Science.gov

Sample records for ii quantum yields

  1. Cu(2+) inhibits photosystem II activities but enhances photosystem I quantum yield of Microcystis aeruginosa.

    PubMed

    Deng, Chunnuan; Pan, Xiangliang; Wang, Shuzhi; Zhang, Daoyong

    2014-08-01

    Responses of photosystem I and II activities of Microcystis aeruginosa to various concentrations of Cu(2+) were simultaneously examined using a Dual-PAM-100 fluorometer. Cell growth and contents of chlorophyll a were significantly inhibited by Cu(2+). Photosystem II activity [Y(II)] and electron transport [rETRmax(II)] were significantly altered by Cu(2+). The quantum yield of photosystem II [Y(II)] decreased by 29 % at 100 μg L(-1) Cu(2+) compared to control. On the contrary, photosystem I was stable under Cu(2+) stress and showed an obvious increase of quantum yield [Y(I)] and electron transport [rETRmax(I)] due to activation of cyclic electron flow (CEF). Yield of cyclic electron flow [Y(CEF)] was enhanced by 17 % at 100 μg L(-1) Cu(2+) compared to control. The contribution of linear electron flow to photosystem I [Y(II)/Y(I)] decreased with increasing Cu(2+) concentration. Yield of cyclic electron flow [Y(CEF)] was negatively correlated with the maximal photosystem II photochemical efficiency (F v/F m). In summary, photosystem II was the major target sites of toxicity of Cu(2+), while photosystem I activity was enhanced under Cu(2+) stress.

  2. Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1.

    PubMed

    Laisk, Agu; Oja, Vello; Eichelmann, Hillar; Dall'Osto, Luca

    2014-02-01

    The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4·O2 evolution) which arrived at the PSI donor side after a delay of 2ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment-protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI=0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII=0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145-155). At wavelengths less than 580nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment-protein complexes.

  3. Molar Absorptivity and Concentration-Dependent Quantum Yield of Fe(II) Photo-Formation for the Aqueous Solutions of Fe(III)-Dicarboxylate Complexes

    NASA Astrophysics Data System (ADS)

    Hitomi, Y.; Arakaki, T.

    2009-12-01

    Redox cycles of iron in the aquatic environment affect formation of reactive oxygen species such as hydrogen peroxide and hydroxyl radicals, which in turn determines lifetimes of many organic compounds. Although aqueous Fe(III)-dicarboxylate complexes are considered to be important sources of photo-formed Fe(II), molar absorptivity and quantum yield of Fe(II) formation for individual species are not well understood. We initiated a study to characterize Fe(II) photo-formation from Fe(III)-dicarboxylates with the concentration ranges that are relevant to the natural aquatic environment. The Visual MINTEQ computer program was used to calculate the equilibrium concentrations of individual Fe(III)-dicarboxylate species. The molar absorptivity of Fe(III)-dicarboxylate species was obtained by UV-VIS spectrophotometer, and the product of the quantum yield and the molar absorptivity of Fe(III)-dicarboxylate species were obtained from photochemical experiments. These experimental data were combined with the calculated equilibrium Fe(III)-dicarboxylate concentrations to determine individual molar absorptivity and quantum yield of Fe(II) photo-formation for a specific Fe(III)-dicarboxylate species. We used initial concentrations of less than 10 micromolar Fe(III) to study the photochemical formation of Fe(II). Dicarboxylate compounds studied include oxalate, malonate, succinate, malate, and phthalate. We report molar absorptivity and concentration-dependent quantum yields of Fe(II) photo-formation of individual Fe(III)-dicarboxylates.

  4. A comparative study of maximal quantum yield of photosystem II to determine nitrogen and phosphorus limitation on two marine algae

    NASA Astrophysics Data System (ADS)

    Qi, Hongju; Wang, Jiangtao; Wang, Zhaoyu

    2013-07-01

    We studied the effects of nitrogen and phosphorus supply on Fv/Fm (maximal quantum yield of photosystem II) in the diatom Chaetoceros debilis and dinoflagellate Scrippsiella trochoidea in nitrogen (N) and phosphorus (P) depleted cultures to determine whether this parameter could be used to monitor N or P limitation. In the nutrient depleted experiments, no obvious decrease of cell density and chlorophyll concentration was observed except in N-depleted incubation of S. trochoidea. For C. debilis, Fv/Fm decreased quickly in periods of N- and P-depletion and re-supply of N and P induced a quick recovery of Fv/Fm. However, in S. trochoidea culture, Fv/Fm remained unchanged in N- and P-depleted conditions and addition of sufficient N and P to N- and P-depleted cultures did not affect Fv/Fm. Therefore, Fv/Fm is insensitive to N and/or P limitation in growth of S. trochoidea. The results suggested that Fv/Fm was not a robust diagnostic for nutrient limitation in dinoflagellates. The differences in the sensitivity of Fv/Fm to nutrient limitation may result from different nutrient storage abilities among algal species.

  5. Molar Absorptivity and Quantum Yield of Fe(II) Photo-formation for the Aqueous Solutions of Fe(III)-Dicarboxylate Comlexes

    NASA Astrophysics Data System (ADS)

    Hitomi, Y.; Arakaki, T.

    2009-04-01

    Fe(III)/Fe(II) cycle in the environment affects formation of active oxygen species such as hydrogen peroxide and hydroxyl radicals, which in turn determines lifetimes of many organic compounds. Although aqueous Fe(III)-dicarboxylate complexes are considered to be an important source of photo-chemically formed Fe(II), molar absorptivity and quantum yield of Fe(II) formation for individual species are not well understood. The Visual MINTEQ computer program was used to calculate the equilibrium concentrations of individual Fe(III)-dicarboxylate species in the aqueous solutions of Fe(III)-dicarboxylate complexes. The molar absorptivity and the product of the quantum yield and the molar absorptivity of Fe(III)-dicarboxylate species were obtained by UV-VIS spectrophotometer and photochemical experiments, and these experimental data were combined with the calculated equilibrium Fe(III)-dicarboxylate concentrations to determine individual molar absorptivity and quantum yield of Fe(II) photo-formation for a specific Fe(III)-dicarboxylate species. Dicarboxylate compounds studied were oxalate, malonate, succinate, malate, and phthalate.

  6. Cobalt(II), Nickel(II) and Copper(II) complexes of a tetradentate Schiff base as photosensitizers: Quantum yield of 1O2 generation and its promising role in anti-tumor activity.

    PubMed

    Pradeepa, S M; Bhojya Naik, H S; Vinay Kumar, B; Indira Priyadarsini, K; Barik, Atanu; Ravikumar Naik, T R

    2013-01-15

    In the present investigation, a Schiff base N'1,N'3-bis[(E)-(5-bromo-2-hydroxyphenyl)methylidene]benzene-1,3-dicarbohydrazide and its metal complexes have been synthesized and characterized. The DNA-binding studies were performed using absorption spectroscopy, emission spectra, viscosity measurements and thermal denatuaration studies. The experimental evidence indicated that, the Co(II), Ni(II) and Cu(II) complexes interact with calf thymus DNA through intercalation with an intrinsic binding constant Kb of 2.6×10(4) M(-1), 5.7×10(4) M(-1) and 4.5×10(4) M(-1), respectively and they exhibited potent photodamage abilities on pUC19 DNA, through singlet oxygen generation with quantum yields of 0.32, 0.27 and 0.30 respectively. The cytotoxic activity of the complexes resulted that they act as a potent photosensitizers for photochemical reactions.

  7. Cobalt(II), Nickel(II) and Copper(II) complexes of a tetradentate Schiff base as photosensitizers: Quantum yield of 1O2 generation and its promising role in anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Pradeepa, S. M.; Bhojya Naik, H. S.; Vinay Kumar, B.; Indira Priyadarsini, K.; Barik, Atanu; Ravikumar Naik, T. R.

    2013-01-01

    In the present investigation, a Schiff base N'1,N'3-bis[(E)-(5-bromo-2-hydroxyphenyl)methylidene]benzene-1,3-dicarbohydrazide and its metal complexes have been synthesized and characterized. The DNA-binding studies were performed using absorption spectroscopy, emission spectra, viscosity measurements and thermal denatuaration studies. The experimental evidence indicated that, the Co(II), Ni(II) and Cu(II) complexes interact with calf thymus DNA through intercalation with an intrinsic binding constant Kb of 2.6 × 104 M-1, 5.7 × 104 M-1 and 4.5 × 104 M-1, respectively and they exhibited potent photodamage abilities on pUC19 DNA, through singlet oxygen generation with quantum yields of 0.32, 0.27 and 0.30 respectively. The cytotoxic activity of the complexes resulted that they act as a potent photosensitizers for photochemical reactions.

  8. Luminescent pincer platinum(II) complexes with emission quantum yields up to almost unity: photophysics, photoreductive C-C bond formation, and materials applications.

    PubMed

    Chow, Pui-Keong; Cheng, Gang; Tong, Glenna So Ming; To, Wai-Pong; Kwong, Wai-Lun; Low, Kam-Hung; Kwok, Chi-Chung; Ma, Chensheng; Che, Chi-Ming

    2015-02-09

    Luminescent pincer-type Pt(II)  complexes supported by C-deprotonated π-extended tridentate RC^N^NR' ligands and pentafluorophenylacetylide ligands show emission quantum yields up to almost unity. Femtosecond time-resolved fluorescence measurements and time-dependent DFT calculations together reveal the dependence of excited-state structural distortions of [Pt(RC^N^NR')(CC-C6 F5 )] on the positional isomers of the tridentate ligand. Pt complexes [Pt(R-C^N^NR')(CC-Ar)] are efficient photocatalysts for visible-light-induced reductive CC bond formation. The [Pt(R-C^N^NR')(CC-C6 F5 )] complexes perform strongly as phosphorescent dopants for green- and red-emitting organic light-emitting diodes (OLEDs) with external quantum efficiency values over 22.1 %. These complexes are also applied in two-photon cellular imaging when incorporated into mesoporous silica nanoparticles (MSNs).

  9. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.

    PubMed

    Porcel, Rosa; Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Aroca, Ricardo; Garcia, Rosalva; Ruiz-Lozano, Juan Manuel

    2015-08-01

    Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity.

  10. Yield Improvement in Steel Casting (Yield II)

    SciTech Connect

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to four time s the

  11. Effects of Bleaching by Nitrogen Deficiency on the Quantum Yield of Photosystem II in Synechocystis sp. PCC 6803 Revealed by Chl Fluorescence Measurements.

    PubMed

    Ogawa, Takako; Sonoike, Kintake

    2016-03-01

    Estimation of photosynthesis by Chl fluorescence measurement of cyanobacteria is always problematic due to the interference from respiratory electron transfer and from phycocyanin fluorescence. The interference from respiratory electron transfer could be avoided by the use of DCMU or background illumination by blue light, which oxidizes the plastoquinone pool that tends to be reduced by respiration. On the other hand, the precise estimation of photosynthesis in cells with a different phycobilisome content by Chl fluorescence measurement is difficult. By subtracting the basal fluorescence due to the phycobilisome and PSI, it becomes possible to estimate the precise maximum quantum yield of PSII in cyanobacteria. Estimated basal fluorescence accounted for 60% of the minimum fluorescence, resulting in a large difference between the 'apparent' yield and 'true' yield under high phycocyanin conditions. The calculated value of the 'true' maximum quantum yield of PSII was around 0.8, which was similar to the value observed in land plants. The results suggest that the cause of the apparent low yield reported in cyanobacteria is mainly ascribed to the interference from phycocyanin fluorescence. We also found that the 'true' maximum quantum yield of PSII decreased under nitrogen-deficient conditions, suggesting the impairment of the PSII reaction center, while the 'apparent' maximum quantum yield showed a marginal change under the same conditions. Due to the high contribution of phycocyanin fluorescence in cyanobacteria, it is essential to eliminate the influence of the change in phycocyanin content on Chl fluorescence measurement and to evaluate the 'true' photosynthetic condition.

  12. Absolute quantum yield measurement of powder samples.

    PubMed

    Moreno, Luis A

    2012-05-12

    Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry. Quantum yield is calculated as the ratio of the number of photons absorbed, to the number of photons emitted by a material. The higher the quantum yield, the better the efficiency of the fluorescent material. For the measurements featured in this video, we will use the Hitachi F-7000 fluorescence spectrophotometer equipped with the Quantum Yield measuring accessory and Report Generator program. All the information provided applies to this system. Measurement of quantum yield in powder samples is performed following these steps: 1. Generation of instrument correction factors for the excitation and emission monochromators. This is an important requirement for the correct measurement of quantum yield. It has been performed in advance for the full measurement range of the instrument and will not be shown in this video due to time limitations. 2. Measurement of integrating sphere correction factors. The purpose of this step is to take into consideration reflectivity characteristics of the integrating sphere used for the measurements. 3. Reference and Sample measurement using direct excitation and indirect excitation. 4. Quantum Yield calculation using Direct and Indirect excitation. Direct excitation is when the sample is facing directly the excitation beam, which would be the normal measurement setup. However, because we use an integrating sphere, a portion of the emitted photons resulting from the sample fluorescence are reflected by the integrating sphere and will re-excite the sample, so we need to take into consideration indirect excitation. This is accomplished by measuring the sample placed in the port facing the emission monochromator, calculating indirect quantum yield and correcting the direct

  13. HYPERSENSITIVE TO HIGH LIGHT1 Interacts with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 and Functions in Protection of Photosystem II from Photodamage in Arabidopsis[C][W][OPEN

    PubMed Central

    Jin, Honglei; Liu, Bing; Luo, Lujun; Feng, Dongru; Wang, Peng; Liu, Jun; Da, Qingen; He, Yanming; Qi, Kangbiao; Wang, Jinfa; Wang, Hong-Bin

    2014-01-01

    Under high-irradiance conditions, plants must efficiently protect photosystem II (PSII) from damage. In this study, we demonstrate that the chloroplast protein HYPERSENSITIVE TO HIGH LIGHT1 (HHL1) is expressed in response to high light and functions in protecting PSII against photodamage. Arabidopsis thaliana hhl1 mutants show hypersensitivity to high light, drastically decreased PSII photosynthetic activity, higher nonphotochemical quenching activity, a faster xanthophyll cycle, and increased accumulation of reactive oxygen species following high-light exposure. Moreover, HHL1 deficiency accelerated the degradation of PSII core subunits under high light, decreasing the accumulation of PSII core subunits and PSII–light-harvesting complex II supercomplex. HHL1 primarily localizes in the stroma-exposed thylakoid membranes and associates with the PSII core monomer complex through direct interaction with PSII core proteins CP43 and CP47. Interestingly, HHL1 also directly interacts, in vivo and in vitro, with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 (LQY1), which functions in the repair and reassembly of PSII. Furthermore, the hhl1 lqy1 double mutants show increased photosensitivity compared with single mutants. Taken together, these results suggest that HHL1 forms a complex with LQY1 and participates in photodamage repair of PSII under high light. PMID:24632535

  14. Photochemistry of UV-excited trifluoroacetylacetone and hexafluoroacetylacetone II: Quantum yield and rate constants of hydrogen fluoride photoelimination forming fluorinated methylfuranones

    NASA Astrophysics Data System (ADS)

    Disselkoen, Kyle R.; Alsum, Joel R.; Thielke, Timothy A.; Muyskens, Mark A.

    2017-03-01

    The photochemistry of gas-phase 1,1,1-trifluoroacetylacetone (TFAA) and 1,1,1,5,5,5-hexafluoroacetylacetone (HFAA) excited with ultraviolet light involves a significant photoelimination channel producing HF and difluoromethylfuranone or pentafluoromethylfuranone, respectively. We report collisional self-quenching of the experimentally-determined relative quantum yield, and determine rate constants of 0.27 ± 0.03 and 0.33 ± 0.04 μs-1, for HFAA and TFAA respectively. A strong collision model is consistent with the observed quenching. The data suggest that this elimination is the primary photochemical fate at low pressure in both cases. The TFAA rate constant is larger than that for HFAA, in spite of TFAA having half as many fluorine atoms as HFAA.

  15. Photosynthetic quantum yield dynamics: from photosystems to leaves.

    PubMed

    Hogewoning, Sander W; Wientjes, Emilie; Douwstra, Peter; Trouwborst, Govert; van Ieperen, Wim; Croce, Roberta; Harbinson, Jeremy

    2012-05-01

    The mechanisms underlying the wavelength dependence of the quantum yield for CO(2) fixation (α) and its acclimation to the growth-light spectrum are quantitatively addressed, combining in vivo physiological and in vitro molecular methods. Cucumber (Cucumis sativus) was grown under an artificial sunlight spectrum, shade light spectrum, and blue light, and the quantum yield for photosystem I (PSI) and photosystem II (PSII) electron transport and α were simultaneously measured in vivo at 20 different wavelengths. The wavelength dependence of the photosystem excitation balance was calculated from both these in vivo data and in vitro from the photosystem composition and spectroscopic properties. Measuring wavelengths overexciting PSI produced a higher α for leaves grown under the shade light spectrum (i.e., PSI light), whereas wavelengths overexciting PSII produced a higher α for the sun and blue leaves. The shade spectrum produced the lowest PSI:PSII ratio. The photosystem excitation balance calculated from both in vivo and in vitro data was substantially similar and was shown to determine α at those wavelengths where absorption by carotenoids and nonphotosynthetic pigments is insignificant (i.e., >580 nm). We show quantitatively that leaves acclimate their photosystem composition to their growth light spectrum and how this changes the wavelength dependence of the photosystem excitation balance and quantum yield for CO(2) fixation. This also proves that combining different wavelengths can enhance quantum yields substantially.

  16. Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora).

    PubMed

    Janka, Eshetu; Körner, Oliver; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-05-01

    Under a dynamic greenhouse climate control regime, temperature is adjusted to optimise plant physiological responses to prevailing irradiance levels; thus, both temperature and irradiance are used by the plant to maximise the rate of photosynthesis, assuming other factors are not limiting. The control regime may be optimised by monitoring plant responses, and may be promptly adjusted when plant performance is affected by extreme microclimatic conditions, such as high irradiance or temperature. To determine the stress indicators of plants based on their physiological responses, net photosynthesis (Pn) and four chlorophyll-a fluorescence parameters: maximum photochemical efficiency of PSII [Fv/Fm], electron transport rate [ETR], PSII operating efficiency [F'q/F'm], and non-photochemical quenching [NPQ] were assessed for potted chrysanthemum (Dendranthema grandiflora Tzvelev) 'Coral Charm' under different temperature (20, 24, 28, 32, 36 °C) and daily light integrals (DLI; 11, 20, 31, and 43 mol m(-2) created by a PAR of 171, 311, 485 and 667 μmol m(-2) s(-1) for 16 h). High irradiance (667 μmol m(-2) s(-1)) combined with high temperature (>32 °C) significantly (p < 0.05) decreased Fv/Fm. Under high irradiance, the maximum Pn and ETR were reached at 24 °C. Increased irradiance decreased the PSII operating efficiency and increased NPQ, while both high irradiance and temperature had a significant effect on the PSII operating efficiency at temperatures >28 °C. Under high irradiance and temperature, changes in the NPQ determined the PSII operating efficiency, with no major change in the fraction of open PSII centres (qL) (indicating a QA redox state). We conclude that 1) chrysanthemum plants cope with excess irradiance by non-radiative dissipation or a reversible stress response, with the effect on the Pn and quantum yield of PSII remaining low until the temperature reaches 28 °C and 2) the integration of online measurements to monitor photosynthesis and PSII

  17. Influence of excitonic effects on luminescence quantum yield in silicon

    NASA Astrophysics Data System (ADS)

    Sachenko, A. V.; Kostylyov, V. P.; Vlasiuk, V. M.; Sokolovskyi, I. O.; Evstigneev, M.

    2017-03-01

    Nonradiative exciton lifetime in silicon is determined by comparison of the experimental and theoretical curves of bulk minority charge carriers lifetime on doping and excitation levels. This value is used to analyze the influence of excitonic effects on internal luminescence quantum yield at room temperature, taking into account both nonradiative and radiative exciton lifetimes. A range of Shockley-Hall-Reed lifetimes is found, where excitonic effects lead to an increase of internal luminescence quantum yield.

  18. Measurement of the fluorescence quantum yield of bis-MSB

    NASA Astrophysics Data System (ADS)

    Ding, Xue-Feng; Wen, Liang-Jian; Zhou, Xiang; Ding, Ya-Yun; Ye, Xing-Chen; Zhou, Li; Liu, Meng-Chao; Cai, Hao; Cao, Jun

    2015-12-01

    The fluorescence quantum yield of bis-MSB, a widely used liquid scintillator wavelength shifter, was measured to study the photon absorption and re-emission processes in a liquid scintillator. The re-emission process affects the photoelectron yield and distribution, especially in a large liquid scintillator detector, thus must be understood to optimize the liquid scintillator for good energy resolution and to precisely simulate the detector with Monte Carlo. In this study, solutions of different bis-MSB concentration were prepared for absorption and fluorescence emission measurements to cover a broad range of wavelengths. Harmane was used as a standard reference to obtain the absolution fluorescence quantum yield. For the first time we measured the fluorescence quantum yield of bis-MSB up to 430 nm as inputs required by Monte Carlo simulation, which is 0.926±0.053 at λex=350 nm. Supported by National Natural Science Foundation of China (11205183, 11225525, 11390381)

  19. Quantum Yield Heterogeneity among Single Nonblinking Quantum Dots Revealed by Atomic Structure-Quantum Optics Correlation.

    PubMed

    Orfield, Noah J; McBride, James R; Wang, Feng; Buck, Matthew R; Keene, Joseph D; Reid, Kemar R; Htoon, Han; Hollingsworth, Jennifer A; Rosenthal, Sandra J

    2016-02-23

    Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. Herein, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking "giant" CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging, rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive "dark" fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be "dark". Therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs.

  20. On the photoelectric quantum yield of small dust particles

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroshi

    2016-07-01

    Photoelectron emission is crucial to electric charging of dust particles around main-sequence stars and gas heating in various dusty environments. An estimate of the photoelectric processes contains an ill-defined parameter called the photoelectric quantum yield, which is the total number of electrons ejected from a dust particle per absorbed photon. Here we revisit the so-called small particle effect of photoelectron emission and provide an analytical model to estimate photoelectric quantum yields of small dust particles in sizes down to nanometers. We show that the small particle effect elevates the photoelectric quantum yields of nanoparticles up to by a factor of 103 for carbon, water ice, and organics, and a factor of 102 for silicate, silicon carbide, and iron. We conclude the surface curvature of the particles is a quantity of great importance to the small particle effect, unless the particles are submicrometers in radius or larger.

  1. Light propagation and fluorescence quantum yields in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Buck, C.; Gramlich, B.; Wagner, S.

    2015-09-01

    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.

  2. Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids.

    PubMed

    Talgorn, Elise; Gao, Yunan; Aerts, Michiel; Kunneman, Lucas T; Schins, Juleon M; Savenije, T J; van Huis, Marijn A; van der Zant, Herre S J; Houtepen, Arjan J; Siebbeles, Laurens D A

    2011-09-25

    Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.

  3. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics

    PubMed Central

    Nair, Gautham; Zhao, Jing; Bawendi, Moungi G

    2012-01-01

    Biexciton properties strongly affect the usability of a light emitter in quantum photon sources and lasers but are difficult to measure for single fluorophores at room temperature due to luminescence intermittency and bleaching at the high excitation fluences usually required. Here, we observe the biexciton (BX) to exciton (X) to ground photoluminescence cascade of single colloidal semiconductor nanocrystals (NCs) under weak excitation in a g(2) photon correlation measurement and show that the normalized amplitude of the cascade feature is equal to the ratio of the BX to X fluorescence quantum yields. This imposes a limit on the attainable depth of photon antibunching and provides a robust means to study single emitter biexciton physics. In NC samples, we show that the BX quantum yield is considerably inhomogeneous, consistent with the defect sensitivity expected of the Auger nonradiative recombination mechanism. The method can be extended to study X,BX spectral and polarization correlations. PMID:21288042

  4. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    PubMed

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor.

  5. Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.

    PubMed

    Li, Qiang; Wei, Hong; Xu, Hongxing

    2015-12-09

    The interactions between surface plasmons (SPs) in metal nanostructures and excitons in quantum emitters (QEs) lead to many interesting phenomena and potential applications that are strongly dependent on the quantum yield of SPs. The difficulty in distinguishing all the possible exciton recombination channels hinders the experimental determination of SP quantum yield. Here, we experimentally measured for the first time the quantum yield of single SPs generated by the exciton-plasmon coupling in a system composed of a single quantum dot and a silver nanowire (NW). By utilizing the SP guiding property of the NW, the decay rates of all the exciton recombination channels, i.e., direct free space radiation channel, SP generation channel, and nonradiative damping channel, are quantitatively obtained. It is determined that the optimum emitter-NW coupling distance for the largest SP quantum yield is about 10 nm, resulting from the different distance-dependent decay rates of the three channels. These results are important for manipulating the coupling between plasmonic nanostructures and QEs and developing on-chip quantum plasmonic devices for potential nanophotonic and quantum information applications.

  6. Kok Effect and the Quantum Yield of Photosynthesis 1

    PubMed Central

    Sharp, Robert E.; Matthews, Mark A.; Boyer, John S.

    1984-01-01

    The linear response of photosynthesis to light at low photon flux densities is known to change abruptly in the vicinity of the light compensation point so that the quantum yield seems to decrease as radiation increases. We studied this `Kok effect' in attached sunflower (Helianthus annuus L. cv IS894) leaves using gas exchange techniques. The effect was present even though respiration was constant in the dark. It was observed at a similar photon flux density (7 to 11 micromole photons per square meter per second absorbed photosynthetically active radiation) despite a wide range of light compensation points as well as rates of photosynthesis. The effect was not apparent when photorespiration was inhibited at low pO2 (1 kilopascal), but this result was complicated because dark respiration was quite O2-sensitive and was partially suppressed under these conditions. The Kok effect was observed at saturating pCO2 and, therefore, could not be explained by a change in photorespiration. Instead, the magnitude of the effect varied as dark respiration varied in a single leaf, and was minimized when dark respiration was minimized, indicating that a partial suppression of dark respiration by light is responsible. Quantum yields measured at photon flux densities between 0 and 7 to 11 micromole photons per square meter per second, therefore, represent the combined yields of photosynthesis and of the suppression of a component of dark respiration by light. This leads to an overestimate of the quantum yield of photosynthesis. In view of these results, quantum yields of photosynthesis must be measured (a) when respiration is constant in the dark, and (b) when dark respiration has been inhibited either at low pO2 to eliminate most of the light-induced suppression of dark respiration or at photon flux densities above that required to saturate the light-induced suppression of dark respiration. Significant errors in quantum yields of photosynthesis can result in leaves exhibiting this

  7. Interpretation of quantum yields exceeding unity in photoelectrochemical systems

    SciTech Connect

    Szklarczyk, M.; Allen, R.E.

    1986-10-20

    In photoelectrochemical systems involving light shining on a semiconductor interfaced with an electrolyte, the quantum yield as a function of photon frequency ..nu.. is observed to exhibit a peak at h..nu..roughly-equal2E/sub g/, where E/sub g/ is the band gap of the semiconductor. The maximum in this peak is sometimes found to exceed unity. We provide an interpretation involving surface states and inelastic electron-electron scattering. The theory indicates that the effect should be observable for p-type semiconductors, but not n-type.

  8. Photoacoustic analysis of proteins: volumetric signals and fluorescence quantum yields.

    PubMed Central

    Kurian, E; Prendergast, F G; Small, J R

    1997-01-01

    A series of proteins has been examined using time-resolved, pulsed-laser volumetric photoacoustic spectroscopy. Photoacoustic waveforms were collected to measure heat release for calculation of fluorescence quantum yields, and to explore the possibility of photoinduced nonthermal volume changes occurring in these protein samples. The proteins studied were the green fluorescent protein (GFP); intestinal fatty acid binding protein (IFABP), and adipocyte lipid-binding protein (ALBP), each labeled noncovalently with 1-anilinonaphthalene-8-sulfonate (1,8-ANS) and covalently with 6-acryloyl-2-(dimethylamino)naphthalene (acrylodan); and acrylodan-labeled IFABP and ALBP with added oleic acid. Of this group of proteins, only the ALBP labeled with 1,8-ANS showed significant nonthermal volume changes at the beta = 0 temperature (approximately 3.8 degrees C) for the buffer used (10 mM Tris-HCI, pH 7.5) (beta is the thermal cubic volumetric expansion coefficient). For all of the proteins except for acrylodan-labeled IFABP, the fluorescence quantum yields calculated assuming simple energy conservation were anomalously high, i.e., the apparent heat signals were lower than those predicted from independent fluorescence measurements. The consistent anomalies suggest that the low photoacoustic signals may be characteristic of fluorophores buried in proteins, and that photoacoustic signals derive in part from the microenvironment of the absorbing chromophore. Images FIGURE 1 PMID:9199809

  9. Synthesis of Luminescent Graphene Quantum Dots with High Quantum Yield and Their Toxicity Study

    PubMed Central

    Jiang, Dan; Chen, Yunping; Li, Na; Li, Wen; Wang, Zhenguo; Zhu, Jingli; Zhang, Hong; Liu, Bin; Xu, Shan

    2015-01-01

    High fluorescence quantum yield graphene quantum dots (GQDs) have showed up as a new generation for bioimaging. In this work, luminescent GQDs were prepared by an ameliorative photo-Fenton reaction and a subsequent hydrothermal process using graphene oxide sheets as the precursor. The as-prepared GQDs were nanomaterials with size ranging from 2.3 to 6.4 nm and emitted intense green luminescence in water. The fluorescence quantum yield was as high as 24.6% (excited at 340 nm) and the fluorescence was strongest at pH 7. Moreover, the influences of low-concentration (12.5, 25 μg/mL) GQDs on the morphology, viability, membrane integrity, internal cellular reactive oxygen species level and mortality of HeLa cells were relatively weak, and the in vitro imaging demonstrated GQDs were mainly in the cytoplasm region. More strikingly, zebrafish embryos were co-cultured with GQDs for in vivo imaging, and the results of heart rate test showed the intake of small amounts of GQDs brought little harm to the cardiovascular of zebrafish. GQDs with high quantum yield and strong photoluminescence show good biocompatibility, thus they show good promising for cell imaging, biolabeling and other biomedical applications. PMID:26709828

  10. Quantum Yield Enhancement of Cd/Se Colloidal Quantum Dots by Variation of Surface Ligands

    DTIC Science & Technology

    2013-01-01

    a solvent and a ligand, and oleic acid , which also serves as a ligand. The second used more complex ligands, octadecylphosphonic acid , and oleyamine...outgassed for another 30 min. To prepare the Cd precursor 26 mg of cadmium oxide (CdO) powder was mixed with 1.2 ml of oleic acid (OA) and 9.0 ml ODE...Acronyms Ar argon Cd cadmium CdO cadmium oxide OA oleic acid ODE octadecene QD quantum dots QY quantum yield Rh6G rhodamine 6G Se selenium NO. OF

  11. Film quantum yields of EUV& ultra-high PAG photoresists

    SciTech Connect

    Hassanein, Elsayed; Higgins, Craig; Naulleau, Patrick; Matyi, Richard; Gallatin, Greg; Denbeaux, Gregory; Antohe, Alin; Thackery, Jim; Spear, Kathleen; Szmanda, Charles; Anderson, Christopher N.; Niakoula, Dimitra; Malloy, Matthew; Khurshid, Anwar; Montgomery, Cecilia; Piscani, Emil C.; Rudack, Andrew; Byers, Jeff; Ma, Andy; Dean, Kim; Brainard, Robert

    2008-01-10

    Base titration methods are used to determine C-parameters for three industrial EUV photoresist platforms (EUV-2D, MET-2D, XP5496) and twenty academic EUV photoresist platforms. X-ray reflectometry is used to measure the density of these resists, and leads to the determination of absorbance and film quantum yields (FQY). Ultrahigh levels ofPAG show divergent mechanisms for production of photo acids beyond PAG concentrations of 0.35 moles/liter. The FQY of sulfonium PAGs level off, whereas resists prepared with iodonium PAG show FQY s that increase beyond PAG concentrations of 0.35 moles/liter, reaching record highs of 8-13 acids generatedlEUV photons absorbed.

  12. Sensitivity of quantum yield for O(/sup 1/D) production from ozone photolysis

    SciTech Connect

    Wuebbles, D.J.; Tarp, R.L.

    1980-06-01

    Recent laboratory studies have indicated that the quantum yield for O(/sup 1/D) production from photolysis of ozone may be less than unity at wavelengths shorter than 300 nm (below the fall off region). Previously it had been assumed that the quantum yield was unity at these wavelengths. Based on the recent work of Brock and Watson (who measured the quantum yield at 266 nm), the effect of assuming a quantum yield of 0.9 for O(/sup 1/D) production at wavelengths less than 300 nm in the LLL 1-d model was tested. Since measurements of the quantum yield fall off at longer wavelength also assume unity quantum yield below the fall off region, we also multiplied the O(/sup 1/D) quantum yield through this region by 0.9. The remaining quantum yield from the photolysis reaction is assumed to produce O(/sup 3/P) at all wavelengths so that the total quantum yield is unity.

  13. Near-unity photoluminescence quantum yield in MoS₂.

    PubMed

    Amani, Matin; Lien, Der-Hsien; Kiriya, Daisuke; Xiao, Jun; Azcatl, Angelica; Noh, Jiyoung; Madhvapathy, Surabhi R; Addou, Rafik; KC, Santosh; Dubey, Madan; Cho, Kyeongjae; Wallace, Robert M; Lee, Si-Chen; He, Jr-Hau; Ager, Joel W; Zhang, Xiang; Yablonovitch, Eli; Javey, Ali

    2015-11-27

    Two-dimensional (2D) transition metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure of merit, the room-temperature photoluminescence quantum yield (QY), is extremely low. The prototypical 2D material molybdenum disulfide (MoS2) is reported to have a maximum QY of 0.6%, which indicates a considerable defect density. Here we report on an air-stable, solution-based chemical treatment by an organic superacid, which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by more than two orders of magnitude. The treatment eliminates defect-mediated nonradiative recombination, thus resulting in a final QY of more than 95%, with a longest-observed lifetime of 10.8 ± 0.6 nanoseconds. Our ability to obtain optoelectronic monolayers with near-perfect properties opens the door for the development of highly efficient light-emitting diodes, lasers, and solar cells based on 2D materials.

  14. Near-unity quantum yields from chloride treated CdTe colloidal quantum dots.

    PubMed

    Page, Robert C; Espinobarro-Velazquez, Daniel; Leontiadou, Marina A; Smith, Charles; Lewis, Edward A; Haigh, Sarah J; Li, Chen; Radtke, Hanna; Pengpad, Atip; Bondino, Federica; Magnano, Elena; Pis, Igor; Flavell, Wendy R; O'Brien, Paul; Binks, David J

    2015-04-01

    Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non-radiative charge recombination that significantly reduces device performance. Here a facile post-synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near-complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. This process also dramatically improves the air-stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air-exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours.

  15. Near-Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots

    PubMed Central

    Page, Robert C; Espinobarro-Velazquez, Daniel; Leontiadou, Marina A; Smith, Charles; Lewis, Edward A; Haigh, Sarah J; Li, Chen; Radtke, Hanna; Pengpad, Atip; Bondino, Federica; Magnano, Elena; Pis, Igor; Flavell, Wendy R; O'Brien, Paul; Binks, David J

    2015-01-01

    Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non-radiative charge recombination that significantly reduces device performance. Here a facile post-synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near-complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. This process also dramatically improves the air-stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air-exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours. PMID:25348200

  16. Local Density Fluctuations Predict Photoisomerization Quantum Yield of Azobenzene-Modified DNA.

    PubMed

    Kingsland, Addie; Samai, Soumyadyuti; Yan, Yunqi; Ginger, David S; Maibaum, Lutz

    2016-08-04

    Azobenzene incorporated into DNA has a photoisomerization quantum yield that depends on the DNA sequence near the azobenzene attachment site. We use Molecular Dynamics computer simulations to elucidate which physical properties of the modified DNA determine the quantum yield. We show for a wide range of DNA sequences that the photoisomerization quantum yield is strongly correlated with the variance of the number of atoms in close proximity to the outer phenyl ring of the azobenzene group. We infer that quantum yield is controlled by the availability of fluctuations that enable the conformational change. We demonstrate that these simulations can be used as a qualitative predictive tool by calculating the quantum yield for several novel DNA sequences, and confirming these predictions using UV-vis spectroscopy. Our results will be useful for the development of a wide range of applications of photoresponsive DNA nanotechnology.

  17. Modeling fluid dynamics on type II quantum computers

    NASA Astrophysics Data System (ADS)

    Scoville, James; Weeks, David; Yepez, Jeffrey

    2006-03-01

    A quantum algorithm is presented for modeling the time evolution of density and flow fields governed by classical equations, such as the diffusion equation, the nonlinear Burgers equation, and the damped wave equation. The algorithm is intended to run on a type-II quantum computer, a parallel quantum computer consisting of a lattice of small type I quantum computers undergoing unitary evolution and interacting via information interchanges represented by an orthogonal matrices. Information is effectively transferred between adjacent quantum computers over classical communications channels because of controlled state demolition following local quantum mechanical qubit-qubit interactions within each quantum computer. The type-II quantum algorithm presented in this paper describes a methodology for generating quantum logic operations as a generalization of classical operations associated with finite-point group symmetries. The quantum mechanical evolution of multiple qubits within each node is described. Presented is a proof that the parallel quantum system obeys a finite-difference quantum Boltzman equation at the mesoscopic scale, leading in turn to various classical linear and nonlinear effective field theories at the macroscopic scale depending on the details of the local qubit-qubit interactions.

  18. Quantum-yield-optimized fluorophores for site-specific labeling and super-resolution imaging.

    PubMed

    Grunwald, Christian; Schulze, Katrin; Giannone, Gregory; Cognet, Laurent; Lounis, Brahim; Choquet, Daniel; Tampé, Robert

    2011-06-01

    Single-molecule applications, saturated pattern excitation microscopy, and stimulated emission depletion (STED) microscopy demand bright as well as highly stable fluorescent dyes. Here we describe the synthesis of quantum-yield-optimized fluorophores for reversible, site-specific labeling of proteins or macromolecular complexes. We used polyproline-II (PPII) helices as sufficiently rigid spacers with various lengths to improve the fluorescence signals of a set of different trisNTA-fluorophores. The improved quantum yields were demonstrated by steady-state and fluorescence lifetime analyses. As a proof of principle, we characterized the trisNTA-PPII-fluorophores with respect to in vivo protein labeling and super-resolution imaging at synapses of living neurons. The distribution of His-tagged AMPA receptors (GluA1) in spatially restricted synaptic clefts was imaged by confocal and STED microscopy. The comparison of fluorescence intensity profiles revealed the superior resolution of STED microscopy. These results highlight the advantages of biocompatible and, in particular, small and photostable trisNTA-PPII-fluorophores in super-resolution microscopy.

  19. Absolute 1* quantum yields for the ICN A state by diode laser gain versus absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I* quantum yields were measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The temperature yields are obtained by the technique of time-resolved diode laser gain-versus-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 +/- 2% and it falls off to 53.4 +/- 2% and 44.0 +/- 4% at 284 and 248 respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I* quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I* yields. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I* yield results.

  20. Quantifying the uncertainties of chemical evolution studies. II. Stellar yields

    NASA Astrophysics Data System (ADS)

    Romano, D.; Karakas, A. I.; Tosi, M.; Matteucci, F.

    2010-11-01

    Context. Galactic chemical evolution models are useful tools for interpreting the large body of high-quality observational data on the chemical composition of stars and gas in galaxies that have become available in recent years. Aims: This is the second paper of a series that aims at quantifying the uncertainties in chemical evolution model predictions related to the underlying model assumptions. Specifically, it deals with the uncertainties due to the choice of the stellar yields. Methods: We adopted a widely used model for the chemical evolution of the Galaxy to test the effects of changing the stellar nucleosynthesis prescriptions on the predicted evolution of several chemical species. Up-to-date results from stellar evolutionary models were carefully taken into account. Results: We find that, except for a handful of elements whose nucleosynthesis in stars is well understood by now, large uncertainties still affect model predictions. This is especially true for the majority of the iron-peak elements, but also for much more abundant species such as carbon and nitrogen. The main causes of the mismatch we find among the outputs of different models assuming different stellar yields and among model predictions and observations are (i) the adopted location of the mass cut in models of type II supernova explosions; (ii) the adopted strength and extent of hot bottom burning in models of asymptotic giant branch stars; (iii) the neglection of the effects of rotation on the chemical composition of the stellar surfaces; (iv) the adopted rates of mass loss and of (v) nuclear reactions; and (vi) the different treatments of convection. Conclusions: Our results suggest that it is mandatory to include processes such as hot bottom burning in intermediate-mass stars and rotation in stars of all masses in accurate studies of stellar evolution and nucleosynthesis. In spite of their importance, both these processes still have to be better understood and characterized. As for massive

  1. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes.

    PubMed

    Lin, Liangxu; Zhang, Shaowei

    2012-10-21

    We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.

  2. Fluorescence quantum yield measurement in nanoparticle-fluorophore systems by thermal lens spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferreira, M.; Piscitelli, V.

    2016-04-01

    Metallic nanoparticles have been used as a way to tailor the fluorescence properties like quantum yield, but regular fluorescence quantum yield measurements have to counter the reflection and dispersion of a sample for an accurate result. Thermal lens spectroscopy is a good alternative to resolve this problem because doesn't measure the fluorescence intensity but the heat generated by absorption. We studied the changes induced by silver nanoparticles, generated by laser ablation, in the fluorescence peak and quantum yield of Rhodamine B. We fund that the silver nanoparticles lowered the fluorescence peak and quenched the fluorescence of the Rhodamine B and how much is quenched also depends on its concentration.

  3. Categorical quantum mechanics II: Classical-quantum interaction

    NASA Astrophysics Data System (ADS)

    Coecke, Bob; Kissinger, Aleks

    2016-08-01

    This is the second part of a three-part overview, in which we derive the category-theoretic backbone of quantum theory from a process ontology, treating quantum theory as a theory of systems, processes and their interactions. In this part, we focus on classical-quantum interaction. Classical and quantum systems are treated as distinct types, of which the respective behavioral properties are specified in terms of processes and their compositions. In particular, classicality is witnessed by ‘spiders’ which fuse together whenever they connect. We define mixedness and show that pure processes are extremal in the space of all processes, and we define entanglement and show that quantum theory indeed exhibits entanglement. We discuss the classification of tripartite qubit entanglement and show that both the GHZ-state and the W-state come from spider-like families of processes, which differ only in how they behave when they are connected by two or more wires. We define measurements and provide fully comprehensive descriptions of several quantum protocols involving classical data flow. Finally, we give a notion of ‘genuine quantumness’, from which special processes called ‘phase spiders’ arise, and get a first glimpse of quantum nonlocality.

  4. Colloidal Spherical Quantum Wells with Near-Unity Photoluminescence Quantum Yield and Suppressed Blinking.

    PubMed

    Jeong, Byeong Guk; Park, Young-Shin; Chang, Jun Hyuk; Cho, Ikjun; Kim, Jai Kyeong; Kim, Heesuk; Char, Kookheon; Cho, Jinhan; Klimov, Victor I; Park, Philip; Lee, Doh C; Bae, Wan Ki

    2016-10-02

    Thick inorganic shell endows colloidal nanocrystals (NCs) with enhanced photochemical stability and suppression of photoluminescence intermittency (also known as blinking). However, the progress of using thick-shell heterostructure NCs in applications has been limited, due to low photoluminescence quantum yield (PL QY  60%) at room temperature. Here, we demonstrate thick-shell NCs with CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) geometry that exhibit near-unity PL QY at room temperature and suppression of blinking. In SQW NCs, the lattice mismatch is diminished between the emissive CdSe layer and the surrounding CdS layers as a result of coherent strain, which suppresses the formation of misfit defects and consequently permits ~ 100% PL QY for SQW NCs with thick CdS shell (≥ 5 nm). High PL QY of thick-shell SQW NCs are preserved even in concentrated dispersion and in film under thermal stress, which makes them promising candidates for applications in solid-state lightings and luminescent solar concentrators.

  5. Gradient CdSe/CdS Quantum Dots with Room Temperature Biexciton Unity Quantum Yield.

    PubMed

    Nasilowski, Michel; Spinicelli, Piernicola; Patriarche, Gilles; Dubertret, Benoît

    2015-06-10

    Auger recombination is a major limitation for the fluorescent emission of quantum dots (QDs). It is the main source of QDs fluorescence blinking at the single-particle level. At high-power excitation, when several charge carriers are formed inside a QD, Auger becomes more efficient and severely decreases the quantum yield (QY) of multiexcitons. This limits the efficiency and the use of colloidal QDs in applications where intense light output is required. Here, we present a new generation of thick-shell CdSe/CdS QDs with dimensions >40 nm and a composition gradient between the core and the shell that exhibits 100% QY for the emission of both the monoexciton and the biexciton in air and at room temperature for all the QDs we have observed. The fluorescence emission of these QDs is perfectly Poissonian at the single-particle level at different excitation levels and temperatures, from 30 to 300 K. In these QDs, the emission of high-order (>2) multiexcitons is quite efficient, and we observe white light emission at the single-QD level when high excitation power is used. These gradient thick shell QDs confirm the suppression of Auger recombination in gradient core/shell structures and help further establish the colloidal QDs with a gradient shell as a very stable source of light even under high excitation.

  6. DETERMINATION OF APPARENT QUANTUM YIELD SPECTRA FOR THE FORMATION OF BIOLOGICALLY LABILE PHOTOPRODUCTS

    EPA Science Inventory

    Quantum yield spectra for the photochemical formation of biologically labile photoproducts from dissolved organic matter (DOM) have not been available previously, although they would greatly facilitate attempts to model photoproduct formation rates across latitudinal, seasonal, a...

  7. Quantum cascade light emitting diodes based on type-II quantum wells

    SciTech Connect

    Lin, C.H.; Yang, R.Q.; Zhang, D.; Murry, S.J.; Pei, S.S.; Allerman, A.A.; Kurtz, S.R.

    1997-01-21

    The authors have demonstrated room-temperature CW operation of type-II quantum cascade (QC) light emitting diodes at 4.2 {micro}m using InAs/InGaSb/InAlSb type-II quantum wells. The type-II QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-II quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 {micro}W at 80 K, and 140 {micro}W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.

  8. Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals

    DOE PAGES

    Miller, Joseph B.; Van Sickle, Austin R.; Anthony, Rebecca J.; ...

    2012-07-18

    Here, we report on the quantum yield, photoluminescence (PL) lifetime and ensemble photoluminescent stability of highly monodisperse plasma-synthesized silicon nanocrystals (SiNCs) prepared though density-gradient ultracentrifugation in mixed organic solvents. Improved size uniformity leads to a reduction in PL line width and the emergence of entropic order in dry nanocrystal films. We find excellent agreement with the anticipated trends of quantum confinement in nanocrystalline silicon, with a solution quantum yield that is independent of nanocrystal size for the larger fractions but decreases dramatically with size for the smaller fractions. We also find a significant PL enhancement in films assembled from themore » fractions, and we use a combination of measurement, simulation and modeling to link this ‘brightening’ to a temporally enhanced quantum yield arising from SiNC interactions in ordered ensembles of monodisperse nanocrystals. Using an appropriate excitation scheme, we exploit this enhancement to achieve photostable emission.« less

  9. Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals

    SciTech Connect

    Miller, Joseph B.; Van Sickle, Austin R.; Anthony, Rebecca J.; Kroll, Daniel M.; Kortshagen, Uwe R.; Hobbie, Erik K.

    2012-07-18

    Here, we report on the quantum yield, photoluminescence (PL) lifetime and ensemble photoluminescent stability of highly monodisperse plasma-synthesized silicon nanocrystals (SiNCs) prepared though density-gradient ultracentrifugation in mixed organic solvents. Improved size uniformity leads to a reduction in PL line width and the emergence of entropic order in dry nanocrystal films. We find excellent agreement with the anticipated trends of quantum confinement in nanocrystalline silicon, with a solution quantum yield that is independent of nanocrystal size for the larger fractions but decreases dramatically with size for the smaller fractions. We also find a significant PL enhancement in films assembled from the fractions, and we use a combination of measurement, simulation and modeling to link this ‘brightening’ to a temporally enhanced quantum yield arising from SiNC interactions in ordered ensembles of monodisperse nanocrystals. Using an appropriate excitation scheme, we exploit this enhancement to achieve photostable emission.

  10. Double quantum coherence electron spin resonance on coupled Cu(II)-Cu(II) electron spins

    NASA Astrophysics Data System (ADS)

    Becker, James S.; Saxena, Sunil

    2005-10-01

    We demonstrate for the first time the ability to generate double quantum coherences (DQCs) for the case of Cu(II). We show that small splittings (˜7 MHz) from the Cu(II)-Cu(II) electron-electron magnetic dipolar interaction can be reliably resolved even though the inhomogeneously broadened Cu(II) linewidth is ˜2 GHz. A Cu(II)-Cu(II) distance of 2.0 nm was measured on a model peptide system, thus, demonstrating that distances on the nanometer scale may be measured using DQC electron spin resonance (ESR).

  11. Wavelength dependence of the fluorescence and singlet oxygen quantum yields of new photosensitizers

    NASA Astrophysics Data System (ADS)

    Lavi, Adina; Johnson, Fred M.; Ehrenberg, Benjamin

    1994-12-01

    The photophysical properties of Mg and Zn tetrabenzoporphyrins and Cd-texaphyrin are presented. These sensitizers have strong absorption bands in the red and near-IR regions that make them good candidates for biological photosensitization. Singlet oxygen quantum yields which were determined in an absolute manner, in several solvents, are reported. We show an unusual behavior regarding adherence to Kasha's and Vavilov's rules: upon excitation to different electronic states, different values of singlet oxygen quantum yields were obtained. We also show an unusual wavelength dependence of singlet oxygen and fluorescence yields upon excitation to different vibrational levels within the same electronic state.

  12. Relational quadrilateralland II: The Quantum Theory

    NASA Astrophysics Data System (ADS)

    Anderson, Edward; Kneller, Sophie

    2014-04-01

    We provide the quantum treatment of the relational quadrilateral. The underlying reduced configuration spaces are ℂℙ2 and the cone over this. We consider exact free and isotropic HO potential cases and perturbations about these. Moreover, our purely relational kinematical quantization is distinct from the usual one for ℂℙ2, which turns out to carry absolutist connotations instead. Thus, this paper is the first to note absolute-versus-relational motion distinctions at the kinematical rather than dynamical level. It is also an example of value to the discussion of kinematical quantization along the lines of Isham, 1984. The relational quadrilateral is the simplest RPM whose mathematics is not standard in atomic physics (the triangle and four particles on a line are both based on 𝕊2 and ℝ3 mathematics). It is far more typical of the general quantum relational N-a-gon than the previously studied case of the relational triangle. We consider useful integrals as regards perturbation theory and the peaking interpretation of quantum cosmology. We subsequently consider problem of time (PoT) applications of this: quantum Kuchař beables, the Machian version of the semiclassical approach and the timeless naïve Schrödinger interpretation. These go toward extending the combined Machian semiclassical-Histories-Timeless Approach of [Int. J. Mod. Phys. D23 (2014) 1450014] to the case of the quadrilateral, which will be treated in subsequent papers.

  13. Correlations in quantum plasmas. II. Algebraic tails

    NASA Astrophysics Data System (ADS)

    Cornu, F.

    1996-05-01

    For a system of point charges that interact through the three-dimensional electrostatic Coulomb potential (without any regularization) and obey the laws of nonrelativistic quantum mechanics with Bose or Fermi statistics, the static correlations between particles are shown to have a 1/r6 tail, at least at distances that are large with respect to the length of exponential screening. After a review of previous work, a term-by-term diagrammatic proof is given by using the formalism of paper I, where the quantum particle-particle correlations are expressed in terms of classical-loop distribution functions. The integrable graphs of the resummed Mayer-like diagrammatics for the loop distributions contain bonds between loops that decay either exponentially or algebraically, with a 1/r3 leading term analogous to a dipole-dipole interaction. This reflects the fact that the charge-charge or multipole-charge interactions between clusters of particles surrounded by their polarization clouds are exponentially screened, as at a classical level, whereas the multipole-multipole interactions are only partially screened. The correlation between loops decays as 1/r3, but the spherical symmetry of the quantum fluctuations makes this power law fall to 1/r5, and the harmonicity of the Coulomb potential eventually enforces the correlations between quantum particles to decay only as 1/r6. The coefficient of the 1/r6 tail at low density is planned to be given in a subsequent paper. Moreover, because of Coulomb screening, the induced charge density, which describes the response to an external infinitesimal charge, is shown to fall off as 1/r8, while the charge-charge correlation in the medium decreases as 1/r10. However, in spite of the departure of the quantum microscopic correlations from the classical exponential clustering, the total induced charge is still essentially determined by the exponentially screened charge-charge interactions, as in classical macroscopic electrostatics.

  14. Variation in Quantum Yield for CO2 Uptake among C3 and C4 Plants 1

    PubMed Central

    Ehleringer, James; Pearcy, Robert W.

    1983-01-01

    The quantum yield for CO2 uptake was measured on a number of C3 and C4 monocot and dicot species. Under normal atmospheric conditions (330 microliters per liter CO2, 21% O2) and a leaf temperature of 30°C, the average quantum yields (moles CO2 per einstein) were as follows: 0.052 for C3 dicots, 0.053 for C3 grasses, 0.053 for NAD-malic enzyme type C4 dicots, 0.060 for NAD-malic enzyme type C4 grasses, 0.064 for phosphoenolpyruvate carboxykinase type C4 grasses, 0.061 for NADP-malic enzyme C4 dicots, and 0.065 for NADP-malic enzyme type C4 grasses. The quantum yield under normal atmospheric conditions was temperature dependent in C3 species, but apparently not in C4 species. Light and temperature conditions during growth appeared not to influence quantum yield. The significance of variation in the quantum yields of C4 plants was discussed in terms of CO2 leakage from the bundle sheath cells and suberization of apoplastic regions of the bundle sheath cells. PMID:16663257

  15. Algebraic quantum gravity (AQG): II. Semiclassical analysis

    NASA Astrophysics Data System (ADS)

    Giesel, K.; Thiemann, T.

    2007-05-01

    In the previous paper (Giesel and Thiemann 2006 Conceptual setup Preprint gr-qc/0607099) a new combinatorial and thus purely algebraical approach to quantum gravity, called algebraic quantum gravity (AQG), was introduced. In the framework of AQG, existing semiclassical tools can be applied to operators that encode the dynamics of AQG such as the master constraint operator. In this paper, we will analyse the semiclassical limit of the (extended) algebraic master constraint operator and show that it reproduces the correct infinitesimal generators of general relativity. Therefore, the question of whether general relativity is included in the semiclassical sector of the theory, which is still an open problem in LQG, can be significantly improved in the framework of AQG. For the calculations, we will substitute SU(2) with U(1)3. That this substitution is justified will be demonstrated in the third paper (Giesel and Thiemann 2006 Semiclassical perturbation theory Preprint gr-qc/0607101) of this series.

  16. Fluorescence quantum yield of Yb3+-doped tellurite glasses determined by thermal lens spectroscopy

    NASA Astrophysics Data System (ADS)

    Lima, S. M.; Souza, A. K. R.; Langaro, A. P.; Silva, J. R.; Costa, F. B.; Moraes, J. C. S.; Figueiredo, M. S.; Santos, F. A.; Baesso, M. L.; Nunes, L. A. O.; Andrade, L. H. C.

    2017-01-01

    In this work, the combination of three different thermal lens spectroscopic methodologies was used to better determine the fluorescence quantum yield and to observe the concentration quenching in Yb3+-doped binary tellurite glasses (in mol%, 80TeO2 - 20Li2O and 80TeO2 - 20WO3). The samples were synthesized by the conventional melt-quenching method and then studied using optical spectroscopy and thermal lens spectroscopy (TLS). These characterizations enabled investigation of the radiative and nonradiative processes involved in the ytterbium doped systems. High fluorescence quantum yield was obtained for low Yb3+ doping (>90%), and in both glasses the Yb3+ presented concentration quenching mainly caused by impurities, host-ion interaction and OH- vibrations. The observations suggested that there is a possibility of doping the glasses with higher Yb concentration (>1.6 × 1021 ions/cm3) with low reduction of the quantum yield.

  17. Quantum Yield Measurements of Fluorophores in Lipid Bilayers Using a Plasmonic Nanocavity.

    PubMed

    Schneider, Falk; Ruhlandt, Daja; Gregor, Ingo; Enderlein, Jörg; Chizhik, Alexey I

    2017-03-20

    Precise knowledge of the quantum yield is important for many fluorescence-spectroscopic techniques, for example, for Förster resonance energy transfer. However, to measure it for emitters in a complex environment and at low concentrations is far from being trivial. Using a plasmonic nanocavity, we measure the absolute quantum yield value of lipid-conjugated dyes incorporated into a supported lipid bilayer. We show that for both hydrophobic and hydrophilic molecules the quantum yield of dyes inside the lipid bilayer strongly differs from its value in aqueous solution. This finding is of particular importance for all fluorescence-spectroscopic studies involving lipid bilayers, such as protein-protein or protein-lipid interactions in membranes or direct fluorescence-spectroscopic measurements of membrane physical properties.

  18. Optomechanical Control of Quantum Yield in Trans-Cis Ultrafast Photoisomerization of a Retinal Chromophore Model.

    PubMed

    Valentini, Alessio; Rivero, Daniel; Zapata, Felipe; García-Iriepa, Cristina; Marazzi, Marco; Palmeiro, Raúl; Fdez Galván, Ignacio; Sampedro, Diego; Olivucci, Massimo; Frutos, Luis Manuel

    2017-03-27

    The quantum yield of a photochemical reaction is one of the most fundamental quantities in photochemistry, as it measures the efficiency of the transduction of light energy into chemical energy. Nature has evolved photoreceptors in which the reactivity of a chromophore is enhanced by its molecular environment to achieve high quantum yields. The retinal chromophore sterically constrained inside rhodopsin proteins represents an outstanding example of such a control. In a more general framework, mechanical forces acting on a molecular system can strongly modify its reactivity. Herein, we show that the exertion of tensile forces on a simplified retinal chromophore model provokes a substantial and regular increase in the trans-to-cis photoisomerization quantum yield in a counterintuitive way, as these extension forces facilitate the formation of the more compressed cis photoisomer. A rationale for the mechanochemical effect on this photoisomerization mechanism is also proposed.

  19. Control of the external photoluminescent quantum yield of emitters coupled to nanoantenna phased arrays

    SciTech Connect

    Guo, Ke; Verschuuren, Marc A.; Lozano, Gabriel

    2015-08-21

    Optical losses in metals represent the largest limitation to the external quantum yield of emitters coupled to plasmonic antennas. These losses can be at the emission wavelength, but they can be more important at shorter wavelengths, i.e., at the excitation wavelength of the emitters, where the conductivity of metals is usually lower. We present accurate measurements of the absolute external photoluminescent quantum yield of a thin layer of emitting material deposited over a periodic nanoantenna phased array. Emission and absorptance measurements of the sample are performed using a custom-made setup including an integrating sphere and variable angle excitation. The measurements reveal a strong dependence of the external quantum yield on the angle at which the optical field excites the sample. Such behavior is attributed to the coupling between far-field illumination and near-field excitation mediated by the collective resonances supported by the array. Numerical simulations confirm that the inherent losses associated with the metal can be greatly reduced by selecting an optimum angle of illumination, which boosts the light conversion efficiency in the emitting layer. This combined experimental and numerical characterization of the emission from plasmonic arrays reveals the need to carefully design the illumination to achieve the maximum external quantum yield.

  20. THE QUANTUM YIELD OF OXYGEN PRODUCTION BY CHLOROPLASTS SUSPENDED IN SOLUTIONS CONTAINING FERRIC OXALATE

    PubMed Central

    French, C. S.; Rabideau, G. S.

    1945-01-01

    1. The quantum yield of oxygen liberation by spinach and Tradescantia chloroplasts suspended in solutions containing ferric oxalate and potassium ferricyanide varied from 0.013 to 0.080. 2. It was concluded that the nature of this oxygen liberation reaction is not fundamentally different from the formation of oxygen in normal photosynthesis, with respect to its light efficiency. PMID:19873423

  1. Control of the external photoluminescent quantum yield of emitters coupled to nanoantenna phased arrays

    NASA Astrophysics Data System (ADS)

    Guo, Ke; Lozano, Gabriel; Verschuuren, Marc A.; Gómez Rivas, Jaime

    2015-08-01

    Optical losses in metals represent the largest limitation to the external quantum yield of emitters coupled to plasmonic antennas. These losses can be at the emission wavelength, but they can be more important at shorter wavelengths, i.e., at the excitation wavelength of the emitters, where the conductivity of metals is usually lower. We present accurate measurements of the absolute external photoluminescent quantum yield of a thin layer of emitting material deposited over a periodic nanoantenna phased array. Emission and absorptance measurements of the sample are performed using a custom-made setup including an integrating sphere and variable angle excitation. The measurements reveal a strong dependence of the external quantum yield on the angle at which the optical field excites the sample. Such behavior is attributed to the coupling between far-field illumination and near-field excitation mediated by the collective resonances supported by the array. Numerical simulations confirm that the inherent losses associated with the metal can be greatly reduced by selecting an optimum angle of illumination, which boosts the light conversion efficiency in the emitting layer. This combined experimental and numerical characterization of the emission from plasmonic arrays reveals the need to carefully design the illumination to achieve the maximum external quantum yield.

  2. Optimum doping achieves high quantum yields in GaAs photoemitters

    NASA Technical Reports Server (NTRS)

    Sonnenberg, H.

    1971-01-01

    Experimental data indicate that optimum doping exists. Measured quantum yield curves indicate optimum overall response is obtained in GaAs emitters with doping in high 10 to the 18th power per cu cm range. Doping for optimum response is not necessarily in this range.

  3. Variations in fluorescence quantum yield of basic fuchsin with silver nanoparticles prepared by femtosecond laser ablation.

    PubMed

    Pathrose, Bini; Sahira, H; Nampoori, V P N; Radhakrishnan, P; Mujeeb, A

    2014-07-15

    Nano structured noble metals have very important applications in diverse fields such as photovoltaics, catalysis, electronic and magnetic devices, etc. In the present work, the application of dual beam thermal lens technique is employed for the determination of the absolute fluorescence quantum yield of the triaminotriphenylmethane dye, basic fuchsin in the presence of silver sol is studied. Silver sol is prepared by femtosecond laser ablation. It is observed that the presence of silver sol decreases the fluorescence quantum efficiency. The observed results are in line with the conclusion that the reduction in quantum yield in the quenching region is essentially due to the non-radiative relaxation of the absorbed energy. It is also observed that the presence of silver sol enhances the thermal lens signal which makes its detection easier at any concentration.

  4. Picosecond Lifetimes with High Quantum Yields from Single-Photon-Emitting Colloidal Nanostructures at Room Temperature.

    PubMed

    Bidault, Sébastien; Devilez, Alexis; Maillard, Vincent; Lermusiaux, Laurent; Guigner, Jean-Michel; Bonod, Nicolas; Wenger, Jérôme

    2016-04-26

    Minimizing the luminescence lifetime while maintaining a high emission quantum yield is paramount in optimizing the excitation cross-section, radiative decay rate, and brightness of quantum solid-state light sources, particularly at room temperature, where nonradiative processes can dominate. We demonstrate here that DNA-templated 60 and 80 nm diameter gold nanoparticle dimers, featuring one fluorescent molecule, provide single-photon emission with lifetimes that can fall below 10 ps and typical quantum yields in a 45-70% range. Since these colloidal nanostructures are obtained as a purified aqueous suspension, fluorescence spectroscopy can be performed on both fixed and freely diffusing nanostructures to quantitatively estimate the distributions of decay rate and fluorescence intensity enhancements. These data are in excellent agreement with theoretical calculations and demonstrate that millions of bright fluorescent nanostructures, with radiative lifetimes below 100 ps, can be produced in parallel.

  5. Ru(II) complexes of new tridentate ligands: unexpected high yield of sensitized 1O2.

    PubMed

    Liu, Yao; Hammitt, Richard; Lutterman, Daniel A; Joyce, Lauren E; Thummel, Randolph P; Turro, Claudia

    2009-01-05

    Ru(II) complexes possessing new tridentate ligands with extended pi systems, pydppx (3-(pyrid-2'-yl)-11,12-dimethyl-dipyrido[3,2-a:2',3'-c]phenazine) and pydppn (3-(pyrid-2'-yl)-4,5,9,16-tetraaza-dibenzo[a,c]naphthacene), were synthesized and characterized. The investigation of the photophysical properties of the series [Ru(tpy)(n)(L)(2-n)](2+) (L = pydppx, pydppn, n = 0-2) reveals markedly different excited state behavior among the complexes. The Ru(II) complexes possessing the pydppx ligand are similar to the pydppz (3-(pyrid-2'-yl)dipyrido[3,2-a:2',3'-c]phenazine) systems, with a lowest energy metal-to-ligand charge transfer excited state with lifetimes of 1-4 ns. In contrast, the lowest energy excited state in the [Ru(tpy)(n)(pydppn)(2-n)](2+) (n = 0, 1) complexes is a ligand-centered (3)pipi* localized on the pydppn ligand with lifetimes of approximately 20 mus. The [Ru(tpy)(n)(pydppn)(2-n)](2+) (n = 0, 1) complexes are able to generate (1)O(2) with approximately 100% efficiency. Both [Ru(tpy)(pydppn)](2+) and [Ru(pydppn)(2)](2+) bind to DNA, however, the former exhibits a approximately 10-fold greater DNA binding constant than the latter. Efficient DNA photocleavage is observed for [Ru(tpy)(pydppn)](2+), owing to its ability to photosensitize the production of (1)O(2), which can mediate the reactivity. Such high quantum yields of (1)O(2) photosensitization of transition metal complexes may be useful in the design of new systems with long-lived excited states for photodynamic therapy.

