenol-induced cardiomyocyte hypertrophy in vitro. Overexpression of TβRIII resulted in cardiomyocyte hypertrophy, whereas isoproterenol-induced cardiomyocyte hypertrophy was greatly attenuated by knockdown of TβRIII in vitro. Cardiac-specific transgenic expression of TβRIII independently led to cardiac hypertrophy in mice, which was further aggravated by isoproterenol and TAC treatment. Cardiac contractile function of the mice was not altered in TβRIII transgenic mice; however, TAC led to significantly decreased cardiac contractile function in TβRIII transgenic mice compared with control mice. Conversely, isoproterenol- and TAC-induced cardiac hypertrophy and TAC-induced cardiac contractile function impairment were partially reversed by suppression of TβRIII in vivo. Our data suggest that TβRIII mediates stress-induced cardiac hypertrophy through activation of Ca(2+)/calmodulin-dependent protein kinase II, which requires a physical interaction of β-arrestin2 with both TβRIII and calmodulin-dependent protein kinase II. Our findings indicate that stress-induced increase in TβRIII expression results in cardiac hypertrophy through β-arrestin2-dependent activation of calmodulin-dependent protein kinase II and that transforming growth factor-β and β-adrenergic receptor signaling are not involved in spontaneous cardiac hypertrophy in cardiac

  8. Intra-nucleus accumbens administration of the calcium/calmodulin-dependent protein kinase II inhibitor AIP induced antinociception in rats with mononeuropathy.

    PubMed

    Bian, Hui; Yu, Long-Chuan

    2015-07-10

    Calcium/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine- dependent protein kinase, which has been implicated in pain modulation at different levels of the central nervous system. The present study was performed in rats with mononeuropathy induced by left common sciatic nerve ligation. Unilateral sciatic nerve loose ligation produced decreases in the hindpaw withdrawal latency (HWL) to noxious thermal and mechanical stimulation. Intra-nucleus accumbens (NAc) injection of 3 μg, 6 μg and 12 μg of myristoylated autocamtide-2-inhibitory peptide (AIP), the CaMKII inhibitor, dose-dependently increased the HWL to noxious thermal and mechanical stimulation in rats with mononeuropathy. Furthermore, intra-NAc administration of morphine, the HWL to noxious thermal and mechanical stimulation increased markedly, and there were no significant differences between morphine group and AIP group. Taken together, the results showed that intra-NAc injection of AIP induced significant antinociceptive effects in rats with mononeuropathy, indicating that CaMKII may play an important role in the transmission and/or modulation of nociceptive information in the NAc in rats with mononeuropathy.

  9. Phosphorylation and activation of hamster carbamyl phosphate synthetase II by cAMP-dependent protein kinase. A novel mechanism for regulation of pyrimidine nucleotide biosynthesis.

    PubMed Central

    Carrey, E A; Campbell, D G; Hardie, D G

    1985-01-01

    The trifunctional protein CAD, which contains the first three enzyme activities of pyrimidine nucleotide biosynthesis (carbamyl phosphate synthetase II, aspartate transcarbamylase and dihydro-orotase), is phosphorylated stoichiometrically by cyclic AMP-dependent protein kinase. Phosphorylation activates the ammonia-dependent carbamyl phosphate synthetase activity of the complex by reducing the apparent Km for ATP. This effect is particularly marked in the presence of the allosteric feedback inhibitor, UTP, when the apparent Km is reduced by greater than 4-fold. Inhibition by physiological concentrations of UTP is substantially relieved by phosphorylation. Cyclic AMP-dependent protein kinase phosphorylates two serine residues on the protein termed sites 1 and 2, and the primary structures of tryptic peptides containing these sites have been determined: Site 1: Arg-Leu-Ser(P)-Ser-Phe-Val-Thr-Lys Site 2: Ile-His-Arg-Ala-Ser(P)-Asp-Pro-Gly-Leu-Pro-Ala-Glu-Glu-Pro-Lys During the phosphorylation reaction, activation of the carbamyl phosphate synthetase shows a better correlation with occupancy of site 1 rather than site 2. Both phosphorylation and activation can be reversed using purified preparations of the catalytic subunits of protein phosphatases 1- and -2A, and inactivation also correlates better with dephosphorylation of site 1 rather than site 2. We believe this to be the first report that a key enzyme in nucleotide biosynthesis is regulated in a significant manner by reversible covalent modification. The physiological role of this phosphorylation in the stimulation of cell proliferation by growth factors and other mitogens is discussed. Images Fig. 1. Fig. 5. PMID:4092695

  10. Angiotensin II–Induced MMP-2 Activity and MMP-14 and Basigin Protein Expression Are Mediated via the Angiotensin II Receptor Type 1–Mitogen-Activated Protein Kinase 1 Pathway in Retinal Pigment Epithelium

    PubMed Central

    Pons, Marianne; Cousins, Scott W.; Alcazar, Oscar; Striker, Gary E.; Marin-Castaño, Maria E.

    2011-01-01

    Accumulation of various lipid-rich extracellular matrix (ECM) deposits under the retinal pigment epithelium (RPE) has been observed in eyes with age-related macular degeneration (AMD). RPE-derived matrix metalloproteinase (MMP)-2, MMP-14, and basigin (BSG) are major enzymes involved in the maintenance of ECM turnover. Hypertension (HTN) is a systemic risk factor for AMD. It has previously been reported that angiotensin II (Ang II), one of the most important hormones associated with HTN, increases MMP-2 activity and its key regulator, MMP-14, in RPE, inducing breakdown of the RPE basement membrane, which may lead to progression of sub-RPE deposits. Ang II exerts most of its actions by activating the mitogen-activated protein kinase (MAPK) signaling pathway. Herein is explored the MAPK signaling pathway as a potential key intracellular modulator of Ang II–induced increase in MMP-2 activity and MMP-14 and BSG protein expression. It was observed that Ang II stimulates phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAPK in RPE cells and ERK/p38 and Jun N-terminal kinase (JNK) in mice. These effects were mediated by Ang II type 1 receptors. Blockade of ERK or p38 MAPK abrogated the increase in MMP-2 activity and MMP-14 and BSG proteins in ARPE-19 cells. A better understanding of the molecular events by which Ang II induces ECM dysregulation is of critical importance to further define its contribution to the progression of sub-RPE deposits in AMD patients with HTN. PMID:21641389

  11. Aberrant calcium/calmodulin-dependent protein kinase II (CaMKII) activity is associated with abnormal dendritic spine morphology in the ATRX mutant mouse brain.

    PubMed

    Shioda, Norifumi; Beppu, Hideyuki; Fukuda, Takaichi; Li, En; Kitajima, Isao; Fukunaga, Kohji

    2011-01-05

    In humans, mutations in the gene encoding ATRX, a chromatin remodeling protein of the sucrose-nonfermenting 2 family, cause several mental retardation disorders, including α-thalassemia X-linked mental retardation syndrome. We generated ATRX mutant mice lacking exon 2 (ATRX(ΔE2) mice), a mutation that mimics exon 2 mutations seen in human patients and associated with milder forms of retardation. ATRX(ΔE2) mice exhibited abnormal dendritic spine formation in the medial prefrontal cortex (mPFC). Consistent with other mouse models of mental retardation, ATRX(ΔE2) mice exhibited longer and thinner dendritic spines compared with wild-type mice without changes in spine number. Interestingly, aberrant increased calcium/calmodulin-dependent protein kinase II (CaMKII) activity was observed in the mPFC of ATRX(ΔE2) mice. Increased CaMKII autophosphorylation and activity were associated with increased phosphorylation of the Rac1-guanine nucleotide exchange factors (GEFs) T-cell lymphoma invasion and metastasis 1 (Tiam1) and kalirin-7, known substrates of CaMKII. We confirmed increased phosphorylation of p21-activated kinases (PAKs) in mPFC extracts. Furthermore, reduced protein expression and activity of protein phosphatase 1 (PP1) was evident in the mPFC of ATRX(ΔE2) mice. In cultured cortical neurons, PP1 inhibition by okadaic acid increased CaMKII-dependent Tiam1 and kalirin-7 phosphorylation. Together, our data strongly suggest that aberrant CaMKII activation likely mediates abnormal spine formation in the mPFC. Such morphological changes plus elevated Rac1-GEF/PAK signaling seen in ATRX(ΔE2) mice may contribute to mental retardation syndromes seen in human patients.

  12. Beta 2 subunit-containing nicotinic receptors mediate acute nicotine-induced activation of calcium/calmodulin-dependent protein kinase II-dependent pathways in vivo.

    PubMed

    Jackson, K J; Walters, C L; Damaj, M I

    2009-08-01

    Nicotine is the addictive component of tobacco, and successful smoking cessation therapies must address the various processes that contribute to nicotine addiction. Thus, understanding the nicotinic acetylcholine receptor (nAChR) subtypes and subsequent molecular cascades activated after nicotine exposure is of the utmost importance in understanding the progression of nicotine dependence. One possible candidate is the calcium/calmodulin-dependent protein kinase II (CaMKII) pathway. Substrates of this kinase include the vesicle-associated protein synapsin I and the transcription factor cAMP response element-binding protein (CREB). The goal of these studies was to examine these postreceptor mechanisms after acute nicotine treatment in vivo. We first show that administration of nicotine increases CaMKII activity in the ventral tegmental area (VTA), nucleus accumbens (NAc), and amygdala. In beta2 nAChR knockout (KO) mice, nicotine does not induce an increase in kinase activity, phosphorylated (p)Synapsin I, or pCREB. In contrast, alpha7 nAChR KO mice show nicotine-induced increases in CaMKII activity and pCREB, similar to their wild-type littermates. Moreover, we show that when animals are pretreated with the CaMKII inhibitors 4-[(2S)-2-[(5-isoquinolinylsulfonyl) methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl]phenyl isoquinolinesulfonic acid ester (KN-62) and N-[2-[[[3-(4-chlorophenyl)-2 propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide (KN-93), nicotine-induced increase in the kinase activity and pCREB was attenuated in the VTA and NAc, whereas pretreatment with (2-[N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine, phosphate) (KN-92), the inactive analog, did not alter the nicotine-induced increase in pCREB. Taken together, these data suggest that the nicotine-induced increase in CaMKII activity may correlate with the nicotine-induced increase in pSynapsin I and pCREB in the VTA and NAc via beta2

  13. Ca2+/calmodulin-dependent protein kinase II-γ (CaMKIIγ) negatively regulates vascular smooth muscle cell proliferation and vascular remodeling.

    PubMed

    Saddouk, Fatima Z; Sun, Li-Yan; Liu, Yong Feng; Jiang, Miao; Singer, Diane V; Backs, Johannes; Van Riper, Dee; Ginnan, Roman; Schwarz, John J; Singer, Harold A

    2016-03-01

    Vascular smooth muscle (VSM) expresses calcium/calmodulin-dependent protein kinase II (CaMKII)-δ and -γ isoforms. CaMKIIδ promotes VSM proliferation and vascular remodeling. We tested CaMKIIγ function in vascular remodeling after injury. CaMKIIγ protein decreased 90% 14 d after balloon injury in rat carotid artery. Intraluminal transduction of adenovirus encoding CaMKIIγC rescued expression to 35% of uninjured controls, inhibited neointima formation (>70%), inhibited VSM proliferation (>60%), and increased expression of the cell-cycle inhibitor p21 (>2-fold). Comparable doses of CaMKIIδ2 adenovirus had no effect. Similar dynamics in CaMKIIγ mRNA and protein expression were observed in ligated mouse carotid arteries, correlating closely with expression of VSM differentiation markers. Targeted deletion of CaMKIIγ in smooth muscle resulted in a 20-fold increase in neointimal area, with a 3-fold increase in the cell proliferation index, no change in apoptosis, and a 60% decrease in p21 expression. In cultured VSM, CaMKIIγ overexpression induced p53 mRNA (1.7 fold) and protein (1.8-fold) expression; induced the p53 target gene p21 (3-fold); decreased VSM cell proliferation (>50%); and had no effect on expression of apoptosis markers. We conclude that regulated CaMKII isoform composition is an important determinant of the injury-induced vasculoproliferative response and that CaMKIIγ and -δ isoforms have nonequivalent, opposing functions. © FASEB.

  14. Degradation of Activated Protein Kinases by Ubiquitination

    PubMed Central

    Lu, Zhimin; Hunter, Tony

    2009-01-01

    Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases. PMID:19489726

  15. Phosphorylation of calcium/calmodulin-stimulated protein kinase II at T286 enhances invasion and migration of human breast cancer cells

    PubMed Central

    Chi, Mengna; Evans, Hamish; Gilchrist, Jackson; Mayhew, Jack; Hoffman, Alexander; Pearsall, Elizabeth Ann; Jankowski, Helen; Brzozowski, Joshua Stephen; Skelding, Kathryn Anne

    2016-01-01

    Calcium/calmodulin-stimulated protein kinase II (CaMKII) is a multi-functional kinase that controls a range of cellular functions, including proliferation, differentiation and apoptosis. The biological properties of CaMKII are regulated by multi-site phosphorylation. However, the role that CaMKII phosphorylation plays in cancer cell metastasis has not been examined. We demonstrate herein that CaMKII expression and phosphorylation at T286 is increased in breast cancer when compared to normal breast tissue, and that increased CAMK2 mRNA is associated with poor breast cancer patient prognosis (worse overall and distant metastasis free survival). Additionally, we show that overexpression of WT, T286D and T286V forms of CaMKII in MDA-MB-231 and MCF-7 breast cancer cells increases invasion, migration and anchorage independent growth, and that overexpression of the T286D phosphomimic leads to a further increase in the invasive, migratory and anchorage independent growth capacity of these cells. Pharmacological inhibition of CaMKII decreases MDA-MB-231 migration and invasion. Furthermore, we demonstrate that overexpression of T286D, but not WT or T286V-CaMKII, leads to phosphorylation of FAK, STAT5a, and Akt. These results demonstrate a novel function for phosphorylation of CaMKII at T286 in the control of breast cancer metastasis, offering a promising target for the development of therapeutics to prevent breast cancer metastasis. PMID:27605043

  16. Ca²⁺/calmodulin-dependent protein kinase II in the cockroach Periplaneta americana: identification of five isoforms and their tissues distribution.

    PubMed

    Taillebois, Emiliane; Heuland, Emilie; Bourdin, Céline M; Griveau, Audrey; Quinchard, Sophie; Tricoire-Leignel, Helene; Legros, Christian; Thany, Steeve H

    2013-07-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) is a key kinase that transduces Ca²⁺ signals into downstream effects acting on a range of cellular processes in nervous system and muscular tissues. In insects, different CaMKII isoforms have been reported in Drosophila melanogaster, Apis florae, Bombus terrestris, and Bombus impatiens but little is known on the organization and tissue-specific expression of these isoforms with the exception of Drosophila. The present study reports the cloning of five CaMKII splice variants issued from a single gene and their tissue-specific expression in the cockroach Periplaneta americana. Each CaMKII isoform shared 82-90% identity with Drosophila CaMKII isoforms and accordingly were named PaCaMKII-A, PaCaMKII-B,PaCaMKII-C,PaCaMKII-D, and PaCaMKII-E. PaCaMKII-A and PaCaMKII-D isoforms are ubiquitously expressed in all tissues, but some such as PaCaMKII-B andPaCaMKII-C are preferentially expressed in the nerve cord and muscle. In addition, using single-cell reverse transcriptase-polymerase chain reaction (RT-PCR), we found a tissue-specific expression of PaCaMKII-E in the dorsal unpaired median neurons. Alternative splicing of PaCaMKII transcripts is likely a common mechanism in insects to control the pattern of isoform expression in the different tissues.

  17. CaM Kinase II-dependent pathophysiological signalling in endothelial cells.

    PubMed

    Cai, Hua; Liu, Depei; Garcia, Joe G N

    2008-01-01

    Calcium/calmodulin-dependent protein kinase II (CaM Kinase II) is a known modulator of cardiac pathophysiology. The present review uniquely focuses on novel CaM Kinase II-mediated endothelial cell signalling which, under pathophysiological conditions, may indirectly modulate cardiac functions via alterations in endothelial or endocardial responses. CaM Kinase II has four different isoforms and various splicing variants for each isoform. The endothelial cell CaM Kinase II isoforms are sensitive to KN93 and a threonine 286-mutated inhibitory peptide. In macrovascular endothelial cells derived from aortas, CaM Kinase II mediates redox-sensitive upregulation of endothelial nitric oxide synthase (eNOS) gene expression by hydrogen peroxide (H2O2) and oscillatory shear stress, and a rapid activation of eNOS in response to bradykinin. In endothelial cells derived from lung microvessels, CaM Kinase II mediates barrier dysfunction, particularly when activated by thrombin. In brain capillary endothelial cells, CaM Kinase II lies upstream of voltage-gated potassium channels and hypoxia-induced cell swelling. In both macrovascular and microvascular endothelial cells, CaM Kinase II mediates actin cytoskeleton reorganization via distinct p38 MAPK/HSP27 and ERK1/2/MLCK signalling pathways, respectively. Although understanding of endothelium-specific CaM Kinase II signalling is nascent, data accumulated so far have demonstrated a potentially significant role of CaM Kinase II in endothelial cell pathophysiology.

  18. The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells

    PubMed Central

    Incontro, Salvatore; Ciruela, Francisco; Ziff, Edward; Hofmann, Franz; Sánchez-Prieto, José; Torres, Magdalena

    2014-01-01

    Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity. PMID:23545413

  19. The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells.

    PubMed

    Incontro, Salvatore; Ciruela, Francisco; Ziff, Edward; Hofmann, Franz; Sánchez-Prieto, José; Torres, Magdalena

    2013-08-01

    Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity.

  20. Ca2+/Calmodulin-dependent Protein Kinase II Inhibitors Disrupt AKAP79-dependent PKC Signaling to GluA1 AMPA Receptors*

    PubMed Central

    Brooks, Ian M.; Tavalin, Steven J.

    2011-01-01

    GluA1 (formerly GluR1) AMPA receptor subunit phosphorylation at Ser-831 is an early biochemical marker for long-term potentiation and learning. This site is a substrate for Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) and protein kinase C (PKC). By directing PKC to GluA1, A-kinase anchoring protein 79 (AKAP79) facilitates Ser-831 phosphorylation and makes PKC a more potent regulator of GluA1 than CaMKII. PKC and CaM bind to residues 31–52 of AKAP79 in a competitive manner. Here, we demonstrate that common CaMKII inhibitors alter PKC and CaM interactions with AKAP79(31–52). Most notably, the classical CaMKII inhibitors KN-93 and KN-62 potently enhanced the association of CaM to AKAP79(31–52) in the absence (apoCaM) but not the presence of Ca2+. In contrast, apoCaM association to AKAP79(31–52) was unaffected by the control compound KN-92 or a mechanistically distinct CaMKII inhibitor (CaMKIINtide). In vitro studies demonstrated that KN-62 and KN-93, but not the other compounds, led to apoCaM-dependent displacement of PKC from AKAP79(31–52). In the absence of CaMKII activation, complementary cellular studies revealed that KN-62 and KN-93, but not KN-92 or CaMKIINtide, inhibited PKC-mediated phosphorylation of GluA1 in hippocampal neurons as well as AKAP79-dependent PKC-mediated augmentation of recombinant GluA1 currents. Buffering cellular CaM attenuated the ability of KN-62 and KN-93 to inhibit AKAP79-anchored PKC regulation of GluA1. Therefore, by favoring apoCaM binding to AKAP79, KN-62 and KN-93 derail the ability of AKAP79 to efficiently recruit PKC for regulation of GluA1. Thus, AKAP79 endows PKC with a pharmacological profile that overlaps with CaMKII. PMID:21156788

  1. Calcium/Calmodulin-dependent Protein Kinase II is a Ubiquitous Molecule in Human Long-term Memory Synaptic Plasticity: A Systematic Review

    PubMed Central

    Ataei, Negar; Sabzghabaee, Ali Mohammad; Movahedian, Ahmad

    2015-01-01

    Background: Long-term memory is based on synaptic plasticity, a series of biochemical mechanisms include changes in structure and proteins of brain's neurons. In this article, we systematically reviewed the studies that indicate calcium/calmodulin kinase II (CaMKII) is a ubiquitous molecule among different enzymes involved in human long-term memory and the main downstream signaling pathway of long-term memory. Methods: All of the observational, case–control and review studies were considered and evaluated by the search engines PubMed, Cochrane Central Register of Controlled Trials and ScienceDirect Scopus between 1990 and February 2015. We did not carry out meta-analysis. Results: At the first search, it was fined 1015 articles which included “synaptic plasticity” OR “neuronal plasticity” OR “synaptic density” AND memory AND “molecular mechanism” AND “calcium/calmodulin-dependent protein kinase II” OR CaMKII as the keywords. A total of 335 articles were duplicates in the databases and eliminated. A total of 680 title articles were evaluated. Finally, 40 articles were selected as reference. Conclusions: The studies have shown the most important intracellular signal of long-term memory is calcium-dependent signals. Calcium linked calmodulin can activate CaMKII. After receiving information for learning and memory, CaMKII is activated by Glutamate, the most important neurotransmitter for memory-related plasticity. Glutamate activates CaMKII and it plays some important roles in synaptic plasticity modification and long-term memory. PMID:26445635

  2. The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II and alpha-actinin-1 in a calcium-dependent manner.

    PubMed

    Dhavan, Rani; Greer, Paul L; Morabito, Maria A; Orlando, Lianna R; Tsai, Li-Huei

    2002-09-15

    Cyclin-dependent kinase 5 (Cdk5) is a critical regulator of neuronal migration in the developing CNS, and recent studies have revealed a role for Cdk5 in synaptogenesis and regulation of synaptic transmission. Deregulation of Cdk5 has been linked to the pathology of neurodegenerative diseases such as Alzheimer's disease. Activation of Cdk5 requires its association with a regulatory subunit, and two Cdk5 activators, p35 and p39, have been identified. To gain further insight into the functions of Cdk5, we identified proteins that interact with p39 in a yeast two-hybrid screen. In this study we report that alpha-actinin-1 and the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II (CaMKIIalpha), two proteins localized at the postsynaptic density, interact with Cdk5 via their association with p35 and p39. CaMKIIalpha and alpha-actinin-1 bind to distinct regions of p35 and p39 and also can interact with each other. The association of CaMKIIalpha and alpha-actinin-1 to the Cdk5 activators, as well as to each other, is stimulated by calcium. Further, the activation of glutamate receptors increases the association of p35 and p39 with CaMKIIalpha, and the inhibition of CaMKII activation diminishes this effect. The glutamate-mediated increase in association of p35 and CaMKIIalpha is mediated in large part by NMDA receptors, suggesting that cross talk between the Cdk5 and CaMKII signal transduction pathways may be a component of the complex molecular mechanisms contributing to synaptic plasticity, memory, and learning.

  3. Myc oncoproteins are phosphorylated by casein kinase II.

    PubMed Central

    Lüscher, B; Kuenzel, E A; Krebs, E G; Eisenman, R N

    1989-01-01

    Casein kinase II (CK-II) is a ubiquitous protein kinase, localized to both nucleus and cytoplasm, with strong specificity for serine residues positioned within clusters of acidic amino acids. We have found that a number of nuclear oncoproteins share a CK-II phosphorylation sequence motif, including Myc, Myb, Fos, E1a and SV40 T antigen. In this paper we show that cellular myc-encoded proteins, derived from avian and human cells, can serve as substrates for phosphorylation by purified CK-II in vitro and that this phosphorylation is reversible. One- and two-dimensional mapping experiments demonstrate that the major phosphopeptides from in vivo phosphorylated Myc correspond to the phosphopeptides produced from Myc phosphorylated in vitro by CK-II. In addition, synthetic peptides with sequences corresponding to putative CK-II phosphorylation sites in Myc are subject to multiple, highly efficient phosphorylations by CK-II, and can act as competitive inhibitors of CK-II phosphorylation of Myc in vitro. We have used such peptides to map the phosphorylated regions in Myc and have located major CK-II phosphorylations within the central highly acidic domain and within a region proximal to the C terminus. Our results, along with previous studies on myc deletion mutants, show that Myc is phosphorylated by CK-II, or a kinase with similar specificity, in regions of functional importance. Since CK-II can be rapidly activated after mitogen treatment we postulate that CK-II mediated phosphorylation of Myc plays a role in signal transduction to the nucleus. Images PMID:2663470

  4. Gonadotropin regulation of testosterone production by primary cultured theca and granulosa cells of Atlantic croaker: II. Involvement of a mitogen-activated protein kinase pathway.

    PubMed

    Benninghoff, Abby D; Thomas, Peter

    2006-07-01

    Previous investigations in Atlantic croaker ovaries and primary co-cultured theca and granulosa cells have identified multiple signal transduction pathways involved in the control of gonadotropin-induced steroidogenesis, including adenylyl cyclase- and calcium-dependent signaling pathways. In the present study, evidence was obtained for an involvement of a third signal transduction pathway, a mitogen-activated protein kinase (MAP kinase) signaling cascade, in the regulation of gonadal steroidogenesis in this lower vertebrate teleost model. Gonadotropin-stimulated testosterone synthesis was markedly attenuated by two antagonists of mitogen-activated protein kinase kinases 1/2 (MEK1/2, also known as Map2k1/Map2k2). Moreover, treatment with gonadotropin-induced MEK1/2-dependent phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2, also known as Mapk3/Mapk1) in a concentration- and time-dependent manner in co-cultured croaker theca and granulosa cells. Active MEK1/2 was required for a complete steroidogenic response to activators of the adenylyl cyclase pathway, including forskolin and dbcAMP, suggesting that the target(s) of MAP kinase signaling are distal to cAMP generation and activation of cAMP-dependent protein kinase (PKA). Interestingly, dbcAMP caused a similar increase of ERK1/2 phosphorylation as was observed with gonadotropin treatment, although an inhibitor of PKA did not attenuate this response. Finally, there was no evidence of cross-talk between calcium-dependent signaling pathways and this MAP kinase cascade. While drugs that block calcium-dependent signal transduction, including inhibitors of voltage-sensitive calcium channels, calmodulin, and calcium/calmodulin-dependent kinases, significantly reduced gonadotropin-induced testosterone accumulation, these drugs had no apparent effect on hCG-induced ERK1/2 phosphorylation.

  5. Hydrophobic motif site-phosphorylated protein kinaseII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy

    PubMed Central

    Das, Falguni; Mariappan, Meenalakshmi M.; Kasinath, Balakuntalam S.; Choudhury, Goutam Ghosh

    2016-01-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy. PMID:26739493

  6. Hydrophobic motif site-phosphorylated protein kinaseII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    PubMed

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.

  7. Wenxin-Keli Regulates the Calcium/Calmodulin-Dependent Protein Kinase II Signal Transduction Pathway and Inhibits Cardiac Arrhythmia in Rats with Myocardial Infarction

    PubMed Central

    Xing, Yanwei; Gao, Yonghong; Chen, Jianxin; Zhu, Haiyan; Wu, Aiming; Yang, Qing; Teng, Fei; Zhang, Dong-mei; Xing, Yanhui; Gao, Kuo; He, Qingyong; Zhang, Zhenpeng; Wang, Jie; Shang, Hongcai

    2013-01-01

    Wenxin-Keli (WXKL) is a Chinese herbal compound reported to be of benefit in the treatment of cardiac arrhythmia, cardiac inflammation, and heart failure. Amiodarone is a noncompetitive inhibitor of the α- and β-adrenergic receptors and prevents calcium influx in the slow-response cells of the sinoatrial and atrioventricular nodes. Overexpression of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in transgenic mice results in heart failure and arrhythmias. We hypothesised that administration of WXKL and amiodarone can reduce the incidence of arrhythmias by regulating CaMKII signal transduction. A total of 100 healthy Sprague Dawley rats were used in the study. The rats were randomly divided into four groups (a sham group, a myocardial infarction (MI) group, a WXKL-treated group, and an amiodarone-treated group). A myocardial infarction model was established in these rats by ligating the left anterior descending coronary artery for 4 weeks. Western blotting was used to assess CaMKII, p-CaMKII (Thr-286), PLB, p-PLB (Thr-17), RYR2, and FK binding protein 12.6 (FKBP12.6) levels. The Ca2+ content in the sarcoplasmic reticulum (SR) and the calcium transient amplitude were studied by confocal imaging using the fluorescent indicator Fura-4. In conclusion, WXKL may inhibit heart failure and cardiac arrhythmias by regulating the CaMKII signal transduction pathway similar to amiodarone. PMID:23781262

  8. Wenxin-Keli Regulates the Calcium/Calmodulin-Dependent Protein Kinase II Signal Transduction Pathway and Inhibits Cardiac Arrhythmia in Rats with Myocardial Infarction.

    PubMed

    Xing, Yanwei; Gao, Yonghong; Chen, Jianxin; Zhu, Haiyan; Wu, Aiming; Yang, Qing; Teng, Fei; Zhang, Dong-Mei; Xing, Yanhui; Gao, Kuo; He, Qingyong; Zhang, Zhenpeng; Wang, Jie; Shang, Hongcai

    2013-01-01

    Wenxin-Keli (WXKL) is a Chinese herbal compound reported to be of benefit in the treatment of cardiac arrhythmia, cardiac inflammation, and heart failure. Amiodarone is a noncompetitive inhibitor of the α - and β -adrenergic receptors and prevents calcium influx in the slow-response cells of the sinoatrial and atrioventricular nodes. Overexpression of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in transgenic mice results in heart failure and arrhythmias. We hypothesised that administration of WXKL and amiodarone can reduce the incidence of arrhythmias by regulating CaMKII signal transduction. A total of 100 healthy Sprague Dawley rats were used in the study. The rats were randomly divided into four groups (a sham group, a myocardial infarction (MI) group, a WXKL-treated group, and an amiodarone-treated group). A myocardial infarction model was established in these rats by ligating the left anterior descending coronary artery for 4 weeks. Western blotting was used to assess CaMKII, p-CaMKII (Thr-286), PLB, p-PLB (Thr-17), RYR2, and FK binding protein 12.6 (FKBP12.6) levels. The Ca(2+) content in the sarcoplasmic reticulum (SR) and the calcium transient amplitude were studied by confocal imaging using the fluorescent indicator Fura-4. In conclusion, WXKL may inhibit heart failure and cardiac arrhythmias by regulating the CaMKII signal transduction pathway similar to amiodarone.

  9. Inhibitory effects of KN-93, an inhibitor of Ca2+ calmodulin-dependent protein kinase II, on light-regulated root gravitropism in maize.

    PubMed

    Lu Y-T; Feldman, L J; Hidaka, H

    1993-01-01

    Light is essential for root gravitropism in Zea mays L., cultivar Merit. It is hypothesized that calcium mediates this light-regulated response. KN-93, an inhibitor of calcium/calmodulin kinase II (CaMK II), inhibits light-regulated root gravitropism but does not affect light perception. We hypothesize that CaMK II, or a homologue, operates late in the light/gravity signal transduction chain. Here we provide evidence suggesting a possible physiological involvement of CaMK II in root gravitropism in plants.

  10. Inhibitory effects of KN-93, an inhibitor of Ca2+ calmodulin-dependent protein kinase II, on light-regulated root gravitropism in maize

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Hidaka, H.

    1993-01-01

    Light is essential for root gravitropism in Zea mays L., cultivar Merit. It is hypothesized that calcium mediates this light-regulated response. KN-93, an inhibitor of calcium/calmodulin kinase II (CaMK II), inhibits light-regulated root gravitropism but does not affect light perception. We hypothesize that CaMK II, or a homologue, operates late in the light/gravity signal transduction chain. Here we provide evidence suggesting a possible physiological involvement of CaMK II in root gravitropism in plants.

  11. Inhibitory effects of KN-93, an inhibitor of Ca2+ calmodulin-dependent protein kinase II, on light-regulated root gravitropism in maize

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Hidaka, H.

    1993-01-01

    Light is essential for root gravitropism in Zea mays L., cultivar Merit. It is hypothesized that calcium mediates this light-regulated response. KN-93, an inhibitor of calcium/calmodulin kinase II (CaMK II), inhibits light-regulated root gravitropism but does not affect light perception. We hypothesize that CaMK II, or a homologue, operates late in the light/gravity signal transduction chain. Here we provide evidence suggesting a possible physiological involvement of CaMK II in root gravitropism in plants.

  12. VZV ORF47 serine protein kinase and its viral substrates.

    PubMed

    Kenyon, Teri K; Grose, Charles

    2010-01-01

    ORF47, a serine protein kinase of varicella-zoster virus (VZV) and homolog of herpes simplex virus UL13, is an interesting modulator of VZV pathogenesis. This chapter summarizes research showing that ORF47 protein kinase activity, by virtue of phosphorylation of or binding to various viral substrates, regulates VZV proteins during all phases of viral infection and has a pronounced effect on the trafficking of gE, the predominant VZV glycoprotein, which in turn is critical for cell-to-cell spread of the virus. Casein kinase II, an ubiquitous cellular protein kinase, recognizes a similar but less stringent phosphorylation consensus sequence and can partially compensate for lack of ORF47 activity in VZV-infected cells. Differences between the phosphorylation consensus sites of the viral and cellular kinases are outlined in detail.

  13. Real-time protein kinase assay.

    PubMed

    Sun, Hongye; Low, Karen E; Woo, Sam; Noble, Richard L; Graham, Ronald J; Connaughton, Sonia S; Gee, Melissa A; Lee, Linda G

    2005-04-01

    We report a novel, real-time fluorogenic kinase assay. The peptide substrates are synthesized with a fluorescent dye and a hydrocarbon tail. The substrate self-assembles into micelles, increasing the local concentration of the dye and quenching its fluorescence. Upon phosphorylation, the fluorescence intensity increases 4-6-fold due to micelle reorganization. Both dynamic light scattering data and cryoelectron microscope images show that the size and the shape of the phosphopeptide micelles are significantly different from micelles of substrate peptide. The system provides a robust fluorescence increase in a real-time protein kinase assay. Unlike other fluorogenic systems, the fluorophore may be distant from the serine, threonine, or tyrosine that is phosphorylated. Assays for several kinases, including PKA, PKC, p38, MAPKAP K2, akt, Erk1, and src-family kinases, have been developed. IC(50) values of inhibitors for PKC betaII determined with this technology are consistent with published values. The utility of this assay to high-throughput screening was demonstrated with Sigma's LOPAC library, a collection of 640 compounds with known biological activities, and satisfactory results were obtained.

  14. Phosphorylation of calcium/calmodulin-dependent protein kinase II in the rat dorsal medial prefrontal cortex is associated with alcohol-induced cognitive inflexibility.

    PubMed

    Natividad, Luis A; Steinman, Michael Q; Laredo, Sarah A; Irimia, Cristina; Polis, Ilham Y; Lintz, Robert; Buczynski, Matthew W; Martin-Fardon, Rémi; Roberto, Marisa; Parsons, Loren H

    2017-09-22

    Repeated cycles of alcohol [ethanol (EtOH)] intoxication and withdrawal dysregulate excitatory glutamatergic systems in the brain and induce neuroadaptations in the medial prefrontal cortex (mPFC) that contribute to cognitive dysfunction. The mPFC is composed of subdivisions that are functionally distinct, with dorsal regions facilitating drug-cue associations and ventral regions modulating new learning in the absence of drug. A key modulator of glutamatergic activity is the holoenzyme calcium/calmodulin-dependent protein kinase II (CaMKII) that phosphorylates ionotropic glutamate receptors. Here, we examined the hypothesis that abstinence from chronic intermittent EtOH (CIE) exposure dysregulates CaMKII activity in the mPFC to impair cognitive flexibility. We used an operant model of strategy set shifting in male Long-Evans rats demonstrating reduced susceptibility to trial omissions during performance in a visual cue-guided task versus albino strains. Relative to naïve controls, rats experiencing approximately 10 days of abstinence from CIE vapor exposure demonstrated impaired performance during a procedural shift from visual cue to spatial location discrimination. Phosphorylation of CaMKII subtype α was upregulated in the dorsal, but not ventral mPFC of CIE-exposed rats, and was positively correlated with perseverative-like responding during the set shift. The findings suggest that abstinence from CIE exposure induces an undercurrent of kinase activity (e.g. CaMKII), which may promote aberrant glutamatergic responses in select regions of the mPFC. Given the role of the mPFC in modulating executive control of behavior, we propose that increased CaMKII subtype α activity reflects a dysregulated 'top-down' circuit that interferes with adaptive behavioral performance under changing environmental demands. © 2017 Society for the Study of Addiction.

  15. Effect of electroacupuncture on the mRNA and protein expression of Rho-A and Rho-associated kinase II in spinal cord injury rats

    PubMed Central

    Min, You-jiang; Ding, Li-li-qiang; Cheng, Li-hong; Xiao, Wei-ping; He, Xing-wei; Zhang, Hui; Min, Zhi-yun; Pei, Jia

    2017-01-01

    Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase (ROCK) signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan (GV3), Dazhui (GV14), Zusanli (ST36) and Ciliao (BL32) and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the mRNA and protein expression of Rho-A and Rho-associated kinase II (ROCKII) of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKII. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKII. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of RhoA and ROCKII. There was no synergistic effect of electroacupuncture combined with monosialoganglioside. PMID:28400811

  16. Resolution of thylakoid polyphenol oxidase and a protein kinase

    SciTech Connect

    Race, H.L.; Davenport, J.W.; Hind, G.

    1995-12-31

    The predominant protein kinase activity in octylglucoside (OG) extracts of spinach thylakoids has been attributed to a 64-kDa protein, tp64. Recent work calls into question the relation between tp64 and protein kinase activity, which were fractionated apart using fluid phase IEF and hydroxylapatite chromatography. Hind et al. sequenced tp64 from the cDNA and showed it to be a polyphenol oxidase (PPO) homolog. Its transit peptide indicates a location for the mature protein within the thylakoid lumen, where there is presumably no ATP and where it is remote from the presumed kinase substrates: the stromally exposed regions of integral PS-II membrane proteins. Here the authors suggest that the kinase is a 64-kDa protein distinct from tp64.

  17. The inhibitor of calcium/calmodulin-dependent protein kinase II KN93 attenuates bone cancer pain via inhibition of KIF17/NR2B trafficking in mice.

    PubMed

    Liu, Yue; Liang, Ying; Hou, Bailing; Liu, Ming; Yang, Xuli; Liu, Chenglong; Zhang, Juan; Zhang, Wei; Ma, Zhengliang; Gu, Xiaoping

    2014-09-01

    The N-methyl-d-aspartate receptor (NMDAR) containing subunit 2B (NR2B) is critical for the regulation of nociception in bone cancer pain, although the precise molecular mechanisms remain unclear. KIF17, a kinesin motor, plays a key role in the dendritic transport of NR2B. The up-regulation of NR2B and KIF17 transcription results from an increase in phosphorylated cAMP-response element-binding protein (CREB), which is activated by calcium/calmodulin-dependent protein kinase II (CaMKII). In this study, we hypothesized that CaMKII-mediated KIF17/NR2B trafficking may contribute to bone cancer pain. Osteosarcoma cells were implanted into the intramedullary space of the right femurs of C3H/HeJ mice to induce progressive bone cancer-related pain behaviors. The expression of spinal t-CaMKII, p-CaMKII, NR2B and KIF17 after inoculation was also evaluated. These results showed that inoculation of osteosarcoma cells induced progressive bone cancer pain and resulted in a significant up-regulation of p-CaMKII, NR2B and KIF17 expression after inoculation. Intrathecal administration of KN93, a CaMKII inhibitor, down-regulated these three proteins and attenuated bone cancer pain in a dose- and time-dependent manner. These findings indicated that CaMKII-mediated KIF17/NR2B trafficking may contribute to bone cancer pain, and inhibition of CaMKII may be a useful alternative or adjunct therapy for relieving cancer pain.

  18. Hermansky-Pudlak Syndrome Protein Complexes Associate with Phosphatidylinositol 4-Kinase Type II α in Neuronal and Non-neuronal Cells*

    PubMed Central

    Salazar, Gloria; Zlatic, Stephanie; Craige, Branch; Peden, Andrew A.; Pohl, Jan; Faundez, Victor

    2009-01-01

    The Hermansky-Pudlak syndrome is a disorder affecting endosome sorting. Disease is triggered by defects in any of 15 mouse gene products, which are part of five distinct cytosolic molecular complexes: AP-3, homotypic fusion and vacuole protein sorting, and BLOC-1, -2, and -3. To identify molecular associations of these complexes, we used in vivo cross-linking followed by purification of cross-linked AP-3 complexes and mass spectrometric identification of associated proteins. AP-3 was co-isolated with BLOC-1, BLOC-2, and homotypic fusion and vacuole protein sorting complex subunits; clathrin; and phosphatidylinositol-4-kinase type II α (PI4KIIα). We previously reported that this membrane-anchored enzyme is a regulator of AP-3 recruitment to membranes and a cargo of AP-3 (Craige, B., Salazar, G., and Faundez, V. (2008) Mol. Biol. Cell 19,1415 -142618256276). Using cells deficient in different Hermansky-Pudlak syndrome complexes, we identified that BLOC-1, but not BLOC-2 or BLOC-3, deficiencies affect PI4KIIα inclusion into AP-3 complexes. BLOC-1, PI4KIIα, and AP-3 belong to a tripartite complex, and down-regulation of either PI4KIIα, BLOC-1, or AP-3 complexes led to similar LAMP1 phenotypes. Our analysis indicates that BLOC-1 complex modulates the association of PI4KIIα with AP-3. These results suggest that AP-3 and BLOC-1 act, either in concert or sequentially, to specify sorting of PI4KIIα along the endocytic route. PMID:19010779

  19. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    PubMed

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia*

    PubMed Central

    Roth Flach, Rachel J.; Danai, Laura V.; DiStefano, Marina T.; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B.; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K.; Bortell, Rita; Alonso, Laura C.; Czech, Michael P.

