Sample records for ii spin evolution

  1. Radiation reaction for spinning bodies in effective field theory. II. Spin-spin effects

    NASA Astrophysics Data System (ADS)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at quadratic order in the spins to the radiation-reaction acceleration and spin evolution for binary systems, entering at four-and-a-half PN order. Our calculation includes the backreaction from finite-size spin effects, which is presented for the first time. The computation is carried out, from first principles, using the effective field theory framework for spinning extended objects. At this order, nonconservative effects in the spin-spin sector are independent of the spin supplementary conditions. A nontrivial consistency check is performed by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone. We find that, in contrast to the spin-orbit contributions (reported in a companion paper), the radiation reaction affects the evolution of the spin vectors once spin-spin effects are incorporated.

  2. Transverse single spin asymmetry in e +p↑→e +J /ψ +X and Q2 evolution of Sivers function-II

    NASA Astrophysics Data System (ADS)

    Godbole, Rohini M.; Kaushik, Abhiram; Misra, Anuradha; Rawoot, Vaibhav S.

    2015-01-01

    We present estimates of single spin asymmetry in the electroproduction of J /ψ taking into account the transverse momentum-dependent (TMD) evolution of the gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS and eRHIC energies using the color evaporation model of J /ψ . We have calculated the asymmetry using recent parameters extracted by Echevarria et al. using the Collins-Soper-Sterman approach to TMD evolution. These recent TMD evolution fits are based on the evolution kernel in which the perturbative part is resummed up to next-to-leading logarithmic accuracy. We have also estimated the asymmetry by using parameters which had been obtained by a fit by Anselmino et al., using both an exact numerical and an approximate analytical solution of the TMD evolution equations. We find that the variation among the different estimates obtained using TMD evolution is much smaller than between these on one hand and the estimates obtained using DGLAP evolution on the other. Even though the use of TMD evolution causes an overall reduction in asymmetries compared to the ones obtained without it, they remain sizable. Overall, upon use of TMD evolution, predictions for asymmetries stabilize.

  3. Galactic nuclei evolution with spinning black holes: method and implementation

    NASA Astrophysics Data System (ADS)

    Fiacconi, Davide; Sijacki, Debora; Pringle, J. E.

    2018-04-01

    Supermassive black holes at the centre of galactic nuclei mostly grow in mass through gas accretion over cosmic time. This process also modifies the angular momentum (or spin) of black holes, both in magnitude and in orientation. Despite being often neglected in galaxy formation simulations, spin plays a crucial role in modulating accretion power, driving jet feedback, and determining recoil velocity of coalescing black hole binaries. We present a new accretion model for the moving-mesh code AREPO that incorporates (i) mass accretion through a thin α-disc, and (ii) spin evolution through the Bardeen-Petterson effect. We use a diverse suite of idealised simulations to explore the physical connection between spin evolution and larger scale environment. We find that black holes with mass ≲ 107 M⊙ experience quick alignment with the accretion disc. This favours prolonged phases of spin-up, and the spin direction evolves according to the gas inflow on timescales as short as ≲ 100 Myr, which might explain the observed jet direction distribution in Seyfert galaxies. Heavier black holes (≳ 108 M⊙) are instead more sensitive to the local gas kinematic. Here we find a wider distribution in spin magnitudes: spin-ups are favoured if gas inflow maintains a preferential direction, and spin-downs occur for nearly isotropic infall, while the spin direction does not change much over short timescales ˜100 Myr. We therefore conclude that supermassive black holes with masses ≳ 5 × 108 M⊙ may be the ideal testbed to determine the main mode of black hole fuelling over cosmic time.

  4. Spin diffusion and torques in disordered antiferromagnets

    NASA Astrophysics Data System (ADS)

    Manchon, Aurelien

    2017-03-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  5. Non-gravitational force modeling of Comet 81P/Wild 2. II. Rotational evolution

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Pedro J.; Davidsson, Björn J. R.

    2007-11-01

    In this paper, we have studied both the dynamical and the rotational evolution of an 81P/Wild 2-like comet under the effects of the outgassing-induced force and torque. The main aim is to study if it is possible to reproduce the non-gravitational orbital changes observed in this comet, and to establish the likely evolution of both orbital and rotational parameters. To perform this study, a simple thermophysical model has been used to estimate the torque acting on the nucleus. Once the torque is calculated, Euler equations are solved numerically considering a nucleus mass directly estimated from the changes in the orbital elements (as determined from astrometry). According to these simulations, when the water production rate and changes in orbital parameters for 1997, as well as observational rotational parameters for 2004 are imposed as constraints, the change in the orbital period of 81P/Wild 2, ΔP=P˙, will decrease so that P¨=-5 to -1minorbit, which is similar to the actual tendency observed from 1988 up to 1997. This nearly constant decreasing can be explained as due to a slight drift of the spin axis orientation towards larger ecliptic longitudes. After studying the possible spin axis orientations proposed for 1997, simulations suggest that the spin obliquity and argument (I,Φ)=(56°,167°) is the most likely. As for rotational evolution, changes per orbit smaller than 10% of the actual spin velocity are probable, while the most likely value corresponds to a change between 2 and 7% of the spin velocity. Equally, net changes in the spin axis orientation of 4°-8° per orbit are highly expected.

  6. Spinning Gland Transcriptomics from Two Main Clades of Spiders (Order: Araneae) - Insights on Their Molecular, Anatomical and Behavioral Evolution

    PubMed Central

    Prosdocimi, Francisco; Bittencourt, Daniela; da Silva, Felipe Rodrigues; Kirst, Matias; Motta, Paulo C.; Rech, Elibio L.