  6. Quantum yield regeneration: influence of neutral ligand binding on photophysical properties in colloidal core/shell quantum dots.

    PubMed

    Shen, Yi; Tan, Rui; Gee, Megan Y; Greytak, Andrew B

    2015-03-24

    This article describes an experiment designed to identify the role of specific molecular ligands in maintaining the high photoluminescence (PL) quantum yield (QY) observed in as-synthesized CdSe/CdZnS and CdSe/CdS quantum dots (QDs). Although it has been possible for many years to prepare core/shell quantum dots with near-unity quantum yield through high-temperature colloidal synthesis, purification of such colloidal particles is frequently accompanied by a reduction in quantum yield. Here, a recently established gel permeation chromatography (GPC) technique is used to remove weakly associated ligands without a change in solvent: a decrease in ensemble QY and average PL lifetime is observed. Minor components of the initial mixture that were removed by GPC are then added separately to purified QD samples to determine whether reintroduction of these components can restore the photophysical properties of the initial sample. We show that among these putative ligands trioctylphosphine and cadmium oleate can regenerate the initial high QY of all samples, but only the "L-type" ligands (trioctyphosphine and oleylamine) can restore the QY without changing the shapes of the optical spectra. On the basis of the PL decay analysis, we confirm that quenching in GPC-purified samples and regeneration in ligand-introduced samples are associated chiefly with changes in the relative population fraction of QDs with different decay rates. The reversibility of the QY regeneration process has also been studied; the introduction and removal of trioctylphosphine and oleylamine tend to be reversible, while cadmium oleate is not. Finally, isothermal titration calorimetry has been used to study the relationship between the binding strength of the neutral ligands to the surface and photophysical property changes in QD samples to which they are added.

  7. Quantum yield for carbon monoxide production in the 248 nm photodissociation of carbonyl sulfide (OCS)

    NASA Technical Reports Server (NTRS)

    Zhao, Z.; Stickel, R. E.; Wine, P. H.

    1995-01-01

    Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well-known quantum yield for CO production from 248 nm photolysis of phosgene (Cl2CO2). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S((sup 3)P(sub J)) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S((sup 1)D(sub 2)) + OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N2 + N2O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought.

  8. Absolute I(asterisk) quantum yields for the ICN A state by diode laser gain-vs-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I(asterisk) quantum yields have been measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The yields are obtained by the technique of time-resolved diode laser gain-vs-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 + or - 2 percent and it falls off to 53.4 + or - 2 percent and 44.0 + or - 4 percent at 284 and 248 nm, respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I(asterisk) quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I(asterisk) yields reported here. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I(asterisk) quantum yield results.

  9. Fluorescence Quantum Yield Measurements of Fluorescent Proteins: A Laboratory Experiment for a Biochemistry or Molecular Biophysics Laboratory Course

    ERIC Educational Resources Information Center

    Wall, Kathryn P.; Dillon, Rebecca; Knowles, Michelle K.

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts…

  10. Photophysical investigation of (D-π-A) DMHP dye: Dipole moments, photochemical quantum yield and fluorescence quantum yield, by solvatochromic shift methods and DFT studies

    NASA Astrophysics Data System (ADS)

    Asiri, Abdullah M.; Sobahi, Tariq R.; Osman, Osman I.; Khan, Salman A.

    2017-01-01

    (2E)-3-(3,4-dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (DMHP) was synthesized by the reaction of 3,4-dimethoxy benzaldehyde with 1-(2-hydroxyphenyl) ethanone under microwave irradiation. The structure of DMHP was established experimentally by EI-MS, FT-IR, 1H and 13C NMR spectral studies and elemental analysis and theoretically. Electronic absorption and emission spectra of DMHP were studied in different solvents on the basis of polarities, and the obtain data were used to determine the solvatochromic properties such as extinction coefficient, oscillator strength, transition dipole moment, stokes shift, fluorescence quantum yield and photochemical quantum yield. The absorption and emission maxima were red-shifted when the polarity of the solvent was increased from dioxan to DMSO; in excellent agreement the DFT findings. The DMHP experimental intramolecular charge transfer (ICT) was complemented by a natural bond orbital (NBO) analysis. Fluorescence intensities of DMHP were increase and decrease in presence of CTAB and SDS, so DMHP was used to find out the critical micelle concentration (CMC) of CTAB and SDS.

  11. Structural Basis for Near Unity Quantum Yield Core/Shell Nanostructures

    SciTech Connect

    McBride, James; Treadway, Joe; Pennycook, Stephen J; Rosenthal, Sandra

    2006-01-01

    Aberration-corrected Z-contrast scanning transmission electron microscopy of core/shell nanocrystals shows clear correlations between structure and quantum efficiency. Uniform shell coverage is obtained only for a graded CdS/ZnS shell material and is found to be critical to achieving near 100% quantum yield. The sublattice sensitivity of the images confirms that preferential growth takes place on the anion-terminated surfaces. This explains the three-dimensional "nanobullet" shape observed in the case of core/shell nanorods.

  12. Excitation of biomolecules with incoherent light: quantum yield for the photoisomerization of model retinal.

    PubMed

    Tscherbul, T V; Brumer, P

    2014-05-01

    Cis-trans isomerization in retinal, the first step in vision, is often computationally studied from a time-dependent viewpoint. Motivation for such studies lies in coherent pulsed laser experiments that explore the isomerization dynamics. However, such biological processes take place naturally in the presence of incoherent light, which is expected to excite a nonevolving mixture of stationary states. Here the isomerization problem is considered from the latter viewpoint and applied to a standard two-state, two-mode linear vibronic coupling model of retinal that explicitly includes a conical intersection between the ground and first excited electronic states. The calculated quantum yield at 500 nm agrees well with both the previous time-dependent calculations of Hahn and Stock (0.63) [ J. Phys. Chem. B 2000, 104, 1146-1149 ] and with experiment (0.65 ± 0.01), as does its wavelength dependence. Significantly, the effects of environmental relaxation on the quantum yield in this well-established model are found to be negligible. The results make clear the connection of the photoisomerization quantum yield to properties of stationary eigenstates, providing alternate insights into conditions for yield optimization.

  13. Photodissociation of quantum state-selected diatomic molecules yields new insight into ultracold chemistry

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey; McGuyer, Bart H.; Lee, Chih-Hsi; Apfelbeck, Florian; Zelevinsky, Tanya

    2016-05-01

    When a molecule is subjected to a sufficiently energetic photon it can break apart into fragments through a process called ``photodissociation''. For over 70 years this simple chemical reaction has served as a vital experimental tool for acquiring information about molecular structure, since the character of the photodissociative transition can be inferred by measuring the 3D photofragment angular distribution (PAD). While theoretical understanding of this process has gradually evolved from classical considerations to a fully quantum approach, experiments to date have not yet revealed the full quantum nature of this process. In my talk I will describe recent experiments involving the photodissociation of ultracold, optical lattice-trapped, and fully quantum state-resolved 88Sr2 molecules. Optical absorption images of the PADs produced in these experiments reveal features which are inherently quantum mechanical in nature, such as matter-wave interference between output channels, and are sensitive to the quantum statistics of the molecular wavefunctions. The results of these experiments cannot be predicted using quasiclassical methods. Instead, we describe our results with a fully quantum mechanical model yielding new intuition about ultracold chemistry.

  14. Preparation of carbon quantum dots with a high quantum yield and the application in labeling bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Liu, Pengpeng; Zhang, Changchang; Liu, Xiang; Cui, Ping

    2016-04-01

    An economic and green approach of manufacturing carbon quantum dots (CQDs) with a high quantum yield (denoted with HQY-CQDs) and the application in labeling bovine serum albumin (BSA) were described in detail in this work. Firstly, the cheap resources of citric acid and glycine were pyrolysed in drying oven for preparing the CQDs. Then the product was immersed in tetrahydrofuran for 8 h. HQY-CQDs were obtained by removing tetrahydrofuran from the supernate and were evaluated that they possessed a much higher quantum yield compared with that without dealing with tetrahydrofuran and a wonderful photo-bleaching resistance. Such HQY-CQDs could be functionalized by N-hydroxysuccinimide and successively combined with BSA covalently. Thus fluorescent labeling on BSA was realized. The HQY-CQDs were demonstrated with transmission electron microscopy and the chemical modification with N-hydroxysuccinimide was proved by infrared and X-ray photoelectron spectra. Labeling BSA with the HQY-CQDs was confirmed by gel electrophoresis and fluorescence imaging.

  15. Quantum yield and excitation rate of single molecules close to metallic nanostructures.

    PubMed

    Holzmeister, Phil; Pibiri, Enrico; Schmied, Jürgen J; Sen, Tapasi; Acuna, Guillermo P; Tinnefeld, Philip

    2014-11-05

    The interaction of dyes and metallic nanostructures strongly affects the fluorescence and can lead to significant fluorescence enhancement at plasmonic hot spots, but also to quenching. Here we present a method to distinguish the individual contributions to the changes of the excitation, radiative and non-radiative rate and use this information to determine the quantum yields for single molecules. The method is validated by precisely placing single fluorescent dyes with respect to gold nanoparticles as well as with respect to the excitation polarization using DNA origami nanostructures. Following validation, measurements in zeromode waveguides reveal that suppression of the radiative rate and enhancement of the non-radiative rate lead to a reduced quantum yield. Because the method exploits the intrinsic blinking of dyes, it can generally be applied to fluorescence measurements in arbitrary nanophotonic environments.

  16. Fluorescence lifetimes and quantum yields of rhodamine derivatives: new insights from theory and experiment.

    PubMed

    Savarese, Marika; Aliberti, Anna; De Santo, Ilaria; Battista, Edmondo; Causa, Filippo; Netti, Paolo A; Rega, Nadia

    2012-07-19

    Although lifetimes and quantum yields of widely used fluorophores are often largely characterized, a systematic approach providing a rationale of their photophysical behavior on a quantitative basis is still a challenging goal. Here we combine methods rooted in the time-dependent density functional theory and fluorescence lifetime imaging microscopy to accurately determine and analyze fluorescence signatures (lifetime, quantum yield, and band peaks) of several commonly used rhodamine and pyronin dyes. We show that the radiative lifetime of rhodamines can be correlated to the charge transfer from the phenyl toward the xanthene moiety occurring upon the S(0) ← S(1) de-excitation, and to the xanthene/phenyl relative orientation assumed in the S(1) minimum structure, which in turn is variable upon the amino and the phenyl substituents. These findings encourage the synergy of experiment and theory as unique tool to design finely tuned fluorescent probes, such those conceived for modern optical sensors.

  17. Determining the Photoisomerization Quantum Yield of Photoswitchable Molecules in Solution and in the Solid State

    PubMed Central

    Stranius, K.; Börjesson, K.

    2017-01-01

    Photoswitchable molecules are able to isomerize between two metastable forms through light stimuli. Originally being studied by photochemists, this type of molecule has now found a wide range of applications within physics, chemistry and biology. The extensive usage of photochromic molecules is due to the two isomers having fundamentally different physical and chemical properties. The most important attribute of a photoswitch is the photoisomerization quantum yield, which defines the efficiency of the photoisomerization event. Here we show how to determine the photoisomerization quantum yield in the solid state and in solution when taking thermal processes into account. The described method together with provided software allows for rapid and accurate determination of the isomerization process for this important class of molecules. PMID:28117426

  18. Determining the Photoisomerization Quantum Yield of Photoswitchable Molecules in Solution and in the Solid State

    NASA Astrophysics Data System (ADS)

    Stranius, K.; Börjesson, K.

    2017-01-01

    Photoswitchable molecules are able to isomerize between two metastable forms through light stimuli. Originally being studied by photochemists, this type of molecule has now found a wide range of applications within physics, chemistry and biology. The extensive usage of photochromic molecules is due to the two isomers having fundamentally different physical and chemical properties. The most important attribute of a photoswitch is the photoisomerization quantum yield, which defines the efficiency of the photoisomerization event. Here we show how to determine the photoisomerization quantum yield in the solid state and in solution when taking thermal processes into account. The described method together with provided software allows for rapid and accurate determination of the isomerization process for this important class of molecules.

  19. A quantum yield determination of O/1D/ production from ozone via laser flash photolysis

    NASA Technical Reports Server (NTRS)

    Philen, D. L.; Davis, D. D.; Watson, R. T.

    1977-01-01

    The quantum yield of electronically excited atomic oxygen produced from ozone photolysis was measured at 298 K from wavelengths of 293.0 to 316.5 nm. The reaction of the atomic oxygen with N2O to form excited NO2 was used to monitor the O production; a frequency-doubled flashlamp-pumped dye laser which provided tunable ultraviolet in the desired spectral region with 0.1-nm linewidth served as the photolysis source. The atomic oxygen quantum yield was found to be constant below 300 nm, with a sharp decrease centered at 308 nm and a diminution to less than one tenth of the constant value by 313.5 nm.

  20. Photo-dissociation quantum yields of mammalian oxyhemoglobin investigated by a nanosecond laser technique

    SciTech Connect

    Yang Ningli; Zhang Shuyi . E-mail: zhangsy@nju.edu.cn; Kuo Paokuang; Qu Min; Fang Jianwen; Li Jiahuang; Hua Zichun

    2007-02-23

    The photo-dissociations of oxyhemoglobin of several mammals, such as human, bovine, pig, horse, and rabbit, have been studied. By means of optical pump-probe technique, the quantum yields for photo-dissociation of these oxyhemoglobin have been determined at pH 7 and 20 {sup o}C. A nanosecond laser at 532 nm is used as the pumping source, and a xenon lamp through a monochrometer provides a probe light at 432 nm. The experimental results show that the quantum yields of these mammalian oxyhemoglobin are different from each other, especially for that of rabbit. By analyzing the amino acid sequences and tetramer structures as well as the flexibility and hydrophobicity of the different hemoglobin, possible explanations for the differences are proposed.

  1. Sample-Averaged Biexciton Quantum Yield Measured by Solution-Phase Photon Correlation

    PubMed Central

    Beyler, Andrew P.; Bischof, Thomas S.; Cui, Jian; Coropceanu, Igor; Harris, Daniel K.; Bawendi, Moungi G.

    2015-01-01

    The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals. PMID:25409496

  2. The effect of axial ligands on the quantum yield of singlet oxygen of new silicon phthalocyanine

    NASA Astrophysics Data System (ADS)

    Lv, Huafei; Zhang, Xuemei; Yu, Xinxin; Pan, Sujuan; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2016-10-01

    The singlet oxygen (1O2) production abilitity is an important factor to assess their potential as effective of photosensitizers. In this paper, the 1O2 production rate, production rate constant and quantum yield of silicon(IV) phthalocyanine axially bearing 1-3 generation dendritic substituents were evaluated by a high performance liquid chromatographic method. The results show that the 1O2 production rate and production rate constant of these compounds increase gradually with dendritic generations increase. And the 1O2 quantum yield of silicon(IV) phthalocyanine with first generation dendritic ligand was the highest. This may be due to the isolation effect of the dendritic ligands on the phthalocyanine core. The parameters of the observed 1O2 production properties will provide valuable data for these dendrimer phthalocyanines as promising photosensitizer in PDT application.

  3. Analysis of wavelength-dependent photoisomerization quantum yields in bilirubins by fitting two exciton absorption bands

    NASA Astrophysics Data System (ADS)

    Mazzoni, M.; Agati, G.; Troup, G. J.; Pratesi, R.

    2003-09-01

    The absorption spectra of bilirubins were deconvoluted by two Gaussian curves of equal width representing the exciton bands of the non-degenerate molecular system. The two bands were used to study the wavelength dependence of the (4Z, 15Z) rightarrow (4Z, 15E) configurational photoisomerization quantum yield of the bichromophoric bilirubin-IXalpha (BR-IX), the intrinsically asymmetric bile pigment associated with jaundice and the symmetrically substituted bilirubins (bilirubin-IIIalpha and mesobilirubin-XIIIalpha), when they are irradiated in aqueous solution bound to human serum albumin (HSA). The same study was performed for BR-IX in ammoniacal methanol solution (NH4OH/MeOH). The quantum yields of the configurational photoprocesses were fitted with a combination function of the two Gaussian bands normalized to the total absorption, using the proportionality coefficients and a scaling factor as parameters. The decrease of the (4Z, 15Z) rightarrow (4Z, 15E) quantum yield with increasing wavelength, which occurs for wavelengths longer than the most probable Franck-Condon transition of the molecule, did not result in a unique function of the exciton absorptions. In particular we found two ranges corresponding to different exciton interactions with different proportionality coefficients and scaling factors. The wavelength-dependent photoisomerization of bilirubins was described as an abrupt change in quantum yield as soon as the resulting excitation was strongly localized in each chromophore. The change was correlated to a variation of the interaction between the two chromophores when the short-wavelength exciton absorption became vanishingly small. With the help of the circular dichroism (CD) spectrum of BR-IX in HSA, a small band was resolved in the bilirubin absorption spectrum, delivering part of the energy required for the (4Z, 15Z) rightarrow (4Z, 15E) photoisomerization of the molecule.

  4. Convenient determination of luminescence quantum yield using a combined electronic absorption and emission spectrometer

    SciTech Connect

    Prakash, John; Mishra, Ashok Kumar

    2016-01-15

    It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.

  5. Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes

    SciTech Connect

    Feng, X. T.; Zhang, Y.; Liu, X. G.; Zhang, F.; Wang, Y. L.; Yang, Y. Z.

    2015-11-23

    Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation light source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.

  6. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols.

    PubMed

    Lee, Hyun Ji Julie; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2013-06-04

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines, and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of water-soluble SOA generated from two monoterpenes, limonene and α-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ∼100 ppb ammonia in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (∼0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for λexcitation = 420 ± 50 nm and λemission = 475 ± 38 nm. The window of the strongest fluorescence shifted to λexcitation = 320 ± 25 nm and λemission = 425 ± 38 nm for the α-pinene-derived SOA. Both regions overlap with the EEM spectra of some of the fluorophores found in primary biological aerosols. Despite the low quantum yield, the aged SOA particles may have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  7. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    SciTech Connect

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  8. Acetone photolysis at 248 nm revisited: pressure dependence of the CO and CO2 quantum yields.

    PubMed

    Somnitz, H; Ufer, T; Zellner, R

    2009-10-14

    Pressure dependent CO and CO2 quantum yields in the laser pulse photolysis of acetone at 248 nm and T = 298 K have been measured directly using quantitative infrared diode laser absorption. The experiments cover the pressure range from 50 to 900 mbar. It is found that the quantum yields show a significant dependence on total pressure, with Phi(CO) decreasing from around 0.5 at 20 mbar to approximately 0.3 at 900 mbar. The corresponding CO2 yields as observed when O2 exists in the reaction mixture, exhibit exactly the opposite behaviour. For the sum of both a value of 1.05(-0.05)(+0.02) independent of pressure is obtained, showing that the sum of (Phi(CO) + Phi(CO2)) is a measure for the primary quantum yield in the photolysis of acetone. In addition, CO quantum yields and corresponding pressure dependences were measured in experiments using different bath gases including He, Ar, Kr, SF6, and O2 as third body colliders. The theoretical framework in which we discuss these data is based on our previous findings that the pressure dependence of the CO yield is a consequence of a stepwise fragmentation mechanism during which acetone decomposes initially into methyl and a vibrationally 'hot' acetyl radical, with the latter being able to decompose promptly into methyl plus CO. The pressure dependence of the CO yield then originates from the second step and is modelled quantitatively via statistical dynamical calculations using a combination of RRKM theory with a time-dependent master equation (ME) approach. From a comparison of experiment with theory the amount of excess energy in the vibrationally hot acetyl radicals (E* approximately 65 kJ mol(-1)) as well as the characteristic collision parameters for interaction of acetyl with the different bath gases were derived. Values of 90, 280, 310, 545, 550 and 1800 cm(-1) for the average energy transferred per downward collision for the bath gases He, Ar, Kr, O2, N2, and SF6, respectively, are obtained. The calculations also

  9. Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide.

    PubMed

    Dalrymple, Renée M; Carfagno, Amy K; Sharpless, Charles M

    2010-08-01

    Various aquatic dissolved organic matter (DOM) samples produce singlet oxygen (1O2) and hydrogen peroxide (H2O2) with quantum yields of 0.59 to 4.5% (1O2 at 365 nm) and 0.017 to 0.053% (H2O2, 300-400 nm integrated). The two species' yields have opposite pH dependencies and strong, but opposite, correlations with the E2/E3 ratio (A254 divided by A365). Linear regressions allow prediction of both quantum yields from E2/E3 in natural water samples with errors ranging from -3% to 60%. Experimental evidence and kinetic calculations indicate that less than six percent of the H2O2 is produced by reaction between 1O2 and DOM. The inverse relationship between the 1O2 and H2O2 yields is thus best explained by a model in which precursors to these species are populated competitively. A model is presented, which proposes that important precursors to H2O2 may be either charge-transfer or triplet states of DOM.

  10. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield.

    PubMed

    Tessier, M D; Mahler, B; Nadal, B; Heuclin, H; Pedetti, S; Dubertret, B

    2013-07-10

    Free standing two-dimensional materials appear as a novel class of structures. Recently, the first colloidal two-dimensional heterostructures have been synthesized. These core/shell nanoplatelets are the first step toward colloidal quantum wells. Here, we study in detail the spectroscopic properties of this novel generation of colloidal nanoparticles. We show that core/shell CdSe/CdZnS nanoplatelets with 80% quantum yield can be obtained. The emission time trace of single core/shell nanoplatelets exhibits reduced blinking compared to core nanoplatelets with a two level emission time trace. At cryogenic temperatures, these nanoplatelets have a quantum yield close to 100% and a stable emission time trace. A solution of core/shell nanoplatelets has emission spectra with a full width half-maximum close to 20 nm, a value much lower than corresponding spherical or rod-shaped heterostructures. Using single particle spectroscopy, we show that the broadening of the emission spectra upon the shell deposition is not due to dispersity between particles but is related to an intrinsic increased exciton-phonon coupling in the shell. We also demonstrate that optical spectroscopy is a relevant tool to investigate the presence of traps induced by shell deposition. The spectroscopic properties of the core/shell nanoplatelets presented here strongly suggest that this new generation of objects will be an interesting alternative to spherical or rod-shaped nanocrystals.

  11. Photosensitized electron transfer processes in SiO2 colloids and sodium lauryl sulfate micellar systems: Correlation of quantum yields with interfacial surface potentials

    PubMed Central

    Laane, Colja; Willner, Itamar; Otvos, John W.; Calvin, Melvin

    1981-01-01

    The effectiveness of negatively charged colloidal SiO2 particles in controlling photosensitized electron transfer reactions has been studied and compared with that of the negatively charged sodium lauryl sulfate (NaLauSO4) micellar system. In particular, the photosensitized reduction of the zwitterionic electron acceptor propylviologen sulfonate (PVS0) with tris(2,2′-bipyridinium)ruthenium(II) [Ru(bipy)32+] as the sensitizer and triethanolamine as the electron donor is found to have a quantum yield of 0.033 for formation of the radical anion (PVS[unk]) in the SiO2 colloid compared with 0.005 in the homogeneous system and 0.0086 in a NaLauSO4 micellar solution. The higher quantum yields obtained with the SiO2 colloidal system are attributed to substantial stabilization against back reaction of the intermediate photoproducts—i.e., Ru(bipy)33+ and PVS[unk]—by electrostatic repulsion of the reduced electron acceptor from the negatively charged particle surface. The binding properties of the SiO2 particles and NaLauSO4 micelles were investigated by flow dialysis. The results show that the sensitizer binds to both interfaces and that the SiO2 interface is characterized by a much higher surface potential than the micellar interface (≈-170 mV vs. -85 mV). The effect of ionic strength on the surface potential was estimated from the Gouy-Chapman theory, and the measured quantum yields of photosensitized electron transfer were correlated with surface potential at different ionic strengths. This correlation shows that the quantum yield is not affected by surface potentials smaller than ≈-40 mV. At larger potentials, the quantum yield increases rapidly. The quantum yield obtained in the micellar system at different strengths fits nicely on the correlation curve for the colloid SiO2 system. These results indicate that the surface potential is the dominant factor in the quantum yield improvement for PVS0 reduction. PMID:16593095

  12. Maxwell's demon. (II) A quantum-theoretic exorcism

    NASA Astrophysics Data System (ADS)

    Gyftopoulos, Elias P.

    2002-05-01

    In Part II of this two-part paper we prove that Maxwell's demon is unable to accomplish his task of sorting air molecules into swift and slow because in air in a thermodynamic equilibrium state there are no such molecules. The proof is based on the principles of a unified quantum theory of mechanics and thermodynamics. The key idea of the unified theory is that von Neumann's concept of a homogeneous ensemble of identical systems, identically prepared, is valid not only for a density operator ρ equal to a projector (every member of the ensemble is assigned the same projector, ρi=| ψi> < ψi|= ρi2, or the same wave function ψ i as any other member) but also for a density operator that is not a projector (every member of the ensemble is assigned the same density operator, ρ>ρ 2, as any other member). So, the latter ensemble is not a statistical mixture of projectors. The broadening of the validity of the homogeneous ensemble is consistent with the quantum-theoretic postulates about observables, measurement results, and value of any observable. In the context of the unified theory, among the many novel results is the theorem that each molecule of a system in a thermodynamic equilibrium state has zero value of momentum, that is, each molecule is at a standstill and, therefore, there are no molecules to be sorted as swift and slow. Said differently, if Maxwell were cognizant of quantum theory, he would not have conceived of the idea of the demon. It is noteworthy that the zero value of momentum is not the result of averaging over different momenta of many molecules. Under the specified conditions, it is the quantum-theoretic value of the momentum of any one molecule, and the same result is valid even if the system consists of only one molecule.

  13. Exploration of the yield-ratio method at Shenguang II laser facility

    NASA Astrophysics Data System (ADS)

    Zhao, Zongqing; Chen, Jiabin; Ding, Yongkun; Chen, Ming; Pu, Yikang

    2006-07-01

    In inertial confinement fusion implosion experiments with the primary-neutron yield as low as 107, the method of yield ratio is proposed to diagnose the areal density ⟨ρR⟩ at Shenguang II laser facility. Considering the detection efficiency and the time response, a new detector for detecting the secondary-neutron signal is developed, which locates 50cm away from the target. According to Monte Carlo N-particle simulation, 5-cm-thick lead shield was placed in front of the detector to shield x rays. In the 2004 experiments, the highest primary-neutron yield is 3.18×106, which is an order lower than expected. Inspite of this fact, a secondary-neutron signal is measured for the first time at the Shenguang II laser facility, which proves the method's feasibility. The method will be used in the experiments at the prototype of Shenguang III laser facility.

  14. Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions

    SciTech Connect

    Greben, M.; Fucikova, A.; Valenta, J.

    2015-04-14

    The absolute photoluminescence (PL) quantum yield (QY) of oleic acid-capped colloidal PbS quantum dots (QDs) in toluene is thoroughly investigated as function of QD size, concentration, excitation photon energy, and conditions of storage. We observed anomalous decrease of QY with decreasing concentration for highly diluted suspensions. The ligand desorption and QD-oxidation are demonstrated to be responsible for this phenomenon. Excess of oleic acid in suspensions makes the QY values concentration-independent over the entire reabsorption-free range. The PL emission is shown to be dominated by surface-related recombinations with some contribution from QD-core transitions. We demonstrate that QD colloidal suspension stability improves with increasing the concentration and size of PbS QDs.

  15. Quantum yield for carbon monoxide production in the 248 nm photodissociation of carbonyl sulfide (OCS)

    SciTech Connect

    Zhao, Z.; Stickel, R.E.; Wine, P.H.

    1995-03-01

    Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well known quantum yield for CO production from 248 nm photolysis of phosgene (Cl{sub 2}CO). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S({sup 3}P{sub j}) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S({sup 1}D{sub 2})+OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N{sub 2}+N{sub 2}O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought. 25 refs., 1 fig., 2 tabs.

  16. Compensated Crystal Assemblies for Type-II Entangled Photon Generation in Quantum Cluster States

    DTIC Science & Technology

    2010-03-01

    multi-crystal sources, such as cluster states, entanglement swapping, and teleportation . 15. SUBJECT TERMS quantum , entangled photons, joint...entanglement swapping, and teleportation . Key Words: quantum , entangled photons, joint spectral function, spontaneous parametric downconversion 2...DATES COVERED (From - To) OCT 2009 – SEP 2011 4. TITLE AND SUBTITLE COMPENSATED CRYSTAL ASSEMBLIES FOR TYPE-II ENTANGLED PHOTO GENERATION IN QUANTUM

  17. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Wu, Zhu Lian; Gao, Ming Xuan; Wang, Ting Ting; Wan, Xiao Yan; Zheng, Lin Ling; Huang, Cheng Zhi

    2014-03-01

    A general quantitative pH sensor for environmental and intracellular applications was developed by the facile hydrothermal preparation of dicyandiamide (DCD) N-doped high quantum yield (QY) graphene quantum dots (GQDs) using citric acid (CA) as the carbon source. The obtained N-doped GQDs have excellent photoluminesence (PL) properties with a relatively high QY of 36.5%, suggesting that N-doped chemistry could promote the QY of carbon nanomaterials. The possible mechanism for the formation of the GQDs involves the CA self-assembling into a nanosheet structure through intermolecular H-bonding at the initial stage of the reaction, and then the pure graphene core with many function groups formed through the dehydration between the carboxyl and hydroxyl of the intermolecules under hydrothermal conditions. These N-doped GQDs have low toxicity, and are photostable and pH-sensitive between 1.81 to 8.96, giving a general pH sensor with a wide range of applications from real water to intracellular contents.A general quantitative pH sensor for environmental and intracellular applications was developed by the facile hydrothermal preparation of dicyandiamide (DCD) N-doped high quantum yield (QY) graphene quantum dots (GQDs) using citric acid (CA) as the carbon source. The obtained N-doped GQDs have excellent photoluminesence (PL) properties with a relatively high QY of 36.5%, suggesting that N-doped chemistry could promote the QY of carbon nanomaterials. The possible mechanism for the formation of the GQDs involves the CA self-assembling into a nanosheet structure through intermolecular H-bonding at the initial stage of the reaction, and then the pure graphene core with many function groups formed through the dehydration between the carboxyl and hydroxyl of the intermolecules under hydrothermal conditions. These N-doped GQDs have low toxicity, and are photostable and pH-sensitive between 1.81 to 8.96, giving a general pH sensor with a wide range of applications from real water

  18. The relationship between photooxidation defects and quantum yield loss in a liquid crystalline oligofluorene

    NASA Astrophysics Data System (ADS)

    Wesely, E. Jane; Rothberg, Lewis; Geng, Yanhou; Chen, Shaw

    2004-03-01

    We have studied the photophysics of a liquid crystalline oligofluorene which emits blue light with a quantum efficiency of forty-nine percent.( Y. Geng, S. Culligan, A. Trajkovska, J. Wallace and S. Chen, Chem. Mater; 2003, 15, 542-549.) The fluorescent yield is reduced when the film has been exposed to ultra-violet light and air. The resulting photooxidation creates luminescent defects that have previously been observed in some polyfluorenes.( E. J. W. List, R. Guentner, P. Scanducci de Freitas, and U. Scherf, Adv Mater., 2002, 14, 374-378.) The defects decrease the overall fluorescent yield because they divert energy away from the blue-emitting chromophores and emit at longer wavelengths with low efficiency. In contrast with previous studies of photooxidized polyfluorenes, we observe two emission peaks associated with defects that have distinct intensity dependence and decay dynamics.

  19. Self-consistent calculations of optical properties of type I and type II quantum heterostructures

    NASA Astrophysics Data System (ADS)

    Shuvayev, Vladimir A.

    In this Thesis the self-consistent computational methods are applied to the study of the optical properties of semiconductor nanostructures with one- and two-dimensional quantum confinements. At first, the self-consistent Schrodinger-Poisson system of equations is applied to the cylindrical core-shell structure with type II band alignment without direct Coulomb interaction between carriers. The electron and hole states and confining potential are obtained from a numerical solution of this system. The photoluminescence kinetics is theoretically analyzed, with the nanostructure size dispersion taken into account. The results are applied to the radiative recombination in the system of ZnTe/ZnSe stacked quantum dots. A good agreement with both continuous wave and time-resolved experimental observations is found. It is shown that size distribution results in the photoluminescence decay that has essentially non-exponential behavior even at the tail of the decay where the carrier lifetime is almost the same due to slowly changing overlap of the electron and hole wavefunctions. Also, a model situation applicable to colloidal core-shell nanowires is investigated and discussed. With respect to the excitons in type I quantum wells, a new computationally efficient and flexible approach of calculating the characteristics of excitons, based on a self-consistent variational treatment of the electron-hole Coulomb interaction, is developed. In this approach, a system of self-consistent equations describing the motion of an electron-hole pair is derived. The motion in the growth direction of the quantum well is separated from the in-plane motion, but each of them occurs in modified potentials found self-consistently. This approach is applied to a shallow quantum well with the delta-potential profile, for which analytical expressions for the exciton binding energy and the ground state eigenfunctions are obtained, and to the quantum well with the square potential profile with several

  20. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots.

    PubMed

    Wu, Zhu Lian; Gao, Ming Xuan; Wang, Ting Ting; Wan, Xiao Yan; Zheng, Lin Ling; Huang, Cheng Zhi

    2014-04-07

    A general quantitative pH sensor for environmental and intracellular applications was developed by the facile hydrothermal preparation of dicyandiamide (DCD) N-doped high quantum yield (QY) graphene quantum dots (GQDs) using citric acid (CA) as the carbon source. The obtained N-doped GQDs have excellent photoluminesence (PL) properties with a relatively high QY of 36.5%, suggesting that N-doped chemistry could promote the QY of carbon nanomaterials. The possible mechanism for the formation of the GQDs involves the CA self-assembling into a nanosheet structure through intermolecular H-bonding at the initial stage of the reaction, and then the pure graphene core with many function groups formed through the dehydration between the carboxyl and hydroxyl of the intermolecules under hydrothermal conditions. These N-doped GQDs have low toxicity, and are photostable and pH-sensitive between 1.81 to 8.96, giving a general pH sensor with a wide range of applications from real water to intracellular contents.

  1. Diurnal changes of photosynthetic quantum yield in the intertidal macroalga Sargassum thunbergii under simulated tidal emersion conditions

    NASA Astrophysics Data System (ADS)

    Yu, Yong Qiang; Zhang, Quan Sheng; Tang, Yong Zheng; Li, Xue Meng; Liu, Hong Liang; Li, Li Xia

    2013-07-01

    In this study, a three-way factorial experimental design was used to investigate the diurnal changes of photosynthetic activity of the intertidal macroalga Sargassum thunbergii in response to temperature, tidal pattern and desiccation during a simulated diurnal light cycle. The maximum (Fv/Fm) and effective (ΦPSII) quantum yields of photosystem II (PSII) were estimated by chlorophyll fluorescence using a pulse amplitude modulated fluorometer. Results showed that this species exhibited sun-adapted characteristics, as evidenced by the daily variation of Fv/Fm and ΦPSII. Both yield values decreased with increasing irradiance towards noon and recovered rapidly in the afternoon suggesting a dynamic photoinhibition. The photosynthetic quantum yield of S. thunbergii thalli varied significantly with temperature, tidal pattern and desiccation. Thalli were more susceptible to light-induced damage at high temperature of 25 °C and showed complete recovery of photosynthetic activity only when exposed to 8 °C. In contrast with the mid-morning low tide period, although there was an initial increase in photosynthetic yield during emersion, thalli showed a greater degree of decline at the end of emersion and remained less able to recover when low tide occurred at mid-afternoon. Short-term air exposure of 2 h did not significantly influence the photosynthesis. However, when exposed to moderate conditions (4 h desiccation at 15 °C or 6 h desiccation at 8 °C), a significant inhibition of photosynthesis was followed by partial or complete recovery upon re-immersion in late afternoon. Only extreme conditions (4 h desiccation at 25 °C or 6 h desiccation at 15 °C or 25 °C) resulted in the complete inhibition, with little indication of recovery until the following morning, implying the occurrence of chronic PSII damage. Based on the magnitude of effect, desiccation was the predominant negative factor affecting the photosynthesis under the simulated daytime irradiance period. These

  2. Investigation of the CO2 Dependence of Quantum Yield and Respiration in Eucalyptus pauciflora

    PubMed Central

    Kirschbaum, Miko U. F.; Farquhar, Graham D.

    1987-01-01

    In leaves of C3 plants, the rate of nonphotorespiratory respiration appears to be higher in darkness than in the light. This change from a high to a low rate of carbon loss with increasing photon flux density leads to an increase in the apparent quantum yield of photosynthetic CO2 assimilation at low photon flux densities (Kok effect). The mechanism of this suppression of nonphotorespiratory respiration is not understood, but biochemical evidence and the observation that a Kok effect is often not observed under low O2, has led to the suggestion that photorespiration might be involved in some way. This hypothesis was tested with snowgum (Eucalyptus pauciflora Sieb. ex Spreng.) using gas exchange methods. The test was based on the assumption that if photorespiration were involved, then it would be expected that the intercellular partial pressure of CO2 would also have an influence on the Kok effect. Under normal atmospheric levels of CO2 and O2, a Kok effect was found. Changing the intercellular partial pressure of CO2, however, did not affect the estimate of nonphotorespiratory respiraton, and it was concluded that its decrease with increasing photon flux density did not involve photorespiration. Concurrent measurements showed that the quantum yield of net assimilation of CO2 increased with increasing intercellular partial pressure of CO2, and this increase agreed closely with predictions based on recent models of photosynthesis. PMID:16665319

  3. Functionalization of quinoxalines by using TMP bases: preparation of tetracyclic heterocycles with high photoluminescene quantum yields.

    PubMed

    Nafe, Julia; Herbert, Simon; Auras, Florian; Karaghiosoff, Konstantin; Bein, Thomas; Knochel, Paul

    2015-01-12

    Tetracyclic heterocycles that exhibit high photoluminescence quantum yields were synthesized by anellation reactions of mono-, di-, and trifunctionalized 2,3-dichloroquinoxalines. Thus, treatment of 2,3-dichloroquinoxaline with TMPLi (TMP = 2,2,6,6-tetramethylpiperidyl) allows a regioselective lithiation in position 5. Quenching with various electrophiles (iodine, (BrCl2 C)2 , allylic bromide, acid chloride, aryl iodide) leads to 5-functionalized 2,3-dichloroquinoxalines. Further functionalization in positions 6 and 8 can be achieved by using TMPLi or TMPMgCl⋅LiCl furnishing a range of new di- and tri-functionalized 2,3-dichloroquinoxalines. The chlorine atoms are readily substituted by anellation with 1,2-diphenols or 1,2-dithiophenols leading to a series of new tetracyclic compounds. These materials exhibit strong, tunable optical absorption and emission in the blue and green spectral region. The substituted O-heterocyclic compounds exhibit particularly high photoluminescence quantum yields of up to 90%, which renders them interesting candidates for fluorescence imaging applications.

  4. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%

    PubMed Central

    Goedhart, Joachim; von Stetten, David; Noirclerc-Savoye, Marjolaine; Lelimousin, Mickaël; Joosen, Linda; Hink, Mark A.; van Weeren, Laura; Gadella, Theodorus W.J.; Royant, Antoine

    2012-01-01

    Cyan variants of green fluorescent protein are widely used as donors in Förster resonance energy transfer experiments. The popular, but modestly bright, Enhanced Cyan Fluorescent Protein (ECFP) was sequentially improved into the brighter variants Super Cyan Fluorescent Protein 3A (SCFP3A) and mTurquoise, the latter exhibiting a high-fluorescence quantum yield and a long mono-exponential fluorescence lifetime. Here we combine X-ray crystallography and excited-state calculations to rationalize these stepwise improvements. The enhancement originates from stabilization of the seventh β-strand and the strengthening of the sole chromophore-stabilizing hydrogen bond. The structural analysis highlighted one suboptimal internal residue, which was subjected to saturation mutagenesis combined with fluorescence lifetime-based screening. This resulted in mTurquoise2, a brighter variant with faster maturation, high photostability, longer mono-exponential lifetime and the highest quantum yield measured for a monomeric fluorescent protein. Together, these properties make mTurquoise2 the preferable cyan variant of green fluorescent protein for long-term imaging and as donor for Förster resonance energy transfer to a yellow fluorescent protein. PMID:22434194

  5. Mathematical optimization approach for estimating the quantum yield distribution of a photochromic reaction in a polymer

    NASA Astrophysics Data System (ADS)

    Tanaka, Mirai; Yamashita, Takashi; Sano, Natsuki; Ishigaki, Aya; Suzuki, Tomomichi

    2017-01-01

    The convolution of a series of events is often observed for a variety of phenomena such as the oscillation of a string. A photochemical reaction of a molecule is characterized by a time constant, but materials in the real world contain several molecules with different time constants. Therefore, the kinetics of photochemical reactions of the materials are usually observed with a complexity comparable with those of theoretical kinetic equations. Analysis of the components of the kinetics is quite important for the development of advanced materials. However, with a limited number of exceptions, deconvolution of the observed kinetics has not yet been mathematically solved. In this study, we propose a mathematical optimization approach for estimating the quantum yield distribution of a photochromic reaction in a polymer. In the proposed approach, time-series data of absorbances are acquired and an estimate of the quantum yield distribution is obtained. To estimate the distribution, we solve a mathematical optimization problem to minimize the difference between the input data and a model. This optimization problem involves a differential equation constrained on a functional space as the variable lies in the space of probability distribution functions and the constraints arise from reaction rate equations. This problem can be reformulated as a convex quadratic optimization problem and can be efficiently solved by discretization. Numerical results are also reported here, and they verify the effectiveness of our approach.

  6. Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yang, Jian Hai; Zeng, Hai Bo; Chen, Yong Mei; Yang, Sheng Chun; Wu, Chao; Zeng, Hao; Yoshihito, Osada; Zhang, Qiqing

    2016-07-01

    In this contribution, we have shown that the organic fluorophores, 5-oxo-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-3,7-dicarboxylic acid (TPDCA) and 5-oxo-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-7-carboxylic acid (TPCA), are the main ingredients and fluorescence origins of N,S-CDs via systematic analyses. It inspires us to deeply analyze and understand the fluorescence origins of carbon dots with high fluorescence quantum yields, which will expand their applications.In this contribution, we have shown that the organic fluorophores, 5-oxo-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-3,7-dicarboxylic acid (TPDCA) and 5-oxo-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-7-carboxylic acid (TPCA), are the main ingredients and fluorescence origins of N,S-CDs via systematic analyses. It inspires us to deeply analyze and understand the fluorescence origins of carbon dots with high fluorescence quantum yields, which will expand their applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00451b

  7. Solvent effect on the relative quantum yield and fluorescence quenching of 2DAM

    NASA Astrophysics Data System (ADS)

    Nagaraja, D.; Melavanki, R. M.; Patil, N. R.; Kusanur, R. A.

    2014-09-01

    The relative quantum yield of diethyl 2-acetamido-2-((3-oxo-3H-benzo[f]chromen-1-yl)methyl) malonate [2DAM] is estimated using single point method with quinine sulfate as standard reference. The quantum yield varies between 0.1161 and 0.3181 depending on the nature of the solvent. The rates of radiative and non radiative decay constants are also calculated. The fluorescence quenching of [2DAM] by aniline is studied at room temperature, by steady state, in five different solvents namely acetonitrile (AN), 1,4 dioxane (DX), 1,2 dichloroethane (DCE), tetrahydrofuran (THF) and toluene (TOL), in order to explore various possible quenching mechanisms. The experimental results show a positive deviation in Stern Volmer plots for all solvents. Various parameters for the quenching process are determined by ground state complex, sphere of action static quenching model and finite sink approximation model. The magnitudes of these rate parameters indicate that positive deviation in the Stern Volmer (SV) plot is due to both static and dynamic processes. Further, finite sink approximation model is used to check whether these bimolecular reactions were diffusion limited or not. The values of distance parameter R‧ and diffusion co efficient D are determined and then compared with the values of encounter distance R and diffusion coefficient D calculated using Stokes-Einstein equation.

  8. Photoisomerization dynamics of a rhodopsin-based molecule (potential molecular switch) with high quantum yields

    NASA Astrophysics Data System (ADS)

    Allen, Roland; Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li

    2015-03-01

    It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-Methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al. We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C =C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Research Fund for the Doctoral Program of Higher Education of China; Fundamental Research Funds for the Central Universities; Robert A. Welch Foundation; National Natural Science Foundation of China.

  9. Photoisomerization dynamics of a rhodopsin-based molecule (potential molecular switch) with high quantum yields

    NASA Astrophysics Data System (ADS)

    Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li; Allen, Roland E.

    2015-02-01

    It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C=C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Perhaps remarkably, but apparently because of electrostatic repulsion, the direction of rotation is the same for both reactions.

  10. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B.; Knott, W. M. (Principal Investigator)

    1993-01-01

    Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

  11. SU-E-T-191: First Principle Calculation of Quantum Yield in Photodynamic Therapy

    SciTech Connect

    Abolfath, R; Guo, F; Chen, Z; Nath, R

    2014-06-01

    Purpose: We present a first-principle method to calculate the spin transfer efficiency in oxygen induced by any photon fields especially in MeV energy range. The optical pumping is mediated through photosensitizers, e.g., porphyrin and/or ensemble of quantum dots. Methods: Under normal conditions, oxygen molecules are in the relatively non-reactive triplet state. In the presence of certain photosensitizer compounds such as porphyrins, electromagnetic radiation of specific wavelengths can excite oxygen to highly reactive singlet state. With selective uptake of photosensitizers by certain malignant cells, photon irradiation of phosensitized tumors can lead to selective killing of cancer cells. This is the basis of photodynamic therapy (PDT). Despite several attempts, PDT has not been clinically successful except in limited superficial cancers. Many parameters such as photon energy, conjugation with quantum dots etc. can be potentially combined with PDT in order to extend the role of PDT in cancer management. The key quantity for this optimization is the spin transfer efficiency in oxygen by any photon field. The first principle calculation model presented here, is an attempt to fill this need. We employ stochastic density matrix description of the quantum jumps and the rate equation methods in quantum optics based on Markov/Poisson processes and calculate time evolution of the population of the optically pumped singlet oxygen. Results: The results demonstrate the feasibility of our model in showing the dependence of the optical yield in generating spin-singlet oxygen on the experimental conditions. The adjustable variables can be tuned to maximize the population of the singlet oxygen hence the efficacy of the photodynamic therapy. Conclusion: The present model can be employed to fit and analyze the experimental data and possibly to assist researchers in optimizing the experimental conditions in photodynamic therapy.

  12. Effect of capsid proteins to ICG mass ratio on fluorescent quantum yield of virus-resembling optical nano-materials

    NASA Astrophysics Data System (ADS)

    Gupta, Sharad; Ico, Gerardo; Matsumura, Paul; Rao, A. L. N.; Vullev, Valentine; Anvari, Bahman

    2012-03-01

    We recently reported construction of a new type of optical nano-construct composed of genome-depleted plant infecting brome mosaic virus (BMV) doped with Indocyanine green (ICG), an FDA-approved chromophore. We refer to these constructs as optical viral ghosts (OVGs) since only the capsid protein (CP) subunits of BMV remain to encapsulate ICG. To utilize OVGs as effective nano-probes in fluorescence imaging applications, their fluorescence quantum yield needs to be maximized. In this study, we investigate the effect of altering the CP to ICG mass ratio on the fluorescent quantum yield of OVGs. Results of this study provide the basis for construction of OVGs with optimal amounts of CP and ICG to yield maximal fluorescence quantum yield.

  13. Enhancement of carrier lifetimes in type-II quantum dot/quantum well hybrid structures

    NASA Astrophysics Data System (ADS)

    Couto, O. D. D.; de Almeida, P. T.; dos Santos, G. E.; Balanta, M. A. G.; Andriolo, H. F.; Brum, J. A.; Brasil, M. J. S. P.; Iikawa, F.; Liang, B. L.; Huffaker, D. L.

    2016-08-01

    We investigate optical transitions and carrier dynamics in hybrid structures containing type-I GaAs/AlGaAs quantum wells (QWs) and type-II GaSb/AlGaAs quantum dots (QDs). We show that the optical recombination of photocreated electrons confined in the QWs with holes in the QDs and wetting layer can be modified according to the QW/QD spatial separation. In particular, for low spacer thicknesses, the QW optical emission can be suppressed due to the transference of holes from the QW to the GaSb layer, favoring the optical recombination of spatially separated carriers, which can be useful for optical memory and solar cell applications. Time-resolved photoluminescence (PL) measurements reveal non-exponential recombination dynamics. We demonstrate that the PL transients can only be quantitatively described by considering both linear and quadratic terms of the carrier density in the bimolecular recombination approximation for type-II semiconductor nanostructures. We extract long exciton lifetimes from 700 ns to 5 μs for QDs depending on the spacer layer thickness.

  14. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    PubMed

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum.

  15. Second Preliminary Report on X-ray Yields from OMEGA II Targets

    SciTech Connect

    Fournier, K B; May, M J; MacLaren, S A; Coverdale, C A; Davis, J F

    2006-08-28

    We present details about X-ray yields measured with LLNL and SNL diagnostics in soft and moderately hard X-ray bands from laser-driven, doped-aerogel targets shot on 07/14/06 during the OMEGA II test series. Yields accurate to {+-}25% in the 5-15 keV band are measured with Livermore's HENWAY spectrometer. Yields in the sub-keV to 3.2 keV band are measured with LLNL's DANTE diagnostic, the DANTE yields may be 35-40% too large. SNL ran a PCD-based diagnostic that also measured X-ray yields in the spectral region above 4 keV, and also down to the nearly sub-keV range. The PCD and HENWAY and DANTE numbers are compared. The time histories of the X-ray signals are measured with LLNL's H11 PCD, and from two SNL PCDs with comparable filtering. There is a persistent disagreement between the H11 PCD and SNL PCD measured FWHM, which is shown not to be due to analysis techniques. The recommended X-ray waveform is that from the SNL PCD p66k10, which was recorded on a fast, high-bandwidth TDS 6804 oscilloscope, and which are not plotted here.

  16. Foliar application of isopyrazam and epoxiconazole improves photosystem II efficiency, biomass and yield in winter wheat.

    PubMed

    Ajigboye, Olubukola O; Murchie, Erik; Ray, Rumiana V

    2014-09-01

    A range of fungicides including epoxiconazole, azoxystrobin and isopyrazam, were applied to winter wheat at GS 31/32 to determine their effect on photosystem II (PSII) efficiency, biomass and yield. Frequent, repeated measurements of chlorophyll fluorescence were carried on plants grown under different water regimes in controlled environment and in the field to establish the transiency of fluorescence changes in relation to fungicide application. Application of the succinate dehydrogenase inhibitor isopyrazam in a mixture with the triazole epoxiconazole increased PSII efficiency associated with a 28% increase in biomass in the controlled environment and 4% increase in grain yield in the field in the absence of disease pressure. Application of isopyrazam and epoxiconazole increased efficiency of PSII photochemistry (Fv'/Fm') as early as 4h following application associated with improved photosynthetic gas exchange and increased rates of electron transport. We reveal a strong, positive relationship between Fv'/Fm' and CO2 assimilation rate, stomatal conductance and transpiration rate in controlled environment and Fv'/Fm' detected just after anthesis on the flag leaf at GS 73 and grain yield in field. We conclude that application of a specific combination of fungicides with positive effects of plant physiology in the absence of disease pressure results in enhanced biomass and yield in winter wheat. Additionally, an accurate and frequent assessment of photosynthetic efficiency of winter wheat plants can be used to predict yield and biomass in the field.

  17. Film quantum yields of EUV and ultra-high PAG photoresists

    NASA Astrophysics Data System (ADS)

    Hassanein, Elsayed; Higgins, Craig; Naulleau, Patrick; Matyi, Richard; Gallatin, Gregg; Denbeaux, Gregory; Antohe, Alin; Thackeray, Jim; Spear, Kathleen; Szmanda, Charles; Anderson, Christopher N.; Niakoula, Dimitra; Malloy, Matthew; Khurshid, Anwar; Montgomery, Cecilia; Piscani, Emil C.; Rudack, Andrew; Byers, Jeff; Ma, Andy; Dean, Kim; Brainard, Robert

    2008-03-01

    Base titration methods are used to determine C-parameters for three industrial EUV photoresist platforms (EUV- 2D, MET-2D, XP5496) and twenty academic EUV photoresist platforms. X-ray reflectometry is used to measure the density of these resists, and leads to the determination of absorbance and film quantum yields (FQY). Ultrahigh levels of PAG show divergent mechanisms for production of photoacids beyond PAG concentrations of 0.35 moles/liter. The FQY of sulfonium PAGs level off, whereas resists prepared with iodonium PAG show FQYs that increase beyond PAG concentrations of 0.35 moles/liter, reaching record highs of 8-13 acids generated/EUV photons absorbed.

  18. Surface structures for enhancement of quantum yield in broad spectrum emission nanocrystals

    DOEpatents

    Schreuder, Michael A.; McBride, James R.; Rosenthal, Sandra J.

    2014-07-22

    Disclosed are inorganic nanoparticles comprising a body comprising cadmium and/or zinc crystallized with selenium, sulfur, and/or tellurium; a multiplicity of phosphonic acid ligands comprising at least about 20% of the total surface ligand coverage; wherein the nanocrystal is capable of absorbing energy from a first electromagnetic region and capable of emitting light in a second electromagnetic region, wherein the maximum absorbance wavelength of the first electromagnetic region is different from the maximum emission wavelength of the second electromagnetic region, thereby providing a Stokes shift of at least about 20 nm, wherein the second electromagnetic region comprises an at least about 100 nm wide band of wavelengths, and wherein the nanoparticle exhibits has a quantum yield of at least about 10%. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.

  19. Yield Enhancement of a Double-Quantum Filter Sequence Designed for the Edited Detection of GABA

    NASA Astrophysics Data System (ADS)

    Wilman, Alan H.; Allen, Peter S.

    1995-11-01

    To overcome limitations in the signal to noise ratio (S/N) of previously proposed multiple-quantum filters (MQFs), designed for editing the GABA A2multiplet from the creatine (Cr) singlet in proton spectroscopy of brain, a new double-quantum filter is proposed which significantly enhancesS/N(thereby making it comparable with the spin-echo difference editing technique) while maintaining the superior Cr suppression and zero vulnerability to subtraction errors of previously proposed MQFs. TheS/Nenhancement results primarily from a significant reduction in transverse-relaxation losses, achieved by shortening the filter sequence by ∼70%, first by altering the criterion that determines the initial evolution period and, second, by effectively eliminating the refocusing time prior to the start of acquisition. The altered evolution time criterion also leads to an increase in the intrinsic yield of the filter from 25 to 39%. The analysis of the filter design was verifiedin vitroon phantoms of GABA in D2O, and the maintenance of editing capability, i.e., Cr suppression by more than 1600, was demonstrated on rat brain extracts.

  20. Quantum yield in blue-emitting anthracene derivatives: vibronic coupling density and transition dipole moment density.

    PubMed

    Uejima, Motoyuki; Sato, Tohru; Yokoyama, Daisuke; Tanaka, Kazuyoshi; Park, Jong-Wook

    2014-07-21

    A theoretical design principle for enhancement of the quantum yield of light-emitting molecules is desired. For the establishment of the principle, we focused on the S1 states of blue-emitting anthracene derivatives: 2-methyl-9,10-di(2'-naphthyl)anthracene (MADN), 4,9,10-bis(3',5'-diphenylphenyl)anthracene (MAM), 9-(3',5'-diphenylphenyl)-10-(3'',5''-diphenylbiphenyl-4''-yl) anthracene (MAT), and 9,10-bis(3''',5'''-diphenylbiphenyl-4'-yl) anthracene (TAT) [Kim et al., J. Mater. Chem., 2008, 18, 3376]. The vibronic coupling constants and transition dipole moments were calculated and analyzed by using the concepts of vibronic coupling density (VCD) and transition dipole moment density (TDMD), respectively. It is found that the driving force of the internal conversions and vibrational relaxations originate mainly from the anthracenylene group. On the other hand, fluorescence enhancement results from the large torsional distortion of the side groups in the S1 state. The torsional distortion is caused by the diagonal vibronic coupling for the lowest-frequency mode in the Franck-Condon (FC) S1 state, which originates from a small portion of the electron density difference on the side groups. These findings lead to the following design principles for anthracene derivatives with a high quantum yield: (1) reduction in the electron density difference and overlap density between the S0 and S1 states in the anthracenylene group to suppress vibrational relaxation and radiationless transitions, respectively; (2) increase in the overlap density in the side group to enhance the fluorescence.

  1. The Determination of Quantum Yield in the Fluoresence Spectra of Porphyrins

    NASA Astrophysics Data System (ADS)

    ćati, Odeta; Kristo, Kejda; Spiro, Marenglen; Xhuvani, Emil; Babani, Fatbardha; Tafa, Dentila

    2010-01-01

    The porphyrins, natural macromolecules, and especially the glycosylated ones, are recently used in the photodynamic therapy of different kinds of tumor cells. The porphyrins are injected through intravenous way in the human body. Under appropriate radiation of tumor zone with light in UV region, oxidation processes of the porphyrins occur through different mechanizms. As a result, inside the tumor, is producing oxygen in singlet state which is lethal for the tumor cells. The spectroscopic study of the porphyrins, both the absorbtion and the fluoresence spectroscopy, reveals some properties of the porphyrins which are ralated with their eventual application in the photodynamic therapy. So, from the value of the quantum yield, which is an important quantity that derives from the measurement of fluoresence of porphyrins, one can judge, through which mechanizm, the oxidation process does occurs. This suggest how the porphyrin should be used in the therapy, as monomers or as aggregates. The porphyrins are sinthetised in the Laboratory of Chemistry of Natural Compaunds, in the University of Limoges. The spectra has been taken by means of a photospectrometer, in the University of Tirana. The fluoresence spectra of the "protected" and "unprotected" porphyrins are studied. The determination of the quantum yield has been done through the comparison of porphyrins spectra, with them of Rhodamine B, which has a large fluoresence, in the same region of spectrum where does occurr the fluoresence of porphyrins. In order to do that, the calculations of the surface under the fluoresence spectra and under the Rhodamine one, is necessary. Also, the extintion of the fluoresence of some "protected" porphyrins, in polar solution, has been detected. These extintion of fluoresence has to do with the formation of agregates, of dimers, which can be confirmed from the absorbtion spectra.

  2. Quantum yield variation across the three pathways of photosynthesis: not yet out of the dark.

    PubMed

    Skillman, John B

    2008-01-01

    The convergent quantum yield hypothesis (CQY) assumes that thermodynamics and natural selection jointly limit variation in the maximum energetic efficiency of photosynthesis in low light under otherwise specified conditions (e.g. temperature and CO(2) concentration). A literature survey of photosynthetic quantum yield (phi) studies in terrestrial plants from C(3), C(4), and CAM photosynthetic types was conducted to test the CQY hypothesis. Broad variation in phi values from C(3) plants could partially be explained by accounting for whether the measuring conditions were permissive or restrictive for photorespiration. Assimilatory quotients (AQ), calculated from the CO(2) phi:O(2) phi ratios, indicated that 49% and 29% of absorbed light energy was allocated to carbon fixation and photorespiration in C(3) plants, respectively. The unexplained remainder (22%) may represent diversion to various other energy-demanding processes (e.g. starch synthesis, nitrogen assimilation). Individual and cumulative effects of these other processes on photosynthetic efficiency are poorly quantified. In C(4) plants, little variation in phi values was observed, consistent with the fact that C(4) plants exhibit little photorespiration. As before, AQ values indicate that 22% of absorbed light energy cannot be accounted for by carbon fixation in C(4) plants. Among all three photosynthetic types, the phi of photosynthesis in CAM plants is the least studied, appears to be highly variable, and may present the greatest challenge to the CQY hypothesis. The high amount of energy diverted to processes other than carbon fixation in C(3) and C(4) plants and the poor characterization of photosynthetic efficiency in CAM plants are significant deficiencies in our otherwise robust understanding of the energetics of terrestrial photoautotrophy.

  3. Quantum yields for the photolysis of glyoxal below 350 nm and parameterisations for its photolysis rate in the troposphere.

    PubMed

    Salter, Robert J; Blitz, Mark A; Heard, Dwayne E; Kovács, Tamás; Pilling, Michael J; Rickard, Andrew R; Seakins, Paul W

    2013-04-14

    The formation of HCO and of H in the photolysis of glyoxal have been investigated over the wavelength ranges 310-335 nm for HCO and 193-340 nm for H. Dye laser photolysis was coupled with cavity ring-down spectroscopy for HCO, and with laser induced fluorescence spectroscopy for H. Absolute quantum yields were determined using actinometers based on (a) Cl2 photolysis and the Cl + HCHO reaction for HCO and (b) N2O photolysis (and O(1)D + H2) and CH2CO photolysis (and CH2 + O2) for H. The quantum yields were found to be pressure independent in this wavelength region. Quantum yields for all product channels under atmospheric conditions were calculated and compared with literature values. Differences between this work and previously published work and their atmospheric implications are discussed.

  4. Quantum yield measurements of light-induced H₂ generation in a photosystem I-[FeFe]-H₂ase nanoconstruct.

    PubMed

    Applegate, Amanda M; Lubner, Carolyn E; Knörzer, Philipp; Happe, Thomas; Golbeck, John H

    2016-01-01

    The quantum yield for light-induced H2 generation was measured for a previously optimized bio-hybrid cytochrome c 6-crosslinked PSI(C13G)-1,8-octanedithiol-[FeFe]-H2ase(C97G) (PSI-H2ase) nanoconstruct. The theoretical quantum yield for the PSI-H2ase nanoconstruct is 0.50 molecules of H2 per photon absorbed, which equates to a requirement of two photons per H2 generated. Illumination of the PSI-H2ase nanoconstruct with visible light between 400 and 700 nm resulted in an average quantum yield of 0.10-0.15 molecules of H2 per photon absorbed, which equates to a requirement of 6.7-10 photons per H2 generated. A possible reason for the difference between the theoretical and experimental quantum yield is the occurrence of non-productive PSI(C13G)-1,8-octanedithiol-PSIC13G (PSI-PSI) conjugates, which would absorb light without generating H2. Assuming the thiol-Fe coupling is equally efficient at producing PSI-PSI conjugates as well as in producing PSI-H2ase nanoconstructs, the theoretical quantum yield would decrease to 0.167 molecules of H2 per photon absorbed, which equates to 6 photons per H2 generated. This value is close to the range of measured values in the current study. A strategy that purifies the PSI-H2ase nanoconstructs from the unproductive PSI-PSI conjugates or that incorporates different chemistries on the PSI and [FeFe]-H2ase enzyme sites could potentially allow the PSI-H2ase nanoconstruct to approach the expected theoretical quantum yield for light-induced H2 generation.

  5. The effect of varying short-chain alkyl substitution on the molar absorptivity and quantum yield of cyanine dyes.

    PubMed

    Chapman, Gala; Henary, Maged; Patonay, Gabor

    2011-01-01

    The effect of varying short-chain alkyl substitution of the indole nitrogens on the spectroscopic properties of cyanine dyes was examined. Molar absorptivities and fluorescence quantum yields were determined for a set of pentamethine dyes and a set of heptamethine dyes for which the substitution of the indole nitrogen was varied. For both sets of dyes, increasing alkyl chain length resulted in no significant change in quantum yield or molar absorptivity. These results may be useful in designing new cyanine dyes for analytical applications and predicting their spectroscopic properties.

  6. Secondary Electron Yield and Groove Chamber Tests in PEP-II

    SciTech Connect

    Le Pimpec, F.; Kirby, R.E.; Markiewicz, Thomas W.; Pivi, MTF; Raubenheimer, Tor O.; Seeman, J.; Wang, L.; /SLAC

    2007-11-06

    Possible remedies for the electron cloud in positron damping ring (DR) of the International Linear Collider (ILC) includes thin-film coatings, surface conditioning, photon antechamber, clearing electrodes and chamber with grooves or slots [1]. We installed chambers in the PEP-II Low Energy Ring (LER) to monitor the secondary electron yield (SEY) of TiN, TiZrV (NEG) and technical accelerator materials under the effect of electron and photon conditioning in situ. We have also installed chambers with rectangular grooves in straight sections to test this possible mitigation technique. In this paper, we describe the ILC R&D ongoing effort at SLAC to reduce the electron cloud effect in the damping ring, the chambers installation in the PEP-II and latest results.