    2016-01-01

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo. After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. PMID:27226575

  1. Characterization of microtubule-associated protein 1-associated protein kinases from rat brain.

    PubMed

    Fujii, T; Watanabe, M; Nakamura, A

    1996-01-01

    The microtubule-associated protein (MAP) 1 preparation, MAP1A and 1B, obtained from rat brain microtubules was associated with protein kinases that were insensitive to cAMP, cGMP, calcium, calcium/calmodulin and calcium/phosphatidylserine. The fractionation of highly purified MAP1 by phosphocellulose chromatography revealed that protein kinase activity to phosphorylate phosvitin was separated into three major peaks (MAP1 kinases A, B and C). MAP1 was recovered in the MAP1 kinase A fraction and phosphorylated by the contained kinase. MAP1 kinase A is a novel protein kinase that is remarkably activated by poly-L-lysine and poly-L-arginine, but very insensitive to heparin among the kinases. Photoaffinity labeling using [alpha-32P]8-azido ATP indicated that the 65 kDa polypeptide is identified as an ATP-binding protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the highly purified MAP1 and MAP1 kinase A fractions. MAP1 kinases B and C may be identified as casein kinase I- and II-like kinases. The present results show that MAP1 is associated with at least three kinases and provide an insight for understanding thoroughly the MAP1-mediated microtubule functions.

  2. Immunochemical characterization of rat brain protein kinase

    SciTech Connect

    Huang, K.P.; Huang, F.L.

    1986-11-05

    Polyclonal antibodies against rat brain protein kinase C (the Ca/sup 2 +//phospholipid-dependent enzyme) were raised in goat. These antibodies can neutralize completely the kinase activity in purified enzyme preparation as well as that in the crude homogenate. Immunoblot analysis of the purified and the crude protein kinase C preparations revealed a major immunoreactive band of 80 kDa. The antibodies also recognize the same enzyme from other rat tissues. Neuronal tissues (cerebral cortex, cerebellum, hypothalamus, and retina) and lymphoid organs (thymus and spleen) were found to be enriched in protein kinase C, whereas lung, kidney, liver, heart, and skeletal muscle contained relatively low amounts of this kinase. Limited proteolysis of the purified rat brain protein kinase C with trypsin results in an initial degradation of the kinase into two major fragments of 48 and 38 kDa. Both fragments are recognized by the antibodies. However, further digestion of the 48-kDa fragment to 45 kDa and the 38-kDa fragment to 33 kDa causes a loss of the immunoreactivity. Upon incubation of the cerebellar extract with Ca/sup 2 +/, the 48-kDa fragment was also identified as a major proteolytic product of protein kinase C. Proteolytic degradation of protein kinase C converts the Ca/sup 2 +//phospholipid-dependent kinase to an independent form without causing a large impairment of the binding of (/sup 3/H)phorbol 12,13-dibutyrate. The two major proteolytic fragments were separated by ion exchange chromatography and one of them (45-48 kDa) was identified as a protein kinase and the other (33-38 kDa) as a phorbol ester-binding protein. These results demonstrate that rat brain protein kinase C is composed of two functionally distinct units, namely, a protein kinase and a Ca/sup 2 +/-independent/phospholipid-dependent phorbol ester-binding protein.

  3. Activation of Calcium/Calmodulin-Dependent Protein Kinase II in Obesity Mediates Suppression of Hepatic Insulin Signaling

    PubMed Central

    Ozcan, Lale; de Souza, Jane Cristina; Harari, Alp Avi; Backs, Johannes; Olson, Eric N.; Tabas, Ira

    2013-01-01

    SUMMARY A hallmark of obesity is selective suppression of hepatic insulin signaling (“insulin resistance”), but critical gaps remain in our understanding of the molecular mechanisms. We now report a major role for hepatic CaMKII, a calcium-responsive kinase that is activated in obesity. Genetic targeting of hepatic CaMKII, its downstream mediator p38, or the p38 substrate and stabilizer MK2 enhances insulin-induced p-Akt in palmitate-treated hepatocytes and obese mouse liver, leading to metabolic improvement. The mechanism of improvement begins with induction of ATF6 and the ATF6 target p58IPK, a chaperone that suppresses the PERK—p-eIF2α— ATF4 branch of the UPR. The result is a decrease in the ATF target TRB3, an inhibitor of insulin-induced p-Akt, leading to enhanced activation of Akt and its downstream metabolic mediators. These findings increase our understanding of the molecular mechanisms linking obesity to selective insulin resistance and suggest new therapeutic targets for type 2 diabetes and metabolic syndrome. PMID:24268736

  4. Ca2+/calmodulin protein kinase II and memory: learning-related changes in a localized region of the domestic chick brain.

    PubMed

    Solomonia, Revaz O; Kotorashvili, Adam; Kiguradze, Tamar; McCabe, Brian J; Horn, Gabriel

    2005-12-01

    The role of calcium/calmodulin-dependent protein kinase II (CaMKII) in the recognition memory of visual imprinting was investigated. Domestic chicks were exposed to a training stimulus and learning strength measured. Trained chicks, together with untrained chicks, were killed either 1 h or 24 h after training. The intermediate and medial hyperstriatum ventrale/mesopallium (IMHV/IMM), a forebrain memory storage site, was removed together with a control brain region, the posterior pole of the neostriatum/nidopallium (PPN). Amounts of membrane total alphaCaMKII (tCaMKII) and Thr286-autophosphorylated alphaCaMKII (apCAMKII) were measured. For the IMHV/IMM 1 h group, apCaMKII amount and apCAMKII/tCaMKII increased as chicks learned. The magnitude of the molecular changes were positively correlated with learning strength. No learning-related effects were observed in PPN, or in either region at 24 h. These results suggest that CaMKII is involved in the formation of memory but not in its maintenance.

  5. Curcumin Inhibits Neuronal Loss in the Retina and Elevates Ca2+/Calmodulin-Dependent Protein Kinase II Activity in Diabetic Rats

    PubMed Central

    Wang, Peipei; Zhu, Yanxia; Chen, Zhen; Shi, Tianyan; Lei, Wensheng

    2015-01-01

    Abstract Purpose: To determine whether curcumin offers neuroprotection to minimize the apoptosis of neural cells in the retina of diabetic rats. Methods: Streptozotocin (STZ)-induced diabetic rats and control rats were used in this study. A subgroup of STZ-induced diabetic rats were treated with curcumin for 12 weeks. Retinal histology, apoptosis of neural cells in the retina, electroretinograms, and retinal glutamate content were evaluated after 12 weeks. Retinal levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII), phospho-CaMKII (p-CaMKII), and cleaved caspase-3 were determined by Western blot analysis. Results: The amplitudes a-wave, b-wave, and oscillatory potential were reduced by diabetes, but curcumin treatment suppressed this reduction of amplitudes. Curcumin also prevented cell loss from the outer nuclear, inner nuclear, and ganglion cell layers. Apoptosis of retinal neurons was detected in diabetic rats. The concentration of glutamate in the retina was higher in diabetic rats, but was significantly reduced in the curcumin-treated group. Furthermore, p-CaMKII and cleaved caspase-3 expression were upregulated in the diabetic retina, but reduced in curcumin-treated rats. Conclusions: Curcumin attenuated diabetes-induced apoptosis in retinal neurons by reducing the glutamate level and downregulating CaMKII. Thus, curcumin might be used to prevent neuronal damage in the retina of patients with diabetes mellitus. PMID:26207889

  6. Pathway illuminated: visualizing protein kinase C signaling.

    PubMed

    Violin, Jonathan D; Newton, Alexandra C

    2003-12-01

    Protein kinase C has been at the center of cell signaling since the discovery 25 years ago that it transduces signals that promote phospholipid hydrolysis. In recent years, the use of genetically encoded fluorescent reporters has enabled studies of the regulation of protein kinase C signaling in living cells. Advances in imaging techniques have unveiled unprecedented detail of the signal processing mechanics of protein kinase C, from the second messengers calcium and diacylglycerol that regulate protein kinase C activity, to the locations and kinetics of different protein kinase C isozymes, to the spatial and temporal dynamics of substrate phosphorylation by this key enzyme. This review discusses how fluorescence imaging studies have illuminated the fidelity with which protein kinase C transduces rapidly changing extracellular information into intracellular phosphorylation signals.

  7. A novel role of G protein-coupled receptor kinase 5 in urotensin II-stimulated cellular hypertrophy in H9c2UT cells.

    PubMed

    Park, Cheon Ho; Lee, Ju Hee; Lee, Mi Young; Lee, Jeong Hyun; Lee, Byung Ho; Oh, Kwang-Seok

    2016-11-01

    Urotensin II (UII) is a neural hormone that induces cardiac hypertrophy and may be involved in the pathogenesis of cardiac remodeling and heart failure. Hypertrophy has been linked to histone deacetylase 5 (HDAC5) phosphorylation and nuclear factor κB (NF-κB) translocation, both of which are predominantly mediated by G protein-coupled receptor kinase 5 (GRK5). In the present study, we found that UII rapidly and strongly stimulated nuclear export of HDAC5 and nuclear import of NF-κB in H9c2 cells overexpressing the urotensin II receptor (H9c2UT). Hence, we hypothesized that GRK5 and its signaling pathway may play a role in UII-mediated cellular hypertrophy. H9c2UT cells were transduced with a GRK5 small hairpin RNA interference recombinant lentivirus, resulting in the down-regulation of GRK5. Under UII stimulation, reduced levels of GRK5 in H9c2UT cells led to suppression of UII-mediated HDAC5 phosphorylation and activation of the NF-κB signaling pathway. In contrast, UII-mediated activations of ERK1/2 and GSK3α/β were not affected by down-regulation of GRK5. In a cellular hypertrophy assay, down-regulation of GRK5 significantly suppressed UII-mediated hypertrophy of H9c2UT cells. Furthermore, UII-mediated cellular hypertrophy was inhibited by amlexanox, a selective GRK5 inhibitor, in H9c2UT cells and neonatal cardiomyocytes. Our results suggest that GRK5 may be involved in a UII-mediated hypertrophic response via activation of NF-κB and HDAC5 at least in part by ERK1/2 and GSK3α/β-independent pathways.

  8. The regulation of synaptic vesicle recycling by cGMP-dependent protein kinase type II in cerebellar granule cells under strong and sustained stimulation.

    PubMed

    Collado-Alsina, Andrea; Ramírez-Franco, Jorge; Sánchez-Prieto, José; Torres, Magdalena

    2014-06-25

    From the early periods of neurogenesis and migration, up until synaptogenesis, both nitric oxide (NO) and its downstream messenger, cGMP, are thought to influence the development of neurons. The NO/cGMP/cGMP-dependent protein kinase (cGK) pathway regulates the clustering and recruitment of synaptic proteins and vesicles to the synapse, adjusting the exoendocytic cycle to the intensity of activity and accelerating endocytosis following large-scale exocytosis. Here, we show that blockage of the N-methyl-D-aspartate receptor impairs the cycling of synaptic vesicles in a subset of boutons on cerebellar granule cells, an effect that was reversed by increasing cGMP. Furthermore, we demonstrate that presynaptic cGK type II (cGKII) plays a major role in this process. Using the FM1-43 dye to track vesicle recycling, we found that knockdown of cGKII and/or the application of a cGK inhibitor reduced the efficiency of synaptic vesicle recycling to a similar extent. Likewise, in cerebellar granule cells transfected with vGlut1-pHluorin to follow the exoendocytotic cycle, application of a cGK inhibitor slowed vesicle endocytosis when exocytosis was accelerated through strong and sustained stimulation. Additionally, ultrastructural analysis showed that cGKII knockdown or inhibition favored the formation of endosomal-like structures after strong and sustained stimulation. We conclude that cGKII controls the homeostatic balance of vesicle exocytosis and endocytosis in synaptic boutons of rat cerebellar granule cells.

  9. Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism and Excretion Studies of a BDDCS II Drug.

    PubMed

    He, Handan; Tran, Phi; Gu, Helen; Tedesco, Vivienne; Zhang, Jin; Lin, Wen; Gatlik, Ewa; Klein, Kai; Heimbach, Tycho

    2017-03-07

    The absorption, metabolism and excretion of midostaurin, a potent class III tyrosine protein kinase inhibitor for acute myelogenous leukemia, were evaluated in healthy subjects. A microemulsion formulation was chosen to optimize absorption. After a 50 mg [14C]midostaurin dose, oral absorption was high (> 90%) and relatively rapid. In plasma, the major circulating components were midostaurin (22%), CGP52421 (32.7%), and CGP62221 (27.7%). Long plasma half-lives were observed for midostaurin (20.3 h), CGP52421 (495 h), and CGP62221 (33.4 h). Through careful mass-balance study design, the recovery achieved was good (81.6%), despite the long radioactivity half-lives. Most of the radioactive dose was recovered in feces (77.6%) mainly as metabolites; as only 3.43% was unchanged, suggesting mainly hepatic metabolism. Renal elimination was minor (4%). Midostaurin metabolism pathways involved hydroxylation, O demethylation, amide hydrolysis and N demethylation. High plasma CGP52421 and CGP62221 exposures in humans, along with relatively potent cell-based IC50 for FLT3-ITD inhibition, suggested that the antileukemic activity in AML patients may also be maintained by the metabolites. Very high plasma protein binding (>99%) required equilibrium gel filtration to identify differences between humans and animals. As midostaurin, CGP52421 and CGP62221 are metabolized mainly by CYP3A4 and are inhibitors/inducers for CYP3A, potential drug-drug interactions with mainly CYP3A4 modulators/CYP3A substrates could be expected. Given its low aqueous solubility, high oral absorption and extensive metabolism (> 90%), midostaurin is a BCS/BDDCS class II drug in human, consistent with rat BDDCS in vivo data showing high absorption (>90%) and extensive metabolism (>90%).

  10. Phosphorylation of the mRNA cap binding protein and eIF-4A by different protein kinases

    SciTech Connect

    Hagedorn, C.H.

    1987-05-01

    These studies were done to determine the identity of a protein kinase that phosphorylates the mRNA cap binding protein (CBP). Two chromatographic steps (dye and ligand and ion exchange HPLC) produced a 500x purification of an enzyme activity in rabbit reticulocytes that phosphorylated CBP at serine residues. Isoelectric focusing analysis of kinase treated CBP demonstrated 5 isoelectric species of which the 2 most anodic species were phosphorylated (contained /sup 32/P). This kinase activity phosphorylated CBP when it was isolated or in the eIF-4F complex. Purified protein kinase C, cAMP or cGMP dependent protein kinase, casein kinase I or II, myosin light chain kinase or insulin receptor kinase did not significantly phosphorylate isolated CBP or CBP in the eIF-4F complex. However, cAMP and cGMP dependent protein kinases and casein kinase II phosphorylated eIF-4A but did not phosphorylate the 46 kDa component of eIF-4F. cAMP dependent protein kinase phosphorylated a approx. 220 kDa protein doublet in eIF-4F preparations. These studies indicate that CBP kinase activity probably represents a previously unidentified protein kinase. In addition, eIF-4A appears to be phosphorylated by several protein kinases whereas the 46 kDa component of the eIF-4F complex was not.

  11. Purification and characterization of a thylakoid protein kinase

    SciTech Connect

    Coughlan, S.J.; Hind, G.

    1986-01-01

    Control of state transitions in the thylakoid by reversible phosphorylation of the light-harvesting chlorophyll a/b protein complex of photosystem II (LHC-II) is modulated by a kinase. The kinase catalyzing this phosphorylation is associated with the thylakoid membrane, and is regulated by the redox state of the plastoquinone pool. The isolation and partial purification from spinach thylakoids of two protein kinases (CPK1, CPK2) of apparent molecular masses 25 kDa and 38 kDa has been reported. Neither enzyme utilizes isolated LHC-II as a substrate. The partial purification of a third protein kinase (LHCK) which can utilize both lysine-rich histones (IIIs and Vs) and isolated LHC-II as substrate has now been purified to homogeneity and characterized by SDS-polyacrylamide gel electrophoresis as a 64 kDa peptide. From a comparison of the two isolation procedures we have concluded that CPK1 is indeed a protein kinase, but has a lower specific activity than that of LHCK. 8 refs., 4 figs.

  12. Role of protein kinase A and class II phosphatidylinositol 3-kinase C2β in the downregulation of KCa3.1 channel synthesis and membrane surface expression by lyso-globotriaosylceramide

    SciTech Connect

    Choi, Ju Yeon; Park, Seonghee

    2016-02-19

    The intermediate conductance calcium-activated potassium channel (KCa3.1) mediates proliferation of many cell types including fibroblasts, and is a molecular target for intervention in various cell proliferative diseases. Our previous study showed that reduction of KCa3.1 channel expression by lyso-globotriaosylceramide (lyso-Gb3) inhibits differentiation into myofibroblasts and collagen synthesis, which might lead to development of ascending thoracic aortic aneurysm secondary to Fabry disease. However, how lyso-Gb3 downregulates KCa3.1 channel expression is unknown. Therefore, we aimed to investigate the underlying mechanisms of lyso-Gb3-mediated KCa3.1 channel downregulation, focusing on the cAMP signaling pathway. We found that lyso-Gb3 increased the intracellular cAMP concentration by upregulation of adenylyl cyclase 6 and inhibited ERK 1/2 phosphorylation through the protein kinase A (PKA) pathway, leading to the inhibition of KCa3.1 channel synthesis, not the exchange protein directly activated by cAMP (Epac) pathway. Moreover, lyso-Gb3 suppressed expression of class II phosphatidylinositol 3-kinase C2β (PI3KC2β) by PKA activation, which reduces the production of phosphatidylinositol 3-phosphate [PI(3)P], and the reduced membrane surface expression of KCa3.1 channel was recovered by increasing the intracellular levels of PI(3)P. Consequently, our findings that lyso-Gb3 inhibited both KCa3.1 channel synthesis and surface expression by increasing intracellular cAMP, and controlled surface expression through changes in PI3KC2β-mediated PI(3)P production, suggest that modulation of PKA and PI3KC2β activity to control of KCa3.1 channel expression can be an alternative important target to attenuate ascending thoracic aortic aneurysms in Fabry disease. - Highlights: • Lyso-Gb3 causes elevation of intracellular cAMP. • Lyso-Gb3 inhibits the ERK 1/2 phosphorylation through PKA, thereby reducing KCa3.1 channel synthesis. • Lyso-Gb3 reduces PI3KC2

  13. Affinity-purified CCAAT-box-binding protein (YEBP) functionally regulates expression of a human class II major histocompatibility complex gene and the herpes simplex virus thymidine kinase gene

    SciTech Connect

    Zeleznik-Le, N.J.; Azizkhan, J.C.; Ting, J.P.Y. )

    1991-03-01

    Efficient major histocompatibility complex class II gene expression requires conseved protein-binding promoter elements, including X and Y elements. The authors affinity purified an HLA-DRA Y-element (CCAAT)-binding protein (YEBP) and used it to reconstitute Y-depleted HLA-DRA in vitro transcription. This directly demonstrates a positive functional role for YEBP in HLA-DRA transcription. The ability of YEBP to regulate divergent CCAAT elements was also assessed; YEBP was found to partially activate the thymidine kinase promoter. This functional analysis of YEBP shows that this protein plays an important role in the regulation of multiple genes.

  14. Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway

    DTIC Science & Technology

    2014-10-01

    kinase . This grant proposal will explore the resistance to small molecule AKT protein kinase inhibitors mediated by the... molecule AKT protein kinase inhibitors is potentially mediated by the Pim-1 protein kinase , and that unique Pim protein kinase inhibitors that can in...application is essential for the development of this combined chemotherapeutic strategy. 15. SUBJECT TERMS Small Molecule AKT Inhibitors ,

  15. Possible interaction of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II on reversal of spatial memory impairment induced by morphine.

    PubMed

    Farahmandfar, Maryam; Kadivar, Mehdi; Naghdi, Nasser

    2015-03-15

    The opioid system plays an important role in learning and memory by modulation of different molecules in the brain. The aim of the present study was to investigate the role of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II (CaMKII) on the morphine-induced modulation of spatial memory consolidation in male rats. Spatial memory was assessed in Morris water maze task by a single training session of eight trials followed by a probe trial and visible test 24h later. Our data indicated that post-training administration of L-arginine, a nitric oxide precursor (6 and 9 µg/rat, intra-CA1) significantly decreased amnesia induced by morphine (10 mg/kg) in spatial memory consolidation. A reversal effect of L-arginine on morphine-induced amnesia prevented by KN-93 (N-[2-(N-(4-chlorocinnamyl)-N-methylaminomethyl) phenyl]-N-[2-hydroxyethyl] methoxybenzenesulfnamide), CaMKII inhibitor, (10 nmol/0.5 µl/site). In addition, post-training injection of L-NAME, (NG-nitro-L-arginine methyl ester), a nitric oxide synthase (NOS) inhibitor (10 and 15 µg/rat) or KN-93 (10 nmol/0.5 µl/site) with lower dose of morphine (2.5 mg/kg), which did not induce amnesia by itself, caused inhibition of memory consolidation. We also showed that co-administration of L-arginine (9 µg/rat) and morphine (10 mg/kg) significantly increased CaMKII activity in the rat hippocampus. On the other hand, administration of L-NAME (10 µg/rat) led to a decrease in the haippocampal activity of CaMKII in morphine-treated (2.5mg/kg) animals. These results indicate that acute single exposure to morphine can modulate consolidation of spatial memory, which may be mediated by a hippocampal nitrergic system and CaMKII activity.

  16. Regulation of voltage-gated Ca(2+) currents by Ca(2+)/calmodulin-dependent protein kinase II in resting sensory neurons.

    PubMed

    Kostic, Sandra; Pan, Bin; Guo, Yuan; Yu, Hongwei; Sapunar, Damir; Kwok, Wai-Meng; Hudmon, Andy; Wu, Hsiang-En; Hogan, Quinn H

    2014-09-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) is recognized as a key element in encoding depolarization activity of excitable cells into facilitated voltage-gated Ca(2+) channel (VGCC) function. Less is known about the participation of CaMKII in regulating VGCCs in resting cells. We examined constitutive CaMKII control of Ca(2+) currents in peripheral sensory neurons acutely isolated from dorsal root ganglia (DRGs) of adult rats. The small molecule CaMKII inhibitor KN-93 (1.0μM) reduced depolarization-induced ICa by 16-30% in excess of the effects produced by the inactive homolog KN-92. The specificity of CaMKII inhibition on VGCC function was shown by the efficacy of the selective CaMKII blocking peptide autocamtide-2-related inhibitory peptide in a membrane-permeable myristoylated form, which also reduced VGCC current in resting neurons. Loss of VGCC currents is primarily due to reduced N-type current, as application of mAIP selectively reduced N-type current by approximately 30%, and prior N-type current inhibition eliminated the effect of mAIP on VGCCs, while prior block of L-type channels did not reduce the effect of mAIP on total ICa. T-type currents were not affected by mAIP in resting DRG neurons. Transduction of sensory neurons in vivo by DRG injection of an adeno-associated virus expressing AIP also resulted in a loss of N-type currents. Together, these findings reveal a novel molecular adaptation whereby sensory neurons retain CaMKII support of VGCCs despite remaining quiescent.

  17. Central Rho kinase inhibition restores baroreflex sensitivity and angiotensin II type 1 receptor protein imbalance in conscious rabbits with chronic heart failure.

    PubMed

    Haack, Karla K V; Gao, Lie; Schiller, Alicia M; Curry, Pamela L; Pellegrino, Peter R; Zucker, Irving H

    2013-03-01

    The small GTPase RhoA and its associated kinase ROCKII are involved in vascular smooth muscle cell contraction and endothelial NO synthase mRNA destabilization. Overactivation of the RhoA/ROCKII pathway is implicated in several pathologies, including chronic heart failure (CHF), and may contribute to the enhanced sympathetic outflow seen in CHF as a result of decreased NO availability. Thus, we hypothesized that central ROCKII blockade would improve the sympathovagal imbalance in a pacing rabbit model of CHF in an NO-dependent manner. CHF was induced by rapid ventricular pacing and characterized by an ejection fraction of ≤45%. Animals were implanted with an intracerbroventricular cannula and osmotic minipump (rate, 1 μL/h) containing sterile saline, 1.5 µg/kg per day fasudil (Fas, a ROCKII inhibitor) for 4 days or Fas+100 µg/kg per day Nω-Nitro-l-arginine methyl ester hydrochloride, a NO synthase inhibitor. Arterial baroreflex control was assessed by intravenous infusion of sodium nitroprusside and phenylephrine. Fas infusion significantly lowered resting heart rate by decreasing sympathetic and increasing vagal tone. Furthermore, Fas improved baroreflex gain in CHF in an NO-dependent manner. In CHF Fas animals, the decrease in heart rate in response to intravenous metoprolol was similar to Sham and was reversed by Nω-Nitro-l-arginine methyl ester hydrochloride. Fas decreased angiotensin II type 1 receptor and phospho-ERM protein expression and increased endothelial NO synthase expression in the brain stem of CHF animals. These data strongly suggest that central ROCKII activation contributes to cardiac sympathoexcitation in the setting of CHF and that central Fas restores vagal and sympathetic tone in an NO-dependent manner. ROCKII may be a new central therapeutic target in the setting of CHF.

  18. Ca(2+)/Calmodulin-Dependent Protein Kinase II and Androgen Signaling Pathways Modulate MEF2 Activity in Testosterone-Induced Cardiac Myocyte Hypertrophy.

    PubMed

    Duran, Javier; Lagos, Daniel; Pavez, Mario; Troncoso, Mayarling F; Ramos, Sebastián; Barrientos, Genaro; Ibarra, Cristian; Lavandero, Sergio; Estrada, Manuel

    2017-01-01

    Testosterone is known to induce cardiac hypertrophy through androgen receptor (AR)-dependent and -independent pathways, but the molecular underpinnings of the androgen action remain poorly understood. Previous work has shown that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and myocyte-enhancer factor 2 (MEF2) play key roles in promoting cardiac myocyte growth. In order to gain mechanistic insights into the action of androgens on the heart, we investigated how testosterone affects CaMKII and MEF2 in cardiac myocyte hypertrophy by performing studies on cultured rat cardiac myocytes and hearts obtained from adult male orchiectomized (ORX) rats. In cardiac myocytes, MEF2 activity was monitored using a luciferase reporter plasmid, and the effects of CaMKII and AR signaling pathways on MEF2C were examined by using siRNAs and pharmacological inhibitors targeting these two pathways. In the in vivo studies, ORX rats were randomly assigned to groups that were administered vehicle or testosterone (125 mg⋅kg(-1)⋅week(-1)) for 5 weeks, and plasma testosterone concentrations were determined using ELISA. Cardiac hypertrophy was evaluated by measuring well-characterized hypertrophy markers. Moreover, western blotting was used to assess CaMKII and phospholamban (PLN) phosphorylation, and MEF2C and AR protein levels in extracts of left-ventricle tissue from control and testosterone-treated ORX rats. Whereas testosterone treatment increased the phosphorylation levels of CaMKII (Thr286) and phospholambam (PLN) (Thr17) in cardiac myocytes in a time- and concentration-dependent manner, testosterone-induced MEF2 activity and cardiac myocyte hypertrophy were prevented upon inhibition of CaMKII, MEF2C, and AR signaling pathways. Notably, in the hypertrophied hearts obtained from testosterone-administered ORX rats, both CaMKII and PLN phosphorylation levels and AR and MEF2 protein levels were increased. Thus, this study presents the first evidence indicating that testosterone

  19. Membrane actions of 1α,25(OH)2D3 are mediated by Ca(2+)/calmodulin-dependent protein kinase II in bone and cartilage cells.

    PubMed

    Doroudi, Maryam; Plaisance, Marc C; Boyan, Barbara D; Schwartz, Zvi

    2015-01-01

    1α,25(OH)2D3 regulates osteoblasts and chondrocytes via its membrane-associated receptor, protein disulfide isomerase A3 (Pdia3) in caveolae. 1α,25(OH)2D3 binding to Pdia3 leads to phospholipase-A2 (PLA2)-activating protein (PLAA) activation, stimulating cytosolic PLA2 and resulting in prostaglandin E2 (PGE2) release and PKCα activation, subsequently stimulating differentiation. However, how PLAA transmits the signal to cPLA2 is unknown. Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) activation is required for PLA2 activation in vascular smooth muscle cells, suggesting a similar role in 1α,25(OH)2D3-dependent signaling. The aim of the present study is to evaluate the roles of CaM and CaMKII as mediators of 1α,25(OH)2D3-stimulated PLAA-dependent activation of cPLA2 and PKCα, and downstream biological effects. The results indicated that 1α,25(OH)2D3 and PLAA-peptide increased CaMKII activity within 9 min. Silencing Cav-1, Pdia3 or Plaa in osteoblasts suppressed this effect. Similarly, antibodies against Plaa or Pdia3 blocked 1α,25(OH)2D3-dependent CaMKII. Caveolae disruption abolished activation of CaMKII by 1α,25(OH)2D3 or PLAA. CaMKII-specific and CaM-specific inhibitors reduced cPLA2 and PKC activities, PGE2 release and osteoblast maturation markers in response to 1α,25(OH)2D3. Camk2a-silenced but not Camk2b-silenced osteoblasts showed comparable effects. Immunoprecipitation showed increased interaction of CaM and PLAA in response to 1α,25(OH)2D3. The results indicate that membrane actions of 1α,25(OH)2D3 via Pdia3 triggered the interaction between PLAA and CaM, leading to dissociation of CaM from caveolae, activation of CaMKII, and downstream PLA2 activation, and suggest that CaMKII plays a major role in membrane-mediated actions of 1α,25(OH)2D3. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Protein kinase biochemistry and drug discovery.

    PubMed

    Schwartz, Phillip A; Murray, Brion W

    2011-12-01

    Protein kinases are fascinating biological catalysts with a rapidly expanding knowledge base, a growing appreciation in cell regulatory control, and an ascendant role in successful therapeutic intervention. To better understand protein kinases, the molecular underpinnings of phosphoryl group transfer, protein phosphorylation, and inhibitor interactions are examined. This analysis begins with a survey of phosphate group and phosphoprotein properties which provide context to the evolutionary selection of phosphorylation as a central mechanism for biological regulation of most cellular processes. Next, the kinetic and catalytic mechanisms of protein kinases are examined with respect to model aqueous systems to define the elements of catalysis. A brief structural biology overview further delves into the molecular basis of catalysis and regulation of catalytic activity. Concomitant with a prominent role in normal physiology, protein kinases have important roles in the disease state. To facilitate effective kinase drug discovery, classic and emerging approaches for characterizing kinase inhibitors are evaluated including biochemical assay design, inhibitor mechanism of action analysis, and proper kinetic treatment of irreversible inhibitors. As the resulting protein kinase inhibitors can modulate intended and unintended targets, profiling methods are discussed which can illuminate a more complete range of an inhibitor's biological activities to enable more meaningful cellular studies and more effective clinical studies. Taken as a whole, a wealth of protein kinase biochemistry knowledge is available, yet it is clear that a substantial extent of our understanding in this field remains to be discovered which should yield many new opportunities for therapeutic intervention.

  1. Differential signalling by muscarinic receptors in smooth muscle: m2-mediated inactivation of myosin light chain kinase via Gi3, Cdc42/Rac1 and p21-activated kinase 1 pathway, and m3-mediated MLC20 (20 kDa regulatory light chain of myosin II) phosphorylation via Rho-associated kinase/myosin phosphatase targeting subunit 1 and protein kinase C/CPI-17 pathway.

    PubMed

    Murthy, Karnam S; Zhou, Huiping; Grider, John R; Brautigan, David L; Eto, Masumi; Makhlouf, Gabriel M

    2003-08-15

    Signalling via m3 and m2 receptors in smooth muscles involved activation of two G-protein-dependent pathways by each receptor. m2 receptors were coupled via Gbetagammai3 with activation of phospholipase C-beta3, phosphoinositide 3-kinase and Cdc42/Rac1 (where Cdc stands for cell division cycle) and p21-activated kinase 1 (PAK1), resulting in phosphorylation and inactivation of myosin light chain kinase (MLCK). Each step was inhibited by methoctramine and pertussis toxin. PAK1 activity was abolished in cells expressing both Cdc42-DN (where DN stands for dominant negative) and Rac1-DN. MLCK phosphorylation was inhibited by PAK1 antibody, and in cells expressing Cdc42-DN and Rac1-DN. m3 receptors were coupled via Galpha(q/11) with activation of phospholipase C-beta1 and via RhoA with activation of Rho-associated kinase (Rho kinase), phospholipase D and protein kinase C (PKC). Rho kinase and phospholipase D activities were inhibited by C3 exoenzyme and in cells expressing RhoA-DN. PKC activity was inhibited by bisindolylmaleimide, and in cells expressing RhoA-DN; PKC activity was also inhibited partly by Y27632 (44+/-5%). PKC-induced phosphorylation of PKC-activated 17 kDa inhibitor protein of type 1 phosphatase (CPI-17) at Thr38 was abolished by bisindolylmaleimide and inhibited partly by Y27632 (28+/-3%). Rho-kinase-induced phosphorylation of myosin phosphatase targeting subunit (MYPT1) and was abolished by Y27632. Sustained phosphorylation of 20 kDa regulatory light chain of myosin II (MLC20) and contraction were abolished by bisindolylmaleimide Y27632 and C3 exoenzyme and in cells expressing RhoA-DN. The results suggest that Rho-kinase-dependent phosphorylation of MYPT1 and PKC-dependent phosphorylation and enhancement of CPI-17 binding to the catalytic subunit of MLC phosphatase (MLCP) act co-operatively to inhibit MLCP activity, leading to sustained stimulation of MLC20 phosphorylation and contraction. Because Y27632 inhibited both Rho kinase and PKC activities

  2. Differential signalling by muscarinic receptors in smooth muscle: m2-mediated inactivation of myosin light chain kinase via Gi3, Cdc42/Rac1 and p21-activated kinase 1 pathway, and m3-mediated MLC20 (20 kDa regulatory light chain of myosin II) phosphorylation via Rho-associated kinase/myosin phosphatase targeting subunit 1 and protein kinase C/CPI-17 pathway.

    PubMed Central

    Murthy, Karnam S; Zhou, Huiping; Grider, John R; Brautigan, David L; Eto, Masumi; Makhlouf, Gabriel M

    2003-01-01

    Signalling via m3 and m2 receptors in smooth muscles involved activation of two G-protein-dependent pathways by each receptor. m2 receptors were coupled via Gbetagammai3 with activation of phospholipase C-beta3, phosphoinositide 3-kinase and Cdc42/Rac1 (where Cdc stands for cell division cycle) and p21-activated kinase 1 (PAK1), resulting in phosphorylation and inactivation of myosin light chain kinase (MLCK). Each step was inhibited by methoctramine and pertussis toxin. PAK1 activity was abolished in cells expressing both Cdc42-DN (where DN stands for dominant negative) and Rac1-DN. MLCK phosphorylation was inhibited by PAK1 antibody, and in cells expressing Cdc42-DN and Rac1-DN. m3 receptors were coupled via Galpha(q/11) with activation of phospholipase C-beta1 and via RhoA with activation of Rho-associated kinase (Rho kinase), phospholipase D and protein kinase C (PKC). Rho kinase and phospholipase D activities were inhibited by C3 exoenzyme and in cells expressing RhoA-DN. PKC activity was inhibited by bisindolylmaleimide, and in cells expressing RhoA-DN; PKC activity was also inhibited partly by Y27632 (44+/-5%). PKC-induced phosphorylation of PKC-activated 17 kDa inhibitor protein of type 1 phosphatase (CPI-17) at Thr38 was abolished by bisindolylmaleimide and inhibited partly by Y27632 (28+/-3%). Rho-kinase-induced phosphorylation of myosin phosphatase targeting subunit (MYPT1) and was abolished by Y27632. Sustained phosphorylation of 20 kDa regulatory light chain of myosin II (MLC20) and contraction were abolished by bisindolylmaleimide Y27632 and C3 exoenzyme and in cells expressing RhoA-DN. The results suggest that Rho-kinase-dependent phosphorylation of MYPT1 and PKC-dependent phosphorylation and enhancement of CPI-17 binding to the catalytic subunit of MLC phosphatase (MLCP) act co-operatively to inhibit MLCP activity, leading to sustained stimulation of MLC20 phosphorylation and contraction. Because Y27632 inhibited both Rho kinase and PKC activities

  3. DNA-dependent protein kinase interacts functionally with the RNA polymerase II complex recruited at the human immunodeficiency virus (HIV) long terminal repeat and plays an important role in HIV gene expression.

    PubMed

    Tyagi, Shilpi; Ochem, Alex; Tyagi, Mudit

    2011-07-01

    DNA-dependent protein kinase (DNA-PK), a nuclear protein kinase that specifically requires association with DNA for its kinase activity, plays important roles in the regulation of different DNA transactions, including transcription, replication and DNA repair, as well as in the maintenance of telomeres. Due to its large size, DNA-PK is also known to facilitate the activities of other factors by providing the docking platform at their site of action. In this study, by running several chromatin immunoprecipitation assays, we demonstrate the parallel distribution of DNA-PK with RNA polymerase II (RNAP II) along the human immunodeficiency virus (HIV) provirus before and after activation with tumour necrosis factor alpha. The association between DNA-PK and RNAP II is also long-lasting, at least for up to 4 h (the duration analysed in this study). Knockdown of endogenous DNA-PK using specific small hairpin RNAs expressed from lentiviral vectors resulted in significant reduction in HIV gene expression and replication, demonstrating the importance of DNA-PK for HIV gene expression. Sequence analysis of the HIV-1 Tat protein revealed three potential target sites for phosphorylation by DNA-PK and, by using kinase assays, we confirmed that Tat is an effective substrate of DNA-PK. Through peptide mapping, we found that two of these three potential phosphorylation sites are recognized and phosphorylated by DNA-PK. Mutational studies on the DNA-PK target sites of Tat further demonstrated the functional significance of the Tat-DNA-PK interaction. Thus, overall our results clearly demonstrate the functional interaction between DNA-PK and RNAP II during HIV transcription.

  4. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  5. Depletion of casein kinase II by antisense oligonucleotide prevents neuritogenesis in neuroblastoma cells.

    PubMed Central

    Ulloa, L; Díaz-Nido, J; Avila, J

    1993-01-01

    Casein kinase II is a multifunctional protein kinase which has been implicated in the regulation of cell growth and differentiation. This enzyme is much more abundant in neurons than in any other cell type. The treatment of neuroblastoma cells with an antisense oligodeoxyribonucleotide which specifically results in the depletion of casein kinase II catalytic subunits blocks neuritogenesis. Accordingly, this enzyme may perform an essential role during neurite growth in developing neurons. Casein kinase II depletion induced by antisense oligodeoxyribonucleotide is accompanied by a site-specific dephosphorylation of microtubule-associated protein MAP1B (also referred to as MAP5, MAP1.X or MAP1.2), which is paralleled by a release of MAP1B from microtubules. We therefore propose that phosphorylation by casein kinase II may be required for the proper MAP1B functioning in the promotion of the assembly of microtubules which constitute the cytoskeletal scaffolding of growing axon-like neurites. Images PMID:8467810

  6. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation

    PubMed Central

    Moens, Ugo; Kostenko, Sergiy; Sveinbjørnsson, Baldur

    2013-01-01

    Mitogen-activated protein kinase (MAPK) pathways are implicated in several cellular processes including proliferation, differentiation, apoptosis, cell survival, cell motility, metabolism, stress response and inflammation. MAPK pathways transmit and convert a plethora of extracellular signals by three consecutive phosphorylation events involving a MAPK kinase kinase, a MAPK kinase, and a MAPK. In turn MAPKs phosphorylate substrates, including other protein kinases referred to as MAPK-activated protein kinases (MAPKAPKs). Eleven mammalian MAPKAPKs have been identified: ribosomal-S6-kinases (RSK1-4), mitogen- and stress-activated kinases (MSK1-2), MAPK-interacting kinases (MNK1-2), MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and MAPKAPK-5 (MK5). The role of these MAPKAPKs in inflammation will be reviewed. PMID:24705157

  7. Direct cytochemical localization of catalytic subunits dissociated from cAMP-dependent protein kinase in Reuber H-35 hepatoma cells. II. Temporal and spatial kinetics

    PubMed Central

    1982-01-01

    The activation of cyclic AMP-dependent protein kinase has been found to be the predominant mode by which cyclic AMP (cAMP) leads to alterations of a large variety of cellular functions. The activation of the kinase results in the release of the catalytic subunit which as the free enzyme possesses phosphotransferase activity for a variety of specific protein substrates. Using a sensitive and specific cytofluorometric technique we monitored the appearance of free catalytic subunit in Reuber H35 hepatoma cells in culture after incubation with N6-1'-O- dibutyryl-cyclic AMP (DBcAMP), 8-bromoadenosine-3':5'-cyclic monophosphate (8-BrcAMP), and glucagon. The cytochemical method employs the heat-stable inhibitor of the free catalytic subunit which has been conjugated to fluorescein isothiocyanate (F:PKI) and was validated as described in the companion paper (Fletcher and Byus. 1982. J. Cell Biol. 93:719-726). Here we studied the temporal and spatial kinetics of the free catalytic subunit following activation of cAMP-dependent protein kinase by increasing concentrations of DBcAMP,8-BrcAMP, and glucagon. Under similar conditions protein kinase activation was also assessed biochemically in H35 cell supernatants by assaying the protein kinase activity ratio. Incubation of the hepatoma cells with DBcAMP (0.1 mM) led to an increase in the activity ratio from 0.2 in control cultures to a value of nearly 1.0 within a 1- to 2-h period. During this same period using the F:PKI probe, a significant increase in cytoplasmic and nucleolar fluorescence indicative of the release of the free catalytic subunit was coincidentally observed. In contrast to the rapid appearance of catalytic subunit in the cytoplasm and nucleolus of the cell within 5-15 min of the addition of DBcAMP, discernible nucleoplasmic fluorescence did not occur until after 1 h. H35 cell cultures incubated with 8-BrcAMP (0.01-1.0 mM) exhibited a more rapid activation of the protein kinase measured cytochemically compared

  8. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  9. Isozymic forms of rat brain CA/sup 2 +/-activated and phospholipid-dependent protein kinase

    SciTech Connect

    Huang, K.P.; Huang, F.L.