    2011-01-01

    Characterized by distinctive evolutionary adaptations, spiders provide a comprehensive system for evolutionary and developmental studies of anatomical organs, including silk and venom production. Here we performed cDNA sequencing using massively parallel sequencers (454 GS-FLX Titanium) to generate ∼80,000 reads from the spinning gland of Actinopus spp. (infraorder: Mygalomorphae) and Gasteracantha cancriformis (infraorder: Araneomorphae, Orbiculariae clade). Actinopus spp. retains primitive characteristics on web usage and presents a single undifferentiated spinning gland while the orbiculariae spiders have seven differentiated spinning glands and complex patterns of web usage. MIRA, Celera Assembler and CAP3 software were used to cluster NGS reads for each spider. CAP3 unigenes passed through a pipeline for automatic annotation, classification by biological function, and comparative transcriptomics. Genes related to spider silks were manually curated and analyzed. Although a single spidroin gene family was found in Actinopus spp., a vast repertoire of specialized spider silk proteins was encountered in orbiculariae. Astacin-like metalloproteases (meprin subfamily) were shown to be some of the most sampled unigenes and duplicated gene families in G. cancriformis since its evolutionary split from mygalomorphs. Our results confirm that the evolution of the molecular repertoire of silk proteins was accompanied by the (i) anatomical differentiation of spinning glands and (ii) behavioral complexification in the web usage. Finally, a phylogenetic tree was constructed to cluster most of the known spidroins in gene clades. This is the first large-scale, multi-organism transcriptome for spider spinning glands and a first step into a broad understanding of spider web systems biology and evolution. PMID:21738742

  7. Low-control and robust quantum refrigerator and applications with electronic spins in diamond

    NASA Astrophysics Data System (ADS)

    Mohammady, M. Hamed; Choi, Hyeongrak; Trusheim, Matthew E.; Bayat, Abolfazl; Englund, Dirk; Omar, Yasser

    2018-04-01

    We propose a general protocol for low-control refrigeration and thermometry of thermal qubits, which can be implemented using electronic spins in diamond. The refrigeration is implemented by a probe, consisting of a network of interacting spins. The protocol involves two operations: (i) free evolution of the probe; and (ii) a swap gate between one spin in the probe and the thermal qubit we wish to cool. We show that if the initial state of the probe falls within a suitable range, and the free evolution of the probe is both unital and conserves the excitation in the z direction, then the cooling protocol will always succeed, with an efficiency that depends on the rate of spin dephasing and the swap-gate fidelity. Furthermore, measuring the probe after it has cooled many qubits provides an estimate of their temperature. We provide a specific example where the probe is a Heisenberg spin chain, and suggest a physical implementation using electronic spins in diamond. Here, the probe is constituted of nitrogen vacancy (NV) centers, while the thermal qubits are dark spins. By using a novel pulse sequence, a chain of NV centers can be made to evolve according to a Heisenberg Hamiltonian. This proposal allows for a range of applications, such as NV-based nuclear magnetic resonance of photosensitive molecules kept in a dark spot on a sample, and it opens up possibilities for the study of quantum thermodynamics, environment-assisted sensing, and many-body physics.

  8. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less

  9. Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds

    NASA Astrophysics Data System (ADS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  10. Quantum Dynamics of Solitons in Strongly Interacting Systems on Optical Lattices

    NASA Astrophysics Data System (ADS)

    Rubbo, Chester; Balakrishnan, Radha; Reinhardt, William; Satija, Indubala; Rey, Ana; Manmana, Salvatore

    2012-06-01

    We present results of the quantum dynamics of solitons in XXZ spin-1/2 systems which in general can be derived from a system of spinless fermions or hard-core bosons (HCB) with nearest neighbor interaction on a lattice. A mean-field treatment using spin-coherent states revealed analytic solutions of both bright and dark solitons [1]. We take these solutions and apply a full quantum evolution using the adaptive time-dependent density matrix renormalization group method (adaptive t-DMRG), which takes into account the effect of strong correlations. We use local spin observables, correlations functions, and entanglement entropies as measures for the stability of these soliton solutions over the simulation times. [4pt] [1] R. Balakrishnan, I.I. Satija, and C.W. Clark, Phys. Rev. Lett. 103, 230403 (2009).

  11. Effect of the stellar spin history on the tidal evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.

    2012-08-01

    Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution, it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin-profiles. Nevertheless, some conclusions can still be drawn about statistical distributions of planets around fully convective M-dwarfs. If tidal evolution brings about a merger late in the stellar history, it can also entail a noticeable acceleration of the star at late ages, so that it is possible to have old stars that spin rapidly. This raises the question of how the age of stars can be more tightly constrained.

  12. Generalized approximate spin projection calculations of effective exchange integrals of the CaMn4O5 cluster in the S1 and S3 states of the oxygen evolving complex of photosystem II.

    PubMed

    Isobe, H; Shoji, M; Yamanaka, S; Mino, H; Umena, Y; Kawakami, K; Kamiya, N; Shen, J-R; Yamaguchi, K

    2014-06-28

    Full geometry optimizations followed by the vibrational analysis were performed for eight spin configurations of the CaMn4O4X(H2O)3Y (X = O, OH; Y = H2O, OH) cluster in the S1 and S3 states of the oxygen evolution complex (OEC) of photosystem II (PSII). The energy gaps among these configurations obtained by vertical, adiabatic and adiabatic plus zero-point-energy (ZPE) correction procedures have been used for computation of the effective exchange integrals (J) in the spin Hamiltonian model. The J values are calculated by the (1) analytical method and the (2) generalized approximate spin projection (AP) method that eliminates the spin contamination errors of UB3LYP solutions. Using J values derived from these methods, exact diagonalization of the spin Hamiltonian matrix was carried out, yielding excitation energies and spin densities of the ground and lower-excited states of the cluster. The obtained results for the right (R)- and left (L)-opened structures in the S1 and S3 states are found to be consistent with available optical and magnetic experimental results. Implications of the computational results are discussed in relation to (a) the necessity of the exact diagonalization for computations of reliable energy levels, (b) magneto-structural correlations in the CaMn4O5 cluster of the OEC of PSII, (c) structural symmetry breaking in the S1 and S3 states, and (d) the right- and left-handed scenarios for the O-O bond formation for water oxidation.

  13. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2012-08-28

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.

  14. Neutron polarization analysis study of the frustrated magnetic ground state of β-Mn1-xAlx

    NASA Astrophysics Data System (ADS)

    Stewart, J. R.; Andersen, K. H.; Cywinski, R.