  7. Ultraviolet photolysis of HCHO: absolute HCO quantum yields by direct detection of the HCO radical photoproduct.

    PubMed

    Carbajo, Paula Gorrotxategi; Smith, Shona C; Holloway, Anne-Louise; Smith, Carina A; Pope, Francis D; Shallcross, Dudley E; Orr-Ewing, Andrew J

    2008-12-04

    Absolute quantum yields for the radical (H + HCO) channel of HCHO photolysis, Phi(HCO), have been measured for the tropospherically relevant range of wavelengths (lambda) between 300 and 330 nm. The HCO photoproduct was directly detected by using a custom-built, combined ultra-violet (UV) absorption and cavity ring down (CRD) detection spectrometer. This instrument was previously employed for high-resolution (spectral resolution approximately 0.0035 nm) measurements of absorption cross-sections of HCHO, sigma(HCHO)(lambda), and relative HCO quantum yields. Absolute Phi(HCO) values were measured at seven wavelengths, lambda = 303.70, 305.13, 308.87, 314.31, 320.67, 325.59, and 329.51 nm, using an independent calibration technique based on the simultaneous UV photolysis of HCHO and Cl(2). These Phi(HCO) measurements display greater variability as a function of wavelength than the current NASA-JPL recommendations for Phi(HCO). The absolute Phi(HCO)(lambda) determinations and previously measured sigma(HCHO)(lambda) were used to scale an extensive set of relative HCO yield measurements. The outcome of this procedure is a full suite of data for the product of the absolute radical quantum yield and HCHO absorption cross-section, Phi(HCO)(lambda)sigma(HCHO)(lambda), at wavelengths from 302.6 to 331.0 nm with a wavelength resolution of 0.005 nm. This product of photochemical parameters is combined with high-resolution solar photon flux data to calculate the integrated photolysis rate of HCHO to the radical (H + HCO) channel, J(HCO). Comparison with the latest NASA-JPL recommendations, reported at 1 nm wavelength resolution, suggests an increased J(HCO) of 25% at 0 degrees solar zenith angle (SZA) increasing to 33% at high SZA (80 degrees). The differences in the calculated photolysis rate compared with the current HCHO data arise, in part, from the higher wavelength resolution of the current data set and highlight the importance of using high-resolution spectroscopic

  8. Final Report on X-ray Yields from OMEGA II Targets

    SciTech Connect

    Fournier, K B; May, M J; MacLaren, S A; Coverdale, C A; Davis, J F

    2007-06-20

    We present details about X-ray yields measured with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) diagnostics in soft and moderately hard X-ray bands from laser-driven, doped-aerogel targets shot on 07/14/06 during the OMEGA II test series. Yields accurate to {+-}25% in the 5-15 keV band are measured with Livermore's HENWAY spectrometer. Yields in the sub-keV to 3.2 keV band are measured with LLNL's DANTE diagnostic, the DANTE yields are accurate to 10-15%. SNL ran a PCD-based diagnostic that also measured X-ray yields in the spectral region above 4 keV, and also down to the sub-keV range. The PCD and HENWAY and DANTE numbers are compared. The time histories of the moderately hard (h{nu} > 4 keV) X-ray signals are measured with LLNL's H11 PCD, and from two SNL PCDs with comparable filtration. There is general agreement between the H11 PCD and SNL PCD measured FWHM except for two of the shorter-laser-pulse shots, which is shown not to be due to analysis techniques. The recommended X-ray waveform is that from the SNL PCD p66k10, which was recorded on a fast, high-bandwidth TDS 6804 oscilloscope. X-ray waveforms from target emission in two softer spectral bands are also shown; the X-ray emissions have increasing duration as the spectral content gets softer.

  9. Magnetization studies of II-VI semiconductor columnar quantum dots with type-II band alignment

    NASA Astrophysics Data System (ADS)

    Eginligil, M.; Sellers, I. R.; McCombe, B. D.; Chou, W.-C.; Kuskovsky, I. L.

    2009-03-01

    We report SQUID magnetization measurements of MBE-grown type-II, II-VI semiconductor quantum dot (QD) samples, with and without Mn incorporation. In all samples, the easy axis is out-of-plane, possibly due to columnar QD formation that arises from strain interaction between adjacent thin dot-containing layers. In addition, both types of QDs display a non-zero spontaneous magnetic ordering at 300 K. One set of samples consists of five-layers of (Zn,Mn)Te/ZnSe with a nominal (Zn,Mn)Te thickness of 3 nm, and ZnSe spacer thickness of 5 nm and 20 nm. These magnetic QD samples show magnetization vs. temperature behavior that can be interpreted in terms of two independent FM phases characterized by transition temperatures TC1 < TC2. A sample containing no Mn consists of 130 ZnTe/ZnSe layers, which forms Zn(Se,Te) QD layers separated by ZnSe spacers. Evidence of ferromagnetism is also seen in this structure, but the spontaneous magnetization is much weaker. For this sample only one phase is seen with TC above 300 K. Results will be discussed in terms of magneto-polaronic effects and defect-level induced ferromagnetism.

  10. ABSORBANCE, ABSORPTION COEFFICIENT, AND APPARENT QUANTUM YIELD: A COMMENT ON AMBIGUITY IN THE USE OF THESE OPTICAL CONCEPTS

    EPA Science Inventory

    Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...

  11. Modeling of the redox state dynamics in photosystem II of Chlorella pyrenoidosa Chick cells and leaves of spinach and Arabidopsis thaliana from single flash-induced fluorescence quantum yield changes on the 100 ns-10 s time scale.

    PubMed

    Belyaeva, N E; Schmitt, F-J; Paschenko, V Z; Riznichenko, G Yu; Rubin, A B

    2015-08-01

    The time courses of the photosystem II (PSII) redox states were analyzed with a model scheme supposing a fraction of 11-25 % semiquinone (with reduced [Formula: see text]) RCs in the dark. Patterns of single flash-induced transient fluorescence yield (SFITFY) measured for leaves (spinach and Arabidopsis (A.) thaliana) and the thermophilic alga Chlorella (C.) pyrenoidosa Chick (Steffen et al. Biochemistry 44:3123-3132, 2005; Belyaeva et al. Photosynth Res 98:105-119, 2008, Plant Physiol Biochem 77:49-59, 2014) were fitted with the PSII model. The simulations show that at high-light conditions the flash generated triplet carotenoid (3)Car(t) population is the main NPQ regulator decaying in the time interval of 6-8 μs. So the SFITFY increase up to the maximum level [Formula: see text]/F 0 (at ~50 μs) depends mainly on the flash energy. Transient electron redistributions on the RC redox cofactors were displayed to explain the SFITFY measured by weak light pulses during the PSII relaxation by electron transfer (ET) steps and coupled proton transfer on both the donor and the acceptor side of the PSII. The contribution of non-radiative charge recombination was taken into account. Analytical expressions for the laser flash, the (3)Car(t) decay and the work of the water-oxidizing complex (WOC) were used to improve the modeled P680(+) reduction by YZ in the state S 1 of the WOC. All parameter values were compared between spinach, A. thaliana leaves and C. pyrenoidosa alga cells and at different laser flash energies. ET from [Formula: see text] slower in alga as compared to leaf samples was elucidated by the dynamics of [Formula: see text] fractions to fit SFITFY data. Low membrane energization after the 10 ns single turnover flash was modeled: the ∆Ψ(t) amplitude (20 mV) is found to be about 5-fold smaller than under the continuous light induction; the time-independent lumen pHL, stroma pHS are fitted close to dark estimates. Depending on the flash energy used at 1

  12. Thiolated DAB dendrimers and CdSe quantum dots nanocomposites for Cd(II) or Pb(II) sensing.

    PubMed

    Algarra, M; Campos, B B; Alonso, B; Miranda, M S; Martínez, A M; Casado, C M; Esteves da Silva, J C G

    2012-01-15

    Four different generation of thiol-DAB dendrimers were synthesized, S-DAB-G(x) (x=1, 2, 3 and 5), and coupled with CdSe quantum dots, to obtain fluorescent nanocomposites as metal ions sensing. Cd(II) and Pb(II) showed the higher enhancement and quenching effects respectively towards the fluorescence of S-DAB-G(5)-CdSe nanocomposite. The fluorescence enhancement provoked by Cd(II) can be linearized using a Henderson-Hasselbalch type equation and the quenching provoked by Pb(II) can be linearized by a Stern-Volmer equation. The sensor responds to Cd(II) ion in the 0.05-0.7μM concentration range and to Pb(II) ion in the 0.01-0.15mM concentration range with a LOD of 0.06mM. The sensor has selectivity limitations but its dendrimer configuration has analytical advantages.

  13. Effects of inter-nanocrystal distance on luminescence quantum yield in ensembles of Si nanocrystals

    SciTech Connect

    Valenta, J. Greben, M.; Gutsch, S.; Hiller, D.; Zacharias, M.

    2014-12-15

    The absolute photoluminescence (PL) quantum yield (QY) of multilayers of Silicon nanocrystals (SiNCs) separated by SiO{sub 2} barriers were thoroughly studied as function of the barrier thickness, excitation wavelength, and temperature. By mastering the plasma-enhanced chemical vapor deposition growth, we produce a series of samples with the same size-distribution of SiNCs but variable interlayer barrier distance. These samples enable us to clearly demonstrate that the increase of barrier thickness from ∼1 to larger than 2 nm induces doubling of the PL QY value, which corresponds to the change of number of close neighbors in the hcp structure. The temperature dependence of PL QY suggests that the PL QY changes are due to a thermally activated transport of excitation into non-radiative centers in dark NCs or in the matrix. We estimate that dark NCs represent about 68% of the ensemble of NCs. The PL QY excitation spectra show no significant changes upon changing the barrier thickness and no clear carrier multiplication effects. The dominant effect is the gradual decrease of the PL QY with increasing excitation photon energy.

  14. White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis

    PubMed Central

    Meiling, Till T.; Cywiński, Piotr J.; Bald, Ilko

    2016-01-01

    In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. PMID:27334409

  15. Determination of Dacarbazine Φ-Order Photokinetics, Quantum Yields, and Potential for Actinometry.

    PubMed

    Maafi, Mounir; Lee, Lok-Yan

    2015-10-01

    The characterization of drugs' photodegradation kinetics is more accurately achieved by means of the recently developed Φ-order kinetics than by the zero-, first-, and/or second-order classical treatments. The photodegradation of anti-cancer dacarbazine (DBZ) in ethanol has been investigated and found to obey Φ-order kinetics when subjected to continuous and monochromatic irradiation of various wavelengths. Its photochemical efficiency was proven to be wavelength dependent in the 220-350 nm range, undergoing a 50-fold increase. Albeit this variation was well defined by a sigmoid pattern, the overall photoreactivity of DBZ was proven to depend also on the contributions of reactants and experimental attributes. The usefulness of DBZ to serve as a drug-actinometer has been investigated using the mathematical framework of Φ-order kinetics. It has been shown that DBZ in ethanol can represent a good candidate for reliable actinometry in the range 270-350 nm. A detailed and easy-to-implement procedure has been proposed for DBZ actinometry. This procedure could advantageously be implemented prior to the determination of the photodegradation quantum yields. This approach might be found useful for the development of many drug actinometers as alternatives to quinine hydrochloride.

  16. Integrated semiconductor quantum dot scintillation detector: Ultimate limit for speed and light yield

    SciTech Connect

    Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim; Murat, Pavel

    2016-03-30

    Here, a picosecond-range timing of charged particles and photons is a long-standing challenge for many high-energy physics, biophysics, medical and security applications. We present a design, technological pathway and challenges, and some properties important for realization of an ultrafast high-efficient room-temperature semiconductor scintillator based on self-assembled InAs quantum dots (QD) embedded in a GaAs matrix. Low QD density (<; 1015 cm-3), fast (~5 ps) electron capture, luminescence peak redshifted by 0.2-0.3 eV from GaAs absorption edge with fast decay time (0.5-1 ns) along with the efficient energy transfer in the GaAs matrix (4.2 eV/pair) allows for fabrication of a semiconductor scintillator with the unsurpassed performance parameters. The major technological challenge is fabrication of a large volume (> 1 cm3 ) of epitaxial QD medium. This requires multiple film separation and bonding, likely using separate epitaxial films as waveguides for improved light coupling. Compared to traditional inorganic scintillators, the semiconductor-QD based scintillators could have about 5x higher light yield and 20x faster decay time, opening a way to gamma detectors with the energy resolution better than 1% and sustaining counting rates MHz. Picosecond-scale timing requires segmented low-capacitance photodiodes integrated with the scintillator. For photons, the proposed detector inherently provides the depth-of-interaction information.

  17. Integrated semiconductor quantum dot scintillation detector: Ultimate limit for speed and light yield

    DOE PAGES

    Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim; ...

    2016-03-30

    Here, a picosecond-range timing of charged particles and photons is a long-standing challenge for many high-energy physics, biophysics, medical and security applications. We present a design, technological pathway and challenges, and some properties important for realization of an ultrafast high-efficient room-temperature semiconductor scintillator based on self-assembled InAs quantum dots (QD) embedded in a GaAs matrix. Low QD density (<; 1015 cm-3), fast (~5 ps) electron capture, luminescence peak redshifted by 0.2-0.3 eV from GaAs absorption edge with fast decay time (0.5-1 ns) along with the efficient energy transfer in the GaAs matrix (4.2 eV/pair) allows for fabrication of a semiconductormore » scintillator with the unsurpassed performance parameters. The major technological challenge is fabrication of a large volume (> 1 cm3 ) of epitaxial QD medium. This requires multiple film separation and bonding, likely using separate epitaxial films as waveguides for improved light coupling. Compared to traditional inorganic scintillators, the semiconductor-QD based scintillators could have about 5x higher light yield and 20x faster decay time, opening a way to gamma detectors with the energy resolution better than 1% and sustaining counting rates MHz. Picosecond-scale timing requires segmented low-capacitance photodiodes integrated with the scintillator. For photons, the proposed detector inherently provides the depth-of-interaction information.« less

  18. Quantum Yields and Rate Constants of Photochemical and Nonphotochemical Excitation Quenching (Experiment and Model).

    PubMed Central

    Laisk, A.; Oja, V.; Rasulov, B.; Eichelmann, H.; Sumberg, A.

    1997-01-01

    Sunflower (Helianthus annuus L.), cotton (Gossypium hirsutum L.), tobacco (Nicotiana tabacum L.), sorghum (Sorghum bicolor Moench.), amaranth (Amaranthus cruentus L.), and cytochrome b6f complex-deficient transgenic tobacco leaves were used to test the response of plants exposed to differnt light intensities and CO2 concentrations before and after photoinhibition at 4000 [mu]mol photons m-2 s-1 and to thermoinhibition up to 45[deg]C. Quantum yields of photochemical and nonphotochemical excitation quenching (YP and YN) and the corresponding relative rate constants for excitation capture from the antenna-primary radical pair equilibrium system (k[prime]P and k[prime]N) were calculated from measured fluorescence parameters. The above treatments resulted in decreases in YP and K[prime]P and in approximately complementary increases in YN and K[prime]N under normal and inhibitory conditions. The results were reproduced by a mathematical model of electron/proton transport and O2 evolution/CO2 assimilation in photosynthesis based on budget equations for the intermediates of photosynthesis. Quantitative differences between model predictions and experiments are explainable, assuming that electron transport is organized into domains that contain relatively complete electron and proton transport chains (e.g. thylakoids). With the complementation that occurs between the photochemical and nonphotochemical excitation quenching, the regulatory system can constantly maintain the shortest lifetime of excitation necessary to avoid the formation of chlorophyll triplet states and singlet oxygen. PMID:12223845

  19. White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis

    NASA Astrophysics Data System (ADS)

    Meiling, Till T.; Cywiński, Piotr J.; Bald, Ilko

    2016-06-01

    In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst.

  20. White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis.

    PubMed

    Meiling, Till T; Cywiński, Piotr J; Bald, Ilko

    2016-06-23

    In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst.

  1. Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents.

    PubMed

    Würth, C; Kaiser, M; Wilhelm, S; Grauel, B; Hirsch, T; Resch-Genger, U

    2017-03-23

    The rational design of brighter upconversion nanoparticles (UCNPs) requires a better understanding of the radiationless deactivation pathways in these materials. Here, we demonstrate the potential of excitation power density (P)-dependent studies of upconversion (UC) luminescence intensities, slope factors, and absolute quantum yields (ΦUC) of popular β-NaYF4:20% Yb(3+),2% Er(3+) UCNPs of different surface chemistries in organic solvents, D2O, and water as a tool to gain deeper insight into the UC mechanism including population and deactivation pathways particularly of the red emission. Our measurements, covering a P regime of three orders of magnitude, reveal a strong difference of the P-dependence of the ratio of the green and red luminescence bands (Ig/r) in water and organic solvents and P-dependent population pathways of the different emissive energy levels of Er(3+). In summary, we provide experimental evidence for three photon processes in UCNPs, particularly for the red emission. Moreover, we demonstrate changes in the excited population dynamics via bi- and triphotonic processes dependent on the environment, surface chemistry, and P, and validate our findings theoretically.

  2. CDOM Sources and Photobleaching Control Quantum Yields for Oceanic DMS Photolysis.

    PubMed

    Galí, Martí; Kieber, David J; Romera-Castillo, Cristina; Kinsey, Joanna D; Devred, Emmanuel; Pérez, Gonzalo L; Westby, George R; Marrasé, Cèlia; Babin, Marcel; Levasseur, Maurice; Duarte, Carlos M; Agustí, Susana; Simó, Rafel

    2016-12-20

    Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength. The smallest AQY(330) were observed in coastal waters receiving major riverine inputs of terrestrial CDOM (0.06-0.5 m(3) (mol quanta)(-1)). In open-ocean waters, AQY(330) generally ranged between 1 and 10 m(3) (mol quanta)(-1). The largest AQY(330), up to 34 m(3) (mol quanta)(-1)), were seen in the Southern Ocean potentially associated with upwelling. Despite the large AQY variability, daily photolysis rate constants at the sea surface spanned a smaller range (0.04-3.7 d(-1)), mainly because of the inverse relationship between CDOM absorption and AQY. Comparison of AQY(330) with CDOM spectral signatures suggests there is an interplay between CDOM origin (terrestrial versus marine) and photobleaching that controls variations in AQYs, with a secondary role for nitrate. Our results can be used for regional or large-scale assessment of DMS photolysis rates in future studies.

  3. Type II GaSb quantum ring solar cells under concentrated sunlight.

    PubMed

    Tsai, Che-Pin; Hsu, Shun-Chieh; Lin, Shih-Yen; Chang, Ching-Wen; Tu, Li-Wei; Chen, Kun-Cheng; Lay, Tsong-Sheng; Lin, Chien-Chung

    2014-03-10

    A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.

  4. Quantum chaos in the nuclear collective model. II. Peres lattices.

    PubMed

    Stránský, Pavel; Hruska, Petr; Cejnar, Pavel

    2009-06-01

    This is a continuation of our paper [Phys. Rev. E 79, 046202 (2009)] devoted to signatures of quantum chaos in the geometric collective model of atomic nuclei. We apply the method by Peres to study ordered and disordered patterns in quantum spectra drawn as lattices in the plane of energy vs average of a chosen observable. Good qualitative agreement with standard measures of chaos is manifested. The method provides an efficient tool for studying structural changes in eigenstates across quantum spectra of general systems.

  5. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield.

    PubMed

    Purchase, R L; de Groot, H J M

    2015-06-06

    This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m(-2) d(-1) for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum-classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics. We

  6. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  7. Synthesis, Spectroscopic, Structural and Quantum Chemical Studies of a New Imine Oxime and Its Palladium(II) Complex: Hydrolysis Mechanism.

    PubMed

    Kaya, Yunus; Yilmaz, Veysel T; Buyukgungor, Orhan

    2016-01-21

    In this work, we report synthesis, crystallographic, spectroscopic and quantum chemical studies of a new imine oxime, namely (4-nitro-phenyl)-(1-phenyl-ethylimino)-acetaldehyde oxime (nppeieoH). Spectroscopic and X-ray diffraction studies showed that nppeieoH is hydrolyzed in aqueous solution, forming nitroisonitrosoacetophenone (ninap) and the hydrolysis product binds to Pd(II) to yield [Pd(nppeieo)(ninap)]. The mechanism of the hydrolysis reaction has been theoretically investigated in detail, using density functional theory (DFT) with the B3LYP method. The vibrational and the electronic spectra of nppeieoH and its Pd(II) complex, the HOMO and LUMO analysis, Mulliken atomic charges and molecular electrostatic potential were also performed. The predicted nonlinear optical properties of both compounds are higher than those of urea.

  8. Spectroscopy of highly luminescent 1,3,5-triazapentadiene complexes of platinum(II) in solution and in the adsorbed and solid states and quantum-chemical interpretation

    NASA Astrophysics Data System (ADS)

    Lyalin, G. N.; Litke, S. V.; Gushchin, P. V.; Maslov, V. G.

    2012-02-01

    We have measured the absorption, luminescence, and luminescence excitation spectra, as well as the excited-state lifetimes and luminescence quantum yields, of 1,3,5-triazapentadiene complexes of platinum(II) in a solution, in the solid state, in an adsorbed state on a SiO2 surface, and in a polystyrene matrix at room temperature and at 77 K. We also have performed quantum-chemical calculations of the equilibrium geometry of the ground and excited states of the complexes and of the nature and structure of molecular orbitals.

  9. Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions

    PubMed Central

    Allen, Peter M.; Liu, Wenhao; Zhao, Jing; Young, Elizabeth R.; Popović, Zoran; Walker, Brian

    2014-01-01

    We report single-particle photoluminescence (PL) intermittency (blinking) with high on-time fractions in colloidal CdSe quantum dots (QD) with conformal CdS shells of 1.4 nm thickness, equivalent to approximately 4 CdS monolayers. All QDs observed displayed on-time fractions > 60% with the majority > 80%. The high-on-time-fraction blinking is accompanied by fluorescence quantum yields (QY) close to unity (up to 98% in an absolute QY measurement) when dispersed in organic solvents and a monoexponential ensemble photoluminescence (PL) decay lifetime. The CdS shell is formed in high synthetic yield using a modified selective ion layer adsorption and reaction (SILAR) technique that employs a silylated sulfur precursor. The CdS shell provides sufficient chemical and electronic passivation of the QD excited state to permit water solubilization with greater than 60% QY via ligand exchange with an imidazole-bearing hydrophilic polymer. PMID:24932403

  10. Prediction of potential mushroom yield by visible and near-infrared spectroscopy using fresh phase II compost.

    PubMed

    Sharma, H S S; Kilpatrick, M; Lyons, G

    2005-08-01

    Potential mushroom (Agaricus bisporus) yield of phase II compost is determined by interactions of key quality parameters including dry matter, nitrogen dry matter, ammonia, pH, conductivity, thermophilic microorganisms, C : N ratio, fiber fractions, ash, and certain minerals. This study was aimed at generating robust visible and near-infrared (Vis-NIR) calibrations for predicting potential yield, using spectra from fresh phase II compost. Four compost comparative trials were carried out during the winter and summer months of 2001-2003, under controlled experimental conditions employing six commercially prepared composts, with eight replicate (8 bag) plots per treatment (48 x 8 = 384). The substrates were prepared by windrow or bunker phase I, followed by phase II production. The fresh samples were scanned for Vis-NIR (400-2498 nm) spectra, averaged, transformed, and regressed against the recorded yield by employing a modified partial least squares algorithm. The best calibration model generated from the database explained 84% of yield variation within the data set with a standard error of calibration of 13.75 kg/tonne of fresh compost. The model was successfully tested for robustness with yield results obtained from a validation trial, carried out under similar experimental conditions in early 2004, and the standard error of prediction was 18.21 kg/tonne, which was slightly higher than the mean experimental error (17.94 kg/tonne) of the trial. The accuracy of the model is acceptable for estimating potential yield by classifying phase II substrate as poor (180-220 kg), medium (220-260 kg), and high (260-300 kg) yielding compost. The yield prediction model is being transferred to a new instrument based at Loughgall for routine evaluation of commercial phase II samples.

  11. Quantum-orbit analysis for yield and ellipticity of high order harmonic generation with elliptically polarized laser field.

    PubMed

    Li, Yang; Zhu, Xiaosong; Zhang, Qingbin; Qin, Meiyan; Lu, Peixiang

    2013-02-25

    We perform a quantum-orbit analysis for the dependence of high-order-harmonic yield on the driving field ellipticity and the polarization properties of the generated high harmonics. The electron trajectories responsible for the emission of particular harmonics are identified. It is found that, in elliptically polarized driving field, the electrons have ellipticity-dependent initial velocities, which lead to the decrease of the ionization rate. Thus the harmonic yield steeply decreases with laser ellipticity. Besides, we show that the polarization properties of the harmonics are related to the complex momenta of the electron. The physical origin of the harmonic ellipticity is interpreted as the consequence of quantum-mechanical uncertainty of the electron momentum. Our results are verified with the experimental results as well as the numerical solutions of the time dependent Schrödinger equation from the literature.

  12. Rigidifying Fluorescent Linkers by Metal-Organic Framework Formation for Fluorescence Blue Shift and Quantum Yield Enhancement

    SciTech Connect

    Wei, ZW; Gu, ZY; Arvapally, RK; Chen, YP; McDougald, RN; Ivy, JF; Yakovenko, AA; Feng, DW; Omary, MA; Zhou, HC

    2014-06-11

    We demonstrate that rigidifying the structure of fluorescent linkers by structurally constraining them in metal-organic frameworks (MOFs) to control their conformation effectively tunes the fluorescence energy and enhances the quantum yield. Thus, a new tetraphenylethylene-based zirconium MOF exhibits a deep-blue fluorescent emission at 470 nm with a unity quantum yield (99.9 +/- 0.5%) under Ar, representing ca. 3600 cm(-1) blue shift and doubled radiative decay efficiency vs the linker precursor. An anomalous increase in the fluorescence lifetime and relative intensity takes place upon heating the solid MOF from cryogenic to ambient temperatures. The origin of these unusual photoluminescence properties is attributed to twisted linker conformation, intramolecular hindrance, and framework rigidity.

  13. Rigidifying Fluorescent Linkers by Metal–Organic Framework Formation for Fluorescence Blue Shift and Quantum Yield Enhancement

    SciTech Connect

    Wei, Zhangwen; Gu, Zhi-Yuan; Arvapally, Ravi K.; Chen, Ying-Pin; Ivy, Joshua F.; Yakovenko, Andrey A.; Feng, Dawei; Omary, Mohammad A.; Zhou, Hong-Cai

    2014-06-11

    We demonstrate that rigidifying the structure of fluorescent linkers by structurally constraining them in metal–organic frameworks (MOFs) to control their conformation effectively tunes the fluorescence energy and enhances the quantum yield. Thus, a new tetraphenylethylene-based zirconium MOF exhibits a deep-blue fluorescent emission at 470 nm with a unity quantum yield (99.9 ± 0.5%) under Ar, representing ca. 3600 cm⁻¹ blue shift and doubled radiative decay efficiency vs the linker precursor. An anomalous increase in the fluorescence lifetime and relative intensity takes place upon heating the solid MOF from cryogenic to ambient temperatures. The origin of these unusual photoluminescence properties is attributed to twisted linker conformation, intramolecular hindrance, and framework rigidity.

  14. Laser flash photolysis of ozone - O/1D/ quantum yields in the fall-off region 297-325 nm

    NASA Technical Reports Server (NTRS)

    Brock, J. C.; Watson, R. T.

    1980-01-01

    The wavelength dependence of the quantum yield for O(1D) production from ozone photolysis has been determined between 297.5 nm and 325 nm in order to resolve serious discrepancies among previous studies. The results of this investigation are compared to earlier work by calculating atmospheric production rate constants for O(1D). It is found that for the purpose of calculating this rate constant, there is now good agreement among three studies at 298 K. Furthermore, it appears that previous data on the temperature dependence of the O(1D) quantum yield fall-off is adequate for determining the vertical profile of the O(1D) production rate constant. Several experimental difficulties associated with using NO2(asterisk) chemiluminescence to monitor O(1D) have been identified.

  15. Calculated quantum yield of photosynthesis of phytoplankton in the Marine Light-Mixed Layers (59 deg N, 21 deg W)

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Lee, Z. P.; Marra, John; Steward, R. G.; Perry, M. J.

    1995-01-01

    The quantum yield of photosynthesis (mol C/mol photons) was calculated at six depths for the waters of the Marine Light-Mixed Layer (MLML) cruise of May 1991. As there were photosynthetically available radiation (PAR) but no spectral irradiance measurements for the primary production incubations, three ways are presented here for the calculation of the absorbed photons (AP) by phytoplankton for the purpose of calculating phi. The first is based on a simple, nonspectral model; the second is based on a nonlinear regression using measured PAR values with depth; and the third is derived through remote sensing measurements. We show that the results of phi calculated using the nonlinear regreesion method and those using remote sensing are in good agreement with each other, and are consistent with the reported values of other studies. In deep waters, however, the simple nonspectral model may cause quantum yield values much higher than theoretically possible.

  16. Challenge to the Charging Model of Semiconductor-Nanocrystal Fluorescence Intermittency from Off-State Quantum Yields and Multiexciton Blinking

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Nair, Gautham; Fisher, Brent R.; Bawendi, Moungi G.

    2010-04-01

    Semiconductor nanocrystals emit light intermittently; i.e., they “blink,” under steady illumination. The dark periods have been widely assumed to be due to photoluminescence (PL) quenching by an Auger-like process involving a single additional charge present in the nanocrystal. Our results challenge this long-standing assumption. Close examination of exciton PL intensity time traces of single CdSe(CdZnS) core(shell) nanocrystals reveals that the dark state PL quantum yield can be 10 times less than the biexciton PL quantum yield. In addition, we observe spectrally resolved multiexciton emission and find that it also blinks with an on/off ratio greater than 10∶1. These results directly contradict the predictions of the charging model.

  17. Challenge to the Charging Model of Semiconductor-Nanocrystal Fluorescence Intermittency from Off-State Quantum Yields and Multiexciton Blinking

    PubMed Central

    Zhao, Jing; Nair, Gautham; Fisher, Brent R.; Bawendi, Moungi G.

    2012-01-01

    Semiconductor nanocrystals emit light intermittently; i.e., they “blink,” under steady illumination. The dark periods have been widely assumed to be due to photoluminescence (PL) quenching by an Auger-like process involving a single additional charge present in the nanocrystal. Our results challenge this long-standing assumption. Close examination of exciton PL intensity time traces of single CdSe(CdZnS) core (shell) nanocrystals reveals that the dark state PL quantum yield can be 10 times less than the biexciton PL quantum yield. In addition, we observe spectrally resolved multiexciton emission and find that it also blinks with an on/off ratio greater than 10:1. These results directly contradict the predictions of the charging model. PMID:20482016

  18. Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking.

    PubMed

    Zhao, Jing; Nair, Gautham; Fisher, Brent R; Bawendi, Moungi G

    2010-04-16

    Semiconductor nanocrystals emit light intermittently; i.e., they "blink," under steady illumination. The dark periods have been widely assumed to be due to photoluminescence (PL) quenching by an Auger-like process involving a single additional charge present in the nanocrystal. Our results challenge this long-standing assumption. Close examination of exciton PL intensity time traces of single CdSe(CdZnS) core(shell) nanocrystals reveals that the dark state PL quantum yield can be 10 times less than the biexciton PL quantum yield. In addition, we observe spectrally resolved multiexciton emission and find that it also blinks with an on/off ratio greater than 10:1. These results directly contradict the predictions of the charging model.

  19. Quantum yields for OH production from 193 and 248 nm photolysis of HNO3 and H2O2

    NASA Astrophysics Data System (ADS)

    Schiffman, A.; Nelson, D. D., Jr.; Nesbitt, D. J.

    1993-05-01

    Flash kinetic spectroscopy in a flow tube is used to measure at room temperature the absolute yields for OH production from 193 and 248 nm photolysis of HNO3 and H2O2. The OH radicals are produced by excimer laser photolysis and probed via direct absorption of high resolution tunable IR laser light. The results indicate quantum yields for both precursors at both wavelengths which are less than the maximum possible values of 1 for H2O2. The present measurements are discussed in light of contrasting results suggested from other work.

  20. Quantum yield of chlorine-atom formation in the photodissociation of chlorine peroxide (ClOOCl) at 308 nm

    NASA Technical Reports Server (NTRS)

    Molina, M. J.; Colussi, A. J.; Molina, L. T.; Schindler, R. N.; Tso, T.-L.

    1990-01-01

    The production of Cl atoms in the laser flash photolysis of ClOOCl at 308 nm has been investigated by time-resolved atomic resonance fluorescence at 235 K. A value of phi = 1.03 +/-0.12 has been obtained for the primary quantum yield based on an absorption cross section ratio sigma(245)/phi(308) = 22 for ClOOCl at 245 and 308 nm.

  1. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    SciTech Connect

    Meusinger, Carl; Johnson, Matthew S.; Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joel

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude – apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix – constituting the largest uncertainty in models of snowpack NO{sub x} emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO{sub x} emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.

  2. Enhanced Hypsochromic Shifts, Quantum Yield, and π-π Interactions in a meso,β-Heteroaryl-Fused BODIPY.

    PubMed

    Zhao, Ning; Xuan, Sunting; Fronczek, Frank R; Smith, Kevin M; Vicente, M Graça H

    2017-03-10

    We report the synthesis and investigation of an unprecedented 8-heteroaryl-fused BODIPY 4. This compound exhibits enhanced π-π stacking in the solid state, unusually large blue-shifts in the absorbance and emission spectra, and higher fluorescence quantum yield than its unfused precursor; DFT calculations suggest a small energy gap for 4 and strong electronic communication between the 8-OPh and the BODIPY core.

  3. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry.

    PubMed

    Meusinger, Carl; Berhanu, Tesfaye A; Erbland, Joseph; Savarino, Joel; Johnson, Matthew S

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude - apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix - constituting the largest uncertainty in models of snowpack NOx emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NOx emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.

  4. Quantum yields of OH, HO2 and NO3 in the UV photolysis of HO2NO2.

    PubMed

    Jiménez, Elena; Gierczak, Tomasz; Stark, Harald; Burkholder, James B; Ravishankara, A R

    2005-01-21

    Quantum yields, phi, of OH and HO2 in the ultraviolet photolysis of HO2NO2 (peroxynitric acid, PNA) at 193 and 248 nm and that of NO3 at 193, 248 and 308 nm are reported. Quantum yields were measured using pulsed excimer laser photolysis combined with pulsed laser induced fluorescence (PLIF) detection of OH radicals and cavity ring-down (CRD) detection of NO3 radicals. HO2 radicals were quantified by converting them to OH via the HO2 + NO --> OH + NO2 reaction and detecting OH. The quantum yields obtained at 296 K are: phi193 nm(OH) = 0.21 +/- 0.12, phi248 nm(OH) = 0.085 +/- 0.08, phi193 nm(HO2) = 0.56 +/- 0.09, phi248 nm(HO2) = 0.89 +/- 0.26, phi193 nm(NO3) = 0.35 +/- 0.09, phi248 nm(NO3) = 0.08 +/- 0.04 and phi308 nm(NO3) = 0.05 +/- 0.02. The quoted uncertainties are 2sigma (95% confidence level) and include estimated systematic errors. Our results are compared with the previous quantum yield measurements of OH (MacLeod et al., J. Geophys. Res., 1988, 93, 3813) and NO2 (Roehl et al., 2001, J. Phys. Chem., 105, 1592) at 248 nm and the discrepancies are discussed. The rate coefficients at 298 K for reactions of OH with HO2NO2, H2O2, HNO3 and NO are also reported.

  5. Quantum phenomena and the zeropoint radiation field. II

    NASA Astrophysics Data System (ADS)

    de La Peña, L.; Cetto, A. M.

    1995-04-01

    A previous paper was devoted to the discussion of a new version of stochastic electrodynamics (SED) and to the study of the conditions under which quantum mechanics can be derived from it, in the radiationless approximation. In this paper further effects on matter due to the zeropoint field are studied, such as atomic stability, radiative transitions, the Lamb shift, etc., and are shown to be correctly described by the proposed version of SED. Also, a detailed energy-balance condition and a fluctuation-dissipation relation are established; it is shown in particular that equilibrium is attained only with a field spectrum ˜Ω 3. The proposed approach is shown to suggest an understanding of quantum mechanics as a kind of limitcycle theory. Finally, a brief discussion is included about the nonchaotic behavior of the (bounded) SED system in the quantum regime, as measured by Lyapunov exponents.

  6. Supercurrent in the quantum Hall regime, part II

    NASA Astrophysics Data System (ADS)

    Amet, Francois; Ke, Chung Ting; Borzenets, Ivan; Wang, Jiyingmei; Watanabe, Kenji; Taniguchi, Takashi; Deacon, Russel; Yamamoto, Michihisa; Bomze, Yuriy; Tarucha, Seigo; Finkelstein, Gleb

    A novel promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall effect. Despite this potential, signatures of superconductivity in the quantum Hall regime remain scarce, and a superconducting current through a Landau-quantized two-dimensional electron gas has so far eluded experimental observation. High-mobility graphene/BN heterostructures exhibit the quantum Hall effect at relatively low field and are therefore particularly suitable to study the fate of the Josephson effect in that regime. Here, we report the observation of a superconducting current through graphene at fields as high as 2 Tesla. In that regime, the normal-state resistance is quantized but pockets of superconductivity still persist at small current bias. We will describe their bias and temperature dependence. Magnetic field interference patterns in the supercurrent inform on possible mechanisms mediating this supercurrent.

  7. Type II InAs/GaAsSb quantum dots: Highly tunable exciton geometry and topology

    SciTech Connect

    Llorens, J. M.; Wewior, L.; Cardozo de Oliveira, E. R.; Alén, B.; Ulloa, J. M.; Utrilla, A. D.; Guzmán, A.; Hierro, A.

    2015-11-02

    External control over the electron and hole wavefunctions geometry and topology is investigated in a p-i-n diode embedding a dot-in-a-well InAs/GaAsSb quantum structure with type II band alignment. We find highly tunable exciton dipole moments and largely decoupled exciton recombination and ionization dynamics. We also predicted a bias regime where the hole wavefunction topology changes continuously from quantum dot-like to quantum ring-like as a function of the external bias. All these properties have great potential in advanced electro-optical applications and in the investigation of fundamental spin-orbit phenomena.

  8. Quantum yields lower than unity in photo- induced dissociative electron transfers: the reductive cleavage of carbon tetrachloride.

    PubMed

    Pause, L; Robert, M; Savéant, J M

    2000-12-15

    It has been shown recently that the electrochemical reduction of carbon tetrachloride in N,N'-dimethylformamide follows a mechanism in which electron transfer and bond cleavage are concerted. We report here results concerning photoinduced electron transfer from the singlet excited state of two aromatic molecules, 2-ethyl-9,10-dimethoxyanthracene and perylene, to CCl4 , which is characterised by a quantum yield of complete quenching fragmentation ranging from 0.7 to 0.8. It is shown that a quantum yield below unity is compatible with a dissociative mechanism and arises from partitioning of the system at the intersection of the product- and ground-state potential energy surfaces. This phenomenon predominates over back electron transfer from the clustered fragments state. The photoinduced reductive cleavage of CCl4 thus provides a clear illustration of the recent theoretical prediction, that photoinduced dissociative electron transfers are not necessarily endowed with a unity quantum yield. This offers an opportunity to estimate the magnitude of the electronic matrix element that couples the fragmented product state and the ground reactant state.

  9. Two-mode squeezed light source for quantum illumination and quantum imaging II

    NASA Astrophysics Data System (ADS)

    Masada, Genta

    2016-09-01

    Two-mode squeezed light is a macroscopic quantum entangled state of electro-magnetic fields and shows non-classical correlation between quadrature phase amplitudes in each optical mode. In this work the author is developing a high-quality two-mode squeezed light source for exploring the possibility of a quantum radar system based on a quantum illumination method and also expecting to apply it to quantum imaging. Two-mode squeezed light can be generated by combining two independent single-mode squeezed light beams using a beam splitter with a relative optical phase of 90 degrees between them. In current experimental progress the author developed two sub-threshold optical parametric oscillators to generate single-mode squeezed light beams. In the actual quantum radar or quantum imaging system, a turbulent atmosphere degrades quantum entanglement of a light source and affects performance of target detection. An optical loss is one of the simplest and most probable examples of environmental factors. In this work an evaluation method for quantum entanglement of two-mode squeezed light source is developed with consideration for the optical loss based on Duan's inseparability criteria.

  10. Quantum dynamics of hydrogen atoms on graphene. II. Sticking

    NASA Astrophysics Data System (ADS)

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H.; Burghardt, Irene; Martinazzo, Rocco

    2015-09-01

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (˜0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  11. Using quantum erasure to exorcise Maxwell's demon: II. Analysis

    NASA Astrophysics Data System (ADS)

    Rostovtsev, Yuri; Sariyanni, Zoe-Elizabeth; Suhail Zubairy, M.; O. Scully, Marlan

    2005-10-01

    We present an analysis of the single atom negentropy quantum heat engine to determine the fundamental limits of its operation. The engine has an internal reservoir of negentropy which allows one to extract work from a single thermal reservoir. The process is attended by constantly increasing entropy and does not violate the second law of thermodynamics.

  12. Quantum dynamics of hydrogen atoms on graphene. II. Sticking

    SciTech Connect

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H.; Burghardt, Irene

    2015-09-28

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  13. Quantum dynamics of hydrogen atoms on graphene. II. Sticking.

    PubMed

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco

    2015-09-28

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  14. Photobleaching of astaxanthin and canthaxanthin. Quantum-yields dependence of solvent, temperature, and wavelength of irradiation in relation to packaging and storage of carotenoid pigmented salmonoids.

    PubMed

    Christophersen, A G; Jun, H; Jørgensen, K; Skibsted, L H

    1991-05-01

    The quantum yield for the photobleaching of astaxanthin (the carotenoid of wild salmonoids) and of canthaxanthin (the closely related carotenoid used as a feeding additive for farmed salmonoids) has been determined for monochromatic light at different wavelengths and in different solvents. Astaxanthin is less sensitive to light than canthaxanthin. The photobleaching is strongly wavelength dependent, and the quantum yield for astaxanthin dissolved in chloroform at 22 degrees C is 3.2 x 10(-1) mol.Einstein-1 at 254 nm, 3.1 x 10(-2) at 313 nm, and 1.6 x 10(-6) at 436 nm, respectively. The quantum yields are less dependent on the nature of the solvent and show no simple correlation with oxygen solubility, i.e. for 366 nm excitation of astaxanthin the quantum yields are 6.1 x 10(-5) mol.Einstein-1 in acetone, 1.2 x 10(-4) in saturated vegetable oil, 1.9 x 10(-4) in chloroform, and 3.4 x 10(-4) solubilized in water, respectively. The photobleaching quantum yield provides an objective measure of the light sensitivity of the carotenoids in relation to the discolouration of carotenoid-pigmented salmonoids. The quantum yield was also found to be independent of the carotenoid concentration and, in a homogenous solution, of light intensities. For astaxanthin solubilized in water, the quantum yield increases for low light intensities. Excitation of astaxanthin solubilized in water using visible light shows that the photobleaching quantum yield is independent of temperature, while excitation at 313 nm shows an increase in the quantum yield with increasing temperatures, corresponding to an energy of activation of 28 kJ.mol-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Photophysics of a new photosensitizer with high quantum yield of singlet oxygen generation and its application to stereo-selective synthesis of (+)-deoxoartemisinin

    NASA Astrophysics Data System (ADS)

    Wang, Kang-Kyun; Choi, Kyoung-Hoon; Shin, Hee-Won; Kim, Bong-Jin; Im, Ji-Eun; Oh, Seung-Lim; Park, Nam-Soo; Jung, Mankil; Oh, Jae-Buem; Lee, Myung-Jun; Kim, Hwan-Kyu; Kim, Yong-Rok

    2009-11-01

    A new photo-catalyst of [5,10,15-triphenyl-20-(4-methoxycarbonylphenyl)-porphyrin] platinum was synthesized and its photophysical study revealed that it had a high quantum yield of singlet oxygen generation. As an application study, a stereo-specific synthesis of (+)-deoxoartemisinin was performed. The induced high triplet quantum yield (0.96 ± 0.03) of [5,10,15-triphenyl-20-(4-methoxycarbonylphenyl)-porphyrin] resulted the high singlet oxygen quantum yield of 0.90 ± 0.04. The photo-catalytic effect was compared with that of methylene blue (MB) which was generally used as a photo-catalyst for these types of stereo-specific syntheses of organic compounds. The yield of synthesized (+)-deoxoartemisinin was correlated with singlet oxygen quantum yield.

  16. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield

    PubMed Central

    Purchase, R. L.; de Groot, H. J. M.

    2015-01-01

    This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m−2 d−1 for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum–classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics

  17. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    entanglement is also derived. Thus we show that spin squeezing becomes a rigorous test for entanglement in a system of massive bosons, when viewed as a test for entanglement between two modes. In addition, other previously proposed tests for entanglement involving spin operators are considered, including those based on the sum of the variances for two spin components. All of the tests are still valid when the present concept of entanglement based on the symmetrization and SSR criteria is applied. These tests also apply in cases of multi-mode entanglement, though with restrictions in the case of sub-systems each consisting of pairs of modes. Tests involving quantum correlation functions are also considered and for global SSR compliant states these are shown to be equivalent to tests involving spin operators. A new weak correlation test is derived for entanglement based on local SSR compliance for separable states, complementing the stronger correlation test obtained previously when this is ignored. The Bloch vector test is equivalent to one case of this weak correlation test. Quadrature squeezing for single modes is also examined but not found to yield a useful entanglement test, whereas two mode quadrature squeezing proves to be a valid entanglement test, though not as useful as the Bloch vector test. The various entanglement tests are considered for well-known entangled states, such as binomial states, relative phase eigenstates and NOON states—sometimes the new tests are satisfied while than those obtained in other papers are not. The present paper II then outlines the theory for a simple two mode interferometer showing that such an interferometer can be used to measure the mean values and covariance matrix for the spin operators involved in entanglement tests for the two mode bosonic system. The treatment is also generalized to cover multi-mode interferometry. The interferometer involves a pulsed classical field characterized by a phase variable and an area variable

  18. Probing Quantum Turbulence in He II with a MEMS Oscillator

    NASA Astrophysics Data System (ADS)

    Levental, Aleksander; Bauer, Josh; Gonzalez, Miguel; Zheng, Pan; Lee, Yoonseok; Bun Chan, Ho

    2013-03-01

    Micrometer scale mechanical oscillators based on MEMS technology have been developed for the study of quantum fluids and have been tested successfully at ultra low temperatures. Our recent low temperature test in which the device was immersed in the superfluid phase of 4He revealed striking behavior below 400 mK: nonlinear and hysteretic resonance at high excitations. The observed phenomenon is thought to be related to vortices and quantum turbulence and warrants a systematic investigation for better understanding. We constructed an experimental set-up that allows us to cool a MEMS device in liquid 4He down to 50 mK at pressures up to 25 bar. We will discuss our new set-up and present our preliminary results performed at saturated vapor pressure. This work is supported by NSF through DMR-1205891 (YL).

  19. Highly efficient near-infrared light-emitting diodes by using type-II CdTe/CdSe core/shell quantum dots as a phosphor.

    PubMed

    Shen, Huaibin; Zheng, Ying; Wang, Hongzhe; Xu, Weiwei; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Li, Lin Song

    2013-11-29

    In this paper, we present an innovative method for the synthesis of CdTe/CdSe type-II core/shell structure quantum dots (QDs) using 'greener' chemicals. The PL of CdTe/CdSe type-II core/shell structure QDs ranges from 600 to 820 nm, and the as-synthesized core/shell structures show narrow size distributions and stable and high quantum yields (50–75%). Highly efficient near-infrared light-emitting diodes (LEDs) have been demonstrated by employing the CdTe/CdSe type-II core/shell QDs as emitters. The devices fabricated based on these type-II core/shell QDs show color-saturated near-infrared emission from the QD layers, a low turn-on voltage of 1.55 V, an external quantum efficiency (EQE) of 1.59%, and a current density and maximum radiant emittance of 2.1 × 10(3) mA cm−2 and 17.7 mW cm−2 at 8 V; it is the first report to use type-II core/shell QDs as near-infrared emitters and these results may offer a practicable platform for the realization of near-infrared QD-based light-emitting diodes, night-vision-readable displays, and friend/foe identification system.

  20. NMR System for a Type II Quantum Computer

    DTIC Science & Technology

    2007-06-01

    26:1484-1509, 1997. [3] R. Feynman . Simulating physics with computers. International Journal of Theoretical Physics , 21(6-7):467-488, 1982. [4] S...and J. Ford. Stochastic behavior in classical and quantum hamiltonian systems. Lecture Notes in Physics , 93:334, 1979. [17] Z. Chen, J. Yepez, and D...1987. [36] R. P. Feynman . Simulating physics with computers. International Journal of Theo- retical Physics , 21(6-7):467-488, 1981/82. [37] E. M

  1. Quantum Bio-Informatics II From Quantum Information to Bio-Informatics

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Freudenberg, Wolfgang; Ohya, Masanori

    2009-02-01

    The problem of quantum-like representation in economy cognitive science, and genetics / L. Accardi, A. Khrennikov and M. Ohya -- Chaotic behavior observed in linea dynamics / M. Asano, T. Yamamoto and Y. Togawa -- Complete m-level quantum teleportation based on Kossakowski-Ohya scheme / M. Asano, M. Ohya and Y. Tanaka -- Towards quantum cybernetics: optimal feedback control in quantum bio informatics / V. P. Belavkin -- Quantum entanglement and circulant states / D. Chruściński -- The compound Fock space and its application in brain models / K. -H. Fichtner and W. Freudenberg -- Characterisation of beam splitters / L. Fichtner and M. Gäbler -- Application of entropic chaos degree to a combined quantum baker's map / K. Inoue, M. Ohya and I. V. Volovich -- On quantum algorithm for multiple alignment of amino acid sequences / S. Iriyama and M. Ohya --Quantum-like models for decision making in psychology and cognitive science / A. Khrennikov -- On completely positive non-Markovian evolution of a d-level system / A. Kossakowski and R. Rebolledo -- Measures of entanglement - a Hilbert space approach / W. A. Majewski -- Some characterizations of PPT states and their relation / T. Matsuoka -- On the dynamics of entanglement and characterization ofentangling properties of quantum evolutions / M. Michalski -- Perspective from micro-macro duality - towards non-perturbative renormalization scheme / I. Ojima -- A simple symmetric algorithm using a likeness with Introns behavior in RNA sequences / M. Regoli -- Some aspects of quadratic generalized white noise functionals / Si Si and T. Hida -- Analysis of several social mobility data using measure of departure from symmetry / K. Tahata ... [et al.] -- Time in physics and life science / I. V. Volovich -- Note on entropies in quantum processes / N. Watanabe -- Basics of molecular simulation and its application to biomolecules / T. Ando and I. Yamato -- Theory of proton-induced superionic conduction in hydrogen-bonded systems

  2. On the quantum mechanical theory of collisional recombination rates, II. Beyond the strong collision approximation

    SciTech Connect

    Miller, W.H.

    1995-07-01

    A quantum mechanical theory of collisional recombination (within the Lindemann mechanism, A + B {leftrightarrow} AB*, AB* + M {yields} AB + M) is presented which provides a proper quantum description of the A + B collision dynamics and treats the M + AB* inelastic scattering within the impact approximation (the quantum analog of a classical master equation treatment). The most rigorous version of the theory is similar in structure to the impact theory of spectral line broadening and involves generalized (4-index) rate constants for describing M + AB* collisions. A simplified version is also presented which involves only the normal (2-index) inelastic rate constants for M + AB* scattering but which also retains a proper quantum description of the A + B dynamics.

  3. Measurement of the triplet lifetime and the quantum yield of triplet formation of phthalazine by the time-resolved thermal lens method

    NASA Astrophysics Data System (ADS)

    Terazima, Masahide; Azumi, Tohru

    1987-11-01

    The time-resolved thermal lens technique is used to determine the quantum yield of the triplet formation and the triplet lifetime of phthalazine in a polar and a non-polar solvent. The quantum yields of phthalazine in ethanol and benzene are 0.44 and 0.49, respectively. Very short triplet lifetimes of phthalazine (2.7 μ;s) in benzene at room temperature are reported.

  4. Quantum Efficiency Characterization and Optimization of a Tungsten Transition-Edge Sensor for ALPS II

    NASA Astrophysics Data System (ADS)

    Bastidon, Noëmie; Horns, Dieter; Lindner, Axel

    2016-07-01

    The ALPS II experiment, Any Light Particle Search II at DESY in Hamburg, will look for sub-eV mass new fundamental bosons (e.g., axion-like particles, hidden photons, and other weakly interacting sub-eV particles) in the next years by means of a light-shining-through-wall setup. The ALPS II photosensor is a tungsten transition-edge sensor (W-TES) optimized for 1064 nm photons. This TES, operated at 80 mK, has already allowed single infrared photon detections as well as non-dispersive spectroscopy with very low background rates. The demonstrated quantum efficiency for such TES is up to 95 % (1064 nm) as has been already demonstrated by the US National Institute of Standards and Technology. A back-to-back measurement of the ALPS TES quantum efficiency using a calibrated charge-coupled device camera has lead to a first estimation of 30 %. Improvement methods are discussed.

  5. Experimental Measurements of the Secondary Electron Yield in the Experimental Measurement of the Secondary Electron Yield in the PEP-II Particle Accelerator Beam Line

    SciTech Connect

    Pivi, M.T.F.; Collet, G.; King, F.; Kirby, R.E.; Markiewicz, T.; Raubenheimer, T.O.; Seeman, J.; Le Pimpec, F.; /PSI, Villigen

    2010-08-25

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under the effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.

  6. Luminescence spectra of quantum dots in microcavities. II. Fermions

    NASA Astrophysics Data System (ADS)

    Del Valle, Elena; Laussy, Fabrice P.; Tejedor, Carlos

    2009-06-01

    We discuss the luminescence spectra of coupled light-matter systems realized with semiconductor heterostructures in microcavities in the presence of a continuous, incoherent pumping, when the matter field is fermionic. The linear regime—which has been the main topic of investigation both experimentally and theoretically—converges to the case of coupling to a bosonic material field, and has been amply discussed in the first part of this work. We address here the nonlinear regime, and argue that, counter to intuition, it is better observed at low pumping intensities. We support our discussion with particular cases representative of, and beyond, the experimental state of the art. We explore the transition from the quantum to the classical regime, by decomposing the total spectrum into individual transitions between the dressed states of the light-matter coupling Hamiltonian, reducing the problem to the positions and broadenings of all possible transitions. As the system crosses to the classical limit, rich multiplet structures mapping the quantized energy levels melt and turn to cavity lasing and to an incoherent Mollow triplet in the direct exciton emission for very good structure. Less ideal figures of merit can still betray the quantum regime, with a proper balance of cavity versus electronic pumping.

  7. In cellulo evaluation of phototransformation quantum yields in fluorescent proteins used as markers for single-molecule localization microscopy.

    PubMed

    Avilov, Sergiy; Berardozzi, Romain; Gunewardene, Mudalige S; Adam, Virgile; Hess, Samuel T; Bourgeois, Dominique

    2014-01-01

    Single-molecule localization microscopy of biological samples requires a precise knowledge of the employed fluorescent labels. Photoactivation, photoblinking and photobleaching of phototransformable fluorescent proteins influence the data acquisition and data processing strategies to be used in (Fluorescence) Photoactivation Localization Microscopy ((F)-PALM), notably for reliable molecular counting. As these parameters might depend on the local environment, they should be measured in cellulo in biologically relevant experimental conditions. Here, we measured phototransformation quantum yields for Dendra2 fused to actin in fixed mammalian cells in typical (F)-PALM experiments. To this aim, we developed a data processing strategy based on the clustering optimization procedure proposed by Lee et al (PNAS 109, 17436-17441, 2012). Using simulations, we estimated the range of experimental parameters (molecular density, molecular orientation, background level, laser power, frametime) adequate for an accurate determination of the phototransformation yields. Under illumination at 561 nm in PBS buffer at pH 7.4, the photobleaching yield of Dendra2 fused to actin was measured to be (2.5 ± 0.4) × 10(-5), whereas the blinking-off yield and thermally-activated blinking-on rate were measured to be (2.3 ± 0.2) × 10(-5) and 11.7 ± 0.5 s-1, respectively. These phototransformation yields differed from those measured in poly-vinyl alcohol (PVA) and were strongly affected by addition of the antifading agent 1,4-diazabicyclo[2.2.2]octane (DABCO). In the presence of DABCO, the photobleaching yield was reduced 2-fold, the blinking-off yield was decreased more than 3-fold, and the blinking-on rate was increased 2-fold. Therefore, DABCO largely improved Dendra2 photostability in fixed mammalian cells. These findings are consistent with redox-based bleaching and blinking mechanisms under (F)-PALM experimental conditions. Finally, the green-to-red photoconversion quantum yield of Dendra

  8. In cellulo Evaluation of Phototransformation Quantum Yields in Fluorescent Proteins Used As Markers for Single-Molecule Localization Microscopy

    PubMed Central

    Avilov, Sergiy; Berardozzi, Romain; Gunewardene, Mudalige S.; Adam, Virgile; Hess, Samuel T.; Bourgeois, Dominique

    2014-01-01

    Single-molecule localization microscopy of biological samples requires a precise knowledge of the employed fluorescent labels. Photoactivation, photoblinking and photobleaching of phototransformable fluorescent proteins influence the data acquisition and data processing strategies to be used in (Fluorescence) Photoactivation Localization Microscopy ((F)-PALM), notably for reliable molecular counting. As these parameters might depend on the local environment, they should be measured in cellulo in biologically relevant experimental conditions. Here, we measured phototransformation quantum yields for Dendra2 fused to actin in fixed mammalian cells in typical (F)-PALM experiments. To this aim, we developed a data processing strategy based on the clustering optimization procedure proposed by Lee et al (PNAS 109, 17436–17441, 2012). Using simulations, we estimated the range of experimental parameters (molecular density, molecular orientation, background level, laser power, frametime) adequate for an accurate determination of the phototransformation yields. Under illumination at 561 nm in PBS buffer at pH 7.4, the photobleaching yield of Dendra2 fused to actin was measured to be (2.5±0.4)×10−5, whereas the blinking-off yield and thermally-activated blinking-on rate were measured to be (2.3±0.2)×10−5 and 11.7±0.5 s−1, respectively. These phototransformation yields differed from those measured in poly-vinyl alcohol (PVA) and were strongly affected by addition of the antifading agent 1,4-diazabicyclo[2.2.2]octane (DABCO). In the presence of DABCO, the photobleaching yield was reduced 2-fold, the blinking-off yield was decreased more than 3-fold, and the blinking-on rate was increased 2-fold. Therefore, DABCO largely improved Dendra2 photostability in fixed mammalian cells. These findings are consistent with redox-based bleaching and blinking mechanisms under (F)-PALM experimental conditions. Finally, the green-to-red photoconversion quantum yield of Dendra2 was

  9. Probability and Quantum Symmetries. II. The Theorem of Noether in quantum mechanics

    SciTech Connect

    Albeverio, S.; Rezende, J.; Zambrini, J.-C.

    2006-06-15

    For the largest class of physical systems having a classical analog, a new rigorous, but not probabilistic, Lagrangian version of nonrelativistic quantum mechanics is given, in terms of a notion of regularized action function. As a consequence of the study of the symmetries of this action, an associated Noether theorem is obtained. All the quantum symmetries resulting from the canonical quantization procedure follow in this way, as well as a number of symmetries which are new even for the case of the simplest systems. The method is based on the study of a corresponding Lie algebra and an analytical continuation in the time parameter of the probabilistic construction given in paper I of this work. Generically, the associated quantum first integrals are time dependent and the probabilistic model provides a natural interpretation of the new symmetries. Various examples illustrate the physical relevance of our results.

  10. Solvent dependence of laser-synthesized blue-emitting Si nanoparticles: Size, quantum yield, and aging performance

    NASA Astrophysics Data System (ADS)

    Xin, Yunzi; Kitasako, Takumi; Maeda, Makoto; Saitow, Ken-ichi

    2017-04-01

    Pulsed-laser ablation of silicon (Si) was conducted in six different organic solvents using a nanosecond laser. Si nanoparticles (Si-NPs) that exhibited blue photoluminescence (PL) were generated in all the solvents, but a significant solvent dependence emerged: particle size, PL spectra, and PL quantum yield (QY). The results of solvent dependence were well characterized using an atomic ratio in a solvent molecule. The highest QY was observed for the smallest Si-NPs (ca. 2 nm) synthesized in 1-octyne. The QY was enhanced by aging in 1-octyne, and its mechanism was attributed to alkyl passivation of dangling bonds on the Si-NPs.

  11. Highly efficient visual detection of trace copper(II) and protein by the quantum photoelectric effect.

    PubMed

    Wang, Peng; Lei, Jianping; Su, Mengqi; Liu, Yueting; Hao, Qing; Ju, Huangxian

    2013-09-17

    This work presented a photocurrent response mechanism of quantum dots (QDs) under illumination with the concept of a quantum photoelectric effect. Upon irradiation, the photoelectron could directly escape from QDs. By using nitro blue tetrazolium (NBT) to capture the photoelectron, a new visual system was proposed due to the formation of an insoluble reduction product, purple formazan, which could be used to visualize the quantum photoelectric effect. The interaction of copper(II) with QDs could form trapping sites to interfere with the quantum confinement and thus blocked the escape of photoelectron, leading to a "signal off" visual method for sensitive copper(II) detection. Meanwhile, by using QDs as a signal tag to label antibody, a "signal on" visual method was also proposed for immunoassay of corresponding protein. With meso-2,3-dimercaptosuccinic-capped CdTe QDs and carcino-embryonic antigen as models, the proposed visual detection methods showed high sensitivity, low detection limit, and wide detectable concentration ranges. The visualization of quantum photoelectric effect could be simply extended for the detection of other targets. This work opens a new visual detection way and provides a highly efficient tool for bioanalysis.

  12. Quantum quenches in the thermodynamic limit. II. Initial ground states.

    PubMed

    Rigol, Marcos

    2014-09-01

    A numerical linked-cluster algorithm was recently introduced to study quantum quenches in the thermodynamic limit starting from thermal initial states [M. Rigol, Phys. Rev. Lett. 112, 170601 (2014)]. Here, we tailor that algorithm to quenches starting from ground states. In particular, we study quenches from the ground state of the antiferromagnetic Ising model to the XXZ chain. Our results for spin correlations are shown to be in excellent agreement with recent analytical calculations based on the quench action method. We also show that they are different from the correlations in thermal equilibrium, which confirms the expectation that thermalization does not occur in general in integrable models even if they cannot be mapped to noninteracting ones.

  13. Direct Bandgap Quantum Dots Embedded in a Type-II GaAs/AlAs Double Quantum Well Structure

    NASA Astrophysics Data System (ADS)

    Chwalisz-PiȨTKA, Barbara; Wysmołek, Andrzej; StȨPNIEWSKI, Roman; Potemski, Marek; Raymond, Sylvain; Bożek, Rafał; Thierry-Mieg, Veronique

    Quantum dots with strong three dimensional confinement and low surface density have been identified in a structure which was nominally grown as a type-II GaAs/AlAs bilayer surrounded by GaAlAs barriers. Micro-luminescence experiments in magnetic fields performed on these dots display excitonic spin-splitting and orbital Zeeman effects for the excited states. The modification by the magnetic field of the diffusion and/or trapping of photoexcited carriers into the dots is also observed.

  14. Large ordered arrays of single photon sources based on II-VI semiconductor colloidal quantum dot.

    PubMed

    Zhang, Qiang; Dang, Cuong; Urabe, Hayato; Wang, Jing; Sun, Shouheng; Nurmikko, Arto

    2008-11-24

    In this paper, we developed a novel and efficient method of deterministically organizing colloidal particles on structured surfaces over macroscopic areas. Our approach utilizes integrated solution-based processes of dielectric encapsulation and electrostatic-force-mediated self-assembly, which allow precisely controlled placement of sub-10nm sized particles at single particle resolution. As a specific demonstration, motivated by application to single photon sources, highly ordered 2D arrays of single II-VI semiconductor colloidal quantum dots (QDs) were created by this method. Individually, the QDs display triggered single photon emission at room temperature with characteristic photon antibunching statistics, suggesting a pathway to scalable quantum optical radiative systems.

  15. Carrier dynamics in type-II GaAsSb/GaAs quantum wells.

    PubMed

    Baranowski, M; Syperek, M; Kudrawiec, R; Misiewicz, J; Gupta, J A; Wu, X; Wang, R

    2012-05-09

    Time-resolved photoluminescence (PL) characteristics of type-II GaAsSb/GaAs quantum wells are presented. The PL kinetics are determined by the dynamic band bending effect and the distribution of localized centers below the quantum well band gap. The dynamic band bending results from the spatially separated electron and hole distribution functions evolving in time. It strongly depends on the optical pump power density and causes temporal renormalization of the quantum well ground-state energy occurring a few nanoseconds after the optical pulse excitation. Moreover, it alters the optical transition oscillator strength. The measured PL lifetime is 4.5 ns. We point out the critical role of the charge transfer processes between the quantum well and localized centers, which accelerate the quantum well photoluminescence decay at low temperature. However, at elevated temperatures the thermally activated back transfer process slows down the quantum well photoluminescence kinetics. A three-level rate equation model is proposed to explain these observations.

  16. Carrier dynamics in type-II GaAsSb/GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Baranowski, M.; Syperek, M.; Kudrawiec, R.; Misiewicz, J.; Gupta, J. A.; Wu, X.; Wang, R.