    1986-05-01

    Three forms of Ca/sup 2 +/-activated and phospholipid-dependent protein kinase (protein kinase C) were purified from the cytosolic fraction of rat brain. These enzymes, designated as type I, II, and III protein kinase C, all have the similar molecular weight of 80 Kd, bind (/sup 3/H)-phorbol dibutyrate in the presence of Ca/sup 2 +/, and undergo autophosphorylation in the presence of Ca/sup 2 +/, phosphatidylserine, and diolein. Autophosphorylation of these kinases resulted in an incorporation of 1- 1.5 mol /sup 32/P/mol of enzyme. Analysis of the /sup 32/P-labeled tryptic peptides derived from the autophosphorylated protein kinase C by two-dimensional peptide mapping revealed that these kinases had different sites of autophosphorylation. Phosphoamino acid analysis revealed that the type I and type III protein kinase C mainly phosphorylated at Ser residue while the type II kinase phosphorylated at both Ser and Thr residues. In addition, polyclonal antibodies previously prepared against a mixed enzyme fraction preferentially inhibited the type I and type II enzymes but less effectively toward the type III enzyme. Monoclonal antibody specifically against the type II protein kinase C did not inhibit the type I or type III enzymes. These kinases also had different susceptibility to limited proteolysis by trypsin and upon proteolytic degradation they generate distinct fragments. These results demonstrate the presence of isozymic forms of protein kinase C in rat brain.

  10. Evolutionary Ancestry of Eukaryotic Protein Kinases and Choline Kinases*

    PubMed Central

    Lai, Shenshen; Safaei, Javad

    2016-01-01

    The reversible phosphorylation of proteins catalyzed by protein kinases in eukaryotes supports an important role for eukaryotic protein kinases (ePKs) in the emergence of nucleated cells in the third superkingdom of life. Choline kinases (ChKs) could also be critical in the early evolution of eukaryotes, because of their function in the biosynthesis of phosphatidylcholine, which is unique to eukaryotic membranes. However, the genomic origins of ePKs and ChKs are unclear. The high degeneracy of protein sequences and broad expansion of ePK families have made this fundamental question difficult to answer. In this study, we identified two class-I aminoacyl-tRNA synthetases with high similarities to consensus amino acid sequences of human protein-serine/threonine kinases. Comparisons of primary and tertiary structures supported that ePKs and ChKs evolved from a common ancestor related to glutaminyl aminoacyl-tRNA synthetases, which may have been one of the key factors in the successful of emergence of ancient eukaryotic cells from bacterial colonies. PMID:26742849

  11. Protein kinase CK2 in development and differentiation

    PubMed Central

    Götz, Claudia; Montenarh, Mathias

    2017-01-01

    Among the human kinomes, protein kinase CK2 (formerly termed casein kinase II) is considered to be essential, as it is implicated in the regulation of various cellular processes. Experiments with pharmacological inhibitors of the kinase activity of CK2 provide evidence that CK2 is essential for development and differentiation. Therefore, the present review addresses the role of CK2 during embryogenesis, neuronal, adipogenic, osteogenic and myogenic differentiation in established model cell lines, and in embryonic, neural and mesenchymal stem cells. CK2 kinase activity appears to be essential in the early stages of differentiation, as CK2 inhibition at early time points generally prevents differentiation. In addition, the present review reports on target proteins of CK2 in embryogenesis and differentiation. PMID:28357063

  12. Intracellular translocation of calmodulin and Ca{sup 2+}/calmodulin-dependent protein kinase II during the development of hypertrophy in neonatal cardiomyocytes

    SciTech Connect

    Gangopadhyay, Jaya Pal; Ikemoto, Noriaki

    2010-05-28

    We have recently shown that stimulation of cultured neonatal cardiomyocytes with endothelin-1 (ET-1) first produces conformational disorder within the ryanodine receptor (RyR2) and diastolic Ca{sup 2+} leak from the sarcoplasmic reticulum (SR), then develops hypertrophy (HT) in the cardiomyocytes (Hamada et al., 2009 ). The present paper addresses the following question. By what mechanism does crosstalk between defective operation of RyR2 and activation of the HT gene program occur? Here we show that the immuno-stain of calmodulin (CaM) is localized chiefly in the cytoplasmic area in the control cells; whereas, in the ET-1-treated/hypertrophied cells, major immuno-staining is localized in the nuclear region. In addition, fluorescently labeled CaM that has been introduced into the cardiomyocytes using the BioPORTER system moves from the cytoplasm to the nucleus with the development of HT. The immuno-confocal imaging of Ca{sup 2+}/CaM-dependent protein kinase II (CaMKII) also shows cytoplasm-to-nucleus shift of the immuno-staining pattern in the hypertrophied cells. In an early phase of hypertrophic growth, the frequency of spontaneous Ca{sup 2+} transients increases, which accompanies with cytoplasm-to-nucleus translocation of CaM. In a later phase of hypertrophic growth, further increase in the frequency of spontaneous Ca{sup 2+} transients results in the appearance of trains of Ca{sup 2+} spikes, which accompanies with nuclear translocation of CaMKII. The cardio-protective reagent dantrolene (the reagent that corrects the de-stabilized inter-domain interaction within the RyR2 to a normal mode) ameliorates aberrant intracellular Ca{sup 2+} events and prevents nuclear translocation of both CaM and CaMKII, then prevents the development of HT. These results suggest that translocation of CaM and CaMKII from the cytoplasm to the nucleus serves as messengers to transmit the pathogenic signal elicited in the surface membrane and in the RyR2 to the nuclear transcriptional

  13. IGF-II/mannose-6-phosphate receptor signaling induced cell hypertrophy and atrial natriuretic peptide/BNP expression via Galphaq interaction and protein kinase C-alpha/CaMKII activation in H9c2 cardiomyoblast cells.

    PubMed

    Chu, Chun-Hsien; Tzang, Bor-Show; Chen, Li-Mien; Kuo, Chia-Hua; Cheng, Yi-Chang; Chen, Ling-Yun; Tsai, Fuu-Jen; Tsai, Chang-Hai; Kuo, Wei-Wen; Huang, Chih-Yang

    2008-05-01

    The role played by IGF-II in signal transduction through the IGF-II/mannose-6-phosphate receptor (IGF2R) in heart tissue has been poorly understood. In our previous studies, we detected an increased expression of IGF-II and IGF2R in cardiomyocytes that had undergone pathological hypertrophy. We hypothesized that after binding with IGF-II, IGF2R may trigger intracellular signaling cascades involved in the progression of pathologically cardiac hypertrophy. In this study, we used immunohistochemical analysis of the human cardiovascular tissue array to detect expression of IGF2R. In our study of H9c2 cardiomyoblast cell cultures, we used the rhodamine phalloidin staining to measure the cell hypertrophy and western blot to measure the expression of cardiac hypertrophy markers atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in cells treated with IGF-II. We found that a significant association between IGF2R overexpression and myocardial infarction. The treatment of H9c2 cardiomyoblast cells with IGF-II not only induced cell hypertrophy but also increased the protein level of ANP and BNP. Using Leu27IGF-II, an analog of IGF-II which interacts selectively with the IGF2R, to specifically activate IGF2R signaling cascades, we found that binding of Leu27IGF-II to IGF2R led to an increase in the phosphorylation of protein Kinase C (PKC)-alpha and calcium/calmodulin-dependent protein kinase II (CaMKII) in a Galphaq-dependent manner. By the inhibition of PKC-alpha/CaMKII activity, we found that IGF-II and Leu27IGF-II-induced cell hypertrophy and upregulation of ANP and BNP were significantly suppressed. Taken together, this study provides a new insight into the effects of the IGF2R and its downstream signaling in cardiac hypertrophy. The suppression of IGF2R signaling pathways may be a good strategy to prevent the progression of pathological hypertrophy.

  14. Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension.

    PubMed

    Antunes, Tayze T; Callera, Glaucia E; He, Ying; Yogi, Alvaro; Ryazanov, Alexey G; Ryazanova, Lillia V; Zhai, Alexander; Stewart, Duncan J; Shrier, Alvin; Touyz, Rhian M

    2016-04-01

    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg(2+))/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase-deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg(2+) was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P<0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II-infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule-1 expression was increased in Ang II-infused TRPM7 kinase-deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II-treated groups. In TRPM7 kinase-deficient mice, Ang II-induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II-induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II-induced hypertension

  15. Properties of a microtubule-associated cofactor-independent protein kinase from pig brain.

    PubMed Central

    Scott, C W; Caputo, C B; Salama, A I

    1989-01-01

    A protein kinase activity was identified in pig brain that co-purified with microtubules through repeated cycles of temperature-dependent assembly and disassembly. The microtubule-associated protein kinase (MTAK) phosphorylated histone H1; this activity was not stimulated by cyclic nucleotides. Ca2+ plus calmodulin, phospholipids or polyamines. MTAK did not phosphorylate synthetic peptides which are substrates for cyclic AMP-dependent protein kinase, cyclic GMP-dependent protein kinase. Ca2+/calmodulin-dependent protein kinase II, protein kinase C or casein kinase II. MTAK activity was inhibited by trifluoperazine [IC50 (median inhibitory concn.) = 600 microM] in a Ca2+-independent fashion. Ca2+ alone was inhibitory [IC50 = 4 mM). MTAK was not inhibited by heparin, a potent inhibitor of casein kinase II, nor a synthetic peptide inhibitor of cyclic AMP-dependent protein kinase. MTAK demonstrated a broad pH maximum (7.5-8.5) and an apparent Km for ATP of 45 microM. Mg2+ was required for enzyme activity and could not be replaced by Mn2+. MTAK phosphorylated serine and threonine residues on histone H1. MTAK is a unique cofactor-independent protein kinase that binds to microtubule structures. Images Fig. 1. Fig. 6. Fig. 7. PMID:2557823

  16. Novel protein kinase C inhibitors: alpha-terthiophene derivatives.

    PubMed

    Kim, D S; Ashendel, C L; Zhou, Q; Chang, C T; Lee, E S; Chang, C J

    1998-10-06

    A series of alpha-terthiophene derivatives were prepared and their protein kinase C inhibitory activity were evaluated. The aldehyde derivatives were most potent inhibitors (IC50 < 1 microM). alpha-Terthiophene monoaldehyde was inactive in the inhibitions of protein kinase A, mitogen activated protein kinase and protein tyrosine kinase.

  17. Inhibition of endogenous heat shock protein 70 attenuates inducible nitric oxide synthase induction via disruption of heat shock protein 70/Na(+) /H(+) exchanger 1-Ca(2+) -calcium-calmodulin-dependent protein kinase II/transforming growth factor β-activated kinase 1-nuclear factor-κB signals in BV-2 microglia.

    PubMed

    Huang, Chao; Lu, Xu; Wang, Jia; Tong, Lijuan; Jiang, Bo; Zhang, Wei

    2015-08-01

    Inducible nitric oxide synthase (iNOS) critically contributes to inflammation and host defense. The inhibition of heat shock protein 70 (Hsp70) prevents iNOS induction in lipopolysaccharide (LPS)-stimulated macrophages. However, the role and mechanism of endogenous Hsp70 in iNOS induction in microglia remains unclear. This study addresses this issue in BV-2 microglia, showing that Hsp70 inhibition or knockdown prevents LPS-induced iNOS protein expression and nitric oxide production. Real-time PCR experiments showed that LPS-induced iNOS mRNA transcription was blocked by Hsp70 inhibition. Further studies revealed that the inhibition of Hsp70 attenuated LPS-stimulated nuclear translocation and phosphorylation of nuclear factor (NF)-κB as well as the degradation of inhibitor of κB (IκB)-α and phosphorylation of IκB kinase β (IKKβ). This prevention effect of Hsp70 inhibition on IKKβ-NF-κB activation was found to be dependent on the Ca(2+) /calcium-calmodulin-dependent protein kinase II (CaMKII)/transforming growth factor β-activated kinase 1 (TAK1) signals based on the following observations: 1) chelation of intracellular Ca(2+) or inhibition of CaMKII reduced LPS-induced increases in TAK1 phosphorylation and 2) Hsp70 inhibition reduced LPS-induced increases in CaMKII/TAK1 phosphorylation, intracellular pH value, [Ca(2+) ]i , and CaMKII/TAK1 association. Mechanistic studies showed that Hsp70 inhibition disrupted the association between Hsp70 and Na(+) /H(+) exchanger 1 (NHE1), which is an important exchanger responsible for Ca(2+) influx in LPS-stimulated cells. These studies demonstrate that the inhibition of endogenous Hsp70 attenuates the induction of iNOS, which likely occurs through the disruption of NHE1/Hsp70-Ca(2+) -CaMKII/TAK1-NF-κB signals in BV-2 microglia, providing further insight into the functions of Hsp70 in the CNS.

  18. The Predikin webserver: improved prediction of protein kinase peptide specificity using structural information

    PubMed Central

    Saunders, Neil F. W.

    2008-01-01

    The Predikin webserver allows users to predict substrates of protein kinases. The Predikin system is built from three components: a database of protein kinase substrates that links phosphorylation sites with specific protein kinase sequences; a perl module to analyse query protein kinases and a web interface through which users can submit protein kinases for analysis. The Predikin perl module provides methods to (i) locate protein kinase catalytic domains in a sequence, (ii) classify them by type or family, (iii) identify substrate-determining residues, (iv) generate weighted scoring matrices using three different methods, (v) extract putative phosphorylation sites in query substrate sequences and (vi) score phosphorylation sites for a given kinase, using optional filters. The web interface provides user-friendly access to each of these functions and allows users to obtain rapidly a set of predictions that they can export for further analysis. The server is available at http://predikin.biosci.uq.edu.au. PMID:18477637

  19. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  20. Phosphorylation of synaptic GTPase-activating protein (synGAP) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases.

    PubMed

    Walkup, Ward G; Washburn, Lorraine; Sweredoski, Michael J; Carlisle, Holly J; Graham, Robert L; Hess, Sonja; Kennedy, Mary B

    2015-02-20

    synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP's HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Phosphorylation of Synaptic GTPase-activating Protein (synGAP) by Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) and Cyclin-dependent Kinase 5 (CDK5) Alters the Ratio of Its GAP Activity toward Ras and Rap GTPases*

    PubMed Central

    Walkup, Ward G.; Washburn, Lorraine; Sweredoski, Michael J.; Carlisle, Holly J.; Graham, Robert L.; Hess, Sonja; Kennedy, Mary B.

    2015-01-01

    synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP's HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons. PMID:25533468

  2. A major second messenger mediator of Electrophorus electricus electric tissue is CaM kinase II.

    PubMed

    Gotter, A L; Kaetzel, M A; Dedman, J R

    1997-09-01

    Electric tissue of the electric eel, Electrophorus electricus, has been used extensively as a model system for the study of excitable membrane biochemistry and electrophysiology. Membrane receptors, ion channels, and ATPases utilized by electrocytes are conserved in mammalian neurons and myocytes. In this study, we show that Ca2+ predominates as the major mediator of electric tissue phosphorylation relative to cyclic AMP and cyclic GMP-induced phosphorylation. Mastoparan, a calmodulin inhibitor peptide, and a peptide corresponding to the pseudosubstrate region of mammalian calmodulin-dependent protein kinase II (CaMKII (281-302)) attenuated Ca(2+)-dependent phosphorylation in a dose-dependent manner. These experiments demonstrated that calmodulin-dependent protein kinase II activity predominates in electric tissue. The Electrophorus kinase was purified by a novel affinity chromatography procedure utilizing Ca2+/calmodulin-dependent binding to the CaMKII (281-302) peptide coupled to Sepharose. The purified 51 kDa calmodulin-dependent protein kinase II demonstrated extensive autophosphorylation and exhibited a 3- to 4-fold increase in Ca(2+)-independent activity following autophosphorylation. Immunofluorescent localization experiments demonstrated calmodulin to be abundant in electrocytes, particularly subjacent to the plasma membrane. Calmodulin-dependent protein kinase II had a punctate distribution indicating that it may be compartmentalized by association with vesicles or the cytoskeleton. As the primary mediator of phosphorylation within electric tissue, CaM kinase II may be critical for the regulation of the specialized electrophysiological function of electrocytes.

  3. Protein kinase C-associated kinase (PKK), a novel membrane-associated, ankyrin repeat-containing protein kinase.

    PubMed

    Chen, L; Haider, K; Ponda, M; Cariappa, A; Rowitch, D; Pillai, S

    2001-06-15

    A novel murine membrane-associated protein kinase, PKK (protein kinase C-associated kinase), was cloned on the basis of its physical association with protein kinase Cbeta (PKCbeta). The regulated expression of PKK in mouse embryos is consistent with a role for this kinase in early embryogenesis. The human homolog of PKK has over 90% identity to its murine counterpart, has been localized to chromosome 21q22.3, and is identical to the PKCdelta-interacting kinase, DIK (Bahr, C., Rohwer, A., Stempka, L., Rincke, G., Marks, F., and Gschwendt, M. (2000) J. Biol. Chem. 275, 36350-36357). PKK comprises an N-terminal kinase domain and a C-terminal region containing 11 ankyrin repeats. PKK exhibits protein kinase activity in vitro and associates with cellular membranes. PKK exists in three discernible forms at steady state: an underphosphorylated form of 100 kDa; a soluble, cytosolic, phosphorylated form of 110 kDa; and a phosphorylated, detergent-insoluble form of 112 kDa. PKK is initially synthesized as an underphosphorylated soluble 100-kDa protein that is quantitatively converted to a detergent-soluble 110-kDa form. This conversion requires an active catalytic domain. Although PKK physically associates with PKCbeta, it does not phosphorylate this PKC isoform. However, PKK itself may be phosphorylated by PKCbeta. PKK represents a developmentally regulated protein kinase that can associate with membranes. The functional significance of its association with PKCbeta remains to be ascertained.

  4. Dynamics driven allostery in protein kinases

    PubMed Central

    Kornev, Alexandr P.; Taylor, Susan S.

    2015-01-01

    Protein kinases have very dynamic structures and their functionality strongly depends on their dynamic state. Active kinases reveal a dynamic pattern with residues clustering into semirigid communities that move in µs-ms timescale. Previously detected hydrophobic spines serve as connectors between communities. Communities do not follow the traditional subdomain structure of the kinase core or its secondary structure elements. Instead they are organized around main functional units. Integration of the communities depends on the assembly of the hydrophobic spine and phosphorylation of the activation loop. Single mutations can significantly disrupt the dynamic infrastructure and thereby interfere with long distance allosteric signaling that propagates throughout the whole molecule. Dynamics is proposed to be the underlying mechanism for allosteric regulation in protein kinases. PMID:26481499

  5. Copurification of casein kinase II with transcription factor ATF/E4TF3.

    PubMed Central

    Wada, T; Takagi, T; Yamaguchi, Y; Kawase, H; Hiramoto, M; Ferdous, A; Takayama, M; Lee, K A; Hurst, H C; Handa, H

    1996-01-01

    We have developed a simple method to purify sequence-specific DNA-binding proteins directly from crude cell extracts by using DNA affinity latex beads. The method enabled us to purify not only DNA-binding proteins, but also their associated proteins. Using beads bearing the ATF/E4TF3 site from the adenovirus E4 gene promoter, a protein kinase activity was copurified with the ATF/E4TF3 family. We found that the kinase interacted with ATF1 in vitro efficiently. The kinase did not bind directly to DNA. The kinase mainly phosphorylated ATF1 on serine 36, which was one of target amino acids for casein kinase (CK) II. Biological features of the kinase were the same as those of CKII and an anti-CKII serum reacted with the kinase, indicating that the kinase was CKII. Moreover, it was clearly shown that one of CKII subunits, the CKII alpha protein bound to glutathione-S-transferase (GST) fusion ATF1 but not GST in vitro. It has been reported that a specific CKII inhibitor, 5,6-dichloro-1-beta-D-ribo-furanosylbenzimidazole (DRB) inhibits transcription by RNA polymerase II [Zandomeni et al., (1986) J. Biol. Chem. 261, 3414-3419]. Taken together, these results suggest that ATF/E4TF3 may recruit the CKII activity to a transcription initiation machinery and stimulate transcription. PMID:8600455

  6. Using Bacteria to Determine Protein Kinase Specificity and Predict Target Substrates

    PubMed Central

    Lubner, Joshua M.; Church, George M.; Husson, Robert N.; Schwartz, Daniel

    2012-01-01

    The identification of protein kinase targets remains a significant bottleneck for our understanding of signal transduction in normal and diseased cellular states. Kinases recognize their substrates in part through sequence motifs on substrate proteins, which, to date, have most effectively been elucidated using combinatorial peptide library approaches. Here, we present and demonstrate the ProPeL method for easy and accurate discovery of kinase specificity motifs through the use of native bacterial proteomes that serve as in vivo libraries for thousands of simultaneous phosphorylation reactions. Using recombinant kinases expressed in E. coli followed by mass spectrometry, the approach accurately recapitulated the well-established motif preferences of human basophilic (Protein Kinase A) and acidophilic (Casein Kinase II) kinases. These motifs, derived for PKA and CK II using only bacterial sequence data, were then further validated by utilizing them in conjunction with the scan-x software program to computationally predict known human phosphorylation sites with high confidence. PMID:23300758

  7. Oncoprotein protein kinase antibody kit

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  8. Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi.

    PubMed Central

    Ulloa, R M; Mesri, E; Esteva, M; Torres, H N; Téllez-Iñón, M T

    1988-01-01

    A cyclic AMP-dependent protein kinase activity from epimastigote forms of Trypanosoma cruzi was characterized. Cytosolic extracts were chromatographed on DEAE-cellulose columns, giving two peaks of kinase activity, which were eluted at 0.15 M- and 0.32 M-NaCl respectively. The second activity peak was stimulated by nanomolar concentrations of cyclic AMP. In addition, a cyclic AMP-binding protein co-eluted with the second kinase activity peak. Cyclic AMP-dependent protein kinase activity was further purified by gel filtration, affinity chromatography on histone-agarose and cyclic AMP-agarose, as well as by chromatography on CM-Sephadex. The enzyme ('holoenzyme') could be partially dissociated into two different components: 'catalytic' and 'regulatory'. The 'regulatory' component had specific binding for cyclic AMP, and it inhibited phosphotransferase activity of the homologous 'catalytic component' or of the 'catalytic subunit' from bovine heart. Cyclic AMP reversed these inhibitions. A 'holoenzyme preparation' was phosphorylated in the absence of exogenous phosphate acceptor and analysed by polyacrylamide-gel electrophoresis. A 56 kDa band was phosphorylated. The same preparation was analysed by Western blotting, by using polyclonal antibodies to the regulatory subunits of protein kinases type I or II. Both antibodies reacted with the 56 kDa band. Images Fig. 7. Fig. 8. PMID:2848508

  9. Non-degradative Ubiquitination of Protein Kinases

    PubMed Central

    Ball, K. Aurelia; Johnson, Jeffrey R.; Lewinski, Mary K.; Guatelli, John; Verschueren, Erik; Krogan, Nevan J.; Jacobson, Matthew P.

    2016-01-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well. PMID:27253329

  10. Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation

    PubMed Central

    Puri, Pawan; Little-Ihrig, Lynda; Chandran, Uma; Law, Nathan C.; Hunzicker-Dunn, Mary; Zeleznik, Anthony J.

    2016-01-01

    Activation of protein kinase A (PKA) by follicle stimulating hormone (FSH) transduces the signal that drives differentiation of ovarian granulosa cells (GCs). An unresolved question is whether PKA is sufficient to initiate the complex program of GC responses to FSH. We compared signaling pathways and gene expression profiles of GCs stimulated with FSH or expressing PKA-CQR, a constitutively active mutant of PKA. Both FSH and PKA-CQR stimulated the phosphorylation of proteins known to be involved in GC differentiation including CREB, ß-catenin, AKT, p42/44 MAPK, GAB2, GSK-3ß, FOXO1, and YAP. In contrast, FSH stimulated the phosphorylation of p38 MAP kinase but PKA-CQR did not. Microarray analysis revealed that 85% of transcripts that were up-regulated by FSH were increased to a comparable extent by PKA-CQR and of the transcripts that were down-regulated by FSH, 76% were also down-regulated by PKA-CQR. Transcripts regulated similarly by FSH and PKA-CQR are involved in steroidogenesis and differentiation, while transcripts more robustly up-regulated by PKA-CQR are involved in ovulation. Thus, PKA, under the conditions of our experimental approach appears to function as a master upstream kinase that is sufficient to initiate the complex pattern of intracellular signaling pathway and gene expression profiles that accompany GC differentiation. PMID:27324437

  11. Beta2-containing nicotinic acetylcholine receptors mediate calcium/calmodulin-dependent protein kinase-II and synapsin I protein levels in the nucleus accumbens after nicotine withdrawal in mice.

    PubMed

    Jackson, Kia J; Imad Damaj, M

    2013-02-15

    Nicotinic acetylcholine receptors are calcium-permeable and the initial targets for nicotine. Studies suggest that calcium-dependent mechanisms mediate some behavioral responses to nicotine; however, the post-receptor calcium-dependent mechanisms associated with chronic nicotine and nicotine withdrawal remain unclear. The proteins calcium/calmodulin-dependent protein kinase II (CaMKII) and synapsin I are essential for neurotransmitter release and were shown to be involved in drug dependence. In the current study, using pharmacological techniques, we sought to (a) complement previously published behavioral findings from our lab indicating a role for calcium-dependent signaling in nicotine dependence and (b) expand on previously published acute biochemical and pharmacological findings indicating the relevance of calcium-dependent mechanisms in acute nicotine responses by evaluating the function of CaMKII and synapsin I after chronic nicotine and withdrawal in the nucleus accumbens, a brain region implicated in drug dependence. Male mice were chronically infused with nicotine for 14 days, and treated with the β2-selective antagonist dihydro-β-erythroidine (DHβE), or the α7 antagonist, methyllycaconitine citrate (MLA) 20min prior to dissection of the nucleus accumbens. Results show that phosphorylated and total CaMKII and synapsin I protein levels were significantly increased in the nucleus accumbens after chronic nicotine infusion, and reduced after treatment with DHβE, but not MLA. A spontaneous nicotine withdrawal assessment also revealed significant reductions in phosphorylated CaMKII and synapsin I levels 24h after cessation of nicotine treatment. Our findings suggest that post-receptor calcium-dependent mechanisms associated with nicotine withdrawal are mediated through β2-containing nicotinic receptors.

  12. Protein Interacting with C-kinase 1 (PICK1) Binding Promiscuity Relies on Unconventional PSD-95/Discs-Large/ZO-1 Homology (PDZ) Binding Modes for Nonclass II PDZ Ligands*

    PubMed Central

    Erlendsson, Simon; Rathje, Mette; Heidarsson, Pétur O.; Poulsen, Flemming M.; Madsen, Kenneth L.; Teilum, Kaare; Gether, Ulrik

    2014-01-01

    PDZ domain proteins control multiple cellular functions by governing assembly of protein complexes. It remains unknown why individual PDZ domains can bind the extreme C terminus of very diverse binding partners and maintain selectivity. By employing NMR spectroscopy, together with molecular modeling, mutational analysis, and fluorescent polarization binding experiments, we identify here three structural mechanisms explaining why the PDZ domain of PICK1 selectively binds >30 receptors, transporters, and kinases. Class II ligands, including the dopamine transporter, adopt a canonical binding mode with promiscuity obtained via differential packing in the binding groove. Class I ligands, such as protein kinase Cα, depend on residues upstream from the canonical binding sequence that are likely to interact with flexible loop residues of the PDZ domain. Finally, we obtain evidence that the unconventional ligand ASIC1a has a dual binding mode involving a canonical insertion and a noncanonical internal insertion with the two C-terminal residues forming interactions outside the groove. Together with an evolutionary analysis, the data show how unconventional binding modes might evolve for a protein recognition domain to expand the repertoire of functionally important interactions. PMID:25023278

  13. AMP-activated protein kinase--an archetypal protein kinase cascade?

    PubMed

    Hardie, D G; MacKintosh, R W

    1992-10-01

    Mammalian AMP-activated protein kinase is the central component of a protein kinase cascade which inactivates three key enzymes involved in the synthesis or release of free fatty acids and cholesterol inside the cell. The kinase cascade is activated by elevation of AMP, and perhaps also by fatty acid and cholesterol metabolites. The system may fulfil a protective function, preventing damage caused by depletion of ATP or excessive intracellular release of free lipids, a type of stress response. Recent evidence suggests that it may have been in existence for at least a billion years, since a very similar protein kinase cascade is present in higher plants. This system therefore represents an early eukaryotic protein kinase cascade, which is unique in that it is regulated by intracellular metabolites rather than extracellular signals or cell cycle events.

  14. Casein kinase II inhibition induces apoptosis in pancreatic cancer cells.

    PubMed

    Hamacher, Rainer; Saur, Dieter; Fritsch, Ralph; Reichert, Maximilian; Schmid, Roland M; Schneider, Günter

    2007-09-01

    Pancreatic cancer is one of the most common causes of cancer death in western civilization. The five-year survival rate is below 1% and of the 10% of patients with resectable disease only around one-fifth survives 5 years. Survival rates have not changed much during the last 20 years, demonstrating the inefficacy of current available therapies. To improve the prognosis of pancreatic cancer, there is the need to develop effective non-surgical treatment for this disease. The protein kinase casein kinase II (CK2) is a ubiquitously expressed serine-threonine kinase and its activity is enhanced in all human tumors examined so far. The contribution of CK2 to the tumor maintenance of pancreatic cancer has not been investigated. To investigate the function of CK2 in pancreatic cancer cells we used the CK2 specific inhibitors 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole and Apigenin. Furthermore, we interfered with CK2 expression using CK2 specific siRNAs. Interfering with CK2 function led to a reduction of pancreatic cancer cell viability, which was due to caspase-dependent apoptosis. The induction of apoptosis correlated with a reduced NF-kappaB-dependent transcriptional activity. This study validates CK2 as a molecular drug target in a preclinical in vitro model of pancreatic cancer.

  15. Expression and phosphorylation of delta-CaM kinase II in cultured Alzheimer fibroblasts.

    PubMed

    Cavazzin, Chiara; Bonvicini, Cristian; Nocera, Annachiara; Racchi, Marco; Kasahara, Jiro; Tardito, Daniela; Gennarelli, Massimo; Govoni, Stefano; Racagni, Giorgio; Popoli, Maurizio

    2004-10-01

    Dysregulation of calcium homeostasis is among the major cellular alterations in Alzheimer's disease (AD). We studied Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II), one of the major effectors regulating neuronal responses to changes in calcium fluxes, in cultured skin fibroblasts from subjects with sporadic AD. We found, by using PCR and Western analysis, that human fibroblasts express the delta-isoform of this kinase, and that CaM kinase II is the major Ca(2+)/calmodulin-dependent kinase in these cells. Protein expression level of the kinase was not significantly different in AD fibroblasts. However, the total activity of the kinase (stimulated by Ca(2+)/calmodulin) was significantly reduced in AD cell lines, whereas Ca(2+)-independent activity was significantly enhanced. The percent autonomy of the kinase (%Ca(2+)-independent/Ca(2+)-dependent activity) in AD cell lines was 62.8%, three-fold the corresponding percentage in control fibroblasts. The abnormal calcium-independent activity was not due to enhanced basal autophosphorylation of Thr(287). The observed abnormalities, if present in brain tissue, may be implicated either in dysfunction of neuroplasticity and cognitive functions or in dysregulation of cell cycle.

  16. Synthetic phosphorylation of p38α recapitulates protein kinase activity.

    PubMed

    Chooi, K Phin; Galan, Sébastien R G; Raj, Ritu; McCullagh, James; Mohammed, Shabaz; Jones, Lyn H; Davis, Benjamin G

    2014-02-05

    Through a "tag-and-modify" protein chemical modification strategy, we site-selectively phosphorylated the activation loop of protein kinase p38α. Phosphorylation at natural (180) and unnatural (172) sites created two pure phospho-forms. p38α bearing only a single phosphocysteine (pCys) as a mimic of pThr at 180 was sufficient to switch the kinase to an active state, capable of processing natural protein substrate ATF2; 172 site phosphorylation did not. In this way, we chemically recapitulated triggering of a relevant segment of the MAPK-signaling pathway in vitro. This allowed detailed kinetic analysis of global and stoichiometric phosphorylation events catalyzed by p38α and revealed that site 180 is a sufficient activator alone and engenders dominant mono-phosphorylation activity. Moreover, a survey of kinase inhibition using inhibitors with different (Type I/II) modes (including therapeutically relevant) revealed unambiguously that Type II inhibitors inhibit phosphorylated p38α and allowed discovery of a predictive kinetic analysis based on cooperativity to distinguish Type I vs II.

  17. Regulation of the activity of protein kinases by endogenous heat stable protein inhibitors.

    PubMed

    Szmigielski, A

    1985-01-01

    Protein kinase activities are regulated by endogenous thermostable protein inhibitors. Type I inhibitor is a protein of MW 22,000-24,000 which inhibits specifically cyclic AMP-(cAMP) dependent protein kinase (APK) as a competitive inhibitor of catalytic subunits of the enzyme. Type I inhibitor activity changes inversely according to the activation of adenylate cyclase and the changes in cAMP content in tissues. It seems that type I inhibitor serves as a factor preventing spontaneous cAMP-dependent phosphorylation in unstimulated cell. The other thermostable protein which inhibits APK activity has been found in Sertoli cell-enriched testis (testis inhibitor). Physiological role of the testis inhibitor is unknown. Type II inhibitor is a protein of MW 15,000 which blocks phosphorylation mediated by cAMP and cyclic GMP (cGMP) dependent (APK and GPK) and cyclic nucleotide independent protein kinases as a competitive inhibitor of substrate proteins. Activity of this inhibitor specifically changes in reciprocal manner to the changes in cGMP content. It seems that type II inhibitor serves as a factor preventing the phosphorylation catalyzed by GPK when cGMP content is low. Stimulation of guanylate cyclase and activation of GPK is followed by a decrease of type II inhibitor activity. This change in relationship between activities of GPK and type II inhibitor allows for effective phosphorylation catalyzed by this enzyme when cGMP content is increased.

  18. Problem-Solving Test: "In Vitro" Protein Kinase A Reaction

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Phosphorylation of proteins by protein kinases is an important mechanism in the regulation of protein activity. Among hundreds of protein kinases present in human cells, PKA, the first kinase discovered, belongs to the most important and best characterized group of these enzymes. The author presents an experiment that analyzes the "in vitro"…

  19. Problem-Solving Test: "In Vitro" Protein Kinase A Reaction

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Phosphorylation of proteins by protein kinases is an important mechanism in the regulation of protein activity. Among hundreds of protein kinases present in human cells, PKA, the first kinase discovered, belongs to the most important and best characterized group of these enzymes. The author presents an experiment that analyzes the "in vitro"…

  20. Regulation of protein kinase C by the cytoskeletal protein calponin.

    PubMed

    Leinweber, B; Parissenti, A M; Gallant, C; Gangopadhyay, S S; Kirwan-Rhude, A; Leavis, P C; Morgan, K G

    2000-12-22

    Previous studies from this laboratory have shown that, upon agonist activation, calponin co-immunoprecipitates and co-localizes with protein kinase Cepsilon (PKCepsilon) in vascular smooth muscle cells. In the present study we demonstrate that calponin binds directly to the regulatory domain of PKC both in overlay assays and, under native conditions, by sedimentation with lipid vesicles. Calponin was found to bind to the C2 region of both PKCepsilon and PKCalpha with possible involvement of C1B. The C2 region of PKCepsilon binds to the calponin repeats with a requirement for the region between amino acids 160 and 182. We have also found that calponin can directly activate PKC autophosphorylation. By using anti-phosphoantibodies to residue Ser-660 of PKCbetaII, we found that calponin, in a lipid-independent manner, increased auto-phosphorylation of PKCalpha, -epsilon, and -betaII severalfold compared with control conditions. Similarly, calponin was found to increase the amount of (32)P-labeled phosphate incorporated into PKC from [gamma-(32)P]ATP. We also observed that calponin addition strongly increased the incorporation of radiolabeled phosphate into an exogenous PKC peptide substrate, suggesting an activation of enzyme activity. Thus, these results raise the possibility that calponin may function in smooth muscle to regulate PKC activity by facilitating the phosphorylation of PKC.

  1. Phase II study of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C alpha, in patients with previously treated low-grade non-Hodgkin's lymphoma.

    PubMed

    Rao, S; Watkins, D; Cunningham, D; Dunlop, D; Johnson, P; Selby, P; Hancock, B W; Fegan, C; Culligan, D; Schey, S; Morris, T C M; Lissitchkov, T; Oliver, J W; Holmlund, J T

    2004-09-01

    The purpose of this study was to assess the efficacy and safety of ISIS 3521, an antisense phosphorothioate oligonucleotide to protein kinase C alpha in patients with relapsed low-grade non-Hodgkin's lymphoma (NHL). Twenty-six patients received ISIS 3521 (2 mg/kg/day) as a continuous infusion over 21 days of each 28-day cycle. The median age of the patients was 53 years (range 37-77). Histological subtypes were low-grade follicular lymphoma (n = 22) and B-cell small lymphocytic lymphoma (n = 4). Twenty-one (81%) had stage III/IV disease. The median number of previous lines of chemotherapy was two (range one to six). A total of 87 cycles of ISIS 3521 were administered. Twenty-three patients were assessable for response. Three patients achieved a partial response. No complete responses were observed. Ten patients had stable disease. Grade 3-4 toxicity was as follows: neutropenia (3.8%) and thrombocytopenia (26.9%). ISIS 3521 has demonstrated anti-tumour activity in patients with relapsed low-grade NHL. There may be a potential role for this agent in combination with conventional chemotherapy for advanced low-grade lymphoma, and further trials are warranted.

  2. Mycobacterium tuberculosis Serine/Threonine Protein Kinases

    PubMed Central

    PRISIC, SLADJANA; HUSSON, ROBERT N.

    2014-01-01

    The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs). A similar number of two-component systems are also present, indicating that these two signal transduction mechanisms are both important in the adaptation of this bacterial pathogen to its environment. The M. tuberculosis phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins that participate in all aspects of M. tuberculosis biology, supporting a critical role for the STPKs in regulating M. tuberculosis physiology. Nine of the STPKs are receptor type kinases, with an extracytoplasmic sensor domain and an intracellular kinase domain, indicating that these kinases transduce external signals. Two other STPKs are cytoplasmic and have regulatory domains that sense changes within the cell. Structural analysis of some of the STPKs has led to advances in our understanding of the mechanisms by which these STPKs are activated and regulated. Functional analysis has provided insights into the effects of phosphorylation on the activity of several proteins, but for most phosphoproteins the role of phosphorylation in regulating function is unknown. Major future challenges include characterizing the functional effects of phosphorylation for this large number of phosphoproteins, identifying the cognate STPKs for these phosphoproteins, and determining the signals that the STPKs sense. Ultimately, combining these STPK-regulated processes into larger, integrated regulatory networks will provide deeper insight into M. tuberculosis adaptive mechanisms that contribute to tuberculosis pathogenesis. Finally, the STPKs offer attractive targets for inhibitor development that may lead to new therapies for drug-susceptible and drug-resistant tuberculosis. PMID:25429354

  3. A retroviral-derived peptide phosphorylates protein kinase D/protein kinase Cmu involving phospholipase C and protein kinase C.

    PubMed

    Luangwedchakarn, Voravich; Day, Noorbibi K; Hitchcock, Remi; Brown, Pam G; Lerner, Danica L; Rucker, Rajivi P; Cianciolo, George J; Good, Robert A; Haraguchi, Soichi

    2003-05-01

    CKS-17, a synthetic peptide representing a unique amino acid motif which is highly conserved in retroviral transmembrane proteins and other immunoregulatory proteins, induces selective immunomodulatory functions, both in vitro and in vivo, and activates intracellular signaling molecules such as cAMP and extracellular signal-regulated kinases. In the present study, using Jurkat T-cells, we report that CKS-17 phosphorylates protein kinase D (PKD)/protein kinase C (PKC) mu. Total cell extracts from CKS-17-stimulated Jurkat cells were immunoblotted with an anti-phospho-PKCmu antibody. The results show that CKS-17 significantly phosphorylates PKD/PKCmu in a dose- and time-dependent manner. Treatment of cells with the PKC inhibitors GF 109203X and Ro 31-8220, which do not act directly on PKD/PKCmu, attenuates CKS-17-induced phosphorylation of PKD/PKCmu. In contrast, the selective protein kinase A inhibitor H-89 does not reverse the action of CKS-17. Furthermore, a phospholipase C (PLC) selective inhibitor, U-73122, completely blocks the phosphorylation of PKD/PKCmu by CKS-17 while a negative control U-73343 does not. In addition, substitution of lysine for arginine residues in the CKS-17 sequence completely abrogates the ability of CKS-17 to phosphorylate PKD/PKCmu. These results clearly indicate that CKS-17 phosphorylates PKD/PKCmu through a PLC- and PKC-dependent mechanism and that arginine residues play an essential role in this activity of CKS-17, presenting a novel modality of the retroviral peptide CKS-17 and molecular interaction of this compound with target cells.