    2008-07-01

    We have performed a neutron polarization analysis study of the short-range nuclear and magnetic correlations present in the dilute alloy, β-Mn1-xAlx with 0.03≤x≤0.16 , in order to study the evolution of the magnetic ground state of this system as it achieves static spin-glass order at concentrations x>0.09 . To this end we have developed a reverse-Monte Carlo algorithm which has enabled us to extract Warren-Cowley nuclear short-range order parameters and magnetic spin correlations. Using conventional neutron powder diffraction, we show that the nonmagnetic Al substituents preferentially occupy the magnetic site II Wyckoff positions in the β-Mn structure—resulting in a reduction of the magnetic topological frustration of the Mn atoms. These Al impurities are found to display strong anticlustering behavior. The magnetic spin correlations are predominantly antiferromagnetic, persisting over a short range which is similar for all the samples studied—above and below the spin-liquid-spin-glass boundary—while the observed static (disordered) moment is shown to increase with increasing Al concentration.

  15. Spin-electron acoustic soliton and exchange interaction in separate spin evolution quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    Separate spin evolution quantum hydrodynamics is generalized to include the Coulomb exchange interaction, which is considered as interaction between the spin-down electrons being in quantum states occupied by one electron. The generalized model is applied to study the non-linear spin-electron acoustic waves. Existence of the spin-electron acoustic soliton is demonstrated. Contributions of concentration, spin polarization, and exchange interaction to the properties of the spin electron acoustic soliton are studied.

  16. Identification of three duplicated Spin genes in medaka (Oryzias latipes).

    PubMed

    Wang, Xiao-Lei; Mei, Jie; Sun, Min; Hong, Yun-Han; Gui, Jian-Fang

    2005-05-09

    Gene and genomic duplications are very important and frequent events in fish evolution, and the divergence of duplicated genes in sequences and functions is a focus of research on gene evolution. Here, we report the identification and characterization of three duplicated Spindlin (Spin) genes from medaka (Oryzias latipes): OlSpinA, OlSpinB, and OlSpinC. Molecular cloning, genomic DNA Blast analysis and phylogenetic relationship analysis demonstrated that the three duplicated OlSpin genes should belong to gene duplication. Furthermore, Western blot analysis revealed significant expression differences of the three OlSpins among different tissues and during embryogenesis in medaka, and suggested that sequence and functional divergence might have occurred in evolution among them.

  17. Spin Evolution of Stellar Progenitors in Compact Binaries

    NASA Astrophysics Data System (ADS)

    Steinle, Nathan; Kesden, Michael

    2018-01-01

    Understanding the effects of various processes on the spins of stellar progenitors in compact binary systems is important for modeling the binary’s evolution and thus for interpreting the gravitational radiation emitted during inspiral and merger. Tides, winds, and natal kicks can drastically modify the binary parameters: tidal interactions increase the spin magnitudes, align the spins with the orbital angular momentum, and circularize the orbit; stellar winds decrease the spin magnitudes and cause mass loss; and natal kicks can misalign the spins and orbital angular momentum or even disrupt the binary. Also, during Roche lobe overflow, the binary may experience either stable mass transfer or common envelope evolution. The former can lead to a mass ratio reversal and alter the component spins, while the latter can dramatically shrink the binary separation. For a wide range of physically reasonable stellar-evolution scenarios, we compare the timescales of these processes to assess their relative contributions in determining the initial spins of compact binary systems.

  18. Dynamical Evolution of Asteroids and Meteoroids Using the Yarkovsky Effect

    NASA Technical Reports Server (NTRS)

    Bottke, William F., Jr.; Vokrouhlicky, David; Rubincam, David P.; Broz, Miroslav; Smith, David E. (Technical Monitor)

    2001-01-01

    The Yarkovsky effect is a thermal radiation force which causes objects to undergo semimajor axis drift and spin up/down as a function of their spin, orbit, and material properties. This mechanism can be used to (i) deliver asteroids (and meteoroids) with diameter D < 20 km from their parent bodies in the main belt to chaotic resonance zones capable of transporting this material to Earth-crossing orbits, (ii) disperse asteroid families, with drifting bodies jumping or becoming trapped in mean-motion and secular resonances within the main belt, and (iii) modify the rotation rates of asteroids a few km in diameter or smaller enough to explain the excessive number of very fast and very slow rotators among the small asteroids. Accordingly, we suggest that nongravitational forces, which produce small but meaningful effects on asteroid orbits and rotation rates over long timescales, should now be considered as important as collisions and gravitational perturbations to our overall understanding of asteroid evolution.

  19. Electron Spin Resonance Studies of Carbonic Anhydrase: Transition Metal Ions and Spin-Labeled Sulfonamides*

    PubMed Central

    Taylor, June S.; Mushak, Paul; Coleman, Joseph E.

    1970-01-01

    Electron spin resonance (esr) spectra of Cu(II) and Co(II) carbonic anhydrase, and a spin-labeled sulfonamide complex of the Zn(II) enzyme, are reported. The coordination geometry of Cu(II) bound in the enzyme appears to have approximately axial symmetry. Esr spectra of enzyme complexes with metal-binding anions also show axial symmetry and greater covalency, in the order ethoxzolamide < SH- < N3- ≤ CN-. Well-resolved superhyperfine structure in the spectrum of the cyanide complex suggests the presence of two, and probably three, equivalent nitrogen ligands from the protein. Esr spectra of the Co(II) enzyme and its complexes show two types of Co(II) environment, one typical of the native enzyme and the 1:1 CN- complex, and one typical of a 2:1 CN- complex. Co(II) in the 2:1 complex appears to be low-spin and probably has a coordination number of 5. Binding of a spin-labeled sulfonamide to the active center immobilizes the free radical. The similarity of the esr spectra of spin-labeled Zn(II) and Co(II) carbonic anhydrases suggests that the conformation at the active center is similar in the two metal derivatives. PMID:4320976

  20. A transverse separate-spin-evolution streaming instability

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Andreev, Pavel A.; Murtaza, G.