    2012-05-01

    Time-resolved photoluminescence (PL) characteristics of type-II GaAsSb/GaAs quantum wells are presented. The PL kinetics are determined by the dynamic band bending effect and the distribution of localized centers below the quantum well band gap. The dynamic band bending results from the spatially separated electron and hole distribution functions evolving in time. It strongly depends on the optical pump power density and causes temporal renormalization of the quantum well ground-state energy occurring a few nanoseconds after the optical pulse excitation. Moreover, it alters the optical transition oscillator strength. The measured PL lifetime is 4.5 ns. We point out the critical role of the charge transfer processes between the quantum well and localized centers, which accelerate the quantum well photoluminescence decay at low temperature. However, at elevated temperatures the thermally activated back transfer process slows down the quantum well photoluminescence kinetics. A three-level rate equation model is proposed to explain these observations.

  17. ``Simplest Molecule'' Clarifies Modern Physics II. Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Harter, William; Reimer, Tyle

    2015-05-01

    A ``simplest molecule'' consisting of CW- laser beam pairs helps to clarify relativity from poster board - I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and antimatter. Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: ``All colors go c.''

  18. "simplest Molecule" Clarifies Modern Physics II. Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Reimer, T. C.; Harter, W. G.

    2014-06-01

    A "simplest molecule" consisting of CW-laser beam pairs helps to clarify relativity in Talk I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and anti-matter. *Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: "All colors go c."

  19. II-VI semiconductor quantum dot quantum wells: a tight-binding study

    NASA Astrophysics Data System (ADS)

    Pérez-Conde, J.; Bhattacharjee, A. K.

    2006-05-01

    We have studied the electronic structure, exciton states and optical spectra of spherical semiconductor quantum dot quantum wells (QDQW's) by means of a symmetry-adapted tight-binding (TB) method. We have investigated two classes of QDQW's: CdS/HgS/CdS, based on a CdS core which acts as a barrier, with a thin HgS well layer intercalated between the core and a clad layer of CdS. The second class of QDQW's is based on ZnS cores covered with CdS layers which act in this case as a well. The calculated values of the absorption onset show a good agreement with the experimental data. Large photoluminescence Stokes shifts are also predicted.

  20. Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity

    PubMed Central

    Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil

    2015-01-01

    We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity. PMID:26213934

  1. Microscopic Modeling of Intersubband Optical Processes in Type II Semiconductor Quantum Wells: Linear Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Kolokolov, Kanstantin I.; Ning, Cun-Zheng

    2003-01-01

    Linear absorption spectra arising from intersubband transitions in semiconductor quantum well heterostructures are analyzed using quantum kinetic theory by treating correlations to the first order within Hartree-Fock approximation. The resulting intersubband semiconductor Bloch equations take into account extrinsic dephasing contributions, carrier-longitudinal optical phonon interaction and carrier-interface roughness interaction which is considered with Ando s theory. As input for resonance lineshape calculation, a spurious-states-free 8-band kp Hamiltonian is used, in conjunction with the envelop function approximation, to compute self-consistently the energy subband structure of electrons in type II InAs/AlSb single quantum well structures. We demonstrate the interplay of nonparabolicity and many-body effects in the mid-infrared frequency range for such heterostructures.

  2. Time-dependent toroidal compactification proposals and the Bianchi type II model: Classical and quantum solutions

    NASA Astrophysics Data System (ADS)

    Socorro, J.; Toledo Sesma, L.

    2016-03-01

    In this work we construct an effective four-dimensional model by compactifying a ten-dimensional theory of gravity coupled with a real scalar dilaton field on a time-dependent torus without the contributions of fluxes as first approximation. This approach is applied to anisotropic cosmological Bianchi type II model for which we study the classical coupling of the anisotropic scale factors with the two real scalar moduli produced by the compactification process. Also, we present some solutions to the corresponding Wheeler-DeWitt (WDW) equation in the context of Standard Quantum Cosmology and we claim that these quantum solution are generic in the moduli scalar field for all Bianchi Class A models. Also we give the relation to these solutions for asymptotic behavior to large argument in the corresponding quantum solution in the gravitational variables and compare with Bohm's solutions, finding that this corresponds to the lowest-order WKB approximation.

  3. Homogeneous linewidth of confined electron-hole-pair states in II-VI quantum dots

    NASA Astrophysics Data System (ADS)

    Woggon, U.; Gaponenko, S.; Langbein, W.; Uhrig, A.; Klingshirn, C.

    1993-02-01

    We present results of nanosecond-hole-burning experiments of small CdSe and CdS1-xSex quantum dots embedded in glass at various temperatures. The spectral width of the holes exhibits a complex interplay between excitation conditions and illumination history. Among a great variety of investigated II-VI quantum dots in glasses from various sources, we find, after strong laser illumination, samples showing spectrally narrow holes similar to those reported for quantum dots embedded in organic matrices with interfaces well defined by organic groups. These sharp nonlinear resonances with a halfwidth Γ of only 10 meV at T=20 K allow one to investigate the energetic distance of the lowest hole levels and the temperature dependence of the homogeneous line broadening. The differences in the linewidth in the hole-burning spectra are attributed to changes of interface charge states or interface polarizations under high excitation.

  4. Ultrafast dynamics of type-II GaSb/GaAs quantum dots

    SciTech Connect

    Komolibus, K.; Piwonski, T.; Gradkowski, K.; Reyner, C. J.; Liang, B.; Huffaker, D. L.; Huyet, G.; Houlihan, J.

    2015-01-19

    In this paper, room temperature two-colour pump-probe spectroscopy is employed to study ultrafast carrier dynamics in type-II GaSb/GaAs quantum dots. Our results demonstrate a strong dependency of carrier capture/escape processes on applied reverse bias voltage, probing wavelength and number of injected carriers. The extracted timescales as a function of both forward and reverse bias may provide important information for the design of efficient solar cells and quantum dot memories based on this material. The first few picoseconds of the dynamics reveal a complex behaviour with an interesting feature, which does not appear in devices based on type-I materials, and hence is linked to the unique carrier capture/escape processes possible in type-II structures.

  5. Quantum Entanglement in the Genome? The Role of Quantum Effects in Catalytic Synchronization of Type II Restriction Endonucleases

    NASA Astrophysics Data System (ADS)

    Kurian, P.

    Several living systems have been examined for their exhibition of macroscopic quantum effects, showcasing biology's apparent optimization of structure and function for quantum behavior. Prevalent in lower organisms with analogues in eukaryotes, type II restriction endonucleases are the largest class of restriction enzymes. Orthodox type II endonucleases recognize four-to-eight base pair sequences of palindromic DNA, cut both strands symmetrically, and act without an external metabolite such as ATP. While it is known that these enzymes induce strand breaks by nucleophilic attack on opposing phosphodiester bonds of the DNA helix, what remains unclear is the mechanism by which cutting occurs in concert at the catalytic centers. Previous studies indicate the primacy of intimate DNA contacts made by the specifically bound enzyme in coordinating the two synchronized cuts. We propose that collective electronic behavior in the DNA helix generates coherent oscillations---quantized through boundary conditions imposed by the endonuclease---that provide the energy required to break two phosphodiester bonds. Such quanta may be preserved in the presence of thermal noise and electromagnetic interference through the specific complex's exclusion of water and ions surrounding the helix, with the enzyme serving as a decoherence shield. Clamping energy imparted by the decoherence shield is comparable with zero-point modes of the dipole-dipole oscillations in the DNA recognition sequence. The palindromic mirror symmetry of this sequence should conserve parity during the process. Experimental data corroborate that symmetric bond-breaking ceases when the symmetry of the endonuclease complex is violated, or when environmental parameters are perturbed far from biological optima. Persistent correlation between states in DNA sequence across spatial separations of any length---a characteristic signature of quantum entanglement---may be explained by such a physical mechanism.

  6. Excitonic transitions in highly efficient (GaIn)As/Ga(AsSb) type-II quantum-well structures

    SciTech Connect

    Gies, S.; Kruska, C.; Berger, C.; Hens, P.; Fuchs, C.; Rosemann, N. W.; Veletas, J.; Stolz, W.; Koch, S. W.; Heimbrodt, W.; Ruiz Perez, A.; Hader, J.; Moloney, J. V.

    2015-11-02

    The excitonic transitions of the type-II (GaIn)As/Ga(AsSb) gain medium of a “W”-laser structure are characterized experimentally by modulation spectroscopy and analyzed using microscopic quantum theory. On the basis of the very good agreement between the measured and calculated photoreflectivity, the type-I or type-II character of the observable excitonic transitions is identified. Whereas the energetically lowest three transitions exhibit type-II character, the subsequent energetically higher transitions possess type-I character with much stronger dipole moments. Despite the type-II character, the quantum-well structure exhibits a bright luminescence.

  7. Synthesis, characterization and quantum chemical ab initio calculations of new dimeric aminocyclodiphosph(V)azane and its Co(II), Ni(II) and Cu(II) complexes.

    PubMed

    Alaghaz, Abdel-Nasser M A; Al-Sehemi, Abdullah G; El-Gogary, Tarek M

    2012-09-01

    The complexes of type [M(2)LCl(2)] in which M=Co(II), Ni(II) and Cu(II) ions and L are 1,3-o-pyridyl-2,4-dioxo-2',4'-bis(3-benzo[d]thiazol-2-yl-2-iminothiophene) cyclodiphosph(V)azane, were prepared and their structures were characterized by different physical techniques (IR, UV-Vis, (1)H NMR, (31)P NMR, mass, TGA, DTA, XRD, SEM, magnetic moment and electrical conductance measurements). Ab initio calculations at the level of DFT B3LYP/6-31G(d) were utilized to find the optimum geometry of the ligand. Spectral characterization of the ligand was simulated using DT-DFT method. Infrared spectra of the complexes indicate deprotonation and coordination of the imine NH. It also confirms that nitrogen atoms of the pyridine group and thiazole group contribute to the complexation. NBO natural charges were computed and discussed in the light of coordination centers. Electronic spectra and magnetic susceptibility measurements as well as quantum chemical calculations reveal square planar geometry for Cu(II) and Ni(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the M(2)LCl(2) composition of complexes.

  8. Spectroscopy and dynamics of charge transfer excitons in type-II band aligned quantum confined heterostructures

    NASA Astrophysics Data System (ADS)

    Kushavah, Dushyant; Mohapatra, P. K.; Rustagi, K. C.; Bahadur, D.; Vasa, P.; Singh, B. P.

    2015-05-01

    We illustrate effect of charge transfer (CT) in type-II quantum confined heterostructure by comparing CdSe quantum dots (QDs), CdSe/CdTe heterostructure quantum dots (HQDs) and CdSe/CdTe/CdSe quantum well-quantum dots (QWQDs) heterostructures. CdSe core QDs were synthesized using a kinetic growth method where QD size depends on reaction time. For shell coating we used modified version of successive ionic layer adsorption and reaction (SILAR). Size of different QDs ˜5 to 7 nm were measured by transmission electron microscopy (TEM). Strong red shift from ˜597 to ˜746 nm in photoluminescence (PL) spectra from QDs to QWQDs shows high tunability which is not possible with single constituent semiconductor QDs. PL spectra have been recorded at different temperatures (10K-300K). Room temperature time correlated single photon counting (TCSPC) measurements for QDs to QWQDs show three exponential radiative decay. The slowest component decay constant in QWQDs comes around eight fold to ˜51 ns as compared to ˜6.5 ns in HQD suggesting new opportunities to tailor the radiative carrier recombination rate of CT excitons.

  9. Quantum Dot Channel (QDC) FETs with Wraparound II-VI Gate Insulators: Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Jain, F.; Lingalugari, M.; Kondo, J.; Mirdha, P.; Suarez, E.; Chandy, J.; Heller, E.

    2016-11-01

    This paper presents simulations predicting the feasibility of 9-nm wraparound quantum dot channel (QDC) field-effect transistors (FETs). In particular, II-VI lattice-matched layers which reduce the density of interface states, serving as top (tunnel gate), side, and bottom gate insulators, have been simulated. Quantum simulations show FET operation with voltage swing of ~0.2 V. Incorporation of cladded quantum dots, such as SiO x -Si and GeO x -Ge, under the gate tunnel oxide results in electrical transport in one or more quantum dot layers which form a quantum dot superlattice (QDSL). Long-channel QDC FETs have experimental multistate drain current ( I D)-gate voltage ( V G) and drain current ( I D)-drain voltage ( V D) characteristics, which can be attributed to the manifestation of extremely narrow energy minibands formed in the QDSL. An approach for modeling the multistate I D- V G characteristics is reported. The multistate characteristics of QDC FETs permit design of compact two-bit multivalued logic circuits.

  10. Spectroscopy and dynamics of charge transfer excitons in type-II band aligned quantum confined heterostructures

    SciTech Connect

    Kushavah, Dushyant; Mohapatra, P. K.; Vasa, P.; Singh, B. P.; Rustagi, K. C.; Bahadur, D.

    2015-05-15

    We illustrate effect of charge transfer (CT) in type-II quantum confined heterostructure by comparing CdSe quantum dots (QDs), CdSe/CdTe heterostructure quantum dots (HQDs) and CdSe/CdTe/CdSe quantum well-quantum dots (QWQDs) heterostructures. CdSe core QDs were synthesized using a kinetic growth method where QD size depends on reaction time. For shell coating we used modified version of successive ionic layer adsorption and reaction (SILAR). Size of different QDs ∼5 to 7 nm were measured by transmission electron microscopy (TEM). Strong red shift from ∼597 to ∼746 nm in photoluminescence (PL) spectra from QDs to QWQDs shows high tunability which is not possible with single constituent semiconductor QDs. PL spectra have been recorded at different temperatures (10K-300K). Room temperature time correlated single photon counting (TCSPC) measurements for QDs to QWQDs show three exponential radiative decay. The slowest component decay constant in QWQDs comes around eight fold to ∼51 ns as compared to ∼6.5 ns in HQD suggesting new opportunities to tailor the radiative carrier recombination rate of CT excitons.

  11. Fermentation and downstream process for high yield production of Plasmodium falciparum recombinant HRP II protein and its application in diagnosis.

    PubMed

    Singh, Anil K; Athmaram, T N; Shrivastava, Saurabh; Merwyn, S; Agarwal, G S; Gopalan, N

    2013-07-01

    Malaria represents the world's greatest public health problem in terms of number of people affected, levels of morbidity and mortality in tropical and subtropical countries. Malaria parasites are members of the Apicomplexa, family of Plasmodiidae. Histidine-rich protein-II secreted by Plasmodium falciparum is known to be a compelling marker in malaria diagnosis and follow-up. In our present study, we have optimized the batch fermentation and downstream process for large scale production of recombinant P. falciparum HRP-II 62 kDa protein for diagnostic application. The culture broth was effectively induced with IPTG twice at different time intervals to sustain induction for a long period. Batch fermentation resulted in a wet weight of 61.34 g/L and dry cell biomass 12.81 g/L. With the improved downstream process, purified recombinant protein had a yield of 304.60 mg/L. The authenticity of the purified recombinant protein was confirmed via western blotting using indigenously developed HRP-II specific monoclonal antibodies and known positive human clinical sera samples. Further, the reactivity of recombinant HRP-II protein was validated using commercially available immuno chromatographic strips. Indirect ELISA using recombinant purified protein recognized the P. falciparum specific antibodies in suspected human sera samples. Our results clearly suggest that the recombinant HRP-II protein produced via batch fermentation has immense potential for routine diagnostic application.

  12. In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Hui; Niu, Aping; Li, Jing; Fu, Jian-Wei; Xu, Qun; Pei, De-Sheng

    2016-11-01

    Carbon quantum dots (CDs) were widely investigated because of their tunable fluorescence properties and low toxicity. However, so far there have been no reports on in vivo functional studies of hair and skin derived CDs. Here, hair derived CDs (HCDs) and skin derived CDs (SCDs) were produced by using human hair and pig skin as precursors. The quantum yields (QYs) of HCDs and SCDs were quite high, compared to citric acid derived CDs (CCDs). HCDs and SCDs possess optimal photostability, hypotoxicity and biocompatibility in zebrafish, indicating that HCDs and SCDs possess the capacity of being used as fluorescence probes for in vivo biological imaging. The long-time observation for fluorescence alternation of CDs in zebrafish and the quenching assay of CDs by ATP, NADH and Fe3+ ions demonstrated that the decaying process of CDs in vivo might be induced by the synergistic effect of the metabolism process. All results indicated that large batches and high QYs of CDs can be acquired by employing natural and nontoxic hair and skin as precursors. To our knowledge, this is the first time to report SCDs, in vivo comparative studies of HCDs, SCDs and CCDs as bioprobes, and explore their mechanism of photostability in zebrafish.

  13. In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish

    PubMed Central

    Zhang, Jing-Hui; Niu, Aping; Li, Jing; Fu, Jian-Wei; Xu, Qun; Pei, De-Sheng

    2016-01-01

    Carbon quantum dots (CDs) were widely investigated because of their tunable fluorescence properties and low toxicity. However, so far there have been no reports on in vivo functional studies of hair and skin derived CDs. Here, hair derived CDs (HCDs) and skin derived CDs (SCDs) were produced by using human hair and pig skin as precursors. The quantum yields (QYs) of HCDs and SCDs were quite high, compared to citric acid derived CDs (CCDs). HCDs and SCDs possess optimal photostability, hypotoxicity and biocompatibility in zebrafish, indicating that HCDs and SCDs possess the capacity of being used as fluorescence probes for in vivo biological imaging. The long-time observation for fluorescence alternation of CDs in zebrafish and the quenching assay of CDs by ATP, NADH and Fe3+ ions demonstrated that the decaying process of CDs in vivo might be induced by the synergistic effect of the metabolism process. All results indicated that large batches and high QYs of CDs can be acquired by employing natural and nontoxic hair and skin as precursors. To our knowledge, this is the first time to report SCDs, in vivo comparative studies of HCDs, SCDs and CCDs as bioprobes, and explore their mechanism of photostability in zebrafish. PMID:27886267

  14. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion.

    PubMed

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui

    2015-06-15

    The sensitive detection of heavy metal ions in the organism and aquatic ecosystem using nanosensors based on environment friendly and biocompatible materials still remains a challenge. A fluorescent turn-on nanosensor for lead (II) detection based on biocompatible graphene quantum dots and graphene oxide by employment of Pb(2+)-induced G-quadruplex formation was reported. Graphene quantum dots with high quantum yield, good biocompatibility were prepared and served as the fluorophore of Pb(2+) probe. Fluorescence turn-off of graphene quantum dots is easily achieved through efficient photoinduced electron transfer between graphene quantum dots and graphene oxide, and subsequent fluorescence turn-on process is due to the formation of G-quadraplex aptamer-Pb(2+) complex triggered by the addition of Pb(2+). This nanosensor can distinguish Pb(2+) ion from other ions with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a fast response time of one minute, a broad linear span of up to 400.0 nM and ultralow detection limit of 0.6 nM.

  15. Freestanding carbon nanodots/poly (vinyl alcohol) films with high photoluminescent quantum yield realized by inverted-pyramid structure

    NASA Astrophysics Data System (ADS)

    Pang, Linna; Ba, Lixiang; Pan, Wei; Shen, Wenzhong

    2017-02-01

    Carbon nanodots (C-dots) have attracted great attention for their biocompatibility and strong tunable photoluminescence (PL). However, aggregation-induced PL quenching blocks their practical application in solid-state optoelectronics. Here, we report a luminescent C-dots freestanding film with a substantially enhanced high quantum yield (QY) of 72.3%. A facile template method, rather than complicate lithography and etching technique is proposed to fabricate the C-dots composite films with large-area (8 inch × 8 inch) ordered micro-scale inverted-pyramid patterns on the surface. The control experiment and theoretical analysis demonstrate the key success to QY enhancement lies in the separation of C-dots and the pattern of surface inverted-pyramid structure. This work realizes the QY enhancement simply by geometrical optics, not the chemical treatment of luminescent particles. It provides a general approach to fabricate large-area freestanding luminescent composite film with high QY.

  16. Hydrogen quantum yields in the 360 nm photolysis of Eu/2+/ solutions and their relationship to photochemical fuel formation

    NASA Technical Reports Server (NTRS)

    Ryason, P. R.

    1977-01-01

    Water decomposition by a cyclic photoredox process is discussed in general terms. Thermodynamics determines the wavelength of the charge-transfer band corresponding to electron transfer to or from water of hydration of a cation. These relationships indicate that it is unlikely that a photoreduction reaction resulting in water decomposition will occur in the sea-level solar range of wavelengths. Such is not the case for photooxidation, and an example is known: the photolysis of Eu(2+) in aqueous solution. Hydrogen quantum yields have been determined for this reaction. They are sufficiently high (about 0.3) as to offer encourangement for the further exploration of photoredox reactions as a means of solar energy conversion.

  17. Freestanding carbon nanodots/poly (vinyl alcohol) films with high photoluminescent quantum yield realized by inverted-pyramid structure.

    PubMed

    Pang, Linna; Ba, Lixiang; Pan, Wei; Shen, Wenzhong

    2017-02-24

    Carbon nanodots (C-dots) have attracted great attention for their biocompatibility and strong tunable photoluminescence (PL). However, aggregation-induced PL quenching blocks their practical application in solid-state optoelectronics. Here, we report a luminescent C-dots freestanding film with a substantially enhanced high quantum yield (QY) of 72.3%. A facile template method, rather than complicate lithography and etching technique is proposed to fabricate the C-dots composite films with large-area (8 inch × 8 inch) ordered micro-scale inverted-pyramid patterns on the surface. The control experiment and theoretical analysis demonstrate the key success to QY enhancement lies in the separation of C-dots and the pattern of surface inverted-pyramid structure. This work realizes the QY enhancement simply by geometrical optics, not the chemical treatment of luminescent particles. It provides a general approach to fabricate large-area freestanding luminescent composite film with high QY.

  18. Kinetically Stable Lanthanide Complexes Displaying Exceptionally High Quantum Yields upon Long-Wavelength Excitation: Synthesis, Photophysical Properties, and Solution Speciation.

    PubMed

    Routledge, Jack D; Jones, Michael W; Faulkner, Stephen; Tropiano, Manuel

    2015-04-06

    We demonstrate how highly emissive, kinetically stable complexes can be prepared using the macrocyclic scaffold of DO3A bearing coordinating aryl ketones as highly effective sensitizing chromophores. In the europium complexes, high quantum yields (up to 18% in water) can be combined with long-wavelength excitation (370 nm). The behavior in solution upon variation of pH, studied by means of UV-vis absorption, emission, and NMR spectroscopies, reveals that the nature of the chromophore can give rise to pH-dependent behavior as a consequence of deprotonation adjacent to the carbonyl group. Knowledge of the molecular speciation in solution is therefore critical when assessing the luminescence properties of such complexes.

  19. Phosphorescent Iridium(III) Complexes Bearing Fluorinated Aromatic Sulfonyl Group with Nearly Unity Phosphorescent Quantum Yields and Outstanding Electroluminescent Properties.

    PubMed

    Zhao, Jiang; Yu, Yue; Yang, Xiaolong; Yan, Xiaogang; Zhang, Huiming; Xu, Xianbin; Zhou, Guijiang; Wu, Zhaoxin; Ren, Yixia; Wong, Wai-Yeung

    2015-11-11

    A series of heteroleptic functional Ir(III) complexes bearing different fluorinated aromatic sulfonyl groups has been synthesized. Their photophysical features, electrochemical behaviors, and electroluminescent (EL) properties have been characterized in detail. These complexes emit intense yellow phosphorescence with exceptionally high quantum yields (ΦP > 0.9) at room temperature, and the emission maxima of these complexes can be finely tuned depending upon the number of the fluorine substituents on the pendant phenyl ring of the sulfonyl group. Furthermore, the electrochemical properties and electron injection/transporting (EI/ET) abilities of these Ir(III) phosphors can also be effectively tuned by the fluorinated aromatic sulfonyl group to furnish some desired characters for enhancing the EL performance. Hence, the maximum luminance efficiency (ηL) of 81.2 cd A(-1), corresponding to power efficiency (ηP) of 64.5 lm W(-1) and external quantum efficiency (ηext) of 19.3%, has been achieved, indicating the great potential of these novel phosphors in the field of organic light-emitting diodes (OLEDs). Furthermore, a clear picture has been drawn for the relationship between their optoelectronic properties and chemical structures. These results should provide important information for developing highly efficient phosphors.

  20. Developing a diagnostic model for estimating terrestrial vegetation gross primary productivity using the photosynthetic quantum yield and Earth Observation data.

    PubMed

    Ogutu, Booker O; Dash, Jadunandan; Dawson, Terence P

    2013-09-01

    This article develops a new carbon exchange diagnostic model [i.e. Southampton CARbon Flux (SCARF) model] for estimating daily gross primary productivity (GPP). The model exploits the maximum quantum yields of two key photosynthetic pathways (i.e. C3 and C4 ) to estimate the conversion of absorbed photosynthetically active radiation into GPP. Furthermore, this is the first model to use only the fraction of photosynthetically active radiation absorbed by photosynthetic elements of the canopy (i.e. FAPARps ) rather than total canopy, to predict GPP. The GPP predicted by the SCARF model was comparable to in situ GPP measurements (R(2)  > 0.7) in most of the evaluated biomes. Overall, the SCARF model predicted high GPP in regions dominated by forests and croplands, and low GPP in shrublands and dry-grasslands across USA and Europe. The spatial distribution of GPP from the SCARF model over Europe and conterminous USA was comparable to those from the MOD17 GPP product except in regions dominated by croplands. The SCARF model GPP predictions were positively correlated (R(2)  > 0.5) to climatic and biophysical input variables indicating its sensitivity to factors controlling vegetation productivity. The new model has three advantages, first, it prescribes only two quantum yield terms rather than species specific light use efficiency terms; second, it uses only the fraction of PAR absorbed by photosynthetic elements of the canopy (FAPARps ) hence capturing the actual PAR used in photosynthesis; and third, it does not need a detailed land cover map that is a major source of uncertainty in most remote sensing based GPP models. The Sentinel satellites planned for launch in 2014 by the European Space Agency have adequate spectral channels to derive FAPARps at relatively high spatial resolution (20 m). This provides a unique opportunity to produce global GPP operationally using the Southampton CARbon Flux (SCARF) model at high spatial resolution.

  1. Excitonic structure and pumping power dependent emission blue-shift of type-II quantum dots

    PubMed Central

    Klenovský, Petr; Steindl, Petr; Geffroy, Dominique

    2017-01-01

    In this work we study theoretically and experimentally the multi-particle structure of the so-called type-II quantum dots with spatially separated electrons and holes. Our calculations based on customarily developed full configuration interaction ap- proach reveal that exciton complexes containing holes interacting with two or more electrons exhibit fairly large antibinding energies. This effect is found to be the hallmark of the type-II confinement. In addition, an approximate self-consistent solution of the multi-exciton problem allows us to explain two pronounced phenomena: the blue-shift of the emission with pumping and the large inhomogeneous spectral broadening, both of those eluding explanation so far. The results are confirmed by detailed intensity and polarization resolved photoluminescence measurements on a number of type-II samples. PMID:28358120

  2. Total integral reactive cross sections for F + H2 yielding HF + H - Comparison of converged quantum, quasiclassical trajectory and experimental results

    NASA Technical Reports Server (NTRS)

    Neuhauser, Daniel; Judson, Richard S.; Jaffe, Richard L.; Baer, Michael; Kouri, Donald J.

    1991-01-01

    The paper reports converged quantum total integral reactive cross sections for the reaction F + H2 yielding HF + H, for initial rotational states j sub i = 0 and 1, using a time-dependent method. The results are compared to classical results and to the experimental results of Neumark et al. (1985). Strong quantum effects are found in the threshold region for both initial states (i.e., in the dependence of the reaction on initial state for low energies). The classical results agree better with experiment than do the quantum results; this appears to be due to errors in the potential used.

  3. The structure and interpretation of cosmology: Part II. The concept of creation in inflation and quantum cosmology

    NASA Astrophysics Data System (ADS)

    McCabe, Gordon

    The purpose of the paper, of which this is part II, is to review, clarify, and critically analyse modern mathematical cosmology. The emphasis is upon mathematical objects and structures, rather than numerical computations. Part II provides a critical analysis of inflationary cosmology and quantum cosmology, with particular attention to the claims made that these theories can explain the creation of the universe.

  4. Acetylene bridged porphyrin-monophthalocyaninato ytterbium(III) hybrids with strong two-photon absorption and high singlet oxygen quantum yield.

    PubMed

    Ke, Hanzhong; Li, Wenbin; Zhang, Tao; Zhu, Xunjin; Tam, Hoi-Lam; Hou, Anxin; Kwong, Daniel W J; Wong, Wai-Kwok

    2012-04-21

    Several acetylene bridged porphyrin-monophthalocyaninato ytterbium(III) hybrids, PZn-PcYb, PH(2)-PcYb and PPd-PcYb, have been prepared and characterized by (1)H and (31)P NMR, mass spectrometry, and UV-vis spectroscopy. Their photophysical and photochemical properties, especially the relative singlet oxygen ((1)O(2)) quantum yields and the two-photon absorption cross-section (σ(2)), were investigated. These three newly synthesized compounds exhibited very large σ(2) values and substantial (1)O(2) quantum yields upon photo-excitation, making them potential candidates as one- and two-photon photodynamic therapeutic agents.

  5. Cooperation of charges in photosynthetic O2 evolution. II - Damping of flash yield oscillation, deactivation.

    NASA Technical Reports Server (NTRS)

    Forbush, B.; Kok, B.; Mcgloin, M. P.

    1971-01-01

    A quantitative analysis is made of a linear four-step model for photosynthetic molecular oxygen evolution in which each photochemical trapping center or an associated enzyme cycles through five oxidation states. Based on data obtained with isolated chloroplasts, a number of aspects were considered, including the two perturbations which damp the oscillation of the oxygen flash yield in a flash sequence. The kinetics and the mechanism of deactivation was another aspect investigated.

  6. A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid.

    PubMed

    Hussain, M Iftikhar; Reigosa, Manuel J

    2011-11-01

    This study investigated the effects of cinnamic acid (CA) on growth, biochemical and physiological responses of Lactuca sativa L. CA (0.1, 0.5, 1.0 and 1.5 mM) treatments decreased plant height, root length, leaf and root fresh weight, but it did not affect the leaf water status. CA treatment (1.5 mM) significantly reduced F(v), F(m), photochemical efficiency of PSII (F(v)/F(m)) and quantum yield of PSII (ΦPSII) photochemistry in L. sativa. The photochemical fluorescence quenching (qP) and non-photochemical quenching (NPQ) were reduced after treatment with 1.5 mM CA. Fraction of photon energy absorbed by PS II antennae trapped by "open" PS II reaction centers (P) was reduced by CA (1.5 mM) while, portion of absorbed photon energy thermally dissipated (D) and photon energy absorbed by PSII antennae and trapped by "closed" PSII reaction centers (E) was increased. Carbon isotope composition ratios (δ(13)C) was less negative (-27.10) in CA (1.5 mM) treated plants as compared to control (-27.61). Carbon isotope discrimination (Δ(13)C) and ratio of intercellular CO(2) concentration (ci/ca) from leaf to air were also less in CA treated plants. CA (1.5 mM) also decreased the leaf protein contents of L. sativa as compared to control.

  7. The stability of de Sitter space with a scalar quantum field (II). The linear analysis

    NASA Astrophysics Data System (ADS)

    Rogers, Barrett; Isaacson, Jeffrey A.

    1992-01-01

    Using the semiclassical Einstein equations, we study the spatially homogeneous perturbations of a spatially flat de Sitter metric arising from fluctuations of a scalar quantum field about the Bunch-Davies vacuum state. The exact solution for the metric perturbation in the linear approzimation is obtained in terms of its Laplace transform, and analyzed for late times and arbitrary initial conditions. The results indicate the existence of only two undamped modes: (i) a "neutrally stable" mode, which derives from a spatial coordinate re-scaling symmetry in flat, Robertson-Walker space-times, and (ii) an unstable but unphysical "ghost" mode with a typical time scale m P-1 = G, which is related to the Landau ghost of the underlying quantum field theory. We show how to remove the latter mode by a restriction on the initial data. The existence of any physical instability in this spatially homogeneous system has been ruled out.

  8. Searching for quantum gravity with high-energy atmospheric neutrinos and AMANDA-II

    NASA Astrophysics Data System (ADS)

    Kelley, John Lawrence

    2008-06-01

    The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance (VLI) or quantum decoherence (QD). Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on VLI and QD parameters using a maximum likelihood method. Given the absence of new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.

  9. Factorizations in special relativity and quantum scattering on the line II

    NASA Astrophysics Data System (ADS)

    Brezov, Danail S.; Mladenova, Clementina D.; Mladenov, Ivaïlo M.

    2016-12-01

    The present paper may be regarded as a continuation of both [1] and [2]: we discuss the same physical context as in the former, while applying a specific decomposition technique initially proposed in the latter. The method used in [1], however, is completely different (based on repetitive conjugation) and has more in common with the familiar Wigner decomposition [3]. Here we obtain in a dynamical manner a compact two-factor decomposition, which in the Euclidean case allows for convenient parametrizations in rigid body kinematics and quantum-mechanical angular momenta. Applied to the group Spin(2, 1) ≅ SL(2, ℝ), this technique yields numerous applications in hyperbolic geometry and 2 + 1 dimensional special relativity. However, we choose to illustrate it with a particular problem arising in quantum mechanical scattering theory. The extension to SO(3, 1) and SO(2, 2) is discussed as well and numerical examples are provided in the former case.

  10. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and profitability

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    The optimality of irrigation strategies may be sought with respect to a number of criteria, including water requirements, crop yield, and profitability. To explore the suitability of different demand-based irrigation strategies, we link the probabilistic description of irrigation requirements under stochastic hydro-climatic conditions, provided in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture. Adv Water Resour 2011;34(2):263-71], to crop-yield and economic analyses. Water requirements, application efficiency, and investment costs of different irrigation methods, such as surface, sprinkler and drip irrigation systems, are described via a unified conceptual and theoretical approach, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. This allows us to analyze irrigation strategies with respect to sustainability, productivity, and economic return, using the same framework, and quantify them as a function of climate, crop, and soil parameters. We apply our results to corn ( Zea mays), a food staple and biofuel source, which is currently mainly irrigated through surface systems. As our analysis shows, micro-irrigation maximizes water productivity, but more traditional solutions may be more profitable at least in some contexts.

  11. Secondary Electron Yield Measurements and Groove Chambers Tests in the PEP-II Beam Line Straights Sections

    SciTech Connect

    Pivi, M.T.F.; King, F.; Kirby, R.E.; Markiewicz, T; Raubenheimer, T.O.; Seeman, J.; Wang, L.; /SLAC

    2008-07-03

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders such as ILC and CLIC [1, 2]. In the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed vacuum chambers with rectangular grooves in a straight magnetic-free section to test this promising possible electron cloud mitigation technique. We have also installed a special chamber to monitor the secondary electron yield of TiN and TiZrV (NEG) coating, Copper, Stainless Steel and Aluminum under the effect of electron and photon conditioning in situ in the beam line. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the ILC damping ring, the latest results on in situ secondary electron yield conditioning and recent update on the groove tests in PEP-II.

  12. Aharonov-Bohm signature for neutral polarized excitons in type-II quantum dot ensembles.

    PubMed

    Ribeiro, E; Govorov, A O; Carvalho, W; Medeiros-Ribeiro, G

    2004-03-26

    The Aharonov-Bohm effect is commonly believed to be a typical feature of the motion of a charged particle interacting with the electromagnetic vector potential. Here we present a magnetophotoluminescence study of type-II InP/GaAs self-assembled quantum dots, revealing the Aharonov-Bohm-type oscillations for neutral excitons when the hole ground state changes its angular momentum from l(h)=0 to l(h)=1, 2, and 3. The hole-ring parameters derived from a simple model are in excellent agreement with the structural parameters for this system.

  13. Exciton storage in type-II quantum dots using the optical Aharonov-Bohm effect

    SciTech Connect

    Climente, Juan I.; Planelles, Josep

    2014-05-12

    We investigate the bright-to-dark exciton conversion efficiency in type-II quantum dots subject to a perpendicular magnetic field. To this end, we take the exciton storage protocol recently proposed by Simonin and co-workers [Phys. Rev. B 89, 075304 (2014)] and simulate its coherent dynamics. We confirm the storage is efficient in perfectly circular structures subject to weak external electric fields, where adiabatic evolution is dominant. In practice, however, the efficiency rapidly degrades with symmetry lowering. Besides, the use of excited states is likely unfeasible owing to the fast decay rates. We then propose an adaptation of the protocol which does not suffer from these limitations.

  14. Quantum wave packet study of nonadiabatic effects in O({sup 1}D) + H{sub 2} {yields} OH + H

    SciTech Connect

    Gray, S.K.; Petrongolo, C.; Drukker, K.; Schatz, G.C.

    1999-11-25

    The authors develop a wave packet approach to treating the electronically nonadiabatic reaction dynamics of O({sup 1}D) + H{sub 2} {yields} OH + H, allowing for the 1{sup 1}A{prime} and 2{sup 1}A{prime} potential energy surfaces and couplings, as well as the three internal nuclear coordinates. Two different systems of coupled potential energy surfaces are considered, a semiempirical diatomics-in-molecules (DIM) system due to Kuntz, Niefer, and Sloan, and a recently developed ab initio system due to Dobbyn and Knowles (DK). Nonadiabatic quantum results, with total angular momentum J = 0, are obtained and discussed. Several single surface calculations are carried out for comparison with the nonadiabatic results. Comparisons with trajectory surface hopping (TSH) calculations, and with approximate quantum calculations, are also included. The electrostatic coupling produces strong interactions between the 1{sup 1}A{prime} and 2{sup 1}A{prime} states at short range (where these states have a conical intersection) and weak but, interestingly, nonnegligible interactions between these states at longer range. The wave packet results show that if the initial state is chosen to be effectively the 1A{prime} state (for which insertion to form products occurs on the adiabatic surface), then there is very little difference between the adiabatic and coupled surface results. In either case the reaction probability is a relatively flat function of energy, except for resonant oscillations. However, the 2A{prime} reaction, dynamics (which involves a collinear transition state) is strongly perturbed by nonadiabatic effects in two distinct ways. At energies above the transition state barrier, the diabatic limit is dominant, and the 2A{prime} reaction probability is similar to that for 1A{double{underscore}prime}, which has no coupling with the other surfaces. At energies below the barrier, the authors find a significant component of the reaction probability from long range electronic

  15. Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50-85% photoluminescence quantum yields.

    PubMed

    Wei, Song; Yang, Yanchun; Kang, Xiaojiao; Wang, Lan; Huang, Lijian; Pan, Daocheng

    2016-05-26

    All inorganic CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (PNCs) with 50-85% photoluminescence quantum yields and tunable emission in the range of 440-682 nm have been successfully synthesized at room temperature in open air. This facile strategy enables us to prepare gram-scale CsPbBr3 NCs with a PLQY approaching 80%.

  16. Extremely long carrier lifetime at intermediate states in wall-inserted type II quantum dot absorbers

    NASA Astrophysics Data System (ADS)

    Sato, Daisuke; Ota, Junya; Nishikawa, Kazutaka; Takeda, Yasuhiko; Miyashita, Naoya; Okada, Yoshitaka

    2012-11-01

    To realize highly efficient intermediate-band solar cells (IB-SCs), a long lifetime of photo-generated carriers in the IB is essential. We propose a new concept for this purpose based on IB absorbers using quantum-dots (QDs). By inserting potential walls between QDs and barriers that form a type II band alignment, electrons in the IB and holes in the valence band are farther separated compared to those in a conventional type II QD material, leading to significant reduction of radiative recombination. We designed a concrete structure using InAs QDs, GaAs1-xSbx barriers, and GaAs walls to find the suitable GaAs wall thickness and Sb content being 2 nm and x = 0.18, respectively, and demonstrated a lifetime of electrons excited to the IB as long as 220 ns.

  17. Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence

    NASA Astrophysics Data System (ADS)

    Hou, Juan; Wang, Wei; Zhou, Tianyu; Wang, Bo; Li, Huiyu; Ding, Lan

    2016-05-01

    Heteroatom doped carbon dots (CDs) have received increasing attention due to their unique properties and related applications. However, previously reported CDs generally show strong emission only in the blue-light region, thus restricting their further applications. And the fundamental investigation on the preparation process is always neglected. Herein, we have developed a simple and solvent-free synthetic strategy to fabricate nitrogen-doped CDs (N-CDs) from citric acid and dicyandiamide. The as-prepared N-CDs exhibited a uniform size distribution, strong yellowish-green fluorescence emission and a high quantum yield of 73.2%. The products obtained at different formation stages were detailedly characterized by transmission electron microscopy, X-ray diffraction spectrometer, X-ray photoelectron spectroscopy and UV absorbance spectroscopy. A possible formation mechanism has thus been proposed including dehydration, polymerization and carbonization. Furthermore, the N-CDs could serve as a facile and label-free probe for the detection of iron and fluorine ions with detection limits of 50 nmol L-1 and 75 nmol L-1, respectively.Heteroatom doped carbon dots (CDs) have received increasing attention due to their unique properties and related applications. However, previously reported CDs generally show strong emission only in the blue-light region, thus restricting their further applications. And the fundamental investigation on the preparation process is always neglected. Herein, we have developed a simple and solvent-free synthetic strategy to fabricate nitrogen-doped CDs (N-CDs) from citric acid and dicyandiamide. The as-prepared N-CDs exhibited a uniform size distribution, strong yellowish-green fluorescence emission and a high quantum yield of 73.2%. The products obtained at different formation stages were detailedly characterized by transmission electron microscopy, X-ray diffraction spectrometer, X-ray photoelectron spectroscopy and UV absorbance spectroscopy. A

  18. Aqueous synthesis of nontoxic Ag2Se/ZnSe quantum dots designing as fluorescence sensors for detection of Ag(I) and Cu(II) ions.

    PubMed

    Wang, Chunlei; Xu, Shuhong; Zhao, Zengxia; Wang, Zhuyuan; Cui, Yiping

    2015-01-01

    We reported the synthesis of water-soluble and nontoxic Ag(2)Se/ZnSe Quantum Dots (QDs) using for fluorescence sensors. The influences of various experimental conditions including the synthesis pH, types of ligand, feed ratios, and the refluxed time on the growth process and fluorescence of QDs were investigated in detail. Under optimal conditions, Ag(2)Se/ZnSe QDs show a single emission peak around 490 nm with the maximal photoluminescence (PL) quantum yield (QYs) of 13.7 %. As-prepared Ag(2)Se/ZnSe QDs can be used for detection of Ag(II) and Cu(II). The detection limits are 1 × 10(-6) mol/L to 5 × 10(-5) mol/L for Ag (I), and 2 × 10(-6) mol/L to 1.10 × 10(-4) mol/L for Cu(II).

  19. Gas assisted method synthesis nitrogen-doped carbon quantum dots and Hg (II) sensing.

    PubMed

    Li, Yamei; Wang, Nan; He, Zhanhang

    2016-11-29

    Nitrogen-doped fluorescent carbon quantum dots (CQDs) was prepared by gas-assisted method using cellulose as precursors under ammonia atmosphere, which not only exhibited excellent photoluminescent properties, but also showed highly selective and sensitive detection of mercury ion. The nitrogen-doped CQDs displayed excitation wavelength dependent fluorescent behavior with outstanding dispersibility. Moreover, they exhibited high tolerance to various external conditions, such as storage time, pH value, and ionic strength. The rapid detection of Hg (II) by one-step operation within 1 min and the good linear correlation between I0/I and Hg (II) concentration in the range of 10-100 nM made the nitrogen-doped CQDs a promising nanoprobe for Hg (II) detection. The detection limit of the nitrogen-doped CQDs is about 7.7 nM. Such a nanoprobe has been successfully applied for the analysis of Hg (II) in natural water samples, demonstrating excellent practical feasibility.

  20. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    PubMed

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism.

  1. A Class of Asymmetric Gapped Hamiltonians on Quantum Spin Chains and its Characterization II

    NASA Astrophysics Data System (ADS)

    Ogata, Yoshiko

    2016-12-01

    We give a characterization of the class of gapped Hamiltonians introduced in Part I (Ogata, A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015). The Hamiltonians in this class are given as MPS (Matrix product state) Hamiltonians. In Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), we list up properties of ground state structures of Hamiltonians in this class. In this Part II, we show the converse. Namely, if a (not necessarily MPS) Hamiltonian H satisfies five of the listed properties, there is a Hamiltonian H' from the class by Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), satisfying the following: The ground state spaces of the two Hamiltonians on the infinite interval coincide. The spectral projections onto the ground state space of H on each finite intervals are approximated by that of H' exponentially well, with respect to the interval size. The latter property has an application to the classification problem with open boundary conditions.

  2. The quantum interference effects in the SC II 4247 Å line of the second solar spectrum

    SciTech Connect

    Smitha, H. N.; Nagendra, K. N.; Stenflo, J. O.; Bianda, M.; Ramelli, R. E-mail: knn@iiap.res.in E-mail: mbianda@irsol.ch

    2014-10-10

    The Sc II 4247 Å line formed in the chromosphere is one of the lines well known, like the Na I D{sub 2} and Ba II D{sub 2}, for its prominent triple-peak structure in Q/I and the underlying quantum interference effects governing it. In this paper, we try to study the nature of this triple-peak structure using the theory of F-state interference including the effects of partial frequency redistribution (PRD) and radiative transfer (RT). We compare our results with the observations taken in a quiet region near the solar limb. In spite of accounting for PRD and RT effects, it has not been possible to reproduce the observed triple-peak structure in Q/I. While the two wing PRD peaks (on either side of central peak) and the near wing continuum can be reproduced, the central peak is completely suppressed by the enhanced depolarization resulting from the hyperfine structure splitting. This suppression remains for all the tested widely different one-dimensional model atmospheres or for any multi-component combinations of them. While multidimensional RT effects may improve the fit to the intensity profiles, they do not appear capable of explaining the enigmatic central Q/I peak. This leads us to suspect that some aspect of quantum physics is missing.

  3. Measurement procedure for absolute broadband infrared up-conversion photoluminescent quantum yields: Correcting for absorption/re-emission

    SciTech Connect

    MacDougall, Sean K. W.; Ivaturi, Aruna; Marques-Hueso, Jose; Richards, Bryce S.

    2014-06-15

    The internal photoluminescent quantum yield (iPLQY) – defined as the ratio of emitted photons to those absorbed – is an important parameter in the evaluation and application of luminescent materials. The iPLQY is rarely reported due to the complexities in the calibration of such a measurement. Herein, an experimental method is proposed to correct for re-emission, which leads to an underestimation of the absorption under broadband excitation. Although traditionally the iPLQY is measured using monochromatic sources for linear materials, this advancement is necessary for nonlinear materials with wavelength dependent iPLQY, such as the application of up-conversion to solar energy harvesting. The method requires an additional measurement of the emission line shape that overlaps with the excitation and absorption spectra. Through scaling of the emission spectrum, at the long wavelength edge where an overlap of excitation does not occur, it is possible to better estimate the value of iPLQY. The method has been evaluated for a range of nonlinear material concentrations and under various irradiances to analyze the necessity and boundary conditions that favor the proposed method. Use of this refined method is important for a reliable measurement of iPLQY under a broad illumination source such as the Sun.

  4. Low cost 3D-printing used in an undergraduate project: an integrating sphere for measurement of photoluminescence quantum yield

    NASA Astrophysics Data System (ADS)

    Tomes, John J.; Finlayson, Chris E.

    2016-09-01

    We report upon the exploitation of the latest 3D printing technologies to provide low-cost instrumentation solutions, for use in an undergraduate level final-year project. The project addresses prescient research issues in optoelectronics, which would otherwise be inaccessible to such undergraduate student projects. The experimental use of an integrating sphere in conjunction with a desktop spectrometer presents opportunities to use easily handled, low cost materials as a means to illustrate many areas of physics such as spectroscopy, lasers, optics, simple circuits, black body radiation and data gathering. Presented here is a 3rd year undergraduate physics project which developed a low cost (£25) method to manufacture an experimentally accurate integrating sphere by 3D printing. Details are given of both a homemade internal reflectance coating formulated from readily available materials, and a robust instrument calibration method using a tungsten bulb. The instrument is demonstrated to give accurate and reproducible experimental measurements of luminescence quantum yield of various semiconducting fluorophores, in excellent agreement with literature values.

  5. Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves.

    PubMed

    Niinemets, Ülo; Sun, Zhihong; Talts, Eero

    2015-12-01

    Leaf age alters the balance between the use of end-product of plastidic isoprenoid synthesis pathway, dimethylallyl diphosphate (DMADP), in prenyltransferase reactions leading to synthesis of pigments of photosynthetic machinery and in isoprene synthesis, but the implications of such changes on environmental responses of isoprene emission have not been studied. Because under light-limited conditions, isoprene emission rate is controlled by DMADP pool size (SDMADP ), shifts in the share of different processes are expected to particularly strongly alter the light dependency of isoprene emission. We examined light responses of isoprene emission in young fully expanded, mature and old non-senescent leaves of hybrid aspen (Populus tremula x P. tremuloides) and estimated in vivo SDMADP and isoprene synthase activity from post-illumination isoprene release. Isoprene emission capacity was 1.5-fold larger in mature than in young and old leaves. The initial quantum yield of isoprene emission (αI ) increased by 2.5-fold with increasing leaf age primarily as the result of increasing SDMADP . The saturating light intensity (QI90 ) decreased by 2.3-fold with increasing leaf age, and this mainly reflected limited light-dependent increase of SDMADP possibly due to feedback inhibition by DMADP. These major age-dependent changes in the shape of the light response need consideration in modelling canopy isoprene emission.

  6. Facile Synthesis of pH-sensitive Germanium Nanocrystals with High Quantum Yield for Intracellular Acidic Compartment Imaging.

    PubMed

    Li, Feng; Wang, Jing; Sun, Shuqing; Wang, Hai; Tang, Zhiyong; Nie, Guangjun

    2015-04-24

    A green-light emitting germanium nanocrystal-based biosensor to monitor lysosomal pH changes is developed. The Ge nanocrystals are synthesized in an aqueous solution with a significantly enhanced photoluminescence quantum yield of 26%. This synthesis involves a facile solution based route which avoided the use of toxic or environmentally unfriendly agents. Importantly, the photoluminescence intensity of the synthesized Ge nanocrystals is particularly sensitive to changes in pH between 5 and 6. When incubated with cultured cells, the nanocrystals are internalized and subsequently translocated via the lysosomal pathway, and the Ge nanocrystals' fluorescence are greatly enhanced, even when the lysosomal pH is only slightly increased. These results reveal that the Ge nanocrystals possess high pH sensitivity compared to a commercially available dye, LysoSensor Green DND-189. The fluorescent properties of the Ge nanocrystals are demonstrated to be dependent on both the crystal form and their surface chemistry. The superior fluorescence properties and bioapplicability of the Ge nanocrystals makes them a promising intracellular bioimaging probe for monitoring various pH-sensitive processes in cells.

  7. Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis.

    PubMed

    Yin, Xinyou; Belay, Daniel W; van der Putten, Peter E L; Struik, Paul C

    2014-12-01

    Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (Φ CO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation have often been attributed either to light absorptance by non-photosynthetic pigments or to some data points being beyond the linear range of the irradiance response, both causing an underestimation of Φ CO2LL. We demonstrate here that a decrease in photosystem (PS) photochemical efficiency with increasing irradiance, even at very low levels, is another source of error that causes a systematic underestimation of Φ CO2LL. A model method accounting for this error was developed, and was used to estimate Φ CO2LL from simultaneous measurements of gas exchange and chlorophyll fluorescence on leaves using various combinations of species, CO2, O2, or leaf temperature levels. The conventional linear regression method under-estimated Φ CO2LL by ca. 10-15%. Differences in the estimated Φ CO2LL among measurement conditions were generally accounted for by different levels of photorespiration as described by the Farquhar-von Caemmerer-Berry model. However, our data revealed that the temperature dependence of PSII photochemical efficiency under low light was an additional factor that should be accounted for in the model.

  8. Photolysis of CH₃CHO at 248 nm: evidence of triple fragmentation from primary quantum yield of CH₃ and HCO radicals and H atoms.

    PubMed

    Morajkar, Pranay; Bossolasco, Adriana; Schoemaecker, Coralie; Fittschen, Christa

    2014-06-07

    Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH3CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO2 radicals by reaction with O2. The CH3 radical yield has been determined using the same technique following their conversion into CH3O2. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO2 profiles, obtained under various O2 concentrations, to a complex model, while the CH3 yield has been determined relative to the CH3 yield from 248 nm photolysis of CH3I. Time resolved HO2 profiles under very low O2 concentrations suggest that another unknown HO2 forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O2. HO2 profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH3CHO + hν(248nm) → CH3CHO*, CH3CHO* → CH3 + HCO ϕ(1a) = 0.125 ± 0.03, CH3CHO* → CH3 + H + CO ϕ(1e) = 0.205 ± 0.04, CH3CHO*[Formula: see text]CH3CO + HO2 ϕ(1f) = 0.07 ± 0.01. The CH3O2 quantum yield has been determined in separate experiments as ϕ(CH₃) = 0.33 ± 0.03 and is in excellent agreement with the CH3 yields derived from the HO2 measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH3CHO. From arithmetic considerations taking into account the HO2 and CH3 measurements we deduce a remaining quantum yield for the molecular pathway: CH3CHO* → CH4 + CO ϕ(1b) = 0.6. All experiments can be consistently explained with absence of the formerly considered pathway: CH3CHO* → CH3CO + H ϕ(1c) = 0.

  9. Effects of spawn, supplement and phase II compost additions and time of re-casing second break compost on mushroom (Agaricus bisporus) yield and biological efficiency.

    PubMed

    Royse, Daniel J; Chalupa, William

    2009-11-01

    Three cropping experiments (0710, 0803 and 0805) were conducted to determine the effect of adding spawn, various levels of delayed release nutrient, and phase II compost to 2nd break mushroom compost (2BkC) on mushroom yield and biological efficiency (BE). We also investigated the effect of delaying time of re-casing non-supplemented and supplemented 2BkC on mushroom yields and BEs. The addition of 14.6% spawn to nutrient-supplemented 2BkC (w.w./d.w) increased yield by 11.1% over the control (no spawn) but did not affect BE. The addition of delayed release supplements to 2BkC increased maximum yields by 29-54%, depending on the treatment. Substitution of 15% phase II compost in 2BkC (15/85) did not significantly affect mushroom yields. However, use of 15% phase II compost in 2BkC increased the response of the mixture to delayed release supplement. Yield response to increasing levels of supplement was greater in the 15/85 mixture compared to 100% 2BkC. Yields also increased as time of re-casing was delayed up to 10 days. Mushroom yields increased approximately 2.1% for each day re-casing was delayed. Overall yields were generally higher from commercial 2BkC compared to 2BkC originating from the Penn State Mushroom Research Center (MRC) probably due to nitrogen (N) content of the 2BkC. Nitrogen content in commercial 2BkC (Crop 0805) was 3% while N content in 2BkC from Crops 0710 and 0803 was 2.2% and 2.1%, respectively. By optimizing supplement levels and adding 15% phase II compost to commercial 2BkC, or by delaying casing by 5-10 days, it was possible to obtain BEs that were equivalent to supplemented phase II compost.

  10. Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells

    SciTech Connect

    Fischer, Stefan; Goldschmidt, Jan Christoph; Johnson, Noah J. J.; Pichaandi, Jothirmayanantham; Veggel, Frank C. J. M. van

    2015-11-21

    Colloidal upconverter nanocrystals (UCNCs) that convert near-infrared photons to higher energies are promising for applications ranging from life sciences to solar energy harvesting. However, practical applications of UCNCs are hindered by their low upconversion quantum yield (UCQY) and the high irradiances necessary to produce relevant upconversion luminescence. Achieving high UCQY under practically relevant irradiance remains a major challenge. The UCQY is severely limited due to non-radiative surface quenching processes. We present a rate equation model for migration of the excitation energy to show that surface quenching does not only affect the lanthanide ions directly at the surface but also many other lanthanide ions quite far away from the surface. The average migration path length is on the order of several nanometers and depends on the doping as well as the irradiance of the excitation. Using Er{sup 3+}-doped β-NaYF{sub 4} UCNCs, we show that very isotropic and thick (∼10 nm) β-NaLuF{sub 4} inert shells dramatically reduce the surface-related quenching processes, resulting in much brighter upconversion luminescence at simultaneously considerably lower irradiances. For these UCNCs embedded in poly(methyl methacrylate), we determined an internal UCQY of 2.0% ± 0.2% using an irradiance of only 0.43 ± 0.03 W/cm{sup 2} at 1523 nm. Normalized to the irradiance, this UCQY is 120× higher than the highest values of comparable nanomaterials in the literature. Our findings demonstrate the important role of isotropic and thick shells in achieving high UCQY at low irradiances from UCNCs. Additionally, we measured the additional short-circuit current due to upconversion in silicon solar cell devices as a proof of concept and to support our findings determined using optical measurements.

  11. The enhancement of fluorescence quantum yields of anilino naphthalene sulfonic acids by inclusion of various cyclodextrins and cucurbit[7]uril.

    PubMed

    Sueishi, Yoshimi; Fujita, Tomonori; Nakatani, Shinichiro; Inazumi, Naoya; Osawa, Yoshihiro

    2013-10-01

    The association constants (K) for the inclusion complexation of four kinds of cyclodextrins (CDs (β- and γ-), 2,6-di-O-methylated β-CD, and 2,3,6-tri-O-methylated β-CD) and cucurbit[7]uril (CB[7]) with 1,8- and 2,6-anilinonaphthalene sulfonic acids (ANSs) were determined from fluorescence spectra enhanced by inclusion. Various CDs and CB[7] form stable 1:1 inclusion complexes with 1,8- and 2,6-ANSs: K=80-11700 M(-1) for 2,6-ANS and 50-195 M(-1) for 1,8-ANS. The high stability of the inclusion complexes of 2,6-ANS with CB[7] and 2,6-di-O-methylated β-CD is shown. Further, we determined the fluorescence quantum yields (Φ values) for the inclusion complexes of ANSs by using a fluorescence spectrophotometer equipped with a half-moon unit. The Φ values of 1,8- and 2,6-ANSs were largely enhanced by the inclusion of methylated β-CDs and did not correlate with the degree of stability (K) of the inclusion complexes. We characterized the structures of the inclusion complexes by 2D ROESY-NMR measurements. In addition, the microenvironmental polarity inside the hydrophobic CD and CB[7] cavities was evaluated using the fluorescence probe 2,6-ANS. Based on the emission mechanism and the aspect of inclusion in a hydrophobic cavity, we have suggested that the microenvironmental polarity and viscosity for the excited state of ANS plays an important role for the Φ values of inclusion complexes.

  12. Photosynthetic maximum quantum yield increases are an essential component of the Southern Ocean phytoplankton response to iron.

    PubMed

    Hiscock, Michael R; Lance, Veronica P; Apprill, Amy M; Bidigare, Robert R; Johnson, Zackary I; Mitchell, B Greg; Smith, Walker O; Barber, Richard T

    2008-03-25

    It is well established that an increase in iron supply causes an increase in total oceanic primary production in many regions, but the physiological mechanism driving the observed increases has not been clearly identified. The Southern Ocean iron enrichment experiment, an iron fertilization experiment in the waters closest to Antarctica, resulted in a 9-fold increase in chlorophyll (Chl) concentration and a 5-fold increase in integrated primary production. Upon iron addition, the maximum quantum yield of photosynthesis (phi(m)) rapidly doubled, from 0.011 to 0.025 mol C.mol quanta(-1). Paradoxically, this increase in light-limited productivity was not accompanied by a significant increase in light-saturated productivity (P(max)(b)). P(max)(b), maximum Chl normalized productivity, was 1.34 mg C.mg Chl(-1).h(-1) outside and 1.49 mg C.mg Chl(-1).h(-1) inside the iron-enriched patch. The importance of phi(m) as compared with P(max)(b) in controlling the biological response to iron addition has vast implications for understanding the ecological response to iron. We show that an iron-driven increase in phi(m) is the proximate physiological mechanism affected by iron addition and can account for most of the increases in primary production. The relative importance of phi(m) over P(max)(b) in this iron-fertilized bloom highlights the limitations of often-used primary productivity algorithms that are driven by estimates of P(max)(b) but largely ignore variability in phi(m) and light-limited productivity. To use primary productivity models that include variability in iron supply in prediction or forecasting, the variability of light-limited productivity must be resolved.

  13. Polarization quantum properties in a type-II optical parametric oscillator below threshold

    SciTech Connect

    Zambrini, Roberta; Miguel, Maxi San; Gatti, Alessandra; Lugiato, Luigi

    2003-12-01

    We study the far-field spatial distribution of the quantum fluctuations in the transverse profile of the output light beam generated by a type-II optical parametric oscillator below threshold, including the effects of transverse walk-off. We study how quadrature field correlations depend on the polarization. We find spatial Einstein-Podolsky-Rosen entanglement in quadrature-polarization components. For the far-field points not affected by walk-off there is almost complete noise suppression in the proper quadratures difference of any orthogonal polarization components. We show the entanglement of the state of symmetric, intense, or macroscopic, spatial light modes. We also investigate nonclassical polarization properties in terms of the Stokes operators. We find perfect correlations in all Stokes parameters measured in opposite far-field points in the direction orthogonal to the walk-off, while locally the field is unpolarized and we find no polarization squeezing.

  14. Mid-IR photoluminescence and lasing of chromium doped II-VI quantum dots

    NASA Astrophysics Data System (ADS)

    Martyshkin, D. V.; Kim, C.; Moskalev, I. S.; Fedorov, V. V.; Mirov, S. B.

    2008-02-01

    Here we report a new method for transition-metal (TM) doped II-VI Quantum Dots (QD) fabrication and first mid-IR (2-3 μm) lasing at 77K of Cr 2+:ZnS QD powder (~ 27 nm grain size). Cr 2+:ZnS nanocrystalline dots (NCDs) were prepared using laser ablation. The mid-IR photoluminescence (PL) and lasing were studied. The dependence of PL spectrum profile on pump energy demonstrated a threshold behavior accompanied by the appearance of a sharp stimulated emission band around 2230 nm. The stimulated emission band is shifted to the longer wavelength with respect to the spontaneous emission and corresponds to the peak of the Cr:ZnS gain spectrum. This was also accompanied by a considerable lifetime shortening.

  15. Accurate quantum yields by laser gain vs absorption spectroscopy - Investigation of Br/Br(asterisk) channels in photofragmentation of Br2 and IBr

    NASA Technical Reports Server (NTRS)

    Haugen, H. K.; Weitz, E.; Leone, S. R.

    1985-01-01

    Various techniques have been used to study photodissociation dynamics of the halogens and interhalogens. The quantum yields obtained by these techniques differ widely. The present investigation is concerned with a qualitatively new approach for obtaining highly accurate quantum yields for electronically excited states. This approach makes it possible to obtain an accuracy of 1 percent to 3 percent. It is shown that measurement of the initial transient gain/absorption vs the final absorption in a single time-resolved signal is a very accurate technique in the study of absolute branching fractions in photodissociation. The new technique is found to be insensitive to pulse and probe laser characteristics, molecular absorption cross sections, and absolute precursor density.

  16. Photovoltaic detector based on type II heterostructure with deep AlSb/InAsSb/AlSb quantum well in the active region for the midinfrared spectral range

    SciTech Connect

    Mikhailova, M. P. Andreev, I. A.; Moiseev, K. D.; Ivanov, E. V.; Konovalov, G. G.; Mikhailov, M. Yu.; Yakovlev, Yu. P.

    2011-02-15

    Photodetectors for the spectral range 2-4 {mu}m, based on an asymmetric type-II heterostructure p-InAs/AlSb/InAsSb/AlSb/(p, n)GaSb with a single deep quantum well (QW) or three deep QWs at the heterointerface, have been grown by metal-organic vapor phase epitaxy and analyzed. The transport, luminescent, photoelectric, current-voltage, and capacitance-voltage characteristics of these structures have been examined. A high-intensity positive and negative luminescence was observed in the spectral range 3-4 {mu}m at high temperatures (300-400 K). The photosensitivity spectra were in the range 1.2-3.6 {mu}m (T = 77 K). Large values of the quantum yield ({eta} = 0.6-0.7), responsivity (S{sub {lambda}} = 0.9-1.4 A W{sup -1}), and detectivity (D*{sub {lambda}} = 3.5 Multiplication-Sign 10{sup 11} to 10{sup 10} cm Hz{sup 1/2} W{sup -1}) were obtained at T = 77-200 K. The small capacitance of the structures (C = 7.5 pF at V = -1 V and T = 300 K) enabled an estimate of the response time of the photodetector at {tau} = 75 ps, which corresponds to a bandwidth of about 6 GHz. Photodetectors of this kind are promising for heterodyne detection of the emission of quantum-cascade lasers and IR spectroscopy.

  17. Type II GaSb/GaAs quantum rings with extended photoresponse for efficient solar cells

    NASA Astrophysics Data System (ADS)

    Carrington, P. J.; Montesdeoca, D.; Fujita, H.; James, J.; Wagener, M. C.; Botha, J. R.; Marshall, A. R. J.; Krier, A.