  4. Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress.

    PubMed

    Kumar, Kundan; Rao, Kudupudi Prabhakara; Sharma, Pallavi; Sinha, Alok Krishna

    2008-10-01

    Mitogen activated protein kinase cascade plays a crucial role in various biotic and abiotic stresses, hormones, cell division and developmental processes. MAP kinase kinase being integral part of this cascade performs an important function of integrating upstream signals to mitogen activated protein kinase for further appropriate cellular responses. We here report cloning of five MAP kinase kinase members from Oryza sativa indica cultivar var. Pusa Basmati 1, namely MAP kinase kinases 1, 3, 4, 6 and 10-2. All these members, except MKK10-2 possess fully canonical motif structures of MAP kinase kinase. The deduced amino acid sequence showed changes at certain position within japonica and indica variety of rice. Analysis of transcript regulation by quantitative real time PCR revealed that these five members are differentially regulated by cold, heat, salinity and drought stresses. MAP kinase kinases 4 and 6 are strongly regulated by cold and salt stresses while MAP kinase kinase 1 is regulated by salt and drought stresses. MAP kinase kinase 10-2 is regulated only by cold stress. The study provides the indication of involvement of specific MAP kinase kinase in different abiotic stress signaling and also possible cross talks that exist during the signaling processes.

  5. Crystal Structure of the Protein Kinase Domain of Yeast AMP-Activated Protein Kinase Snf1

    SciTech Connect

    Rudolph,M.; Amodeo, G.; Bai, Y.; Tong, L.

    2005-01-01

    AMP-activated protein kinase (AMPK) is a master metabolic regulator, and is an important target for drug development against diabetes, obesity, and other diseases. AMPK is a hetero-trimeric enzyme, with a catalytic ({alpha}) subunit, and two regulatory ({beta} and {gamma}) subunits. Here we report the crystal structure at 2.2 Angstrom resolution of the protein kinase domain (KD) of the catalytic subunit of yeast AMPK (commonly known as SNF1). The Snf1-KD structure shares strong similarity to other protein kinases, with a small N-terminal lobe and a large C-terminal lobe. Two negative surface patches in the structure may be important for the recognition of the substrates of this kinase.

  6. Chronic opioids regulate KATP channel subunit Kir6.2 and carbonic anhydrase I and II expression in rat adrenal chromaffin cells via HIF-2α and protein kinase A

    PubMed Central

    Salman, Shaima; Holloway, Alison C.

    2014-01-01

    At birth, asphyxial stressors such as hypoxia and hypercapnia are important physiological stimuli for adrenal catecholamine release that is critical for the proper transition to extrauterine life. We recently showed that chronic opioids blunt chemosensitivity of neonatal rat adrenomedullary chromaffin cells (AMCs) to hypoxia and hypercapnia. This blunting was attributable to increased ATP-sensitive K+ (KATP) channel and decreased carbonic anhydrase (CA) I and II expression, respectively, and involved μ- and δ-opioid receptor signaling pathways. To address underlying molecular mechanisms, we first exposed an O2- and CO2-sensitive, immortalized rat chromaffin cell line (MAH cells) to combined μ {[d-Arg2,Ly4]dermorphin-(1–4)-amide}- and δ ([d-Pen2,5,P-Cl-Phe4]enkephalin)-opioid agonists (2 μM) for ∼7 days. Western blot and quantitative real-time PCR analysis revealed that chronic opioids increased KATP channel subunit Kir6.2 and decreased CAII expression; both effects were blocked by naloxone and were absent in hypoxia-inducible factor (HIF)-2α-deficient MAH cells. Chronic opioids also stimulated HIF-2α accumulation along a time course similar to Kir6.2. Chromatin immunoprecipitation assays on opioid-treated cells revealed the binding of HIF-2α to a hypoxia response element in the promoter region of the Kir6.2 gene. The opioid-induced regulation of Kir6.2 and CAII was dependent on protein kinase A, but not protein kinase C or calmodulin kinase, activity. Interestingly, a similar pattern of HIF-2α, Kir6.2, and CAII regulation (including downregulation of CAI) was replicated in chromaffin tissue obtained from rat pups born to dams exposed to morphine throughout gestation. Collectively, these data reveal novel mechanisms by which chronic opioids blunt asphyxial chemosensitivity in AMCs, thereby contributing to abnormal arousal responses in the offspring of opiate-addicted mothers. PMID:24898587

  7. A-kinase Anchoring Protein 79/150 Recruits Protein Kinase C to Phosphorylate Roundabout Receptors.

    PubMed

    Samelson, Bret K; Gore, Bryan B; Whiting, Jennifer L; Nygren, Patrick J; Purkey, Alicia M; Colledge, Marcie; Langeberg, Lorene K; Dell'Acqua, Mark L; Zweifel, Larry S; Scott, John D

    2015-05-29

    Anchoring proteins direct protein kinases and phosphoprotein phosphatases toward selected substrates to control the efficacy, context, and duration of neuronal phosphorylation events. The A-kinase anchoring protein AKAP79/150 interacts with protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (calcineurin) to modulate second messenger signaling events. In a mass spectrometry-based screen for additional AKAP79/150 binding partners, we have identified the Roundabout axonal guidance receptor Robo2 and its ligands Slit2 and Slit3. Biochemical and cellular approaches confirm that a linear sequence located in the cytoplasmic tail of Robo2 (residues 991-1070) interfaces directly with sites on the anchoring protein. Parallel studies show that AKAP79/150 interacts with the Robo3 receptor in a similar manner. Immunofluorescent staining detects overlapping expression patterns for murine AKAP150, Robo2, and Robo3 in a variety of brain regions, including hippocampal region CA1 and the islands of Calleja. In vitro kinase assays, peptide spot array mapping, and proximity ligation assay staining approaches establish that human AKAP79-anchored PKC selectively phosphorylates the Robo3.1 receptor subtype on serine 1330. These findings imply that anchored PKC locally modulates the phosphorylation status of Robo3.1 in brain regions governing learning and memory and reward. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Administration of a Ca-super(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor prevents the learning deficit observed in spinal rats after noncontingent shock administration.

    PubMed

    Baumbauer, Kyle M; Young, Erin E; Hoy, Kevin C; Abood, Athena; Joynes, Robin L

    2007-06-01

    Research has shown that spinal rats given shock to the hind leg when it is in an extended position (contingent shock) will learn to maintain a flexion response. However, subjects that experience shock irrespective of leg position (noncontingent shock) do not exhibit this learning. The current studies examined the role of Ca-super(2+)/calmodulin-dependent protein kinase II (CaMKII) in this learning deficit. Subjects were given intrathecal injections of CaMKII inhibitor solution or artificial cerebrospinal fluid (aCSF) 15 min prior to and immediately or 4 hr following noncontingent shock training. Results demonstrate that the CaMKII inhibitor successfully reversed the learning deficit when injected prior to and immediately following training. These results indicate the importance of CaMKII in the learning deficit present in spinal animals trained with noncontingent shock. Copyright (c) 2007 APA, all rights reserved.

  9. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.

    PubMed

    Haberny, S L; Carr, K D

    2005-01-01

    Biological drive states exert homeostatic control in part by increasing the reinforcing effects of environmental incentive stimuli. An apparent by-product of this adaptive response is the enhanced acquisition of drug self-administration behavior in food-restricted (FR) animals. While previous research has demonstrated increased central sensitivity to rewarding effects of abused drugs and direct dopamine (DA) receptor agonists in FR subjects, the underlying neurobiology is not well understood. Recently, it was demonstrated that intracerebroventricular (i.c.v.) injection of the D-1 DA receptor agonist, SKF-82958 produces a stronger activation of striatal extracellular signal-regulated kinase (ERK) 1/2 and cyclic AMP response element-binding protein (CREB) in FR relative to ad libitum (AL) fed rats. The main purpose of the present study was to characterize the involvement and mechanisms of interaction between NMDA receptor function and the augmented cellular responses to D-1 DA receptor stimulation in nucleus accumbens (NAc) of FR rats. In experiment 1, Western immunoblotting was used to demonstrate that i.c.v. injection of SKF-82958 (20 microg) produces greater phosphorylation of the NMDA NR1 subunit and calcium-calmodulin kinase II (CaMK II) in NAc of FR as compared with AL rats. In experiment 2, pretreatment of subjects with the NMDA antagonist, MK-801 (1.0 mg/kg, i.p.) decreased SKF-82958-induced activation of CaMK II, ERK1/2 and CREB, and reversed the augmenting effect of FR on activation of all three proteins. In experiment 3, pretreatment with the mitogen-activated protein kinase/ERK kinase inhibitor SL-327 (60 mg/kg, i.p.) suppressed SKF-82958- induced activation of ERK1/2 and reversed the augmenting effect of FR on CREB activation. These results point to specific neuroadaptations in the NAc of FR rats whereby D-1 DA receptor stimulation leads to increased NMDA NR1 subunit phosphorylation and consequent increases in NMDA receptor-dependent CaMK II and ERK1

  10. Type-II Kinase Inhibitor Docking, Screening, and Profiling Using Modified Structures of Active Kinase States

    PubMed Central

    Kufareva, Irina; Abagyan, Ruben

    2009-01-01

    Type-II kinase inhibitors represent a class of chemicals that trap their target kinases in an inactive, so-called DFG-out, state, occupying a hydrophobic pocket adjacent to the ATP binding site. These compounds are often more specific than those targeting active, DFG-in, kinase conformations. Unfortunately, the discovery of novel type-II scaffolds presents a considerable challenge, partly because the lack of compatible kinase structures makes structure-based methods inapplicable. We present a computational protocol for converting multiple available DFG-in structures of various kinases (∼70% of mammalian structural kinome) into accurate and specific models of their type-II-bound state. The models, described as Deletion-Of-Loop asp-PHe-gly-IN (DOLPHIN) kinase models, demonstrate exceptional performance in various inhibitor discovery applications, including compound pose prediction, screening, and in silico activity profiling. Given the abundance of the DFG-in structures, the presented approach opens possibilities for kinome-wide discovery of specific molecules targeting inactive kinase states. PMID:19053777

  11. Protein Kinase C Isozyme in Mammary Carcinogenesis.

    DTIC Science & Technology

    1996-10-01

    11 A B Clone 72 Clone 34 AKAP 86 Clone 35H CInn 72 lonn 4 P 95 lone 351 9. 5J 4.4- 688 431 Clone 45 Clone 35F Clone 64 Annexln 1 Clone 45 Clone 35F...purified antibodies directed against a variety of PKC substrates and an A-kinase anchoring protein, AKAP 95. (B) PolyA+ mRNAs isolated from confluent cell

  12. Spk1, a new kinase from Saccharomyces cerevisiae, phosphorylates proteins on serine, threonine, and tyrosine.

    PubMed

    Stern, D F; Zheng, P; Beidler, D R; Zerillo, C

    1991-02-01

    A Saccharomyces cerevisiae lambda gt11 library was screened with antiphosphotyrosine antibodies in an attempt to identify a gene encoding a tyrosine kinase. A subclone derived from one positive phage was sequenced and found to contain an 821-amino-acid open reading frame that encodes a protein with homology to protein kinases. We tested the activity of the putative kinase by constructing a vector encoding a glutathione-S-transferase fusion protein containing most of the predicted polypeptide. The fusion protein phosphorylated endogenous substrates and enolase primarily on serine and threonine. The gene was designated SPK1 for serine-protein kinase. Expression of the Spk1 fusion protein in bacteria stimulated serine, threonine, and tyrosine phosphorylation of bacterial proteins. These results, combined with the antiphosphotyrosine immunoreactivity induced by the kinase, indicate that Spk1 is capable of phosphorylating tyrosine as well as phosphorylating serine and threonine. In in vitro assays, the fusion protein kinase phosphorylated the synthetic substrate poly(Glu/Tyr) on tyrosine, but the activity was weak compared with serine and threonine phosphorylation of other substrates. To determine if other serine/threonine kinases would phosphorylate poly(Glu/Tyr), we tested calcium/calmodulin-dependent protein kinase II and the catalytic subunit of cyclic AMP-dependent protein kinase. The two kinases had similar tyrosine-phosphorylating activities. These results establish that the functional difference between serine/threonine- and tyrosine-protein kinases is not absolute and suggest that there may be physiological circumstances in which tyrosine phosphorylation is mediated by serine/threonine kinases.

  13. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms.

    PubMed

    Fujiwara, Yuya; Kawaguchi, Yoshinori; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2016-06-24

    Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKβ phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 μm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKβ chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKβ/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα.

  14. MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase.

    PubMed Central

    Nakielny, S; Cohen, P; Wu, J; Sturgill, T

    1992-01-01

    A 'MAP kinase activator' was purified several thousand-fold from insulin-stimulated rabbit skeletal muscle, which resembled the 'activator' from nerve growth factor-stimulated PC12 cells in that it could be inactivated by incubation with protein phosphatase 2A, but not by protein tyrosine phosphatases and its apparent molecular mass was 45-50 kDa. In the presence of MgATP, 'MAP kinase activator' converted the normal 'wild-type' 42 kDa MAP kinase from an inactive dephosphorylated form to the fully active diphosphorylated species. Phosphorylation occurred on the same threonine and tyrosine residues which are phosphorylated in vivo in response to growth factors or phorbol esters. A mutant MAP kinase produced by changing a lysine at the active centre to arginine was phosphorylated in an identical manner by the 'MAP kinase activator', but no activity was generated. The results demonstrate that 'MAP kinase activator' is a protein kinase (MAP kinase kinase) and not a protein that stimulates the autophosphorylation of MAP kinase. MAP kinase kinase is the first established example of a protein kinase that can phosphorylate an exogenous protein on threonine as well as tyrosine residues. Images PMID:1318193

  15. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2).

    PubMed

    Anderson, David R; Meyers, Marvin J; Vernier, William F; Mahoney, Matthew W; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Schindler, John F; Reitz, David B; Mourey, Robert J

    2007-05-31

    A new class of potent kinase inhibitors selective for mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK-2) for the treatment of rheumatoid arthritis has been prepared and evaluated. These inhibitors have IC50 values as low as 10 nM against the target and have good selectivity profiles against a number of kinases including CDK2, ERK, JNK, and p38. These MK-2 inhibitors have been shown to suppress TNFalpha production in U397 cells and to be efficacious in an acute inflammation model. The structure-activity relationships of this series, the selectivity for MK-2 and their activity in both in vitro and in vivo models are discussed. The observed selectivity is discussed with the aid of an MK-2/inhibitor crystal structure.

  16. Protein kinase activity of the insulin receptor.

    PubMed Central

    Gammeltoft, S; Van Obberghen, E

    1986-01-01

    exogenous protein and peptide substrates on tyrosine residues, a reaction which is insulin-sensitive, Mn2+-dependent and specific for ATP. Tyrosine phosphorylation of the beta-subunit activates receptor kinase activity, and dephosphorylation with alkaline phosphatase deactivates the kinase. In intact cells or impure receptor preparations, a serine kinase is also activated by insulin. The cellular role of two kinase activities associated with the insulin receptor is not known, but we propose that the tyrosine- and serine-specific kinases mediate insulin actions on metabolism and growth either through dual-signalling or sequential pathways.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 3. Fig. 5. PMID:3017297

  17. Kinase Pathway Database: An Integrated Protein-Kinase and NLP-Based Protein-Interaction Resource

    PubMed Central

    Koike, Asako; Kobayashi, Yoshiyuki; Takagi, Toshihisa

    2003-01-01

    Protein kinases play a crucial role in the regulation of cellular functions. Various kinds of information about these molecules are important for understanding signaling pathways and organism characteristics. We have developed the Kinase Pathway Database, an integrated database involving major completely sequenced eukaryotes. It contains the classification of protein kinases and their functional conservation, ortholog tables among species, protein–protein, protein–gene, and protein–compound interaction data, domain information, and structural information. It also provides an automatic pathway graphic image interface. The protein, gene, and compound interactions are automatically extracted from abstracts for all genes and proteins by natural-language processing (NLP).The method of automatic extraction uses phrase patterns and the GENA protein, gene, and compound name dictionary, which was developed by our group. With this database, pathways are easily compared among species using data with more than 47,000 protein interactions and protein kinase ortholog tables. The database is available for querying and browsing at http://kinasedb.ontology.ims.u-tokyo.ac.jp/. PMID:12799355

  18. Specific interactions among transmembrane 4 superfamily (TM4SF) proteins and phosphoinositide 4-kinase.

    PubMed Central

    Yauch, R L; Hemler, M E

    2000-01-01

    In earlier work we established that phosphoinositide 4-kinase (PI 4-kinase) may associate with transmembrane 4 superfamily (TM4SF, tetraspanin) proteins, but critical specificity issues were not addressed. Here we demonstrate that at least five different TM4SF proteins (CD9, CD63, CD81, CD151 and A15/TALLA1) can associate with a similar or identical 55 kDa type II PI 4-kinase. These associations were specific, since we found no evidence for other phosphoinositide kinases (e.g. phosphoinositide 3-kinase and phosphoinositide-4-phosphate 5-kinase) associating with TM4SF proteins, and many other TM4SF proteins (including CD82 and CD53) did not associate with PI 4-kinase. CD63-PI 4-kinase complexes were almost entirely intracellular, and thus are distinct from other TM4SF-PI 4-kinase complexes (e.g. involving CD9), which are largely located in the plasma membrane. These results suggest that a specific subset of TM4SF proteins may recruit PI 4-kinase to specific membrane locations, and thereby influence phosphoinositide-dependent signalling. PMID:11042117

  19. Protein Scaffolds in MAP Kinase Signalling

    PubMed Central

    Brown, Matthew D.; Sacks, David B.

    2009-01-01

    The mitogen-activated protein kinase (MAPK) pathway allows cells to interpret external signals and respond in an appropriate way. Diverse cellular functions, ranging from differentiation and proliferation to migration and inflammation, are regulated by MAPK signalling. Therefore, cells have developed mechanisms by which this single pathway modulates numerous cellular responses from a wide range of activating factors. This specificity is achieved by several mechanisms, including temporal and spatial control of MAPK signalling components. Key to this control are protein scaffolds, which are multidomain proteins that interact with components of the MAPK cascade in order to assemble signalling complexes. Studies conducted on different scaffolds, in different biological systems, have shown that scaffolds exert substantial control over MAPK signalling, influencing the signal intensity, time course and, importantly, the cellular responses. Protein scaffolds, therefore, are integral elements in the modulation of the MAPK network in fundamental physiological processes. PMID:19091303

  20. Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Is Critical for Lymphatic Vascular Development and Function

    PubMed Central

    Guo, Chang-An; Danai, Laura V.; Yawe, Joseph C.; Gujja, Sharvari; Edwards, Yvonne J. K.

    2016-01-01

    The molecular mechanisms underlying lymphatic vascular development and function are not well understood. Recent studies have suggested a role for endothelial cell (EC) mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) in developmental angiogenesis and atherosclerosis. Here, we show that constitutive loss of EC Map4k4 in mice causes postnatal lethality due to chylothorax, suggesting that Map4k4 is required for normal lymphatic vascular function. Mice constitutively lacking EC Map4k4 displayed dilated lymphatic capillaries, insufficient lymphatic valves, and impaired lymphatic flow; furthermore, primary ECs derived from these animals displayed enhanced proliferation compared with controls. Yeast 2-hybrid analyses identified the Ras GTPase-activating protein Rasa1, a known regulator of lymphatic development and lymphatic endothelial cell fate, as a direct interacting partner for Map4k4. Map4k4 silencing in ECs enhanced basal Ras and extracellular signal-regulated kinase (Erk) activities, and primary ECs lacking Map4k4 displayed enhanced lymphatic EC marker expression. Taken together, these results reveal that EC Map4k4 is critical for lymphatic vascular development by regulating EC quiescence and lymphatic EC fate. PMID:27044870

  1. Glycogen Synthase Kinase 3β Interaction Protein Functions as an A-kinase Anchoring Protein*

    PubMed Central

    Hundsrucker, Christian; Skroblin, Philipp; Christian, Frank; Zenn, Hans-Michael; Popara, Viola; Joshi, Mangesh; Eichhorst, Jenny; Wiesner, Burkhard; Herberg, Friedrich W.; Reif, Bernd; Rosenthal, Walter; Klussmann, Enno

    2010-01-01

    A-kinase anchoring proteins (AKAPs) include a family of scaffolding proteins that target protein kinase A (PKA) and other signaling proteins to cellular compartments and thereby confine the activities of the associated proteins to distinct regions within cells. AKAPs bind PKA directly. The interaction is mediated by the dimerization and docking domain of regulatory subunits of PKA and the PKA-binding domain of AKAPs. Analysis of the interactions between the dimerization and docking domain and various PKA-binding domains yielded a generalized motif allowing the identification of AKAPs. Our bioinformatics and peptide array screening approaches based on this signature motif identified GSKIP (glycogen synthase kinase 3β interaction protein) as an AKAP. GSKIP directly interacts with PKA and GSK3β (glycogen synthase kinase 3β). It is widely expressed and facilitates phosphorylation and thus inactivation of GSK3β by PKA. GSKIP contains the evolutionarily conserved domain of unknown function 727. We show here that this domain of GSKIP and its vertebrate orthologues binds both PKA and GSK3β and thereby provides a mechanism for the integration of PKA and GSK3β signaling pathways. PMID:20007971

  2. Phosphorylation of DNA topoisomerase II by casein kinase II: modulation of eukaryotic topoisomerase II activity in vitro.

    PubMed Central

    Ackerman, P; Glover, C V; Osheroff, N

    1985-01-01

    The phosphorylation of Drosophila melanogaster DNA topoisomerase II by purified casein kinase II was characterized in vitro. Under the conditions used, the kinase incorporated a maximum of 2-3 molecules of phosphate per homodimer of topoisomerase II. No autophosphorylation of the topoisomerase was observed. The only amino acid residue modified by casein kinase II was serine. Apparent Km and Vmax values for the phosphorylation reaction were 0.4 microM topoisomerase II and 3.3 mumol of phosphate incorporated per min per mg of kinase, respectively. Phosphorylation stimulated the DNA relaxation activity of topoisomerase II by 3-fold over that of the dephosphorylated enzyme, and the effects of modification could be reversed by treatment with alkaline phosphatase. Therefore, this study demonstrates that post-translational enzymatic modifications can be used to modulate the interaction between topoisomerase II and DNA. Images PMID:2987912

  3. Photoinduced structural changes to protein kinase A

    NASA Astrophysics Data System (ADS)

    Rozinek, Sarah C.; Thomas, Robert J.; Brancaleon, Lorenzo

    2014-03-01

    The importance of porphyrins in organisms is underscored by the ubiquitous biological and biochemical functions that are mediated by these compounds and by their potential biomedical and biotechnological applications. Protoporphyrin IX (PPIX) is the precursor to heme and has biomedical applications such as its use as a photosensitizer in phototherapy and photodetection of cancer. Among other applications, our group has demonstrated that low-irradiance exposure to laser irradiation of PPIX, Fe-PPIX, or meso-tetrakis (4-sulfonatophenyl) porphyrin (TSPP) non-covalently docked to a protein causes conformational changes in the polypeptide. Such approach can have remarkable consequences in the study of protein structure/function relationship and can be used to prompt non-native protein properties. Therefore we have investigated protein kinase A (PKA), a more relevant protein model towards the photo-treatment of cancer. PKA's enzymatic functions are regulated by the presence of cyclic adenosine monophosphate for intracellular signal transduction involved in, among other things, stimulation of transcription, tumorigenesis in Carney complex and migration of breast carcinoma cells. Since phosphorylation is a necessary step in some cancers and inflammatory diseases, inhibiting the protein kinase, and therefore phosphorylation, may serve to treat these diseases. Changes in absorption, steady-state fluorescence, and fluorescence lifetime indicate: 1) both TSPP and PPIX non-covalently bind to PKA where they maintain photoreactivity; 2) absorptive photoproduct formation occurs only when PKA is bound to TSPP and irradiated; and 3) PKA undergoes secondary structural changes after irradiation with either porphyrin bound. These photoinduced changes could affect the protein's enzymatic and signaling capabilities.

  4. Protein Kinases in Mammary Gland Development and Carcinogenesis

    DTIC Science & Technology

    1999-09-01

    differ among CaM kinase family members include their subcellular localization , regulation by autophosphorylation, and regulation by other proteins. In...addition, CaM kinases have unique amino- and carboxyl- terminal domains that contribute to kinase-specific differences in subcellular localization ...chromosomal localization of Punc, a calcium/calmodulin-dependent protein kinase, (Submitted). 14. Hennings, H., Glick, A., Lowry, D., Krsmanovic, L

  5. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179.

    PubMed

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-07-12

    Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser(1179)) in a time-dependent manner (up to 40min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca(2+) levels. Treatment with KN-93, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. This study suggests that FIR radiation increases NO production via increasing CaMKII-mediated eNOS-Ser(1179) phosphorylation but TRPV channels may not be involved in this pathway. Our results may provide the molecular mechanism by which FIR radiation improves endothelial function.

  6. Isoenzyme-specific regulation of cardiac Kv1.5/Kvβ1.2 ion channel complex by protein kinase C: central role of PKCβII.

    PubMed

    Fischer, Fathima; Vonderlin, Nadine; Seyler, Claudia; Zitron, Edgar; Korkmaz, Sevil; Szabó, Gábor; Thomas, Dierk; Katus, Hugo A; Scholz, Eberhard P

    2014-05-01

    The ultrarapidly activating delayed rectifier current, I(Kur), is a main determinant of atrial repolarization in humans. I(Kur) and the underlying ion channel complex Kv1.5/Kvβ1.2 are negatively regulated by protein kinase C. However, the exact mode of action is only incompletely understood. We therefore analyzed isoenzyme-specific regulation of the Kv1.5/Kvβ1.2 ion channel complex by PKC. Cloned ion channel subunits were heterologously expressed in Xenopus oocytes, and measurements were performed using the double-electrode voltage-clamp technique. Activation of PKC with phorbol 12-myristate 13-acetate (PMA) resulted in a strong reduction of Kv1.5/Kvβ1.2 current. This effect could be prevented using the PKC inhibitor staurosporine. Using the bisindolylmaleimide Ro-31-8220 as an inhibitor and ingenol as an activator of the conventional PKC isoforms, we were able to show that the Kv1.5/Kvβ1.2 ion channel complex is mainly regulated by conventional isoforms. Whereas pharmacological inhibition of PKCα with HBDDE did not attenuate the PMA-induced effect, current reduction could be prevented using inhibitors of PKCβ. Here, we show the isoform βII plays a central role in the PKC-dependent regulation of Kv1.5/Kvβ1.2 channels. These results add to the current understanding of isoenzyme-selective regulation of cardiac ion channels by protein kinases.

  7. Protein kinase C alpha-dependent phosphorylation of Golgi proteins.

    PubMed

    Radau, B; Otto, A; Müller, E C; Westermann, P

    2000-07-01

    Golgi-enriched membranes were phosphorylated in order to understand the mechanism for protein kinase C (PKC) regulation of exocytic vesicle formation at the trans-Golgi network. Two of the main PKC substrates were identified as MARCKS and Mac-MARCKS by two-dimensional electrophoresis (2-DE) and mass spectrometric sequencing. Annexin IV and profilin I, two other Golgi-associated proteins--although known as in vitro PKC substrates--were not phosphorylated in the Golgi-bound state.

  8. Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates.

    PubMed

    García-Pardo, María Pilar; Roger-Sanchez, Concepción; Rodríguez-Arias, Marta; Miñarro, Jose; Aguilar, María Asunción

    2016-06-15

    Drug addiction shares brain mechanisms and molecular substrates with learning and memory processes, such as the stimulation of glutamate receptors and their downstream signalling pathways. In the present work we provide an up-to-date review of studies that have demonstrated the implication of the main memory-related calcium-dependent protein kinases in opiate and cocaine addiction. The effects of these drugs of abuse in different animal models of drug reward, dependence and addiction are altered by manipulation of the mitogen-activated protein kinase (MAPK) family, particularly extracellular signal regulated kinase (ERK), calcium/calmodulin-dependent kinase II (CaMKII), the protein kinase C (PKC) family (including PKMζ), cAMP-dependent protein kinase A (PKA), cGMP-dependent protein kinase G (PKG), the phosphatidylinositol 3-kinase (PI3K) pathway and its downstream target mammalian target of Rapamycin (mTOR), cyclin-dependent kinase 5 (Cdk5), heat-shock proteins (Hsp) and other enzymes and proteins. Research suggests that drugs of abuse induce dependence and addiction by modifying the signalling pathways that involve these memory-related protein kinases, and supports the idea that drug addiction is an excessive aberrant learning disorder in which the maladaptive memory of drug-associated cues maintains compulsive drug use and contributes to relapse. Moreover, the studies we review offer new pharmacological strategies to treat opiate and cocaine dependence based on the manipulation of these protein kinases. In particular, disruption of reconsolidation of drug-related memories may have a high therapeutic value in the treatment of drug addiction.

  9. Protein Kinases in Zucchini (Characterization of Calcium-Requiring Plasma Membrane Kinases).

    PubMed Central

    Verhey, S. D.; Gaiser, J. C.; Lomax, T. L.

    1993-01-01

    Using an in situ phosphorylation assay with zucchini (Cucurbita pepo L. cv Dark Green) seedling tissue, we have identified numerous polypeptides that are capable of acting as protein kinases. Total protein preparations from different organs contain different kinase profiles, but all are within the range of 55 to 70 kD. At least four kinases are associated with highly purified plasma membranes from etiolated zucchini hypocotyls. The major phosphorylated polypeptides from plasma membranes range in apparent molecular mass from 58 to 68 kD. The plasma membrane kinases are activated by micromolar concentrations of calcium and phosphorylate serine, and, to a lesser extent, threonine residues. These characteristics are similar to those of a soluble calcium-dependent protein kinase that has been purified to homogeneity from soybean suspension cultures. Three of the zucchini plasma membrane kinases share antigenic epitopes with the soluble soybean kinase. The presence of kinase activity at different apparent molecular masses may be indicative of separate kinases with similar characteristics. The zucchini hypocotyl protein kinases are not removed from plasma membrane vesicles by 0.5 M NaCl/5 mM ethylenediaminetetraacetate or by detergent concentrations below the critical micelle concentration of two types of detergent. This indicates that the plasma membrane protein kinases are tightly associated with the membrane in zucchini seedlings. PMID:12231949

  10. Developmental distribution of CaM kinase II in the antennal lobe of the sphinx moth Manduca sexta.

    PubMed

    Lohr, Christian; Bergstein, Sandra; Hirnet, Daniela

    2007-01-01

    The antennal lobe (primary olfactory center of insects) is completely reorganized during metamorphosis. This reorganization is accompanied by changing patterns of calcium signaling in neurons and glial cells. In the present study, we investigated the developmental distribution of a major calcium-dependent protein, viz., calcium/calmodulin-dependent protein kinase II (CaM kinase II), in the antennal lobe of the sphinx moth Manduca sexta by using a monoclonal antibody. During synaptogenesis (developmental stages 6-10), we found a redistribution of CaM kinase II immunoreactivity, from a homogeneous distribution in the immature neuropil to an accumulation in the neuropil of the glomeruli. CaM kinase II immunoreactivity was less intense in olfactory receptor axons of the antennal nerve and antennal lobe glial cells. Western blot analysis revealed a growing content of CaM kinase II in antennal lobe tissue throughout metamorphosis. Injection of the CaM kinase inhibitor KN-93 into pupae resulted in a reduced number of antennal lobe glial cells migrating into the neuropil to form borders around glomeruli. The results suggest that CaM kinase II is involved in glial cell migration.

  11. Phosphoregulators: Protein Kinases and Protein Phosphatases of Mouse

    PubMed Central

    Forrest, Alistair R.R.; Ravasi, Timothy; Taylor, Darrin; Huber, Thomas; Hume, David A.; Grimmond, Sean

    2003-01-01

    With the completion of the human and mouse genome sequences, the task now turns to identifying their encoded transcripts and assigning gene function. In this study, we have undertaken a computational approach to identify and classify all of the protein kinases and phosphatases present in the mouse gene complement. A nonredundant set of these sequences was produced by mining Ensembl gene predictions and publicly available cDNA sequences with a panel of InterPro domains. This approach identified 561 candidate protein kinases and 162 candidate protein phosphatases. This cohort was then analyzed using TribeMCL protein sequence similarity clustering followed by CLUSTALV alignment and hierarchical tree generation. This approach allowed us to (1) distinguish between true members of the protein kinase and phosphatase families and enzymes of related biochemistry, (2) determine the structure of the families, and (3) suggest functions for previously uncharacterized members. The classifications obtained by this approach were in good agreement with previous schemes and allowed us to demonstrate domain associations with a number of clusters. Finally, we comment on the complementary nature of cDNA and genome-based gene detection and the impact of the FANTOM2 transcriptome project. PMID:12819143

  12. Distribution of regulatory subunits of protein kinase A and A kinase anchor proteins (AKAP 95, 150) in rat pinealocytes.

    PubMed

    Koch, M; Korf, H-W

    2002-12-01

    The rat pineal organ is an established model to study signal transduction cascades that are activated by norepinephrine (NE) and cause increases in cAMP levels and stimulation of protein kinase A (PKA). PKA type II catalyzes the phosphorylation of the transcription factor cAMP-response-element-binding protein (CREB) which is essential for the transcriptional induction of the arylalkylamine- N-acetyltransferase (AANAT), the rate limiting enzyme of melatonin biosynthesis. Moreover, PKA may control protein levels and enzyme activity via two PKA-dependent phosphorylation sites in the AANAT molecule. Despite the functional importance of PKA very little is known about the distribution of its isoenzymes and of A-kinase anchor proteins (AKAPs) that target the PKA to specific membrane areas and organelles by binding to the regulatory (R) subunits of PKA. We have addressed this problem by demonstrating the R subunits alpha and beta of PKA type I and II and two AKAPs (150 and 95) in NE-stimulated and untreated rat pinealocytes by immunoblot and immunocytochemistry. The immunoreactions (IR) of all four R subunits were confined to granules evenly distributed in the pinealocyte cytoplasm. Immunoreactions of RIIalpha and RIIbeta were stronger than those of RIalpha and RIbeta. AKAP 150-IR was concentrated at the cell periphery; AKAP 95-IR was restricted to the nucleus. Amount and subcellular distribution of the immunoreactions of all proteins investigated did not change upon NE stimulation. A substantial colocalization was observed between RII-subunits and AKAP 150-IR, suggesting that, in rat pinealocytes, AKAP 150 primarily anchors the R subunits of PKA II.

  13. Protein kinase C activity in boar sperm.

    PubMed

    Teijeiro, J M; Marini, P E; Bragado, M J; Garcia-Marin, L J

    2017-03-01

    Male germ cells undergo different processes within the female reproductive tract to successfully fertilize the oocyte. These processes are triggered by different extracellular stimuli leading to activation of protein phosphorylation. Protein kinase C (PKC) is a key regulatory enzyme in signal transduction mechanisms involved in many cellular processes. Studies in boar sperm demonstrated a role for PKC in the intracellular signaling involved in motility and cellular volume regulation. Experiments using phorbol 12-myristate 13-acetate (PMA) showed increases in the Serine/Threonine phosphorylation of substrates downstream of PKC in boar sperm. In order to gain knowledge about those cellular processes regulated by PKC, we evaluate the effects of PMA on boar sperm motility, lipid organization of plasma membrane, integrity of acrosome membrane and sperm agglutination. Also, we investigate the crosstalk between PKA and PKC intracellular pathways in spermatozoa from this species. The results presented here reveal a participation of PKC in sperm motility regulation and membrane fluidity changes, which is probably associated to acrosome reaction and to agglutination. Also, we show the existence of a hierarchy in the kinases pathway. Previous works on boar sperm suggest a pathway in which PKA is positioned upstream to PKC and this new results support such model.

  14. Effects of selective inhibition of protein kinase C, cyclic AMP-dependent protein kinase, and Ca(2+)-calmodulin-dependent protein kinase on neurite development in cultured rat hippocampal neurons.

    PubMed

    Cabell, L; Audesirk, G

    1993-06-01

    A variety of experimental evidence suggests that calmodulin and protein kinases, especially protein kinase C, may participate in regulating neurite development in cultured neurons, particularly neurite initiation. However, the results are somewhat contradictory. Further, the roles of calmodulin and protein kinases on many aspects of neurite development, such as branching or elongation of axons vs dendrites, have not been extensively studied. Cultured embryonic rat hippocampal pyramidal neurons develop readily identifiable axons and dendrites. We used this culture system and the new generation of highly specific protein kinase inhibitors to investigate the roles of protein kinases and calmodulin in neurite development. Neurons were cultured for 2 days in the continuous presence of calphostin C (a specific inhibitor of protein kinase C), KT5720 (inhibitor of cyclic AMP-dependent protein kinase), KN62 (inhibitor of Ca(2+)-calmodulin-dependent protein kinase II), or calmidazolium (inhibitor of calmodulin), each at concentrations from approximately 1 to 10 times the concentration reported in the literature to inhibit each kinase by 50%. The effects of phorbol 12-myristate 13-acetate (an activator of protein kinase C) and 4 alpha-phorbol 12,13-didecanoate (an inactive phorbol ester) were also tested. At concentrations that had no effect on neuronal viability, calphostin C reduced neurite initiation and axon branching without significantly affecting the number of dendrites per neuron, dendrite branching, dendrite length, or axon length. Phorbol 12-myristate 13-acetate increased axon branching and the number of dendrites per cell, compared to the inactive 4 alpha-phorbol 12,13-didecanoate. KT5720 inhibited only axon branching. KN62 reduced axon length, the number of dendrites per neuron, and both axon and dendrite branching. At low concentrations, calmidazolium had no effect on any aspect of neurite development, but at high concentrations, calmidazolium inhibited every

  15. Differential modulation of Ca2+/calmodulin-dependent protein kinase II activity by regulated interactions with N-methyl-D-aspartate receptor NR2B subunits and alpha-actinin.

    PubMed

    Robison, A J; Bartlett, Ryan K; Bass, Martha A; Colbran, Roger J

    2005-11-25

    Neuronal Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) interacts with several prominent dendritic spine proteins, which have been termed CaMKII-associated proteins. The NR2B subunit of N-methyl-d-aspartate (NMDA)-type glutamate receptor, densin-180, and alpha-actinin bind comparable, approximately stoichiometric amounts of Thr(286)-autophosphorylated CaMKIIalpha, forming a ternary complex (Robison, A. J., Bass, M. A., Jiao, Y., Macmillan, L. B., Carmody, L. C., Bartlett, R. K., and Colbran, R. J. (2005) J. Biol. Chem. 280, 35329-35336), but their impacts on CaMKII function are poorly understood. Here we show that these interactions are differentially regulated and exert distinct effects on CaMKII activity. Nonphosphorylated and Thr(286)-autophosphorylated CaMKII bind to alpha-actinin with similar efficacy, but autophosphorylation at Thr(305/306) or Ca(2+)/calmodulin binding significantly reduce this binding. Moreover, alpha-actinin antagonizes CaMKII activation by Ca(2+)/calmodulin, as assessed by autophosphorylation and phosphorylation of a peptide substrate. CaMKII binding to densin (1247-1542) is partially independent of Thr(286) autophosphorylation and is unaffected by Ca(2+)-independent autophosphorylation or Ca(2+)/calmodulin. In addition, the CaMKII binding domain of densin-180 has little effect on CaMKII activity. In contrast, the interaction of CaMKIIalpha with NR2B requires either Thr(286) autophosphorylation or the binding of both Ca(2+)/calmodulin and adenine nucleotides. NR2B inhibits both the Ca(2+)/calmodulin-dependent and autonomous activities of CaMKII by a mechanism that is competitive with autocamtide-2 substrate, non-competitive with syntide-2 substrate, and uncompetitive with respect to ATP. In combination, these data suggest that dynamically regulated interactions with CaMKII-associated proteins could play pleiotropic roles in finetuning CaMKII signaling in defined subcellular compartments.

  16. A framework for classification of prokaryotic protein kinases.

    PubMed

    Tyagi, Nidhi; Anamika, Krishanpal; Srinivasan, Narayanaswamy

    2010-05-26

    Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses. Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular organization which indicates a degree of complexity and protein-protein interactions in the

  17. A Framework for Classification of Prokaryotic Protein Kinases

    PubMed Central

    Tyagi, Nidhi; Anamika, Krishanpal; Srinivasan, Narayanaswamy

    2010-01-01

    Background Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. Methodology/Principal Findings We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses. Conclusion/Significance Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular organization which indicates a

  18. Genomic analysis of the eukaryotic protein kinase superfamily: a perspective

    PubMed Central

    Hanks, Steven K

    2003-01-01

    Protein kinases with a conserved catalytic domain make up one of the largest 'superfamilies' of eukaryotic proteins and play many key roles in biology and disease. Efforts to identify and classify all the members of the eukaryotic protein kinase superfamily have recently culminated in the mining of essentially complete human genome data. PMID:12734000

  19. The Roles of Protein Kinases in Learning and Memory

    ERIC Educational Resources Information Center

    Giese, Karl Peter; Mizuno, Keiko

    2013-01-01

    In the adult mammalian brain, more than 250 protein kinases are expressed, but only a few of these kinases are currently known to enable learning and memory. Based on this information it appears that learning and memory-related kinases either impact on synaptic transmission by altering ion channel properties or ion channel density, or regulate…

  20. The Roles of Protein Kinases in Learning and Memory

    ERIC Educational Resources Information Center

    Giese, Karl Peter; Mizuno, Keiko

    2013-01-01

    In the adult mammalian brain, more than 250 protein kinases are expressed, but only a few of these kinases are currently known to enable learning and memory. Based on this information it appears that learning and memory-related kinases either impact on synaptic transmission by altering ion channel properties or ion channel density, or regulate…

  1. Mitogen-activated protein kinase cascades in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761

  2. Protein Kinase Activity Decreases with Higher Braak Stages of Alzheimer’s Disease Pathology

    PubMed Central

    Rosenberger, Andrea F.N.; Hilhorst, Riet; Coart, Elisabeth; García Barrado, Leandro; Naji, Faris; Rozemuller, Annemieke J.M.; van der Flier, Wiesje M.; Scheltens, Philip; Hoozemans, Jeroen J.M.; van der Vies, Saskia M.