    2018-05-01

    By using the separate spin evolution quantum hydrodynamical model, the instability of transverse mode due to electron streaming in a partially spin polarized magnetized degenerate plasma is studied. The electron spin polarization gives birth to a new spin-dependent wave (i.e., separate spin evolution streaming driven ordinary wave) in the real wave spectrum. It is shown that the spin polarization and streaming speed significantly affect the frequency of this new mode. Analyzing growth rate, it is found that the electron spin effects reduce the growth rate and shift the threshold of instability as well as its termination point towards higher values. Additionally, how the other parameters like electron streaming and Fermi pressure influence the growth rate is also investigated. Current study can help towards better understanding of the existence of new waves and streaming instability in the astrophysical plasmas.

  1. Manifestations of classical physics in the quantum evolution of correlated spin states in pulsed NMR experiments.

    PubMed

    Ligare, Martin

    2016-05-01

    Multiple-pulse NMR experiments are a powerful tool for the investigation of molecules with coupled nuclear spins. The product operator formalism provides a way to understand the quantum evolution of an ensemble of weakly coupled spins in such experiments using some of the more intuitive concepts of classical physics and semi-classical vector representations. In this paper I present a new way in which to interpret the quantum evolution of an ensemble of spins. I recast the quantum problem in terms of mixtures of pure states of two spins whose expectation values evolve identically to those of classical moments. Pictorial representations of these classically evolving states provide a way to calculate the time evolution of ensembles of weakly coupled spins without the full machinery of quantum mechanics, offering insight to anyone who understands precession of magnetic moments in magnetic fields.

  2. The Influence of the Orbital Evolution of Main Belt Asteroids on Their Spin Vectors

    NASA Astrophysics Data System (ADS)

    Skoglöv, E.; Erikson, A.

    2002-11-01

    It was found that certain features in the observed spin vector distribution of main belt asteroids can be explained by the differences in the dynamical spin vector evolution between objects with high and low orbital inclinations. In particular, the deficiency of high-inclination objects whose spin vectors are close to the ecliptic plane can be accounted for. The present spin vector distribution of main belt asteroids is due to several factors connected with their collisional and dynamical evolution. In this paper, the influence of the orbital evolution on the spin axis of asteroids is examined in the case of 25 objects with typical main belt orbital evolution and 125 synthetic objects, during an integration over a time period of 1 Myr. This investigation produced the following general results: • The difference between maximum and minimum obliquity increases in an approximately linear fashion with increasing orbital inclination of the studied objects. • The inclination is the major factor influencing the magnitude of the obliquity variation. This variation is generally larger for asteroids with their initial spin vectors located close to the orbital plane. • In general, the regular obliquity differences are relatively insensitive to differences in the shape, composition, and spin rate of the asteroids. The result is compared with the properties of the observed spin vectors for 73 main belt asteroids and good agreement is found between the above results and the existing spin vector distribution.

  3. Spin crossover behaviour in Hofmann-like coordination polymer Fe(py)2[Pd(CN)4] with 57Fe Mössbauer spectra

    NASA Astrophysics Data System (ADS)

    Kitazawa, Takafumi; Kishida, Takanori; Kawasaki, Takeshi; Takahashi, Masashi

    2017-11-01

    We have prepared the 2D spin crossover complexes Fe(L)2Pd(CN)4 (L = py : 1a; py-D5 : 1b and py-15N : 1c). 1a has been characterised by 57Fe Mossbauer spectroscopic measurements, single crystal X-ray determination and SQUID measurements. The Mössbauer spectra for 1a indicate that the iron(II) spin states are in high spin states at 298 K and are in low spin states at 77 K. The crystal structures of 1a at 298 K and 90 K also show the high spin state and the low spin state respectively, associated with the Fe(II)-N distances. The spin transition temperature range of 1a is higher than that of Fe(py)2Ni(CN)4 since Pd(II) ions are larger and heavier than Ni(II) ions. SQUID data indicate isotope effects among 1a, 1b and 1c are observed in very small shifts of the transition temperatures probably due to larger and heavier Pd(II) ions. The delicate shifts would be associated with subtle balances between different vibrations around Fe(II) atoms and electronic factors.

  4. Redox switch-off of the ferromagnetic coupling in a mixed-spin tricobalt(II) triple mesocate.

    PubMed

    Dul, Marie-Claire; Pardo, Emilio; Lescouëzec, Rodrigue; Chamoreau, Lise-Marie; Villain, Françoise; Journaux, Yves; Ruiz-García, Rafael; Cano, Joan; Julve, Miguel; Lloret, Francesc; Pasán, Jorge; Ruiz-Pérez, Catalina

    2009-10-21

    A prelude to redox-based, ferromagnetic "metal-organic switches" is exemplified by a new trinuclear oxalamide cobalt triple mesocate that presents two redox states (ON and OFF) with dramatically different magnetic properties; the two terminal high-spin d(7) Co(II) ions (S = (3)/(2)) that are ferromagnetically coupled in the homovalent tricobalt(II) reduced state (2) become uncoupled in the heterovalent tricobalt(II,III,II) oxidized state (2(ox)) upon one-electron oxidation of the central low-spin d(7) Co(II) ion (S = (1)/(2)) to a low-spin d(6) Co(III) ion (S = 0).

  5. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  6. Spin polarization effects and their time evolutions

    NASA Astrophysics Data System (ADS)

    Vernes, A.; Weinberger, P.

    2015-04-01

    The time evolution of the density corresponding to the polarization operator, originally constructed to commute with the Dirac Hamiltonian in the absence of an external electromagnetic field, is investigated in terms of the time-dependent Dirac equation taking the presence of an external electromagnetic field into account. It is found that this time evolution leads to 'tensorial' and 'vectorial' particle current densities and to the interaction of the spin density with the external electromagnetic field. As the time evolution of the spin density does not refer to a constant of motion (continuity condition) it only serves as auxiliary density. By taking the non-relativistic limit, it is shown that the polarization, spin and magnetization densities are independent of electric field effects and, in addition, no preferred directions can be defined.

  7. Understanding asteroid collisional history through experimental and numerical studies

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Ryan, Eileen V.; Weidenschilling, S. J.