    2016-09-01

    The introduction of GaSb quantum dots (QDs) within a GaAs single junction solar cell is attracting increasing interest as a means of absorbing long wavelength photons to extend the photoresponse and increase the short-circuit current. The band alignment in this system is type-II, such that holes are localized within the GaSb QDs but there is no electron confinement. Compared to InAs QDs this produces a red-shift of the photoresponse which could increase the short-circuit current and improve carrier extraction. GaSb nanostructures grown by molecular beam epitaxy (MBE) tend to preferentially form quantum rings (QRs) which are less strained and contain fewer defects than the GaSb QDs, which means that they are more suitable for dense stacking in the active region of a solar cell to reduce the accumulation of internal strain and enhance light absorption. Here, we report the growth and fabrication of GaAs based p-i-n solar cells containing ten layers of GaSb QRs. They show extended long wavelength photoresponse into the near-IR up to 1400 nm and enhanced short-circuit current compared to the GaAs control cell due to absorption of low energy photons. Although enhancement of the short-circuit current was observed, the thermionic emission of holes was found to be insufficient for ideal operation at room temperature.

  18. Electronic and optical properties of single excitons and biexcitons in type-II quantum dot nanocrystals

    NASA Astrophysics Data System (ADS)

    Koc, Fatih; Sahin, Mehmet

    2014-05-01

    In this study, a detailed investigation of the electronic and optical properties (i.e., binding energies, absorption wavelength, overlap of the electron-hole wave functions, recombination oscillator strength, etc.) of an exciton and a biexciton in CdTe/CdSe core/shell type-II quantum dot heterostructures has been carried out in the frame of the single band effective mass approximation. In order to determine the electronic properties, we have self-consistently solved the Poisson-Schrödinger equations in the Hartree approximation. We have considered all probable Coulomb interaction effects on both energy levels and also on the corresponding wave functions for both single exciton and biexciton. In addition, we have taken into account the quantum mechanical exchange-correlation effects in the local density approximation between same kinds of particles for biexciton. Also, we have examined the effect of the ligands and dielectric mismatch on the electronic and optical properties. We have used a different approximation proposed by Sahin and Koc [Appl. Phys. Lett. 102, 183103 (2013)] for the recombination oscillator strength of the biexciton for bound and unbound cases. The results obtained have been presented comparatively as a function of the shell thicknesses and probable physical reasons in behind of the results have been discussed in a detail.

  19. Electronic and optical properties of single excitons and biexcitons in type-II quantum dot nanocrystals

    SciTech Connect

    Koc, Fatih; Sahin, Mehmet E-mail: mehsahin@gmail.com

    2014-05-21

    In this study, a detailed investigation of the electronic and optical properties (i.e., binding energies, absorption wavelength, overlap of the electron-hole wave functions, recombination oscillator strength, etc.) of an exciton and a biexciton in CdTe/CdSe core/shell type-II quantum dot heterostructures has been carried out in the frame of the single band effective mass approximation. In order to determine the electronic properties, we have self-consistently solved the Poisson-Schrödinger equations in the Hartree approximation. We have considered all probable Coulomb interaction effects on both energy levels and also on the corresponding wave functions for both single exciton and biexciton. In addition, we have taken into account the quantum mechanical exchange-correlation effects in the local density approximation between same kinds of particles for biexciton. Also, we have examined the effect of the ligands and dielectric mismatch on the electronic and optical properties. We have used a different approximation proposed by Sahin and Koc [Appl. Phys. Lett. 102, 183103 (2013)] for the recombination oscillator strength of the biexciton for bound and unbound cases. The results obtained have been presented comparatively as a function of the shell thicknesses and probable physical reasons in behind of the results have been discussed in a detail.

  20. Enhanced carrier multiplication in engineered quasi-type-II quantum dots

    PubMed Central

    Cirloganu, Claudiu M.; Padilha, Lazaro A.; Lin, Qianglu; Makarov, Nikolay S.; Velizhanin, Kirill A.; Luo, Hongmei; Robel, Istvan; Pietryga, Jeffrey M.; Klimov, Victor I.

    2014-01-01

    One process limiting the performance of solar cells is rapid cooling (thermalization) of hot carriers generated by higher-energy solar photons. In principle, the thermalization losses can be reduced by converting the kinetic energy of energetic carriers into additional electron-hole pairs via carrier multiplication (CM). While being inefficient in bulk semiconductors this process is enhanced in quantum dots, although not sufficiently high to considerably boost the power output of practical devices. Here we demonstrate that thick-shell PbSe/CdSe nanostructures can show almost a fourfold increase in the CM yield over conventional PbSe quantum dots, accompanied by a considerable reduction of the CM threshold. These structures enhance a valence-band CM channel due to effective capture of energetic holes into long-lived shell-localized states. The attainment of the regime of slowed cooling responsible for CM enhancement is indicated by the development of shell-related emission in the visible observed simultaneously with infrared emission from the core. PMID:24938462

  1. Quantum yield for O-atom production in the VUV photodissociation of CO2 using the time-sliced velocity-mapped imaging (TS-VMI) method

    NASA Astrophysics Data System (ADS)

    Jackson, William M.

    2016-10-01

    VUV photodissociation above 10.5 eV is considered the primary region for photochemical destruction of CO2 by solar radiation. There is enough photon energy in this region so that in addition to ground state O(3PJ) and CO(1Σ +) that can be produced during photodissociation excited species such as atomic oxygen O(1D) and O(1S), as well as excited carbon monoxide CO(a3Π, a'3Σ+) also can be formed. Electronic excited oxygen atom and carbon monoxide are the species that are responsible for the airglows in atmospheres of the solar planets and comets. Therefore, detail photodissociation quantum yields for these excited species from CO2 are critical in interpreting the chemistry in these solar system bodies. We have previously shown that the time-sliced velocity-mapped imaging (TS-VMI) technique can provide detailed branching ratio information about photodissociation of diatomic molecules.1, 2 However, to date we have not been able to show how this technique can be use to determine absolute quantum yields for the products produced in the VUV photodissociation of CO2. In this talk we will describe how the known quantum yields for the photodissociation O2 to O(3P2), O(3P1), O(3P0) and O(1D) can be used to determine quantum yields of similar products in the photodissociation of CO2.[1] Yu Song, Hong Gao, Yih Chung Chang, D. Hammouténe, H. Ndome, M. Hochlaf, William M. Jackson, and C. Y. Ng, Ap. J., 819:23 (13pp), 2016; doi:10.3847/0004-637X/819/1/23.[2] Hong Gao, Yu Song, William M. Jackson and C. Y. Ng, J. Chem. Phys, 138, 191102, 2013.

  2. Time-resolved photoluminescence of type-II Ga(As)Sb/GaAs quantum dots embedded in an InGaAs quantum well.

    PubMed

    Tatebayashi, J; Liang, B L; Laghumavarapu, R B; Bussian, D A; Htoon, H; Klimov, V; Balakrishnan, G; Dawson, L R; Huffaker, D L

    2008-07-23

    Optical properties and carrier dynamics in type-II Ga(As)Sb/GaAs quantum dots (QDs) embedded in an InGaAs quantum well (QW) are reported. A large blueshift of the photoluminescence (PL) peak is observed with increased excitation densities. This blueshift is due to the Coulomb interaction between physically separated electrons and holes characteristic of the type-II band alignment, along with a band-filling effect of electrons in the QW. Low-temperature (4 K) time-resolved PL measurements show a decay time of [Formula: see text] ns from the transition between Ga(As)Sb QDs and InGaAs QW which is longer than that of the transition between Ga(As)Sb QDs and GaAs two-dimensional electron gas ([Formula: see text] ns).

  3. Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues.

    PubMed

    Xie, Jun-Ying; Li, Chun-Yan; Li, Yong-Fei; Fei, Junjie; Xu, Fen; Ou-Yang, Juan; Liu, Juan

    2016-10-04

    Glutathione (GSH), cysteine (Cys), and homocysteine (Hcy) are small-molecular biothiols that play key roles in various biological systems. Among these biothiols, GSH is the most abundant intracellular thiol. Until now, a small number of the near-infrared (NIR) fluorescent probes have been designed for the detection of GSH. Unfortunately, most of these NIR probes are based on cyanine dyes, which generally suffer low fluorescence quantum yield (Φ < 0.25), which are not suitable for bioimaging. In addition, some probes are difficult to effectively distinguish GSH from Cys and Hcy. In this work, an NIR fluorescent probe with high fluorescence quantum yield is developed by introducing a rigid coplanar structure such as rhodamine dyes, and the NIR probe (CyR) with spirolactam structure is first synthesized and used to recognize GSH. The characteristics of this NIR probe are as follows: (1) probe CyR exhibits high fluorescence quantum yield (Φ = 0.43) after the addition of GSH and high sensitivity toward GSH with 75-fold fluorescence enhancement. (2) The probe is highly selective, which will not interfere with the other biological thiols (Cys, Hcy) and amino acids. (3) A possible reaction mechanism of the NIR probe CyR and GSH (Cys, Hcy) can be proposed and proved by (1)H NMR, (13)C NMR, and MS (mass spectra). (4) The NIR probe displays selective detection of GSH in biological samples such as living cells and tissues.

  4. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxiang; Wildmann, Johannes S.; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G.

    2015-12-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (~10-2). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.

  5. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots

    PubMed Central

    Zhang, Jiaxiang; Wildmann, Johannes S.; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G.

    2015-01-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10−2). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications. PMID:26621073

  6. Analysis of the photosystem II by modelling the fluorescence yield transients during 10 seconds after a 10 ns pulse

    NASA Astrophysics Data System (ADS)

    Belyaeva, Natalya E.; Schmitt, Franz-Josef; Paschenko, Vladimir Z.; Riznichenko, Galina Yu.; Rubin, Andrew B.

    2014-10-01

    The dynamics of the photosystem II (PS II) redox states is imitated over nine orders of magnitude in time. Our simulations focus on the information of the chlorophyll a fluorescence induced by a 10 ns laser flash. The PS II model analyzes differences in the PS II reaction between leaves (A. Thaliana, spinach) and thermophilic Chlorella cells.

  7. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield.

    PubMed

    Jacob, Maik H; Dsouza, Roy N; Ghosh, Indrajit; Norouzy, Amir; Schwarzlose, Thomas; Nau, Werner M

    2013-01-10

    effective FRET rate and the recovered donor-acceptor distance depend on the quantum yield, most strongly in the absence of diffusion, which has to be accounted for in the interpretation of distance trends monitored by FRET.

  8. Study of calculated and measured time dependent delayed neutron yields. [TX, for calculating delayed neutron yields; MATINV, for matrix inversion; in FORTRAN for LSI-II minicomputer

    SciTech Connect

    Waldo, R.W.

    1980-05-01

    Time-dependent delayed neutron emission is of interest in reactor design, reactor dynamics, and nuclear physics studies. The delayed neutrons from neutron-induced fission of /sup 232/U, /sup 237/Np, /sup 238/Pu, /sup 241/Am, /sup 242m/Am, /sup 245/Cm, and /sup 249/Cf were studied for the first time. The delayed neutron emission from /sup 232/Th, /sup 233/U, /sup 235/U, /sup 238/U, /sup 239/Pu, /sup 241/Pu, and /sup 242/Pu were measured as well. The data were used to develop an empirical expression for the total delayed neutron yield. The expression gives accurate results for a large variety of nuclides from /sup 232/Th to /sup 252/Cf. The data measuring the decay of delayed neutrons with time were used to derive another empirical expression predicting the delayed neutron emission with time. It was found that nuclides with similar mass-to-charge ratios have similar decay patterns. Thus the relative decay pattern of one nuclide can be established by any measured nuclide with a similar mass-to-charge ratio. A simple fission product yield model was developed and applied to delayed neutron precursors. It accurately predicts observed yield and decay characteristics. In conclusion, it is possible to not only estimate the total delayed neutron yield for a given nuclide but the time-dependent nature of the delayed neutrons as well. Reactors utilizing recycled fuel or burning actinides are likely to have inventories of fissioning nuclides that have not been studied until now. The delayed neutrons from these nuclides can now be incorporated so that their influence on the stability and control of reactors can be delineated. 8 figures, 39 tables.

  9. Metastable quantum phase transitions in a periodic one-dimensional Bose gas. II. Many-body theory

    SciTech Connect

    Kanamoto, R.; Carr, L. D.; Ueda, M.

    2010-02-15

    We show that quantum solitons in the Lieb-Liniger Hamiltonian are precisely the yrast states. We identify such solutions with Lieb's type II excitations from weak to strong interactions, clarifying a long-standing question of the physical meaning of this excitation branch. We demonstrate that the metastable quantum phase transition previously found in mean-field analysis of the weakly interacting Lieb-Liniger Hamiltonian [Phys. Rev. A 79, 063616 (2009)] extends into the medium- to strongly interacting regime of a periodic one-dimensional Bose gas. Our methods are exact diagonalization, finite-size Bethe ansatz, and the boson-fermion mapping in the Tonks-Girardeau limit.

  10. Title: Development of Single photon Quantum Optical Experiments using Type-I and Type-II Spontaneous Parametric Down Conversion

    NASA Astrophysics Data System (ADS)

    Laugharn, Andrew; Maleki, Seyfollah

    We constructed a quantum optical apparatus to control and detect single photons. We generated these photons via Type-I and Type-II spontaneous parametric down conversion by pumping a GaN laser (405nm) incident on a BBO crystal. We detected the two down converted photons (810nm), denoted signal and idler, in coincidence so as to measure and control single photons. We implemented a coincidence counting unite onto an Altera DE2 board and used LabView for data acquisition. We used these photon pairs to demonstrate quantum entanglement and indistinguishability using multiple optical experiments.

  11. Investigation of II-VI Semiconductor Quantum Dots for Sensitized Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Horoz, Sabit

    Semiconductor nanocrystals, also referred to as quantum dots (QDs) which have advantages of low-cost, photostability, high molar extinction coefficients and size-dependent optical properties, have been the focus of great scientific and technological efforts in solar cells development. Due to the multi-electron generation effect, the theoretical maximum efficiency of quantum dots sensitized solar cells (QDSSCs) is much higher than that of dye sensitized solar cells (DSSCs). Thus QDSSCs have a clear potential to overtake the efficiency of other kinds of solar cells. Doped semiconductor QDs can not only retain nearly all advantages of intrinsic QDs, but also have additional absorption bands for improved efficiency. This approach is particularly important for wide band gap semiconductors, for example, zinc based QDs. Zinc based are desirable candidates as they are inexpensive, earth abundant and nontoxic. When doped, they can cover a broad range of visible spectrum. In my project, I aim at developing novel methods for the preparation of II-VI QDs and investigating the effects of doping on the properties and performances of QDSSCs. Cadmium selenide (CdSe), manganese doped cadmium selenide (Mn:CdSe), and manganese doped zinc sulfide (Mn:ZnS) QDs have been synthesized by laser ablation in water. The structural and luminescent properties of the QDs have been investigated. In addition, QDSSC performances of the samples have been measured using nanowire electrode made of ZnO and Zn2SnO 4. I have also successfully synthesized europium doped zinc sulfide (Eu:ZnS) and manganese doped cadmium sulfide (Mn:CdS) nanoparticles by wet chemical method, and analyzed structural, optical, and magnetic properties as well as the device performance of the nanoparticles.

  12. Near-Unity Quantum Yields of Biexciton Emission from CdSe=CdS Nanocrystals Measured Using Single-Particle Spectroscopy

    SciTech Connect

    Park, Young-Shin; Malko, Anton V.; Vela, Javier; Chen, Yongfen; Ghosh, Yagnaseni; Garcia-Santamaria, Florencio; Hollingsworth, Jennifer A.; Klimov, Victor I.; Htoon, Han

    2011-05-03

    Biexciton photoluminescence (PL) quantum yields (Q2X) of individual CdSe/CdS core-shell nanocrystal quantum dots with various shell thicknesses are derived from independent PL saturation and two-photon correlation measurements. We observe a near-unity Q{sub 2X} for some nanocrystals with an ultrathick 19-monolayer shell. High Q2X’s are, however, not universal and vary widely among nominally identical nanocrystals indicating a significant dependence of Q2X upon subtle structural differences. Interestingly, our measurements indicate that high Q2X’s are not required to achieve complete suppression of PL intensity fluctuations in individual nanocrystals.

  13. Effect of silver nano particles on the fluorescence quantum yield of Rhodamine 6G determined using dual beam thermal lens method.

    PubMed

    Santhi, A; Umadevi, M; Ramakrishnan, V; Radhakrishnan, P; Nampoori, V P N

    2004-04-01

    Nano structured noble metals have very important applications in diverse fields as photovoltaics, catalysis, electronic and magnetic devices, etc. Here, we report the application of dual beam thermal lens technique for the determination of the effect of silver sol on the absolute fluorescence quantum yield (FQY) of the laser dye rhodamine 6G. A 532 nm radiation from a diode pumped solid state laser was used as the excitation source. It has been observed that the presence of silver sol decreases the fluorescence quantum efficiency. This is expected to have a very important consequence in enhancing Raman scattering which is an important spectrochemical tool that provides information on molecular structures. We have also observed that the presence of silver sol can enhance the thermal lens signal which makes the detection of the signal easier at any concentration.

  14. Microwave-assisted synthesis of water-dispersed CdTe/CdSe core/shell type II quantum dots.

    PubMed

    Sai, Li-Man; Kong, Xiang Yang

    2011-05-27

    A facile synthesis of mercaptanacid-capped CdTe/CdSe (core/shell) type II quantum dots in aqueous solution by means of a microwave-assisted approach is reported. The results of X-ray diffraction and high-resolution transmission electron microscopy revealed that the as-prepared CdTe/CdSe quantum dots had a core/shell structure with high crystallinity. The core/shell quantum dots exhibit tunable fluorescence emissions by controlling the thickness of the CdSe shell. The photoluminescent properties were dramatically improved through UV-illuminated treatment, and the time-resolved fluorescence spectra showed that there is a gradual increase of decay lifetime with the thickness of CdSe shell.

  15. New Insights To Simulate the Luminescence Properties of Pt(II) Complexes Using Quantum Calculations.

    PubMed

    Massuyeau, Florian; Faulques, Eric; Latouche, Camille

    2017-03-24

    The present manuscript reports a thorough quantum investigation on the luminescence properties of three monoplatinum(II) complexes. First, the simulated bond lengths at the ground state are compared to the observed ones, and the simulated electronic transitions are compared to the reported ones in the literature in order to assess our methodology. In a second time we show that geometries from the first triplet excited state are similar to the ground state ones. Simulations of the phosphorescence spectra from the first triplet excited states have been performed taking into account the vibronic coupling effects together with mode-mixing (Dushinsky) and solvent effects. Our simulations are compared with the observed ones already reported in the literature and are in good agreement. The calculations demonstrate that the normal modes of low energy are of great importance on the phosphorescence signature. When temperature effects are taken into account, the simulated phosphorescence spectra are drastically improved. An analysis of the computational time shows that the vibronic coupling simulation is cost-effective and thus can be extended to treat large transition metal complexes. In addition to the intrinsic importance of the investigated targets, this work provides a robust method to simulate phosphorescence spectra and to increase the duality experiment-theory.

  16. The Qubit as Key to Quantum Physics Part II: Physical Realizations and Applications

    ERIC Educational Resources Information Center

    Dür, Wolfgang; Heusler, Stefan

    2016-01-01

    Using the simplest possible quantum system--the qubit--the fundamental concepts of quantum physics can be introduced. This highlights the common features of many different physical systems, and provides a unifying framework when teaching quantum physics at the high school or introductory level. In a previous "TPT" article and in a…

  17. II-VI Quantum Cascade emitters in the 6-8μm range.

    PubMed

    Garcia, Thor A; De Jesus, Joel; Ravikumar, Arvind P; Gmachl, Claire F; Tamargo, Maria C

    2016-08-01

    We present the growth and characterization of ZnCdSe/ZnCdMgSe quantum cascade (QC) heterostructures grown by molecular beam epitaxy (MBE) and designed to operate at 6-8μm. These structures utilize the better-understood ZnCdMgSe with InP lattice matched compositions yielding a bandgap of 2.80 eV as compared to previous work which used ZnCdMgSe compositions with bandgaps at 3.00 eV. Grown structures posses good structural and optical properties evidenced in X-ray diffraction and photoluminescence studies. Fabricated mesa devices show temperature dependent I-V measurements with differential resistance of 3.6 Ω, and a turn on voltage of 11V consistent with design specifications. Electroluminescence was observed in these devices up to room temperature with emission centered at 7.1 μm and line widths of ∼16%(ΔE/E) at 80K. The results show that these are well-behaved electroluminescent structures. Addition of waveguide layers and further improvements in well barrier interfaces are being pursued in efforts to demonstrate lasing.

  18. A water-soluble ESIPT fluorescent probe with high quantum yield and red emission for ratiometric detection of inorganic and organic palladium.

    PubMed

    Gao, Tang; Xu, Pengfei; Liu, Meihui; Bi, Anyao; Hu, Pengzhi; Ye, Bin; Wang, Wei; Zeng, Wenbin

    2015-05-01

    A novel fluorescent probe with a high quantum yield (0.41), large Stokes shifts (255 nm), and red emission (635 nm) was designed to detect all typical oxidation states of palladium species (0, +2, +4) by palladium-mediated terminal propargyl ethers cleavage reaction in water solution without any organic media. The probe showed a high selectivity and excellent sensitivity for palladium species, with a detection as low as 57 nM (6.2 μg L(-1)).

  19. Cl2O photochemistry: ultraviolet/vis absorption spectrum temperature dependence and O(3P) quantum yield at 193 and 248 nm.

    PubMed

    Papanastasiou, Dimitrios K; Feierabend, Karl J; Burkholder, James B

    2011-05-28

    The photochemistry of Cl(2)O (dichlorine monoxide) was studied using measurements of its UV/vis absorption spectrum temperature dependence and the O((3)P) atom quantum yield, Φ(Cl(2)O)(O)(λ), in its photolysis at 193 and 248 nm. The Cl(2)O UV/vis absorption spectrum was measured over the temperature range 201-296 K between 200 and 500 nm using diode array spectroscopy. Cl(2)O absorption cross sections, σ(Cl(2)O)(λ,T), at temperatures <296 K were determined relative to its well established room temperature values. A wavelength and temperature dependent parameterization of the Cl(2)O spectrum using the sum of six Gaussian functions, which empirically represent transitions from the ground (1)A(1) electronic state to excited states, is presented. The Gaussian functions are found to correlate well with published theoretically calculated vertical excitation energies. O((3)P) quantum yields in the photolysis of Cl(2)O at 193 and 248 nm were measured using pulsed laser photolysis combined with atomic resonance fluorescence detection of O((3)P) atoms. O((3)P) quantum yields were measured to be 0.85 ± 0.15 for 193 nm photolysis at 296 K and 0.20 ± 0.03 at 248 nm, which was also found to be independent of temperature (220-352 K) and pressure (17 and 28 Torr, N(2)). The quoted uncertainties are at the 2σ (95% confidence) level and include estimated systematic errors. ClO radical temporal profiles obtained following the photolysis of Cl(2)O at 248 nm, as reported previously in Feierabend et al. [J. Phys. Chem. A 114, 12052, (2010)], were interpreted to establish a <5% upper-limit for the O + Cl(2) photodissociation channel, which indicates that O((3)P) is primarily formed in the three-body, O + 2Cl, photodissociation channel at 248 nm. The analysis also indirectly provided a Cl atom quantum yield of 1.2 ± 0.1 at 248 nm. The results from this work are compared with previous studies where possible.

  20. Extended Cahill-Glauber formalism for finite-dimensional spaces. II. Applications in quantum tomography and quantum teleportation

    SciTech Connect

    Marchiolli, Marcelo A.; Ruzzi, Maurizio; Galetti, Diogenes

    2005-10-15

    By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.

  1. Hydrothermal synthesis of high-quality type-II CdTe/CdSe quantum dots with near-infrared fluorescence.

    PubMed

    Wang, Jing; Han, Heyou

    2010-11-01

    A simple hydrothermal method is developed for the synthesis of high-quality, water-soluble, and near-infrared (NIR)-emitting type-II core/shell CdTe/CdSe quantum dots (QDs) by employing thiol-capped CdTe QDs as core templates and CdCl(2) and Na(2)SeO(3) as shell precursors. Compared with the original CdTe core QDs, the core/shell CdTe/CdSe QDs exhibit an obvious red-shifted emission, whose color can be tuned between visible and NIR regions (620-740 nm) by controlling the thickness of the CdSe shell. The photoluminescence quantum yield (PL QY) of CdTe/CdSe QDs with an optimized thickness of the CdSe shell can reach up to 44.2% without any post-preparative treatment. Through a thorough study of the core/shell structure by high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) absorption spectra, fluorescence spectra, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), the as-prepared CdTe/CdSe QDs demonstrate good monodispersity, hardened lattice structure and excellent photostability, offering a great potential for biological application.

  2. II-VI colloidal quantum-dot/quantum-rod heterostructures under electric field effect and their energy transfer rate to graphene

    NASA Astrophysics Data System (ADS)

    Zahra, H.; Elmaghroui, D.; Fezai, I.; Jaziri, S.

    2016-11-01

    We theoretically investigate the energy transfer between a CdSe/CdS Quantum-dot/Quantum-rod (QD/QR) core/shell structure and a weakly doped graphene layer, separated by a dielectric spacer. A numerical method assuming the realistic shape of the type I and quasi-type II CdSe/CdS QD/QR is developed in order to calculate their energy structure. An electric field is applied for both types to manipulate the carriers localization and the exciton energy. Our evaluation for the isolated QD/QR shows that a quantum confined Stark effect can be obtained with large negative electric filed while a small effect is observed with positive ones. Owing to the evolution of the carriers delocalization and their excitonic energy versus the electric field, both type I and quasi-type II QD/QR donors are suitable as sources of charge and energy. With a view to improve its absorption, the graphene sheet (acceptor) is placed at different distances from the QD/QR (donor). Using the random phase approximation and the massless Dirac Fermi approximation, the quenching rate integral is exactly evaluated. That reveals a high transfer rate that can be obtained with type I QD/QR with no dependence on the electric field. On the contrary, a high dependence is obtained for the quasi-type II donor and a high fluorescence rate from F = 80 kV/cm. Rather than the exciton energy, the transition dipole is found to be responsible for the evolution of the fluorescence rate. We find also that the fluorescence rate decreases with increasing the spacer thickness and shows a power low dependence. The QD/QR fluorescence quenching can be observed up to large distance which is estimated to be dependent only on the donor exciton energy.

  3. Short-Term Responses in Maximum Quantum Yield of PSII (Fv/Fm) to ex situ Temperature Treatment of Populations of Bryophytes Originating from Different Sites in Hokkaido, Northern Japan

    PubMed Central

    Jägerbrand, Annika K.; Kudo, Gaku

    2016-01-01

    There is limited knowledge available on the thermal acclimation processes for bryophytes, especially when considering variation between populations or sites. This study investigated whether short-term ex situ thermal acclimation of different populations showed patterns of site dependency and whether the maximum quantum yield of PSII (Fv/Fm) could be used as an indicator of adaptation or temperature stress in two bryophyte species: Pleurozium schreberi (Willd. ex Brid.) Mitt. and Racomitrium lanuginosum (Hedw.) Brid. We sought to test the hypothesis that differences in the ability to acclimate to short-term temperature treatment would be revealed as differences in photosystem II maximum yield (Fv/Fm). Thermal treatments were applied to samples from 12 and 11 populations during 12 or 13 days in growth chambers and comprised: (1) 10/5 °C; (2) 20/10 °C; (3) 25/15 °C; (4) 30/20 °C (12 hours day/night temperature). In Pleurozium schreberi, there were no significant site-dependent differences before or after the experiment, while site dependencies were clearly shown in Racomitrium lanuginosum throughout the study. Fv/Fm in Pleurozium schreberi decreased at the highest and lowest temperature treatments, which can be interpreted as a stress response, but no similar trends were shown by Racomitrium lanuginosum. PMID:27135242

  4. Theory of quantum frequency conversion and type-II parametric down-conversion in the high-gain regime

    NASA Astrophysics Data System (ADS)

    Christ, Andreas; Brecht, Benjamin; Mauerer, Wolfgang; Silberhorn, Christine

    2013-05-01

    Frequency conversion (FC) and type-II parametric down-conversion (PDC) processes serve as basic building blocks for the implementation of quantum optical experiments: type-II PDC enables the efficient creation of quantum states such as photon-number states and Einstein-Podolsky-Rosen (EPR)-states. FC gives rise to technologies enabling efficient atom-photon coupling, ultrafast pulse gates and enhanced detection schemes. However, despite their widespread deployment, their theoretical treatment remains challenging. Especially the multi-photon components in the high-gain regime as well as the explicit time-dependence of the involved Hamiltonians hamper an efficient theoretical description of these nonlinear optical processes. In this paper, we investigate these effects and put forward two models that enable a full description of FC and type-II PDC in the high-gain regime. We present a rigorous numerical model relying on the solution of coupled integro-differential equations that covers the complete dynamics of the process. As an alternative, we develop a simplified model that, at the expense of neglecting time-ordering effects, enables an analytical solution. While the simplified model approximates the correct solution with high fidelity in a broad parameter range, sufficient for many experimental situations, such as FC with low efficiency, entangled photon-pair generation and the heralding of single photons from type-II PDC, our investigations reveal that the rigorous model predicts a decreased performance for FC processes in quantum pulse gate applications and an enhanced EPR-state generation rate during type-II PDC, when EPR squeezing values above 12 dB are considered.

  5. The optical depth of the 158 micrometer (C-12 II) line: Detection of the F=1 yields 0 (C-13 III) hyperfine-structure component

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Poglitsch, A.; Madden, S. C.; Jackson, J. M.; Herrmann, F.; Genzel, R.; Geis, N.

    1991-01-01

    The first detection of the F = 1 yields 0 hyperfine component of the 158 micrometer (C-13 II) fine structure line in the interstellar medium is reported. A twelve point intensity map was obtained of the (C-13 II) distribution over the inner 190 inch (right ascension) by 190 inch (declination) regions of the Orion nebula using an imaging Fabry-Perot interferometer. The (C-12 II)/(C-13 II) line intensity ratio varied significantly over the region mapped. It is highest (86 plus or minus 9) in the core of the Orion H II region and significantly lower (62 plus or minus 7) in the outer regions of the map, reflecting higher optical depth in the (C-12 II) line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin (C-13 II) line at the edges of the bowl-shaped H II region blister. If the C-12/C-13 abundance ratio is 43, the (C-12 II) line in the inner regions of the Orion nebula, has a low optical depth: tau sub 12 approximately = 0.75 plus or minus 0.25. The optical depth together with the large brightness temperature of the (C-12 II) line (approximately 160 K) requires that the excitation temperature of the P-2 sub 3/2 level be approximately 310 K, in very good agreement with the previous analysis of the physical conditions of the Orion interface region based on fine structure line intensity ratios and photodissociation region models. If the C-12/C-13 abundance ratio is 67, the line optical depth is somewhat larger (tau sub 12 approximately = 1.85), and the transition excitation temperature is somewhat smaller (approximately 190 K) than that predicted by these models. The present results therefore support values approximately = 43 for the C-12/C-13 abundance ratio in the Orion nebula.

  6. Oxalyl chloride, ClC(O)C(O)Cl: UV/vis spectrum and Cl atom photolysis quantum yields at 193, 248, and 351 nm

    SciTech Connect

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K.; Burkholder, James B.

    2012-10-28

    Oxalyl chloride, (ClCO){sub 2}, has been used as a Cl atom photolytic precursor in numerous laboratory kinetic and photochemical studies. In this study, the UV/vis absorption spectrum of (ClCO){sub 2} and the Cl atom quantum yields in its photolysis at 193, 248, and 351 nm are reported. The UV/vis spectrum was measured between 200 and 450 nm at 296 K using diode array spectroscopy in conjunction with an absolute cross section obtained at 213.9 nm. Our results are in agreement with the spectrum reported by Baklanov and Krasnoperov [J. Phys. Chem. A 105, 97-103 (2001)], which was obtained at 11 discrete wavelengths between 193.3 and 390 nm. Cl atom quantum yields, {Phi}({lambda}), were measured using pulsed laser photolysis coupled with time resolved atomic resonance fluorescence detection of Cl. The UV photolysis of (ClCO){sub 2} has been shown in previous studies to occur via an impulsive three-body dissociation mechanism, (COCl){sub 2}+ hv{yields} ClCO*+ Cl + CO (2), where the excited ClCO radical, ClCO*, either dissociates or stabilizes ClCO*{yields} Cl + CO (3a), {yields} ClCO (3b). ClCO is thermally unstable at the temperatures (253-298 K) and total pressures (13-128 Torr) used in our experiments ClCO + M {yields} Cl + CO + M (4) leading to the formation of a secondary Cl atom that was resolvable in the Cl atom temporal profiles obtained in the 248 and 351 nm photolysis of (ClCO){sub 2}. {Phi}(193 nm) was found to be 2.07 {+-} 0.37 independent of bath gas pressure (25.8-105.7 Torr, N{sub 2}), i.e., the branching ratio for channel 2a or the direct formation of 2Cl + 2CO in the photolysis of (ClCO){sub 2} is >0.95. At 248 nm, the branching ratio for channel 2a was determined to be 0.79 {+-} 0.15, while the total Cl atom yield, i.e., following the completion of reaction (4), was found to be 1.98 {+-} 0.26 independent of bath gas pressure (15-70 Torr, N{sub 2}). {Phi}(351 nm) was found to be pressure dependent between 7.8 and 122.4 Torr (He, N{sub 2}). The low

  7. Fluorescence of tryptophan in designed hairpin and Trp-cage miniproteins: measurements of fluorescence yields and calculations by quantum mechanical molecular dynamics simulations.

    PubMed

    McMillan, Andrew W; Kier, Brandon L; Shu, Irene; Byrne, Aimee; Andersen, Niels H; Parson, William W

    2013-02-14

    The quantum yield of tryptophan (Trp) fluorescence was measured in 30 designed miniproteins (17 β-hairpins and 13 Trp-cage peptides), each containing a single Trp residue. Measurements were made in D(2)O and H(2)O to distinguish between fluorescence quenching mechanisms involving electron and proton transfer in the hairpin peptides, and at two temperatures to check for effects of partial unfolding of the Trp-cage peptides. The extent of folding of all the peptides also was measured by NMR. The fluorescence yields ranged from 0.01 in some of the Trp-cage peptides to 0.27 in some hairpins. Fluorescence quenching was found to occur by electron transfer from the excited indole ring of the Trp to a backbone amide group or the protonated side chain of a nearby histidine, glutamate, aspartate, tyrosine, or cysteine residue. Ionized tyrosine side chains quenched strongly by resonance energy transfer or electron transfer to the excited indole ring. Hybrid classical/quantum mechanical molecular dynamics simulations were performed by a method that optimized induced electric dipoles separately for the ground and excited states in multiple π-π* and charge-transfer (CT) excitations. Twenty 0.5 ns trajectories in the tryptophan's lowest excited singlet π-π* state were run for each peptide, beginning by projections from trajectories in the ground state. Fluorescence quenching was correlated with the availability of a CT or exciton state that was strongly coupled to the π-π* state and that matched or fell below the π-π* state in energy. The fluorescence yields predicted by summing the calculated rates of charge and energy transfer are in good accord with the measured yields.

  8. Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).

    PubMed

    Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin

    2017-04-01

    Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, (1)H and (13)C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their (1)H, (13)C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).

  9. Determination of apparent quantum yield spectra of DMS photo-degradation in an in situ iron-induced Northeast Pacific Ocean bloom

    NASA Astrophysics Data System (ADS)

    Bouillon, René-Christian; Miller, William L.

    2004-03-01

    The wavelength dependence of the photochemical removal efficiency for DMS was studied for samples from an iron-induced bloom in the Northeastern Pacific Ocean. In July 2002, a 64 km2 patch of ocean was iron-fertilized near Ocean Station Papa (50°12'N 144°45'W). Only small changes in pseudo-first-order apparent quantum yield (AQY*DMS(λ)) were observed outside the iron-patch. However, inside the patch, AQY*DMS(λ) decreased considerably over the two weeks following the initial iron injection. A positive strong correlation was found between pseudo-first-order apparent quantum yield determined at 330 nm (AQY*DMS(330 nm)) and NO3- concentrations. We propose that NO3--photolysis has a substantial influence on DMS photo-degradation rates in oceanic waters. This finding demonstrates that in addition to control DMS production, marine phytoplankton could indirectly influence the DMS photochemical loss rate via its control on NO3- distribution.

  10. Do genotypic differences in thermotolerance plasticity correspond with water-induced differences in yield and photosynthetic stability for field-grown upland cotton?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine if cultivar differences in thermotolerance plasticity of photosystem II promote yield or photosynthetic stability when variability in both parameters is water-induced, the temperature response of maximum quantum yield of photosystem II (Fv/Fm) was evaluated for two cotton cultivars (FM ...

  11. Novel π-type vortex in a nanoscale extreme type-II superconductor: Induced by quantum-size effect

    NASA Astrophysics Data System (ADS)

    Huang, Haiyan; Liu, Qing; Zhang, Wenhui; Chen, Yajiang

    2016-11-01

    By numerically solving the Bogoliubov-de Gennes equations, we report a novel π-type vortex state whose order parameter near the core undergoes an extraordinary π-phase change for a quantum-confined extreme type-II s-wave superconductor. Its supercurrent behaves as the cube of the radial coordinate near the core, and its local density of states spectrum exhibits a significant negative-shifted zero-bias peak. Such π-type vortex state is induced by quantum-size effect, and can survive thermal smearing at temperatures up to a critical value Tτ. The Anderson's approximation indicates that the π-type vortex may remain stable under sufficiently week magnetic field in the case less deep in the type-II limit. Moreover, we find that its appearance is governed by the sample size and kFξ0 with kF the Fermi wave number and ξ0 the zero-temperature coherence length. Similar effects may be expected in quantum-confined ultracold superfluid Fermi gasses, or even high-Tc superconductors with proper kFξ0 value.

  12. Improving Students' Understanding of Quantum Measurement. II. Development of Research-Based Learning Tools

    ERIC Educational Resources Information Center

    Zhu, Guangtian; Singh, Chandralekha

    2012-01-01

    We describe the development and implementation of research-based learning tools such as the Quantum Interactive Learning Tutorials and peer-instruction tools to reduce students' common difficulties with issues related to measurement in quantum mechanics. A preliminary evaluation shows that these learning tools are effective in improving students'…

  13. Carrier dynamics in type-II quantum dots for wide-bandgap intermediate-band solar cells

    NASA Astrophysics Data System (ADS)

    Tayagaki, Takeshi; Sugaya, Takeyoshi

    2016-03-01

    Type-II quantum dots (QDs) have attracted attention for the formation of multiband solar cells based on the intermediate-band (IB) concept. The type-II confinement potential causes a spatial separation between electrons and holes, which strongly suppresses the carrier recombination in the QDs. As a result, the carrier lifetime in the QDs increases, which results in an increase in the number of photocarriers in the QDs under continuous light irradiation. This enhanced carrier number in the IB has an advantage for efficient two-step photon absorption because the probability of the second optical excitation to extract carriers from the QDs depends on the number of photocarriers in the QDs. Thus far, type-II QDs, such as GaSb/GaAs and Ge/Si QDs, have been introduced to demonstrate the operation principle of IB solar cells. In narrow-bandgap semiconductors, however, the photocarriers are extracted from the QDs by thermal excitation, which causes reduced carrier lifetime even in type-II QDs, and inefficient two-step photon absorption. In this paper, the carrier dynamics in type-II InP QDs in the wide-bandgap InGaP host are investigated by using time-resolved optical spectroscopy. The photoluminescence spectra of the InP QDs exhibit a high-energy shift with increasing excitation power density, which is a typical behavior of type-II QDs. Time-resolved photoluminescence measurements show a longer carrier lifetime in type-II InP QDs compared to that in the well-known type-I InAs QDs. Temperature dependent photoluminescence of the photoluminescence indicates that type-II InP QDs in the InGaP host are a promising candidate for realizing IB solar cells.

  14. Recent development of SWIR focal plane array with InGaAs/GaAsSb type-II quantum wells

    NASA Astrophysics Data System (ADS)

    Inada, Hiroshi; Machinaga, Kenichi; Balasekaran, Sundararajan; Miura, Kouhei; Kawahara, Takahiko; Migita, Masaki; Akita, Katsushi; Iguchi, Yasuhiro

    2016-05-01

    HgCdTe (MCT) is predominantly used for infrared imaging applications even in SWIR region. However, MCT is expensive and contains environmentally hazardous substances. Therefore, its application has been restricted mainly military and scientific use and was not spread to commercial use. InGaAs/GaAsSb type-II quantum well structures are considered as an attractive material for realizing low dark current PDs owing to lattice-matching to InP substrate. Moreover, III-V compound material systems are suitable for commercial use. In this report, we describe successful operation of focal plane array (FPA) with InGaAs/GaAsSb quantum wells and mention improvement of optical characteristics. Planar type pin-PDs with 250-pairs InGaAs(5nm)/GaAsSb(5nm) quantum well absorption layer were fabricated. The p-n junction was formed in the absorption layer by the selective diffusion of zinc. Electrical and optical characteristics of FPA or pin-PDs were investigated. Dark current of 1μA/cm2 at 210K, which showed good uniformity and led to good S/N ratio in SWIR region, was obtained. Further, we could successfully reduce of stray light in the cavity of FPA with epoxy resin. As a result, the clear image was taken with 320x256 format and 7% contrast improvement was achieved. Reliability test of 10,000 heat cycles was carried out. No degradations were found in FPA characteristics of the epoxy coated sample. This result means FPA using InGaAs/GaAsSb type-II quantum wells is a promising candidate for commercial applications.

  15. A methacrylate-based polymeric imidazole ligand yields quantum dots with low cytotoxicity and low nonspecific binding

    PubMed Central

    Johnson, Colin M.; Pate, Kayla M.; Shen, Yi; Viswanath, Anand; Tan, Rui; Benicewicz, Brian C.; Moss, Melissa A.; Greytak, Andrew B.

    2016-01-01

    This paper assesses the biocompatibility for fluorescence imaging of colloidal nanocrystal quantum dots (QDs) coated with a recently-developed multiply-binding methacrylate-based polymeric imidazole ligand. The QD samples were purified prior to ligand exchange via a highly repeatable gel permeation chromatography (GPC) method. A multi-well plate based protocol was used to characterize nonspecific binding and toxicity of the QDs toward human endothelial cells. Nonspecific binding in 1% fetal bovine serum was negligible compared to anionically-stabilized QD controls, and no significant toxicity was detected on 24 h exposure. The nonspecific binding results were confirmed by fluorescence microscopy. This study is the first evaluation of biocompatibility in QDs initially purified by GPC and represents a scalable approach to comparison among nanocrystal-based bioimaging scaffolds. PMID:26247382

  16. The Qubit as Key to Quantum Physics Part II: Physical Realizations and Applications

    NASA Astrophysics Data System (ADS)

    Dür, Wolfgang; Heusler, Stefan

    2016-03-01

    Using the simplest possible quantum system—the qubit—the fundamental concepts of quantum physics can be introduced. This highlights the common features of many different physical systems, and provides a unifying framework when teaching quantum physics at the high school or introductory level. In a previous TPT article and in a separate paper posted online, we introduced catchy visualizations of the qubit based on the Bloch sphere or just the unit circle (see also Refs. 3-8 for other approaches highlighting the importance of the qubit). These visualizations open the way to understand basic ideas of quantum physics even without knowledge of the underlying mathematical formalism. In addition, simple mathematics can be introduced to describe the qubit as an abstract object and basic unit of quantum information. This generalizes the digital bit as a basic unit of classical information. The proposed visualizations can be used even at the high school level, while the mathematical explanations are of importance when teaching quantum physics at the undergraduate university level. This approach provides a unified framework to introduce common features of all quantum systems, such as the stochastic behavior and state change of a superposition state under measurement.

  17. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components.

    PubMed

    Luo, L J; Li, Z K; Mei, H W; Shu, Q Y; Tabien, R; Zhong, D B; Ying, C S; Stansel, J W; Khush, G S; Paterson, A H

    2001-08-01

    The genetic basis underlying inbreeding depression and heterosis for three grain yield components of rice was investigated in five interrelated mapping populations using a complete RFLP linkage map, replicated phenotyping, and the mixed model approach. The populations included 254 F(10) recombinant inbred lines (RILs) derived from a cross between Lemont (japonica) and Teqing (indica), two backcross (BC) and two testcross populations derived from crosses between the RILs and the parents plus two testers (Zhong413 and IR64). For the yield components, the RILs showed significant inbreeding depression and hybrid breakdown, and the BC and testcross populations showed high levels of heterosis. The average performance of the BC or testcross hybrids was largely determined by heterosis. The inbreeding depression values of individual RILs were negatively associated with the heterosis measurements of the BC or testcross hybrids. We identified many epistatic QTL pairs and a few main-effect QTL responsible for >65% of the phenotypic variation of the yield components in each of the populations. Most epistasis occurred between complementary loci, suggesting that grain yield components were associated more with multilocus genotypes than with specific alleles at individual loci. Overdominance was also an important property of most loci associated with heterosis, particularly for panicles per plant and grains per panicle. Two independent groups of genes appeared to affect grain weight: one showing primarily nonadditive gene action explained 62.1% of the heterotic variation of the trait, and the other exhibiting only additive gene action accounted for 28.1% of the total trait variation of the F(1) mean values. We found no evidence suggesting that pseudo-overdominance from the repulsive linkage of completely or partially dominant QTL for yield components resulted in the overdominant QTL for grain yield. Pronounced overdominance resulting from epistasis expressed by multilocus

  18. I. Advances in NMR Signal Processing. II. Spin Dynamics in Quantum Dissipative Systems

    SciTech Connect

    Lin, Yung-Ya

    1998-11-01

    Part I. Advances in IVMR Signal Processing. Improvements of sensitivity and resolution are two major objects in the development of NMR/MRI. A signal enhancement method is first presented which recovers signal from noise by a judicious combination of a priordmowledge to define the desired feasible solutions and a set theoretic estimation for restoring signal properties that have been lost due to noise contamination. The effect of noise can be significantly mitigated through the process of iteratively modifying the noisy data set to the smallest degree necessary so that it possesses a collection of prescribed properties and also lies closest to the original data set. A novel detection-estimation scheme is then introduced to analyze noisy and/or strongly damped or truncated FIDs. Based on exponential modeling, the number of signals is detected based on information estimated using the matrix pencil method. theory and the spectral parameters are Part II. Spin Dynamics in body dipole-coupled systems Quantum Dissipative Systems. Spin dynamics in manyconstitutes one of the most fundamental problems in magnetic resonance and condensed-matter physics. Its many-spin nature precludes any rigorous treatment. ‘Therefore, the spin-boson model is adopted to describe in the rotating frame the influence of the dipolar local fields on a tagged spin. Based on the polaronic transform and a perturbation treatment, an analytical solution is derived, suggesting the existence of self-trapped states in the. strong coupling limit, i.e., when transverse local field >> longitudinal local field. Such nonlinear phenomena originate from the joint action of the lattice fluctuations and the reaction field. Under semiclassical approximation, it is found that the main effect of the reaction field is the renormalization of the Hamiltonian of interest. Its direct consequence is the two-step relaxation process: the spin is initially localized in a quasiequilibrium state, which is later detrapped by

  19. Oxalyl chloride, ClC(O)C(O)Cl: UV/vis spectrum and Cl atom photolysis quantum yields at 193, 248, and 351 nm.

    PubMed

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K; Burkholder, James B

    2012-10-28

    Oxalyl chloride, (ClCO)(2), has been used as a Cl atom photolytic precursor in numerous laboratory kinetic and photochemical studies. In this study, the UV/vis absorption spectrum of (ClCO)(2) and the Cl atom quantum yields in its photolysis at 193, 248, and 351 nm are reported. The UV∕vis spectrum was measured between 200 and 450 nm at 296 K using diode array spectroscopy in conjunction with an absolute cross section obtained at 213.9 nm. Our results are in agreement with the spectrum reported by Baklanov and Krasnoperov [J. Phys. Chem. A 105, 97-103 (2001)], which was obtained at 11 discrete wavelengths between 193.3 and 390 nm. Cl atom quantum yields, Φ(λ), were measured using pulsed laser photolysis coupled with time resolved atomic resonance fluorescence detection of Cl. The UV photolysis of (ClCO)(2) has been shown in previous studies to occur via an impulsive three-body dissociation mechanism, (COCl)(2) + hv → ClCO* + Cl + CO (2), where the excited ClCO radical, ClCO*, either dissociates or stabilizes ClCO* → Cl + CO (3a), → ClCO (3b). ClCO is thermally unstable at the temperatures (253-298 K) and total pressures (13-128 Torr) used in our experiments ClCO + M → Cl + CO + M (4) leading to the formation of a secondary Cl atom that was resolvable in the Cl atom temporal profiles obtained in the 248 and 351 nm photolysis of (ClCO)(2). Φ(193 nm) was found to be 2.07 ± 0.37 independent of bath gas pressure (25.8-105.7 Torr, N(2)), i.e., the branching ratio for channel 2a or the direct formation of 2Cl + 2CO in the photolysis of (ClCO)(2) is >0.95. At 248 nm, the branching ratio for channel 2a was determined to be 0.79 ± 0.15, while the total Cl atom yield, i.e., following the completion of reaction (4), was found to be 1.98 ± 0.26 independent of bath gas pressure (15-70 Torr, N(2)). Φ(351 nm) was found to be pressure dependent between 7.8 and 122.4 Torr (He, N(2)). The low-pressure limit of the total Cl atom quantum yield, Φ(0)(351 nm), was 2

  20. Structural, spectroscopic and quantum chemical studies of acetyl hydrazone oxime and its palladium(II) and platinum(II) complexes

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Icsel, Ceyda; Yilmaz, Veysel T.; Buyukgungor, Orhan

    2015-09-01

    Acetyl hydrazone oxime, [(1E,2E)-2-(hydroxyimino)-1-phenylethylidene]acetohydrazone (hipeahH2) and its palladium(II) and platinum(II) complexes, [M(hipeahH)2] (M = PdII and PtII), have been synthesized and characterized by elemental analysis, UV-vis IR, NMR and LC-MS techniques. X-ray diffraction analysis of [Pd(hipeahH)2] shows that the two hipeahH2 ligands are not equal; one of the ligands loses the hydrazone proton, while the other one loses the oxime proton, resulting in a different coordination behavior to form five- and six-membered chelate rings. The molecular geometries from X-ray experiments in the ground state were compared using the density functional theory (DFT) with the B3LYP method combined with the 6-311++G(d,p) basis set for the ligand and the LanL2DZ basis set for the complexes. Comprehensive theoretical and experimental structural studies on the molecule have been carried out by FT-IR, NMR and UV-vis spectrometry. In addition, the isomer studies of ligand and its complexes were made by DFT.

  1. Temperature and irradiance impacts on the growth, pigmentation and photosystem II quantum yield of Haemotococcus pluvialis (Chlorophyceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microalga Haematococcus pluvialis Flotow has been the subject of a number of studies concerned with maximizing astaxanthin production for use in animal feeds and for human consumption. Several of these studies have specifically attempted to ascertain the optimal temperature and irradiance combi...

  2. Aharonov-Bohm excitons at elevated temperatures in type-II ZnTe/ZnSe quantum dots.

    PubMed

    Sellers, I R; Whiteside, V R; Kuskovsky, I L; Govorov, A O; McCombe, B D

    2008-04-04

    Optical emission from type-II ZnTe/ZnSe quantum dots demonstrates large and persistent oscillations in both the peak energy and intensity indicating the formation of coherently rotating states. Furthermore, these Aharonov-Bohm oscillations are shown to be remarkably robust and persist until 180 K. This is at least one order of magnitude greater than the typical temperatures in lithographically defined rings. To our knowledge, this is the highest temperature at which the AB effect has been observed in solid-state and molecular nanostructures.

  3. Molecular dynamics study of non-equilibrium energy transport from a cylindrical track: Part II. Spike models for sputtering yield

    NASA Astrophysics Data System (ADS)

    Bringa, E. M.; Johnson, R. E.; Dutkiewicz, Ł .

    1999-05-01

    Thermal spike models have been used to calculate the yields for electronic sputtering of condensed-gas solids by fast ions. In this paper molecular dynamics (MD) calculations are carried out to describe the evolution of solid Ar and O 2 following the excitation of a cylindrical track in order to test spike models. The calculated sputtering yields were found to depend linearly on the energy deposition per unit path length, d E/d x, at the highest d E/d x. This is in contrast to the spike models and the measured yields for a number of condensed-gas solids which depend quadratically on d E/d x at high d E/d x. In paper I [E.M. Bringa, R.E. Johnson, Nucl. Instr. and Meth. B 143 (1998) 513] we showed that the evolution of energy from the cylindrical track was, typically, not diffusive, as assumed in the spike models. Here we show that it is the description of the radial transport and the absence of energy transport to the surface, rather than the treatment of the ejection process, that accounts for the difference between the analytic spike models and the MD calculations. Therefore, the quadratic dependence on d E/d x of the measured sputtering yield reflects the nature of the energizing process rather than the energy transport. In this paper we describe the details of the sputtering process and compare the results here for crystalline samples to the earlier results for amorphous solids.

  4. Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power.

    PubMed

    Liu, Haichun; Xu, Can T; Dumlupinar, Gökhan; Jensen, Ole B; Andersen, Peter E; Andersson-Engels, Stefan

    2013-10-21

    We have accomplished deep tissue optical imaging of upconverting nanoparticles at 800 nm, using millisecond single pulse excitation with high peak power. This is achieved by carefully choosing the pulse parameters, derived from time-resolved rate-equation analysis, which result in higher intrinsic quantum yield that is utilized by upconverting nanoparticles for generating this near infrared upconversion emission. The pulsed excitation approach thus promises previously unreachable imaging depths and shorter data acquisition times compared with continuous wave excitation, while simultaneously keeping the possible thermal side-effects of the excitation light moderate. These key results facilitate means to break through the general shallow depth limit of upconverting-nanoparticle-based fluorescence techniques, necessary for a range of biomedical applications, including diffuse optical imaging, photodynamic therapy and remote activation of biomolecules in deep tissues.

  5. Slow-Injection Growth of Seeded CdSe/CdS Nanorods with Unity Fluorescence Quantum Yield and Complete Shell to Core Energy Transfer.

    PubMed

    Coropceanu, Igor; Rossinelli, Aurelio; Caram, Justin R; Freyria, Francesca S; Bawendi, Moungi G

    2016-03-22

    A two-step process has been developed for growing the shell of CdSe/CdS core/shell nanorods. The method combines an established fast-injection-based step to create the initial elongated shell with a second slow-injection growth that allows for a systematic variation of the shell thickness while maintaining a high degree of monodispersity at the batch level and enhancing the uniformity at the single-nanorod level. The second growth step resulted in nanorods exhibiting a fluorescence quantum yield up to 100% as well as effectively complete energy transfer from the shell to the core. This improvement suggests that the second step is associated with a strong suppression of the nonradiative channels operating both before and after the thermalization of the exciton. This hypothesis is supported by the suppression of a defect band, ubiquitous to CdSe-based nanocrystals after the second growth.

  6. Measuring solid-state quantum yields: The conversion of a frequency-doubled Nd:YAG diode laser pointer module into a viable light source.

    PubMed

    Daglen, Bevin C; Harris, John D; Dax, Clifford D; Tyler, David R

    2007-07-01

    This article outlines the difficulties associated with measuring quantum yields for solid-state samples using a high-pressure mercury arc lamp as the irradiation source. Details are given for the conversion of an inexpensive frequency-doubled neodymium-doped yttrium aluminum garnet (Nd:YAG) diode laser pointer module into a viable irradiation source. The modified Nd:YAG laser was incorporated into a computer-controlled system, which allowed for the simultaneous irradiation and spectroscopic monitoring of the sample. The data obtained with the Nd:YAG diode laser system show far less scatter than data obtained with a high-pressure Hg arc lamp, and consequently the degradation rates obtained with the laser system could be calculated with far greater accuracy.

  7. A DPF Analysis Yields Quantum Mechanically Accurate Analytic Potential Energy Functions for the a ^1Σ^+ and X ^1Σ^+ States of NaH

    NASA Astrophysics Data System (ADS)

    Le Roy, Robert J.; Walji, Sadru; Sentjens, Katherine

    2013-06-01

    Alkali hydride diatomic molecules have long been the object of spectroscopic studies. However, their small reduced mass makes them species for which the conventional semiclassical-based methods of analysis tend to have the largest errors. To date, the only quantum-mechanically accurate direct-potential-fit (DPF) analysis for one of these molecules was the one for LiH reported by Coxon and Dickinson. The present paper extends this level of analysis to NaH, and reports a DPF analysis of all available spectroscopic data for the A ^1Σ^+-X ^1Σ^+ system of NaH which yields analytic potential energy functions for these two states that account for those data (on average) to within the experimental uncertainties. W.C. Stwalley, W.T. Zemke and S.C. Yang, J. Phys. Chem. Ref. Data {20}, 153-187 (1991). J.A. Coxon and C.S. Dickinson, J. Chem. Phys. {121}, 8378 (2004).

  8. Biexciton quantum yield heterogeneities in single CdSe(CdS) core(shell) nanocrystals and its correlation to exciton blinking

    PubMed Central

    Zhao, Jing; Chen, Ou; Strasfeld, David B.

    2012-01-01

    We explore biexciton (BX) non-radiative recombination processes in single semiconductor nanocrystals (NCs) using confocal fluorescence microscopy and second-order photon intensity correlation. More specifically, we measure the photoluminescence blinking and BX quantum yields (QYs), and study the correlation between these two measurements for single core(shell) CdSe(CdS) nanocrystals (NCs). We find that NCs with a high “on” time fraction are significantly more likely to have a high BX QY than NCs with a low “on” fraction, even though the BX QYs of NCs with a high “on” fraction vary dramatically. The BX QYs of single NCs are also weakly dependent upon excitation wavelength. The weak correlation between exciton “on” fractions and BX QYs suggests that multiple recombination processes are involved in the BX recombination. To explain our results, we propose a model that combines both trapping and an Auger mechanism for BX recombination. PMID:22871126

  9. Absorption and Quantum Yield of Single Conjugated Polymer Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) Molecules

    PubMed Central

    2017-01-01

    We simultaneously measured the absorption and emission of single conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) molecules in a poly(methyl methacrylate) (PMMA) matrix using near-critical xenon to enhance the photothermal contrast for direct absorption measurements. We directly measured the number of monomers and the quantum yield of single conjugated polymer molecules. Simultaneous absorption and emission measurements provided new insight into the photophysics of single conjugated polymers under optical excitation: quenching in larger molecules is more efficient than in smaller ones. Photoinduced traps and defects formed under prolonged illumination lead to decrease of both polymer fluorescence and absorption signals with the latter declining slower. PMID:28221806

  10. A Time-Dependent Quantum Dynamics Study of the H2 + CH3 yields H + CH4 Reaction

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a time-dependent wave-packet propagation calculation for the H2 + CH3 yields H + CH4 reaction in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probability for different initial rotational-vibrational states are presented in this study. The cumulative reaction probability (CRP) is obtained by summing over initial-state-selected reaction probability. The energy-shift approximation to account for the contribution of degrees of freedom missing in the 6D calculation is employed to obtain an approximate full-dimensional CRP. Thermal rate constant is compared with different experiment results.

  11. Study on the Ultrahigh Quantum Yield of Fluorescent P,O-g-C3 N4 Nanodots and its Application in Cell Imaging.

    PubMed

    Rong, Mingcong; Cai, Zhixiong; Xie, Lei; Lin, Chunshui; Song, Xinhong; Luo, Feng; Wang, Yiru; Chen, Xi

    2016-06-27

    Graphitic carbon nitride nanodots (g-C3 N4 nanodots), as a new kind of heavy-metal-free quantum dots, have attracted considerable attention because of their unique physical and chemical properties. Although various methods to obtain g-C3 N4 nanodots have been reported, it is still a challenge to synthesize g-C3 N4 nanodots with ultrahigh fluorescence quantum yield (QY). In this study, highly fluorescent phosphorus/oxygen-doped graphitic carbon nitride (P,O-g-C3 N4 ) nanodots were prepared by chemical oxidation and hydrothermal etching of bulk P-g-C3 N4 derived from the pyrolysis of phytic acid and melamine. The as-prepared P,O-g-C3 N4 nanodots showed strong blue fluorescence and a relatively high QY of up to 90.2 %, which can be ascribed to intrinsic phosphorus/oxygen-containing groups, and surface-oxidation-related fluorescence enhancement. In addition, the P,O-g-C3 N4 nanodots were explored for cell imaging with excellent stability and biocompatibility, which suggest that they have great potential in biological applications.

  12. Photoluminescence quantum yields of PbSe and PbS QDs in the range of 1000 nm to 2000 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Beard, Matthew C.; Semonin, Octavi E.; Johnson, Justin C.; Marshall, Ashley; Zhang, Jianbing; Chernomordik, Boris D.

    2016-03-01

    PbS and PbSe quantum dots (QDs) are promising strong infrared emitters. We have developed several synthetic routes to producing PbS and PbSe QDs with a variety of sizes such that the bandgap can be continuously tuned from 2000 to 1000 nm. We provide a simple and accurate synthetic route to reproducibly produce PbS QDs with a narrow size-distribution and high chemical yield. The different synthetic routes lead to differences in their surface chemistry and to differences in their air stability and photoluminescence quantum yields (PLQY). To characterize the PLQY we directly measured the PLQY IR-26 (a standard IR emitting organic dye) at a range of concentrations as well as the PLQY of PbS and PbSe QDs for a range of sizes. We find that the PLQY of IR-26 has a weak concentration dependence due to reabsorption, with a PLQY of 0:048_0:002% for low concentrations, lower than previous reports by a full order of magnitude. We also find a dramatic size dependence for both PbS and PbSe QDs, with the smallest dots exhibiting a PLQY in excess of 60% while larger dots fall below 3%. A model, including nonradiative transition between electronic states and energy transfer to ligand vibrations, appears to explain this size dependence. These findings provide both a better characterization of photoluminescence for near infrared emitters. Halogen surface passivation provides both a larger PLQY (~ 30% improvement) as well as increased air stability.

  13. The road to matrix mechanics: II. Ladenburg’s quantum interpretation of optical dispersion

    NASA Astrophysics Data System (ADS)

    Crivellari, Lucio

    2016-09-01

    This paper reviews Ladenburg’s development of the phenomenological theory of radiative transitions between the stationary states of an atom put forward by Einstein in 1917. The historical background as well as the far reaching outcomes of his work are considered and discussed; among them the Kramers-Heisenberg quantum dispersion theory that paved the way to Heisenberg’s formulation of matrix mechanics and the quantum-mechanical calculation of the spectral line profiles.

  14. Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D parabolic potential barrier

    SciTech Connect

    Chruscinski, Dariusz . E-mail: darch@phys.uni.torun.pl

    2006-04-15

    We show that quantum Bateman's system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba.

  15. Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots.

    PubMed

    Sugunan, Abhilash; Zhao, Yichen; Mitra, Somak; Dong, Lin; Li, Shanghua; Popov, Sergei; Marcinkevicius, Saulius; Toprak, Muhammet S; Muhammed, Mamoun

    2011-10-21

    Synthesis of colloidal nanocrystals of II-VI semiconductor materials has been refined in recent decades and their size dependent optoelectronic properties have been well established. Here we report a facile synthesis of CdSe-CdS core-shell heterostructures using a two-step hot injection process. Red-shifts in absorption and photoluminescence spectra show that the obtained quantum dots have quasi-type-II alignment of energy levels. The obtained nanocrystals have a heterostructure with a large and highly faceted tetrahedral CdS shell grown epitaxially over a spherical CdSe core. The obtained morphology as well as high resolution electron microscopy confirms that the tetrahedral shell have a zinc blende crystal structure. A phenomenological mechanism for the growth and morphology of the nanocrystals is discussed.

  16. The INCA Project II. Measurements of the neutron yield from a lead absorber for pion and proton projectiles

    NASA Astrophysics Data System (ADS)

    INCA Collaboration

    1999-08-01

    As a part of the program of development of a new instrument called Ionization- Neutron Calorimeter (INCA) aimed at studying primary cosmic radiation, exp erimental data on average values and fluctuations of the neutron yield from a 60-cm-thick lead target are obtained. The target was exposed to pion and proton accelerator b eams with energies of 4 and 70 GeV, resp ectively, and to an electron beam with an energy of 200 to 550 MeV. The exp erimental data obtained well agree with the results of a simulation by the SHIELD code used for development of INCA elements. It is shown that the same particle energy, the average neutron yield for electron pro jectiles is by the factor of approximately 50 lower than for hadrons.

  17. Simulation of cemented granular materials. II. Micromechanical description and strength mobilization at the onset of macroscopic yielding.

    PubMed

    Estrada, Nicolas; Lizcano, Arcesio; Taboada, Alfredo

    2010-07-01

    This is the second of two papers investigating the mechanical response of cemented granular materials by means of contact dynamics simulations. In this paper, a two-dimensional polydisperse sample with high void ratio is sheared in a load-controlled simple shear numerical device until the stress state of the sample reaches the yield stress. We first study the stress transmission properties of the granular material in terms of the fabric of different subsets of contacts characterized by the magnitude of their normal forces. This analysis highlights the existence of a peculiar force carrying structure in the cemented material, which is reminiscent of the bimodal stress transmission reported for cohesionless granular media. Then, the evolution of contact forces and torques is investigated trying to identify the micromechanical conditions that trigger macroscopic yielding. It is shown that global failure can be associated to the apparition of a group of particles whose contacts fulfill at least one of the local rupture conditions. In particular, these particles form a large region that percolates through the sample at the moment of failure, evidencing the relationship between macroscopic yielding and the emergence of large-scale correlations in the system.