    2015-01-01

    Alzheimer’s disease (AD) is characterized by a long pre-clinical phase (20–30 years), during which significant brain pathology manifests itself. Disease mechanisms associated with pathological hallmarks remain elusive. Most processes associated with AD pathogenesis, such as inflammation, synaptic dysfunction, and hyper-phosphorylation of tau are dependent on protein kinase activity. The objective of this study was to determine the involvement of protein kinases in AD pathogenesis. Protein kinase activity was determined in postmortem hippocampal brain tissue of 60 patients at various stages of AD and 40 non-demented controls (Braak stages 0-VI) using a peptide-based microarray platform. We observed an overall decrease of protein kinase activity that correlated with disease progression. The phosphorylation of 96.7% of the serine/threonine peptides and 37.5% of the tyrosine peptides on the microarray decreased significantly with increased Braak stage (p-value <0.01). Decreased activity was evident at pre-clinical stages of AD pathology (Braak I-II). Increased phosphorylation was not observed for any peptide. STRING analysis in combination with pathway analysis and identification of kinases responsible for peptide phosphorylation showed the interactions between well-known proteins in AD pathology, including the Ephrin-receptor A1 (EphA1), a risk gene for AD, and sarcoma tyrosine kinase (Src), which is involved in memory formation. Additionally, kinases that have not previously been associated with AD were identified, e.g., protein tyrosine kinase 6 (PTK6/BRK), feline sarcoma oncogene kinase (FES), and fyn-associated tyrosine kinase (FRK). The identified protein kinases are new biomarkers and potential drug targets for early (pre-clinical) intervention. PMID:26519433

  3. In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase.

    PubMed

    Matsushita, Y; Hanazawa, K; Yoshioka, K; Oguchi, T; Kawakami, S; Watanabe, Y; Nishiguchi, M; Nyunoya, H

    2000-08-01

    The movement protein (MP) of tomato mosaic virus (ToMV) was produced in E. coli as a soluble fusion protein with glutathione S-transferase. When immobilized on glutathione affinity beads, the recombinant protein was phosphorylated in vitro by incubating with cell extracts of Nicotiana tabacum and tobacco suspension culture cells (BY-2) in the presence of [gamma-(32)P]ATP. Phosphorylation occurred even after washing the beads with a detergent-containing buffer, indicating that the recombinant MP formed a stable complex with some protein kinase(s) during incubation with the cell extract. Phosphoamino acid analysis revealed that the MP was phosphorylated on serine and threonine residues. Phosphorylation of the MP was decreased by addition of kinase inhibitors such as heparin, suramin and quercetin, which are known to be effective for casein kinase II (CK II). The phosphorylation level was not changed by other types of inhibitor. In addition, as shown for animal and plant CK II, [gamma-(32)P]GTP was efficiently used as a phosphoryl donor. Phosphorylation was not affected by amino acid replacements at serine-37 and serine-238, but was completely inhibited by deletion of the carboxy-terminal 9 amino acids, including threonine-256, serine-257, serine-261 and serine-263. These results suggest that the MP of ToMV could be phosphorylated in plant cells by a host protein kinase that is closely related to CK II.

  4. The nuts and bolts of AGC protein kinases.

    PubMed

    Pearce, Laura R; Komander, David; Alessi, Dario R

    2010-01-01

    The AGC kinase subfamily of protein kinases contains 60 members, including PKA, PKG and PKC. The family comprises some intensely examined protein kinases (such as Akt, S6K, RSK, MSK, PDK1 and GRK) as well as many less well-studied enzymes (such as SGK, NDR, LATS, CRIK, SGK494, PRKX, PRKY and MAST). Research has shed new light onto the architecture and regulatory mechanisms of these kinases. In addition, AGC kinases mediate diverse and important cellular functions, and their mutation and/or dysregulation contributes to the pathogenesis of many human diseases, including cancer and diabetes.

  5. Protein kinase A contributes to the negative control of Snf1 protein kinase in Saccharomyces cerevisiae.

    PubMed

    Barrett, LaKisha; Orlova, Marianna; Maziarz, Marcin; Kuchin, Sergei

    2012-02-01

    Snf1 protein kinase regulates responses to glucose limitation and other stresses. Snf1 activation requires phosphorylation of its T-loop threonine by partially redundant upstream kinases (Sak1, Tos3, and Elm1). Under favorable conditions, Snf1 is turned off by Reg1-Glc7 protein phosphatase. The reg1 mutation causes increased Snf1 activation and slow growth. To identify new components of the Snf1 pathway, we searched for mutations that, like snf1, suppress reg1 for the slow-growth phenotype. In addition to mutations in genes encoding known pathway components (SNF1, SNF4, and SAK1), we recovered "fast" mutations, designated fst1 and fst2. Unusual morphology of the mutants in the Σ1278b strains employed here helped us identify fst1 and fst2 as mutations in the RasGAP genes IRA1 and IRA2. Cells lacking Ira1, Ira2, or Bcy1, the negative regulatory subunit of cyclic AMP (cAMP)-dependent protein kinase A (PKA), exhibited reduced Snf1 pathway activation. Conversely, Snf1 activation was elevated in cells lacking the Gpr1 sugar receptor, which contributes to PKA signaling. We show that the Snf1-activating kinase Sak1 is phosphorylated in vivo on a conserved serine (Ser1074) within an ideal PKA motif. However, this phosphorylation alone appears to play only a modest role in regulation, and Sak1 is not the only relevant target of the PKA pathway. Collectively, our results suggest that PKA, which integrates multiple regulatory inputs, could contribute to Snf1 regulation under various conditions via a complex mechanism. Our results also support the view that, like its mammalian counterpart, AMP-activated protein kinase (AMPK), yeast Snf1 participates in metabolic checkpoint control that coordinates growth with nutrient availability.

  6. Hormone signaling linked to silkmoth sex pheromone biosynthesis involves Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of the insect PAT family protein Bombyx mori lipid storage droplet protein-1(BmLsd)

    USDA-ARS?s Scientific Manuscript database

    The structurally-related members of the PAT family of proteins, which are so name based on similarity amongst perilipin, adipophilin/adipocyte differentiation-related protein (ADRP), and tail-interacting protein of 47 kilodaltons (TIP47), are cytoplasmic lipid droplet (LD)-associated proteins charac...

  7. KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites.

    PubMed

    Huang, Hsien-Da; Lee, Tzong-Yi; Tzeng, Shih-Wei; Horng, Jorng-Tzong

    2005-07-01

    KinasePhos is a novel web server for computationally identifying catalytic kinase-specific phosphorylation sites. The known phosphorylation sites from public domain data sources are categorized by their annotated protein kinases. Based on the profile hidden Markov model, computational models are learned from the kinase-specific groups of the phosphorylation sites. After evaluating the learned models, the model with highest accuracy was selected from each kinase-specific group, for use in a web-based prediction tool for identifying protein phosphorylation sites. Therefore, this work developed a kinase-specific phosphorylation site prediction tool with both high sensitivity and specificity. The prediction tool is freely available at http://KinasePhos.mbc.nctu.edu.tw/.

  8. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID.

    PubMed

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inês C R; Willige, Björn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the--in many cells--asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  9. Understanding and exploiting substrate recognition by protein kinases.

    PubMed

    Turk, Benjamin E

    2008-02-01

    Protein kinases play a virtually universal role in cellular regulation and are emerging as an important class of new drug targets, yet the cellular functions of most human kinases largely remain obscure. Aspects of substrate recognition common to all kinases in the ATP nucleotide binding site have been exploited in the generation of analog-specific mutants for exploring kinase function and discovering novel protein substrates. Likewise, understanding interactions with the protein substrate, which differ substantially between kinases, can also help to identify substrates and to produce tools for studying kinase pathways, including fluorescent biosensors. Principles of kinase substrate recognition are particularly valuable in guiding bioinformatics and phosphoproteomics approaches that impact our understanding of signaling pathways and networks on a global scale.

  10. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity

    USDA-ARS?s Scientific Manuscript database

    Calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases but we made the surprising observation that soybean CDPK' and several Arabidopsis isoforms (AtCPK4 and AtCPK34) could also autophosphorylate on tyrosine residues. In studies with His6-GmCDPK', we ide...

  11. Rapid 1α,25(OH)₂D ₃ membrane-mediated activation of Ca²⁺/calmodulin-dependent protein kinase II in growth plate chondrocytes requires Pdia3, PLAA and caveolae.

    PubMed

    Doroudi, Maryam; Boyan, Barbara D; Schwartz, Zvi

    2014-08-01

    1α,25-Dihydroxy vitamin D3 [1α,25(OH)2D3] regulates growth zone chondrocytes (GC) via classical steroid hormone receptor-mediated gene transcription and by initiating rapid membrane-mediated signaling pathways. 1α,25(OH)2D3 initiates its membrane effects via its specific membrane-associated receptor (Pdia3) in caveolae. 1α,25(OH)2D3 binding to Pdia3 leads to phospholipase-A2 (PLA2)-activating protein (PLAA) activation, stimulating PLA2, resulting in prostaglandin E2 (PGE2) release and protein kinase C activation. Recently, we reported that 1α,25(OH)2D3 rapidly activates Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in GC cells. However, the roles of Pdia3, PLAA and caveolae in 1α,25(OH)2D3-dependent rapid activation of CaMKII are not clear. The aim of the present study was to evaluate the roles of Pdia3, PLAA and caveolae in 1α,25(OH)2D3 membrane-stimulated CaMKII activation. Pre-treating chondrocytes from the growth zone of the rat costochondral cartilage with antibodies against PLAA or Pdia3 blocked activation of CaMKII by 1α,25(OH)2D3. PLAA peptide rapidly activated CaMKII in GC cells. Caveolae disruption abolished CaMKII activation in response to 1α,25(OH)2D3 or PLAA peptide treatment. Immunoprecipitation studies showed increased CaM binding to PLAA in response to 1α,25(OH)2D3. The results indicated that Pdia3, PLAA and caveolae are required for rapid 1α,25(OH)2D3 membrane-mediated activation of CaMKII. 1α,25(OH)2D3 signaling via Pdia3 receptor triggered the interaction between PLAA and CaM suggesting that CaM may play a major role linking PLAA to CaMKII in membrane-mediated actions of 1α,25(OH)2D3.

  12. Identification of intracellular receptor proteins for activated protein kinase C.

    PubMed Central

    Mochly-Rosen, D; Khaner, H; Lopez, J

    1991-01-01

    Protein kinase C (PKC) translocates from the cytosol to the particulate fraction on activation. This activation-induced translocation of PKC is thought to reflect PKC binding to the membrane lipids. However, immunological and biochemical data suggest that PKC may bind to proteins in the cytoskeletal elements in the particulate fraction and in the nuclei. Here we describe evidence for the presence of intracellular receptor proteins that bind activated PKC. Several proteins from the detergent-insoluble material of the particulate fraction bound PKC in the presence of phosphatidylserine and calcium; binding was further increased with the addition of diacylglycerol. Binding of PKC to two of these proteins was concentration-dependent, saturable, and specific, suggesting that these binding proteins are receptors for activated C-kinase, termed here "RACKs." PKC binds to RACKs via a site on PKC distinct from the substrate binding site. We suggest that binding to RACKs may play a role in activation-induced translocation of PKC. Images PMID:1850844

  13. Solubilized placental membrane protein inhibits insulin receptor tyrosine kinase activity

    SciTech Connect

    Strout, H.V. Jr.; Slater, E.E.

    1987-05-01

    Regulation of insulin receptor (IR) tyrosine kinase (TK) activity may be important in modulating insulin action. Utilizing an assay which measures IR phosphorylation of angiotensin II (AII), the authors investigated whether fractions of TX-100 solubilized human placental membranes inhibited IR dependent AII phosphorylation. Autophosphorylated IR was incubated with membrane fractions before the addition of AII, and kinase inhibition measured by the loss of TSP incorporated in AII. An inhibitory activity was detected which was dose, time, and temperature dependent. The inhibitor was purified 200-fold by sequential chromatography on wheat germ agglutinin, DEAE, and hydroxyapatite. This inhibitory activity was found to correlate with an 80 KD protein which was electroeluted from preparative slab gels and rabbit antiserum raised. Incubation of membrane fractions with antiserum before the IRTK assay immunoprecipitated the inhibitor. Protein immunoblots of crude or purified fractions revealed only the 80 KD protein. Since IR autophosphorylation is crucial to IRTK activity, the authors investigated the state of IR autophosphorylation after treatment with inhibitor; no change was detected by phosphoamino acid analysis.

  14. Secreted protein kinases regulate cyst burden during chronic toxoplasmosis.

    PubMed

    Jones, Nathaniel G; Wang, Qiuling; Sibley, L David

    2017-02-01

    Toxoplasma gondii is an apicomplexan parasite that secretes a large number of protein kinases and pseudokinases from its rhoptry organelles. Although some rhoptry kinases (ROPKs) act as virulence factors, many remain uncharacterized. In this study, predicted ROPKs were assessed for bradyzoite expression then prioritized for a reverse genetic analysis in the type II strain Pru that is amenable to targeted disruption. Using CRISPR/Cas9, we engineered C-terminally epitope tagged ROP21 and ROP27 and demonstrated their localization to the parasitophorous vacuole and cyst matrix. ROP21 and ROP27 were not secreted from microneme, rhoptry, or dense granule organelles, but rather were located in small vesicles consistent with a constitutive pathway. Using CRISPR/Cas9, the genes for ROP21, ROP27, ROP28, and ROP30 were deleted individually and in combination, and the mutant parasites were assessed for growth and their ability to form tissue cysts in mice. All knockouts lines were normal for in vitro growth and bradyzoite differentiation, but a combined ∆rop21/∆rop17 knockout led to a 50% reduction in cyst burden in vivo. Our findings question the existing annotation of ROPKs based solely on bioinformatic techniques and yet highlight the importance of secreted kinases in determining the severity of chronic toxoplasmosis.

  15. Structural investigation of protein kinase C inhibitors.

    PubMed

    Barak, D; Shibata, M; Rein, R

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  16. Protein kinase C isozymes and addiction.

    PubMed

    Olive, M Foster; Messing, Robert O

    2004-04-01

    Protein kinase C (PKC) has long been recognized an important family of enzymes that regulate numerous aspects of neuronal signal transduction, neurotransmitter synthesis, release and reuptake, receptor and ion channel function, neuronal excitability, development, and gene expression. Much evidence has implicated PKCs in the effects of several drugs of abuse, and in behavioral responses to these drugs. The present review summarizes the effects of both acute and chronic exposure to various drugs of abuse on individual PKC isozymes in the brain. In addition, we summarize recent studies utilizing mice with targeted deletions of the genes for PKCgamma and PKCepsilon. These studies suggest that individual PKC isozymes play a role in the development of drug dependence and addiction.

  17. Structural investigation of protein kinase C inhibitors

    NASA Technical Reports Server (NTRS)

    Barak, D.; Shibata, M.; Rein, R.

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  18. AKAP-Lbc nucleates a protein kinase D activation scaffold.

    PubMed

    Carnegie, Graeme K; Smith, F Donelson; McConnachie, George; Langeberg, Lorene K; Scott, John D

    2004-09-24

    The transmission of cellular signals often proceeds through multiprotein complexes where enzymes are positioned in proximity to their upstream activators and downstream substrates. In this report we demonstrate that the A-kinase anchoring protein AKAP-Lbc assembles an activation complex for the lipid-dependent enzyme protein kinase D (PKD). Using a combination of biochemical, enzymatic, and immunofluorescence techniques, we show that the anchoring protein contributes to PKD activation in two ways: it recruits an upstream kinase PKCeta and coordinates PKA phosphorylation events that release activated protein kinase D. Thus, AKAP-Lbc synchronizes PKA and PKC activities in a manner that leads to the activation of a third kinase. This configuration illustrates the utility of kinase anchoring as a mechanism to constrain the action of broad-spectrum enzymes.

  19. Rational Redesign of a Functional Protein Kinase-Substrate Interaction

    PubMed Central

    2017-01-01

    Eukaryotic protein kinases typically phosphorylate substrates in the context of specific sequence motifs, contributing to specificity essential for accurate signal transmission. Protein kinases recognize their target sequences through complementary interactions within the active site cleft. As a step toward the construction of orthogonal kinase signaling systems, we have re-engineered the protein kinase Pim1 to alter its phosphorylation consensus sequence. Residues in the Pim1 catalytic domain interacting directly with a critical arginine residue in the substrate were substituted to produce a kinase mutant that instead accommodates a hydrophobic residue. We then introduced a compensating mutation into a Pim1 substrate, the pro-apoptotic protein BAD, to reconstitute phosphorylation both in vitro and in living cells. Coexpression of the redesigned kinase with its substrate in cells protected them from apoptosis. Such orthogonal kinase–substrate pairs provide tools to probe the functional consequences of specific phosphorylation events in living cells and to design synthetic signaling pathways. PMID:28314095

  20. Reconstitution of LHC phosphorylation by a protein kinase isolated from spinach thylakoids

    SciTech Connect

    Hind, G.; Coughlan, S.

    1986-01-01

    Protein kinase activity is responsible for phosphorylating the (LHC) light-harvesting chlorophyll a/b protein complex of photosystem II, leading to its migration in the thylakoid membrane, the fractional redistribution of excitation energy between photosystems II and I, and the phenomenon of state transition. Previous work from this laboratory described the purification to homogeneity of a thylakoid protein kinase which catalyzes the phosphorylation of isolated LHC at 1-10% of a rate estimated for this enzyme and substrate when resident together in the thylakoid membrane. In this communication, we report rates of LHC phosphorylation that are close to physiological, in a system comprised of isolated purified protein kinase (LHCK) and native LHC. 9 refs., 1 fig., 2 tabs.

  1. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

    PubMed Central

    Massip, L; Garand, C; Labbé, A; Perreault, È; Turaga, RVN; Bohr, VA; Lebel, M

    2015-01-01

    Werner’s syndrome (WS) is a rare autosomal disease characterized by the premature onset of several age-associated pathologies. The protein defective in patients with WS (WRN) is a helicase/exonuclease involved in DNA repair, replication, transcription and telomere maintenance. In this study, we show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCδ and PKCβII in the membrane fraction of cells. In contrast, different DNA-damaging treatments known to activate PKCs did not induce RACK1/PKCs association in cells. Overall, our results indicate that a depletion of the WRN protein in normal fibroblasts causes the activation of several PKCs through translocation and association of RACK1 with such kinases. PMID:19966859

  2. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms.

    PubMed

    Massip, L; Garand, C; Labbé, A; Perreault, E; Turaga, R V N; Bohr, V A; Lebel, M

    2010-03-11

    Werner's syndrome (WS) is a rare autosomal disease characterized by the premature onset of several age-associated pathologies. The protein defective in patients with WS (WRN) is a helicase/exonuclease involved in DNA repair, replication, transcription and telomere maintenance. In this study, we show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCdelta and PKCbetaII in the membrane fraction of cells. In contrast, different DNA-damaging treatments known to activate PKCs did not induce RACK1/PKCs association in cells. Overall, our results indicate that a depletion of the WRN protein in normal fibroblasts causes the activation of several PKCs through translocation and association of RACK1 with such kinases.

  3. Prediction of 492 human protein kinase substrate specificities.

    PubMed

    Safaei, Javad; Maňuch, Ján; Gupta, Arvind; Stacho, Ladislav; Pelech, Steven

    2011-10-14

    Complex intracellular signaling networks monitor diverse environmental inputs to evoke appropriate and coordinated effector responses. Defective signal transduction underlies many pathologies, including cancer, diabetes, autoimmunity and about 400 other human diseases. Therefore, there is high impetus to define the composition and architecture of cellular communications networks in humans. The major components of intracellular signaling networks are protein kinases and protein phosphatases, which catalyze the reversible phosphorylation of proteins. Here, we have focused on identification of kinase-substrate interactions through prediction of the phosphorylation site specificity from knowledge of the primary amino acid sequence of the catalytic domain of each kinase. The presented method predicts 488 different kinase catalytic domain substrate specificity matrices in 478 typical and 4 atypical human kinases that rely on both positive and negative determinants for scoring individual phosphosites for their suitability as kinase substrates. This represents a marked advancement over existing methods such as those used in NetPhorest (179 kinases in 76 groups) and NetworKIN (123 kinases), which consider only positive determinants for kinase substrate prediction. Comparison of our predicted matrices with experimentally-derived matrices from about 9,000 known kinase-phosphosite substrate pairs revealed a high degree of concordance with the established preferences of about 150 well studied protein kinases. Furthermore for many of the better known kinases, the predicted optimal phosphosite sequences were more accurate than the consensus phosphosite sequences inferred by simple alignment of the phosphosites of known kinase substrates. Application of this improved kinase substrate prediction algorithm to the primary structures of over 23, 000 proteins encoded by the human genome has permitted the identification of about 650, 000 putative phosphosites, which are posted on the

  4. Protein kinase and phosphatase activities of thylakoid membranes

    SciTech Connect

    Michel, H.; Shaw, E.K.; Bennett, J.

    1987-01-01

    Dephosphorylation of the 25 and 27 kDa light-harvesting Chl a/b proteins (LHCII) of the thylakoid membranes is catalyzed by a phosphatase which differs from previously reported thylakoid-bound phosphatases in having an alkaline pH optimum (9.0) and a requirement for Mg/sup 2 +/ ions. Dephosphorylation of the 8.3 kDa psb H gene product requires a Mg/sup 2 +/ ion concentration more than 200 fold higher than that for dephosphorylation of LHC II. The 8.3 kDa and 27 kDa proteins appear to be phosphorylated by two distinct kinases, which differ in substrate specificity and sensitivity to inhibitors. The plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB) inhibits phosphorylation of the 27 kDa LHC II much more readily than phosphorylation of the 8.3 kDa protein. A similar pattern of inhibition is seen for two synthetic oligopeptides (MRKSATTKKAVC and ATQTLESSSRC) which are analogs of the phosphorylation sites of the two proteins. Possible modes of action of DBMIB are discussed. 45 refs., 7 figs., 3 tabs.

  5. Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice.

    PubMed

    Rohila, Jai S; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald; Dardick, Chris; Canlas, Patrick; Xu, Xia; Gribskov, Michael; Kanrar, Siddhartha; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E

    2006-04-01

    Forty-one rice cDNAs encoding protein kinases were fused to the tandem affinity purification (TAP) tag and expressed in transgenic rice plants. The TAP-tagged kinases and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by mass spectrometry. Ninety-five percent of the TAP-tagged kinases were recovered. Fifty-six percent of the TAP-tagged kinases were found to interact with other rice proteins. A number of these interactions were consistent with known protein complexes found in other species, validating the TAP-tag method in rice plants. Phosphorylation sites were identified on four of the kinases that interacted with either 14-3-3 proteins or cyclins.

  6. Reusable amperometric biosensor for measuring protein tyrosine kinase activity.

    PubMed

    Wang, Chung-Liang; Wei, Lan-Yi; Yuan, Chiun-Jye; Hwang, Kuo Chu

    2012-01-17

    This work presents a simple, low-cost and reusable label-free method for detecting protein tyrosine kinase activity using a tyrosinase-based amperometric biosensor (tyrosine kinase biosensor). This method is based on the observation that phosphorylation can block the tyrosinase-catalyzed oxidation of tyrosine or tyrosyl residue in peptides. Therefore, the activity of p60c-src protein tyrosine kinase (Src) on the developed tyrosine kinase biosensor could be quickly determined when its specific peptide substrate, p60c-src substrate I, was used. The tyrosine kinase biosensor was highly sensitive to the activity of Src with a linear dynamic range of 1.9-237.6 U/mL and the lowest detection limit of 0.23 U/mL. Interestingly, the tyrosine kinase activity can be measured using the developed tyrosine kinase biosensor repetitively without regeneration. The inhibitory effect of various kinase inhibitors on the Src activity could be determined on the tyrosine kinase biosensor. Src-specific inhibitors, PP2 and Src inhibitor I, effectively suppressed Src activity, whereas PD153035, an inhibitor of the epidermal growth factor receptor, was ineffective. Staurosporine, a universal kinase inhibitor, inhibited Src activity in an ATP concentration-dependent manner. These results suggests that the activities of tyrosine kinases and their behaviors toward various reagents can be effectively measured using the developed tyrosine kinase biosensor.

  7. 1-[N, O-bis-(5-isoquinolinesulphonyl)-N-methyl-L-tyrosyl]-4- phenylpiperazine (KN-62), an inhibitor of calcium-dependent camodulin protein kinase II, inhibits both insulin- and hypoxia-stimulated glucose transport in skeletal muscle.

    PubMed Central

    Brozinick, J T; Reynolds, T H; Dean, D; Cartee, G; Cushman, S W

    1999-01-01

    Previous studies have indicated a role for calmodulin in hypoxia-and insulin-stimulated glucose transport. However, since calmodulin interacts with multiple protein targets, it is unknown which of these targets is involved in the regulation of glucose transport. In the present study, we have used the calcium-dependent calmodulin protein kinase II (CAMKII) inhibitor 1-[N, O-bis-(5-isoquinolinesulphonyl) -N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62) to investigate the possible role of this enzyme in the regulation of glucose transport in isolated rat soleus and epitrochlearis muscles. KN-62 did not affect basal 2-deoxyglucose transport, but it did inhibit both insulin- and hypoxia-stimulated glucose transport activity by 46 and 40% respectively. 1-[N,O-Bis-(1, 5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN-04), a structural analogue of KN-62 that does not inhibit CAMKII, had no effect on hypoxia-or insulin-stimulated glucose transport. Accordingly, KN-62 decreased the stimulated cell-surface GLUT4 labelling by a similar extent as the inhibition of glucose transport (insulin, 49% and hypoxia, 54%). Additional experiments showed that KN-62 also inhibited insulin- and hypoxia-stimulated transport by 37 and 40% respectively in isolated rat epitrochlearis (a fast-twitch muscle), indicating that the effect of KN-62 was not limited to the slow-twitch fibres of the soleus. The inhibitory effect of KN-62 on hypoxia-stimulated glucose transport appears to be specific to CAMKII, since KN-62 did not inhibit hypoxia-stimulated 45Ca efflux from muscles pre-loaded with 45Ca, or hypoxia-stimulated glycogen breakdown. Additionally, KN-62 affected neither insulin-stimulated phosphoinositide 3-kinase nor Akt activity, suggesting that the effects of KN-62 are not due to non-specific effects of this inhibitor on these regions of the insulin-signalling cascade. The results of the present study suggest that CAMKII might have a distinct role in insulin- and hypoxia

  8. Far-infrared radiation acutely increases nitric oxide production by increasing Ca{sup 2+} mobilization and Ca{sup 2+}/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    SciTech Connect

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-07-12

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser{sup 1179} phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser{sup 1179} phosphorylation. •FIR increases intracellular Ca{sup 2+} levels. •Thermo-sensitive TRPV Ca{sup 2+} channels are unlikely to be involved in the FIR-mediated eNOS-Ser{sup 1179} phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser{sup 1179}) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca{sup 2+} levels. Treatment with KN-93, a selective inhibitor of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. This

  9. The WNKs: atypical protein kinases with pleiotropic actions

    PubMed Central

    McCormick, James A.; Ellison, David H.

    2011-01-01

    WNKs are serine/threonine kinases that comprise a unique branch of the kinome. They are so-named owing to the unusual placement of an essential catalytic lysine. WNKs have now been identified in diverse organisms. In humans and other mammals, four genes encoding WNKs. WNKs are widely expressed at the message level, although data on protein expression is more limited. Soon after the WNKs were identified, mutations in genes encoding WNK 1 and 4 were determined to cause the human disease, Familial Hyperkalemic Hypertension (also known as pseudohypoaldosteronism II, or Gordon’s Syndrome). For this reason, a major focus of investigation has been to dissect the role of WNK kinases in renal regulation of ion transport. More recently, a different mutation in WNK1 was identified as the cause of hereditary sensory and autonomic neuropathy type II (HSANII), an early-onset autosomal disease of peripheral sensory nerves. Thus, the WNKs represent an important family of potential targets for the treatment of human disease, and further elucidation of their physiological actions outside of the kidney and brain is necessary. In this review, we describe the gene structure and mechanisms regulating expression and activity of the WNKs. Subsequently, we outline substrates and targets of WNKs, and effects of WNKs on cellular physiology, both in the kidney and elsewhere. Next, consequences of these effects on integrated physiological function are outlined. Finally, we discuss the known and putative pathophysiological relevance of the WNKs. PMID:21248166

  10. Diversity, classification and function of the plant protein kinase superfamily

    PubMed Central

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants. PMID:22889912

  11. Diversity, classification and function of the plant protein kinase superfamily.

    PubMed

    Lehti-Shiu, Melissa D; Shiu, Shin-Han

    2012-09-19

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants.

  12. Prostaglandin E2 negatively regulates AMP-activated protein kinase via protein kinase A signaling pathway.

    PubMed

    Funahashi, Koji; Cao, Xia; Yamauchi, Masako; Kozaki, Yasuko; Ishiguro, Naoki; Kambe, Fukushi

    2009-01-01

    We investigated possible involvement of prostaglandin (PG) E2 in regulation of AMP-activated protein kinase (AMPK). When osteoblastic MG63 cells were cultured in serum-deprived media, Thr-172 phosphorylation of AMPK alpha-subunit was markedly increased. Treatment of the cells with PGE2 significantly reduced the phosphorylation. Ser-79 phosphorylation of acetyl-CoA carboxylase, a direct target for AMPK, was also reduced by PGE2. On the other hand, PGE2 reciprocally increased Ser-485 phosphorylation of the alpha-subunit that could be associated with inhibition of AMPK activity. These effects of PGE2 were mimicked by PGE2 receptor EP2 and EP4 agonists and forskolin, but not by EP1 and EP3 agonists, and the effects were suppressed by an adenylate cyclase inhibitor SQ22536 and a protein kinase A inhibitor H89. Additionally, the PGE2 effects were duplicated in primary calvarial osteoblasts. Together, the present study demonstrates that PGE2 negatively regulates AMPK activity via activation of protein kinase A signaling pathway.

  13. Protein Kinase A Subunit α Catalytic and A Kinase Anchoring Protein 79 in Human Placental Mitochondria.

    PubMed

    Ma, Maggie Pui Chi; Thomson, Murray

    2012-01-01

    Components of protein phosphorylation signalling systems have been discovered in mitochondria and it has been proposed that these molecules modulate processes including oxidative phosphorylation, apoptosis and steroidogenesis. We used electrophoresis and Western blots probed with specific antibodies to protein kinase A α catalytic subunit (PKAα Cat) and A kinase anchoring protein of approximately 79 kDa molecular weight (AKAP79) to demonstrate the presence of these two proteins in human placental mitochondria. Heavy mitochondria characteristic of cytotrophoblast were separated from light mitochondria characteristic of syncytiotrophoblast by centrifugation. PKAα Cat and AKAP79 were present in both heavy and light mitochondria with no significant difference in concentration. Sucrose density gradient separation of submitochondrial fractions indicated PKAα Cat is located predominantly in the outer membrane whereas AKAP79 is present mainly in the contact site fractions. These data indicate that PKAα Cat is present in the cytoplasm, nucleus and mitochondria of placental cells. AKAP79 is also present in human placental mitochondria but there may be anchoring proteins other than AKAP79 responsible for fixing PKA to the outer membrane. PKA may play roles in mitochondrial protein phosphorylation systems in both cytotrophoblast and syncytiotrophoblast.

  14. ProNormz--an integrated approach for human proteins and protein kinases normalization.

    PubMed

    Subramani, Suresh; Raja, Kalpana; Natarajan, Jeyakumar

    2014-02-01

    The task of recognizing and normalizing protein name mentions in biomedical literature is a challenging task and important for text mining applications such as protein-protein interactions, pathway reconstruction and many more. In this paper, we present ProNormz, an integrated approach for human proteins (HPs) tagging and normalization. In Homo sapiens, a greater number of biological processes are regulated by a large human gene family called protein kinases by post translational phosphorylation. Recognition and normalization of human protein kinases (HPKs) is considered to be important for the extraction of the underlying information on its regulatory mechanism from biomedical literature. ProNormz distinguishes HPKs from other HPs besides tagging and normalization. To our knowledge, ProNormz is the first normalization system available to distinguish HPKs from other HPs in addition to gene normalization task. ProNormz incorporates a specialized synonyms dictionary for human proteins and protein kinases, a set of 15 string matching rules and a disambiguation module to achieve the normalization. Experimental results on benchmark BioCreative II training and test datasets show that our integrated approach achieve a fairly good performance and outperforms more sophisticated semantic similarity and disambiguation systems presented in BioCreative II GN task. As a freely available web tool, ProNormz is useful to developers as extensible gene normalization implementation, to researchers as a standard for comparing their innovative techniques, and to biologists for normalization and categorization of HPs and HPKs mentions in biomedical literature. URL: http://www.biominingbu.org/pronormz. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. A-kinase anchoring proteins: scaffolding proteins in the heart

    PubMed Central

    Dodge-Kafka, Kimberly L.; Li, Jinliang; Kapiloff, Michael S.

    2011-01-01

    The pleiotropic cyclic nucleotide cAMP is the primary second messenger responsible for autonomic regulation of cardiac inotropy, chronotropy, and lusitropy. Under conditions of prolonged catecholaminergic stimulation, cAMP also contributes to the induction of both cardiac myocyte hypertrophy and apoptosis. The formation of localized, multiprotein complexes that contain different combinations of cAMP effectors and regulatory enzymes provides the architectural infrastructure for the specialization of the cAMP signaling network. Scaffolds that bind protein kinase A are called “A-kinase anchoring proteins” (AKAPs). In this review, we discuss recent advances in our understanding of how PKA is compartmentalized within the cardiac myocyte by AKAPs and how AKAP complexes modulate cardiac function in both health and disease. PMID:21856912

  16. Ca2+–calmodulin-dependent protein kinase II represses cardiac transcription of the L-type calcium channel α1C-subunit gene (Cacna1c) by DREAM translocation

    PubMed Central

    Ronkainen, Jarkko J; Hänninen, Sandra L; Korhonen, Topi; Koivumäki, Jussi T; Skoumal, Reka; Rautio, Sini; Ronkainen, Veli-Pekka; Tavi, Pasi

    2011-01-01

    Abstract Recent studies have demonstrated that changes in the activity of calcium–calmodulin-dependent protein kinase II (CaMKII) induce a unique cardiomyocyte phenotype through the regulation of specific genes involved in excitation–contraction (E–C)-coupling. To explain the transcriptional effects of CaMKII we identified a novel CaMKII-dependent pathway for controlling the expression of the pore-forming α-subunit (Cav1.2) of the L-type calcium channel (LTCC) in cardiac myocytes. We show that overexpression of either cytosolic (δC) or nuclear (δB) CaMKII isoforms selectively downregulate the expression of the Cav1.2. Pharmacological inhibition of CaMKII activity induced measurable changes in LTCC current density and subsequent changes in cardiomyocyte calcium signalling in less than 24 h. The effect of CaMKII on the α1C-subunit gene (Cacna1c) promoter was abolished by deletion of the downstream regulatory element (DRE), which binds transcriptional repressor DREAM/calsenilin/KChIP3. Imaging DREAM–GFP (green fluorescent protein)-expressing cardiomyocytes showed that CaMKII potentiates the calcium-induced nuclear translocation of DREAM. Thereby CaMKII increases DREAM binding to the DRE consensus sequence of the endogenous Cacna1c gene. By mathematical modelling we demonstrate that the LTCC downregulation through the Ca2+–CaMKII–DREAM cascade constitutes a physiological feedback mechanism enabling cardiomyocytes to adjust the calcium intrusion through LTCCs to the amount of intracellular calcium detected by CaMKII. PMID:21486818

  17. ET-1-induced growth promoting responses involving ERK1/2 and PKB signaling and Egr-1 expression are mediated by Ca2+/CaM-dependent protein kinase-II in vascular smooth muscle cells.

    PubMed

    Bouallegue, Ali; Simo Cheyou, Estelle R; Anand-Srivastava, Madhu B; Srivastava, Ashok K

    2013-12-01

    Endothelin-1 (ET-1), a potent vasoactive peptide with a pathogenic role in vascular diseases, has been shown to induce the activation of ERK1/2, PKB and the expression of a transcriptional regulator, the early growth response 1 (Egr-1), key mediators of hypertrophic and proliferative responses in vascular smooth muscle cells (VSMC). We have demonstrated earlier that ET-1 requires H2O2 generation to activate these signaling pathways and Ca2+, calmodulin (CaM) and Ca2+/CaM-dependent protein kinase II (CaMKII), play a critical role to trigger H2O2-induced effects in VSMC. However, an involvement of CaMKII in mediating ET-1-induced responses in VSMC remains unknown. Therefore, by utilizing pharmacological inhibitors of CaM, CaMKII, a CaMKII inhibitor peptide and CaMKII knockdown techniques, we have investigated the contribution of CaM and CaMKII in ET-1-induced ERK1/2 and PKB signaling, Egr-1 expression and hypertrophic and proliferative responses in VSMC. W-7 and calmidazolium, antagonists of CaM, as well as KN-93, an inhibitor of CaMKII activity, attenuated ET-1-induced ERK1/2 and PKB phosphorylation. In addition, transfection of VSMC with a CaMKII inhibitory peptide suppressed ET-1-evoked ERK1/2 and PKB phosphorylation. Similarly, siRNA-mediated CaMKII silencing reduced ET-1-produced ERK1/2 and PKB phosphorylation. CaM and CaMKII blockade also significantly lowered the ET-1-induced protein and DNA synthesis as well as Egr-1 expression. These findings demonstrate that CaMKII plays a critical role in ET-1-induced growth promoting signaling pathways as well as hypertrophic and proliferative responses in VSMC. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Ca2+-calmodulin-dependent protein kinase II represses cardiac transcription of the L-type calcium channel alpha(1C)-subunit gene (Cacna1c) by DREAM translocation.

    PubMed

    Ronkainen, Jarkko J; Hänninen, Sandra L; Korhonen, Topi; Koivumäki, Jussi T; Skoumal, Reka; Rautio, Sini; Ronkainen, Veli-Pekka; Tavi, Pasi

    2011-06-01

    Recent studies have demonstrated that changes in the activity of calcium-calmodulin-dependent protein kinase II (CaMKII) induce a unique cardiomyocyte phenotype through the regulation of specific genes involved in excitation-contraction (E-C)-coupling. To explain the transcriptional effects of CaMKII we identified a novel CaMKII-dependent pathway for controlling the expression of the pore-forming α-subunit (Cav1.2) of the L-type calcium channel (LTCC) in cardiac myocytes. We show that overexpression of either cytosolic (δC) or nuclear (δB) CaMKII isoforms selectively downregulate the expression of the Cav1.2. Pharmacological inhibition of CaMKII activity induced measurable changes in LTCC current density and subsequent changes in cardiomyocyte calcium signalling in less than 24 h. The effect of CaMKII on the α1C-subunit gene (Cacna1c) promoter was abolished by deletion of the downstream regulatory element (DRE), which binds transcriptional repressor DREAM/calsenilin/KChIP3. Imaging DREAM-GFP (green fluorescent protein)-expressing cardiomyocytes showed that CaMKII potentiates the calcium-induced nuclear translocation of DREAM. Thereby CaMKII increases DREAM binding to the DRE consensus sequence of the endogenous Cacna1c gene. By mathematical modelling we demonstrate that the LTCC downregulation through the Ca2+-CaMKII-DREAM cascade constitutes a physiological feedback mechanism enabling cardiomyocytes to adjust the calcium intrusion through LTCCs to the amount of intracellular calcium detected by CaMKII.

  19. Protein Kinase Activity of Phosphoinositide 3-Kinase Regulates Cytokine-Dependent Cell Survival

    PubMed Central

    Green, Benjamin D.; Barry, Emma F.; Ma, Yuefang; Woodcock, Joanna; Fitter, Stephen; Zannettino, Andrew C. W.; Pitson, Stuart M.; Hughes, Timothy P.; Lopez, Angel F.; Shepherd, Peter R.; Wei, Andrew H.; Ekert, Paul G.; Guthridge, Mark A.

    2013-01-01

    The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K), promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML) cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3) and granulocyte macrophage colony stimulating factor (GM-CSF) receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting such pathways in

  20. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity.

    PubMed

    Oh, Man-Ho; Wu, Xia; Kim, Hyoung Seok; Harper, Jeffrey F; Zielinski, Raymond E; Clouse, Steven D; Huber, Steven C

    2012-11-30

    Although calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases, autophosphorylation on tyrosine residues was observed for soybean CDPKβ and several Arabidopsis isoforms (AtCPK4 and AtCPK34). We identified Ser-8, Thr-17, Tyr-24 (in the kinase domain), Ser-304, and Ser-358 as autophosphorylation sites of His(6)-GmCDPKβ. Overall autophosphorylation increased kinase activity with synthetic peptides, but autophosphorylation of Tyr-24 appears to attenuate kinase activity based on studies with the Y24F directed mutant. While much remains to be done, it is clear that several CDPKs are dual-specificity kinases, which raises the possibility that phosphotyrosine signaling may play a role in Ca(2+)/CDPK-mediated processes. Published by Elsevier B.V.