    1991-01-01

    Asteroids can lose angular momentum due to so called splash effect, the analog to the drain effect for cratering impacts. Numerical code with the splash effect incorporated was applied to study the simultaneous evolution of asteroid sized and spins. Results are presented on the spin changes of asteroids due to various physical effects that are incorporated in the described model. The goal was to understand the interplay between the evolution of sizes and spins over a wide and plausible range of model parameters. A single starting population was used both for size distribution and the spin distribution of asteroids and the changes in the spins were calculated over solar system history for different model parameters. It is shown that there is a strong coupling between the size and spin evolution, that the observed relative spindown of asteroids approximately 100 km diameter is likely to be the result of the angular momentum splash effect.

  8. Understanding asteroid collisional history through experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Davis, Donald R.; Ryan, Eileen V.; Weidenschilling, S. J.

    1991-06-01

    Asteroids can lose angular momentum due to so called splash effect, the analog to the drain effect for cratering impacts. Numerical code with the splash effect incorporated was applied to study the simultaneous evolution of asteroid sized and spins. Results are presented on the spin changes of asteroids due to various physical effects that are incorporated in the described model. The goal was to understand the interplay between the evolution of sizes and spins over a wide and plausible range of model parameters. A single starting population was used both for size distribution and the spin distribution of asteroids and the changes in the spins were calculated over solar system history for different model parameters. It is shown that there is a strong coupling between the size and spin evolution, that the observed relative spindown of asteroids approximately 100 km diameter is likely to be the result of the angular momentum splash effect.

  9. Temporal evolution of the spin-wave intensity and phase in a local parametric amplifier

    NASA Astrophysics Data System (ADS)

    Brächer, T.; Heussner, F.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Hillebrands, B.; Pirro, P.

    2018-03-01

    We present a time-resolved study of the evolution of the spin-wave intensity and phase in a local parametric spin-wave amplifier at pumping powers close to the threshold of parametric generation. We show that the phase of the amplified spin waves is determined by the phase of the incoming signal-carrying spin waves and that it can be preserved on long time scales as long as the energy input by the input spin waves is provided. In contrast, the phase-information is lost in such a local spin-wave amplifier as soon as the input spin-wave is switched off. These findings are an important benchmark for the use of parametric amplifiers in logic circuits relying on the spin-wave phase as information carrier.

  10. Exploring Photoinduced Excited State Evolution in Heterobimetallic Ru(II)-Co(III) Complexes.

    PubMed

    Kuhar, Korina; Fredin, Lisa A; Persson, Petter

    2015-06-18

    Quantum chemical calculations provide detailed theoretical information concerning key aspects of photoinduced electron and excitation transfer processes in supramolecular donor-acceptor systems, which are particularly relevant to fundamental charge separation in emerging molecular approaches for solar energy conversion. Here we use density functional theory (DFT) calculations to explore the excited state landscape of heterobimetallic Ru-Co systems with varying degrees of interaction between the two metal centers, unbound, weakly bound, and tightly bound systems. The interplay between structural and electronic factors involved in various excited state relaxation processes is examined through full optimizations of multiple charge/spin states of each of the investigated systems. Low-energy relaxed heterobimetallic states of energy transfer and excitation transfer character are characterized in terms of energy, structure, and electronic properties. These findings support the notion of efficient photoinduced charge separation from a Ru(II)-Co(III) ground state, via initial optical excitation of the Ru-center, to low-energy Ru(III)-Co(II) states. The strongly coupled system has significant involvement of the conjugated bridge, qualitatively distinguishing it from the other two weakly coupled systems. Finally, by constructing potential energy surfaces for the three systems where all charge/spin state combinations are projected onto relevant reaction coordinates, excited state decay pathways are explored.

  11. Extraordinary SEAWs under influence of the spin-spin interaction and the quantum Bohm potential

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2018-06-01

    The separate spin evolution (SSE) of electrons causes the existence of the spin-electron acoustic wave. Extraordinary spin-electron acoustic waves (SEAWs) propagating perpendicular to the external magnetic field have a large contribution of the transverse electric field. Its spectrum has been studied in the quasi-classical limit at the consideration of the separate spin evolution. The spin-spin interaction and the quantum Bohm potential give contribution in the spectrum extraordinary SEAWs. This contribution is studied in this paper. Moreover, it is demonstrated that the spin-spin interaction leads to the existence of the extraordinary SEAWs if the SSE is neglected. It has been found that the SSE causes the instability of the extraordinary SEAW at the large wavelengths, but the quantum Bohm potential leads to the full stabilization of the spectrum.

  12. Collins-Soper equation for the energy evolution of transverse-momentum and spin dependent parton distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idilbi, Ahmad; Ji Xiangdong; Yuan Feng

    The hadron-energy evolution (Collins and Soper) equation for all the leading-twist transverse-momentum and spin dependent parton distributions is derived in the impact parameter space. Based on this equation, we present a resummation formulas for the spin dependent structure functions of the semi-inclusive deep-inelastic scattering.