  18. Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield.

    PubMed

    Mandal, Asit; Purakayastha, T J; Patra, A K; Sanyal, S K

    2012-07-01

    A greenhouse experiment evaluated the effect of phytoextraction of arsenic from a contaminated soil by Chinese Brake Fern (Pteris vittata L.) and its subsequent effects on growth and uptake of arsenic by rice (Oryza sativa L.) crop. Pteris vittata was grown for one or two growing cycles of four months each with two phosphate sources, using single super phosphate (SSP) and di-ammonium phosphate (DAP). Rice was grown on phytoextracted soils followed by measurements of biomass yield (grain, straw, and root), arsenic concentration and, uptake by individual plant parts. The biomass yield (grain, straw and rice) of rice was highest in soil phytoextracted with Pteris vittata grown for two cycles and fertilized with diammonium phosphate (DAP). Total arsenic uptake in contaminated soil ranged from 8.2 to 16.9 mg pot(-1) in first growing cycle and 5.5 to 12.0 mg pot(-1) in second growing cycle of Pteris vittata. There was thus a mean reduction of 52% in arsenic content of rice grain after two growing cycle of Pteris vittata and 29% after the one growing cycle. The phytoextraction of arsenic contaminated soil by Pteris vittata was beneficial for growing rice resulted in decreased arsenic content in rice grain of <1 ppm. There was a mean improvement in rice grain yield 14% after two growing cycle and 8% after the one growing cycle of brake fern.

  19. Time-modulated type-II optical parametric oscillator: Quantum dynamics and strong Einstein-Podolsky-Rosen entanglement

    SciTech Connect

    Adamyan, H. H.; Kryuchkyan, G. Yu.

    2006-08-15

    We investigate semiclassical dynamics and quantum properties of light beams generated in time-modulated nondegenerate optical parametric oscillator (NOPO). Having in view production of continuous-variable (CV) entangled states of light beams we propose two experimentally feasible schemes of NOPO: (i) driven by continuously modulated pump field; (ii) under action of a periodic sequence of identical laser pulses. It is shown that the time modulation of pump field amplitude essentially improves the degree of CV entanglement in NOPO. On the whole the level of integral two-mode squeezing, which characterizes the degree of CV entanglement, goes below the standard limit established in an ordinary NOPO with monochromatic pumping. We develop semiclassical and quantum theories of these devices for both below- and above-threshold regimes of generation. Properties of CV entanglement for various operational regimes of the devices are discussed in the time domain in application to time-resolved quantum information technologies. Our analytical results are in well agreement with the results of numerical simulation and support a concept of CV entangled states of time-modulated light beams.

  20. Time-modulated type-II optical parametric oscillator: Quantum dynamics and strong Einstein-Podolsky-Rosen entanglement

    NASA Astrophysics Data System (ADS)

    Adamyan, H. H.; Kryuchkyan, G. Yu.

    2006-08-01

    We investigate semiclassical dynamics and quantum properties of light beams generated in time-modulated nondegenerate optical parametric oscillator (NOPO). Having in view production of continuous-variable (CV) entangled states of light beams we propose two experimentally feasible schemes of NOPO: (i) driven by continuously modulated pump field; (ii) under action of a periodic sequence of identical laser pulses. It is shown that the time modulation of pump field amplitude essentially improves the degree of CV entanglement in NOPO. On the whole the level of integral two-mode squeezing, which characterizes the degree of CV entanglement, goes below the standard limit established in an ordinary NOPO with monochromatic pumping. We develop semiclassical and quantum theories of these devices for both below- and above-threshold regimes of generation. Properties of CV entanglement for various operational regimes of the devices are discussed in the time domain in application to time-resolved quantum information technologies. Our analytical results are in well agreement with the results of numerical simulation and support a concept of CV entangled states of time-modulated light beams.

  1. Angular distribution for electron excitation of the 4(2)S yields 4(2)P transition in Zn II - Comparison of experiment and theory

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Msezane, A. Z.; Henry, R. J. W.

    1983-01-01

    Differential electron-scattering cross sections for inelastic excitation of an ion have been measured for the first time. Experiments were carried out in a cross electron-ion beam geometry for the 4(2)S yields 4(2)P transition in Zn II at 75 eV. In addition, differential cross sections were calculated at energies between 15 and 100 eV in a five-state close-coupling approximation in which 4s, 4p, 3d(9)4s(2), 5s, and 4 d states were included. Agreement in shape between theory and experiment at 75 eV is excellent.

  2. Origin of the Photoluminescence Quantum Yields Enhanced by Alkane-Termination of Freestanding Silicon Nanocrystals: Temperature-Dependence of Optical Properties

    PubMed Central

    Ghosh, Batu; Takeguchi, Masaki; Nakamura, Jin; Nemoto, Yoshihiro; Hamaoka, Takumi; Chandra, Sourov; Shirahata, Naoto

    2016-01-01

    On the basis of the systematic study on temperature dependence of photoluminescence (PL) properties along with relaxation dynamics we revise a long-accepted mechanism for enhancing absolute PL quantum yields (QYs) of freestanding silicon nanocrystals (ncSi). A hydrogen-terminated ncSi (ncSi:H) of 2.1 nm was prepared by thermal disproportination of (HSiO1.5)n, followed by hydrofluoric etching. Room-temperature PL QY of the ncSi:H increased twentyfold only by hydrosilylation of 1-octadecene (ncSi-OD). A combination of PL spectroscopic measurement from cryogenic to room temperature with structural characterization allows us to link the enhanced PL QYs with the notable difference in surface structure between the ncSi:H and the ncSi-OD. The hydride-terminated surface suffers from the presence of a large amount of nonradiative relaxation channels whereas the passivation with alkyl monolayers suppresses the creation of the nonradiative relaxation channels to yield the high PL QY. PMID:27830771

  3. Origin of the Photoluminescence Quantum Yields Enhanced by Alkane-Termination of Freestanding Silicon Nanocrystals: Temperature-Dependence of Optical Properties

    NASA Astrophysics Data System (ADS)

    Ghosh, Batu; Takeguchi, Masaki; Nakamura, Jin; Nemoto, Yoshihiro; Hamaoka, Takumi; Chandra, Sourov; Shirahata, Naoto

    2016-11-01

    On the basis of the systematic study on temperature dependence of photoluminescence (PL) properties along with relaxation dynamics we revise a long-accepted mechanism for enhancing absolute PL quantum yields (QYs) of freestanding silicon nanocrystals (ncSi). A hydrogen-terminated ncSi (ncSi:H) of 2.1 nm was prepared by thermal disproportination of (HSiO1.5)n, followed by hydrofluoric etching. Room-temperature PL QY of the ncSi:H increased twentyfold only by hydrosilylation of 1-octadecene (ncSi-OD). A combination of PL spectroscopic measurement from cryogenic to room temperature with structural characterization allows us to link the enhanced PL QYs with the notable difference in surface structure between the ncSi:H and the ncSi-OD. The hydride-terminated surface suffers from the presence of a large amount of nonradiative relaxation channels whereas the passivation with alkyl monolayers suppresses the creation of the nonradiative relaxation channels to yield the high PL QY.

  4. Depopulation of highly excited singlet states of DNA model compounds: quantum yields of 193 and 245 nm photoproducts of pyrimidine monomers and dinucleoside monophosphates.

    PubMed

    Gurzadyan, G G; Görner, H

    1996-02-01

    Formation of uracil and orotic acid photodimers, uridine and 5'-UMP photohydrates, TpT photodimers and (6-4)photoproducts, dCpT photohydrates and (6-4)photoproducts and UpU, CpC and CpU photohydrates were studied in neutral deoxygenated aqueous solution at room temperature upon irradiation at either 193 or 254 nm. The photoproducts were identified and quantified and the contribution from photoionization to substrate decomposition, using lambda irr = 193 nm, was separated. The ratio of the quantum yields of respective stable products, eta = phi 193/phi 254, is indicative of the yield of internal conversion from the second to the first excited singlet state, S2-->S1. For the observed photodimers eta decreases from 0.94 for uracil to 0.7 for TpT and further to 0.55 for orotic acid. For the (6-4)photoproducts of TpT and dCpT eta = 0.5-0.8 and for the photohydrates in the cases of UpU, CpC, CpU and dCpT eta ranges from 0.55 to 1.

  5. Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields

    NASA Astrophysics Data System (ADS)

    Tsang, Mankei

    2011-10-01

    In a previous paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.063837 81, 063837 (2010)], I proposed a quantum model of the cavity electro-optic modulator, which can coherently couple an optical cavity mode to a microwave resonator mode and enable quantum operations on the two modes, including laser cooling of the microwave resonator, electro-optic entanglement, and backaction-evading optical measurement of a microwave quadrature. In this sequel, I focus on the quantum input-output relations between traveling optical and microwave fields coupled to the cavity electro-optic modulator. With red-sideband optical pumping, the relations are shown to resemble those of a beam splitter for the traveling fields, so that in the ideal case of zero parasitic loss and critical coupling, microwave photons can be coherently up converted to “flying” optical photons with unit efficiency, and vice versa. With blue-sideband pumping, the modulator acts as a nondegenerate parametric amplifier, which can generate two-mode squeezing and hybrid entangled photon pairs at optical and microwave frequencies. These fundamental operations provide a potential bridge between circuit quantum electrodynamics and quantum optics.

  6. Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields

    SciTech Connect

    Tsang, Mankei

    2011-10-15

    In a previous paper [Phys. Rev. A 81, 063837 (2010)], I proposed a quantum model of the cavity electro-optic modulator, which can coherently couple an optical cavity mode to a microwave resonator mode and enable quantum operations on the two modes, including laser cooling of the microwave resonator, electro-optic entanglement, and backaction-evading optical measurement of a microwave quadrature. In this sequel, I focus on the quantum input-output relations between traveling optical and microwave fields coupled to the cavity electro-optic modulator. With red-sideband optical pumping, the relations are shown to resemble those of a beam splitter for the traveling fields, so that in the ideal case of zero parasitic loss and critical coupling, microwave photons can be coherently up converted to ''flying'' optical photons with unit efficiency, and vice versa. With blue-sideband pumping, the modulator acts as a nondegenerate parametric amplifier, which can generate two-mode squeezing and hybrid entangled photon pairs at optical and microwave frequencies. These fundamental operations provide a potential bridge between circuit quantum electrodynamics and quantum optics.

  7. Uncooled SWIR InGaAs/GaAsSb type-II quantum well focal plane array

    NASA Astrophysics Data System (ADS)

    Inada, H.; Miura, K.; Mori, H.; Nagai, Y.; Iguchi, Y.; Kawamura, Y.

    2010-04-01

    Low dark current photodiodes (PDs) in the short wavelength infrared (SWIR) upto 2.5μm region, are expected for many applications. HgCdTe (MCT) is predominantly used for infrared imaging applications. However, because of high dark current, MCT device requires a refrigerator such as stirling cooler, which increases power consumption, size and cost of the sensing system. Recently, InGaAs/GaAsSb type II quantum well structures were considered as attractive material system for realizing low dark current PDs owing to lattice-matching to InP substrate. Planar type PIN-PDs were successfully fabricated. The absorption layer with 250 pair-InGaAs(5nm)/GaAsSb(5nm) quantum well structures was grown on S-doped (100) InP substrates by solid source molecular beam epitaxy method. InP and InGaAs were used for cap layer and buffer layer, respectively. The p-n junctions were formed in the absorption layer by the selective diffusion of zinc. Diameter of light-receiving region was 140μm. Low dark current was obtained by improving GaAsSb crystalline quality. Dark current density was 0.92mA/cm2 which was smaller than that of a conventional MCT. Based on the same process as the discrete device, a 320x256 planar type focal plane array was also fabricated. Each PD has 15μm diameter and 30μm pitch and it was bonded to read-out IC by using indium bump flip chip process. Finally, we have successfully demonstrated the 320 x256 SWIR image at room temperature. This result means that planer type PD array with the type II InGaAs/GaAsSb quantum well structure is a promising candidate for uncooled applications.

  8. Femtosecond and Quasi-Steady Optical Nonlinear Physics of Gallium Arsenide/aluminum Arsenide Type-II Quantum Wells

    NASA Astrophysics Data System (ADS)

    Fu, Winston Su-Kee

    1992-01-01

    Understanding optical nonlinearities in GaAs/AlAs quantum wells is motivated to a great extent by the technological importance of GaAs/AlAs heterostructures in devices such as diode lasers (e.g. mirrors), resonant tunneling devices, and optoelectronic devices. These structures are grown by modern epitaxial techniques such as molecular beam epitaxy (MBE) which can control semiconductor layer thicknesses to within an atomic monolayer. The linear and nonlinear optical properties of GaAs/AlAs type-II quantum wells (which confine electrons and holes to different layers), under femtosecond and continuous-wave excitation are presented in this thesis. The photoluminescence (PL) spectra in type-II QWs exhibit an additional line due to the radiative recombination of spatially separated electrons and holes. This additional information is utilized to develop a new spectroscopic technique which allows a direct measurement of the quantum -confinement energy (QCE) shifts in the valence band, independent of the QCE shifts in the conduction band. The QCE shifts are used to determine the conduction- and valence-band discontinuities without the use of any fitting parameters. In addition, the interfacial roughness responsible for the inhomogeneous broadening of the optical transitions is determined. The nonlinear optical properties of type-II QWs are dramatically influenced by the spatial separation of the electrons and holes. The nonlinear effects of many -body interactions on the absorption spectrum with femtosecond and nanosecond optical pulses are investigated. Under extremely high excitation conditions, optical gain and an ultrafast nonlinear response in type-II GaAs/AlAs MQWs are observed. In addition, the dependence of the optical gain and absorption nonlinearities on the distribution of electrons between the GaAs and AlAs layers is investigated through the application of a static electric field perpendicular to the epitaxial layers. ftn*Prepared under Defense Advanced Research

  9. Excitonic Aharonov-Bohm effect in isotopically pure {sup 70}Ge/Si self-assembled type-II quantum dots

    SciTech Connect

    Miyamoto, Satoru; Ishikawa, Toyofumi; Eto, Mikio; Itoh, Kohei M.; Moutanabbir, Oussama; Haller, Eugene E.; Sawano, Kentarou; Shiraki, Yasuhiro

    2010-08-15

    We report on a magnetophotoluminescence study of isotopically pure {sup 70}Ge/Si self-assembled type-II quantum dots. Oscillatory behaviors attributed to the Aharonov-Bohm effect are simultaneously observed for the emission energy and intensity of excitons subject to an increasing magnetic field. When the magnetic flux penetrates through the ringlike trajectory of an electron moving around each quantum dot, the ground state of an exciton experiences a change in its angular momentum. Our results provide the experimental evidence for the phase coherence of localized electron wave functions in group-IV Ge/Si self-assembled quantum structures.

  10. Digitized adiabatic quantum computing with a superconducting circuit, part II: Experiment

    NASA Astrophysics Data System (ADS)

    Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Las Heras, U.; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J.; Neeley, M.; Neill, C.; O'Malley, P.; Quintana, C.; Roushan, P.; Solano, E.; Neven, H.; Martinis, J.

    A major challenge in quantum computing is to solve general problems with limited physical hardware. We implement digitized adiabatic quantum computing, combining the generality of the adiabatic algorithm with the universality of the digital approach, using a superconducting circuit with nine qubits. We probe the adiabatic evolutions, explore the scaling of errors with system size, and quantify the success of the algorithm for random spin problems. We find that the system can approximate the solutions to both frustrated Ising problems and non-stoquastic problem Hamiltonians with a performance that is comparable.

  11. Interband cascade light emitting devices based on type-II quantum wells

    SciTech Connect

    Yang, Rui Q.; Lin, C.H.; Murry, S.J.

    1997-06-01

    The authors discuss physical processes in the newly developed type-II interband cascade light emitting devices, and review their recent progress in the demonstration of the first type-II interband cascade lasers and the observation of interband cascade electroluminescence up to room temperature in a broad mid-infrared wavelength region (extended to 9 {mu}m).

  12. Photoactivation of the manganese catalyst of O2 evolution. II A two-quantum mechanism.

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Cheniae, G. M.

    1971-01-01

    A kinetic analysis is presented of the data obtained in previously described kinetic experiments relating to the photoactivation of the Mn complex required for photosynthetic O2 evolution. The results obtained from the computer simulation of the derived kinetic model compare favorably with the experimentally derived values. They also suggest that photoactivation can be rationalized in terms of a two-quantum process.

  13. Excitation with quantum light. II. Exciting a two-level system

    NASA Astrophysics Data System (ADS)

    Carreño, J. C. López; Sánchez Muñoz, C.; del Valle, E.; Laussy, F. P.

    2016-12-01

    We study the excitation of a two-level system (2LS) by quantum light, thereby bringing our previous studies [see Paper I of this series, Phys. Rev. A 94, 063825 (2016), 10.1103/PhysRevA.94.063825] to a target that is quantum itself. While there is no gain for the quantum state of the target as compared to driving it with classical light, its dynamical features, such as antibunching, can be improved. We propose a chain of two-level systems, i.e., setting the emission of each 2LS as the driving source of the following one, as an arrangement to provide better single-photon sources. At a fundamental level, we discuss the notion of strong coupling between quantum light from a source and its target, and the several versions of the Mollow triplet that follow from various types of driving light. We discuss the Heitler effect of antibunched photons from the scattered light off a laser.

  14. Photoinhibition of Photosystems I and II Using Chlorophyll Fluorescence Measurements

    ERIC Educational Resources Information Center

    Quiles, Maria Jose

    2005-01-01

    In this study the photoinhibition of photosystems (PS) I and II caused by exposure to high intensity light in oat ("Avena sativa," var Prevision) is measured by the emission of chlorophyll fluorescence in intact leaves adapted to darkness. The maximal quantum yield of PS II was lower in plants grown under high light intensity than in plants grown…

  15. D-penicillamine capped cadmium telluride quantum dots as a novel fluorometric sensor of copper(II).

    PubMed

    Mohammad-Rezaei, Rahim; Razmi, Habib; Abdolmohammad-Zadeh, Hossein

    2013-01-01

    D-penicillamine-capped cadmium telluride quantum dots (DPA-capped CdTe QDs) were synthesized as the new fluorescent semiconductor nanocrystal in aqueous solution. Fourier transmission infrared spectroscopy, X-ray diffraction, transmission electron microscopy, ultraviolet-visible and photoluminescence spectroscopy were used for characterization of the QDs. Based on the quenching effect of Cu(2+) ions on the fluorescence intensity of DPA-capped CdTe QDs, a new fluorometric sensor for copper(II) detection was developed that showed good linearity over the concentration range 5 × 10(-9)-3 × 10(-6) M with the detection limit 0.4 × 10(-9) M. Owing to the strong affinity of the DPA to copper(II), the sensor showed appropriate selectivity for copper(II) compared with conventional QDs. The DPA-capped CdTe QDs was successfully applied for determination of Cu(2+) concentration in river, well and tap waters with satisfactory results.

  16. 2,5-disubstituted oxazole research: fluorescence quantum yields and laser conversion efficiencies of 2-(p-italic-biphenyl)-5-phenyl oxazole and its 5-p-italic-substituted derivatives

    SciTech Connect

    Yu Peifeng

    1986-03-01

    The fluorescence quantum yield and laser conversion efficiency of 2-(p-italic-biphenyl)-5-phenyl-oxazole and thirteen 5-substituted phenyl derivatives are measured. A brief discussion is also given on the relation between the subtituent effects and spectral properties of the compounds.

  17. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa.

    PubMed

    Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. "Batavia" (green) and cv. "Lollo Rossa" (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m(-2) s(-1) for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m(-2) s(-1) from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m(-2) s(-1) from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m(-2) s(-1) from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m(-2) s(-1) from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent.

  18. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa

    PubMed Central

    Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. “Batavia” (green) and cv. “Lollo Rossa” (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m−2 s−1 for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m−2 s−1 from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m−2 s−1 from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m−2 s−1 from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m−2 s−1 from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent. PMID:25767473

  19. Dynamics of cover, UV-protective pigments, and quantum yield in biological soil crust communities of an undisturbed Mojave Desert shrubland

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Smith, S.D.

    2007-01-01

    Biological soil crusts are an integral part of dryland ecosystems. We monitored the cover of lichens and mosses, cyanobacterial biomass, concentrations of UV-protective pigments in both free-living and lichenized cyanobacteria, and quantum yield in the soil lichen species Collema in an undisturbed Mojave Desert shrubland. During our sampling time, the site received historically high and low levels of precipitation, whereas temperatures were close to normal. Lichen cover, dominated by Collema tenax and C. coccophorum, and moss cover, dominated by Syntrichia caninervis, responded to both increases and decreases in precipitation. This finding for Collema spp. at a hot Mojave Desert site is in contrast to a similar study conducted at a cool desert site on the Colorado Plateau in SE Utah, USA, where Collema spp. cover dropped in response to elevated temperatures, but did not respond to changes in rainfall. The concentrations of UV-protective pigments in free-living cyanobacteria at the Mojave Desert site were also strongly and positively related to rainfall received between sampling times (R2 values ranged from 0.78 to 0.99). However, pigment levels in the lichenized cyanobacteria showed little correlation with rainfall. Quantum yield in Collema spp. was closely correlated with rainfall. Climate models in this region predict a 3.5-4.0 ??C rise in temperature and a 15-20% decline in winter precipitation by 2099. Based on our data, this rise in temperature is unlikely to have a strong effect on the dominant species of the soil crusts. However, the predicted drop in precipitation will likely lead to a decrease in soil lichen and moss cover, and high stress or mortality in soil cyanobacteria as levels of UV-protective pigments decline. In addition, surface-disturbing activities (e.g., recreation, military activities, fire) are rapidly increasing in the Mojave Desert, and these disturbances quickly remove soil lichens and mosses. These stresses combined are likely to lead to

  20. A Broadband Quantum-Limited Josephson Parametric Amplifier. Part II: Theory

    NASA Astrophysics Data System (ADS)

    Mutus, Josh; Barends, R.; Bochmann, J.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Megrant, A.; Neill, C.; O'Malley, P.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Cleland, A. N.; Martinis, J. M.

    2014-03-01

    The quantum-limited nature of the Josephson parametric amplifier (JPA) has enabled exquisite studies of single qubit dynamics. Scaling up to larger quantum systems and higher-power dynamics requires wider bandwidth and higher saturation power. We demonstrate that both bandwidth and saturation power can be increased by an order of magnitude through careful engineering of the frequency dependent impedance environment. We can understand and engineer the interaction between the JPA and this environment using the ``pumpistor'' model, in which the flux-pumped SQUID is treated as a linear circuit element. At extreme low Q this interaction, previously viewed as a parasitic effect, can be used to greatly enhance bandwidth while maintaining the robust noise performance of the JPA.

  1. Vibration-translation energy transfer in anharmonic diatomic molecules. II - The vibrational quantum-number dependence

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1976-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom is used to predict the variation of thermally averaged vibrational-translational rate coefficients with temperature and initial-state quantum number. Multiple oscillator states are included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model is also used as a basis for evaluating several less complete, but analytic, models. Two computationally simple analytic approximations are found that successfully reproduce the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations are identified, and the relative rates of multiple-quantum transitions from excited states are evaluated for several molecular types.

  2. Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation

    SciTech Connect

    Zamstein, Noa; Tannor, David J.

    2012-12-14

    We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.

  3. Optical and electronic properties of type-II CdSe/CdS core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Lee, Dea Uk; Yun, Dong Yeol; Kim, Tae Whan; Park, Seoung-Hwan; Choi, Donghyeuk; Kim, Sang Wook; Yoo, Keon-Ho; Lee, Hong Seok; Hae Kwon, Young; Kang, Tae Won

    2015-06-01

    CdSe/CdS core-shell quantum dots (QDs) were synthesized using a facile method in aqueous phase. X-ray diffraction pattern, high-resolution transmission electron microscopy images, and energy dispersive spectroscopy profiles showed that stoichiometric CdSe/CdS QDs were formed. Temperature-dependent photoluminescence spectra showed that the activation energy of CdSe/CdS core-shell QDs was 15 meV. The potential profiles and interband transition energies of the strained type-II CdSe/CdS core-shell QDs were calculated. The calculated interband transition energies slightly decreased from 2.061 to 2.007 eV when the shell thickness increased from 10 to 17 Å. The theoretical interband transition energy of 2.007 eV was in reasonable agreement with the photoluminescence excitonic transition energy of 1.98 eV.

  4. New formalism for two-photon quantum optics. I - Quadrature phases and squeezed states. II - Mathematical foundation and compact notation

    NASA Technical Reports Server (NTRS)

    Caves, C. M.; Schumaker, B. L.

    1985-01-01

    A new formalism for analyzing two-photon devices, such as parametric amplifiers and phase-conjugate mirrors, is proposed in part I, focusing on the properties and the significance of the quadrature-phase amplitudes and two-mode squeezed states. Time-stationary quasi-probability noise is also detailed for the case of Gaussian noise, and uncertainty principles for the quadrature-phase amplitudes are outlined, as well as some important properties of the two-mode states. Part II establishes a mathematical foundation for the formalism, with introduction of a vector notation for compact representation of two-mode properties. Fundamental unitary operators and special quantum states are also examined with an emphasis on the two-mode squeezed states. The results are applied to a previously studied degenerate limit (epsilon = 0).

  5. Loop Quantum Gravity.

    PubMed

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  6. Quantum chemical analysis explains hemagglutinin peptide-MHC Class II molecule HLA-DRbeta1*0101 interactions.

    PubMed

    Cárdenas, Constanza; Villaveces, José Luis; Bohórquez, Hugo; Llanos, Eugenio; Suárez, Carlos; Obregón, Mateo; Patarroyo, Manuel Elkin

    2004-10-29

    We present a new method to explore interactions between peptides and major histocompatibility complex (MHC) molecules using the resultant vector of the three principal multipole terms of the electrostatic field expansion. Being that molecular interactions are driven by electrostatic interactions, we applied quantum chemistry methods to better understand variations in the electrostatic field of the MHC Class II HLA-DRbeta1*0101-HA complex. Multipole terms were studied, finding strong alterations of the field in Pocket 1 of this MHC molecule, and weak variations in other pockets, with Pocket 1>Pocket 4>Pocket 9 approximately Pocket 7>Pocket 6. Variations produced by "ideal" amino acids and by other occupying amino acids were compared. Two types of interactions were found in all pockets: a strong unspecific one (global interaction) and a weak specific interaction (differential interaction). Interactions in Pocket 1, the dominant pocket for this allele, are driven mainly by the quadrupole term, confirming the idea that aromatic rings are important in these interactions. Multipolar analysis is in agreement with experimental results, suggesting quantum chemistry methods as an adequate methodology to understand these interactions.

  7. A Brown Mesoporous TiO2-x /MCF Composite with an Extremely High Quantum Yield of Solar Energy Photocatalysis for H2 Evolution.

    PubMed

    Xing, Mingyang; Zhang, Jinlong; Qiu, Bocheng; Tian, Baozhu; Anpo, Masakazu; Che, Michel

    2015-04-24

    A brown mesoporous TiO2-x /MCF composite with a high fluorine dopant concentration (8.01 at%) is synthesized by a vacuum activation method. It exhibits an excellent solar absorption and a record-breaking quantum yield (Φ = 46%) and a high photon-hydrogen energy conversion efficiency (η = 34%,) for solar photocatalytic H2 production, which are all higher than that of the black hydrogen-doped TiO2 (Φ = 35%, η = 24%). The MCFs serve to improve the adsorption of F atoms onto the TiO2 /MCF composite surface, which after the formation of oxygen vacancies by vacuum activation, facilitate the abundant substitution of these vacancies with F atoms. The decrease of recombination sites induced by high-concentration F doping and the synergistic effect between lattice Ti(3+)-F and surface Ti(3+)-F are responsible for the enhanced lifetime of electrons, the observed excellent absorption of solar light, and the photocatalytic production of H2 for these catalysts. The as-prepared F-doped composite is an ideal solar light-driven photocatalyst with great potential for applications ranging from the remediation of environmental pollution to the harnessing of solar energy for H2 production.

  8. Synthesis and characterization of (3-Aminopropyl)trimethoxy-silane (APTMS) functionalized Gd2O3:Eu(3+) red phosphor with enhanced quantum yield.

    PubMed

    Jain, Akhil; Hirata, G A; Farías, M H; Castillón, F F

    2016-02-12

    We report the surface modification of nanocrystalline Gd2O3:Eu(3+) phosphor by (3-Aminopropyl)trimethoxysilane (APTMS). The nanoparticles were first coated with silica using the Stöber process, and then annealed at 650 °C for 2 h. Afterwards, APTMS was functionalized onto the silica layer to obtain Gd2O3:Eu(3+) nanoparticles bearing amine groups on the surface. The effect of silica coating, and the subsequent annealing process on the crystallization of the nanophosphor were analyzed by x-ray diffraction (XRD). High-resolution transmission electron microscopy (HR-TEM) confirmed the presence of a silica layer of ∼45 nm thickness. X-ray photoelectron (XPS) and Fourier transform infrared (FTIR) spectroscopy confirmed the presence of silica and the amine groups. Photoluminescence (PL) analysis demonstrated an increased emission after functionalization of nanoparticles. Absolute quantum yield (QY) measurements revealed an 18% enhancement in QY in functionalized nanoparticles compared with unmodified nanoparticles, which is of great importance for their biomedical applications.

  9. Synthesis and characterization of (3-Aminopropyl)trimethoxy-silane (APTMS) functionalized Gd2O3:Eu3+ red phosphor with enhanced quantum yield

    NASA Astrophysics Data System (ADS)

    Jain, Akhil; Hirata, G. A.; Farías, M. H.; Castillón, F. F.

    2016-02-01

    We report the surface modification of nanocrystalline Gd2O3:Eu3+ phosphor by (3-Aminopropyl)trimethoxysilane (APTMS). The nanoparticles were first coated with silica using the Stöber process, and then annealed at 650 °C for 2 h. Afterwards, APTMS was functionalized onto the silica layer to obtain Gd2O3:Eu3+ nanoparticles bearing amine groups on the surface. The effect of silica coating, and the subsequent annealing process on the crystallization of the nanophosphor were analyzed by x-ray diffraction (XRD). High-resolution transmission electron microscopy (HR-TEM) confirmed the presence of a silica layer of ∼45 nm thickness. X-ray photoelectron (XPS) and Fourier transform infrared (FTIR) spectroscopy confirmed the presence of silica and the amine groups. Photoluminescence (PL) analysis demonstrated an increased emission after functionalization of nanoparticles. Absolute quantum yield (QY) measurements revealed an 18% enhancement in QY in functionalized nanoparticles compared with unmodified nanoparticles, which is of great importance for their biomedical applications.

  10. A Facile and Low-Cost Method to Enhance the Internal Quantum Yield and External Light-Extraction Efficiency for Flexible Light-Emitting Carbon-Dot Films

    PubMed Central

    Jiang, Z. C.; Lin, T. N.; Lin, H. T.; Talite, M. J.; Tzeng, T. T.; Hsu, C. L.; Chiu, K. P.; Lin, C. A. J.; Shen, J. L.; Yuan, C. T.

    2016-01-01

    Solution-processed, non-toxic carbon dots (CDs) have attracted much attention due to their unique photoluminescence (PL) properties. They are promising emissive layers for flexible light-emitting devices. To this end, the CDs in pristine aqueous solutions need to be transferred to form solid-state thin films without sacrificing their original PL characteristics. Unfortunately, solid-state PL quenching induced by extra non-radiative (NR) energy transfer among CDs would significantly hinder their practical applications in optoelectronics. Here, a facile, low-cost and effective method has been utilized to fabricate high-performance CD/polymer light-emitting flexible films with submicron-structured patterns. The patterned polymers can serve as a solid matrix to disperse and passivate CDs, thus achieving high internal quantum yields of 61%. In addition, they can act as an out-coupler to mitigate the waveguide-mode losses, approximately doubling the external light-extraction efficiency. Such CD/polymer composites also exhibit good photo-stability, and thus can be used as eco-friendly, low-cost phosphors for solid-state lighting. PMID:26822337

  11. Host-Guest Chemistry between Perylene Diimide (PDI) Derivatives and 18-Crown-6: Enhancement in Luminescence Quantum Yield and Electrical Conductivity.

    PubMed

    Lasitha, P; Prasad, Edamana

    2016-07-18

    Perylene diimide (PDI) derivatives exhibit a high propensity for aggregation, which causes the aggregation-induced quenching of emission from the system. Host-guest chemistry is one of the best-known methods for preventing aggregation through the encapsulation of guest molecules. Herein we report the use of 18-crown-6 (18-C-6) as a host system to disaggregate suitably substituted PDI derivatives in methanol. 18-C-6 formed complexes with amino-substituted PDIs in methanol, which led to disaggregation and enhanced emission from the systems. Furthermore, the embedding of the PDI⋅18-C-6 complexes in poly(vinyl alcohol) (PVA) films generated remarkably high emission quantum yields (60-70 %) from the PDI derivatives. More importantly, the host-guest systems were tested for their ability to conduct electricity in PVA films. The electrical conductivities of the self-assembled systems in PVA were measured by electrochemical impedance spectroscopy (EIS) and the highest conductivity observed was 2.42×10(-5)  S cm(-1) .

  12. Measurement of Quantum Yield and Upconversion Brightness in Red, Blue and Green on NIR Excited M2O2S:Yb/Er/Ho/Tm Phosphors

    NASA Astrophysics Data System (ADS)

    Beeks, Ivan; Kumar, Ajith G.; Sardar, Dhiraj K.

    2015-03-01

    A series of broadly color tunable upconversion phosphors were synthesized from M2O2S (M=Y,Gd,La) using a flux fusion method. We investigate their upconversion properties as a function of the dopant concentrations and excitation power density. The phosphor compositions were determined for their upconversion characteristics under 800, 980 and 1550 nm excitations. By measuring the quantum yield and luminous brightness, we investigate their potential applications in biomedical imaging as well as NIR display applications. Results are compared with the well-known upconversion phosphor NaYF4:Yb/Er/Ho/Tm and found that the M2O2S phosphor systems are more efficient compared to NaYF4. By adopting various synthesis protocols, we were able to examine M2O2S in the size range of 10 nm to 10 μm. This research is supported by the National Science Foundation Partnerships for Research and Education in Materials (NSF-PREM) Grant N0-DMR-0934218.

  13. Luminescence, lifetime, and quantum yield studies of redispersible Eu3+-doped GdPO4 crystalline nanoneedles: Core-shell and concentration effects

    NASA Astrophysics Data System (ADS)

    Yaiphaba, N.; Ningthoujam, R. S.; Singh, N. Shanta; Vatsa, R. K.; Singh, N. Rajmuhon; Dhara, Sangita; Misra, N. L.; Tewari, R.

    2010-02-01

    Crystalline nanoneedles of Eu3+-doped GdPO4 and Eu3+-doped GdPO4 covered with GdPO4 shell (core shell) have been prepared at relatively low temperature of 150 °C in ethylene glycol medium. From luminescence study, asymmetric ratio of Eu3+ emission at 612 nm (electric dipole transition) to 592 nm (magnetic dipole transition) is found to be less than one. Maximum luminescence was observed from the nanoparticles with Eu3+ concentration of 5 at. %. For a fixed concentration of Eu3+ doping, there is an improvement in emission intensity for core-shell nanoparticles compared to that for core. This has been attributed to effective removal of surface inhomogeneities around Eu3+ ions present on the surface of core as well as the passivation of inevitable surface states, defects or capping ligand (ethylene glycol) of core nanoparticles by bonding to the shell. Lifetime for D50 level of Eu3+ was found to increase three times for core-shell nanoparticles compared to that for core confirming the more Eu3+ ions with symmetry environment in core shell. For 5 at. % Eu3+-doped GdPO4, quantum yield of 19% is obtained. These nanoparticles are redispersible in water, ethanol, or chloroform and thus will be useful in biological labeling. The dispersed particles are incorporated in polymer-based films that will be useful in display devices.

  14. Design of weak-donor alkyl-functionalized push-pull pyrene dyes exhibiting enhanced fluorescence quantum yields and unique on/off switching properties.

    PubMed

    Niko, Yosuke; Sasaki, Shunsuke; Kawauchi, Susumu; Tokumaru, Katsumi; Konishi, Gen-Ichi

    2014-07-01

    We designed, synthesized, and evaluated environmentally responsive solvatochromic fluorescent dyes by incorporating weak push-pull moieties. The quantum yields of the push (alkyl)-pull (formyl) pyrene dyes were dramatically enhanced by the introduction of alkyl groups into formylpyrene (1-formylpyrene: Φ(F) =0.10; 3,6,8-tri-n-butyl-1-formylpyrene: Φ(F) =0.90; in MeOH). The new dyes exhibited unique sensitivity to solvent polarity and hydrogen-bond donor ability, and specific fluorescence turn-on/off properties (e.g., 3,6,8-tri-n-butyl-1-formylpyrene: Φ(F) =0.004, 0.80, 0.37, and 0.90 in hexane, chloroform, DMSO, and MeOH, respectively). Here, the alkyl groups act as weak donors to suppress intersystem crossing by destabilizing the HOMOs of 1-formylpyrene while maintaining weak intramolecular charge-transfer properties. By using alkyl groups as weak donors, environmentally responsive, and in particular, pH-responsive fluorescent materials may be developed in the future.

  15. Constructing Solid-Gas-Interfacial Fenton Reaction over Alkalinized-C3N4 Photocatalyst To Achieve Apparent Quantum Yield of 49% at 420 nm.

    PubMed

    Li, Yunxiang; Ouyang, Shuxin; Xu, Hua; Wang, Xin; Bi, Yingpu; Zhang, Yuanfang; Ye, Jinhua

    2016-10-03

    Efficient generation of active oxygen-related radicals plays an essential role in boosting advanced oxidation process. To promote photocatalytic oxidation for gaseous pollutant over g-C3N4, a solid-gas interfacial Fenton reaction is coupled into alkalinized g-C3N4-based photocatalyst to effectively convert photocatalytic generation of H2O2 into oxygen-related radicals. This system includes light energy as power, alkalinized g-C3N4-based photocatalyst as an in situ and robust H2O2 generator, and surface-decorated Fe(3+) as a trigger of H2O2 conversion, which attains highly efficient and universal activity for photodegradation of volatile organic compounds (VOCs). Taking the photooxidation of isopropanol as model reaction, this system achieves a photoactivity of 2-3 orders of magnitude higher than that of pristine g-C3N4, which corresponds to a high apparent quantum yield of 49% at around 420 nm. In-situ electron spin resonance (ESR) spectroscopy and sacrificial-reagent incorporated photocatalytic characterizations indicate that the notable photoactivity promotion could be ascribed to the collaboration between photocarriers (electrons and holes) and Fenton process to produce abundant and reactive oxygen-related radicals. The strategy of coupling solid-gas interfacial Fenton process into semiconductor-based photocatalysis provides a facile and promising solution to the remediation of air pollution via solar energy.

  16. Lasing action and extraordinary reduction in long radiative lifetime of type-II GaSb/GaAs quantum dots using circular photonic crystal nanocavity

    SciTech Connect

    Hsu, Kung-Shu; Chang, Shu-Wei; Hung, Wei-Chun; Chang, Chih-Chi; Lin, Wei-Hsun; Lin, Shih-Yen; Shih, Min-Hsiung; Lee, Po-Tsung; Chang, Yia-Chung

    2015-08-31

    We demonstrated the lasing action and remarkable reduction in long radiative lifetimes of type-II GaSb/GaAs quantum dots using a circular photonic-crystal nano-cavity with high Purcell factors. The associated enhancement in carrier recombination was surprisingly high and could even surpass type-I counterparts in similar conditions. These phenomena reveal that the type-II sample exhibited extremely low nonradiative recombination so that weak radiative transitions were more dominant than expected. The results indicate that type-II nanostructures may be advantageous for applications which require controllable radiative transitions but low nonradiative depletions.

  17. Exploration of possible quantum gravity effects with neutrinos II: Lorentz violation in neutrino propagation

    NASA Astrophysics Data System (ADS)

    Sakharov, Alexander; Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Rubbia, André

    2009-06-01

    It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c = [1 ± (E/MvQG1)] or [1 ± (E/MvQG2)2], using data from supernova explosions and the OPERA long-baseline neutrino experiment.

  18. Adiabatically implementing quantum gates

    SciTech Connect

    Sun, Jie; Lu, Songfeng Liu, Fang

    2014-06-14

    We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.

  19. New Shell Structures and Their Ground Electronic States in Spherical Quantum Dots (II) under Magnetic Field

    NASA Astrophysics Data System (ADS)

    Asari, Yusuke; Takeda, Kyozaburo; Tamura, Hiroyuki

    2005-04-01

    We theoretically studied the electronic structure of the three-dimensional spherical parabolic quantum dot (3D-SPQD) under a magnetic field. We obtained the quantum dot orbitals (QDOs) and determined the ground state by using the extended UHF approach where the expectation values of the z component of the total orbital angular momentum <\\hat{L}z> are conserved during the scf-procedure. The single-electron treatment predicts that the applied magnetic field (B) creates k-th new shells at the magnetic field of Bk=k(k+2)/(k+1)ω0 with the shell-energy interval of \\hbarω0/(k+1), where ω0(=\\hbar/m*l02) is the characteristic frequency originating from the spherical parabolic confinement potential. These shells are formed by the level crossing among multiple QDOs. The interelectron interaction breaks the simple level crossing but causes complicated dependences among the total energy, the chemical potential and their differences (magic numbers) with the magnetic field or the number of confinement electrons. The ground state having a higher spin multiplicity is theoretically predicted on the basis of the \\textit{quasi}-degeneracies of the QDOs around these shells.

  20. Coherent states, quantum gravity, and the Born- Oppenheimer approximation. II. Compact Lie groups

    NASA Astrophysics Data System (ADS)

    Stottmeister, Alexander; Thiemann, Thomas

    2016-07-01

    In this article, the second of three, we discuss and develop the basis of a Weyl quantisation for compact Lie groups aiming at loop quantum gravity-type models. This Weyl quantisation may serve as the main mathematical tool to implement the program of space adiabatic perturbation theory in such models. As we already argued in our first article, space adiabatic perturbation theory offers an ideal framework to overcome the obstacles that hinder the direct implementation of the conventional Born-Oppenheimer approach in the canonical formulation of loop quantum gravity. Additionally, we conjecture the existence of a new form of the Segal-Bargmann-Hall "coherent state" transform for compact Lie groups G, which we prove for G = U(1)n and support by numerical evidence for G = SU(2). The reason for conjoining this conjecture with the main topic of this article originates in the observation that the coherent state transform can be used as a basic building block of a coherent state quantisation (Berezin quantisation) for compact Lie groups G. But, as Weyl and Berezin quantisation for ℝ2d are intimately related by heat kernel evolution, it is natural to ask whether a similar connection exists for compact Lie groups as well. Moreover, since the formulation of space adiabatic perturbation theory requires a (deformation) quantisation as minimal input, we analyse the question to what extent the coherent state quantisation, defined by the Segal-Bargmann-Hall transform, can serve as basis of the former.

  1. Electron-nuclei spin dynamics in II-VI semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Le Gall, C.; Brunetti, A.; Boukari, H.; Besombes, L.

    2012-05-01

    We report on the dynamics of optically induced nuclear spin polarization in individual CdTe/ZnTe quantum dots loaded with one electron by modulation doping. The fine structure of the hot trion (charged exciton X- with an electron in the P shell) is identified in photoluminescence excitation spectra. A negative polarization rate of the photoluminescence, optical pumping of the resident electron, and the built up of dynamic nuclear spin polarization (DNSP) are observed in time-resolved optical pumping experiments when the quantum dot is excited at higher energy than the hot trion triplet state. The time and magnetic field dependence of the polarization rate of the X- emission allows us to probe the dynamics of formation of the DNSP in the optical pumping regime. We demonstrate using time-resolved measurements that the creation of a DNSP at B=0 T efficiently prevents longitudinal spin relaxation of the electron caused by fluctuations of the nuclear spin bath. The DNSP is built in the microsecond range at high excitation intensity. A relaxation time of the DNSP in about 10 μm is observed at B=0 T and significantly increases under a magnetic field of a few milli-Tesla. We discuss mechanisms responsible for the fast initialization and relaxation of the diluted nuclear spins in this system.

  2. The Prognostic Yield of Biomarkers Harvested in Chemotherapy-Naive Stage II Colon Cancer: Can We Separate the Wheat from the Chaff?

    PubMed Central

    Watson, Martin M; Søreide, Kjetil

    2016-01-01

    The tumor-node-metastasis (TNM) system fails to accurately predict disease recurrence in a considerable number of patients. Although node-negative (stage II) colon cancer is considered to have an overall good prognosis, the 5-year cancer-specific survival is reported at 81–83% in patients who did not have adjuvant chemotherapy. Thus, reliance on node status alone has led to undertreatment in a subgroup of stage II patients with an unfavorable prognosis. The search for new and better prognosticators in stage II colon cancer has suggested several proposed biomarkers of better prognostication and prediction. However, few such biomarkers have reached widespread clinical utility. For the clinician swimming in the sea of emerging biomarkers, it may be hard to recognize the true floating aid from the surrounding debris in the search for more precise decision-making. Proposed markers include microsatellite instability (MSI) and KRAS and BRAF mutations, but a number of gene panels and consensus molecular subtypes are proposed for clinical prediction and prognostication as well. Although several studies suggest such biomarkers or panels to have a prognostic role in subgroups of patients, a number of studies are reported in heterogeneous groups with in part discordant findings, which again distorts the predictive and prognostic ability of each marker. Lack of homogeneous cohorts, underpowered studies in strict subgroups and challenges in analytical and clinical validity may hamper the progress toward widespread clinical utility. The harvest of prognostic biomarkers in colon cancer has yielded a huge number of candidates for which it is now time to separate the wheat from the chaff. PMID:27262159

  3. Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves

    PubMed Central

    Tubuxin, Bayaer; Rahimzadeh-Bajgiran, Parinaz; Ginnan, Yusaku; Hosoi, Fumiki; Omasa, Kenji

    2015-01-01

    This paper illustrates the possibility of measuring chlorophyll (Chl) content and Chl fluorescence parameters by the solar-induced Chl fluorescence (SIF) method using the Fraunhofer line depth (FLD) principle, and compares the results with the standard measurement methods. A high-spectral resolution HR2000+ and an ordinary USB4000 spectrometer were used to measure leaf reflectance under solar and artificial light, respectively, to estimate Chl fluorescence. Using leaves of Capsicum annuum cv. ‘Sven’ (paprika), the relationships between the Chl content and the steady-state Chl fluorescence near oxygen absorption bands of O2B (686nm) and O2A (760nm), measured under artificial and solar light at different growing stages of leaves, were evaluated. The Chl fluorescence yields of ΦF 686nm/ΦF 760nm ratios obtained from both methods correlated well with the Chl content (steady-state solar light: R2 = 0.73; artificial light: R2 = 0.94). The SIF method was less accurate for Chl content estimation when Chl content was high. The steady-state solar-induced Chl fluorescence yield ratio correlated very well with the artificial-light-induced one (R2 = 0.84). A new methodology is then presented to estimate photochemical yield of photosystem II (ΦPSII) from the SIF measurements, which was verified against the standard Chl fluorescence measurement method (pulse-amplitude modulated method). The high coefficient of determination (R2 = 0.74) between the ΦPSII of the two methods shows that photosynthesis process parameters can be successfully estimated using the presented methodology. PMID:26071530

  4. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.

    PubMed

    Chen, Duan; Chen, Zhan; Wei, Guo-Wei

    2012-01-01

    Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov

  5. Development of Algorithms for Nonlinear Physics on Type-II Quantum Computers

    DTIC Science & Technology

    2007-07-01

    Jan. 31, 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Quantumn Lattice Algorithms for Nonlinear Physics: Optical Solutions and Bose-Eitistein...macroscopic nonlinear derivatives by local moments. Chapman-Enskog asymptotics will then, on projecting back into physical space, yield these nonlinear ...Entropic Lattice Boltzmaim Model will be being strongly pursued in future proposals. AFOSR FINAL REPORT "DEVELOPMENT OF ALGORITHMS For NONLINEAR

  6. Semi-empirical quantum evaluation of peptide - MHC class II binding

    NASA Astrophysics Data System (ADS)

    González, Ronald; Suárez, Carlos F.; Bohórquez, Hugo J.; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2017-01-01

    Peptide presentation by the major histocompatibility complex (MHC) is a key process for triggering a specific immune response. Studying peptide-MHC (pMHC) binding from a structural-based approach has potential for reducing the costs of investigation into vaccine development. This study involved using two semi-empirical quantum chemistry methods (PM7 and FMO-DFTB) for computing the binding energies of peptides bonded to HLA-DR1 and HLA-DR2. We found that key stabilising water molecules involved in the peptide binding mechanism were required for finding high correlation with IC50 experimental values. Our proposal is computationally non-intensive, and is a reliable alternative for studying pMHC binding interactions.

  7. The quantum free particle on spherical and hyperbolic spaces: A curvature dependent approach. II

    SciTech Connect

    Carinena, Jose F.; Ranada, Manuel F.; Santander, Mariano

    2012-10-15

    This paper is the second part of a study of the quantum free particle on spherical and hyperbolic spaces by making use of a curvature-dependent formalism. Here we study the analogues, on the three-dimensional spherical and hyperbolic spaces, S{sub {kappa}}{sup 3} ({kappa} > 0) and H{sub k}{sup 3} ({kappa} < 0), to the standard spherical waves in E{sup 3}. The curvature {kappa} is considered as a parameter and for any {kappa} we show how the radial Schroedinger equation can be transformed into a {kappa}-dependent Gauss hypergeometric equation that can be considered as a {kappa}-deformation of the (spherical) Bessel equation. The specific properties of the spherical waves in the spherical case are studied with great detail. These have a discrete spectrum and their wave functions, which are related with families of orthogonal polynomials (both {kappa}-dependent and {kappa}-independent), and are explicitly obtained.

  8. Growth of II-VI ZnSe/CdSe nanowires for quantum dot luminescence

    NASA Astrophysics Data System (ADS)

    Bellet-Amalric, E.; Elouneg-Jamroz, M.; Rueda-Fonseca, P.; Bounouar, S.; Hertog, M. Den; Bougerol, C.; André, R.; Genuist, Y.; Poizat, J. P.; Kheng, K.; Cibert, J.; Tatarenko, S.

    2013-09-01

    The growth of gold catalyzed ZnSe nanowires, with CdSe insertions, by molecular beam epitaxy is investigated. In situ reflection high energy electron diffraction and ex-situ transmission electron diffraction reveal that both during, the gold dewetting and the nanowire growth, the gold particles remain always in the solid phase. The nanowire growth proceeds by ledge flow at the gold/nanowire interface as observed ex-situ by the presence of two monolayers high steps at the interface. The nanowire diameters present a high homogeneity corresponding to the low dispersion of the gold droplets. Finally, a rather abrupt interface, of less than 1 nm thick, is observed between the ZnSe barrier and the CdSe quantum dot allowing a high confinement of the excitons. All the above observations are compatible with a Vapor-Solid-Solid growth mode.

  9. Stationary waves on nonlinear quantum graphs. II. Application of canonical perturbation theory in basic graph structures.

    PubMed

    Gnutzmann, Sven; Waltner, Daniel

    2016-12-01

    We consider exact and asymptotic solutions of the stationary cubic nonlinear Schrödinger equation on metric graphs. We focus on some basic example graphs. The asymptotic solutions are obtained using the canonical perturbation formalism developed in our earlier paper [S. Gnutzmann and D. Waltner, Phys. Rev. E 93, 032204 (2016)2470-004510.1103/PhysRevE.93.032204]. For closed example graphs (interval, ring, star graph, tadpole graph), we calculate spectral curves and show how the description of spectra reduces to known characteristic functions of linear quantum graphs in the low-intensity limit. Analogously for open examples, we show how nonlinear scattering of stationary waves arises and how it reduces to known linear scattering amplitudes at low intensities. In the short-wavelength asymptotics we discuss how genuine nonlinear effects may be described using the leading order of canonical perturbation theory: bifurcation of spectral curves (and the corresponding solutions) in closed graphs and multistability in open graphs.

  10. Stationary waves on nonlinear quantum graphs. II. Application of canonical perturbation theory in basic graph structures

    NASA Astrophysics Data System (ADS)

    Gnutzmann, Sven; Waltner, Daniel

    2016-12-01

    We consider exact and asymptotic solutions of the stationary cubic nonlinear Schrödinger equation on metric graphs. We focus on some basic example graphs. The asymptotic solutions are obtained using the canonical perturbation formalism developed in our earlier paper [S. Gnutzmann and D. Waltner, Phys. Rev. E 93, 032204 (2016), 10.1103/PhysRevE.93.032204]. For closed example graphs (interval, ring, star graph, tadpole graph), we calculate spectral curves and show how the description of spectra reduces to known characteristic functions of linear quantum graphs in the low-intensity limit. Analogously for open examples, we show how nonlinear scattering of stationary waves arises and how it reduces to known linear scattering amplitudes at low intensities. In the short-wavelength asymptotics we discuss how genuine nonlinear effects may be described using the leading order of canonical perturbation theory: bifurcation of spectral curves (and the corresponding solutions) in closed graphs and multistability in open graphs.

  11. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield

    NASA Astrophysics Data System (ADS)

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C.; Goldys, Ewa M.

    2016-01-01

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8 keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79 ± 0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result we estimate the singlet oxygen dose generated from CeF3-verteporfin conjugates for a therapeutic dose of 60 Gy of ionizing radiation at energies of 6 MeV and 30 keV to be (1.2 ± 0.7) × 108 and (2.0 ± 0.1) × 109 singlet oxygen molecules per cell, respectively. These are comparable with cytotoxic doses of 5 × 107-2 × 109 singlet oxygen molecules per cell reported in the literature for photodynamic therapy using light activation. We confirmed that the CeF3-VP conjugates enhanced cell killing with 6 MeV radiation. This work confirms the feasibility of using X- or γ- ray activated nanoparticle-photosensitizer conjugates, either to supplement the radiation treatment of cancer, or as an independent treatment modality.

  12. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield

    PubMed Central

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C.; Goldys, Ewa M.

    2016-01-01

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8 keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79 ± 0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result we estimate the singlet oxygen dose generated from CeF3-verteporfin conjugates for a therapeutic dose of 60 Gy of ionizing radiation at energies of 6 MeV and 30 keV to be (1.2 ± 0.7) × 108 and (2.0 ± 0.1) × 109 singlet oxygen molecules per cell, respectively. These are comparable with cytotoxic doses of 5 × 107–2 × 109 singlet oxygen molecules per cell reported in the literature for photodynamic therapy using light activation. We confirmed that the CeF3-VP conjugates enhanced cell killing with 6 MeV radiation. This work confirms the feasibility of using X- or γ- ray activated nanoparticle-photosensitizer conjugates, either to supplement the radiation treatment of cancer, or as an independent treatment modality. PMID:26818819

  13. Fluorescent properties of DNA base analogue tC upon incorporation into DNA — negligible influence of neighbouring bases on fluorescence quantum yield

    PubMed Central

    Sandin, Peter; Wilhelmsson, L. Marcus; Lincoln, Per; Powers, Vicki E. C.; Brown, Tom; Albinsson, Bo

    2005-01-01

    The quantum yield of the fluorescent tricyclic cytosine analogue, 1,3-diaza-2-oxophenothiazine, tC, is high and virtually unaffected by incorporation into both single- and double-stranded DNA irrespective of neighbouring bases (0.17–0.24 and 0.16–0.21, respectively) and the corresponding fluorescence decay curves are all mono-exponential, properties that are unmatched by any base analogue so far. The fluorescence lifetimes increase when going from tC free in solution (3.2 ns) to single- and double-stranded DNA (on average 5.7 and 6.3 ns, respectively). The mono-exponential decays further support previous NMR results where it was found that tC has a well-defined position and geometry within the DNA helix. Furthermore, we find that the oxidation potential of tC is 0.4 V lower than for deoxyguanosine, the natural base with the lowest oxidation potential. This suggests that tC may be of interest in charge transfer studies in DNA as an electron hole acceptor. We also present a novel synthetic route to the phosphoramidite form of tC. The results presented here together with previous work show that tC is a very good C-analogue that induces minimal perturbation to the native structure of DNA. This makes tC unique as a fluorescent base analogue and is thus highly interesting in a range of applications for studying e.g. structure, dynamics and kinetics in nucleic acid systems. PMID:16147985

  14. Nitryl chloride (ClNO2): UV/vis absorption spectrum between 210 and 296 K and O(3P) quantum yield at 193 and 248 nm.

    PubMed

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K; Talukdar, Ranajit K; Roberts, James M; Burkholder, James B

    2012-06-21

    Recent studies have shown that the UV/vis photolysis of nitryl chloride (ClNO2) can be a major source of reactive chlorine in the troposphere. The present work reports measurements of the ClNO2 absorption spectrum and its temperature dependence between 210 and 296 K over the wavelength range 200–475 nm using diode array spectroscopy. The room temperature spectrum obtained in this work was found to be in good agreement with the results from Ganske et al. (J. Geophys. Res. 1992, 97, 7651) over the wavelength range common to both studies (200–370 nm) but differs systematically from the currently recommended spectrum for use in atmospheric models. The present results lead to a decrease in the calculated atmospheric ClNO2 photolysis rate by 30%. Including the temperature dependence of the ClNO2 spectrum decreases the calculated atmospheric photolysis rate at lower temperatures (higher altitudes) even further. A parametrization of the wavelength and temperature dependence of the ClNO2 spectrum is presented. O(3P) quantum yields, Φ(ClNO2)(O), in the photolysis of ClNO2 at 193 and 248 nm were measured at 296 K using pulsed laser photolysis combined with atomic resonance fluorescence detection of O(3P) atoms. Φ(ClNO2)(O)(λ) was found to be 0.67 ± 0.12 and 0.15 ± 0.03 (2σ error limits, including estimated systematic errors) at 193 and 248 nm, respectively, indicating that multiple dissociation channels are active in the photolysis of ClNO2 at these wavelengths. The Φ(ClNO2)(O)(λ) values obtained in this work are discussed in light of previous ClNO2 photodissociation studies and the differences are discussed.

  15. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield.

    PubMed

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C; Goldys, Ewa M

    2016-01-28

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8 keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79 ± 0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result we estimate the singlet oxygen dose generated from CeF3-verteporfin conjugates for a therapeutic dose of 60 Gy of ionizing radiation at energies of 6 MeV and 30 keV to be (1.2 ± 0.7) × 10(8) and (2.0 ± 0.1) × 10(9) singlet oxygen molecules per cell, respectively. These are comparable with cytotoxic doses of 5 × 10(7)-2 × 10(9) singlet oxygen molecules per cell reported in the literature for photodynamic therapy using light activation. We confirmed that the CeF3-VP conjugates enhanced cell killing with 6 MeV radiation. This work confirms the feasibility of using X- or γ- ray activated nanoparticle-photosensitizer conjugates, either to supplement the radiation treatment of cancer, or as an independent treatment modality.

  16. Growth and Characterization of Type-II Submonolayer ZnCdTe/ZnCdSe Quantum Dot Superlattices for Efficient Intermediate Band Solar Cells

    NASA Astrophysics Data System (ADS)

    Dhomkar, Siddharth

    In this thesis, we discuss the growth procedure and the characterization results obtained for epitaxially grown submonolayer type-II quantum dot superlattices made of II-VI semiconductors. The goal behind this study is to show the feasibility of this novel material system in fabricating an efficient intermediate band solar cell. Intermediate band solar cells can potentially have an efficiency of 63.2% under full solar concentration, but the material systems investigated until now are far from optimum and are fraught with growth related issues including low quantum dot densities, presence of wetting layers, strain driven dislocations etc. Here, we have investigated a novel material system grown via migration enhanced epitaxy with stacked type-II ZnCdTe submonolayer quantum dots embedded in ZnCdSe matrix and having close to the optimal material parameters required for an IB material. Upon optimizing growth conditions for ZnTe/ZnSe multilayer quantum dot systems, the growth parameters were modified so as to obtain various ZnCdTe/ZnCdSe samples grown on InP substrates. An extensive characterization has been performed to investigate structural, optical as well as electrical properties of these multilayered structures. Finally, a preliminary device fabrication has been performed, which will provide definite guidelines towards optimization of an actual intermediate band solar cell structure. To restate, the objective of this thesis is to demonstrate successful growth and characterization of multilayer structures with embedded submonolayer type-II quantum dots in order to explore the possibility of employing them as an intermediate band material, with the goal of engineering an ultra-efficient intermediate band solar cell.

  17. Transient absorption study on the influence of several polyphenylene vinylene derivatives on the exciton lifetimes in lead(II) sulfide quantum dots

    NASA Astrophysics Data System (ADS)

    Piatkowski, Piotr; Gadomski, Wojciech; Ratajska-Gadomska, Bozena; Borysiuk, Jolanta

    2012-04-01

    The aim of this Letter is to show the influence of several new polyphenylene vinylene (PPV) derivatives, covering surfaces of lead(II) sulfide semiconductor quantum dots, on optical properties of nanocrystals, especially on exciton lifetimes. The collected data exhibit strong dependence of the excited states lifetimes in PbS nanocrystals on the distance between the polymer chain and the quantum dot. It turns out that the presence of PPV derivatives stabilizes the created exciton, which is manifested by the increase of its lifetime. Anyway this effect weakens in PPV derivatives with longer side chains separating nanocrystal from the main conductive chain.

  18. Photoinduced electron donor/acceptor processes in colloidal II-VI semiconductor quantum dots and nitroxide free radicals

    NASA Astrophysics Data System (ADS)

    Dutta, Poulami

    Electron transfer (ET) processes are one of the most researched topics for applications ranging from energy conversion to catalysis. An exciting variation is utilizing colloidal semiconductor nanostructures to explore such processes. Semiconductor quantum dots (QDs) are emerging as a novel class of light harvesting, emitting and charge-separation materials for applications such as solar energy conversion. Detailed knowledge of the quantitative dissociation of the photogenerated excitons and the interfacial charge- (electron/hole) transfer is essential for optimization of the overall efficiency of many such applications. Organic free radicals are the attractive counterparts for studying ET to/from QDs because these undergo single-electron transfer steps in reversible fashion. Nitroxides are an exciting class of stable organic free radicals, which have recently been demonstrated to be efficient as redox mediators in dye-sensitized solar cells, making them even more interesting for the aforementioned studies. This dissertation investigates the interaction between nitroxide free radicals TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), 4-amino-TEMPO (4-amino- 2,2,6,6-tetramethylpiperidine-1-oxyl) and II-VI semiconductor (CdSe and CdTe) QDs. The nature of interaction in these hybrids has been examined through ground-state UV-Vis absorbance, steady state and time-resolved photoluminescence (PL) spectroscopy, transient absorbance, upconversion photoluminescence spectroscopy and electron paramagnetic resonance (EPR). The detailed analysis of the PL quenching indicates that the intrinsic charge transfer is ultrafast however, the overall quenching is still limited by the lower binding capacities and slower diffusion related kinetics. Careful analysis of the time resolved PL decay kinetics reveal that the decay rate constants are distributed and that the trap states are involved in the overall quenching process. The ultrafast hole transfer from CdSe QDs to 4-Amino TEMPO observed

  19. Dilute-Nitride Type-II Quantum Well Lasers Grown by MOCVD

    DTIC Science & Technology

    2007-02-25

    to develop high performance long wavelength lasers on GaAs substrates. We are taking two approaches to the device design: 1 . GaAsN/GaAsSb type-II...described in detail below and the figure numbers refer to the figures in the attachment (see attachment). Key results for 2005: 1 . Achievement of...seconds of TMSb and H2 exposure prior to GaAsSb layer growth and 1 second of TMGa in H2 followed by 5 seconds of arsine and DMHz exposure prior to the

  20. Near-infrared peptide-coated quantum dots for small animal imaging

    NASA Astrophysics Data System (ADS)

    Iyer, Gopal; Li, Jack J.; Pinaud, Fabien; Tsay, James M.; Bentolila, Laurent A.; Michalet, Xavier; Weiss, Shimon

    2006-02-01

    We have synthesized high quality type-II CdTe/CdSe near infrared quantum dots using successive ion layer adsorption and reaction chemistry. Transmission electron microscopy reveals that CdTe/CdSe can be synthesized layer by layer yielding quantum dots of narrow size distribution. Excitation and photoluminescence spectra reveal discrete type-II transitions, which correspond to energy lower that type-I bandgap. We have used a peptide coating technique on type-II and commercial near infrared quantum dots for delivery in live animals and cultured cells.

  1. Approximate but accurate quantum dynamics from the Mori formalism. II. Equilibrium time correlation functions.

    PubMed

    Montoya-Castillo, Andrés; Reichman, David R

    2017-02-28

    The ability to efficiently and accurately calculate equilibrium time correlation functions of many-body condensed phase quantum systems is one of the outstanding problems in theoretical chemistry. The Nakajima-Zwanzig-Mori formalism coupled to the self-consistent solution of the memory kernel has recently proven to be highly successful for the computation of nonequilibrium dynamical averages. Here, we extend this formalism to treat symmetrized equilibrium time correlation functions for the spin-boson model. Following the first paper in this series [A. Montoya-Castillo and D. R. Reichman, J. Chem. Phys. 144, 184104 (2016)], we use a Dyson-type expansion of the projected propagator to obtain a self-consistent solution for the memory kernel that requires only the calculation of normally evolved auxiliary kernels. We employ the approximate mean-field Ehrenfest method to demonstrate the feasibility of this approach. Via comparison with numerically exact results for the correlation function Czz(t)=Re⟨σz(0)σz(t)⟩, we show that the current scheme affords remarkable boosts in accuracy and efficiency over bare Ehrenfest dynamics. We further explore the sensitivity of the resulting dynamics to the choice of kernel closures and the accuracy of the initial canonical density operator.