  1. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  2. Unveiling the Novel Dual Specificity Protein Kinases in Bacillus anthracis

    PubMed Central

    Arora, Gunjan; Sajid, Andaleeb; Arulanandh, Mary Diana; Singhal, Anshika; Mattoo, Abid R.; Pomerantsev, Andrei P.; Leppla, Stephen H.; Maiti, Souvik; Singh, Yogendra

    2012-01-01

    Dual specificity protein kinases (DSPKs) are unique enzymes that can execute multiple functions in the cell, which are otherwise performed exclusively by serine/threonine and tyrosine protein kinases. In this study, we have characterized the protein kinases Bas2152 (PrkD) and Bas2037 (PrkG) from Bacillus anthracis. Transcriptional analyses of these kinases showed that they are expressed in all phases of growth. In a serendipitous discovery, both kinases were found to be DSPKs. PrkD was found to be similar to the eukaryotic dual specificity Tyr phosphorylation-regulated kinase class of dual specificity kinases, which autophosphorylates on Ser, Thr, and Tyr residues and phosphorylates Ser and Thr residues on substrates. PrkG was found to be a bona fide dual specificity protein kinase that mediates autophosphorylation and substrate phosphorylation on Ser, Thr, and Tyr residues. The sites of phosphorylation in both of the kinases were identified through mass spectrometry. Phosphorylation on Tyr residues regulates the kinase activity of PrkD and PrkG. PrpC, the only known Ser/Thr protein phosphatase, was also found to possess dual specificity. Genistein, a known Tyr kinase inhibitor, was found to inhibit the activities of PrkD and PrkG and affect the growth of B. anthracis cells, indicating a possible role of these kinases in cell growth and development. In addition, the glycolytic enzyme pyruvate kinase was found to be phosphorylated by PrkD on Ser and Thr residues but not by PrkG. Thus, this study provides the first evidence of DSPKs in B. anthracis that belong to different classes and have different modes of regulation. PMID:22711536

  3. Conventional protein kinase C isoforms mediate phorbol ester-induced lysophosphatidic acid LPA1 receptor phosphorylation.

    PubMed

    Hernández-Méndez, Aurelio; Alcántara-Hernández, Rocío; Acosta-Cervantes, Germán C; Martínez-Ortiz, Javier; Avendaño-Vázquez, S Eréndira; García-Sáinz, J Adolfo

    2014-01-15

    Using C9 cells stably expressing LPA1 receptors fused to the enhanced green fluorescent protein, it was observed that activation of protein kinase C induced a rapid and strong increase in the phosphorylation state of these receptors. Overnight incubation with phorbol esters markedly decreased the amount of conventional (α, βI, βII and γ) and novel (δ) but not atypical (ζ) immunodetected PKC isoforms, this treatment blocks the action of protein kinase on receptor function and phosphorylation. Bis-indolylmaleimide I a general, non-subtype selective protein kinase C inhibitor, and Gö 6976, selective for the isoforms α and β, were also able to block LPA1 receptor desensitization and phosphorylation; hispidin, isoform β-selective blocker partially avoided receptor desensitization. Expression of dominant-negative protein kinase C α or β II mutants and knocking down the expression of these kinase isozymes markedly decreased phorbol ester-induced LPA1 receptor phosphorylation without avoiding receptor desensitization. This effect was blocked by bis-indolyl-maleimide and Gö 6976, suggesting that these genetic interventions were not completely effective. It was also observed that protein kinase C α and β II isozymes co-immunoprecipitate with LPA1 receptors and that such an association was further increased by cell treatments with phorbol esters or lysophosphatidic acid. Our data suggest that conventional protein kinase C α and β isozymes modulate LPA1 receptor phosphorylation state. Receptor desensitization appears to be a more complex process that might involve additional elements. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Inhibition of dihydroceramide desaturase activity by the sphingosine kinase inhibitor SKI II.

    PubMed

    Cingolani, Francesca; Casasampere, Mireia; Sanllehí, Pol; Casas, Josefina; Bujons, Jordi; Fabrias, Gemma

    2014-08-01

    Sphingosine kinase inhibitor (SKI) II has been reported as a dual inhibitor of sphingosine kinases (SKs) 1 and 2 and has been extensively used to prove the involvement of SKs and sphingosine-1-phosphate (S1P) in cellular processes. Dihydroceramide desaturase (Des1), the last enzyme in the de novo synthesis of ceramide (Cer), regulates the balance between dihydroceramides (dhCers) and Cers. Both SKs and Des1 have interest as therapeutic targets. Here we show that SKI II is a noncompetitive inhibitor (Ki = 0.3 μM) of Des1 activity with effect also in intact cells without modifying Des1 protein levels. Molecular modeling studies support that the SKI II-induced decrease in Des1 activity could result from inhibition of NADH-cytochrome b5 reductase. SKI II, but not the SK1-specific inhibitor PF-543, provoked a remarkable accumulation of dhCers and their metabolites, while both SKI II and PF-543 reduced S1P to almost undetectable levels. SKI II, but not PF543, reduced cell proliferation with accumulation of cells in the G0/G1 phase. SKI II, but not PF543, induced autophagy. These overall findings should be taken into account when using SKI II as a pharmacological tool, as some of the effects attributed to decreased S1P may actually be caused by augmented dhCers and/or their metabolites.

  5. Crystal Structures of Two Aminoglycoside Kinases Bound with a Eukaryotic Protein Kinase Inhibitor

    PubMed Central

    Hwang, Jiyoung; Berghuis, Albert M.

    2011-01-01

    Antibiotic resistance is recognized as a growing healthcare problem. To address this issue, one strategy is to thwart the causal mechanism using an adjuvant in partner with the antibiotic. Aminoglycosides are a class of clinically important antibiotics used for the treatment of serious infections. Their usefulness has been compromised predominantly due to drug inactivation by aminoglycoside-modifying enzymes, such as aminoglycoside phosphotransferases or kinases. These kinases are structurally homologous to eukaryotic Ser/Thr and Tyr protein kinases and it has been shown that some can be inhibited by select protein kinase inhibitors. The aminoglycoside kinase, APH(3′)-IIIa, can be inhibited by CKI-7, an ATP-competitive inhibitor for the casein kinase 1. We have determined that CKI-7 is also a moderate inhibitor for the atypical APH(9)-Ia. Here we present the crystal structures of CKI-7-bound APH(3′)-IIIa and APH(9)-Ia, the first structures of a eukaryotic protein kinase inhibitor in complex with bacterial kinases. CKI-7 binds to the nucleotide-binding pocket of the enzymes and its binding alters the conformation of the nucleotide-binding loop, the segment homologous to the glycine-rich loop in eurkaryotic protein kinases. Comparison of these structures with the CKI-7-bound casein kinase 1 reveals features in the binding pockets that are distinct in the bacterial kinases and could be exploited for the design of a bacterial kinase specific inhibitor. Our results provide evidence that an inhibitor for a subset of APHs can be developed in order to curtail resistance to aminoglycosides. PMID:21573013

  6. Protein kinase C phosphorylates AMP-activated protein kinase α1 Ser487

    PubMed Central

    Heathcote, Helen R.; Mancini, Sarah J.; Strembitska, Anastasiya; Jamal, Kunzah; Reihill, James A.; Palmer, Timothy M.; Gould, Gwyn W.; Salt, Ian P.

    2016-01-01

    The key metabolic regulator, AMP-activated protein kinase (AMPK), is reported to be down-regulated in metabolic disorders, but the mechanisms are poorly characterised. Recent studies have identified phosphorylation of the AMPKα1/α2 catalytic subunit isoforms at Ser487/491, respectively, as an inhibitory regulation mechanism. Vascular endothelial growth factor (VEGF) stimulates AMPK and protein kinase B (Akt) in cultured human endothelial cells. As Akt has been demonstrated to be an AMPKα1 Ser487 kinase, the effect of VEGF on inhibitory AMPK phosphorylation in cultured primary human endothelial cells was examined. Stimulation of endothelial cells with VEGF rapidly increased AMPKα1 Ser487 phosphorylation in an Akt-independent manner, without altering AMPKα2 Ser491 phosphorylation. In contrast, VEGF-stimulated AMPKα1 Ser487 phosphorylation was sensitive to inhibitors of protein kinase C (PKC) and PKC activation using phorbol esters or overexpression of PKC-stimulated AMPKα1 Ser487 phosphorylation. Purified PKC and Akt both phosphorylated AMPKα1 Ser487 in vitro with similar efficiency. PKC activation was associated with reduced AMPK activity, as inhibition of PKC increased AMPK activity and phorbol esters inhibited AMPK, an effect lost in cells expressing mutant AMPKα1 Ser487Ala. Consistent with a pathophysiological role for this modification, AMPKα1 Ser487 phosphorylation was inversely correlated with insulin sensitivity in human muscle. These data indicate a novel regulatory role of PKC to inhibit AMPKα1 in human cells. As PKC activation is associated with insulin resistance and obesity, PKC may underlie the reduced AMPK activity reported in response to overnutrition in insulin-resistant metabolic and vascular tissues. PMID:27784766

  7. Protein kinase Cη is targeted to lipid droplets.

    PubMed

    Suzuki, Michitaka; Iio, Yuri; Saito, Naoaki; Fujimoto, Toyoshi

    2013-04-01

    Protein kinase C (PKC) is a family of kinases that regulate numerous cellular functions. They are classified into three subfamilies, i.e., conventional PKCs, novel PKCs, and atypical PKCs, that have different domain structures. Generally, PKCs exist as a soluble protein in the cytosol in resting cells and they are recruited to target membranes upon stimulation. In the present study, we found that PKCη tagged with EGFP distributed in lipid droplets (LD) and induced a significant reduction in LD size. Two other novel PKCs, PKCδ and PKCε, also showed some concentration around LDs, but it was less distinct and less frequent than that of PKCη. Conventional and atypical PKCs (α, βII, γ, and ζ) did not show any preferential distribution around LDs. 1,2-Diacylglycerol, which can activate novel PKCs without an increase of Ca(2+) concentration, is the immediate precursor of triacylglycerol and exists in LDs. The present results suggest that PKCη modifies lipid metabolism by phosphorylating unidentified targets in LDs.

  8. Transphosphorylation of E. coli proteins during production of recombinant protein kinases provides a robust system to characterize kinase specificity

    USDA-ARS?s Scientific Manuscript database

    Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...

  9. Purification of catalytic domain of rat spleen p72syk kinase and its phosphorylation and activation by protein kinase C.

    PubMed Central

    Borowski, P; Heiland, M; Kornetzky, L; Medem, S; Laufs, R

    1998-01-01

    The catalytic domain of p72(syk) kinase (CDp72(syk)) was purified from a 30000 g particulate fraction of rat spleen. The purification procedure employed sequential chromatography on columns of DEAE-Sephacel and Superdex-200, and elution from HA-Ultrogel by chloride. The analysis of the final CDp72(syk) preparation by SDS/PAGE revealed a major silver-stained 40 kDa protein. The kinase was identified by covalent modification of its ATP-binding site with [14C]5'-fluorosulphonylbenzoyladenosine and by immunoblotting with a polyclonal antibody against the 'linker' region of p72(syk). By using poly(Glu4, Tyr1) as a substrate, the specific activity of the enzyme was determined as 18.5 nmol Pi/min per mg. Casein, histones H1 and H2B and myelin basic protein were efficiently phosphorylated by CDp72(syk). The kinase exhibited a limited ability to phosphorylate random polymers containing tyrosine residues. CDp72(syk) autophosphorylation activity was associated with an activation of the kinase towards exogenous substrates. The extent of activation was dependent on the substrates added. CDp72(syk) was phosphorylated by protein kinase C (PKC) on serine and threonine residues. With a newly developed assay method, we demonstrated that the PKC-mediated phosphorylation had a strong activating effect on the tyrosine kinase activity of CDp72(syk). Studies extended to conventional PKC isoforms revealed an isoform-dependent manner (alpha > betaI = betaII > gamma) of CDp72(syk) phosphorylation. The different phosphorylation efficiencies of the PKC isoforms closely correlated with the ability to enhance the tyrosine kinase activity. PMID:9531509

  10. Dual activators of Protein Kinase R (PKR) and Protein Kinase R Like Kinase (PERK) Identify Common and Divergent Catalytic Targets

    PubMed Central

    Ming, Jie; Sun, Hong; Cao, Peng; Fusco, Dahlene N.; Chung, Raymond T.; Chorev, Michael; Jin, Qi; Aktas, Bertal H.

    2013-01-01

    Chemical genetics has evolved into a powerful tool for studying gene function in normal- and patho-biology. PKR and PERK, two eukaryotic translation initiation factor 2 alpha (eIF2α) kinases, play critical roles in maintenance of cellular hemostasis, metabolic stability, and anti-viral defenses. Both kinases interact with and phosphorylate additional substrates including tumor suppressor p53 and nuclear protein 90. Loss of function of both kinases has been studied by reverse genetics and recently identified inhibitors. In contrast, activating probes for studying the role of catalytic activity of these kinases are not available. We identified a 3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5,7-dihydroxy-4H-chromen-4-one (DHBDC) as specific dual activator of PKR and PERK by screening a chemical library of 20,000 small molecules in a dual luciferase surrogate eIF2α phosphorylation assay. We present here extensive biological characterization and preliminary structure-activity relationship of DHBDC, which phosphorylate eIF2α by activating PKR and PERK but no other eIF2α kinases. These agents also activate downstream effectors of eIF2α phosphorylation; inducing CHOP and suppressing cyclin D1 expression and inhibiting cancer cell proliferation, all in a manner dependent on PKR and PERK. Consistent with the role of eIF2α phosphorylation in viral infection, DHBDC inhibits proliferation of human hepatitis C virus. Finally, DHBDC induces phosphorylation of Ikβα, and activates NF-κB pathway. Surprisingly, activation of NF-κB pathway is dependent on PERK but independent of PKR activity. These data indicate that DHBDC is an invaluable probe for elucidating the role of PKR and PERK in normal- and patho-biology. PMID:23784735

  11. Activation of cGMP-dependent protein kinase by protein kinase C.

    PubMed

    Hou, Yali; Lascola, Judith; Dulin, Nickolai O; Ye, Richard D; Browning, Darren D

    2003-05-09

    The cGMP-dependent protein kinases (PKG) are emerging as important components of mainstream signal transduction pathways. Nitric oxide-induced cGMP formation by stimulation of soluble guanylate cyclase is generally accepted as being the most widespread mechanism underlying PKG activation. In the present study, PKG was found to be a target for phorbol 12-myristate 13-acetate (PMA)-responsive protein kinase C (PKC). PKG1alpha became phosphorylated in HEK-293 cells stimulated with PMA and also in vitro using purified components. PKC-dependent phosphorylation was found to activate PKG as measured by phosphorylation of vasodilator-stimulated phosphoprotein, and by in vitro kinase assays. Although there are 11 potential PKC substrate recognition sites in PKG1alpha, threonine 58 was examined due to its proximity to the pseudosubstrate domain. Antibodies generated against the phosphorylated form of this region were used to demonstrate phosphorylation in response to PMA treatment of the cells with kinetics similar to vasodilator-stimulated phosphoprotein phosphorylation. A phospho-mimetic mutation at this site (T58E) generated a partially activated PKG that was more sensitive to cGMP levels. A phospho-null mutation (T58A) revealed that this residue is important but not sufficient for PKG activation by PKC. Taken together, these findings outline a novel signal transduction pathway that links PKC stimulation with cyclic nucleotide-independent activation of PKG.

  12. Regulation of tomato Prf by Pto-like protein kinases.

    PubMed

    Mucyn, Tatiana S; Wu, Ai-Jiuan; Balmuth, Alexi L; Arasteh, Julia Maryam; Rathjen, John P

    2009-04-01

    Tomato Prf encodes a nucleotide-binding domain shared by Apaf-1, certain R proteins, and CED-4 fused to C-terminal leucine-rich repeats (NBARC-LRR) protein that is required for bacterial immunity to Pseudomonas syringae and sensitivity to the organophosphate fenthion. The signaling pathways involve two highly related protein kinases. Pto kinase mediates direct recognition of the bacterial effector proteins AvrPto or AvrPtoB. Fen kinase is required for fenthion sensitivity and recognition of bacterial effectors related to AvrPtoB. The role of Pto and its association with Prf has been characterized but Fen is poorly described. We show that, similar to Pto, Fen requires N-myristoylation and kinase activity for signaling and interacts with the N-terminal domain of Prf. Thus, the mechanisms of activation of Prf by the respective protein kinases are similar. Prf-Fen interaction is underlined by coregulatory mechanisms in which Prf negatively regulates Fen, most likely by controlling kinase activity. We further characterized negative regulation of Prf by Pto, and show that regulation is mediated by the previously described negative regulatory patch. Remarkably, the effectors released negative regulation of Prf in a manner dependent on Pto kinase activity. The data suggest a model in which Prf associates generally with Pto-like kinases in tightly regulated complexes, which are activated by effector-mediated disruption of negative regulation. Release of negative regulation may be a general feature of activation of NBARC-LRR proteins by cognate effectors.

  13. Identification and characterization of a novel sucrose-non-fermenting protein kinase/AMP-activated protein kinase-related protein kinase, SNARK.

    PubMed Central

    Lefebvre, D L; Bai, Y; Shahmolky, N; Sharma, M; Poon, R; Drucker, D J; Rosen, C F

    2001-01-01

    Subtraction hybridization after the exposure of keratinocytes to ultraviolet radiation identified a differentially expressed cDNA that encodes a protein of 630 amino acid residues possessing significant similarity to the catalytic domain of the sucrose-non-fermenting protein kinase (SNF1)/AMP-activated protein kinase (AMPK) family of serine/threonine protein kinases. Northern blotting and reverse-transcriptase-mediated PCR demonstrated that mRNA transcripts for the SNF1/AMPK-related kinase (SNARK) were widely expressed in rodent tissues. The SNARK gene was localized to human chromosome 1q32 by fluorescent in situ hybridization. SNARK was translated in vitro to yield a single protein band of approx. 76 kDa; Western analysis of transfected baby hamster kidney (BHK) cells detected two SNARK-immunoreactive bands of approx. 76-80 kDa. SNARK was capable of autophosphorylation in vitro; immunoprecipitated SNARK exhibited phosphotransferase activity with the synthetic peptide substrate HMRSAMSGLHLVKRR (SAMS) as a kinase substrate. SNARK activity was significantly increased by AMP and 5-amino-4-imidazolecarboxamide riboside (AICAriboside) in rat keratinocyte cells, implying that SNARK might be activated by an AMPK kinase-dependent pathway. Furthermore, glucose deprivation increased SNARK activity 3-fold in BHK fibroblasts. These findings identify SNARK as a glucose- and AICAriboside-regulated member of the AMPK-related gene family that represents a new candidate mediator of the cellular response to metabolic stress. PMID:11284715

  14. Insulin-like growth factor II receptor is phosphorylated by a tyrosine kinase in adipocyte plasma membranes

    SciTech Connect

    Corvera, S.; Whitehead, R.E.; Mottola, C.; Czech, M.P.

    1986-06-15

    Incorporation of /sup 32/P from (gamma-32P)ATP into tyrosine residues of the insulin-like growth factor (IGF)-II receptor was observed in a Triton X-100-insoluble fraction of rat adipocyte plasma membranes. IGF-II receptor phosphorylation proceeded to a stoichiometry of approximately 0.5 mol of phosphate/IGF-II binding site after 10 min of incubation at 4 degrees C. A Km for ATP of 6 microM was calculated for this phosphorylation reaction. Addition of IGF-II caused an approximately 2-fold increase in tyrosine phosphorylation of the IGF-II receptor in this preparation. In contrast, phosphorylation of angiotensin II by the Triton X-100 washed membranes was not stimulated by IGF-II. Incubation of purified receptor immobilized on IGF-II agarose or of receptor-enriched low density microsomal membranes with (gamma-32P)ATP did not result in appreciable incorporation of (/sup 32/P)phosphate into the IGF-II receptor nor into exogenous substrates. These data suggest that the IGF-II receptor is not a tyrosine protein kinase capable of autophosphorylation but that it is a substrate for a tyrosine protein kinase endogenous to the adipocyte plasma membrane. The stimulatory effect of IGF-II on the tyrosine phosphorylation of its receptor may be due to a conformational change which converts the receptor to a better substrate for this tyrosine kinase.

  15. Binding of exogenous brain protein kinase C to liver nuclei

    SciTech Connect

    Misra, U.K.; Wolf, M.; Besterman, J.; Cuatrecasas, P.; Sahyoun, N.

    1986-05-01

    Protein kinase C is found both in the cytosol and bound to membranes. Binding of the enzyme to plasma membranes is controlled by calcium whereas enzyme activators regulate both its membrane binding and enzyme catalysis. Activation of protein kinase C has been implicated in several regulatory processes including gene expression. Accordingly, the possibility of direct interaction of protein kinase C with the nucleus was examined utilizing /sup 3/H-PDBu binding to detect the enzyme. Purified protein kinase C from rat brain could bind to purified rat liver nuclei at 4/sup 0/C or at 21/sup 0/C, and the reaction was completed by 20 min. The binding was linearly dependent on protein kinase C concentration and required free Ca/sup 2 +/ with a K/sub m/sub app// of 0.5 ..mu..M. Chelation of Ca/sup 2 +/ with EGTA resulted in a rapid dissociation of protein kinase C from the nuclei. Differential extraction experiments suggested that about 50% of the enzyme was bound to chromatin and 25% was associated with the nuclear matrix. Moreover, protein kinase C bound to nuclei was able to phosphorylate several endogenous nuclear substrates, including chromatin proteins, in a Ca/sup 2 +/ phosphatidyl serine dependent reaction.

  16. Developing irreversible inhibitors of the protein kinase cysteinome

    PubMed Central

    Liu, Qingsong; Sabnis, Yogesh; Zhao, Zheng; Zhang, Tinghu; Buhrlage, Sara J.; Jones, Lyn H.; Gray, Nathanael S.

    2013-01-01

    Protein kinases are a large family of approximately 530 highly conserved enzymes that transfer a γ-phosphate group from ATP to a variety of amino acid residues such as tyrosine, serine and threonine which serves as a ubiquitous mechanism for cellular signal transduction. The clinical success of a number of kinase-directed drugs and the frequent observation of disease causing mutations in protein kinases suggest that a large number of kinases may represent therapeutically relevant targets. To-date the majority of clinical and preclinical kinase inhibitors are ATP-competitive, non-covalent inhibitors that achieve selectivity through recognition of unique features of particular protein kinases. Recently there has been renewed interest in the development of irreversible inhibitors that form covalent bonds with cysteine or other nucleophilic residues in the ATP-binding pocket. Irreversible kinase inhibitors have a number of potential advantages including prolonged pharmacodynamics, suitability for rational design, high potency and ability to validate pharmacological specificity through mutation of the reactive cysteine residue. Here we review recent efforts to develop cysteine-targeted irreversible protein kinase inhibitors and discuss their modes of recognizing the ATP-binding pocket and their biological activity profiles. In addition, we provided an informatics assessment of the potential ‘kinase-cysteinome’ and discuss strategies for the efficient development of new covalent inhibitors. PMID:23438744

  17. Phospholipase D1 modulates protein kinase C-epsilon in retinal pigment epithelium cells during inflammatory response.

    PubMed

    Tenconi, Paula E; Giusto, Norma M; Salvador, Gabriela A; Mateos, Melina V

    2016-12-01

    Inflammation is a key factor in the pathogenesis of several retinal diseases. In view of the essential role of the retinal pigment epithelium in visual function, elucidating the molecular mechanisms elicited by inflammation in this tissue could provide new insights for the treatment of retinal diseases. The aim of the present work was to study protein kinase C signaling and its modulation by phospholipases D in ARPE-19 cells exposed to lipopolysaccharide. This bacterial endotoxin induced protein kinase C-α/βII phosphorylation and protein kinase-ε translocation to the plasma membrane in ARPE-19 cells. Pre-incubation with selective phospholipase D inhibitors demonstrated that protein kinase C-α phosphorylation depends on phospholipase D1 and 2 while protein kinase C-ε activation depends only on phospholipase D1. The inhibition of α and β protein kinase C isoforms with Go 6976 did not modify the reduced mitochondrial function induced by lipopolysaccharide. On the contrary, the inhibition of protein kinase C-α, β and ε with Ro 31-8220 potentiated the decrease in mitochondrial function. Moreover, inhibition of protein kinase C-ε reduced Bcl-2 expression and Akt activation and increased Caspase-3 cleavage in cells treated or not with lipopolysaccharide. Our results demonstrate that through protein kinase C-ε regulation, phospholipase D1 protects retinal pigment epithelium cells from lipopolysaccharide-induced damage.

  18. Protein kinase C as a tumor suppressor.

    PubMed

    Newton, Alexandra C

    2017-05-02

    Protein kinase C (PKC) has historically been considered an oncoprotein. This stems in large part from the discovery in the early 1980s that PKC is directly activated by tumor-promoting phorbol esters. Yet three decades of clinical trials using PKC inhibitors in cancer therapies not only failed, but in some cases worsened patient outcome. Why has targeting PKC in cancer eluded successful therapies? Recent studies looking at the disease for insight provide an explanation: cancer-associated mutations in PKC are generally loss-of-function (LOF), supporting an unexpected function as tumor suppressors. And, contrasting with LOF mutations in cancer, germline mutations that enhance the activity of some PKC isozymes are associated with degenerative diseases such as Alzheimer's disease. This review provides a background on the diverse mechanisms that ensure PKC is only active when, where, and for the appropriate duration needed and summarizes recent findings converging on a paradigm reversal: PKC family members generally function by suppressing, rather than promoting, survival signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The specificities of protein kinase inhibitors: an update.

    PubMed Central

    Bain, Jenny; McLauchlan, Hilary; Elliott, Matthew; Cohen, Philip

    2003-01-01

    We have previously examined the specificities of 28 commercially available compounds, reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases [Davies, Reddy, Caivano and Cohen (2000) Biochem. J. 351, 95-105]. In the present study, we have extended this analysis to a further 14 compounds. Of these, indirubin-3'-monoxime, SP 600125, KT 5823 and ML-9 were found to inhibit a number of protein kinases and conclusions drawn from their use in cell-based assays are likely to be erroneous. Kenpaullone, Alsterpaullone, Purvalanol, Roscovitine, pyrazolopyrimidine 1 (PP1), PP2 and ML-7 were more specific, but still inhibited two or more protein kinases with similar potency. Our results suggest that the combined use of Roscovitine and Kenpaullone may be useful for identifying substrates and physiological roles of cyclin-dependent protein kinases, whereas the combined use of Kenpaullone and LiCl may be useful for identifying substrates and physiological roles of glycogen synthase kinase 3. The combined use of SU 6656 and either PP1 or PP2 may be useful for identifying substrates of Src family members. Epigallocatechin 3-gallate, one of the main polyphenolic constituents of tea, inhibited two of the 28 protein kinases in the panel, dual-specificity, tyrosine-phosphorylated and regulated kinase 1A (DYRK1A; IC(50)=0.33 microM) and p38-regulated/activated kinase (PRAK; IC(50)=1.0 microM). PMID:12534346

  20. Auto-phosphorylation Represses Protein Kinase R Activity.

    PubMed

    Wang, Die; de Weerd, Nicole A; Willard, Belinda; Polekhina, Galina; Williams, Bryan R G; Sadler, Anthony J

    2017-03-10

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity.

  1. Auto-phosphorylation Represses Protein Kinase R Activity

    PubMed Central

    Wang, Die; de Weerd, Nicole A.; Willard, Belinda; Polekhina, Galina; Williams, Bryan R. G.; Sadler, Anthony J.

    2017-01-01

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity. PMID:28281686

  2. Fragile X Mental Retardation Protein and Dendritic Local Translation of the Alpha Subunit of the Calcium/Calmodulin-Dependent Kinase II Messenger RNA Are Required for the Structural Plasticity Underlying Olfactory Learning.

    PubMed

    Daroles, Laura; Gribaudo, Simona; Doulazmi, Mohamed; Scotto-Lomassese, Sophie; Dubacq, Caroline; Mandairon, Nathalie; Greer, Charles August; Didier, Anne; Trembleau, Alain; Caillé, Isabelle

    2016-07-15

    In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Low Dose Ultraviolet B Irradiation Increases Hyaluronan Synthesis in Epidermal Keratinocytes via Sequential Induction of Hyaluronan Synthases Has1–3 Mediated by p38 and Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) Signaling*

    PubMed Central

    Rauhala, Leena; Hämäläinen, Lasse; Salonen, Pauliina; Bart, Geneviève; Tammi, Markku; Pasonen-Seppänen, Sanna; Tammi, Raija

    2013-01-01

    Hyaluronan, a major epidermal extracellular matrix component, responds strongly to different kinds of injuries. This also occurs by UV radiation, but the mechanisms involved are poorly understood. The effects of a single ultraviolet B (UVB) exposure on hyaluronan content and molecular mass, and expression of genes involved in hyaluronan metabolism were defined in monolayer and differentiated, organotypic three-dimensional cultures of rat epidermal keratinocytes. The signals regulating the response were characterized using specific inhibitors and Western blotting. In monolayer cultures, UVB increased hyaluronan synthase Has1 mRNA already 4 h postexposure, with a return to control level by 24 h. In contrast, Has2 and Has3 were persistently elevated from 8 h onward. Silencing of Has2 and especially Has3 decreased the UVB-induced accumulation of hyaluronan. p38 and Ca2+/calmodulin-dependent protein kinase II pathways were found to be involved in the UVB-induced up-regulation of Has2 and Has3 expression, respectively, and their inhibition reduced hyaluronan deposition. However, the expressions of the hyaluronan-degrading enzymes Hyal1 and Hyal2 and the hyaluronan receptor Cd44 were also up-regulated by UVB. In organotypic cultures, UVB treatment also resulted in increased expression of both Has and Hyal genes and shifted hyaluronan toward a smaller size range. Histochemical stainings indicated localized losses of hyaluronan in the epidermis. The data show that exposure of keratinocytes to acute, low dose UVB increases hyaluronan synthesis via up-regulation of Has2 and Has3. The simultaneously enhanced catabolism of hyaluronan demonstrates the complexity of the UVB-induced changes. Nevertheless, enhanced hyaluronan metabolism is an important part of the adaptation of keratinocytes to radiation injury. PMID:23645665

  4. Endothelial thrombomodulin induces Ca2+ signals and nitric oxide synthesis through epidermal growth factor receptor kinase and calmodulin kinase II.

    PubMed

    David-Dufilho, Monique; Millanvoye-Van Brussel, Elisabeth; Topal, Gokce; Walch, Laurence; Brunet, Annie; Rendu, Francine

    2005-10-28

    Endothelial membrane-bound thrombomodulin is a high affinity receptor for thrombin to inhibit coagulation. We previously demonstrated that the thrombin-thrombomodulin complex restrains cell proliferation mediated through protease-activated receptor (PAR)-1. We have now tested the hypothesis that thrombomodulin transduces a signal to activate the endothelial nitric-oxide synthase (NOS3) and to modulate G protein-coupled receptor signaling. Cultured human umbilical vein endothelial cells were stimulated with thrombin or a mutant of thrombin that binds to thrombomodulin and has no catalytic activity on PAR-1. Thrombin and its mutant dose dependently activated NO release at cell surface. Pretreatment with anti-thrombomodulin antibody suppressed NO response to the mutant and to low thrombin concentration and reduced by half response to high concentration. Thrombin receptor-activating peptide that only activates PAR-1 and high thrombin concentration induced marked biphasic Ca2+ signals with rapid phosphorylation of PLC(beta3) and NOS3 at both serine 1177 and threonine 495. The mutant thrombin evoked a Ca2+ spark and progressive phosphorylation of Src family kinases at tyrosine 416 and NOS3 only at threonine 495. It activated rapid phosphatidylinositol-3 kinase-dependent NO synthesis and phosphorylation of epidermal growth factor receptor and calmodulin kinase II. Complete epidermal growth factor receptor inhibition only partly reduced the activation of phospholipase Cgamma1 and NOS3. Prestimulation of thrombomodulin did not affect NO release but reduced Ca2+ responses to thrombin and histamine, suggesting cross-talks between thrombomodulin and G protein-coupled receptors. This is the first demonstration of an outside-in signal mediated by the cell surface thrombomodulin receptor to activate NOS3 through tyrosine kinase-dependent pathway. This signaling may contribute to thrombomodulin function in thrombosis, inflammation, and atherosclerosis.

  5. Protein kinase C-associated kinase can activate NFkappaB in both a kinase-dependent and a kinase-independent manner.

    PubMed

    Moran, Stewart T; Haider, Khaleda; Ow, Yongkai; Milton, Peter; Chen, Luojing; Pillai, Shiv

    2003-06-13

    Protein kinase C-associated kinase (PKK, also known as RIP4/DIK) activates NFkappaB when overexpressed in cell lines and is required for keratinocyte differentiation in vivo. However, very little is understood about the factors upstream of PKK or how PKK activates NFkappaB. Here we show that certain catalytically inactive mutants of PKK can activate NFkappaB, although to a lesser degree than wild type PKK. The deletion of specific domains of wild type PKK diminishes the ability of this enzyme to activate NFkappaB; the same deletions made on a catalytically inactive PKK background completely ablate NFkappaB activation. PKK may be phosphorylated by two specific mitogen-activated protein kinase kinase kinases, MEKK2 and MEKK3, and this interaction may in part be mediated through a critical activation loop residue, Thr184. Catalytically inactive PKK mutants that block phorbol ester-induced NFkappaB activation do not interfere with, but unexpectedly enhance, the activation of NFkappaB by these two mitogen-activated protein kinase kinase kinases. Taken together, these data indicate that PKK may function in both a kinase-dependent as well as a kinase-independent manner to activate NFkappaB.

  6. Activation of fat cell adenylate cyclase by protein kinase C

    SciTech Connect

    Naghshineh, S.; Noguchi, M.; Huang, K.P.; Londos, C.

    1986-05-01

    Purified protein kinase C (C-kinase) from guinea pig pancreas and rat brain stimulated adenylate cyclase activity in purified rat adipocyte membranes. Cyclase stimulation occurred over 100 to 1000 mU/ml of C-kinase activity, required greater than 10 ..mu..M calcium, proceeded without a lag, was not readily reversible, and required no exogenous phospholipid. Moreover, C-kinase inhibitors, such as chlorpromazine and palmitoyl carnitine, inhibited selectively adenylate cyclase which was activated by C-kinase and calcium. Depending on assay conditions, 10 nM 12-0-tetradecanoylphorbol-13-acetate (TPA) either enhanced or was required for kinase action on cyclase. Also, TPA plus calcium promoted the quantitative association of C-kinase with membranes. Adenylate cyclase activation by C-kinase was seen both in the presence and absence of exogenous GTP, indicating that the kinase effect does not result from an action on the GTP-binding, inhibitory regulatory component (N/sub i/) of the cyclase system. Moreover, the kinase effect was seen in the presence of non-phosphorylating ATP analogs, such as AppNHp and AppCH/sub 2/p, suggesting that the effects of C-kinase described herein may result from association with, rather than phosphorylation of, adenylate cyclase.

  7. In the rostral ventrolateral medulla, the 70-kDa heat shock protein (HSP70), but not HSP90, confers neuroprotection against fatal endotoxemia via augmentation of nitric-oxide synthase I (NOS I)/protein kinase G signaling pathway and inhibition of NOS II/peroxynitrite cascade.

    PubMed

    Li, Faith C H; Chan, Julie Y H; Chan, Samuel H H; Chang, Alice Y W

    2005-07-01

    Heat shock proteins (HSPs) represent a group of highly conserved intracellular proteins that participate in protective adaptation against cellular stress. We evaluated the neuroprotective role of the 70-kDa HSP (HSP70) and the 90-kDa HSP (HSP90) at the rostral ventrolateral medulla (RVLM), the medullary origin of sympathetic vasomotor tone, during fatal endotoxemia. In Sprague-Dawley rats maintained under propofol anesthesia, Escherichia coli lipopolysaccharide (30 mg/kg, i.v.) induced a decrease (phase I), followed by an increase (phase II; "pro-life" phase) and a secondary decrease (phase III; "pro-death" phase) in the power density of the vasomotor component of systemic arterial pressure spectrum, along with progressive hypotension or bradycardia. Proteomic and Western blot analyses revealed that whereas HSP70 expression in the RVLM was significantly augmented during phases I and II and returned to baseline during phase III endotoxemia, HSP90 protein expression remained constant. The increase in HSP70 level was significantly blunted on pretreatment with microinjection of the transcription inhibitor actinomycin D or protein synthesis inhibitor cycloheximide into the bilateral RVLM. Functional blockade of HSP70 in the RVLM by an anti-HSP70 antiserum or prevention of synthesis by an antisense hsp70 oligonucleotide exacerbated mortality or potentiated the cardiovascular depression during experimental endotoxemia, alongside significantly reduced nitric-oxide synthase (NOS) I or protein kinase G (PKG) level or augmented NOS II or peroxynitrite level in the RVLM. We conclude that whereas HSP90 is ineffective, de novo synthesis of HSP70 in the RVLM may confer neuroprotection during fatal endotoxemia by preventing cardiovascular depression via enhancing the sympathoexcitatory NOS I/PKG signaling pathway and inhibiting the sympathoinhibitory NOS II/peroxynitrite cascade in the RVLM.

  8. The Link between Protein Kinase CK2 and Atypical Kinase Rio1

    PubMed Central

    Kubiński, Konrad; Masłyk, Maciej

    2017-01-01

    The atypical kinase Rio1 is widespread in many organisms, ranging from Archaebacteria to humans, and is an essential factor in ribosome biogenesis. Little is known about the protein substrates of the enzyme and small-molecule inhibitors of the kinase. Protein kinase CK2 was the first interaction partner of Rio1, identified in yeast cells. The enzyme from various sources undergoes CK2-mediated phosphorylation at several sites and this modification regulates the activity of Rio1. The aim of this review is to present studies of the relationship between the two different kinases, with respect to CK2-mediated phosphorylation of Rio1, regulation of Rio1 activity, and similar susceptibility of the kinases to benzimidazole inhibitors. PMID:28178206

  9. [The role of Gilgamesh protein kinase in Drosophila melanogaster spermatogenesis].

    PubMed

    Nerusheva, O O; Dorogova, N V; Gubanova, N V; Omel'ianchuk, L V

    2008-09-01

    The cellular function of the gilgamesh mutation (89B9-12) of casein kinase gene in Drosophila spermatogenesis was studied. It was demonstrated that the sterility resulting from this mutation is connected with the abnormalities in spermatid individualization. A phylogenetic study of the protein sequences of casein kinases 1 from various organisms was conducted. The Gilgamesh protein was shown to be phylogenetically closer to the cytoplasmic casein kinase family, represented by the YCK3, YCK2, and YCK1 proteins of Saccharomyces cerevisiae and animal gamma-casein kinases. It is known that these yeast casein kinases are involved in vesicular trafficking, which, in turn, is related in its genetic control to the cell membrane remodeling during spermatid individualization. Thus, the data of phylogenetic analysis fit well the results obtained by studying the mutation phenotype.

  10. A family of human cdc2-related protein kinases.

    PubMed Central

    Meyerson, M; Enders, G H; Wu, C L; Su, L K; Gorka, C; Nelson, C; Harlow, E; Tsai, L H

    1992-01-01

    The p34cdc2 protein kinase is known to regulate important transitions in the eukaryotic cell cycle. We have identified 10 human protein kinases based on their structural relation to p34cdc2. Seven of these kinases are novel and the products of five share greater than 50% amino acid sequence identity with p34cdc2. The seven novel genes are broadly expressed in human cell lines and tissues with each displaying some cell type or tissue specificity. The cdk3 gene, like cdc2 and cdk2, can complement cdc28 mutants of Saccharomyces cerevisiae, suggesting that all three of these protein kinases can play roles in the regulation of the mammalian cell cycle. The identification of a large family of cdc2-related kinases opens the possibility of combinatorial regulation of the cell cycle together with the emerging large family of cyclins. Images PMID:1639063

  11. Autophosphorylating protein kinase activity in titin-like arthropod projectin.

    PubMed

    Maroto, M; Vinós, J; Marco, R; Cervera, M

    1992-03-20

    The function of the high molecular weight structural proteins from muscle, namely vertebrate titin, arthropod projectin and nematode twitchin, remains to be established. Using a simple method for the purification of projectin from crayfish and Drosophila melanogaster, a polyclonal antibody has been raised against crayfish projectin, and shown to immunocrossreact with Drosophila projectin but not with rat titin. In this study, evidence is presented that projectin and twitchin may share functional protein kinase domains, indicating a possible relationship between them. Projectin has a serine/threonine protein kinase activity. This supports the relationship with twitchin since, in sequence analysis of the latter, a protein-kinase-like domain has been found. Moreover, projectin is capable of autophosphorylation in vitro. These kinase activities imply regulatory functions for this group of proteins, extending its previously assumed structural role in the sarcomere. We also show here that projectin is phosphorylated in vivo at serine residues, as described for titin.

  12. The protein activator of protein kinase R, PACT/RAX, negatively regulates protein kinase R during mouse anterior pituitary development.