  13. The aluminum ordering in aluminosilicates: a dipolar 27Al NMR spectroscopy study.

    PubMed

    Gee, Becky A

    2004-01-01

    The spatial ordering of aluminum atoms in CsAl(SiO3)2 and 3Al2O3.2SiO2 was probed by 27Al dipolar solid-state NMR spectroscopy. The 27Al response to a Hahn spin-echo pulse sequence in a series of aluminum-containing model crystalline compounds demonstrates that quantitative 27Al homonuclear dipolar second moments can be obtained to within +/-20% of the theoretical values, if evaluation of the spin-echo response curve is limited to short evolution periods (2t1 < or = 0.10 ms). Additionally, selective excitation of the central transition m = 1/2 --> -1/2 is necessary in order to ensure quantitative results. Restriction of spin exchange affecting the dephasing of the magnetization may decelerate the spin-echo decay at longer evolution periods. Considering these restraints, the method was used to probe the spatial distribution of aluminum atoms among the tetrahedral sites in two aluminosilicate materials. Experimental 27Al spin-echo response data for the aluminosilicates CsAl(SiO3)2 (synthetic pollucite) and 3Al2O3.2SiO2 (mullite) are compared with theoretical data based on (I) various degrees of aluminum-oxygen-aluminum bond formation among tetrahedrally coordinated aluminum atoms (Al(T(d) )-O-Al(T(d) )) and (II) the maximum avoidance of Al(T(d) )-O-Al(T(d) ) bonding. Analysis of the second moment values and resulting echo decay responses suggests that partial suppression of spin exchange among aluminum atoms in crystallographically distinct sites may contribute to the 27Al spin echo decay in 3Al2O3.2SiO2, thus complicating quantitative analysis of the data. Silicon-29 and aluminum-27 magic angle spinning (MAS) NMR spectra of 3Al2O3.2SiO2 are consistent with those previously reported. The experimental 27Al spin-echo response behavior of CsAl(SiO3)2 differs from the theoretical response behavior based on the maximum avoidance of Al-O-Al bonding between tetrahedral aluminum sites in CsAl(SiO3)2. A single unresolved resonance is observed in both the silicon-29 and aluminum-27 MAS spectra of CsAl(SiO3)2. Copyright 2003 John Wiley & Sons, Ltd.

  14. J-GFT NMR for precise measurement of mutually correlated nuclear spin-spin couplings.

    PubMed

    Atreya, Hanudatta S; Garcia, Erwin; Shen, Yang; Szyperski, Thomas

    2007-01-24

    G-matrix Fourier transform (GFT) NMR spectroscopy is presented for accurate and precise measurement of chemical shifts and nuclear spin-spin couplings correlated according to spin system. The new approach, named "J-GFT NMR", is based on a largely extended GFT NMR formalism and promises to have a broad impact on projection NMR spectroscopy. Specifically, constant-time J-GFT (6,2)D (HA-CA-CO)-N-HN was implemented for simultaneous measurement of five mutually correlated NMR parameters, that is, 15N backbone chemical shifts and the four one-bond spin-spin couplings 13Calpha-1Halpha, 13Calpha-13C', 15N-13C', and 15N-1HNu. The experiment was applied for measuring residual dipolar couplings (RDCs) in an 8 kDa protein Z-domain aligned with Pf1 phages. Comparison with RDC values extracted from conventional NMR experiments reveals that RDCs are measured with high precision and accuracy, which is attributable to the facts that (i) the use of constant time evolution ensures that signals do not broaden whenever multiple RDCs are jointly measured in a single dimension and (ii) RDCs are multiply encoded in the multiplets arising from the joint sampling. This corresponds to measuring the couplings multiple times in a statistically independent manner. A key feature of J-GFT NMR, i.e., the correlation of couplings according to spin systems without reference to sequential resonance assignments, promises to be particularly valuable for rapid identification of backbone conformation and classification of protein fold families on the basis of statistical analysis of dipolar couplings.

  15. Structure of MQ-NMR spin spaces under higher Sn- and ( Sn)↓ G symmetries. II. Γ/ overlineΓ ( S6)↓ O subduced irreps for sixfold spin clusters pertaining to the molecular cage ion, [ 11BH] 62-

    NASA Astrophysics Data System (ADS)

    Colpa, J. P.; Temme, F. P.

    1991-06-01

    The structures of higher n-fold spin cluster systems as irreps under the S6/( S6)↓ O groups are derived using combinatorial techniques over permutational fields, namely that of generalized wordlengths (GWL), to generate the invariance and irrep sets over the M ( q) subspaces for the [ A] 6( Ii) clusters, i.e. those derived from sets of identical nuclear spins I i whose magnitude lies between 1/2 ⩽ I i ⩽ 3/2. The partitions and invariance properties of such monoclusters provide the background to an investigation of the structure of bicluster spin problems over both Hilbert and Liouville spaces. Hence, the [λ], [ overlineλ] ( Sn) partitional aspects of the NMR of the borohydride molecular cage-ion, [ 11BH] 62-, arise from the form of GWLs for specific primes ( p) (i.e. in Sn theory sense of an index denoting the number of subfields) and the use of invariance hierarchies under the direct product group of the subduced spin symmetries. Such ( Sn)↓ G spin symmetries have been presented in discussions of the symmetry of many-electron spin systems, e.g. as outlined in the seminal work of Kaplan (1975). Attention is drawn to the role of Sn-inner tensor products and Cayley algebra in explicitly resolving certain problems connected with the non-simple reducibility pertaining to ( M1- M n ( S6) fields once p exceeds 2 (i.e. for clusters of identical higher spins). By partitioning Liouville space derived from the density operator σ(SO (3) × S6) and its analogues under subduced spin symmetries this paper extends both the formalism and practical application of various recent multiquantum techniques to experimental NMR. The present semitheoretical "tool" to factor << kqv | CL(SO (3) × [ overline6]) | k' q' v'>> and matrix representation of the Liouville operator for the subduced direct product symmetry of the total bicluster problem emphasizes Pines' 1988 argument [in Proc. C-th E. Fermi Physics Institute] that sets of selective subproblems exist which are ameniable to analysis of their information content without the need to treat the full problem; he focusses on selective q processes from an experimental viewpoint whereas we emphasize all q, [λ] forms of factoring in the analysis of spin evolution. Finally, we stress the primary theoretical importance of scalar invariants in few- and many-body spin problems in the context of SU2 × Sn dual mappings and associated genealogies.

  16. Cyanide-bridged decanuclear cobalt-iron cage.

    PubMed

    Shiga, Takuya; Tetsuka, Tamaki; Sakai, Kanae; Sekine, Yoshihiro; Nihei, Masayuki; Newton, Graham N; Oshio, Hiroki

    2014-06-16

    A cyanide-bridged decanuclear [Co6Fe4] cluster was synthesized by a one-pot reaction, and the magnetic properties and electronic configuration were investigated. The complex displayed thermally controlled electron-transfer-coupled spin transition (ETCST) behavior between Co(III) low-spin-NC-Fe(II) low-spin and Co(II) high-spin-NC-Fe(III) low-spin states, as confirmed by single-crystal X-ray, magnetic, and Mössbauer analyses.