  2. Magnetic polarons in type-II (Zn,Mn)Se/ZnTe quantum dots

    NASA Astrophysics Data System (ADS)

    Murphy, J. R.; Barman, B.; Tsai, Y.; Scrace, T.; Pientka, J. M.; Zutic, I.; McCombe, B. D.; Petrou, A.; Cartwright, A. N.; Chou, W. C.; Tsou, M. H.; Yang, C. S.; Sellers, I. R.; Oszwaldowski, R.; Petukhov, A. G.

    2014-03-01

    We have studied magnetic polaron formation dynamics in (Zn,Mn)Se/ZnTe quantum dots2 (QDs) using time-resolved photoluminescence (TRPL) spectroscopy. The emitted light was spectrally and temporally analyzed; the emission spectra were recorded as function of time delay (Δt) from the exciting laser pulse. The recombination time at T = 10 K in our samples is 2.3 ns. The peak energy of the emission red shifts with increasing Δt due to the lowering of the hole-Mn spin complex (magnetic polaron) energy. From this shift we determined the magnetic polaron formation energy (EMP) at T = 10 K to be 20 meV, which is half the value observed in the ZnSe/(Zn,Mn)Te system studied previously.3EMP decreases with increasing temperature, in contrast to the behavior of the ZnSe/(Zn,Mn)Te system3 in which EMP is temperature independent. These results are discussed in terms of a theoretical model. This work is supported by DOE-BES, ONR and NSF.

  3. Multistate vibronic interactions in difluorobenzene radical cations. II. Quantum dynamical simulations.

    PubMed

    Faraji, Shirin; Meyer, H-D; Köppel, Horst

    2008-08-21

    The multistate vibronic dynamics in the X-D electronic states of all three difluorobenzene radical cations are investigated theoretically by an ab initio quantum dynamical approach. The vibronic coupling scheme and the ab initio values of the system parameters are adopted from Paper I [S. Faraji and H. Koppel, J. Chem. Phys. 129, 074310 (2008)]. Extensive calculations by wave-packet propagation have been performed with the aid of the multiconfiguration time-dependent Hartree method. Five coupled electronic potential energy surfaces and 10 (11 in the case of the orthoisomer) vibrational degrees of freedom have been included in these calculations. The nonadiabatic interactions lead to the restructuring of the photoelectron spectral envelopes. Ultrafast internal conversion processes within the electronic manifolds in question demonstrate the strength of the nonadiabatic coupling effects and complement the analogous findings for the electronic spectra. The internal conversion dynamics is characterized by a stepwise transfer of the electronic population to the lowest electronic state on a time scale of femtoseconds to picoseconds. A difference between the three isomers is found to be related to the weaker interaction between the sets of X-A and B-C-D states (with high-energy conical intersections) in the meta isomer, as compared to the other isomers. The implications of these findings for the qualitative understanding of the fluorescence dynamics of fluorinated benzene radical cations are discussed.

  4. On Pure Quasi-Quantum Quadratic Operators of 𝕄2(ℂ) II

    NASA Astrophysics Data System (ADS)

    Mukhamedov, Farrukh

    2015-11-01

    In this paper we study quasi quantum quadratic operators (QQO) acting on the algebra of 2×2 matrices 𝕄2(ℂ). We consider two kinds of quasi QQO the corresponding quadratic operator maps from the unit circle into the sphere and from the sphere into the unit circle, respectively. In our early paper we have defined a q-purity of quasi QQO. This notion is equivalent to the invariance of the unit sphere in ℝ3. But to check this condition, in general, is tricky. Therefore, it would be better to find weaker conditions to check the q-purity. One of the main results of this paper is to provide a criterion of q-purity of quasi QQO in terms of the unit circles. Moreover, we are able to classify all possible kinds of quadratic operators which can produce q-pure quasi QQO. We think that such result will allow one to check whether a given mapping is a pure channel or not. This finding suggests us to study such a class of nonpositive mappings. Correspondingly, the complement of this class will be of potential interest for physicist since this set contains all completely positive mappings.

  5. Modified Riccati approach to partially solvable quantum Hamiltonians. II. Morse-oscillator-related family

    NASA Astrophysics Data System (ADS)

    Montemayor, R.; Salem, L. D.

    1991-12-01

    We extend the scope of the modified Riccati approach to partial solubility in quantum mechanics introduced in a previous work [L. D. Salem and R. Montemayor, Phys. Rev. A 43, 1169 (1991)]. With the use of adequate mappings u(x), we show the convenience of the modified Riccati approach to analyze potentials that can be written as rational functions on u. The necessary conditions for a Hamiltonian to be solvable are discussed in detail. By considering the exponential mapping u=e-x, we construct a family of potentials related to the exactly solvable Morse oscillator. Within this family, we have identified a three-parameter quasiexactly solvable potential, which, depending on the value of its coupling constants, leads to a symmetric or asymmetric confining potential, with a single-well or a double-well structure. Explicit expressions for the energies and eigenfunctions are given for particular cases. The analytic continuation of the symmetric subset gives rise to a quasiexactly solvable periodic potential.

  6. High quantum efficiency Type-II superlattice N-structure photodetectors with thin intrinsic layers

    NASA Astrophysics Data System (ADS)

    Ergun, Yuksel; Hostut, Mustafa; Tansel, Tunay; Muti, Abdullah; Kilic, Abidin; Turan, Rasit; Aydinli, Atilla

    2013-06-01

    We report on the development of InAs/AlSb/GaSb based N-structure superlattice pin photodiode. In this new design, AlSb layer in between InAs and GaSb layers acts as an electron barrier that pushes electron and hole wave functions towards the GaSb/InAs interface to perform strong overlap under reverse bias. Experimental results show that, with only 20 periods of intrinsic layers, dark current density and dynamic resistance at -50 mV bias are measured as 6x10-3 A/cm2 and 148 Ωcm2 at 77K, respectively. Under zero bias, high spectral response of 1.2A/W is obtained at 5 μm with 50% cut-off wavelengths (λc) of 6 μm. With this new design, devices with only 146 nm thick i-regions exhibit a quantum efficiency of 42% at 3 μm with front-side illimunation and no anti-reflection coatings.

  7. Quantum quenches of ion Coulomb crystals across structural instabilities. II. Thermal effects

    NASA Astrophysics Data System (ADS)

    Baltrusch, Jens D.; Cormick, Cecilia; Morigi, Giovanna

    2013-03-01

    We theoretically analyze the efficiency of a protocol for creating mesoscopic superpositions of ion chains, described in Baltrusch [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.84.063821 84, 063821 (2011)], as a function of the temperature of the crystal. The protocol makes use of state-dependent forces, so that a coherent superposition of the electronic states of one ion evolves into an entangled state between the chain's internal and external degrees of freedom. Ion Coulomb crystals are well isolated from the external environment and should therefore experience a coherent, unitary evolution, which follows the quench and generates structural Schrödinger-cat-like states. The temperature of the chain, however, introduces a statistical uncertainty in the final state. We characterize the quantum state of the crystal by means of the visibility of Ramsey interferometry performed on one ion of the chain and determine its decay as a function of the crystal's initial temperature. This analysis allows one to determine the conditions on the chain's initial state in order to efficiently perform the protocol.

  8. Quantum Information, Computation and Communication

    NASA Astrophysics Data System (ADS)

    Jones, Jonathan A.; Jaksch, Dieter

    2012-07-01

    Part I. Quantum Information: 1. Quantum bits and quantum gates; 2. An atom in a laser field; 3. Spins in magnetic fields; 4. Photon techniques; 5. Two qubits and beyond; 6. Measurement and entanglement; Part II. Quantum Computation: 7. Principles of quantum computing; 8. Elementary quantum algorithms; 9. More advanced quantum algorithms; 10. Trapped atoms and ions; 11. Nuclear magnetic resonance; 12. Large scale quantum computers; Part III. Quantum Communication: 13. Basics of information theory; 14. Quantum information; 15. Quantum communication; 16. Testing EPR; 17. Quantum cryptography; Appendixes; References; Index.

  9. Metallic nanoparticles and their medicinal potential. Part II: aluminosilicates, nanobiomagnets, quantum dots and cochleates.

    PubMed

    Loomba, Leena; Scarabelli, Tiziano

    2013-09-01

    Metallic miniaturization techniques have taken metals to nanoscale size where they can display fascinating properties and their potential applications in medicine. In recent years, metal nanoparticles such as aluminium, silicon, iron, cadmium, selenium, indium and calcium, which find their presence in aluminosilicates, nanobiomagnets, quantum dots (Q-dots) and cochleates, have caught attention of medical industries. The increasing impact of metallic nanoparticles in life sciences has significantly advanced the production techniques for these nanoparticles. In this Review, the various methods for the synthesis of nanoparticles are outlined, followed by their physicochemical properties, some recent applications in wound healing, diagnostic imaging, biosensing, assay labeling, antimicrobial activity, cancer therapy and drug delivery are listed, and finally their toxicological impacts are revised. The first half of this article describes the medicinal uses of two noble nanoparticles - gold and silver. This Review provides further information on the ability of aluminum, silicon, iron, selenium, indium, calcium and zinc to be used as nanoparticles in biomedical sciences. Aluminosilicates find their utility in wound healing and antibacterial growth. Iron-oxide nanoparticles enhance the properties of MRI contrast agents and are also used as biomagnets. Cadmium, selenium, tellurium and indium form the core nanostructures of tiny Q-dots used in cellular assay labeling, high-resolution cell imaging and biosensing. Cochleates have the bivalent nano ions calcium, magnesium or zinc imbedded in their structures and are considered to be highly effective agents for drug and gene delivery. The aluminosilicates, nanobiomagnets, Q-dots and cochleates are discussed in the light of their properties, synthesis and utility.

  10. Type-II recombination dynamics of tensile-strained GaP quantum dots in GaAs grown by droplet epitaxy

    NASA Astrophysics Data System (ADS)

    Prongjit, Patchareewan; Ratanathammaphan, Somchai; Ha, Neul; Mano, Takaaki; Sakoda, Kazuaki; Kuroda, Takashi

    2016-10-01

    We use droplet epitaxy to create tensile-strained GaP quantum dots in a GaAs matrix. A strong biaxial tensile strain leads to the formation of a type-II band lineup with a transition energy lower than the bulk GaAs band gap. The luminescence transients exhibit highly non-exponential decay behavior with an average time constant of 11 ± 2 μs, which is more than three orders of magnitude longer than the lifetime of standard type-I quantum dots. The prolonged luminescence decay time for the GaP/GaAs dots confirms the formation of the type-II band alignment associated with the tensile strain.

  11. The High-Yield Lithium-Injection Fusion-Energy (HYLIFE)-II inertial fusion energy (IFE) power plant concept and implications for IFE

    NASA Astrophysics Data System (ADS)

    Moir, Ralph W.

    1995-06-01

    In the High-Yield Lithium-Injection Fusion-Energy (HYLIFE) power plant design, lithium is replaced by molten salt. HYLIFE-II [Fusion Technol. 25, 5 (1994)] is based on nonflammable, renewable-liquid-wall fusion target chambers formed with Li2BeF4 molten-salt jets, a heavy-ion driver, and single-sided illumination of indirect-drive targets. Building fusion chambers from existing materials with life-of-plant structural walls behind the liquid walls, while still meeting non-nuclear grade construction and low-level waste requirements, has profound implications for inertial fusion energy (IFE) development. Fluid-flow work and computational fluid dynamics predict chamber clearing adequate for 6 Hz pulse rates. Predicted electricity cost is reduced about 30% to 4.4¢/kWh at 1 GWe and 3.2¢/kWh at 2 GWe. Development can be foreshortened and cost reduced by obviating expensive neutron sources to develop first-wall materials. The driver and chamber can be upgraded in stages, avoiding separate and sequential facilities. Important features of a practical IFE power plant are ignition and sufficient gain in targets; low-cost, efficient, rep-ratable driver; and low-cost targets.

  12. GaAsSb/InAs/(In)GaAs type II quantum dots for solar cell applications

    NASA Astrophysics Data System (ADS)

    Vyskočil, Jan; Hospodková, Alice; Petříček, Otto; Pangrác, Jiří; Zíková, Markéta; Oswald, Jiří; Vetushka, Aliaksei

    2017-04-01

    We focused on design of suitable underlying and covering layers of InAs/GaAs quantum dots (QDs) with the aim to increase the carrier extraction rate in the QD solar cell structures. Covering QDs by a GaAsSb strain reducing layer (SRL) with type II band alignment significantly improves photogenerated carrier extraction from InAs QDs. An additional thin InGaAs SRL below InAs QDs further enhances the extraction of photogenerated carriers. Properties of QD structures without any SRL, with GaAsSb covering SRL, and with combination of thin below-QDs InGaAs and GaAsSb covering SRLs are compared and the mechanism of carrier extraction is discussed. We showed that thin below-QDs InGaAs SRL together with increasing profile of antimony concentration in covering GaAsSb SRL can significantly improve the resulting properties of solar cell structures with InAs QDs.

  13. Bioinspired, direct synthesis of aqueous CdSe quantum dots for high-sensitive copper(II) ion detection.

    PubMed

    Bu, Xiaohai; Zhou, Yuming; He, Man; Chen, Zhenjie; Zhang, Tao

    2013-11-21

    Luminescent CdSe semiconductor quantum dots (QDs), which are coated with a denatured bovine serum albumin (dBSA) shell, have been directly synthesized via a bioinspired approach. The dBSA coated CdSe QDs are ultrasmall (d < 2.0 nm) with a narrow size distribution and exhibit a strong green fluorescent emission at about 525 nm. They can be stored for months at room temperature and possess excellent stability against ultraviolet irradiation, high salt concentration, and a wide physiological range of pH. Systematic experimental investigations have shown the contribution of dBSA with free cysteine residues for both their effective ion chelating and surface passivating interactions during the formation and stabilization of CdSe QDs. The luminescent QDs are used for copper(II) ion detection due to their highly sensitive and selective fluorescence quenching response to Cu(2+). The concentration dependence of the quenching effect can be best described by the typical Stern-Volmer equation in a linearly proportional concentration of Cu(2+) ranging from 10 nM to 7.5 μM with a detection limit of 5 nM. As confirmed by various characterization results, a possible quenching mechanism is given: Cu(2+) ions are first reduced to Cu(+) by the dBSA shell and then chemical displacement between Cu(+) and Cd(2+) is performed at the surface of the ultrasmall metallic core to impact the fluorescence performance.

  14. Interfacial strain effect on type-I and type-II core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Gheshlaghi, Negar; Pisheh, Hadi Sedaghat; Karim, M. Rezaul; Malkoc, Derya; Ünlü, Hilmi

    2016-09-01

    A comparative experimental and theoretical study on the calculation of capped core diameter in ZnSe/ZnS, CdSe/Cd(Zn)S type-I and ZnSe/CdS type-II core/shell nanocrystals is presented. The lattice mismatch induced interface strain between core and shell was calculated from continuum elastic theory and applied in effective mass approximation method to obtain the corresponding capped core diameter. The calculated results were compared with diameter of bare cores (CdSe and ZnSe) from transmission electron microscopy images to obtain the amount of the stretched or squeezed core after deposition of tensile or compressive shells. The result of the study showed that the core is squeezed in ZnSe/ZnS and CdSe/Cd(Zn)S after compressive shell and stretched in ZnSe/CdS after tensile shell deposition. The stretched and squeezed amount of the capped core found to be in proportion with lattice mismatch amount in the core/shell structure.

  15. The optical Aharonov-Bohm effect and magneto-optical properties in type-II quantum dots

    NASA Astrophysics Data System (ADS)

    Whiteside, Vincent Ryan

    We present a detailed experimental study of the magneto-optical properties of type-II quantum dots (QDs) in: (1) ZnTe/ZnSe superlattices grown by Molecular Beam Epitaxy (MBE)---these Zn(SeTe) QDs evolve from Te-clustering in the ZnSe matrix during growth; and (2) diluted magnetic semiconductor, (ZnMn)Se, QDs in a ZnSe matrix produced by migration enhanced epitaxy. In case (1) the Zn(SeTe) QDs display large and robust (with temperature) oscillations as a function of magnetic field in both the photoluminescence energy and intensity as a result of the optical Aharonov-Bohm effect. The large strength of these oscillations is attributed to a combination of the type-II symmetry and the columnar geometry of the structures; the oscillations persist until 180K. The type-II diluted magnetic semiconductor, (ZnMn)Te quantum dots display similar oscillatory effects in the emission intensity. Interestingly, the coherence of the Aharonov-Bohm phase in these magnetic dots is strongly related to the spin polarization of the system due to the Mn-exciton exchange interaction as shown by the disappearance of the oscillations at low magnetic fields. The enhanced coherence at high fields, which leads to strong oscillations in intensity, is attributed to removal of magnetic disorder by the applied magnetic field. While the magnetic nature of the QDs is clear from the polarization measurements there is the seemingly contradictory behavior of a very small Zeeman shift for material that has a corresponding large Zeeman shift for the comparable composition of bulk (ZnMn)Te. More importantly, a red shift greater than 30 meV is observed in the peak energy of the PL as function of time after excitation with a picosecond pulse. These results can be explained by postulating formation of bound magnetic polarons in the QDs. The overall red shift is identified as the magnetic polaron binding energy, EMP; it is roughly independent of temperature, persisting up to 150K. The large MP binding energy is

  16. Kinetic fluorescence quenching of CdS quantum dots in the presence of Cu(II): chemometrics-assisted resolving of the kinetic data and quantitative analysis of Cu(II).

    PubMed

    Abdollahi, Hamid; Shamsipur, Mojtaba; Barati, Ali

    2014-06-05

    In this work, the kinetic fluorescence behavior of CdS quantum dots (QDs) in the presence of Cu(II) was investigated. In contrast to some other transition metal ions such as Ag(I), Ni(II), and Hg(II), a gradual red-shift in the emission spectrum of CdS QDs was observed for Cu(II) during the reaction course. More investigations revealed the existence of two chemical components in the recorded kinetic data in the presence of Cu(II). Multivariate curve resolution-alternating least squares (MCR-ALS) method was applied in order to extract pure emission spectra and time-dependent profiles of these two components at different concentrations of Cu(II). The results obtained from resolving the data by MCR-ALS got some information about the mechanism of the interaction between CdS QDs and Cu(II) ions which were in good agreement with those reported in the literature. Moreover, the multivariate method of analysis, partial least-squares (PLS) method, was used to develop a multivariate calibration model for quantitative analysis of Cu(II) using the entire kinetic data sets. The calibration and validation sets were created ranging from 0.02 to 1μM of Cu(II) and were successfully calibrated and predicted by the PLS model. This method allowed a sensitive determination of Cu(II) ions with a detection limit of 13nM based on three times of the standard deviation corresponding to PLS regression.

  17. Photochemical Formation of Fe(II) in the Aqueous Solutions of Fe(III)- Dicarboxylates

    NASA Astrophysics Data System (ADS)

    Okada, K.; Arakaki, T.

    2007-12-01

    Although there have been many studies reporting the photochemical formation of Fe(II) in various aqueous-phase such as rain, cloud waters, seawater and aerosols, the detailed formation mechanisms are not well understood. To better understand the mechanisms of Fe(II) formation, we attempted to determine the molar absorptivity and the quantum yield of Fe(II) photoformation for individual Fe(III)-dicarboxylate species. The concentrations of Fe(II) and total dissolved Fe were measured by a Ferrozine-HPLC method. The Visual MINTEQ computer program was used to calculate the equilibrium concentrations of chemical species in the solutions of Fe(III)-dicarboxylate complexes. The molar absorptivity and the product of the quantum yield and the molar absorptivity of Fe(III)- dicarboxylate complex can be analysed by UV-VIS spectrophotometer and photochemical experiments, and these experimental data were combined with the calculated equilibrium Fe(III) speciation to determine individual molar absorptivity and quantum yield of Fe(II) photoformation for a specific Fe(III)-dicarboxylate complex. Preliminary results, using an oxalate whose quantum yield has been previously reported, indicate that this approach gives lower quantum yield values in air saturated solutions than previously reported.

  18. Cold-acclimation limits low temperature induced photoinhibition by promoting a higher photochemical quantum yield and a more effective PSII restoration in darkness in the Antarctic rather than the Andean ecotype of Colobanthus quitensis Kunt Bartl (Cariophyllaceae)

    PubMed Central

    2012-01-01

    Background Ecotypes of Colobanthus quitensis Kunt Bartl (Cariophyllaceae) from Andes Mountains and Maritime Antarctic grow under contrasting photoinhibitory conditions, reaching differential cold tolerance upon cold acclimation. Photoinhibition depends on the extent of photodamage and recovery capability. We propose that cold acclimation increases resistance to low-temperature-induced photoinhibition, limiting photodamage and promoting recovery under cold. Therefore, the Antarctic ecotype (cold hardiest) should be less photoinhibited and have better recovery from low-temperature-induced photoinhibition than the Andean ecotype. Both ecotypes were exposed to cold induced photoinhibitory treatment (PhT). Photoinhibition and recovery of photosystem II (PSII) was followed by fluorescence, CO2 exchange, and immunoblotting analyses. Results The same reduction (25%) in maximum PSII efficiency (Fv/Fm) was observed in both cold-acclimated (CA) and non-acclimated (NA) plants under PhT. A full recovery was observed in CA plants of both ecotypes under dark conditions, but CA Antarctic plants recover faster than the Andean ecotype. Under PhT, CA plants maintain their quantum yield of PSII, while NA plants reduced it strongly (50% and 73% for Andean and Antarctic plants respectively). Cold acclimation induced the maintenance of PsaA and Cyt b6/f and reduced a 41% the excitation pressure in Antarctic plants, exhibiting the lowest level under PhT. xCold acclimation decreased significantly NPQs in both ecotypes, and reduced chlorophylls and D1 degradation in Andean plants under PhT. NA and CA plants were able to fully restore their normal photosynthesis, while CA Antarctic plants reached 50% higher photosynthetic rates after recovery, which was associated to electron fluxes maintenance under photoinhibitory conditions. Conclusions Cold acclimation has a greater importance on the recovery process than on limiting photodamage. Cold acclimation determined the kinetic and extent of

  19. Kinetics of excited states of pigment clusters in solubilized light-harvesting complex II: photon density-dependent fluorescence yield and transmittance.

    PubMed Central

    Schödel, R; Hillmann, F; Schrötter, T; Voigt, J; Irrgang, K D; Renger, G

    1996-01-01

    Relative fluorescence yield, phi F, and transmittance, T, were measured in solubilized light-harvesting complex II (LHCII) as a function of photon density, Ip, of monochromatic 645-nm laser pulses (duration: approximately 2.5 ns). Special efforts were made in constructing an optical set-up that allows the accurate determination of the fluorescence from an area of constant Ip, phi F(Ip) starts to decline at approximately 10(14) and drops to values below 0.01% at maximum Ip (approximately 10(19) photons cm-2 pulse-1). T(Ip) decreases only slightly at photon densities of approximately 10(15) but increases steeply at values of > 10(17) photons cm-2 pulse-1. The interpretation of the phi F(Ip) data using the saturation limit of Mauzerall's multiple hit model leads to a unit size of about 10-15 chlorophyll molecules. One interpretation is to attribute this result to a very fast exciton-exciton annihilation of multiple excited states generated within this small domain. Alternatively, based on the assumption that delocalized cluster states within the monomeric/trimeric subunit of LHCII exist, the results can be consistently described by a kinetic model comprising ground, monoexcitonic, and biexcitonic states of clusters and a triplet state that is quenched by carotenoids in LHCII. Within the framework of this model the annihilation of multiple excitations is explained as ultrafast radiationless relaxation of higher excited cluster states. Comparative measurements in diluted acetonic Chl a solution are consistently described by the depletion of the ground state, taking the absorption cross section at the used wavelength. Images FIGURE 1 PMID:8968606

  20. Integrated miniature fluorescent probe to leverage the sensing potential of ZnO quantum dots for the detection of copper (II) ions.

    PubMed

    Ng, Sing Muk; Wong, Derrick Sing Nguong; Phung, Jane Hui Chiun; Chin, Suk Fun; Chua, Hong Siang

    2013-11-15

    Quantum dots are fluorescent semiconductor nanoparticles that can be utilised for sensing applications. This paper evaluates the ability to leverage their analytical potential using an integrated fluorescent sensing probe that is portable, cost effective and simple to handle. ZnO quantum dots were prepared using the simple sol-gel hydrolysis method at ambient conditions and found to be significantly and specifically quenched by copper (II) ions. This ZnO quantum dots system has been incorporated into an in-house developed miniature fluorescent probe for the detection of copper (II) ions in aqueous medium. The probe was developed using a low power handheld black light as excitation source and three photo-detectors as sensor. The sensing chamber placed between the light source and detectors was made of 4-sided clear quartz windows. The chamber was housed within a dark compartment to avoid stray light interference. The probe was operated using a microcontroller (Arduino Uno Revision 3) that has been programmed with the analytical response and the working algorithm of the electronics. The probe was sourced with a 12 V rechargeable battery pack and the analytical readouts were given directly using a LCD display panel. Analytical optimisations of the ZnO quantum dots system and the probe have been performed and further described. The probe was found to have a linear response range up to 0.45 mM (R(2)=0.9930) towards copper (II) ion with a limit of detection of 7.68×10(-7) M. The probe has high repeatable and reliable performance.

  1. Magnetoresistance and capacitance oscillations and hysteresis in type-II InAsSbP ellipsoidal quantum dots

    NASA Astrophysics Data System (ADS)

    Gambaryan, K. M.; Harutyunyan, V. G.; Aroutiounian, V. M.; Ai, Y.; Ashalley, E.; Wang, Z. M.

    2015-06-01

    The InAsSbP composition type-II quantum dots (QDs) are grown on a InAs(1 0 0) substrate from In-As-Sb-P quaternary liquid phase at a constant temperature in Stranski-Krastanow growth mode. Device structures in the form of photoconductive cells are prepared for investigation. Magnetospectroscopy and high-precision capacitance spectrometry are used to explore the QDs structure’s electric sheet resistance in a magnetic field and the capacitance (charge) law at lateral current flow. Aharonov-Bohm (AB) oscillations with the period of δB = 0.38   ±   0.04 T are found on the magnetoresistance curve at both room and liquid nitrogen temperatures. The influence of the QDs size distribution on the period of AB oscillations is investigated. The magnetoresistance hysteresis equals to ~50 mΩ and ~400 mΩ is revealed at room and liquid nitrogen temperature, respectively. The capacitance hysteresis (CH) and contra-directional oscillations are also detected. Behavior of the CH versus applied voltage frequency in the range f = 103-106 Hz is investigated. It is shown that the CH decreases with increasing frequency up to 106 Hz. The time constant and corresponding frequency for the QDs R-C parallel circuit (generator) equal to τ = 2.9   ×   10-7 s and f 0 = 5.5   ×   105 Hz, respectively, are calculated.

  2. Feynman perturbation expansion for the price of coupon bond options and swaptions in quantum finance. II. Empirical.

    PubMed

    Baaquie, Belal E; Liang, Cui

    2007-01-01

    The quantum finance pricing formulas for coupon bond options and swaptions derived by Baaquie [Phys. Rev. E 75, 016703 (2006)] are reviewed. We empirically study the swaption market and propose an efficient computational procedure for analyzing the data. Empirical results of the swaption price, volatility, and swaption correlation are compared with the predictions of quantum finance. The quantum finance model generates the market swaption price to over 90% accuracy.

  3. Photolysis of CH{sub 3}CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH{sub 3} and HCO radicals and H atoms

    SciTech Connect

    Morajkar, Pranay; Schoemaecker, Coralie; Fittschen, Christa; Bossolasco, Adriana

    2014-06-07

    Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH{sub 3}CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO{sub 2} radicals by reaction with O{sub 2}. The CH{sub 3} radical yield has been determined using the same technique following their conversion into CH{sub 3}O{sub 2}. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO{sub 2} profiles, obtained under various O{sub 2} concentrations, to a complex model, while the CH{sub 3} yield has been determined relative to the CH{sub 3} yield from 248 nm photolysis of CH{sub 3}I. Time resolved HO{sub 2} profiles under very low O{sub 2} concentrations suggest that another unknown HO{sub 2} forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O{sub 2}. HO{sub 2} profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH{sub 3}CHO + hν{sub 248nm} → CH{sub 3}CHO{sup *}, CH{sub 3}CHO{sup *} → CH{sub 3} + HCO ϕ{sub 1a} = 0.125 ± 0.03, CH{sub 3}CHO{sup *} → CH{sub 3} + H + CO ϕ{sub 1e} = 0.205 ± 0.04, CH{sub 3}CHO{sup *}→{sup o{sub 2}}CH{sub 3}CO + HO{sub 2} ϕ{sub 1f} = 0.07 ± 0.01. The CH{sub 3}O{sub 2} quantum yield has been determined in separate experiments as ϕ{sub CH{sub 3}} = 0.33 ± 0.03 and is in excellent agreement with the CH{sub 3} yields derived from the HO{sub 2} measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH{sub 3}CHO. From arithmetic considerations taking into account the HO{sub 2} and CH{sub 3} measurements we deduce a remaining quantum yield for the molecular pathway: CH{sub 3}CHO{sup *} → CH{sub 4} + CO ϕ{sub 1b} = 0.6. All experiments can be

  4. Relative quantum yield of I-asterisk(2P1/2) in the tunable laser UV photodissociation of i-C3F7I and n-C3F7I - Effect of temperature and exciplex emission

    NASA Technical Reports Server (NTRS)

    Smedley, J. E.; Leone, S. R.

    1983-01-01

    Wavelength-specific relative quantum yields of metastable I from pulsed laser photodissociation of i-C3F7I and n-C3F7I in the range 265-336 nm are determined by measuring the time-resolved infrared emission from the atomic I(P-2(1/2) P-2(3/2) transition. It is shown that although this yield appears to be unity from 265 to 298 nm, it decreases dramatically at longer wavelengths. Values are also reported for the enhancement of emission from metastable I due to exciplex formation at several temperatures. The exciplex formation emission increases linearly with parent gas pressure, but decreases with increasing temperature. Absorption spectra of i- and n-C3F7I between 303 and 497 K are presented, and the effect of temperature on the quantum yields at selected wavelengths greater than 300 nm, where increasing the temperature enhances the absorption considerably, are given. The results are discussed in regard to the development of solar-pumped iodine lasers.

  5. Derivation of a true (t → 0+) quantum transition-state theory. II. Recovery of the exact quantum rate in the absence of recrossing.

    PubMed

    Althorpe, Stuart C; Hele, Timothy J H

    2013-08-28

    In Paper I [T. J. H. Hele and S. C. Althorpe, J. Chem. Phys. 138, 084108 (2013)] we derived a quantum transition-state theory (TST) by taking the t → 0+ limit of a new form of quantum flux-side time-correlation function containing a ring-polymer dividing surface. This t → 0+ limit appears to be unique in giving positive-definite Boltzmann statistics, and is identical to ring-polymer molecular dynamics (RPMD) TST. Here, we show that quantum TST (i.e., RPMD-TST) is exact if there is no recrossing (by the real-time quantum dynamics) of the ring-polymer dividing surface, nor of any surface orthogonal to it in the space describing fluctuations in the polymer-bead positions along the reaction coordinate. In practice, this means that RPMD-TST gives a good approximation to the exact quantum rate for direct reactions, provided the temperature is not too far below the cross-over to deep tunnelling. We derive these results by comparing the t → ∞ limit of the ring-polymer flux-side time-correlation function with that of a hybrid flux-side time-correlation function (containing a ring-polymer flux operator and a Miller-Schwarz-Tromp side function), and by representing the resulting ring-polymer momentum integrals as hypercubes. Together with Paper I, the results of this article validate a large number of RPMD calculations of reaction rates.

  6. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids.

    PubMed

    Vasil'ev, S; Bruce, D

    1998-08-04

    Chlorophyll a fluorescence emission is widely used as a noninvasive measure of a number of parameters related to photosynthetic efficiency in oxygenic photosynthetic organisms. The most important component for the estimation of photochemistry is the relative increase in fluorescence yield between dark-adapted samples which have a maximal capacity for photochemistry and a minimal fluorescence yield (F0) and light-saturated samples where photochemistry is saturated and fluorescence yield is maximal (Fm). However, when photosynthesis is saturated with a short (less than 50 micro(s)) flash of light, which induces only one photochemical turnover of photosystem II, the maximal fluorescence yield is significantly lower (Fsat) than when saturation is achieved with a millisecond duration multiturnover flash (Fm). To investigate the origins of the difference in fluorescence yield between these two conditions, our time-resolved fluorescence apparatus was modified to allow collection of picosecond time-resolved decay kinetics over a short time window immediately following a saturating single-turnover flash (Fsat) as well as after a multiturnover saturating pulse (Fm). Our data were analyzed with a global kinetic model based on an exciton radical pair equilibrium model for photosystem II. The difference between Fm and Fsat was modeled well by changing only the rate constant for quenching of excitation energy in the antenna of photosystem II. An antenna-based origin for the quenching was verified experimentally by the observation that addition of the antenna quencher 5-hydroxy-1,4-naphthoquinone to thylakoids under Fm conditions resulted in decay kinetics and modeled kinetic parameters very similar to those observed under Fsat conditions in the absence of added quinone. Our data strongly support the origin of low fluorescence yield at Fsat to be an antenna-based nonphotochemical quenching of excitation energy in photosystem II which has not usually been considered explicitly in

  7. Photochemical redox reactions of copper(II)-alanine complexes in aqueous solutions.

    PubMed

    Lin, Chen-Jui; Hsu, Chao-Sheng; Wang, Po-Yen; Lin, Yi-Liang; Lo, Yu-Shiu; Wu, Chien-Hou

    2014-05-19

    The photochemical redox reactions of Cu(II)/alanine complexes have been studied in deaerated solutions over an extensive range of pH, Cu(II) concentration, and alanine concentration. Under irradiation, the ligand-to-metal charge transfer results in the reduction of Cu(II) to Cu(I) and the concomitant oxidation of alanine, which produces ammonia and acetaldehyde. Molar absorptivities and quantum yields of photoproducts for Cu(II)/alanine complexes at 313 nm are characterized mainly with the equilibrium Cu(II) speciation where the presence of simultaneously existing Cu(II) species is taken into account. By applying regression analysis, individual Cu(I) quantum yields are determined to be 0.094 ± 0.014 for the 1:1 complex (CuL) and 0.064 ± 0.012 for the 1:2 complex (CuL2). Individual quantum yields of ammonia are 0.055 ± 0.007 for CuL and 0.036 ± 0.005 for CuL2. Individual quantum yields of acetaldehyde are 0.030 ± 0.007 for CuL and 0.024 ± 0.007 for CuL2. CuL always has larger quantum yields than CuL2, which can be attributed to the Cu(II) stabilizing effect of the second ligand. For both CuL and CuL2, the individual quantum yields of Cu(I), ammonia, and acetaldehyde are in the ratio of 1.8:1:0.7. A reaction mechanism for the formation of the observed photoproducts is proposed.

  8. Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system--relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark.

    PubMed

    Miyake, Chikahiro; Amako, Katsumi; Shiraishi, Naomasa; Sugimoto, Toshio

    2009-04-01

    Responses of the reduction-oxidation level of plastoquinone (PQ) in the photosynthetic electron transport (PET) system of chloroplasts to growth light intensity were evaluated in tobacco plants. Plants grown in low light (150 micromol photons m-2 s-1) (LL plants) were exposed to a high light intensity (1,100 micromol photons m-2 s-1) for 1 d. Subsequently, the plants exposed to high light (LH plants) were returned back again to the low light condition: these plants were designated as LHL plants. Both LH and LHL plants showed higher values of non-photochemical quenching of Chl fluorescence (NPQ) and the fraction of open PSII centers (qL), and lower values of the maximum quantum yield of PSII in the dark (Fv/Fm), compared with LL plants. The dependence of qL on the quantum yield of PSII [Phi(PSII)] in LH and LHL plants was higher than that in LL plants. To evaluate the effect of an increase in NPQ and decrease in Fv/Fm on qL, we derived an equation expressing qL in relation to both NPQ and Fv/Fm, according to the lake model of photoexcitation of the PSII reaction center. As a result, the heat dissipation process, shown as NPQ, did not contribute greatly to the increase in qL. On the other hand, decreased Fv/Fm did contribute to the increase in qL, i.e. the enhanced oxidation of PQ under photosynthesis-limited conditions. Thylakoid membranes isolated from LH plants, having high qL, showed a higher tolerance against photoinhibition of PSII, compared with those from LL plants. We propose a 'plastoquinone oxidation system (POS)', which keeps PQ in an oxidized state by suppressing the accumulation of electrons in the PET system in such a way as to regulate the maximum quantum yield of PSII.

  9. Excitons in coupled type-II double quantum wells under electric and magnetic fields: InAs/AlSb/GaSb

    SciTech Connect

    Lyo, S. K.; Pan, W.

    2015-11-21

    We calculate the wave functions and the energy levels of an exciton in double quantum wells under electric (F) and magnetic (B) fields along the growth axis. The result is employed to study the energy levels, the binding energy, and the boundary on the F–B plane of the phase between the indirect exciton ground state and the semiconductor ground state for several typical structures of the type-II quasi-two-dimensional quantum wells such as InAs/AlSb/GaSb. The inter-well inter-band radiative transition rates are calculated for exciton creation and recombination. We find that the rates are modulated over several orders of magnitude by the electric and magnetic fields.

  10. Combining ligand-induced quantum-confined stark effect with type II heterojunction bilayer structure in CdTe and CdSe nanocrystal-based solar cells.

    PubMed

    Yaacobi-Gross, Nir; Garphunkin, Natalia; Solomeshch, Olga; Vaneski, Aleksandar; Susha, Andrei S; Rogach, Andrey L; Tessler, Nir

    2012-04-24

    We show that it is possible to combine several charge generation strategies in a single device structure, the performance of which benefits from all methods used. Exploiting the inherent type II heterojunction between layered structures of CdSe and CdTe colloidal quantum dots, we systematically study different ways of combining such nanocrystals of different size and surface chemistry and with different linking agents in a bilayer solar cell configuration. We demonstrate the beneficial use of two distinctly different sizes of NCs not only to improve the solar spectrum matching but also to reduce exciton binding energy, allowing their efficient dissociation at the interface. We further make use of the ligand-induced quantum-confined Stark effect in order to enhance charge generation and, hence, overall efficiency of nanocrystal-based solar cells.

  11. Aqueous synthesis of type-II CdTe/CdSe core-shell quantum dots for fluorescent probe labeling tumor cells.

    PubMed

    Zeng, Ruosheng; Zhang, Tingting; Liu, Jincheng; Hu, Song; Wan, Qiang; Liu, Xuanming; Peng, Zhiwei; Zou, Bingsuo

    2009-03-04

    In this paper, we report a two-step aqueous synthesis of highly luminescent CdTe/CdSe core/shell quantum dots (QDs) via a simple method. The emission range of the CdTe/CdSe QDs can be tuned from 510 to 640 nm by controlling the thickness of the CdSe shell. Accordingly, the photoluminescence quantum yield (PL QY) of CdTe/CdSe QDs with an optimized thickness of the CdSe shell can reach up to 40%. The structures and compositions of the core/shell QDs were characterized by transmission electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy experiments, and their formation mechanism is discussed. Furthermore, folate conjugated CdTe/CdSe QDs in Hela cells were assessed with a fluorescence microscope. The results show that folate conjugated CdTe/CdSe QDs could enter tumor cells efficiently.

  12. Enhanced quantum yield of yellow photoluminescence of Dy{sup 3+} ions in nonlinear optical Ba{sub 2}TiSi{sub 2}O{sub 8} nanocrystals formed in glass

    SciTech Connect

    Maruyama, N.; Honma, T.; Komatsu, T.

    2009-02-15

    Transparent crystallized glasses consisting of nonlinear optical Ba{sub 2}TiSi{sub 2}O{sub 8} nanocrystals (diameter: {approx}100 nm) are prepared through the crystallization of 40BaO-20TiO{sub 2}-40SiO{sub 2}-0.5Dy{sub 2}O{sub 3} glass (in the molar ratio), and photoluminescence quantum yields of Dy{sup 3+} ions in the visible region are evaluated directly by using a photoluminescence spectrometer with an integrating sphere. The incorporation of Dy{sup 3+} ions into Ba{sub 2}TiSi{sub 2}O{sub 8} nanocrystals is confirmed from the X-ray diffraction analyses. The total quantum yields of the emissions at the bands of {sup 4}F{sub 9/2}{yields}{sup 6}H{sub 15/2} (blue: 484 nm), {sup 4}F{sub 9/2}{yields}{sup 6}H{sub 13/2} (yellow: 575 nm), and {sup 4}F{sub 9/2}{yields}{sup 6}H{sub 11/2} (red: 669 nm) in the crystallized glasses are {approx}15%, being about four times larger compared with the precursor glass. It is found that the intensity of yellow (575 nm) emissions and the branching ratio of the yellow (575 nm)/blue (484 nm) intensity ratio increase largely due to the crystallization. It is suggested from Judd-Ofelt analyses that the site symmetry of Dy{sup 3+} ions in the crystallized glasses is largely distorted, giving a large increase in the yellow emissions. It is proposed that Dy{sup 3+} ions substitute Ba{sup 2+} sites in Ba{sub 2}TiSi{sub 2}O{sub 8} nanocrystals. - Grapical abstract: This figure shows the photoluminescence spectra of Dy{sup 3+} ions in the range of 450-700 nm obtained in the quantum field measurements for the precursor BTS and crystallized (at 770 and 790 deg. C, for 30 min) glasses. The wavelength of the excitation light was 352 nm. By incorporating into Ba{sub 2}TiSi{sub 2}O{sub 8} nanocrystals, the emission intensity of the yellow band of Dy{sup 3+} ions is largely enhanced. This would give an impact in the science and technology of photoluminescence materials.

  13. Intermediate Band Performance of GaSb Type-II Quantum Dots Located in n-Doped Region of GaAs Solar Cells

    NASA Astrophysics Data System (ADS)

    Kechiantz, Ara; Afanasev, Andrei

    2013-03-01

    The intermediate band (IB) electronic states assist sub-bandgap photons in generation of additional photocurrent in single-junction solar cells. Such non-linear effect of resonant two-photon absorption of concentrated sunlight attracts much attention because it promises up to 63% conversion efficiency in IB solar cells. The main obstacle to achieving high performance is involvement of IB-states in electron-hole recombination that is drastically increasing the dark current and reducing the open circuit voltage of IB solar cells. The IB-states can be composed of quantum dots (QDs). Concentration of sunlight limits recombination through type-II QD IB-states located outside of the depletion region. In this work we model GaAs solar cell with strained GaSb type-II QDs separated from the depletion region. The focus is on type-II QDs located in n-doped region of p-n-junction. Our calculation shows that photovoltaic performance can be essentially improved by concentration of sunlight, and that this improvement is highly sensitive to the doping of materials and the shape of potential barriers surrounding type-II QDs. For instance, strained GaSb type-II QDs may increase the performance of GaAs solar cell by 20% compared to the reference GaAs solar cell without QDs.

  14. Step-like increase of quantum yield of 1.5 μm Er-related emission in SiO{sub 2} doped with Si nanocrystals

    SciTech Connect

    Saeed, S.; Jong, E. M. L. D. de; Gregorkiewicz, T.

    2015-02-14

    We investigate the excitation dependence of the efficiency of the Si nanocrystals-mediated photoluminescence from Er{sup 3+} ions embedded in a SiO{sub 2} matrix. We show that the quantum yield of this emission increases in a step-like manner with excitation energy. The subsequent thresholds of this characteristic dependence are approximately given by the sum of the Si nanocrystals bandgap energy and multiples of 0.8 eV, corresponding to the energy of the first excited state of Er{sup 3+} ions. By comparing differently prepared materials, we explicitly demonstrate that the actual values of the threshold energies and the rate of the observed increase of the external quantum yield depend on sample characteristics—the size, the optical activity and the concentration of Si nanocrystals as well Er{sup 3+} ions to Si nanocrystals concentration ratio. In that way, detailed insights into the efficient excitation of Er{sup 3+} ions are obtained. In particular, the essential role of the hot-carrier-mediated Er excitation route is established, with a possible application perspective for highly efficient future-generation photovoltaics.

  15. Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence

    SciTech Connect

    Ji, Hai-Ming; Liang, Baolai Simmonds, Paul J.; Juang, Bor-Chau; Yang, Tao; Young, Robert J.; Huffaker, Diana L.

    2015-03-09

    We investigate the photoluminescence (PL) properties of a hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot (QD) structure grown in a GaAs matrix by molecular beam epitaxy. This hybrid QD structure exhibits more intense PL with a broader spectral range, compared with control samples that contain only InAs or GaSb QDs. This enhanced PL performance is attributed to additional electron and hole injection from the type-I InAs QDs into the adjacent type-II GaSb QDs. We confirm this mechanism using time-resolved and power-dependent PL. These hybrid QD structures show potential for high efficiency QD solar cell applications.

  16. Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence

    NASA Astrophysics Data System (ADS)

    Ji, Hai-Ming; Liang, Baolai; Simmonds, Paul J.; Juang, Bor-Chau; Yang, Tao; Young, Robert J.; Huffaker, Diana L.

    2015-03-01

    We investigate the photoluminescence (PL) properties of a hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot (QD) structure grown in a GaAs matrix by molecular beam epitaxy. This hybrid QD structure exhibits more intense PL with a broader spectral range, compared with control samples that contain only InAs or GaSb QDs. This enhanced PL performance is attributed to additional electron and hole injection from the type-I InAs QDs into the adjacent type-II GaSb QDs. We confirm this mechanism using time-resolved and power-dependent PL. These hybrid QD structures show potential for high efficiency QD solar cell applications.

  17. Enhanced fluorescence properties of type-I and type-II CdTe/CdS quantum dots using porous silver membrane

    NASA Astrophysics Data System (ADS)

    Thuy, Ung Thi Dieu; Chae, Weon-Sik; Yang, Won-Geun; Liem, Nguyen Quang

    2017-04-01

    This paper reports the metal-induced fluorescence property on the CdTe/CdS core/shell quantum dots (QDs), which exhibit the systematic band-gap transition from type-I to type-II with increasing shell thickness, near porous silver membrane by using time-resolved fluorescence lifetime imaging microscopy (FLIM). The results revealed that notable fluorescence enhancement came from the closed location to the cavity of the porous silver metal due to an increase in the local electromagnetic fields at the cavity. In the cases of the type-II CdTe/CdS QDs, interestingly, multiple exciton generation can be an additional factor for the lifetime reduction and fluorescence amplification compared to the type-I QDs. Without CdS shell, the strong interaction between the bare core CdTe QDs and silver caused emission quenching.

  18. Energy spectrum of an exciton in a CdSe/ZnTe type-II core/shell spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Chafai, A.; Dujardin, F.; Essaoudi, I.; Ainane, A.

    2017-01-01

    The binding energy of an exciton inside a CdSe/ZnTe core/shell spherical quantum dot was theoretically examined taking into account the dependence of the dielectric constant and charge carriers effective mass on radius, and using the envelope function approximation. Such a structure presents original optical and electronic properties because of the spatial separation of electrons and holes caused by the type-II alignment of energy states. The mean distance between the electron and hole was calculated variationally using a trial function taking into account the coulomb interaction between charge carriers. Our numerical results provide a description to the size dependence of the binding energy of an exciton inside a core/shell nanoheterostructure type-II. Indeed, by controlling the inner and outer radii, we can precisely control the energy spectrum of the exciton.

  19. Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: are the kinetics of excited state decay trap-limited or transfer-limited?

    PubMed Central

    Byrdin, M; Rimke, I; Schlodder, E; Stehlik, D; Roelofs, T A

    2000-01-01

    Transfer and trapping of excitation energy in photosystem I (PS I) trimers isolated from Synechococcus elongatus have been studied by an approach combining fluorescence induction experiments with picosecond time-resolved fluorescence measurements, both at room temperature (RT) and at low temperature (5 K). Special attention was paid to the influence of the oxidation state of the primary electron donor P700. A fluorescence induction effect has been observed, showing a approximately 12% increase in fluorescence quantum yield upon P700 oxidation at RT, whereas at temperatures below 160 K oxidation of P700 leads to a decrease in fluorescence quantum yield ( approximately 50% at 5 K). The fluorescence quantum yield for open PS I (with P700 reduced) at 5 K is increased by approximately 20-fold and that for closed PS I (with P700 oxidized) is increased by approximately 10-fold, as compared to RT. Picosecond fluorescence decay kinetics at RT reveal a difference in lifetime of the main decay component: 34 +/- 1 ps for open PS I and 37 +/- 1 ps for closed PS I. At 5 K the fluorescence yield is mainly associated with long-lived components (lifetimes of 401 ps and 1.5 ns in closed PS I and of 377 ps, 1.3 ns, and 4.1 ns in samples containing approximately 50% open and 50% closed PS I). The spectra associated with energy transfer and the steady-state emission spectra suggest that the excitation energy is not completely thermally equilibrated over the core-antenna-RC complex before being trapped. Structure-based modeling indicates that the so-called red antenna pigments (A708 and A720, i.e., those with absorption maxima at 708 nm and 720 nm, respectively) play a decisive role in the observed fluorescence kinetics. The A720 are preferentially located at the periphery of the PS I core-antenna-RC complex; the A708 must essentially connect the A720 to the reaction center. The excited-state decay kinetics turn out to be neither purely trap limited nor purely transfer (to the trap

  20. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  1. Large-amplitude quantum mechanics in polyatomic hydrides. II. A particle-on-a-sphere model for XH(n) (n=4,5).

    PubMed

    Deskevich, Michael P; McCoy, Anne B; Hutson, Jeremy M; Nesbitt, David J

    2008-03-07

    This paper describes the application of a relatively simple, but computationally tractable, "particle-on-a-sphere" (POS) model for quantum-mechanical calculation of large-amplitude, H atom dynamics in polyatomic hydrides (XH(n)), based on radially relaxed, two-dimensional angular motion of H atoms on the surface of a sphere. This work focuses on systems with many degrees of freedom, i.e., XH(4) (eight dimensional) and XH(5) (ten dimensional), with corresponding molecular analogs of CH(4) and CH(5) (+) and is applicable to rovibrationally excited states with J> or =0. A pairwise-additive potential fit for CH(5) (+), which yields remarkable agreement with geometries, energies, and barrier heights on the full-dimensional surface of Brown et al. [J. Chem. Phys. 121, 4105 (2004)] is presented. Comparisons with experimental data and diffusion quantum Monte Carlo (DMC) methods test convergence for the POS model and provide insight into multidimensional quantum rovibrational dynamics. In particular, POS energy-level patterns for a series of scaled CH(5) (+) potentials indicate an absence of strong tunneling behavior, consistent with the highly delocalized wave functions, large zero-point energies, and small interconversion barriers noted in previous DMC studies of Brown et al.

  2. Effective mass of two-dimensional electrons in InGaAsN/GaAsSb type II quantum well by Shubnikov-de Haas oscillations

    NASA Astrophysics Data System (ADS)

    Kawamata, Shuichi; Hibino, Akira; Tanaka, Sho; Kawamura, Yuichi

    2016-10-01

    In order to develop optical devices for 2-3 μm wavelength regions, the InP-based InGaAs/GaAsSb type II multiple quantum well system has been investigated. By doping nitrogen into InGaAs layers, the system becomes effective in creating the optical devices with a longer wavelength. In this report, electrical transport properties are reported on the InGaAsN/GaAsSb type II system. The epitaxial layers with the single hetero or multiple quantum well structure on InP substrates are grown by the molecular beam epitaxy. The electrical resistance of samples with different nitrogen concentrations has been measured as a function of the magnetic field up to 9 Tesla at several temperatures between 2 and 6 K. The oscillation of the resistance due to the Shubnikov-de Haas (SdH) effect has been observed at each temperature. The effective mass is obtained from the temperature dependence of the amplitude of the SdH oscillations. The value of the effective mass increases from 0.048 for N = 0.0% to 0.062 for N = 1.2 and 1.5% as the nitrogen concentration increases. The mass enhancement occurs with corresponding to the reduction of the bandgap energy. These results are consistent with the band anticrossing model.

  3. Continuous wave vertical cavity surface emitting lasers at 2.5 μm with InP-based type-II quantum wells

    SciTech Connect

    Sprengel, S.; Andrejew, A.; Federer, F.; Veerabathran, G. K.; Boehm, G.; Amann, M.-C.

    2015-04-13

    A concept for electrically pumped vertical cavity surface emitting lasers (VCSEL) for emission wavelength beyond 2 μm is presented. This concept integrates type-II quantum wells into InP-based VCSELs with a buried tunnel junction as current aperture. The W-shaped quantum wells are based on the type-II band alignment between GaInAs and GaAsSb. The structure includes an epitaxial GaInAs/InP and an amorphous AlF{sub 3}/ZnS distributed Bragg reflector as bottom and top (outcoupling) mirror, respectively. Continuous-wave operation up to 10 °C at a wavelength of 2.49 μm and a peak output power of 400 μW at −18 °C has been achieved. Single-mode emission with a side-mode suppression ratio of 30 dB for mesa diameters up to 14 μm is presented. The long emission wavelength and current tunability over a wavelength range of more than 5 nm combined with its single-mode operation makes this device ideally suited for spectroscopy applications.

  4. Properties of Type-II ZnTe/ZnSe Submonolayer Quantum Dots Studied via Excitonic Aharonov- Bohm Effect and Polarized Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Haojie

    In this thesis I develop understanding of the fundamental physical and material properties of type-II ZnTe/ZnSe submonolayer quantum dots (QDs), grown via combination of molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE). I use magneto-photoluminescence, including excitonic Aharonov-Bohm (AB) effect and polarized optical spectroscopy as the primary tools in this work. I present previous studies as well as the background of optical and magneto-optical processes in semiconductor nanostructures and introduce the experimental methods in Chapters 1 - 3. In Chapter 4 I focus on the excitonic AB effect in the type-II QDs. I develop a lateral tightly-bound exciton model for ZnTe/ZnSe type-II QDs, using analytical methods and numerical calculations. This explained the magneto-PL observation and allowed for establishing the size and density of the QDs in each sample based on the results of PL and magneto-PL measurements. For samples with larger QDs, I observe behaviors that fall between properties of quantum-dot and quantum-well-like systems due to increased QD densities and their type-II nature. Finally, the decoherence mechanisms of the AB excitons are investigated via the temperature dependent studies of the magneto-PL. It is determined that the AB exciton decoherence is due to transport-like (acoustic phonon) scattering of the electrons moving in the ZnSe barriers, but with substantially smaller magnitude of electron-phonon coupling constant due to relatively strong electron-hole coupling within these type-II QDs. In Chapter 5 I discuss the results of circularly polarized magneto-PL measurements. A model with ultra-long spin-flip time of holes confined to submonolayer QDs is proposed. The g-factor of type-II excitons was extracted from the Zeeman splitting and the g-factor of electrons was obtained by fitting the temperature dependence of the degree of circular polarization (DCP), from which g-factor of holes confined within ZnTe QDs was found. It is shown

  5. Approaches to Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele

    2009-03-01

    Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and

  6. The effects of side-chain-induced disorder on the emission spectra and quantum yields of oligothiophene nano-aggregates. A combined experimental and MD-TDDFT study

    SciTech Connect

    Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.; Devi, Diane; Chacon-Madrid, Kelly; Lee, Wynee; Koo, Seung Moh; Wildeman, Jurjen; Sfeir, Matthew Y.; Peteanu, Linda A.; Wen, Jin; Ma, Jing

    2014-07-24

    Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changes and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.

  7. Dissipative dynamics with the corrected propagator method. Numerical comparison between fully quantum and mixed quantum/classical simulations

    NASA Astrophysics Data System (ADS)

    Gelman, David; Schwartz, Steven D.

    2010-05-01

    The recently developed quantum-classical method has been applied to the study of dissipative dynamics in multidimensional systems. The method is designed to treat many-body systems consisting of a low dimensional quantum part coupled to a classical bath. Assuming the approximate zeroth order evolution rule, the corrections to the quantum propagator are defined in terms of the total Hamiltonian and the zeroth order propagator. Then the corrections are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The evolution of the primary part is governed by the corrected propagator yielding the exact quantum dynamics. The method has been tested on two model systems coupled to a harmonic bath: (i) an anharmonic (Morse) oscillator and (ii) a double-well potential. The simulations have been performed at zero temperature. The results have been compared to the exact quantum simulations using the surrogate Hamiltonian approach.

  8. High yield expression of novel glutaminase free L-asparaginase II of Pectobacterium carotovorum MTCC 1428 in Bacillus subtilis WB800N.

    PubMed

    Chityala, Sushma; Venkata Dasu, Veeranki; Ahmad, Jamal; Prakasham, Reddy Shetty

    2015-11-01

    Gene encoding glutaminase-free L-asparaginase II (ans B2) from Pectobacterium carotovorum MTCC 1428 was cloned into pHT43, transformed in Bacillus subtilis WB800N and optimised the expression levels of recombinant enzyme. A three-fold higher enzyme production was observed with an efficient transformant as compared to native strain. Enzyme localization studies revealed that >90% of recombinant enzyme is secreted extracellularly, a little fraction is attached to the membrane (>6%) and localised intracellularly (3%). The expression of recombinant L-asparaginase II was confirmed by SDS-PAGE, IMAC (Immobilised metal ion affinity chromatography) purification followed by Western blotting. Process parameter optimization with OFAT (one factor at a time) revealed that rpm (120), temperature (37 °C), Isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration (1 mM) and time of induction (0.8 OD600nm) plays a vital role where a maximum of 55 IU/ml was achieved. Further, consecutive induction by IPTG improved the enzyme production up to 105 IU/ml with a specific activity of 101 IU/mg of protein. Molecular modelling analysis depicted that amino acids, GLY60, GLY119 and ALA252 in the active site are responsible for the glutaminase free L-asparaginase II activity. This is the first report on enhanced expression of recombinant glutaminase-free L-asparaginase II by intermediate addition of IPTG.

  9. The role of additives in moderating the influence of Fe(III) and Cu(II) on the radiochemical yield of [⁶⁸Ga(DOTATATE)].

    PubMed

    Oehlke, Elisabeth; Lengkeek, Nigel A; Le, Van So; Pellegrini, Paul A; Greguric, Ivan; Weiner, Ron

    2016-01-01

    [(68)Ga(DOTATATE)] has demonstrated its clinical usefulness. Both Fe(3+) and Cu(2+), potential contaminants in Gallium-68 generator eluent, substantially reduce the radiochemical (RC) yield of [(68)Ga(DOTATATE)] if the metal/ligand ratio of 1:1 is exceeded. A variety of compounds were examined for their potential ability to reduce this effect. Most had no effect on RC yield. However, addition of phosphate diminished the influence of Fe(3+) by likely forming an insoluble iron salt. Addition of ascorbic acid reduced Cu(2+) and Fe(3+) to Cu(+) and Fe(2+) respectively, both of which have limited impact on RC yields. At low ligand amounts (5 nmol DOTATATE), the addition of 30 nmol phosphate (0.19 mM) increased the tolerance of Fe(3+) from 4 nmol to 10 nmol (0.06 mM), while the addition of ascorbic acid allowed high RC yields (>95%) in the presence of 40 nmol Fe(3+) (0.25 mM) and 100 nmol Cu(2+) (0.63 mM). The effect of ascorbic acid was highly pH-dependant, and gave optimal results at pH 3.

  10. Designs of blue and green light-emitting diodes based on type-II InGaN-ZnGeN2 quantum wells

    NASA Astrophysics Data System (ADS)

    Han, Lu; Kash, Kathleen; Zhao, Hongping

    2016-09-01

    Type-II InGaN-ZnGeN2 quantum wells (QWs) are studied as improved active regions for light-emitting diodes emitting in the blue (λ ˜ 485 nm) and green (λ ˜ 530 nm) spectral ranges. Both the energy band gap and the lattice parameters of ZnGeN2 are very close to those of GaN. The recently predicted large band offset between GaN and ZnGeN2 allows the formation of a type-II InGaN-ZnGeN2 heterostructure. The strong confinement of holes in the ZnGeN2 layer allows the use of a lower In-content InGaN QW to extend the emission wavelength into the blue and green wavelength regions, as compared to the traditional InGaN QW with uniform In content. In the type-II InGaN-ZnGeN2 QW designs, a thin AlGaN layer was used as a barrier for better carrier confinement. The type-II InGaN-ZnGeN2 QWs lead to a significant enhancement of the electron-hole wave function overlap as compared to those of the conventional QWs. Simulation studies of the proposed type-II QWs promise a significant enhancement of the spontaneous emission rate by 6.1-7.2 times for the QW design emitting at the blue wavelength region and 4.6-4.9 times for the QW design emitting at the green wavelength region, as compared to the conventional InGaN QWs emitting at the same wavelengths.

  11. Decay kinetics of the excited S{sub 1} state of the cyanine dye Cy{sup +}I{sup -} (thiacarbocyanine iodide): The computation of quantum yields for different pathways

    SciTech Connect

    Odinokov, A. V.; Basilevsky, M. V.; Petrov, N. Kh.

    2011-10-14

    This work explains the unordinary solvent effect which was observed in the photochemical decay kinetics for the cyanine dye thiacarbocyanine iodide (Cy{sup +}I{sup -}) in binary solvent mixtures toluene/dimethylsulfoxide. The interpretation is formulated in terms of the probability density F(R) describing the distribution of interionic distances R in the ion pair Cy{sup +}I{sup -} and depending on the solvent composition. The proper normalization of this distribution is expressed via the degree of association {alpha} for the ion pair in a given solvent mixture. The {alpha} values are, in turn, extracted by means of the mass action law from the ionic association constants computed in a separate publication. The detailed kinetic scheme includes the empirical parametrization of the R-dependent kinetic constants for different decay channels. The multiparameter fitting procedure represents, with the reasonable parameter values, the dependence of the observed quantum yields on the solvent composition.

  12. Hydrothermal synthesis of high-quality type-II CdTe/CdSe core/shell quantum dots with dark red emission.

    PubMed

    Liu, Ning; Yang, Ping

    2014-08-01

    A hydrothermal method was used to synthesize type-II CdTe/CdSe core/shell quantum dots (QDs) using the thilglycolic acid (TGA) capped CdTe QDs as cores, which show a number of advantages. Because of the spatial separation of carriers the low excited states of CdTe/CdSe QDs, they exhibit many novel properties that are fundamentally different from the type-I QDs. On the other hand, our experiment results show that the wave function of the hole of the exciton in the CdTe core extends well into the CdSe shell. The results also reveal that a thick shell can confine the electrons inside the particles and thereby improve the PL efficiency and prolong the lifetime of the core/shell QDs. We use the UV-vis absorption and fluorescence spectrum measurements on growing particles in detail. We found that the fluorescence of the CdTe/CdSe QDs was strongly dependent on the thick of the shell and size of the core as well as the unique type-II heterostructure, which make the type-II core/shell QDs more suitable in photovoltaic or photoconduction applications.

  13. Photoluminescence of InGaAs/GaAsBi/InGaAs type-II quantum wells grown by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Pan, Wenwu; Zhang, Liyao; Zhu, Liang; Song, Yuxin; Li, Yaoyao; Wang, Chang; Wang, Peng; Wu, Xiaoyan; Zhang, Fan; Shao, Jun; Wang, Shumin

    2017-01-01

    In x Ga1-x As/GaAs1-y Bi y /In x Ga1-x As (0.20 ≤ x ≤ 0.22, 0.035 ≤ y ≤ 0.045) quantum wells (QWs) were grown on GaAs substrates by gas source molecular beam epitaxy for realizing the type-II band edge line-up. Both type-I and type-II transitions were observed in the Bi containing W QWs and the photoluminescence intensity was enhanced in the sample with a high Bi content, which is mainly due to the improvement of carrier confinement. The 8 band k · p model was used to analyze the electronic properties in the QWs and the calculated transition energies fit well with the experiment results. Our study shows that the proposed type-II QW is a promising candidate for realizing GaAs-based near infrared light emitting devices near 1.3 μm.

  14. Effect of arsenic on the optical properties of GaSb-based type II quantum wells with quaternary GaInAsSb layers

    SciTech Connect

    Janiak, F. Motyka, M.; Sęk, G.; Dyksik, M.; Ryczko, K.; Misiewicz, J.; Weih, R.; Höfling, S.; Kamp, M.; Patriarche, G.

    2013-12-14

    Optical properties of molecular beam epitaxially grown type II “W” shaped GaSb/AlSb/InAs/GaIn(As)Sb/InAs/AlSb/GaSb quantum wells (QWs) designed for the active region of interband cascade lasers have been investigated. Temperature dependence of Fourier-transformed photoluminescence and photoreflectance was employed to probe the effects of addition of arsenic into the original ternary valence band well of GaInSb. It is revealed that adding arsenic provides an additional degree of freedom in terms of band alignment and strain tailoring and allows enhancing the oscillator strength of the active type II transition. On the other hand, however, arsenic incorporation apparently also affects the structural and optical material quality via generating carrier trapping states at the interfaces, which can deteriorate the radiative efficiency. These have been evidenced in several spectroscopic features and are also confirmed by cross-sectional transmission electron microscopy images. While arsenic incorporation into type II QWs is a powerful heterostructure engineering tool for optoelectronic devices, a compromise has to be found between ideal band structure properties and high quality morphological properties.