    PubMed

    Dickerman, Benjamin K; White, Christine L; Kessler, Patricia M; Sadler, Anthony J; Williams, Bryan R G; Sen, Ganes C

    2015-12-01

    The murine double-stranded RNA-binding protein termed protein kinase R (PKR)-associated protein X (RAX) and the human homolog, protein activator of PKR (PACT), were originally characterized as activators of PKR. Mice deficient in RAX show reproductive and developmental defects, including reduced body size, craniofacial defects and anterior pituitary hypoplasia. As these defects are not observed in PKR-deficient mice, the phenotype has been attributed to PKR-independent activities of RAX. Here we further investigated the involvement of PKR in the physiological function of RAX, by generating rax(-/-) mice deficient in PKR, or carrying a kinase-inactive mutant of PKR (K271R) or an unphosphorylatable mutant of the PKR substrate eukaryotic translation initiation factor 2 α subunit (eIF2α) (S51A). Ablating PKR expression rescued the developmental and reproductive deficiencies in rax(-/-) mice. Generating rax(-/-) mice with a kinase-inactive mutant of PKR resulted in similar rescue, confirming that the rax(-/-) defects are PKR dependent; specifically that the kinase activity of PKR was required for these defects. Moreover, generating rax(-/-) mice that were heterozygous for an unphosphorylatable mutant eIF2α provides partial rescue of the rax(-/-) defect, consistent with mutation of one copy of the Eif2s1 gene. These observations were further investigated in vitro by reducing RAX expression in anterior pituitary cells, resulting in increased PKR activity and induction of the PKR-regulated cyclin-dependent kinase inhibitor p21(WAF1/CIP1). These results demonstrate that PKR kinase activity is required for onset of the rax(-/-) phenotype, implying an unexpected function for RAX as a negative regulator of PKR in the context of postnatal anterior pituitary tissue, and identify a critical role for the regulation of PKR activity for normal development.

  13. RAF protein-serine/threonine kinases: Structure and regulation

    SciTech Connect

    Roskoski, Robert

    2010-08-27

    Research highlights: {yields} The formation of unique side-to-side RAF dimers is required for full kinase activity. {yields} RAF kinase inhibitors block MEK activation in cells containing oncogenic B-RAF. {yields} RAF kinase inhibitors can lead to the paradoxical increase in RAF kinase activity. -- Abstract: A-RAF, B-RAF, and C-RAF are a family of three protein-serine/threonine kinases that participate in the RAS-RAF-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including apoptosis, cell cycle progression, differentiation, proliferation, and transformation to the cancerous state. RAS mutations occur in 15-30% of all human cancers, and B-RAF mutations occur in 30-60% of melanomas, 30-50% of thyroid cancers, and 5-20% of colorectal cancers. Activation of the RAF kinases requires their interaction with RAS-GTP along with dephosphorylation and also phosphorylation by SRC family protein-tyrosine kinases and other protein-serine/threonine kinases. The formation of unique side-to-side RAF dimers is required for full kinase activity. RAF kinase inhibitors are effective in blocking MEK1/2 and ERK1/2 activation in cells containing the oncogenic B-RAF Val600Glu activating mutation. RAF kinase inhibitors lead to the paradoxical increase in RAF kinase activity in cells containing wild-type B-RAF and wild-type or activated mutant RAS. C-RAF plays a key role in this paradoxical increase in downstream MEK-ERK activation.

  14. Activity of protein kinase C-α within the subfornical organ is necessary for fluid intake in response to brain angiotensin.

    PubMed

    Coble, Jeffrey P; Johnson, Ralph F; Cassell, Martin D; Johnson, Alan Kim; Grobe, Justin L; Sigmund, Curt D

    2014-07-01

    Angiotensin-II production in the subfornical organ acting through angiotensin-II type-1 receptors is necessary for polydipsia, resulting from elevated renin-angiotensin system activity. Protein kinase C and mitogen-activated protein kinase pathways have been shown to mediate effects of angiotensin-II in the brain. We investigated mechanisms that mediate brain angiotensin-II-induced polydipsia. We used double-transgenic sRA mice, consisting of human renin controlled by the neuron-specific synapsin promoter crossed with human angiotensinogen controlled by its endogenous promoter, which results in brain-specific overexpression of angiotensin-II, particularly in the subfornical organ. We also used the deoxycorticosterone acetate-salt model of hypertension, which exhibits polydipsia. Inhibition of protein kinase C, but not extracellular signal-regulated kinases, protein kinase A, or vasopressin V₁A and V₂ receptors, corrected the elevated water intake of sRA mice. Using an isoform selective inhibitor and an adenovirus expressing dominant negative protein kinase C-α revealed that protein kinase C-α in the subfornical organ was necessary to mediate elevated fluid and sodium intake in sRA mice. Inhibition of protein kinase C activity also attenuated polydipsia in the deoxycorticosterone acetate-salt model. We provide evidence that inducing protein kinase C activity centrally is sufficient to induce water intake in water-replete wild-type mice, and that cell surface localization of protein kinase C-α can be induced in cultured cells from the subfornical organ. These experimental findings demonstrate a role for central protein kinase C activity in fluid balance, and further mechanistically demonstrate the importance of protein kinase C-α signaling in the subfornical organ in fluid intake stimulated by angiotensin-II in the brain. © 2014 American Heart Association, Inc.

  15. A mechanism for regulation of chloroplast LHC II kinase by plastoquinol and thioredoxin.

    PubMed

    Puthiyaveetil, Sujith

    2011-06-23

    State transitions are acclimatory responses to changes in light quality in photosynthesis. They involve the redistribution of absorbed excitation energy between photosystems I and II. In plants and green algae, this redistribution is produced by reversible phosphorylation of the chloroplast light harvesting complex II (LHC II). The LHC II kinase is activated by reduced plastoquinone (PQ) in photosystem II-specific low light. In high light, when PQ is also reduced, LHC II kinase becomes inactivated by thioredoxin. Based on newly identified amino acid sequence features of LHC II kinase and other considerations, a mechanism is suggested for its redox regulation.

  16. Adenovirus infection targets the cellular protein kinase CK2 and RNA-activated protein kinase (PKR) into viral inclusions of the cell nucleus.

    PubMed

    Souquere-Besse, Sylvie; Pichard, Evelyne; Filhol, Odile; Legrand, Valerie; Rosa-Calatrava, Manuel; Hovanessian, Ara G; Cochet, Claude; Puvion-Dutilleul, Francine

    2002-03-15

    The effects of the adenovirus infection on the distribution of the cellular protein kinase CK2 and double-stranded RNA-activated protein kinase (PKR) were examined at the ultrastructural level. Immunogold labeling revealed the redistribution of CK2 subunits and PKR to morphologically distinct structures of the cell nucleus. The electron-clear amorphous structures, designated pIX nuclear bodies in our previous work (Rosa-Calatrava et al., 2001), contained CK2 alpha and PKR. The protein crystals, which result from the regular assembly of hexon, penton base, and fiber proteins [Boulanger et al. (1970) J Gen Virol 6:329-332], contained CK2 beta and PKR. Both viral structures were devoid of viral RNA, including the PKR-inhibitor VA1 RNA generated by the RNA polymerase III. Instead, VA1 RNA accumulated in PKR-free viral compact rings in which the viral RNA generated by the RNA polymerase II was excluded.

  17. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    USDA-ARS?s Scientific Manuscript database

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  18. Protein kinase C activators inhibit capillary endothelial cell growth

    SciTech Connect

    Doctrow, S.R.

    1986-05-01

    Phorbol 12,13-dibutyrate (PDBu) binds specifically to bovine capillary endothelial (BCE) cells (K/sub d/ = 8nM) and inhibits the proliferation (K/sub 50/ = 6 +/- 4 nM). Under similar conditions, PDBu does not inhibit the growth of bovine aortic endothelial or smooth muscle cells. PDBu markedly attenuates the response of BCE cells to purified human hepatoma-derived growth factor which, in the absence of PDBu, stimulates BCE cell growth by about 3-fold. Several observations suggest that the inhibition of BCE cell growth by PDBu is mediated by protein kinase C: (1) different phorbol compounds inhibit BCE cell growth according to the relative potencies as protein kinase C activators (12-tetradecanoylphorbol 13-acetate > PDBu >> phorbol 12,13-diacetate >>>..beta..-phorbol; ..cap alpha..-phorbol 12,13-didecanoate). (2) Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol (diC/sub 8/), a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. (3) A cytosolic extract from BCE cells contains a Ca/sup 2 +//phosphatidylserine-dependent kinase that is activated by diC/sub 8/ and PDBu, but not by ..beta..-phorbol. These results support a role for protein kinase C in suppressing capillary endothelial cell growth and may therefore have implications in the intracellular regulation of angiogenesis.

  19. Interaction of SNF1 Protein Kinase with Its Activating Kinase Sak1▿

    PubMed Central

    Liu, Yang; Xu, Xinjing; Carlson, Marian

    2011-01-01

    The Saccharomyces cerevisiae SNF1 protein kinase, a member of the SNF1/AMP-activated protein kinase (AMPK) family, is activated by three kinases, Sak1, Tos3, and Elm1, which phosphorylate the Snf1 catalytic subunit on Thr-210 in response to glucose limitation and other stresses. Sak1 is the primary Snf1-activating kinase and is associated with Snf1 in a complex. Here we examine the interaction of Sak1 with SNF1. We report that Sak1 coimmunopurifies with the Snf1 catalytic subunit from extracts of both glucose-replete and glucose-limited cultures and that interaction occurs independently of the phosphorylation state of Snf1 Thr-210, Snf1 catalytic activity, and other SNF1 subunits. Sak1 interacts with the Snf1 kinase domain, and nonconserved sequences C terminal to the Sak1 kinase domain mediate interaction with Snf1 and augment the phosphorylation and activation of Snf1. The Sak1 C terminus is modified in response to glucose depletion, dependent on SNF1 activity. Replacement of the C terminus of Elm1 (or Tos3) with that of Sak1 enhanced the ability of the Elm1 kinase domain to interact with and phosphorylate Snf1. These findings indicate that the C terminus of Sak1 confers its function as the primary Snf1-activating kinase and suggest that the physical association of Sak1 with SNF1 facilitates responses to environmental change. PMID:21216941

  20. How protein kinases co-ordinate mitosis in animal cells.

    PubMed

    Ma, Hoi Tang; Poon, Randy Y C

    2011-04-01

    Mitosis is associated with profound changes in cell physiology and a spectacular surge in protein phosphorylation. To accomplish these, a remarkably large portion of the kinome is involved in the process. In the present review, we will focus on classic mitotic kinases, such as cyclin-dependent kinases, Polo-like kinases and Aurora kinases, as well as more recently characterized players such as NIMA (never in mitosis in Aspergillus nidulans)-related kinases, Greatwall and Haspin. Together, these kinases co-ordinate the proper timing and fidelity of processes including centrosomal functions, spindle assembly and microtubule-kinetochore attachment, as well as sister chromatid separation and cytokinesis. A recurrent theme of the mitotic kinase network is the prevalence of elaborated feedback loops that ensure bistable conditions. Sequential phosphorylation and priming phosphorylation on substrates are also frequently employed. Another important concept is the role of scaffolds, such as centrosomes for protein kinases during mitosis. Elucidating the entire repertoire of mitotic kinases, their functions, regulation and interactions is critical for our understanding of normal cell growth and in diseases such as cancers.

  1. Linoleic acid-induced expression of inducible nitric oxide synthase and cyclooxygenase II via p42/44 mitogen-activated protein kinase and nuclear factor-kappaB pathway in retinal pigment epithelial cells.

    PubMed

    Fang, I-Mo; Yang, Chang-Hao; Yang, Chung-May; Chen, Muh-Shy

    2007-11-01

    High linoleic acid (LA) intake is known to correlate with age-related macular degeneration (AMD), but the molecular mechanisms remain unclear. This study was conducted to investigate the effects of LA on expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase II (COX-2) and their associated signaling pathways in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were treated with different concentrations of LA. Expressions of iNOS and COX-2 were examined using semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Concentrations of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in the culture medium were determined by enzyme-link immunosorbent assay (ELISA). Activation of p42/44, p38, JNK mitogen-activated protein kinase (MAPK) and nuclear factors (NF)-kappaB were evaluated by Western blot analysis and electrophoretic mobility shift assay (EMSA). We found that LA induced expression of iNOS and COX-2 in RPE cells at the mRNA and protein levels in a time-and dose-dependent manner. Upregulation of iNOS and COX-2 resulted in increased production of NO and PGE(2). Moreover, LA caused degradation of IkappaB and increased NF-kappaB DNA binding activity. Effects of LA-induced iNOS and COX-2 expression were inhibited by a NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). LA activated p42/44, but not p38 or JNK MAPK. Inhibition of p42/44 activity by PD98059 significantly reduced LA-induced activation of NF-kappaB. Linoleic acid-induced expression of iNOS and COX-2 as well as PGE(2) and NO release in RPE cells were sequentially mediated through activation of p42/p44, MAPK, then NF-kappaB. These results may provide new insights into both mechanisms of LA action on RPE cells and pathogenesis of age-related macular degeneration.

  2. Use of LC-MS/MS and Bayes' theorem to identify protein kinases that phosphorylate aquaporin-2 at Ser256.

    PubMed

    Bradford, Davis; Raghuram, Viswanathan; Wilson, Justin L L; Chou, Chung-Lin; Hoffert, Jason D; Knepper, Mark A; Pisitkun, Trairak

    2014-07-15

    In the renal collecting duct, binding of AVP to the V2 receptor triggers signaling changes that regulate osmotic water transport. Short-term regulation of water transport is dependent on vasopressin-induced phosphorylation of aquaporin-2 (AQP2) at Ser256. The protein kinase that phosphorylates this site is not known. We use Bayes' theorem to rank all 521 rat protein kinases with regard to the likelihood of a role in Ser256 phosphorylation on the basis of prior data and new experimental data. First, prior probabilities were estimated from previous transcriptomic and proteomic profiling data, kinase substrate specificity data, and evidence for kinase regulation by vasopressin. This ranking was updated using new experimental data describing the effects of several small-molecule kinase inhibitors with known inhibitory spectra (H-89, KN-62, KN-93, and GSK-650394) on AQP2 phosphorylation at Ser256 in inner medullary collecting duct suspensions. The top-ranked kinase was Ca2+/calmodulin-dependent protein kinase II (CAMK2), followed by protein kinase A (PKA) and protein kinase B (AKT). Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based in vitro phosphorylation studies compared the ability of three highly ranked kinases to phosphorylate AQP2 and other inner medullary collecting duct proteins, PKA, CAMK2, and serum/glucocorticoid-regulated kinase (SGK). All three proved capable of phosphorylating AQP2 at Ser256, although CAMK2 and PKA were more potent than SGK. The in vitro phosphorylation experiments also identified candidate protein kinases for several additional phosphoproteins with likely roles in collecting duct regulation, including Nedd4-2, Map4k4, and 3-phosphoinositide-dependent protein kinase 1. We conclude that Bayes' theorem is an effective means of integrating data from multiple data sets in physiology.

  3. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity

    PubMed Central

    Farinha, Carlos M.; Swiatecka-Urban, Agnieszka; Brautigan, David L.; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease. PMID:26835446

  4. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    NASA Astrophysics Data System (ADS)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  5. Regulated protein kinases and phosphatases in cell cycle decisions.

    PubMed

    Novak, Bela; Kapuy, Orsolya; Domingo-Sananes, Maria Rosa; Tyson, John J

    2010-12-01

    Many aspects of cell physiology are controlled by protein kinases and phosphatases, which together determine the phosphorylation state of targeted substrates. Some of these target proteins are themselves kinases or phosphatases or other components of a regulatory network characterized by feedback and feed-forward loops. In this review we describe some common regulatory motifs involving kinases, phosphatases, and their substrates, focusing particularly on bistable switches involved in cellular decision processes. These general principles are applied to cell cycle transitions, with special emphasis on the roles of regulated phosphatases in orchestrating progression from one phase to the next of the DNA replication-division cycle.

  6. Regulated protein kinases and phosphatases in cell cycle decisions

    PubMed Central

    Novak, Bela; Kapuy, Orsolya; Domingo-Sananes, Maria Rosa; Tyson, John J

    2013-01-01

    Many aspects of cell physiology are controlled by protein kinases and phosphatases, which together determine the phosphorylation state of targeted substrates. Some of these target proteins are themselves kinases or phosphatases or other components of a regulatory network characterized by feedback and feed-forward loops. In this review we describe some common regulatory motifs involving kinases, phosphatases, and their substrates, focusing particularly on bistable switches involved in cellular decision processes. These general principles are applied to cell cycle transitions, with special emphasis on the roles of regulated phosphatases in orchestrating progression from one phase to the next of the DNA replication-division cycle. PMID:20678910

  7. Fluorescent sensors of protein kinases: from basics to biomedical applications.

    PubMed

    Nhu Ngoc Van, Thi; Morris, May C

    2013-01-01

    Protein kinases constitute a major class of enzymes underlying essentially all biological processes. These enzymes present similar structural folds, yet their mechanism of action and of regulation vary largely, as well as their substrate specificity and their subcellular localization. Classical approaches to study the function/activity of protein kinases rely on radioactive endpoint assays, which do not allow for characterization of their dynamic activity in their native environment. The development of fluorescent biosensors has provided a whole new avenue for studying protein kinase behavior and regulation in living cells in real time with high spatial and temporal resolution. Two major classes of biosensors have been developed: genetically encoded single-chain fluorescence resonance energy transfer biosensors and peptide/protein biosensors coupled to small synthetic fluorophores which are sensitive to changes in their environment. In this review, we discuss the developments in fluorescent biosensor technology related to protein kinase sensing and the different strategies employed to monitor protein kinase activity, conformation, or relative abundance, as well as kinase regulation and subcellular dynamics in living cells. Moreover, we discuss their application in biomedical settings, for diagnostics and therapeutics, to image disease progression and monitor response to therapeutics, in drug discovery programs, for high-throughput screening assays, for postscreen characterization of drug candidates, and for clinical evaluation of novel drugs. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Molecular cloning of plant transcripts encoding protein kinase homologs.

    PubMed Central

    Lawton, M A; Yamamoto, R T; Hanks, S K; Lamb, C J

    1989-01-01

    Oligonucleotides, corresponding to conserved regions of animal protein-serine/threonine kinases, were used to isolate cDNAs encoding plant homologs in the dicot bean (Phaseolus vulgaris L.) and the monocot rice (Oryzae sativa L.). The C-terminal regions of the deduced polypeptides encoded by the bean (PVPK-1) and rice (G11A) cDNAs, prepared from mRNAs of suspension cultures and leaves, respectively, contain features characteristic of the catalytic domains of eukaryotic protein-serine/threonine kinases, indicating that these cDNAs encode plant protein kinases. The putative catalytic domains are most closely related to cyclic nucleotide-dependent protein kinases and the protein kinase C family, suggesting the plant homologs may likewise transduce extracellular signals. However, outside these domains, PVPK-1 and G11A exhibit no homology either to each other or to regulatory domains of other protein kinases, indicating the plant homologs are modulated by other signals. PVPK-1 corresponds to a 2.4-kb transcript in suspension cultured bean cells. Southern blots of genomic DNA indicate that PVPK-1 and G11A correspond to single copy genes that form part of a family of related plant sequences. Images PMID:2541432

  9. The protein activator of protein kinase R, PACT/RAX, negatively regulates protein kinase R during mouse anterior pituitary development

    PubMed Central

    Dickerman, Benjamin K.; White, Christine L.; Kessler, Patricia M.; Sadler, Anthony J.; Williams, Bryan R.G.; Sen, Ganes C.

    2015-01-01

    The murine double-stranded RNA-binding protein RAX and the human homolog PACT were originally characterized as activators of protein kinase R (PKR). Mice deficient in RAX show reproductive and developmental defects, including reduced body size, craniofacial defects and anterior pituitary hypoplasia. As these defects are not observed in PKR-deficient mice, the phenotype has been attributed to PKR-independent activities of RAX. Here we further investigated the involvement of PKR in the physiological function of RAX, by generating rax−/− mice deficient in PKR, or carrying a kinase-inactive mutant of PKR (K271R) or an unphosphorylatable mutant of the PKR substrate eIF2α (S51A). Ablating PKR expression rescued the developmental and reproductive deficiencies in rax−/− mice. Generating rax−/− mice with a kinase-inactive mutant of PKR resulted in similar rescue, confirming that the rax−/− defects are PKR dependent; specifically that the kinase activity of PKR was required for these defects. Moreover, generating rax−/− mice that were heterozygous for an unphosphorylatable mutant eIF2α provides partial rescue of the rax−/− defect, consistent with mutation of one copy of the Eif2s1 gene. These observations were further investigated in vitro by reducing RAX expression in anterior pituitary cells, resulting in increased PKR activity and induction of the PKR-regulated cyclin-dependent kinase inhibitor p21WAF1/CIP1. These results demonstrate that PKR kinase activity is required for onset of the rax−/− phenotype, implying an unexpected function for RAX as a negative regulator of PKR in the context of postnatal anterior pituitary tissue, and identify a critical role for the regulation of PKR activity for normal development. PMID:26414443

  10. The C-terminal tail of protein kinase D2 and protein kinase D3 regulates their intracellular distribution

    SciTech Connect

    Papazyan, Romeo; Rozengurt, Enrique; Rey, Osvaldo . E-mail: orey@mednet.ucla.edu

    2006-04-14

    We generated a set of GFP-tagged chimeras between protein kinase D2 (PKD2) and protein kinase D3 (PKD3) to examine in live cells the contribution of their C-terminal region to their intracellular localization. We found that the catalytic domain of PKD2 and PKD3 can localize to the nucleus when expressed without other kinase domains. However, when the C-terminal tail of PKD2 was added to its catalytic domain, the nuclear localization of the resulting protein was inhibited. In contrast, the nuclear localization of the CD of PKD3 was not inhibited by its C-terminal tail. Furthermore, the exchange of the C-terminal tail of PKD2 and PKD3 in the full-length proteins was sufficient to exchange their intracellular localization. Collectively, these data demonstrate that the short C-terminal tail of these kinases plays a critical role in determining their cytoplasmic/nuclear localization.

  11. Brain Region-Specific Effects of cGMP-Dependent Kinase II Knockout on AMPA Receptor Trafficking and Animal Behavior

    ERIC Educational Resources Information Center

    Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.

    2016-01-01

    Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…

  12. Brain Region-Specific Effects of cGMP-Dependent Kinase II Knockout on AMPA Receptor Trafficking and Animal Behavior

    ERIC Educational Resources Information Center

    Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.

    2016-01-01

    Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…

  13. Protein Kinases and Parkinson’s Disease

    PubMed Central

    Mehdi, Syed Jafar; Rosas-Hernandez, Hector; Cuevas, Elvis; Lantz, Susan M.; Barger, Steven W.; Sarkar, Sumit; Paule, Merle G.; Ali, Syed F.; Imam, Syed Z.

    2016-01-01

    Currently, the lack of new drug candidates for the treatment of major neurological disorders such as Parkinson’s disease has intensified the search for drugs that can be repurposed or repositioned for such treatment. Typically, the search focuses on drugs that have been approved and are used clinically for other indications. Kinase inhibitors represent a family of popular molecules for the treatment and prevention of various cancers, and have emerged as strong candidates for such repurposing because numerous serine/threonine and tyrosine kinases have been implicated in the pathobiology of Parkinson’s disease. This review focuses on various kinase-dependent pathways associated with the expression of Parkinson’s disease pathology, and evaluates how inhibitors of these pathways might play a major role as effective therapeutic molecules. PMID:27657053

  14. Targeting protein kinases in central nervous system disorders

    PubMed Central

    Chico, Laura K.; Van Eldik, Linda J.; Watterson, D. Martin

    2010-01-01

    Protein kinases are a growing drug target class in disorders in peripheral tissues, but the development of kinase-targeted therapies for central nervous system (CNS) diseases remains a challenge, largely owing to issues associated specifically with CNS drug discovery. However, several candidate therapeutics that target CNS protein kinases are now in various stages of preclinical and clinical development. We review candidate compounds and discuss selected CNS protein kinases that are emerging as important therapeutic targets. In addition, we analyse trends in small-molecule properties that correlate with key challenges in CNS drug discovery, such as blood–brain barrier penetrance and cytochrome P450-mediated metabolism, and discuss the potential of future approaches that will integrate molecular-fragment expansion with pharmacoinformatics to address these challenges. PMID:19876042

  15. Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice.

    PubMed

    Yeh, Chuan-Ming; Hsiao, Lin-June; Huang, Hao-Jen

    2004-09-01

    Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. In plants, it has been evidenced that MAPKs play a role in the signaling of biotic and abiotic stresses, plant hormones, and cell cycle cues. However, the effect of heavy metals on plant MAPKs has not been well examined. The Northern blot analysis of OsMAPK mRNA levels has shown that only OsMAPK2, but not OsMAPK3 and OsMAPK4, expressed in suspension-cultured cells in response to 100-400 microM Cd treatments. The OsMAPK2 transcripts increased within 12 h upon 400 microM Cd treatment. In addition, we found that 42- and 50-kDa MBP kinases were significantly activated by Cd treatment in rice suspension-cultured cells. And 40-, 42-, 50- and 64-kDa MBP kinases were activated in rice roots. Furthermore, GSH inhibits Cd-induced 40-kDa MBP kinase activation. By immunoblot analysis and immunoprecipitation followed by in-gel kinase assay, we confirmed that Cd-activated 42-kDa MBP kinase is a MAP kinase. Our results suggest that a MAP kinase cascade may function in the Cd-signalling pathway in rice.

  16. A calmodulin-dependent protein kinase from lower eukaryote Physarum polycephalum.

    PubMed

    Nakamura, Akio; Hanyuda, Yuki; Okagaki, Tuyoshi; Takagi, Takashi; Kohama, Kazuhiro

    2005-03-25

    A full-length cDNA coding a calmodulin (CaM)-dependent protein kinase gene was cloned from Physarum plasmodia poly(A)-RNA by polymerase chain reaction with the oligonucleotide primers that were designed after the amino acid sequence of highly conserved regions of myosin light-chain kinase. Sequence analysis of the cDNA revealed that this Physarum kinase was a 42,519-Da protein with an ATP-binding domain, Ser/Thr kinase active site signature, and CaM-binding domain. Expression of the cDNA in Escherichia coli demonstrated that the Physarum kinase in the presence of Ca2+ and CaM phosphorylated the recombinant phosphorylatable light chain (PLc) of Physarum myosin II. The peptide analysis after proteolysis of the phosphorylated PLc indicated that Ser 18 was phosphorylated. The site was confirmed by the failure of phosphorylation of PLc, the Ser 18 of which was replaced by Ala. The physiological role of the kinase will be discussed with special reference to the 55-kDa kinase, which had been previously purified from Physarum plasmodia for phosphorylated PLc.

  17. Phosphorylation of the Kinase Interaction Motif in Mitogen-activated Protein (MAP) Kinase Phosphatase-4 Mediates Cross-talk between Protein Kinase A and MAP Kinase Signaling Pathways*

    PubMed Central

    Dickinson, Robin J.; Delavaine, Laurent; Cejudo-Marín, Rocío; Stewart, Graeme; Staples, Christopher J.; Didmon, Mark P.; Trinidad, Antonio Garcia; Alonso, Andrés; Pulido, Rafael; Keyse, Stephen M.

    2011-01-01

    MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site 55RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo. PMID:21908610

  18. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa.

    PubMed

    Talevich, Eric; Mirza, Amar; Kannan, Natarajan

    2011-11-02

    The Apicomplexa constitute an evolutionarily divergent phylum of protozoan pathogens responsible for widespread parasitic diseases such as malaria and toxoplasmosis. Many cellular functions in these medically important organisms are controlled by protein kinases, which have emerged as promising drug targets for parasitic diseases. However, an incomplete understanding of how apicomplexan kinases structurally and mechanistically differ from their host counterparts has hindered drug development efforts to target parasite kinases. We used the wealth of sequence data recently made available for 15 apicomplexan species to identify the kinome of each species and quantify the evolutionary constraints imposed on each family of apicomplexan kinases. Our analysis revealed lineage-specific adaptations in selected families, namely cyclin-dependent kinase (CDK), calcium-dependent protein kinase (CDPK) and CLK/LAMMER, which have been identified as important in the pathogenesis of these organisms. Bayesian analysis of selective constraints imposed on these families identified the sequence and structural features that most distinguish apicomplexan protein kinases from their homologs in model organisms and other eukaryotes. In particular, in a subfamily of CDKs orthologous to Plasmodium falciparum crk-5, the activation loop contains a novel PTxC motif which is absent from all CDKs outside Apicomplexa. Our analysis also suggests a convergent mode of regulation in a subset of apicomplexan CDPKs and mammalian MAPKs involving a commonly conserved arginine in the αC helix. In all recognized apicomplexan CLKs, we find a set of co-conserved residues involved in substrate recognition and docking that are distinct from metazoan CLKs. We pinpoint key conserved residues that can be predicted to mediate functional differences from eukaryotic homologs in three identified kinase families. We discuss the structural, functional and evolutionary implications of these lineage-specific variations and

  19. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa

    PubMed Central

    2011-01-01

    Background The Apicomplexa constitute an evolutionarily divergent phylum of protozoan pathogens responsible for widespread parasitic diseases such as malaria and toxoplasmosis. Many cellular functions in these medically important organisms are controlled by protein kinases, which have emerged as promising drug targets for parasitic diseases. However, an incomplete understanding of how apicomplexan kinases structurally and mechanistically differ from their host counterparts has hindered drug development efforts to target parasite kinases. Results We used the wealth of sequence data recently made available for 15 apicomplexan species to identify the kinome of each species and quantify the evolutionary constraints imposed on each family of apicomplexan kinases. Our analysis revealed lineage-specific adaptations in selected families, namely cyclin-dependent kinase (CDK), calcium-dependent protein kinase (CDPK) and CLK/LAMMER, which have been identified as important in the pathogenesis of these organisms. Bayesian analysis of selective constraints imposed on these families identified the sequence and structural features that most distinguish apicomplexan protein kinases from their homologs in model organisms and other eukaryotes. In particular, in a subfamily of CDKs orthologous to Plasmodium falciparum crk-5, the activation loop contains a novel PTxC motif which is absent from all CDKs outside Apicomplexa. Our analysis also suggests a convergent mode of regulation in a subset of apicomplexan CDPKs and mammalian MAPKs involving a commonly conserved arginine in the αC helix. In all recognized apicomplexan CLKs, we find a set of co-conserved residues involved in substrate recognition and docking that are distinct from metazoan CLKs. Conclusions We pinpoint key conserved residues that can be predicted to mediate functional differences from eukaryotic homologs in three identified kinase families. We discuss the structural, functional and evolutionary implications of these

  20. Activity of cAMP-dependent protein kinases and cAMP-binding proteins of rat kidney cytosol during dehydration

    SciTech Connect

    Zelenina, M.N.; Solenov, E.I.; Ivanova, L.N.

    1985-09-20

    The activity of cAMP-dependent protein kinases, the binding of cAMP, and the spectrum of cAMP-binding proteins in the cytosol of the renal papilla was studied in intact rats and in rats after 24 h on a water-deprived diet. It was found that the activation of protein kinases by 10/sup -6/ M cAMP is significantly higher in the experimental animals than in the intact animals. In chromatography on DEAE-cellulose, the positions of the peaks of specific reception of cAMP corresponded to the peaks of the regulatory subunits of cAMP-dependent protein kinases of types I and II. In this case, in intact animals more than 80% of the binding activity was detected in peaks II, whereas in rats subjected to water deprivation, more than 60% of the binding was observed in peak I. The general regulatory activity of the cytosol was unchanged in the experimental animals in comparison with intact animals. It is suggested that during dehydration there is an induction of the synthesis of the regulatory subunit of type I cAMP-dependent protein kinase in the renal papilla.

  1. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs

    PubMed Central

    Gurevich, Eugenia V.; Tesmer, John J. G.; Mushegian, Arcady; Gurevich, Vsevolod V.

    2011-01-01

    G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson’s disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson’s disease. PMID:21903131

  2. Chronic antidepressants induce redistribution and differential activation of alphaCaM kinase II between presynaptic compartments.

    PubMed

    Barbiero, Valentina S; Giambelli, Roberto; Musazzi, Laura; Tiraboschi, Ettore; Tardito, Daniela; Perez, Jorge; Drago, Filippo; Racagni, Giorgio; Popoli, Maurizio

    2007-12-01

    Changes in synaptic plasticity are involved in pathophysiology of depression and in the mechanism of antidepressants. Ca(2+)/calmodulin (CaM) kinase II, a protein kinase involved in synaptic plasticity, has been previously shown to be a target of antidepressants. We previously found that antidepressants activate the kinase in hippocampal neuronal cell bodies by increasing phosphorylation at Thr(286), reduce the kinase phosphorylation in synaptic membranes, and in turn its phosphorylation-dependent interaction with syntaxin-1 and the release of glutamate from hippocampal synaptosomes. Here, we investigated the chronic effect of different antidepressants (fluoxetine, desipramine, and reboxetine) on the expression and function of the kinase in distinct subcellular compartments in order to dissect the different kinase pools affected. Acute treatments did not induce any change in the kinase. In total tissue extracts chronic drug treatments induced activation of the kinase; in hippocampus (HC), but not in prefrontal/frontal cortex, this was partially accounted for by increased Thr(286) phosphorylation, suggesting the involvement of different mechanisms of activation. In synaptosomes, all drugs reduced the kinase phosphorylation, particularly in HC where, upon fractionation of the synaptosomal particulate into synaptic vesicles and membranes, we found that the drugs induced a redistribution and differential activation of the kinase between membranes and vesicles. Furthermore, a large decrease in the level and phosphorylation of synapsin I located at synaptic membranes was consistent with the observed decrease of CaM kinase II. Overall, antidepressants induce a complex pattern of modifications in distinct subcellular compartments; at presynaptic level, these changes are in line with a dampening of glutamate release.

  3. A Novel Mode of Protein Kinase Inhibition Exploiting Hydrophobic Motifs of Autoinhibited Kinases

    PubMed Central

    Eathiraj, Sudharshan; Palma, Rocio; Hirschi, Marscha; Volckova, Erika; Nakuci, Enkeleda; Castro, Jennifer; Chen, Chang-Rung; Chan, Thomas C. K.; France, Dennis S.; Ashwell, Mark A.

    2011-01-01

    Protein kinase inhibitors with enhanced selectivity can be designed by optimizing binding interactions with less conserved inactive conformations because such inhibitors will be less likely to compete with ATP for binding and therefore may be less impacted by high intracellular concentrations of ATP. Analysis of the ATP-binding cleft in a number of inactive protein kinases, particularly in the autoinhibited conformation, led to the identification of a previously undisclosed non-polar region in this cleft. This ATP-incompatible hydrophobic region is distinct from the previously characterized hydrophobic allosteric back pocket, as well as the main pocket. Generalized hypothetical models of inactive kinases were constructed and, for the work described here, we selected the fibroblast growth factor receptor (FGFR) tyrosine kinase family as a case study. Initial optimization of a FGFR2 inhibitor identified from a library of commercial compounds was guided using structural information from the model. We describe the inhibitory characteristics of this compound in biophysical, biochemical, and cell-based assays, and have characterized the binding mode using x-ray crystallographic studies. The results demonstrate, as expected, that these inhibitors prevent activation of the autoinhibited conformation, retain full inhibitory potency in the presence of physiological concentrations of ATP, and have favorable inhibitory activity in cancer cells. Given the widespread regulation of kinases by autoinhibitory mechanisms, the approach described herein provides a new paradigm for the discovery of inhibitors by targeting inactive conformations of protein kinases. PMID:21454610

  4. Commitment to the CD4 lineage mediated by extracellular signal-related kinase mitogen-activated protein kinase and lck signaling.

    PubMed

    Sharp, L L; Hedrick, S M

    1999-12-15

    The development of T cells results in a concordance between the specificity of the TCR for MHC class I and class II molecules and the expression of CD8 and CD4 coreceptors. Based on analogy to simple metazoan models of organ development and lineage commitment, we sought to determine whether extracellular signal-related kinase (Erk) mitogen-activated protein (MAP) kinase pathway signaling acts as an inductive signal for the CD4 lineage. Here, we show that, by altering the intracellular signaling involving the Erk/MAP kinase pathway, T cells with specificity for MHC class I can be diverted to express CD4, and, conversely, T cells with specificity for MHC class II can be diverted to express CD8. Furthermore, we find that activation of the src-family tyrosine kinase, p56lck is an upstream mediator of lineage commitment. These results suggest a simple mechanism for lineage commitment in T cell development.

  5. Diacylglycerol kinase is phosphorylated in vivo upon stimulation of the epidermal growth factor receptor and serine/threonine kinases, including protein kinase C-epsilon.

    PubMed Central

    Schaap, D; van der Wal, J; van Blitterswijk, W J; van der Bend, R L; Ploegh, H L

    1993-01-01

    In signal transduction, diacylglycerol (DG) kinase attenuates levels of the second messenger DG by converting it to phosphatidic acid. A previously cloned full-length human 86 kDa DG kinase cDNA was expressed as fusion protein in Escherichia coli, to aid in the generation of DG-kinase-specific monoclonal antibodies suitable for immunoprecipitation experiments. To investigate whether phosphorylation of DG kinase is a possible mechanism for its regulation, COS-7 cells were transiently transfected with the DG kinase cDNA and phosphorylation of the expressed DG kinase was induced by various stimuli. Activation of both cyclic AMP-dependent protein kinase and protein kinase C (PKC) resulted in phosphorylation of DG kinase on serine residues in vivo, and both kinases induced this phosphorylation within the same tryptic phosphopeptide, suggesting that they may exert similar control over DG kinase. No phosphorylation was observed upon ionomycin treatment, intended to activate Ca2+/calmodulin-dependent kinases. Co-transfections of DG kinase with either PKC-alpha or PKC-epsilon cDNA revealed that both protein kinases, when stimulated, are able to phosphorylate DG kinase. For PKC-epsilon, DG kinase is the first in vivo substrate identified. Stimulation with epidermal growth factor (EGF) of COS-7 cells transfected with both DG kinase and EGF-receptor cDNA results mainly in phosphorylation of DG kinase on tyrosine. Since the EGF receptor has an intrinsic tyrosine kinase activity, this finding implies that DG kinase may be a direct substrate for the activated EGF receptor. Images Figure 2 Figure 3 Figure 4 PMID:7679574

  6. Coupling phosphoryl transfer and substrate interactions in protein kinases.

    PubMed

    Lieser, Scot A; Aubol, Brandon E; Wong, Lilly; Jennings, Patricia A; Adams, Joseph A

    2005-12-30

    Protein kinases control cell signaling events through the ATP-dependent phosphorylation of serine, threonine and tyrosine residues in protein targets. The recognition of these protein substrates by the kinases relies on two principal factors: proper subcellular co-localization and molecular interactions between the kinase and substrate. In this review, we will focus on the kinetic role of the latter in conveying favorable substrate recognition. Using rapid mixing technologies, we demonstrate that the intrinsic thermodynamic affinities of two protein substrates for their respective kinases (Csk with Src and Sky1p with Npl3) are weak compared to their apparent affinities measured in traditional steady-state kinetic assays (i.e.--Km < Kd). The source of the high apparent affinities rests in a very fast and highly favorable phosphoryl transfer step that serves as a clamp for substrate recognition. In this mechanism, both Csk and Sky1p utilize this step to draw the substrate toward product, thereby, converting a high Kd into a low Km. We propose that this one form of substrate recognition employed by protein kinases is advantageous since it simultaneously facilitates high apparent substrate affinity and fast protein turnover.

  7. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    PubMed

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  8. Extracellular cAMP-dependent protein kinase (ECPKA) in melanoma.

    PubMed

    Kita, Tsunekazu; Goydos, James; Reitman, Elena; Ravatn, Roald; Lin, Yong; Shih, Wei-Chung; Kikuchi, Yoshihiro; Chin, Khew-Voon

    2004-05-28

    Melanoma is one of the fastest rising malignancies in the United States. When detected early, primary melanomas are curable through surgery. However, despite significant improvements in diagnosis and surgical, local and systemic therapy, mortality rate in metastatic melanoma remains high. Furthermore, genetic alterations associated with the development and stepwise progression of melanoma, are still unclear. Previous reports show that the catalytic kinase subunit of the cAMP-dependent protein kinase is secreted by tumor cells and can be detected in the serum of cancer patients. We examine in this report the clinical significance of this secreted C subunit kinase termed extracellular protein kinase (ECPKA) in melanoma patients. Our results showed the presence of ECPKA activity in the serum of melanoma patients and correlate with the appearance and size of the tumor. Most importantly, surgical removal of melanoma causes a precipitous decrease in ECPKA activity in the sera of patients, suggesting that ECPKA may be a novel predictive marker in melanoma.

  9. Allosteric activation of apicomplexan calcium-dependent protein kinases

    SciTech Connect

    Ingram, Jessica R.; Knockenhauer, Kevin E.; Markus, Benedikt M.; Mandelbaum, Joseph; Ramek, Alexander; Shan, Yibing; Shaw, David E.; Schwartz, Thomas U.; Ploegh, Hidde L.; Lourido, Sebastian

    2015-08-24

    Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, through molecular dynamics, the effects of 1B7–kinase interactions. In contrast to other Ca2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes.

  10. Allosteric activation of apicomplexan calcium-dependent protein kinases

    DOE PAGES

    Ingram, Jessica R.; Knockenhauer, Kevin E.; Markus, Benedikt M.; ...