  17. Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong

    2010-07-01

    This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.

  18. Radiation reaction for spinning bodies in effective field theory. I. Spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at linear order in the spin to the radiation-reaction acceleration and spin evolution for binary systems, which enter at fourth PN order. The calculation is carried out, from first principles, using the effective field theory framework for spinning compact objects, in both the Newton-Wigner and covariant spin supplementary conditions. A nontrivial consistency check is performed on our results by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone, up to so-called "Schott terms." We also find that, at this order, the radiation reaction has no net effect on the evolution of the spins. The spin-spin contributions to radiation reaction are reported in a companion paper.

  19. Mapping of spin wave propagation in a one-dimensional magnonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordóñez-Romero, César L., E-mail: cloro@fisica.unam.mx; Lazcano-Ortiz, Zorayda; Aguilar-Huerta, Melisa

    2016-07-28

    The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show thatmore » the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch′s theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.« less

  20. Self-Organized Critical Behavior:. the Evolution of Frozen Spin Networks Model in Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Zhen; Zhu, Jian-Yang

    In quantum gravity, we study the evolution of a two-dimensional planar open frozen spin network, in which the color (i.e. the twice spin of an edge) labeling edge changes but the underlying graph remains fixed. The mainly considered evolution rule, the random edge model, is depending on choosing an edge randomly and changing the color of it by an even integer. Since the change of color generally violate the gauge invariance conditions imposed on the system, detailed propagation rule is needed and it can be defined in many ways. Here, we provided one new propagation rule, in which the involved even integer is not a constant one as in previous works, but changeable with certain probability. In random edge model, we do find the evolution of the system under the propagation rule exhibits power-law behavior, which is suggestive of the self-organized criticality (SOC), and it is the first time to verify the SOC behavior in such evolution model for the frozen spin network. Furthermore, the increase of the average color of the spin network in time can show the nature of inflation for the universe.

  1. Investigation of Kibble-Zurek Quench Dynamics in a Spin-1 Ferromagnetic BEC

    NASA Astrophysics Data System (ADS)

    Anquez, Martin; Robbins, Bryce; Hoang, Thai; Yang, Xiaoyun; Land, Benjamin; Hamley, Christopher; Chapman, Michael

    2014-05-01

    We study the temporal evolution of spin populations in small spin-1 87Rb condensates following a slow quench. A ferromagnetic spin-1 BEC exhibits a second-order gapless (quantum) phase transition due to a competition between the magnetic and collisional spin interaction energies. The dynamics of slow quenches through the critical point are predicted to exhibit universal power-law scaling as a function of quench speed. In spatially extended condensates, these excitations are revealed as spatial spin domains. In small condensates, the excitations are manifest in the temporal evolution of the spin populations, illustrating a Kibble-Zurek type scaling. We will present the results of our investigation and compare them to full quantum simulations of the system.

  2. New Methods of Simulation of Mn(II) EPR Spectra: Single Crystals, Polycrystalline and Amorphous (Biological) Materials

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.

    Biological systems exhibit properties of amorphous materials. The Mn(II) ion in amorphous materials is characterized by distributions of spin-Hamiltonian parameters around mean values. It has a certain advantage over other ions, being one of the most abundant elements on the earth. The extent to which living organisms utilize manganese varies from one organism to the other. There is a fairly high concentration of the Mn(II) ion in green plants, which use it in the O2 evolution reaction of photosynthesis (Sauer, 1980). Structure-reactivity relationships in Mn(II)-O2 complexes are given in a review article by Coleman and Taylor (1980). Manganese is a trace requirement in animal nutrition; highly elevated levels of manganese in the diet can be toxic, probably because of an interference with iron homeostasis (Underwood, 1971). On the other hand, animals raised with a dietary deficiency of manganese exhibit severe abnormalities in connective tissue; these problems have been attributed to the obligatory role of Mn(II) in mucopolysaccharide metabolism (Leach, 1971). Mn(II) has been detected unequivocally in living organisms.

  3. Environment overwhelms both nature and nurture in a model spin glass

    NASA Astrophysics Data System (ADS)

    Middleton, A. Alan; Yang, Jie

    We are interested in exploring what information determines the particular history of the glassy long term dynamics in a disordered material. We study the effect of initial configurations and the realization of stochastic dynamics on the long time evolution of configurations in a two-dimensional Ising spin glass model. The evolution of nearest neighbor correlations is computed using patchwork dynamics, a coarse-grained numerical heuristic for temporal evolution. The dependence of the nearest neighbor spin correlations at long time on both initial spin configurations and noise histories are studied through cross-correlations of long-time configurations and the spin correlations are found to be independent of both. We investigate how effectively rigid bond clusters coarsen. Scaling laws are used to study the convergence of configurations and the distribution of sizes of nearly rigid clusters. The implications of the computational results on simulations and phenomenological models of spin glasses are discussed. We acknowledge NSF support under DMR-1410937 (CMMT program).

  4. Early-type Galaxy Spin Evolution in the Horizon-AGN Simulation

    NASA Astrophysics Data System (ADS)

    Choi, Hoseung; Yi, Sukyoung K.; Dubois, Yohan; Kimm, Taysun; Devriendt, Julien. E. G.; Pichon, Christophe

    2018-04-01

    Using the Horizon-AGN simulation data, we study the relative role of mergers and environmental effects in shaping the spin of early-type galaxies (ETGs) after z ≃ 1. We follow the spin evolution of 10,037 color-selected ETGs more massive than {10}10 {M}ȯ that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals (5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, f SR, and the mean spin of massive ETGs. Although we do not find a clear environmental dependence of f SR, a weak trend is seen in the mean value of the spin parameter driven by the satellite ETGs as they gradually lose their spin as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of the central ETGs of halos with {M}vir}> {10}12.5 {M}ȯ , but only 22% of satellite and field ETGs. We find that non-merger-induced tidal perturbations better correlate with the galaxy spin down in satellite ETGs than in mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local (z < 1) universe.