  15. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window.

    PubMed

    Li, Chunyan; Zhang, Yejun; Wang, Mao; Zhang, Yan; Chen, Guangcun; Li, Lun; Wu, Dongmin; Wang, Qiangbin

    2014-01-01

    Improving the tissue penetration depth and spatial resolution of fluorescence-based optical nanoprobes remains a grand challenge for their practical applications in in vivo imaging, due to the scattering and absorption and endogenous autofluorescence of living tissues. Here, we present that Ag2S quantum dots (QDs), containing no toxic ions, exhibiting long circulation time and high stability, act as a new kind of fluorescent probes in the second near-infrared window (NIR-II, 1000-1350 nm) which enable in vivo monitoring of lymphatic drainage and vascular networks with deep tissue penetration and high spatial and temporal resolution. In addition, NIR-II fluorescence imaging with Ag2S QDs provide ultrahigh spatial resolution (~40 μm) that permits us to track angiogenesis mediated by a tiny tumor (2-3 mm in diameter) in vivo. Our results indicate that Ag2S QDs are promising NIR-II fluorescent nanoprobes that could be useful in surgical treatments such as sentinel lymph node (SLN) dissection as well in assessment of blood supply in tissues and organs and screening of anti-angiogenic drugs.

  16. Time-dependent quantum wave packet study of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction on a new ab initio potential energy surface for the ground electronic state (1{sup 2}A Prime )

    SciTech Connect

    Hu Mei; Liu Xinguo; Tan Ruishan; Li Hongzheng; Xu Wenwu

    2013-05-07

    A new global potential energy surface for the ground electronic state (1{sup 2}A Prime ) of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction has been constructed by multi-reference configuration interaction method with Davidson correction and a basis set of aug-cc-pVQZ. Using 6080 ab initio single-point energies of all the regions for the dynamics, a many-body expansion function form has been used to fit these points. The quantum reactive scattering dynamics calculations taking into account the Coriolis coupling (CC) were carried out on the new potential energy surface over a range of collision energies (0.03-1.0 eV). The reaction probabilities and integral cross sections for the title reaction were calculated. The significance of including the CC quantum scattering calculation has been revealed by the comparison between the CC and the centrifugal sudden approximation calculation. The calculated cross section is in agreement with the experimental result at collision energy 1.0 eV.

  17. Quantum turbulence

    NASA Astrophysics Data System (ADS)

    Skrbek, L.

    2011-12-01

    We review physical properties of quantum fluids He II and 3He-B, where quantum turbulence (QT) has been studied experimentally. Basic properties of QT in these working fluids are discussed within the phenomenological two-fluid model introduced by Landau. We consider counterflows in which the normal and superfluid components flow against each other, as well as co-flows in which the direction of the two fluids is the same. We pay special attention to the important case of zero temperature limit, where QT represents an interesting and probably the simplest prototype of three-dimensional turbulence in fluids. Experimental techniques to explore QT such as second sound attenuation, Andreev reflection, NMR, ion propagation are briefly introduced and results of various experiments on so-called Vinen QT and Kolmogorov QT both in He II and 3He are discussed, emphasizing similarities and differences between classical and quantum turbulence.

  18. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  19. The effects of side-chain-induced disorder on the emission spectra and quantum yields of oligothiophene nano-aggregates. A combined experimental and MD-TDDFT study

    DOE PAGES

    Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.; ...

    2014-07-24

    Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changesmore » and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.« less

  20. Repairing the Sickle Cell mutation. II. Effect of psoralen linker length on specificity of formation and yield of third strand-directed photoproducts with the mutant target sequence.

    PubMed

    Amosova, Olga; Broitman, Steven L; Fresco, Jacques R

    2003-08-15

    Three identical deoxyoligonucleotide third strands with a 3'-terminal psoralen moiety attached by linkers that differ in length (N = 16, 6 and 4 atoms) and structure were examined for their ability to form triplex-directed psoralen photoproducts with both the mutant T residue of the Sickle Cell beta-globin gene and the comparable wild-type sequence in linear duplex targets. Specificity and yield of UVA (365 nm) and visible (419 nm) light-induced photoadducts were studied. The total photoproduct yield varies with the linker and includes both monoadducts and crosslinks at various available pyrimidine sites. The specificity of photoadduct formation at the desired mutant T residue site was greatly improved by shortening the psoralen linker. In particular, using the N-4 linker, psoralen interaction with the residues of the non-coding duplex strand was essentially eliminated, while modification of the Sickle Cell mutant T residue was maximized. At the same time, the proportion of crosslink formation at the mutant T residue upon UV irradiation was much greater for the N-4 linker. The photoproducts formed with the wild-type target were fully consistent with its single base pair difference. The third strand with the N-4 linker was also shown to bind to a supercoiled plasmid containing the Sickle Cell mutation site, giving photoproduct yields comparable with those observed in the linear mutant target.

  1. Repairing the Sickle Cell mutation. II. Effect of psoralen linker length on specificity of formation and yield of third strand-directed photoproducts with the mutant target sequence

    PubMed Central

    Amosova, Olga; Broitman, Steven L.; Fresco, Jacques R.

    2003-01-01

    Three identical deoxyoligonucleotide third strands with a 3′-terminal psoralen moiety attached by linkers that differ in length (N = 16, 6 and 4 atoms) and structure were examined for their ability to form triplex-directed psoralen photoproducts with both the mutant T residue of the Sickle Cell β-globin gene and the comparable wild-type sequence in linear duplex targets. Specificity and yield of UVA (365 nm) and visible (419 nm) light-induced photoadducts were studied. The total photoproduct yield varies with the linker and includes both monoadducts and crosslinks at various available pyrimidine sites. The specificity of photoadduct formation at the desired mutant T residue site was greatly improved by shortening the psoralen linker. In particular, using the N-4 linker, psoralen interaction with the residues of the non-coding duplex strand was essentially eliminated, while modification of the Sickle Cell mutant T residue was maximized. At the same time, the proportion of crosslink formation at the mutant T residue upon UV irradiation was much greater for the N-4 linker. The photoproducts formed with the wild-type target were fully consistent with its single base pair difference. The third strand with the N-4 linker was also shown to bind to a supercoiled plasmid containing the Sickle Cell mutation site, giving photoproduct yields comparable with those observed in the linear mutant target. PMID:12907706

  2. Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel A.; Brun, Todd A.

    2013-09-01

    Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and

  3. Rapid detection of mutations by conformation sensitive gel electrophoresis: Application to the identification of three new mutations in the type II procollagen gene and a fourth family with the Arg{sub 519}{yields}Cys base substitution

    SciTech Connect

    Williams, C.J.; Rock, M.; McCarron, S.

    1994-09-01

    Conformation sensitive gel electrophoresis (CSGE) detects differences as small as a single base mismatch in DNA heteroduplexes of polymerase chain reaction (PCR) products. The altered migration of heteroduplexes versus homoduplexes is resolved in a polyacrylamide-based gel electrophoresis system. The technique was used here to detect conformational changes in the type II procollagen gene (COL2A1) in patients with growth plate defects. PCR products which displayed heteroduplex species were directly sequenced and all revealed either base substitutions or base deletions. Three of the base substitutions resulted in the identification of new mutations. These include a Gly{sub 691}{yields}Arg substitution in a proband with hypochondrogenesis, a Gly{sub 975}{yields}Ser base substitution in a family with late-onset spondyloepiphyseal dysplasia (SEDT) and precocious osteoarthritis (POA), and a Gly{sub 988}{yields}Arg mutation in another patient with hypochondrogenesis. A fourth substitution was found to be the fourth example of an Arg{sub 519}{yields}Cys point mutation in a family with SEDT and POA. All mutations were confirmed by restriction site analysis. These results illustrate the utility of the CSGE method for the rapid detection of mutations in PCR products without the need for special equipment, primers or sample preparation.

  4. Quantum-chemical calculations of the metallofullerene yields in the X@C{sub 74}, L@C{sub 74}, and Z@C{sub 82} series

    SciTech Connect

    Uhlík, Filip; Slanina, Zdeněk; Nagase, Shigeru

    2015-01-22

    The contribution reports computations for Al@C{sub 82}, Sc@C{sub 82}, Y@C{sub 82} and La@C{sub 82} based on encapsulation into the IPR (isolated pentagon rule) C{sub 2ν} C{sub 82} cage and also on Mg@C{sub 74}, Ca@C{sub 74}, Sr@C{sub 74} and Ba@C{sub 74} based on encapsulation into the only C{sub 74} IPR cage as well as for three selected lanthanoids La@C{sub 74}, Yb@C{sub 74}, and Lu@C{sub 74}. Their structural and energetic characteristics are used for evaluations of the relative production yields, using the encapsulation Gibbs-energy and saturated metal pressures. It is shown that the results can be well related to the ionization potentials of the free metal atoms.

  5. Comment II on 'Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers'

    SciTech Connect

    Du Jianzhong; Qin Sujuan; Wen Qiaoyan; Zhu Fuchen

    2006-07-15

    In a recent paper [S. Bagherinezhad and V. Karimipour, Phys. Rev. A 67, 044302 (2003)], a quantum secret sharing protocol based on reusable GHZ states was proposed. However, in this comment, it is shown that this protocol is insecure because a cheater can gain all the secret bits before sharing, while introducing one data bit error at most in the whole communication, which makes the cheater avoid the detection by the communication parities.

  6. Velocity autocorrelation by quantum simulations for direct parameter-free computations of the neutron cross sections. II. Liquid deuterium

    NASA Astrophysics Data System (ADS)

    Guarini, E.; Neumann, M.; Bafile, U.; Celli, M.; Colognesi, D.; Bellissima, S.; Farhi, E.; Calzavara, Y.

    2016-06-01

    Very recently we showed that quantum centroid molecular dynamics (CMD) simulations of the velocity autocorrelation function provide, through the Gaussian approximation (GA), an appropriate representation of the single-molecule dynamic structure factor of liquid H2, as witnessed by a straightforward absolute-scale agreement between calculated and experimental values of the total neutron cross section (TCS) at thermal and epithermal incident energies. Also, a proper quantum evaluation of the self-dynamics was found to guarantee, via the simple Sköld model, a suitable account of the distinct (intermolecular) contributions that influence the neutron TCS of para-H2 for low-energy neutrons (below 10 meV). The very different role of coherent nuclear scattering in D2 makes the neutron response from this liquid much more extensively determined by the collective dynamics, even above the cold neutron range. Here we show that the Sköld approximation maintains its effectiveness in producing the correct cross section values also in the deuterium case. This confirms that the true key point for reliable computational estimates of the neutron TCS of the hydrogen liquids is, together with a good knowledge of the static structure factor, the modeling of the self part, which must take into due account quantum delocalization effects on the translational single-molecule dynamics. We demonstrate that both CMD and ring polymer molecular dynamics (RPMD) simulations provide similar results for the velocity autocorrelation function of liquid D2 and, consequently, for the neutron double differential cross section and its integrals. This second investigation completes and reinforces the validity of the proposed quantum method for the prediction of the scattering law of these cryogenic liquids, so important for cold neutron production and related condensed matter research.

  7. Spatiotemporal quantum manipulation of traveling light: Quantum transport

    NASA Astrophysics Data System (ADS)

    Ham, B. S.

    2006-03-01

    A method of quantum transport between quantum nodes using stationary lights is presented. The quantum transport of a single photon or a quantum state from one node to another is performed by a slow light phenomenon, where the transport time and path between nodes are classically determined. With both no-mirror-cavity characteristics of the stationary light and propagation velocity control of the slow light, the quantum transport has potential applications in quantum information sciences such as type-II quantum computing and quantum communications.

  8. Room-temperature vertical-cavity surface-emitting lasers at 4 μm with GaSb-based type-II quantum wells

    NASA Astrophysics Data System (ADS)

    Veerabathran, G. K.; Sprengel, S.; Andrejew, A.; Amann, M.-C.

    2017-02-01

    We report electrically pumped λ = 4 μm vertical-cavity surface-emitting lasers (VCSELs) that significantly extend the wavelength range covered with electrically pumped VCSELs into the mid infrared. A single stage active region with eight type-II quantum wells provides sufficient gain, while lateral current confinement and waveguiding are accomplished with the proven buried tunnel junction technology. These devices operate in continuous wave (CW) up to -7 °C and in pulsed operation up to 45 °C. Their CW threshold pump power levels are below 10 mW at temperatures well accessible by thermo-electric cooling, and their maximum single-mode output power is around 0.18 mW. Single-mode operation with side-mode suppression ratio of more than 20 dB and a continuous electro-thermal tuning range as large as 19.2 nm are achieved.

  9. InGaAsP/InAlAs type I/type II multiple quantum well structures grown by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kawamura, Yuichi; Iwamura, Hidetoshi

    1995-05-01

    In 1- xGa xAs 1- yP y/In 0.52Al 0.48As multiple quantum well (MQW) structures have been grown on InP substrates by gas source molecular beam epitaxy and the compositional dependence of the optical properties are studied by photoluminescence and optical absorption measurements. It is found that the type I/type II transition occurs at a P composition of 0.60. From the compositional dependence of the effective bandgap of the InGaAsP/InAlAs MQW structure, the valence band discontinuity ( ΔEv) of the InP/InAlAs hetero-interface is estimated to be 0.20 eV, which is consistent with the result for the conduction band discontinuity ( ΔEc) of In 1- w-zGa wAl zAs/InP MQW structures.

  10. Circular and linear photogalvanic effects in type-II GaSb/InAs quantum well structures in the inverted regime

    NASA Astrophysics Data System (ADS)

    Plank, H.; Tarasenko, S. A.; Hummel, T.; Knebl, G.; Pfeffer, P.; Kamp, M.; Höfling, S.; Ganichev, S. D.

    2017-01-01

    We report on the observation of photogalvanic effects induced by terahertz radiation in type-II GaSb/InAs quantum wells with inverted band order. Photocurrents are excited at oblique incidence of radiation and consist of several contributions varying differently with the change of the radiation polarization state; the one driven by the helicity and the other one driven by the linearly polarization of radiation are of comparable magnitudes. Experimental and theoretical analyses reveal that the photocurrent is dominated by the circular and linear photogalvanic effects in a system with a dominant structure inversion asymmetry. A microscopic theory developed in the framework of the Boltzmann equation of motion considers both photogalvanic effects and describes well all the experimental findings.

  11. Microfabricated tin-film electrodes for protein and DNA sensing based on stripping voltammetric detection of Cd(II) released from quantum dots labels.

    PubMed

    Kokkinos, Christos; Economou, Anastasios; Petrou, Panagiota S; Kakabakos, Sotirios E

    2013-11-19

    A novel disposable microfabricated tin-film electrochemical sensor was developed for the detection of proteins and DNA. The sensor was fabricated on a silicon wafer through photolithography to define the sensor geometry followed by tin sputtering. A sandwich-type immunoassay with biotinylated reporter antibody was employed for the determination of prostate-specific antigen (PSA) in human serum samples. For the detection of C533G mutation of the RET gene, biotinylated oligonucleotide probes were used. The biotinylated biomolecular probes were labeled with streptavidin (STV)-conjugated CdSe/ZnS quantum dots (QDs); quantification of the analytes was performed through acidic dissolution of the QDs and stripping voltammetric detection of the Cd(II) released. The proposed QD-based electrochemical sensor overcomes the limitations of existing voltammetric sensors and provides a mercury-free sensing platform with scope for mass-production and further potential for application in clinical diagnostics.

  12. Determination of the D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup 0} and D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -} coherence factors and average strong-phase differences using quantum-correlated measurements

    SciTech Connect

    Lowrey, N.; Mehrabyan, S.; Selen, M.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tan, B. J. Y.

    2009-08-01

    The first measurements of the coherence factors (R{sub K{pi}}{sub {pi}{sup 0}} and R{sub K3{pi}}) and the average strong-phase differences ({delta}{sub D}{sup K{pi}}{sup {pi}{sup 0}} and {delta}{sub D}{sup K3{pi}}) for D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup 0} and D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -} are presented. These parameters can be used to improve the determination of the unitarity triangle angle {gamma} in B{sup -}{yields}DK{sup -} decays, where D is a D{sup 0} or D{sup 0} meson decaying to the same final state. The measurements are made using quantum-correlated, fully reconstructed D{sup 0}D{sup 0} pairs produced in e{sup +}e{sup -} collisions at the {psi}(3770) resonance. The measured values are: R{sub K{pi}}{sub {pi}{sup 0}}=0.84{+-}0.07, {delta}{sub D}{sup K{pi}}{sup {pi}{sup 0}}=(227{sub -17}{sup +14}) deg., R{sub K3{pi}}=0.33{sub -0.23}{sup +0.20}, and {delta}{sub D}{sup K3{pi}}=(114{sub -23}{sup +26}) deg. These results indicate significant coherence in the decay D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup 0}, whereas lower coherence is observed in the decay D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -}. The analysis also results in a small improvement in the knowledge of other D-meson parameters, in particular, the strong-phase difference for D{sup 0}{yields}K{sup -}{pi}{sup +}, {delta}{sub D}{sup K{pi}}, and the mixing parameter y.

  13. 2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit.

    PubMed

    Wang, Ruijun; Sprengel, Stephan; Boehm, Gerhard; Muneeb, Muhammad; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2016-09-05

    Heterogeneously integrated InP-based type-II quantum well Fabry-Perot lasers on a silicon waveguide circuit emitting in the 2.3 µm wavelength range are demonstrated. The devices consist of a "W"-shaped InGaAs/GaAsSb multi-quantum-well gain section, III-V/silicon spot size converters and two silicon Bragg grating reflectors to form the laser cavity. In continuous-wave (CW) operation, we obtain a threshold current density of 2.7 kA/cm2 and output power of 1.3 mW at 5 °C for 2.35 μm lasers. The lasers emit over 3.7 mW of peak power with a threshold current density of 1.6 kA/cm2 in pulsed regime at room temperature. This demonstration of heterogeneously integrated lasers indicates that the material system and heterogeneous integration method are promising to realize fully integrated III-V/silicon photonics spectroscopic sensors in the 2 µm wavelength range.

  14. Interface control of electronic and optical properties in IV-VI and II-VI core/shell colloidal quantum dots: a review.

    PubMed

    Jang, Youngjin; Shapiro, Arthur; Isarov, Maya; Rubin-Brusilovski, Anna; Safran, Aron; Budniak, Adam K; Horani, Faris; Dehnel, Joanna; Sashchiuk, Aldona; Lifshitz, Efrat

    2017-01-17

    Semiconductor colloidal quantum dots (CQDs) have attracted vast scientific and technological interest throughout the past three decades, due to the unique tuneability of their optoelectronic properties by variation of size and composition. However, the nanoscale size brings about a large surface-to-bulk volume ratio, where exterior surfaces have a pronounced influence on the chemical stability and on the physical properties of the semiconductor. Therefore, numerous approaches have been developed to gain efficient surface passivation, including a coverage by organic or inorganic molecular surfactants as well as the formation of core/shell heterostructures (a semiconductor core epitaxially covered by another semiconductor shell). This review focuses on special designs of core/shell heterostructures from the IV-VI and II-VI semiconductor compounds, and on synthetic approaches and characterization of the optical properties. Experimental observations revealed the formation of core/shell structures with type-I or quasi-type-II band alignment between the core and shell constituents. Theoretical calculations of the electronic band structures, which were also confirmed by experimental work, exposed surplus electronic tuning (beyond the radial diameter) with adaptation of the composition and control of the interface properties. The studies also considered strain effects that are created between two different semiconductors. It was disclosed experimentally and theoretically that the strain can be released via the formation of alloys at the core-shell interface. Overall, the core/shell and core/alloyed-shell heterostructures showed enhancement in luminescence quantum efficiency with respect to that of pure cores, extended lifetime, uniformity in size and in many cases good chemical sustainability under ambient conditions.

  15. Capping effect of GaAsSb and InGaAsSb on the structural and optical properties of type II GaSb/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    He, Jun; Bao, Feng; Zhang, Jinping

    2012-04-01

    We systematically study the influence of group V intermixing on the structural and optical properties of type II GaSb/GaAs quantum dots (QDs) capped by selected capping layers. Compared to GaSb QDs capped directly by a GaAs layer, we observe a strong enhancement of photoluminescence (PL) intensity and a significant red-shift of the photoluminescence peak energy to 1.35 μm at 300 K by the introduction of a GaAsSb capping layer. In addition, Z-contrast cross sectional transmission electron microscopy shows Sb segregation and group V mixing is greatly suppressed by GaAsSb or InGaAsSb capping layers. The new capping layers offers the possibility of controlling optical properties of type II GaSb/GaAs quantum dots and this opens up new means for achieving high efficient GaSb/GaAs quantum dot solar cell.

  16. Counterflow quantum turbulence of He-II in a square channel: Numerical analysis with nonuniform flows of the normal fluid

    NASA Astrophysics Data System (ADS)

    Yui, Satoshi; Tsubota, Makoto

    2015-05-01

    We perform a numerical analysis of counterflow quantum turbulence of superfluid 4He with nonuniform flows by using the vortex filament model. In recent visualization experiments nonuniform laminar flows of the normal fluid, namely, Hagen-Poiseuille flow and tail-flattened flow, have been observed. Tail-flattened flow is a laminar flow in which the outer part of the Hagen-Poiseuille flow becomes flat. In our simulation, the velocity field of the normal fluid is prescribed to be two nonuniform profiles. This work addresses a square channel to obtain important physics not revealed in the preceding numerical works. In the studies of the two profiles we analyze the statistics of the physical quantities. Under Hagen-Poiseuille flow, inhomogeneous quantum turbulence appears as a statistically steady state. The vortex tangle shows a characteristic space-time oscillation. Under tail-flattened flow, the nature of the quantum turbulence depends strongly on that flatness. Vortex line density increases significantly as the profile becomes flatter, being saturated above a certain flatness. The inhomogeneity is significantly reduced in comparison to the case of Hagen-Poiseuille flow. Investigating the behavior of quantized vortices reveals that tail-flattened flow is an intermediate state between Hagen-Poiseuille flow and uniform flow. In both profiles we obtain a characteristic inhomogeneity in the physical quantities, which suggests that a boundary layer of superfluid appears near a solid boundary. The vortex tangle produces a velocity field opposite to the applied superfluid flow, and, consequently, the superfluid flow becomes smaller than the applied one.

  17. Electron states in semiconductor quantum dots

    SciTech Connect

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-11-28

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.

  18. An adiabatic linearized path integral approach for quantum time-correlation functions II: a cumulant expansion method for improving convergence.

    PubMed

    Causo, Maria Serena; Ciccotti, Giovanni; Bonella, Sara; Vuilleumier, Rodolphe

    2006-08-17

    Linearized mixed quantum-classical simulations are a promising approach for calculating time-correlation functions. At the moment, however, they suffer from some numerical problems that may compromise their efficiency and reliability in applications to realistic condensed-phase systems. In this paper, we present a method that improves upon the convergence properties of the standard algorithm for linearized calculations by implementing a cumulant expansion of the relevant averages. The effectiveness of the new approach is tested by applying it to the challenging computation of the diffusion of an excess electron in a metal-molten salt solution.

  19. Reply to 'Comment II on 'Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers''

    SciTech Connect

    Karimipour, V.

    2006-07-15

    In the preceding Comment [Jian-Zhong Du, Su-Juan Qin, Qiao-Yan Wen, and Fu-Chen Zhu, Phys. Rev. A 74, 016301 (2006)], it has been shown that in a quantum secret sharing protocol proposed in [S. Bagherinezhad and V. Karimipour, Phys. Rev. A 67, 044302 (2003)], one of the receivers can cheat by splitting the entanglement of the carrier and intercepting the secret, without being detected. In this reply we show that a simple modification of the protocol prevents the receivers from this kind of cheating.

  20. Quantum chemical approach for condensed-phase thermochemistry (II): Applications to formation and combustion reactions of liquid organic molecules

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atsushi; Nakai, Hiromi

    2015-03-01

    The harmonic solvation model (HSM), which was recently developed for evaluating condensed-phase thermodynamics by quantum chemical calculations (Nakai and Ishikawa, 2014), was applied to formation and combustion reactions of simple organic molecules. The conventional ideal gas model (IGM) considerably overestimated the entropies of the liquid molecules. The HSM could significantly improve this overestimation; mean absolute deviations for the Gibbs energies of the formation and combustion reactions were (49.6, 26.7) for the IGM and (9.7, 5.4) for the HSM in kJ/mol.

  1. Quantitative prediction of nuclear-spin-diffusion-limited coherence times of molecular quantum bits based on copper(ii).

    PubMed

    Lenz, S; Bader, K; Bamberger, H; van Slageren, J

    2017-04-06

    We have investigated the electron spin dynamics in a series of copper(ii) β-diketonate complexes both in frozen solutions and doped solids. Double digit microsecond coherence times were found at low temperatures. We report quantitative simulations of the coherence decays solely based on the crystal structure of the doped solids.

  2. Real-Time Monitoring Surface Chemistry-Dependent In Vivo Behaviors of Protein Nanocages via Encapsulating an NIR-II Ag2S Quantum Dot.

    PubMed

    Li, Chunyan; Li, Feng; Zhang, Yejun; Zhang, Wenjing; Zhang, Xian-En; Wang, Qiangbin

    2015-12-22

    Protein nanocages (PNCs) have been recognized as a promising platform for nanomedicine innovation. Real-time in vivo tracking of PNCs can provide critically important information for the development of PNC-based diagnostics and therapeutics. Here we demonstrate a general strategy for monitoring the behaviors of PNCs in vivo by encapsulating a Ag2S quantum dot (QD) with fluorescence in the second near-infrared window (NIR-II, 1000-1700 nm) inside the PNC, using simian virus 40 (SV40) PNC (PNCSV40) as a model. Benefiting from the high spatiotemporal resolution and deep tissue penetration of NIR-II fluorescence imaging, the dynamic distribution of the PNCSV40 in living mice was tracked in real time with high fidelity, and adopting the PEGylation strategy, surface chemistry-dependent in vivo behaviors of PNCSV40 were clearly revealed. This study represents the first evidence of real-time tracking of the intrinsic behaviors of PNCs in vivo without interference in PNC-host interactions by encapsulating nanoprobes inside. The as-described imaging strategy will facilitate the study of interactions between exogenously introduced PNCs and host body and prompt the development of future protein-based drugs, sensors, and high-efficacy targeted delivery systems.

  3. Prediction of logP for Pt(II) and Pt(IV) complexes: Comparison of statistical and quantum-chemistry based approaches.

    PubMed

    Tetko, Igor V; Varbanov, Hristo P; Galanski, Markus; Talmaciu, Mona; Platts, James A; Ravera, Mauro; Gabano, Elisabetta

    2016-03-01

    The octanol/water partition coefficient, logP, is one of the most important physico-chemical parameters for the development of new metal-based anticancer drugs with improved pharmacokinetic properties. This study addresses an issue with the absence of publicly available models to predict logP of Pt(IV) complexes. Following data collection and subsequent development of models based on 187 complexes from literature, we validate new and previously published models on a new set of 11 Pt(II) and 35 Pt(IV) complexes, which were kept blind during the model development step. The error of the consensus model, 0.65 for Pt(IV) and 0.37 for Pt(II) complexes, indicates its good accuracy of predictions. The lower accuracy for Pt(IV) complexes was attributed to experimental difficulties with logP measurements for some poorly-soluble compounds. This model was developed using general-purpose descriptors such as extended functional groups, molecular fragments and E-state indices. Surprisingly, models based on quantum-chemistry calculations provided lower prediction accuracy. We also found that all the developed models strongly overestimate logP values for the three complexes measured in the presence of DMSO. Considering that DMSO is frequently used as a solvent to store chemicals, its effect should not be overlooked when logP measurements by means of the shake flask method are performed. The final models are freely available at http://ochem.eu/article/76903.

  4. Effective representation of amide III, II, I, and A modes on local vibrational modes: Analysis of ab initio quantum calculation results

    NASA Astrophysics Data System (ADS)

    Hahn, Seungsoo

    2016-10-01

    The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.

  5. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000. Part II. Engineering, technology development and application aspects

    NASA Astrophysics Data System (ADS)

    Costamagna, Paola; Srinivasan, Supramaniam

    The technology of proton exchange membrane fuel cells (PEMFCs) has now reached the test-phase, and engineering development and optimization are vital in order to achieve to the next step of the evolution, i.e. the realization of commercial units. This paper highlights the most important technological progresses in the areas of (i) water and thermal management, (ii) scale-up from single cells to cell stacks, (iii) bipolar plates and flow fields, and (iv) fuel processing. Modeling is another aspect of the technological development, since modeling studies have significantly contributed to the understanding of the physico-chemical phenomena occurring in a fuel cell, and also have provided a valuable tool for the optimization of structure, geometry and operating conditions of fuel cells and stacks. The 'quantum jumps' in this field are reviewed, starting from the studies at the electrode level up to the stack and system size, with particular emphasis on (i) the 'cluster-network' model of perfluorosulfonic membranes, and the percolative dependence of the membrane proton conductivity on its water content, (ii) the models of charge and mass transport coupled to electrochemical reaction in the electrodes, and (iii) the models of water transport trough the membrane, which have been usefully applied for the optimization of water management of PEMFCs. The evolution of PEMFC applications is discussed as well, starting from the NASA's Gemini Space Flights to the latest developments of fuel cell vehicles, including the evolutions in the areas of portable power sources and residential and building applications.

  6. Effect of the Type-I to Tipe-II Transition on the Shallow Donor Binding Energy in GaAs/AlAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    da Cunha Lima, A. T.; da Cunha Lima, I. C.; Ferreira da Silva, A.

    1996-03-01

    In GaAs-Ga_1-xAl_xAs quantum wells with x <= 0.4 the low energy states of the conduction band are obtained from Γ-type bulk states. The other minima with different simmetries, e.g. L and X, give states with higher energies. However, for x > 0.4 and below a certain value of the QW width, the GaAs layer becomes a barrier for the electron. We have calculated the binding energy of a shallow donor in the GaAs layer of a GaAs/AlAs QW (x =1.) for widths just larger and smaller than the one corresponding to the type-I to type-II transition (37ÅWe have used, for estimating the impurity ground state energy, a trial function composed of the unperturbed envelope function modulated by a separable confining function exp(-ρ/α)× exp (-\\vert z-z_i\\vert/β) where α and β are variational parameters and zi is the impurity position in the growth direction. Our results show an important decrease of the binding energy, and also a change in the state symmetry, since the obtained bound state in the type-II structure is predominantly a p-like state.

  7. Effective representation of amide III, II, I, and A modes on local vibrational modes: Analysis of ab initio quantum calculation results.

    PubMed

    Hahn, Seungsoo

    2016-10-28

    The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.

  8. The influence of type-I and type-II triplet multiple quantum well structure on white organic light-emitting diodes

    PubMed Central

    2013-01-01

    We demonstrate high-efficient white organic light-emitting diodes (WOLEDs) based on triplet multiple quantum well (MQW) structure and focus on the influence on WOLEDs through employing different potential barrier materials to form type-I and type-II MQWs, respectively. It is found that type-I MQW structure WOLEDs based on 1,3,5-tris(N-phenyl-benzimidazol-2-yl)benzene as potential barrier layer (PBL) offers high electroluminescent (EL) performance. That is to say, maximum current efficiency and power efficiency are achieved at about 1,000 cd/m2 with 16.4 cd/A and 8.3 lm/W, which increase by 53.3% and 50.9% over traditional three-layer structure WOLEDs, respectively, and a maximum luminance of 17,700 cd/m2 is earned simultaneously. The achievement of high EL performance would be attributed to uniform distribution and better confinement of carriers within the emitting layer (EML). However, when 4,7-diphenyl-1,10-phenanthroline or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline is used as PBL to form type-II MQW structure, poor EL performance is obtained. We attribute that to improper energy level alignment between the interface of EML/PBL, which leads to incomplete confinement and low recombination efficiency of carriers, a more detailed mechanism was argued. PMID:24341599

  9. Quantum Finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2007-09-01

    Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.

  10. Excited-state quantum phase transitions in systems with two degrees of freedom: II. Finite-size effects

    SciTech Connect

    Stránský, Pavel; Macek, Michal; Leviatan, Amiram; Cejnar, Pavel

    2015-05-15

    This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.

  11. An Acoustic Charge Transport Imager for High Definition Television Applications: Reliability Modeling and Parametric Yield Prediction of GaAs Multiple Quantum Well Avalanche Photodiodes. Degree awarded Oct. 1997

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Yun, Ilgu

    1994-01-01

    Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-low noise image capture mechanism for high definition systems, have been investigated. First, the effect of various doping methods on the reliability of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests by monitoring dark current and breakdown voltage. Median device lifetime and the activation energy of the degradation mechanism are computed for undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device structure are examined via a statistically designed experiment. Analysis of variance shows that dark-current is affected primarily by device diameter, temperature and stressing time, and breakdown voltage depends on the diameter, stressing time and APD type. It is concluded that the undoped APD has the highest reliability, followed by the doped well and doped barrier devices, respectively. To determine the source of the degradation mechanism for each device structure, failure analysis using the electron-beam induced current method is performed. This analysis reveals some degree of device degradation caused by ionic impurities in the passivation layer, and energy-dispersive spectrometry subsequently verified the presence of ionic sodium as the primary contaminant. However, since all device structures are similarly passivated, sodium contamination alone does not account for the observed variation between the differently doped APDs. This effect is explained by the dopant migration during stressing, which is verified by free carrier concentration measurements using the capacitance-voltage technique.

  12. Evaluation of the absolute photoluminescence quantum yields of molecularly doped organic composite films and the electroluminescence efficiencies of molecular light-emitting devices containing oligoheterocycles as efficient emission centers

    NASA Astrophysics Data System (ADS)

    Kushto, Gary P.; Hill, Ian G.; Mitschke, Ullrich; Baeuerle, Peter; Kafafi, Zakya H.

    2001-02-01

    The absolute photoluminescence quantum yields ((Phi) PL) of three end-capped oligothiophene derivatives dispersed in N,N'-((alpha) -naphthyl)-N,N'-diphenyl-1,1'-biphenyl ((alpha) -NPD) have been evaluated and the most efficient of the emitters was used as a dopant in molecular organic LEDs. Composite films of 2,5-bis [5-(4,5,6,7- tetrahydrobenzo[b]thien-2-yl) thien-2-yl]-furan (EC5FUR); 2,5-bis [5-(4,5,6,7- tetrahydrobenzo[b]thien-2-yl) thien-2-yl]-oxazole (EC5OXZ) and 2,5-bis [5-(4,5,6,7- tetrahydrobenzo[b]thien-2-yl)thien-2-yl]-1,3,4- oxadiazole (EC5OXD) doped into (alpha) -NPD were found to have (Phi) PL values of 78, 62 and 28%, respectively. MOLED devices were fabricated using an EC5FUR/(alpha) -NPD composite as the emitting layer and the external quantum efficiencies ((eta) EL) of these devices were evaluated. The results of the device characterization show that the inclusion of EC5FUR in the NPD hole transport layer increases the device (eta) EL to 1.45% at a current density of 10 mA/cm2. In addition, the concentration dependence of the (eta) EL on the EC5FUR dopant in certain device structures when considered in conjunction with the current results of ultraviolet photoemission spectroscopic experiments suggests that this dopant species may be acting as both a hole and electron trap in the (alpha) -NPD host.

  13. Quantum phase slip noise

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.; Zaikin, Andrei D.

    2016-07-01

    Quantum phase slips (QPSs) generate voltage fluctuations in superconducting nanowires. Employing the Keldysh technique and making use of the phase-charge duality arguments, we develop a theory of QPS-induced voltage noise in such nanowires. We demonstrate that quantum tunneling of the magnetic flux quanta across the wire yields quantum shot noise which obeys Poisson statistics and is characterized by a power-law dependence of its spectrum SΩ on the external bias. In long wires, SΩ decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T →0 . The quantum coherent nature of QPS noise yields nonmonotonous dependence of SΩ on T at small Ω .

  14. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    1995-04-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos

  15. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    2006-11-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos

  16. Spectroscopic and quantum chemical study of the structure of a new paramagnetic dimeric palladium(II,III) complex with creatine

    NASA Astrophysics Data System (ADS)

    Mitewa, Mariana; Enchev, Venelin; Bakalova, Tatyana

    2002-05-01

    The structure and coordination mode of the newly synthesized dimeric paramagnetic Pd(II,III) complex are studied using magneto-chemical, EPR and IR spectroscopic methods. In order to perform reliable assignment of the IR bands, the structure and IR spectrum of the free creatine were calculated using ab initio method. For calculation of the configuration of its deprotonated and doubly deprotonated forms the semiempirical AM1 method was used.

  17. Properties of quantum systems via diagonalization of transition amplitudes. II. Systematic improvements of short-time propagation.

    PubMed

    Vidanović, Ivana; Bogojević, Aleksandar; Balaz, Antun; Belić, Aleksandar

    2009-12-01

    In this paper, building on a previous analysis [I. Vidanović, A. Bogojević, and A. Belić, preceding paper, Phys. Rev. E 80, 066705 (2009)] of exact diagonalization of the space-discretized evolution operator for the study of properties of nonrelativistic quantum systems, we present a substantial improvement to this method. We apply recently introduced effective action approach for obtaining short-time expansion of the propagator up to very high orders to calculate matrix elements of space-discretized evolution operator. This improves by many orders of magnitude previously used approximations for discretized matrix elements and allows us to numerically obtain large numbers of accurate energy eigenvalues and eigenstates using numerical diagonalization. We illustrate this approach on several one- and two-dimensional models. The quality of numerically calculated higher-order eigenstates is assessed by comparison with semiclassical cumulative density of states.

  18. Theoretical study of dynamic electron-spin-polarization via the doublet-quartet quantum-mixed state (II). Population transfer and magnetic field dependence of the spin polarization.

    PubMed

    Matsumoto, Takafumi; Teki, Yoshio

    2012-08-07

    The population transfer to the spin-sublevels of the unique quartet (S = 3/2) high-spin state of the strongly exchange-coupled (SC) radical-triplet pair (for example, an Acceptor-Donor-Radical triad (A-D-R)) via a doublet-quartet quantum-mixed (QM) state is theoretically investigated by a stochastic Liouville equation. In this work, we have treated the loss of the quantum coherence (de-coherence) due to the de-phasing during the population transfer and neglected the effect of other de-coherence mechanisms. The dependences on the magnitude of the exchange coupling or the fine-structure parameter of the QM state are investigated. The dependence on the velocity of the population transfer (by the electron transfer or the energy-transfer) from the QM state to the SC quartet state is also clarified. It is revealed that the de-coherence during the population transfer mainly originates from the fine-structure term of the QM state in the doublet-triplet exchange coupled systems. This de-coherence leads to the unique dynamic electron polarization (DEP) on the high-field spin sublevels of the SC state, which is similar to the unique DEP pattern of the photo-excited triplet states of the reaction centers of photosystems I and II. The magnetic field dependence of the population transfer leading to the populations of the spin-sublevels of the SC states is also calculated. The possibility of the control of energy transport, spin transport and information technology by using the QM state is discussed based on these results. The knowledge obtained in this work is useful in the spin dynamics of any doublet-triplet exchange coupled systems.

  19. Photocatalytic activity of transition-metal-ion-doped coordination polymer (CP): photoresponse region extension and quantum yields enhancement via doping of transition metal ions into the framework of CPs.

    PubMed

    Xu, Xin-Xin; Cui, Zhong-Ping; Gao, Xin; Liu, Xiao-Xia

    2014-06-21

    To improve photocatalytic activity of a coordination polymer (CP) in the visible light region, five different transition metal ions (Fe(3+), Cr(3+), Ru(3+), Co(2+) and Ni(2+)) were introduced into its framework through an ion-exchange process. Among all the resulting transition metal ion doped coordination polymers (TMI/CPs), the one doped with Fe(3+) took on the most excellent photocatalytic activity and the highest quantum yields in the visible light region, decomposing 94% Rhodamine B (RhB) in 8 hours. It can be attributed to the doping of Fe(3+), which reduced the band gap (Eg) of the original CP, facilitating photocatalysis of the obtained polymer. Compared with the coordination polymer with Fe(3+) as a dopant, products doped with other metal ions presented weaker photocatalytic activities in the visible light region, while under the irradiation of ultraviolet light, they showed favorable photocatalytic properties. The results suggest that to dope transition metal ions into the framework of CPs would be an ideal option for enhancing the photocatalytic activity of coordination polymers.

  20. Femtosecond studies of photoinduced electron dynamics in colloidal quantum-confined II-VI semiconductor nanoparticles: CdS, CdSe and CdZnS

    NASA Astrophysics Data System (ADS)

    Roberti, Trevor

    A variety of synthetic and spectroscopic techniques have been applied to elucidate photoinduced charge carrier processes in II-VI semiconductor quantum dots. These semiconductor nanoparticles exhibit both size-dependent optical tuning due to the quantum-confinement effect and power-dependent absorption, bleach and emission characteristics. Although the tunable-absorption has been well characterized, the subsequent trapping and recombination processes are still under much investigation and are the subject of this dissertation. Particles with vastly differing surfaces, sizes, energetics and solvents have been characterized using various spectroscopic techniques in unison. The primary technique was transient femtosecond near-IR absorption, which was used to characterize charge carrier processes on the subpicosecond and picosecond time scales. UV-visible spectroscopy was used to characterize the size of the particles. Static fluorescence measurements were used to characterize the surface of the particles and the relative amount of radiative recombination. Nanosecond fluorescence measurements were also used to assist in the assignment of the fast, power-dependent near-IR absorption decay. The research reported here makes two fundamental contributions to the photophysics of semiconductor nanoparticles. First, the power-dependent, few picosecond decay process has primarily been assigned to electron-hole recombination via exciton-exciton annihilation. As the power increases, higher order, Auger processes may also arise. The exciton-exciton annihilation mechanism was primarily deduced based on power-dependent fluorescence measurements which exhibited the formation of short-lived exciton fluorescence at high powers. Secondly, many nanoparticle properties and environments were varied in order to better understand the observed picosecond processes and the effect of variations on these processes. The systems studied ranged from aqueous acidic and basic quantum dots of differing

  1. CdTe quantum dot-based fluorescent probes for selective detection of Hg (II): The effect of particle size

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Zhao, Zhu-Jun; Li, Jian-Jun; Zhao, Jun-Wu

    2017-04-01

    Mercury ions-induced fluorescence quenching properties of CdTe quantum dots (QDs) have been studied using the fluorescence spectroscopic techniques. By using the hydrothermal method, the CdTe QDs with different particles sizes from 1.98 to 3.68 nm have been prepared, and the corresponding fluorescence emission wavelength is changed from 518 to 620 nm. The fluorescence of QDs is enhanced after linking Bovine serum albumin (BSA) onto the surface of the QDs. Experimental results show that the fluorescence intensity of BSA-coated CdTe QDs could be effectively quenched when Hg2 + react with BSA-coated CdTe QDs. Interestingly, both the sensing sensitivity and selectivity of this fluorescence probe could be improved when the particle size of the QDs decreases. Thus the BSA-coated CdTe QDs with green fluorescence emission have better advantages than the BSA-coated CdTe QDs with red fluorescence for Hg2 + detection. Interference experiment results indicate that the influence from other metal ions could be neglected in the detection, and the Hg2 + could be specifically detected. By using this BSA-coated CdTe QDs-based fluorescence probe, the Hg2 + could be detected with an ultra-low detection limit of nanomole level, and the linear range spans a scope from 0.001 to 1 μmol/L.

  2. Quantum field theory for the three-body constrained lattice Bose gas. II. Application to the many-body problem

    SciTech Connect

    Diehl, S.; Daley, A. J.; Zoller, P.; Baranov, M.

    2010-08-01

    We analyze the ground-state phase diagram of attractive lattice bosons, which are stabilized by a three-body onsite hardcore constraint. A salient feature of this model is an Ising-type transition from a conventional atomic superfluid to a dimer superfluid with vanishing atomic condensate. The study builds on an exact mapping of the constrained model to a theory of coupled bosons with polynomial interactions, proposed in a related paper [S. Diehl, M. Baranov, A. Daley, and P. Zoller, Phys. Rev. B 82, 064509 (2010).]. In this framework, we focus by analytical means on aspects of the phase diagram which are intimately connected to interactions, and are thus not accessible in a mean-field plus spin-wave approach. First, we determine shifts in the mean-field phase border, which are most pronounced in the low-density regime. Second, the investigation of the strong coupling limit reveals the existence of a 'continuous supersolid', which emerges as a consequence of enhanced symmetries in this regime. We discuss its experimental signatures. Third, we show that the Ising-type phase transition, driven first order via the competition of long-wavelength modes at generic fillings, terminates into a true Ising quantum critical point in the vicinity of half filling.

  3. Light saturation response of inactive photosystem II reaction centers in spinach.

    PubMed

    Chylla, R A; Whitmarsh, J

    1990-07-01

    The effective absorption cross section of inactive photosystem II (PS II) centers, which is the product of the effective antenna size and the quantum yield for photochemistry, was investigated by comparing the light saturation curves of inactive PS II and active reaction centers in intact chloroplasts and thylakoid membranes of spinach (Spinacia oleracea). Inactive PS II centers are defined as the impaired PS II reaction centers that require greater than 50 ms for the reoxidation of QA (-) subsequent to a single turnover flash. Active reaction centers are defined as the rapidly turning over PS II centers (recovery time less than 50 ms) and all of the PS I centers. The electrochromic shift, measured by the flash-induced absorbance increase at 518 nm, was used to probe the activity of the reaction centers. Light saturation curves were generated for inactive PS II centers and active reaction centers by measuring the extent of the absorbance increase at 518 nm induced by red actinic flashes of variable energy. The light saturation curves show that inactive PS II centers required over twice as many photons as active reaction centers to achieve the same yield. The ratio of the flash energy required for 50% saturation for active reaction centers (PS II active + PS I) compared to inactive PS II centers was 0.45±0.04 in intact chloroplasts, and 0.54±0.11 in thylakoid membranes. Analysis of the light saturation curves using a Poisson statistical model in which the ratio of the antenna size of active PS II centers to that of PS I is considered to range from 1 to 1.5, indicates that the effective absorption cross section of inactive PS II centers was 0.54-0.37 times that of active PS II centers. If the quantum yield for photochemistry is assumed to be one, we estimate that the antenna system serving the inactive PS II centers contains approx. 110 chlorophyll molecules.

  4. Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II) Porphyrin and Their Conjugates as Photosensitizers.

    PubMed

    Viana, Osnir S; Ribeiro, Martha S; Rodas, Andréa C D; Rebouças, Júlio S; Fontes, Adriana; Santos, Beate S

    2015-05-18

    The application of fluorescent II-VI semiconductor quantum dots (QDs) as active photosensitizers in photodymanic inactivation (PDI) is still being evaluated. In the present study, we prepared 3 nm size CdTe QDs coated with mercaptosuccinic acid and conjugated them electrostatically with Zn(II) meso-tetrakis (N-ethyl-2-pyridinium-2-yl) porphyrin (ZnTE-2-PyP or ZnP), thus producing QDs-ZnP conjugates. We evaluated the capability of the systems, bare QDs and conjugates, to produce reactive oxygen species (ROS) and applied them in photodynamic inactivation in cultures of Candida albicans by irradiating the QDs and testing the hypothesis of a possible combined contribution of the PDI action. Tests of in vitro cytotoxicity and phototoxicity in fibroblasts were also performed in the presence and absence of light irradiation. The overall results showed an efficient ROS production for all tested systems and a low cytotoxicity (cell viability >90%) in the absence of radiation. Fibroblasts incubated with the QDs-ZnP and subjected to irradiation showed a higher cytotoxicity (cell viability <90%) depending on QD concentration compared to the bare groups. The PDI effects of bare CdTe QD on Candida albicans demonstrated a lower reduction of the cell viability (~1 log10) compared to bare ZnP which showed a high microbicidal activity (~3 log10) when photoactivated. The QD-ZnP conjugates also showed reduced photodynamic activity against C. albicans compared to bare ZnP and we suggest that the conjugation with QDs prevents the transmembrane cellular uptake of the ZnP molecules, reducing their photoactivity.

  5. Magnetic Field Induced Type-II σ- Excitons in ZnSe/Zn_1-x-yCd_xMn_ySe Quantum Well Structures.

    NASA Astrophysics Data System (ADS)

    Yu, W. Y.; Salib, M. S.; Petrou, A.; Jonker, B. T.; Warnock, J.

    1996-03-01

    A magneto-optical study (reflectance and Photoluminescence) of two MBE-grown (100ÅÅZnSe/Zn_1-x-yCd_xMn_ySe Quantum Well Structures has been carried out. Both samples are Type-I at zero magnetic field with electrons and holes confined in the ZnCdMnSe layers^1. In the x=0.03, y=0.04 structure, the magnetic field induced valence band splittings confine the m_j=+3/2(-3/2) hole in the ZnSe(ZnCdMnSe) layers; both electron spin states (m_j=±1/2) are confined in the ZnCdMnSe layers. For B>3 tesla, the σ- (+1/2, +3/2) exciton becomes Type-II and its intensity is only a few percent of the ground state Type-I σ+ (-1/2, -3/2) transition. Structures in which the upper σ- exciton is Type-II offer the possibility of hole spin-population inversion under optical pumping. The second structure studied (x=0.05, y=0.04) has a zero field valence band offset which is larger than the heavy hole saturation magnetic field splitting of the ZnCdMnSe layers. As a result, both σ+ and σ- transitions remain Type-I and their intensities are comparable. øbeylines ^1W.J. Walecki et. al, Appl. Phys. Lett. 57, 466 (1990). Supported by NSF, Grant No. DMR-9223054. ^**Supported by ONR.

  6. Quantum Confined Semiconductors

    DTIC Science & Technology

    2015-02-01

    45 34 SEM image of the quantum dots. The bar on the right hand side corresponds to 50 nm...structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency ,” Appl. Phys. Lett. 89, 053519 (2006). 10 Distribution...active region. To achieve a wide depletion width (~5 µm) with low applied bias, and thus a good absorption quantum efficiency , the majority carrier

  7. An in vivo highly antitumor-active tetrazolato-bridged dinuclear platinum(II) complex largely circumvents in vitro cisplatin resistance: two linkage isomers yield the same product upon reaction with 9-ethylguanine but exhibit different cytotoxic profiles.

    PubMed

    Uemura, Masako; Suzuki, Toshihiro; Nishio, Kazuto; Chikuma, Masahiko; Komeda, Seiji

    2012-07-01

    Cytotoxicity assays of azolato-bridged dinuclear Pt(II) complexes, [{cis-Pt(NH(3))(2)}(2)(μ-OH)(μ-azolato)](2+), where the azolato was pyrazolato (1), 1,2,3-triazolato-N1,N2 (2), tetrazolato-N1,N2 (3), or tetrazolato-N2,N3 (4), were performed in cisplatin-sensitive and -resistant human non-small-cell lung cancer cell lines (PC-9 and PC-14). These complexes largely circumvented the cisplatin resistance in both cell lines, with resistance factors for 1-4 in the range of 0.5-0.8 and 0.9-2.0 for PC-9 and PC-14 cells, respectively. Complex 4 exhibited approximately 10 times the cytotoxicity of 3. When 3 and 4 were reacted with 2 molar equiv. of 9-ethylguanine (9EtG), they yielded an identical product, [{cis-Pt(NH(3))(2)(9EtG-N7)}(2)(μ-tetrazolato-N1,N3)](3+), that had N1,N3 platinum coordination through a Pt(II) migration process on the tetrazolate ring. The second-order rate kinetics of these isomers were almost the same as each other and faster than those of 1 and 2. The cytotoxicity of azolato-bridged complexes, except for 3, increases as their kinetic rates in the 9EtG reaction increase.

  8. Insights into Photosystem II from Isomorphous Difference Fourier Maps of Femtosecond X-ray Diffraction Data and Quantum Mechanics/Molecular Mechanics Structural Models.

    PubMed

    Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S

    2017-02-10

    Understanding structure-function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure-function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.

  9. Quantum mechanics/molecular mechanics simulation of the ligand vibrations of the water-oxidizing Mn4CaO5 cluster in photosystem II.

    PubMed

    Nakamura, Shin; Noguchi, Takumi

    2016-10-11

    During photosynthesis, the light-driven oxidation of water performed by photosystem II (PSII) provides electrons necessary to fix CO2, in turn supporting life on Earth by liberating molecular oxygen. Recent high-resolution X-ray images of PSII show that the water-oxidizing center (WOC) is composed of an Mn4CaO5 cluster with six carboxylate, one imidazole, and four water ligands. FTIR difference spectroscopy has shown significant structural changes of the WOC during the S-state cycle of water oxidation, especially within carboxylate groups. However, the roles that these carboxylate groups play in water oxidation as well as how they should be properly assigned in spectra are unresolved. In this study, we performed a normal mode analysis of the WOC using the quantum mechanics/molecular mechanics (QM/MM) method to simulate FTIR difference spectra on the S1 to S2 transition in the carboxylate stretching region. By evaluating WOC models with different oxidation and protonation states, we determined that models of high-oxidation states, Mn(III)2Mn(IV)2, satisfactorily reproduced experimental spectra from intact and Ca-depleted PSII compared with low-oxidation models. It is further suggested that the carboxylate groups bridging Ca and Mn ions within this center tune the reactivity of water ligands bound to Ca by shifting charge via their π conjugation.

  10. Insights into Photosystem II from Isomorphous Difference Fourier Maps of Femtosecond X-ray Diffraction Data and Quantum Mechanics/Molecular Mechanics Structural Models

    PubMed Central

    2017-01-01

    Understanding structure–function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure–function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy. PMID:28217747

  11. Evidence of suppressed hot carrier relaxation in type-II InAs/AlAs1-xSbx quantum wells

    NASA Astrophysics Data System (ADS)

    Whiteside, V. R.; Esmaielpour, H.; Tang, J.; Vijeyaragunathan, S.; Mishima, T. D.; Santos, M. B.; Wang, B.; Yang, R. Q.; Sellers, I. R.

    2016-09-01

    Hot carrier solar cells (HCSCs) have been proposed as devices, which can increase the conversion efficiency of a single junction solar cell above the Shockley-Queisser limit. For practical implementation of such systems, solar cells operating with efficient hot carrier extraction must circumvent two fundamental challenges: 1. Find an absorber material in which hot carriers are sustained either via inhibiting or circumventing phonon relaxation pathways; 2. Implement energy selective contacts in which only a narrow range of energy within the hot carrier distribution is extracted; thereby, reducing cooling losses in the contacts. Here, type-II InAs/AlAs0.16Sb0.84 quantum-wells are investigated as a candidate system for hot carrier absorbers. Continuous wave power and temperature dependent photoluminescence measurements are presented that indicate: a transition in the dominant hot carrier relaxation process from conventional phonon-mediated carrier relaxation - below 90 K - to a regime where inhibited radiative recombination dominates the hot carrier relaxation - at higher temperatures1. The reduction in the PL efficiency is strongly coupled to an increase in the hot carrier temperature extracted from the measurements. This behavior is attributed to a build-up of electrons in the QWs, which appears to inhibit electron-phonon relaxation2.

  12. A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method.

    PubMed

    Ding, Xiaojie; Qu, Lingbo; Yang, Ran; Zhou, Yuchen; Li, Jianjun

    2015-06-01

    Cysteamine (CA)-capped CdTe quantum dots (QDs) (CA-CdTe QDs) were prepared by the reflux method and utilized as an efficient nano-sized fluorescent sensor to detect mercury (II) ions (Hg(2+) ). Under optimum conditions, the fluorescence quenching effect of CA-CdTe QDs was linear at Hg(2+) concentrations in the range of 6.0-450 nmol/L. The detection limit was calculated to be 4.0 nmol/L according to the 3σ IUPAC criteria. The influence of 10-fold Pb(2+) , Cu(2+) and Ag(+) on the determination of Hg(2+) was < 7% (superior to other reports based on crude QDs). Furthermore, the detection sensitivity and selectivity were much improved relative to a sensor based on the CA-CdTe QDs probe, which was prepared using a one-pot synthetic method. This CA-CdTe QDs sensor system represents a new feasibility to improve the detection performance of a QDs sensor by changing the synthesis method.

  13. Calix receptor edifice; scrupulous turn off fluorescent sensor for Fe(III), Co(II) and Cu(II).

    PubMed

    Bhatt, Keyur D; Gupte, Hrishikesh S; Makwana, Bharat A; Vyas, Disha J; Maity, Debdeep; Jain, Vinod K

    2012-11-01

    Novel Supramolecular fluorescence receptor derived from calix-system i.e. calix[4]resorcinarene bearing dansylchloride as fluorophore was designed and synthesized. The compound was purified by column chromatography and characterized by elemental analysis, NMR and Mass spectroscopy. Tetradansylated calix[4] resorcinarene (TDCR) shows a boat conformation with C(2)v symmetry. The complexation behaviour of metal cations [Ag(I), Cd(II), Co(II), Fe(III), Hg(II), Cu(II), Pb(II), Zn(II), U(VI) (1 × 10(-4) M)] with tetra dansylated calix[4]resorcinarene (1 × 10(-6) M) was studied by spectophotometry and spectrofluorometry. Red shift in the absorption spectra led us to conclude that there is strong complexation Fe(III), Co(II) and Cu(II) with TDCR. These metal cations also produce quenching with red shifts in the emission spectra. The maximum quenching in emission intensity was observed in the case of Fe(III) and its binding constant was also found to be significantly higher than that of Co(II) and Cu(II). Quantum yield of metal complexes of Fe(III) was found to be lower in comparison with Co(II) and Cu(II) complexes. Stern Volmer analysis indicates that the mechanism of fluorescence quenching is either purely dynamic, or purely static.

  14. Search for New Quantum Algorithms

    DTIC Science & Technology

    2006-05-01

    Topological computing for beginners, (slide presentation), Lecture Notes for Chapter 9 - Physics 219 - Quantum Computation. (http...14 II.A.8. A QHS algorithm for Feynman integrals ......................................................18 II.A.9. Non-abelian QHS algorithms -- A...idea is that NOT all environmentally entangling transformations are equally likely. In particular, for spatially separated physical quantum

  15. Comparative analysis of electric field influence on the quantum wells with different boundary conditions: II. Thermodynamic properties.

    PubMed

    Olendski, Oleg

    2015-04-01

    Thermodynamic properties of the one-dimensional (1D) quantum well (QW) with miscellaneous permutations of the Dirichlet (D) and Neumann (N) boundary conditions (BCs) at its edges in the perpendicular to the surfaces electric field [Formula: see text] are calculated. For the canonical ensemble, analytical expressions involving theta functions are found for the mean energy and heat capacity [Formula: see text] for the box with no applied voltage. Pronounced maximum accompanied by the adjacent minimum of the specific heat dependence on the temperature T for the pure Neumann QW and their absence for other BCs are predicted and explained by the structure of the corresponding energy spectrum. Applied field leads to the increase of the heat capacity and formation of the new or modification of the existing extrema what is qualitatively described by the influence of the associated electric potential. A remarkable feature of the Fermi grand canonical ensemble is, at any BC combination in zero fields, a salient maximum of [Formula: see text] observed on the T axis for one particle and its absence for any other number N of corpuscles. Qualitative and quantitative explanation of this phenomenon employs the analysis of the chemical potential and its temperature dependence for different N. It is proved that critical temperature [Formula: see text] of the Bose-Einstein (BE) condensation increases with the applied voltage for any number of particles and for any BC permutation except the ND case at small intensities [Formula: see text] what is explained again by the modification by the field of the interrelated energies. It is shown that even for the temperatures smaller than [Formula: see text] the total dipole moment [Formula: see text] may become negative for the quite moderate [Formula: see text]. For either Fermi or BE system, the influence of the electric field on the heat capacity is shown to be suppressed with N growing. Different asymptotic cases of, e.g., the small and

  16. Quantum Social Science

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  17. Quantum Concepts in Physics

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm

    2013-01-01

    Part I. The Discovery of Quanta: 1. Physics and theoretical physics in 1895; 2. Planck and black-body radiation; 3. Einstein and quanta, 1900-1911; Part II. The Old Quantum Theory: 4. The Bohr model of the hydrogen atom; 5. Sommerfield and Ehrenfest - generalising the Bohr model; 6. Einstein coefficients, Bohr's correspondence principle and the first selection rules; 7. Understanding atomic spectra - additional quantum numbers; 8. Bohr's model of the periodic table and the origin of spin; 9. The wave-particle duality; Part III. The Discovery of Quantum Mechanics; 10. The collapse of the old quantum theory and the seeds of its regeneration; 11. The Heisenberg breakthrough; 12. Matrix mechanics; 13. Dirac's quantum mechanics; 14. Schrödinger and wave mechanics; 15. Reconciling matrix and wave mechanics; 16. Spin and quantum statistics; 17. The interpretation of quantum mechanics; 18. The aftermath; 19. Epilogue; Indices.

  18. On ammonia binding to the oxygen-evolving complex of photosystem II: a quantum chemical study.

    PubMed

    Schraut, Johannes; Kaupp, Martin

    2014-06-10

    A recent EPR study (M. Perrez Navarro et al., Proc. Natl. Acad. Sci. 2013, 110, 15561) provided evidence that ammonia binding to the oxygen-evolving complex (OEC) of photosystem II in its S2 state takes place at a terminal-water binding position (W1) on the "dangler" manganese center MnA. This contradicted earlier interpretations of (14)N electron-spin-echo envelope modulation (ESEEM) and extended X-ray absorption fine-structure (EXAFS) data, which were taken to indicate replacement of a bridging oxo ligand by an NH2 unit. Here we have used systematic broken-symmetry density functional theory calculations on large (ca. 200 atom) model clusters of an extensive variety of substitution patterns and core geometries to examine these contradictory pieces of evidence. Computed relative energies clearly favor the terminal substitution pattern over bridging-ligand arrangements (by about 20-30 kcal mol(-1)) and support W1 as the preferred binding site. Computed (14)N EPR nuclear-quadrupole coupling tensors confirm previous assumptions that the appreciable asymmetry may be accounted for by strong, asymmetric hydrogen bonding to the bound terminal NH3 ligand (mainly by Asp61). Indeed, bridging NH2 substitution would lead to exaggerated asymmetries. Although our computed structures confirm that the reported elongation of an Mn-Mn distance by about 0.15 Å inferred from EXAFS experiments may only be reproduced by bridging NH2 substitution, it seems possible that the underlying EXAFS data were skewed by problems due to radiation damage. Overall, the present data clearly support the suggested terminal NH3 coordination at the W1 site. The finding is significant for the proposed mechanistic scenarios of OEC catalysis, as this is not a water substrate site, and effects of this ammonia binding on catalysis thus must be due to more indirect influences on the likely substrate binding site at the O5 bridging-oxygen position.

  19. Quantum computing of semiclassical formulas.

    PubMed

    Georgeot, B; Giraud, O

    2008-04-01

    We show that semiclassical formulas such as the Gutzwiller trace formula can be implemented on a quantum computer more efficiently than on a classical device. We give explicit quantum algorithms which yield quantum observables from classical trajectories, and which alternatively test the semiclassical approximation by computing classical actions from quantum evolution. The gain over classical computation is in general quadratic, and can be larger in some specific cases.

  20. A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II) complex.

    PubMed

    Fu, Xiaomin; Tan, Xingrong; Yuan, Ruo; Chen, Shihong

    2017-04-15

    A novel dual-potential ratiometric electrochemiluminescence (ECL) sensor was designed for detecting dopamine (DA) based on graphene-CdTe quantum dots (G-CdTe QDs) as the cathodic emitter and self-enhanced Ru(II) composite (TAEA-Ru) as the anodic emitter. TAEA-Ru was prepared by linking ruthenium(II) tris(2,2'-bipyridyl-4,4'-dicarboxylato) with tris(2-aminoethyl)amine. Firstly, 3-aminopropyltriethoxysilane founctionalized G-CdTe QDs was used as the substrate for capturing target DA via the specific recognition of the diol of DA to the oxyethyl group of APTES. Then, Cu2O nanocrystals supported TAEA-Ru was further bound by the strong interaction between amino groups of DA and carboxyl groups of the Cu2O-TAEA-Ru. With the increase in DA concentration, the loading of Cu2O-TAEA-Ru at the electrode increased. As a result, the anodic ECL signal from TAEA-Ru increased, and the cathodic ECL signal from G-CdTe QDs/O2 system decreased correspondingly. Such a decrease was resulted from the ECL resonance energy transfer (RET) from G-CdTe QDs to TAEA-Ru as well as the dual quenching effects of Cu2O to G-CdTe QDs, namely the ECL-RET from G-CdTe QDs to Cu2O and the consumption of coreactant O2 by Cu2O. Based on the ratio of two ECL signals, the determination of DA was achieved with a linear range from 10.0 fM to 1.0nM and a detection limit low to 2.9 fM (S/N=3). The combination of G-CdTe QDs/O2 and TAEA-Ru would break the limitation of the same coreatant shared in previous ECL ratiometric systems and provide a potential application of ECL ratiometric sensor in the detection of biological small molecules with the assistance of the dual molecular recognition strategy.