    2015-08-24

    Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, through molecular dynamics,more » the effects of 1B7–kinase interactions. In contrast to other Ca2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes.« less

  11. Allosteric activation of apicomplexan calcium-dependent protein kinases

    PubMed Central

    Ingram, Jessica R.; Knockenhauer, Kevin E.; Markus, Benedikt M.; Mandelbaum, Joseph; Ramek, Alexander; Shan, Yibing; Shaw, David E.; Schwartz, Thomas U.; Ploegh, Hidde L.; Lourido, Sebastian

    2015-01-01

    Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, through molecular dynamics, the effects of 1B7–kinase interactions. In contrast to other Ca2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes. PMID:26305940

  12. Novel adenosine 3 prime ,5 prime -cyclic monophosphate dependent protein kinases in a marine diatom

    SciTech Connect

    Lin, P.P.C.; Volcani, B.E. )

    1989-08-08

    Two novel adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) dependent protein kinases have been isolated from the diatom Cylindrotheca fusiformis. The kinases, designated I and II, are eluted from DEAE-Sephacel at 0.10 and 0.15 M NaCl. They have a high affinity for cAMP and are activated by micromolar cAMP. They exhibit maximal activity at 5 mM Mg{sup 2+} and pH 8 with the preferred phosphate donor ATP and phosphate acceptor histone H1. They phosphorylate sea urchin sperm histone H1 on a single serine site in the sequence Arg-Lys-Gly-Ser({sup 32}P)-Ser-Asn-Ala-Arg and have an apparent M{sub r} of 75,000 as determined by gel filtration and sucrose density sedimentation. In the kinase I preparation a single protein band with an apparent M{sub r} of about 78,000 is photolabeled with 8-azido({sup 32}P)cAMP and is also phosphorylated with ({gamma}-{sup 32}P)ATP in a cAMP-dependent manner, after autoradiography following sodium dodecyl sulfate gel electrophoresis. The rate of phosphorylation of the 78,000-dalton band is independent of the enzyme concentration. The results indicate that (i) these diatom cAMP-dependent protein kinases are monomeric proteins, possessing both the cAMP-binding regulatory and catalytic domains on the same polypeptide chain, (ii) the enzymes do not dissociate into smaller species upon activation by binding cAMP, and (iii) self-phosphorylation of the enzymes by an intrapeptide reaction is cAMP dependent. The two diatom cAMP kinases are refractory to the heat-stable protein kinase modulator from rabbit muscle, but they respond differently to proteolytic degradation and to inhibition by arachidonic acid and several microbial alkaloids.

  13. Homology modeling of yeast cyclin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Selwyne, R. A.; Kholmurodov, Kh. T.; Koltovaya, N. A.

    2007-07-01

    The important functions that CDKs perform in cell division and cell cycle regulation made central protein kinase of Saccharomyces cerevisiae CDC28 a target model for structural and functional analysis. The 3D models of CDC28 protein kinase using molecular modeling techniques will enlarge our understanding of the phosphorylation mechanism and the structural changes of mutant kinases. The structural template for S. cerevisiae CDC28 was identified from PDB (Protein Databank) using BLASTP (basic local alignment search tool for proteins). Template-target alignments were generated for homology modeling and checked manually for errors. The models were then generated using MODELLER and validated using PROCHECK followed by energy minimization and molecular dynamics calculations in AMBER force field.

  14. Light-assisted small molecule screening against protein kinases

    PubMed Central

    Inglés-Prieto, Álvaro; Reichhart, Eva; Muellner, Markus K.; Nowak, Matthias; Nijman, Sebastian M.; Grusch, Michael; Janovjak, Harald

    2015-01-01

    High-throughput live-cell screens are intricate elements of systems biology studies and drug discovery pipelines. Here, we demonstrate an optogenetics-assisted method that obviates the addition of chemical activators and reporters, reduces the number of operational steps and increases information content in a cell-based small molecule screen against human protein kinases including an orphan receptor tyrosine kinase. This blueprint for all-optical screening can be adapted to many drug targets and cellular processes. PMID:26457372

  15. Partial purification of a spinach thylakoid protein kinase that can phosphorylate light-harvesting chlorophyll a/b proteins

    SciTech Connect

    Clark, R.D.; Hind, G.; Bennett, J.

    1985-01-01

    Protein phosphorylation in plant tissues is particularly marked in chloroplasts, protein kinase activity being associated with the outer envelope, the soluble stromal fraction, and the thylakoid membrane. Furthermore, thylakoid-bound activity probably includes several distinct kinases, as suggested by studies of divalent cation specificity and thermal lability carried out with intact thylakoids and by subfractionation of solubilized membranes. Illumination of thylakoids, particularly with red light, promotes the rapid and extensive phosphorylation of the light-harvesting chlorophyll a/b complex (LHCII) on a threonine residue near the amino terminus of the protein. This phosphorylation is thought to be involved in regulating the distribution of absorbed quanta between photosystems II and I and is modulated by the redox state of the thylakoid plastoquinone pool. Neither of the thylakoid kinases reported to date was capable of phosphorylating purified LHCII in vitro or of incorporating phosphate into threonyl residues of exogenous substrates, that some LHCII phosphorylation was catalyzed by a preliminary fraction led workers to suggest that at least one other kinase remained to be isolated. Here, the authors report the solubilization and partial purification of a protein kinase from spinach thylakoids that is capable of phosphorylating LHCII in vitro, and they show that the specific site of phosphorylation is very nearly the same as, if not identical with, the site phosphorylated in organello.

  16. Protein Kinase Cϵ (PKCϵ) Promotes Synaptogenesis through Membrane Accumulation of the Postsynaptic Density Protein PSD-95.

    PubMed

    Sen, Abhik; Hongpaisan, Jarin; Wang, Desheng; Nelson, Thomas J; Alkon, Daniel L

    2016-08-05

    Protein kinase Cϵ (PKCϵ) promotes synaptic maturation and synaptogenesis via activation of synaptic growth factors such as BDNF, NGF, and IGF. However, many of the detailed mechanisms by which PKCϵ induces synaptogenesis are not fully understood. Accumulation of PSD-95 to the postsynaptic density (PSD) is known to lead to synaptic maturation and strengthening of excitatory synapses. Here we investigated the relationship between PKCϵ and PSD-95. We show that the PKCϵ activators dicyclopropanated linoleic acid methyl ester and bryostatin 1 induce phosphorylation of PSD-95 at the serine 295 residue, increase the levels of PSD-95, and enhance its membrane localization. Elimination of the serine 295 residue in PSD-95 abolished PKCϵ-induced membrane accumulation. Knockdown of either PKCϵ or JNK1 prevented PKCϵ activator-mediated membrane accumulation of PSD-95. PKCϵ directly phosphorylated PSD-95 and JNK1 in vitro Inhibiting PKCϵ, JNK, or calcium/calmodulin-dependent kinase II activity prevented the effects of PKCϵ activators on PSD-95 phosphorylation. Increase in membrane accumulation of PKCϵ and phosphorylated PSD-95 (p-PSD-95(S295)) coincided with an increased number of synapses and increased amplitudes of excitatory post-synaptic potentials (EPSPs) in adult rat hippocampal slices. Knockdown of PKCϵ also reduced the synthesis of PSD-95 and the presynaptic protein synaptophysin by 30 and 44%, respectively. Prolonged activation of PKCϵ increased synapse number by 2-fold, increased presynaptic vesicle density, and greatly increased PSD-95 clustering. These results indicate that PKCϵ promotes synaptogenesis by activating PSD-95 phosphorylation directly through JNK1 and calcium/calmodulin-dependent kinase II and also by inducing expression of PSD-95 and synaptophysin. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Protein Kinase Cϵ (PKCϵ) Promotes Synaptogenesis through Membrane Accumulation of the Postsynaptic Density Protein PSD-95*

    PubMed Central

    Sen, Abhik; Hongpaisan, Jarin; Wang, Desheng; Nelson, Thomas J.; Alkon, Daniel L.

    2016-01-01

    Protein kinase Cϵ (PKCϵ) promotes synaptic maturation and synaptogenesis via activation of synaptic growth factors such as BDNF, NGF, and IGF. However, many of the detailed mechanisms by which PKCϵ induces synaptogenesis are not fully understood. Accumulation of PSD-95 to the postsynaptic density (PSD) is known to lead to synaptic maturation and strengthening of excitatory synapses. Here we investigated the relationship between PKCϵ and PSD-95. We show that the PKCϵ activators dicyclopropanated linoleic acid methyl ester and bryostatin 1 induce phosphorylation of PSD-95 at the serine 295 residue, increase the levels of PSD-95, and enhance its membrane localization. Elimination of the serine 295 residue in PSD-95 abolished PKCϵ-induced membrane accumulation. Knockdown of either PKCϵ or JNK1 prevented PKCϵ activator-mediated membrane accumulation of PSD-95. PKCϵ directly phosphorylated PSD-95 and JNK1 in vitro. Inhibiting PKCϵ, JNK, or calcium/calmodulin-dependent kinase II activity prevented the effects of PKCϵ activators on PSD-95 phosphorylation. Increase in membrane accumulation of PKCϵ and phosphorylated PSD-95 (p-PSD-95S295) coincided with an increased number of synapses and increased amplitudes of excitatory post-synaptic potentials (EPSPs) in adult rat hippocampal slices. Knockdown of PKCϵ also reduced the synthesis of PSD-95 and the presynaptic protein synaptophysin by 30 and 44%, respectively. Prolonged activation of PKCϵ increased synapse number by 2-fold, increased presynaptic vesicle density, and greatly increased PSD-95 clustering. These results indicate that PKCϵ promotes synaptogenesis by activating PSD-95 phosphorylation directly through JNK1 and calcium/calmodulin-dependent kinase II and also by inducing expression of PSD-95 and synaptophysin. PMID:27330081

  18. Evaluation of the enzyme activity of protozoan protein kinases by using an in vitro kinase assay.

    PubMed

    Kato, Kentaro

    2016-10-01

    The life cycles of parasites are more complicated than those of other biological species. Protein kinases (PKs) encoded by parasites are the main triggers of life stage conversions. Phosphorylation by cellular PKs regulates important cellular processes, and the protozoan genome contains many PKs. Some PK inhibitors inhibit specific parasite life cycle event. In this report, I present a practical approach to expressing and purifying protozoan PKs by using a wheat germ cell-free protein synthesis system and I assess the phosphorylation activities of protozoan PKs by using an in vitro kinase assay. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Toxoplasma gondii calcium-dependent protein kinase 1 is a target for selective kinase inhibitors

    PubMed Central

    Ojo, Kayode K; Larson, Eric T; Keyloun, Katelyn R; Castaneda, Lisa J; DeRocher, Amy E; Inampudi, Krishna K; Kim, Jessica E; Arakaki, Tracy L; Murphy, Ryan C; Zhang, Li; Napuli, Alberto J; Maly, Dustin J; Verlinde, Christophe LMJ; Buckner, Frederick S; Parsons, Marilyn; Hol, Wim GJ; Merritt, Ethan A; Van Voorhis, Wesley C

    2010-01-01

    New drugs are needed to treat toxoplasmosis. Toxoplasma gondii calcium-dependent protein kinases (TgCDPKs) are attractive targets because they are absent in mammals. We show that TgCDPK1 is inhibited by low nanomolar levels of bumped kinase inhibitors (BKIs), compounds designed to be inactive against mammalian kinases. Cocrystal structures of TgCDPK1 with BKIs confirm that the structural basis for selectivity is due to the unique glycine gatekeeper residue in the ATP-binding site at residue 128. We show that BKIs interfere with an early step in T. gondii infection of human cells in culture. Furthermore, we show that TgCDPK1 is the in vivo target of BKIs because T. gondii cells expressing a glycine to methionine gatekeeper mutant enzyme show significantly decreased sensitivity to this class of selective kinase inhibitors. Thus, design of selective TgCDPK1 inhibitors with low host toxicity may be achievable. PMID:20436472

  20. Protein Kinases of the Hippo Pathway: Regulation and Substrates

    PubMed Central

    Avruch, Joseph; Zhou, Dawang; Fitamant, Julien; Bardeesy, Nabeel; Mou, Fan; Barrufet, Laura Regué

    2012-01-01

    The “Hippo” signaling pathway has emerged as a major regulator of cell proliferation and survival in metazoans. The pathway, as delineated by genetic and biochemical studies in Drosophila, consists of a kinase cascade regulated by cell-cell contact and cell polarity that inhibits the transcriptional coactivator Yorkie and its proliferative, anti-differentiation, antiapoptotic transcriptional program. The core pathway components are the GC kinase Hippo, which phosphorylates the noncatalytic polypeptide Mats/Mob1 and, with the assistance of the scaffold protein Salvador, phosphorylates the ndr-family kinase Lats. In turn phospho-Lats, after binding to phospho-Mats, autoactivates and phosphorylates Yorkie, resulting in its nuclear exit. Hippo also uses the scaffold protein Furry and a different Mob protein to control another ndr-like kinase, the morphogenetic regulator Tricornered. Architecturally homologous kinase cascades consisting of a GC kinase, a Mob protein, a scaffolding polypeptide and an ndr-like kinase are well described in yeast; in S. cerevisiae e.g., the MEN pathway promotes mitotic exit whereas the RAM network, using a different GC kinase, Mob protein, scaffold and ndr-like kinase, regulates cell polarity and morphogenesis. In mammals, the Hippo orthologues Mst1 and Mst2 utilize the Salvador ortholog WW45/Sav1 and other scaffolds to regulate the kinases Lats1/Lats2 and ndr1/ndr2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in the epithelial cells of the liver and gut; loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by reduction or elimination of YAP. Despite this conservation, considerable diversification in pathway composition and regulation is already evident; in skin e.g., YAP phosphorylation is independent of Mst1Mst2 and Lats1Lats2. Moreover, in lymphoid cells, Mst1/Mst2, under the control of the Rap1 GTPase and independent of YAP

  1. Structural propensities of kinase family proteins from a Potts model of residue co-variation.

    PubMed

    Haldane, Allan; Flynn, William F; He, Peng; Vijayan, R S K; Levy, Ronald M

    2016-08-01

    Understanding the conformational propensities of proteins is key to solving many problems in structural biology and biophysics. The co-variation of pairs of mutations contained in multiple sequence alignments of protein families can be used to build a Potts Hamiltonian model of the sequence patterns which accurately predicts structural contacts. This observation paves the way to develop deeper connections between evolutionary fitness landscapes of entire protein families and the corresponding free energy landscapes which determine the conformational propensities of individual proteins. Using statistical energies determined from the Potts model and an alignment of 2896 PDB structures, we predict the propensity for particular kinase family proteins to assume a "DFG-out" conformation implicated in the susceptibility of some kinases to type-II inhibitors, and validate the predictions by comparison with the observed structural propensities of the corresponding proteins and experimental binding affinity data. We decompose the statistical energies to investigate which interactions contribute the most to the conformational preference for particular sequences and the corresponding proteins. We find that interactions involving the activation loop and the C-helix and HRD motif are primarily responsible for stabilizing the DFG-in state. This work illustrates how structural free energy landscapes and fitness landscapes of proteins can be used in an integrated way, and in the context of kinase family proteins, can potentially impact therapeutic design strategies. © 2016 The Protein Society.

  2. Characterization of the Catalytic and Nucleotide Binding Properties of the α-Kinase Domain of Dictyostelium Myosin-II Heavy Chain Kinase A*

    PubMed Central

    Yang, Yidai; Ye, Qilu; Jia, Zongchao; Côté, Graham P.

    2015-01-01

    The α-kinases are a widely expressed family of serine/threonine protein kinases that exhibit no sequence identity with conventional eukaryotic protein kinases. In this report, we provide new information on the catalytic properties of the α-kinase domain of Dictyostelium myosin-II heavy chain kinase-A (termed A-CAT). Crystallization of A-CAT in the presence of MgATP yielded structures with AMP or adenosine in the catalytic cleft together with a phosphorylated Asp-766 residue. The results show that the β- and α-phosphoryl groups are transferred either directly or indirectly to the catalytically essential Asp-766. Biochemical assays confirmed that A-CAT hydrolyzed ATP, ADP, and AMP with kcat values of 1.9, 0.6, and 0.32 min−1, respectively, and showed that A-CAT can use ADP to phosphorylate peptides and proteins. Binding assays using fluorescent 2′/3′-O-(N-methylanthraniloyl) analogs of ATP and ADP yielded Kd values for ATP, ADP, AMP, and adenosine of 20 ± 3, 60 ± 20, 160 ± 60, and 45 ± 15 μm, respectively. Site-directed mutagenesis showed that Glu-713, Leu-716, and Lys-645, all of which interact with the adenine base, were critical for nucleotide binding. Mutation of the highly conserved Gln-758, which chelates a nucleotide-associated Mg2+ ion, eliminated catalytic activity, whereas loss of the highly conserved Lys-722 and Arg-592 decreased kcat values for kinase and ATPase activities by 3–6-fold. Mutation of Asp-663 impaired kinase activity to a much greater extent than ATPase, indicating a specific role in peptide substrate binding, whereas mutation of Gln-768 doubled ATPase activity, suggesting that it may act to exclude water from the active site. PMID:26260792

  3. Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members.

    PubMed Central

    Frost, J A; Xu, S; Hutchison, M R; Marcus, S; Cobb, M H

    1996-01-01

    The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway. PMID:8668187

  4. Protein-protein interactions of tandem affinity purified protein kinases from rice.

    PubMed

    Rohila, Jai S; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald L; Dardick, Christopher; Canlas, Patrick; Fujii, Hiroaki; Gribskov, Michael; Kanrar, Siddhartha; Knoflicek, Lucas; Stevenson, Becky; Xie, Mingtang; Xu, Xia; Zheng, Xianwu; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E

    2009-08-19

    Eighty-eight rice (Oryza sativa) cDNAs encoding rice leaf expressed protein kinases (PKs) were fused to a Tandem Affinity Purification tag (TAP-tag) and expressed in transgenic rice plants. The TAP-tagged PKs and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by tandem mass spectrometry. Forty-five TAP-tagged PKs were recovered in this study and thirteen of these were found to interact with other rice proteins with a high probability score. In vivo phosphorylated sites were found for three of the PKs. A comparison of the TAP-tagged data from a combined analysis of 129 TAP-tagged rice protein kinases with a concurrent screen using yeast two hybrid methods identified an evolutionarily new rice protein that interacts with the well conserved cell division cycle 2 (CDC2) protein complex.

  5. Protein-Protein Interactions of Tandem Affinity Purified Protein Kinases from Rice

    PubMed Central

    Rohila, Jai S.; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald L.; Dardick, Christopher; Canlas, Patrick; Fujii, Hiroaki; Gribskov, Michael; Kanrar, Siddhartha; Knoflicek, Lucas; Stevenson, Becky; Xie, Mingtang; Xu, Xia; Zheng, Xianwu; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E.

    2009-01-01

    Eighty-eight rice (Oryza sativa) cDNAs encoding rice leaf expressed protein kinases (PKs) were fused to a Tandem Affinity Purification tag (TAP-tag) and expressed in transgenic rice plants. The TAP-tagged PKs and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by tandem mass spectrometry. Forty-five TAP-tagged PKs were recovered in this study and thirteen of these were found to interact with other rice proteins with a high probability score. In vivo phosphorylated sites were found for three of the PKs. A comparison of the TAP-tagged data from a combined analysis of 129 TAP-tagged rice protein kinases with a concurrent screen using yeast two hybrid methods identified an evolutionarily new rice protein that interacts with the well conserved cell division cycle 2 (CDC2) protein complex. PMID:19690613

  6. Pea DNA Topoisomerase I Is Phosphorylated and Stimulated by Casein Kinase 2 and Protein Kinase C

    PubMed Central

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-01-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg2+-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants. PMID:12913165

  7. The molecular basis of targeting protein kinases in cancer therapeutics.

    PubMed

    Tsai, Chung-Jung; Nussinov, Ruth

    2013-08-01

    In this paper, we provide an overview of targeted anticancer therapies with small molecule kinase inhibitors. First, we discuss why a single constitutively active kinase emanating from a variety of aberrant genetic alterations is capable of transforming a normal cell, leading it to acquire the hallmarks of a cancer cell. To draw attention to the fact that kinase inhibition in targeted cancer therapeutics differs from conventional cytotoxic chemotherapy, we exploit a conceptual framework explaining why suppressed kinase activity will selectively kill only the so-called oncogene 'addicted' cancer cell, while sparing the healthy cell. Second, we introduce the protein kinase superfamily in light of its common active conformation with precisely positioned structural elements, and the diversified auto-inhibitory conformations among the kinase families. Understanding the detailed activation mechanism of individual kinases is essential to relate the observed oncogenic alterations to the elevated constitutively active state, to identify the mechanism of consequent drug resistance, and to guide the development of the next-generation inhibitors. To clarify the vital importance of structural guidelines in studies of oncogenesis, we explain how somatic mutations in EGFR result in kinase constitutive activation. Third, in addition to the common theme of secondary (acquired) mutations that prevent drug binding from blocking a signaling pathway which is hijacked by the aberrant activated kinase, we discuss scenarios of drug resistance and relapse by compensating lesions that bypass the inactivated pathway in a vertical or horizontal fashion. Collectively, these suggest that the future challenge of cancer therapy with small molecule kinase inhibitors will rely on the discovery of distinct combinations of optimized drugs to target individual subtypes of different cancers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. 5'-AMP-activated protein kinase signaling in Caenorhabditis elegans.

    PubMed

    Beale, Elmus G

    2008-01-01

    5'-AMP-activated protein kinase (AMPK) has been called "the metabolic master switch" because of its central role in regulating fuel homeostasis. AMPK, a heterotrimeric serine/threonine protein kinase composed of alpha, beta, and gamma subunits, is activated by upstream kinases and by 5'-AMP in response to various nutritional and stress signals. Downstream effects include regulation of metabolism, protein synthesis, cell growth, and mediation of the actions of a number of hormones, including leptin. However, AMPK research represents a young and growing field; hence, there are many unanswered questions regarding the control and action of AMPK. This review presents evidence for the existence of AMPK signaling pathways in Caenorhabditis elegans, a genetically tractable model organism that has yet to be fully exploited to elucidate AMPK signaling mechanisms.

  9. Solution structure of the cAMP-dependent protein kinase

    SciTech Connect

    Trewhella, J.; Olah, G.A.; Walsh, D.A.; Mitchell, R.D.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project as Los Alamos National Laboratory (LANL). Protein phosphorylation is well established as one of the most important mechanisms of signal transduction and cellular regulation. Two of the key enzymes that catalyze these phosphorylation reactions are the cAMP- (PKA) and cGMP- (PKG) dependent protein kinases. PKA has served as the prototypic model of this class of enzymes that now comprises in excess of 300 phylogenetically related proteins. A large number of these protein kinases are critical for the regulation of cell function and a full analysis of their similarities and differences is essential to understand their diverse physiological roles. The cAMP-dependent protein kinase has the subunit structure R2C2, in which C and R refer to the catalytic and regulatory subunits, respectively. The cGMP-dependent protein kinase (PKG) is highly homologous to PKA but is distinguished from it by having the regulatory and catalytic domains on a contiguous polypeptide. The studies described here use small-angle scattering and Fourier Transform InfraRed (FTIR) spectroscopy to study domain movements and conformational changes in these enzymes in different functional states in order to elucidate the molecular bases for the regulation of their activities.

  10. The Roles of NDR Protein Kinases in Hippo Signalling

    PubMed Central

    Hergovich, Alexander

    2016-01-01

    The Hippo tumour suppressor pathway has emerged as a critical regulator of tissue growth through controlling cellular processes such as cell proliferation, death, differentiation and stemness. Traditionally, the core cassette of the Hippo pathway includes the MST1/2 protein kinases, the LATS1/2 protein kinases, and the MOB1 scaffold signal transducer, which together regulate the transcriptional co-activator functions of the proto-oncoproteins YAP and TAZ through LATS1/2-mediated phosphorylation of YAP/TAZ. Recent research has identified additional kinases, such as NDR1/2 (also known as STK38/STK38L) and MAP4Ks, which should be considered as novel members of the Hippo core cassette. While these efforts helped to expand our understanding of Hippo core signalling, they also began to provide insights into the complexity and redundancy of the Hippo signalling network. Here, we focus on summarising our current knowledge of the regulation and functions of mammalian NDR kinases, discussing parallels between the NDR pathways in Drosophila and mammals. Initially, we provide a general overview of the cellular functions of NDR kinases in cell cycle progression, centrosome biology, apoptosis, autophagy, DNA damage signalling, immunology and neurobiology. Finally, we put particular emphasis on discussing NDR1/2 as YAP kinases downstream of MST1/2 and MOB1 signalling in Hippo signalling. PMID:27213455

  11. Ethanol increases affinity of protein kinase C for phosphatidylserine

    SciTech Connect

    Chin, J.H.

    1986-03-01

    Protein kinase C is a calcium-dependent enzyme that requires phospholipid for its activation. It is present in relatively high concentration in the brain and may be involved in neuronal function. The present experiments test whether the membrane disorder induced by ethanol affects the activity of kinase C by changing its interaction with membrane lipid. Fractions rich in kinase C were purified from rat brain cytosol by DEAE-cellulose chromatography and Sephadex G-200 gel filtration. Enzyme activity was assayed by measuring the phosphorylation of histone H1. As expected, phosphatidylserine activated the enzyme, and the stimulation was further increased by the addition of calcium and/or diacylglycerol. At low concentration of free calcium (0.5-1..mu..M), ethanol (800 mM0 enhanced kinase C activity if the presence of phospholipid. similar results were observed in the absence of calcium. Double reciprocal plots of the data showed that ethanol increased the affinity of the enzyme for phosphatidylserine without affecting the V/sub max. The stimulation of kinase C activity by ethanol was not observed at high calcium concentrations. These experiments suggest that ethanol may activated protein kinase C at physiological levels of calcium by facilitating its transfer into the hydrophobic membrane environment.

  12. Atypical protein kinase Clambda binds and regulates p70 S6 kinase.

    PubMed Central

    Akimoto, K; Nakaya, M; Yamanaka, T; Tanaka, J; Matsuda, S; Weng, Q P; Avruch, J; Ohno, S

    1998-01-01

    p70 S6 kinase (p70 S6K) has been implicated in the regulation of cell cycle progression. However, the mechanism of its activation is not fully understood. In the present work, evidence is provided that an atypical protein kinase C (PKC) isotype, PKClambda, is indispensable, but not sufficient, for the activation of p70 S6K. Both the regulatory and kinase domains of PKClambda associate directly with p70 S6K. Overexpression of the kinase domain without kinase activity or the regulatory domain of PKClambda results in the suppression of the serum-induced activation of p70 S6K. In addition, two types of dominant-negative mutants of PKClambda, as well as a kinase-deficient mutant of p70 S6K, suppress serum-induced DNA synthesis and E2F activation. The overexpresion of the active form of PKClambda, however, fails to activate p70 S6K. These results suggest that PKClambda is a mediator in the regulation of p70 S6K activity and plays an important role in cell cycle progression. PMID:9761742

  13. Intrinsic disorder within an AKAP-protein kinase A complex guides local substrate phosphorylation.

    PubMed

    Smith, F Donelson; Reichow, Steve L; Esseltine, Jessica L; Shi, Dan; Langeberg, Lorene K; Scott, John D; Gonen, Tamir

    2013-11-05

    Anchoring proteins sequester kinases with their substrates to locally disseminate intracellular signals and avert indiscriminate transmission of these responses throughout the cell. Mechanistic understanding of this process is hampered by limited structural information on these macromolecular complexes. A-kinase anchoring proteins (AKAPs) spatially constrain phosphorylation by cAMP-dependent protein kinases (PKA). Electron microscopy and three-dimensional reconstructions of type-II PKA-AKAP18γ complexes reveal hetero-pentameric assemblies that adopt a range of flexible tripartite configurations. Intrinsically disordered regions within each PKA regulatory subunit impart the molecular plasticity that affords an ∼16 nanometer radius of motion to the associated catalytic subunits. Manipulating flexibility within the PKA holoenzyme augmented basal and cAMP responsive phosphorylation of AKAP-associated substrates. Cell-based analyses suggest that the catalytic subunit remains within type-II PKA-AKAP18γ complexes upon cAMP elevation. We propose that the dynamic movement of kinase sub-structures, in concert with the static AKAP-regulatory subunit interface, generates a solid-state signaling microenvironment for substrate phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.01319.001.

  14. A receptor-like kinase from Arabidopsis thaliana is a calmodulin-binding protein.

    PubMed Central

    Charpenteau, Martine; Jaworski, Krzysztof; Ramirez, Bertha C; Tretyn, Andrzej; Ranjeva, Raoul; Ranty, Benoît

    2004-01-01

    Screening a cDNA expression library with a radiolabelled calmodulin (CaM) probe led to the isolation of AtCaMRLK, a receptor-like kinase (RLK) of Arabidopsis thaliana. AtCaMRLK polypeptide sequence shows a modular organization consisting of the four distinctive domains characteristic of receptor kinases: an amino terminal signal sequence, a domain containing seven leucine-rich repeats, a single putative membrane-spanning segment and a protein kinase domain. Using truncated versions of the protein and a synthetic peptide, we demonstrated that a region of 23 amino acids, located near the kinase domain of AtCaMRLK, binds CaM in a calcium-dependent manner. Real-time binding experiments showed that AtCaMRLK interacted in vitro with AtCaM1, a canonical CaM, but not with AtCaM8, a divergent isoform of the Ca2+ sensor. The bacterially expressed kinase domain of the protein was able to autophosphorylate and to phosphorylate the myelin basic protein, using Mn2+ preferentially to Mg2+ as an ion activator. Site-directed mutagenesis of the conserved lysine residue (Lys423) to alanine, in the kinase subdomain II, resulted in a complete loss of kinase activity. CaM had no influence on the autophosphorylation activity of AtCaMRLK. AtCaMRLK was expressed in reproductive and vegetative tissues of A. thaliana, except in leaves. Disruption in the AtCaMRLK coding sequence by insertion of a DsG transposable element in an Arabidopsis mutant did not generate a discernible phenotype. The CaM-binding motif of AtCaMRLK was found to be conserved in several other members of the plant RLK family, suggesting a role for Ca2+/CaM in the regulation of RLK-mediated pathways. PMID:14720124

  15. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    PubMed Central

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; Lopez-Garrido, Javier; Muszewska, Anna; Dudkiewicz, Małgorzata; Grynberg, Marcin; Yee, Samantha; Pogliano, Kit; Tomchick, Diana R.; Pawłowski, Krzysztof; Dixon, Jack E.; Tagliabracci, Vincent S.

    2016-01-01

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. Here, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology. PMID:27185916

  16. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    SciTech Connect

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; Lopez-Garrido, Javier; Muszewska, Anna; Dudkiewicz, Małgorzata; Grynberg, Marcin; Yee, Samantha; Pogliano, Kit; Tomchick, Diana R.; Pawłowski, Krzysztof; Dixon, Jack E.; Tagliabracci, Vincent S.

    2016-05-16

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.

  17. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE PAGES

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; ...

    2016-05-16

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  18. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    SciTech Connect

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; Lopez-Garrido, Javier; Muszewska, Anna; Dudkiewicz, Małgorzata; Grynberg, Marcin; Yee, Samantha; Pogliano, Kit; Tomchick, Diana R.; Pawłowski, Krzysztof; Dixon, Jack E.; Tagliabracci, Vincent S.

    2016-05-16

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.

  19. Role of Protein Kinase C, PI3-kinase and Tyrosine Kinase in Activation of MAP Kinase by Glucose and Agonists of G-protein Coupled Receptors in INS-1 Cells

    PubMed Central

    Böcker, Dietmar

    2001-01-01

    MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [ P 32 ]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 ( IC 50 =51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [ H 3 ]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but

  20. Protein kinase Calpha activation by RET: evidence for a negative feedback mechanism controlling RET tyrosine kinase.

    PubMed

    Andreozzi, Francesco; Melillo, Rosa Marina; Carlomagno, Francesca; Oriente, Francesco; Miele, Claudia; Fiory, Francesca; Santopietro, Stefania; Castellone, Maria Domenica; Beguinot, Francesco; Santoro, Massimo; Formisano, Pietro

    2003-05-15

    We have studied the role of protein kinase C (PKC) in signaling of the RET tyrosine kinase receptor. By using a chimeric receptor (E/R) in which RET kinase can be tightly controlled by the addition of epidermal growth factor (EGF), we have found that RET triggering induces a strong increase of PKCalpha, PKCdelta and PKCzeta activity and that PKCalpha, not PKCdelta and PKCzeta, forms a ligand-dependent protein complex with E/R. We have identified tyrosine 1062 in the RET carboxyl-terminal tail as the docking site for PKCalpha. Block of PKC activity by bisindolylmaleimide or chronic phorbol esters treatment decreased EGF-induced serine/threonine phosphorylation of E/R, while it caused a similarly sized increase of EGF-induced E/R tyrosine kinase activity and mitogenic signaling. Conversely, acute phorbol esters treatment, which promotes PKC activity, increased the levels of E/R serine/threonine phosphorylation and significantly decreased its phosphotyrosine content. A threefold reduction of tyrosine phosphorylation levels of the constitutively active RET/MEN2A oncoprotein was observed upon coexpression with PKCalpha. We conclude that RET binds to and activates PKCalpha. PKCalpha, in turn, causes RET phosphorylation and downregulates RET tyrosine kinase and downstream signaling, thus functioning as a negative feedback loop to modulate RET activity.

  1. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach.

    PubMed

    Badrinarayan, Preethi; Sastry, G Narahari

    2012-04-01

    In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The regulation of AMP-activated protein kinase by phosphorylation.

    PubMed Central

    Stein, S C; Woods, A; Jones, N A; Davison, M D; Carling, D

    2000-01-01

    The AMP-activated protein kinase (AMPK) cascade is activated by an increase in the AMP/ATP ratio within the cell. AMPK is regulated allosterically by AMP and by reversible phosphorylation. Threonine-172 within the catalytic subunit (alpha) of AMPK (Thr(172)) was identified as the major site phosphorylated by the AMP-activated protein kinase kinase (AMPKK) in vitro. We have used site-directed mutagenesis to study the role of phosphorylation of Thr(172) on AMPK activity. Mutation of Thr(172) to an aspartic acid residue (T172D) in either alpha1 or alpha2 resulted in a kinase complex with approx. 50% the activity of the corresponding wild-type complex. The activity of wild-type AMPK decreased by greater than 90% following treatment with protein phosphatases, whereas the activity of the T172D mutant complex fell by only 10-15%. Mutation of Thr(172) to an alanine residue (T172A) almost completely abolished kinase activity. These results indicate that phosphorylation of Thr(172) accounts for most of the activation by AMPKK, but that other sites are involved. In support of this we have shown that AMPKK phosphorylates at least two other sites on the alpha subunit and one site on the beta subunit. Furthermore, we provide evidence that phosphorylation of Thr(172) may be involved in the sensitivity of the AMPK complex to AMP. PMID:10642499

  3. Targeting protein kinase A in cancer therapy: an update

    PubMed Central

    Sapio, Luigi; Di Maiolo, Francesca; Illiano, Michela; Esposito, Antonietta; Chiosi, Emilio; Spina, Annamaria; Naviglio, Silvio

    2014-01-01

    Protein Kinase A (PKA) is a well known member of the serine-threonin protein kinase superfamily. PKA, also known as cAMP-dependent protein kinase, is a multi-unit protein kinase that mediates signal transduction of G-protein coupled receptors through its activation upon cAMP binding. The widespread expression of PKA subunit genes, and the myriad of mechanisms by which cAMP is regulated within a cell suggest that PKA signaling is one of extreme importance to cellular function. It is involved in the control of a wide variety of cellular processes from metabolism to ion channel activation, cell growth and differentiation, gene expression and apoptosis. Importantly, since it has been implicated in the initiation and progression of many tumors, PKA has been proposed as a novel biomarker for cancer detection, and as a potential molecular target for cancer therapy. Here, we highlight some features of cAMP/PKA signaling that are relevant to cancer biology and present an update on targeting PKA in cancer therapy. PMID:26417307

  4. Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer

    PubMed Central

    Shao, Yang-Guang; Ning, Ke; Li, Feng

    2016-01-01

    P21-activated kinases (PAKs) are central players in various oncogenic signaling pathways. The six PAK family members are classified into group I (PAK1-3) and group II (PAK4-6). Focus is currently shifting from group I PAKs to group II PAKs. Group II PAKs play important roles in many fundamental cellular processes, some of which have particular significance in the development and progression of cancer. Because of their important functions, group II PAKs have become popular potential drug target candidates. However, few group II PAKs inhibitors have been reported, and most do not exhibit satisfactory kinase selectivity and “drug-like” properties. Isoform- and kinase-selective PAK inhibitors remain to be developed. This review describes the biological activities of group II PAKs, the importance of group II PAKs in the development and progression of gastrointestinal cancer, and small-molecule inhibitors of group II PAKs for the treatment of cancer. PMID:26811660

  5. The elusive activity of the Yersinia protein kinase A kinase domain is revealed.

    PubMed

    Laskowski-Arce, Michelle A; Orth, Kim

    2007-10-01

    Yersinia spp. pathogens use their type III secretion system to translocate effectors that manipulate host signaling pathways during infection. Although molecular targets for five of the six known Yersinia effectors are known, the target for the serine/threonine kinase domain of Yersinia protein kinase A (YpkA) has remained elusive. Recently, Navarro et al. (2007) demonstrated that YpkA phosphorylates Galphaq, and inhibits Galphaq-mediated signaling. Inhibition by YpkA could contribute to one of the most documented symptoms of Yersinia pestis infection, extensive bleeding.

  6. Microfluidic IEF technique for sequential phosphorylation analysis of protein kinases

    NASA Astrophysics Data System (ADS)

    Choi, Nakchul; Song, Simon; Choi, Hoseok; Lim, Bu-Taek; Kim, Young-Pil

    2015-11-01

    Sequential phosphorylation of protein kinases play the important role in signal transduction, protein regulation, and metabolism in living cells. The analysis of these phosphorylation cascades will provide new insights into their physiological functions in many biological functions. Unfortunately, the existing methods are limited to analyze the cascade activity. Therefore, we suggest a microfluidic isoelectric focusing technique (μIEF) for the analysis of the cascade activity. Using the technique, we show that the sequential phosphorylation of a peptide by two different kinases can be successfully detected on a microfluidic chip. In addition, the inhibition assay for kinase activity and the analysis on a real sample have also been conducted. The results indicate that μIEF is an excellent means for studies on phosphorylation cascade activity.

  7. Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy

    PubMed Central

    Li, Hui; Li, Weiwei; Gupta, Arun K.; Mohler, Peter J.; Anderson, Mark E.

    2010-01-01

    Despite our understanding that medial smooth muscle hypertrophy is a central feature of vascular remodeling, the molecular pathways underlying this pathology are still not well understood. Work over the past decade has illustrated a potential role for the multifunctional calmodulin-dependent kinase CaMKII in smooth muscle cell contraction, growth, and migration. Here we demonstrate that CaMKII is enriched in vascular smooth muscle (VSM) and that CaMKII inhibition blocks ANG II-dependent VSM cell hypertrophy in vitro and in vivo. Specifically, systemic CaMKII inhibition with KN-93 prevented ANG II-mediated hypertension and medial hypertrophy in vivo. Adenoviral transduction with the CaMKII peptide inhibitor CaMKIIN abrogated ANG II-induced VSM hypertrophy in vitro, which was augmented by overexpression of CaMKII-δ2. Finally, we identify the downstream signaling components critical for ANG II- and CaMKII-mediated VSM hypertrophy. Specifically, we demonstrate that CaMKII induces VSM hypertrophy by regulating histone deacetylase 4 (HDAC4) activity, thereby stimulating activity of the hypertrophic transcription factor MEF2. MEF2 transcription is activated by ANG II in vivo and abrogated by the CaMKII inhibitor KN-93. Together, our studies identify a complete pathway for ANG II-triggered arterial VSM hypertrophy and identify new potential therapeutic targets for chronic human hypertension. PMID:20023119

  8. Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy.

    PubMed

    Li, Hui; Li, Weiwei; Gupta, Arun K; Mohler, Peter J; Anderson, Mark E; Grumbach, Isabella M

    2010-02-01

    Despite our understanding that medial smooth muscle hypertrophy is a central feature of vascular remodeling, the molecular pathways underlying this pathology are still not well understood. Work over the past decade has illustrated a potential role for the multifunctional calmodulin-dependent kinase CaMKII in smooth muscle cell contraction, growth, and migration. Here we demonstrate that CaMKII is enriched in vascular smooth muscle (VSM) and that CaMKII inhibition blocks ANG II-dependent VSM cell hypertrophy in vitro and in vivo. Specifically, systemic CaMKII inhibition with KN-93 prevented ANG II-mediated hypertension and medial hypertrophy in vivo. Adenoviral transduction with the CaMKII peptide inhibitor CaMKIIN abrogated ANG II-induced VSM hypertrophy in vitro, which was augmented by overexpression of CaMKII-delta2. Finally, we identify the downstream signaling components critical for ANG II- and CaMKII-mediated VSM hypertrophy. Specifically, we demonstrate that CaMKII induces VSM hypertrophy by regulating histone deacetylase 4 (HDAC4) activity, thereby stimulating activity of the hypertrophic transcription factor MEF2. MEF2 transcription is activated by ANG II in vivo and abrogated by the CaMKII inhibitor KN-93. Together, our studies identify a complete pathway for ANG II-triggered arterial VSM hypertrophy and identify new potential therapeutic targets for chronic human hypertension.

  9. Comparative analysis of human and bovine protein kinases reveals unique relationship and functional diversity.

    PubMed

    Kabir, Nuzhat N; Kazi, Julhash U

    2011-10-01

    Reversible protein phosphorylation by protein kinases and phosphatases is a common event in various cellular processes. The eukaryotic protein kinase superfamily, which is one of the largest superfamilies of eukaryotic proteins, plays several roles in cell signaling and diseases. We identified 482 eukaryotic protein kinases and 39 atypical protein kinases in the bovine genome, by searching publicly accessible genetic-sequence databases. Bovines have 512 putative protein kinases, each orthologous to a human kinase. Whereas orthologous kinase pairs are, on an average, 90.6% identical, orthologous kinase catalytic domain pairs are, on an average, 95.9% identical at the amino acid level. This bioinformatic study of bovine