  5. An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior.

    PubMed

    Struch, Niklas; Bannwarth, Christoph; Ronson, Tanya K; Lorenz, Yvonne; Mienert, Bernd; Wagner, Norbert; Engeser, Marianne; Bill, Eckhard; Puttreddy, Rakesh; Rissanen, Kari; Beck, Johannes; Grimme, Stefan; Nitschke, Jonathan R; Lützen, Arne

    2017-04-24

    By employing the subcomponent self-assembly approach utilizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin or its zinc(II) complex, 1H-4-imidazolecarbaldehyde, and either zinc(II) or iron(II) salts, we were able to prepare O-symmetric cages having a confined volume of ca. 1300 Å 3 . The use of iron(II) salts yielded coordination cages in the high-spin state at room temperature, manifesting spin-crossover in solution at low temperatures, whereas corresponding zinc(II) salts led to the corresponding diamagnetic analogues. The new cages were characterized by synchrotron X-ray crystallography, high-resolution mass spectrometry, and NMR, Mössbauer, IR, and UV/Vis spectroscopy. The cage structures and UV/Vis spectra were independently confirmed by state-of-the-art DFT calculations. A remarkably high-spin-stabilizing effect through encapsulation of C 70 was observed. The spin-transition temperature T 1/2 is lowered by 20 K in the host-guest complex. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Halogen Substitution Effects on N2 O Schiff Base Ligands in Unprecedented Abrupt FeII Spin Crossover Complexes.

    PubMed

    Phonsri, Wasinee; Macedo, David S; Vignesh, Kuduva R; Rajaraman, Gopalan; Davies, Casey G; Jameson, Guy N L; Moubaraki, Boujemaa; Ward, Jas S; Kruger, Paul E; Chastanet, Guillaume; Murray, Keith S

    2017-05-23

    A family of halogen-substituted Schiff base iron(II) complexes, [Fe II (qsal-X) 2 ], (qsal-X=5-X-N-(8-quinolyl)salicylaldimines)) in which X=F (1), Cl (2), Br (3) or I (4) has been investigated in detail. Compound 1 shows a temperature invariant high spin state, whereas the others all show abrupt spin transitions, at or above room temperature, namely, 295 K (X=I) up to 342 K (X=Br), these being some of the highest T 1/2 values obtained, to date, for Fe II N/O species. We have recently reported subtle symmetry breaking in [Fe II (qsal-Cl) 2 ] 2 with two spin transition steps occurring at 308 and 316 K. A photomagnetic study reveals almost full HS conversion of [Fe II (qsal-I) 2 ] 4 at low temperature (T(LIESST)=54 °K). The halogen substitution effects on the magnetic properties, as well as the crystal packing of the [Fe II (qsal-X) 2 ] compounds and theoretical calculations, are discussed in depth, giving important knowledge for the design of new spin crossover materials. In comparison to the well known iron(III) analogues, [Fe III (qsal-X) 2 ] + , the two extra π-π and P4AE interactions found in [Fe II (qsal-X) 2 ] compounds, are believed to be accountable for the spin transitions occurring at ambient temperatures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Brad M. S., E-mail: hansen@astro.ucla.edu

    2012-09-20

    We present a new empirical calibration of equilibrium tidal theory for extrasolar planet systems, extending a prior study by incorporating detailed physical models for the internal structure of planets and host stars. The resulting strength of the stellar tide produces a coupling that is strong enough to reorient the spins of some host stars without causing catastrophic orbital evolution, thereby potentially explaining the observed trend in alignment between stellar spin and planetary orbital angular momentum. By isolating the sample whose spins should not have been altered in this model, we also show evidence for two different processes that contribute tomore » the population of planets with short orbital periods. We apply our results to estimate the remaining lifetimes for short-period planets, examine the survival of planets around evolving stars, and determine the limits for circularization of planets with highly eccentric orbits. Our analysis suggests that the survival of circularized planets is strongly affected by the amount of heat dissipated, which is often large enough to lead to runaway orbital inflation and Roche lobe overflow.« less

  8. Roles of NN-interaction components in shell-structure evolution

    NASA Astrophysics Data System (ADS)

    Umeya, Atsushi; Muto, Kazuo

    2016-11-01

    Since the importance of the monopole interaction was first emphasized in 1960s, roles of monopole strengths of two-body nucleon-nucleon interaction in shell structure have been discussed. Through the monopole strengths, we study the roles in shell-structure evolution, starting from explicit forms of the interaction. For the tensor component of the interaction, we show the derivation of the relation, (2j> + 1)Vjj> + (2j< + 1)Vjj< = 0, with a detailed manipulation. We show that one-body spin-orbit term appears in the multipole expansion of two-body spin-orbit interaction. Only the spin-orbit components can affect the spin-orbit energy splitting between spin-orbit partners, when the spin-orbit partner orbits are fully occupied.

  9. pH Dependent Spin State Population and 19F NMR Chemical Shift via Remote Ligand Protonation in an Iron(II) Complex (Postprint)

    DTIC Science & Technology

    2017-12-11

    AFRL-RX-WP-JA-2017-0501 pH- DEPENDENT SPIN STATE POPULATION AND 19F NMR CHEMICAL SHIFT VIA REMOTE LIGAND PROTONATION IN AN IRON(II...From - To) 16 November 2017 Interim 24 January 2014 – 16 October 2017 4. TITLE AND SUBTITLE PH- DEPENDENT SPIN STATE POPULATION AND 19F NMR CHEMICAL...dx.doi.org/10.1039/C7CC08099A 14. ABSTRACT (Maximum 200 words) An FeII complex that features a pH- dependent spin state population, by virtue of a

  10. Pulsed Thermal Emission from the Accreting Pulsar XMMU J054134.7-682550

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonis; Walter, Roland; Audard, Marc; Lanz, Thierry

    2009-05-01

    XMMU J054134.7-682550, located in the LMC, featured a type II outburst in August 2007. We analyzed XMM-Newton (EPIC-MOS) and RXTE (PCA) data in order to derive the spectral and temporal characteristics of the system throughout the outburst. Spectral variability, spin period evolution, energy dependent pulse shape are discussed. The outburst (LX~3×1038 erg/s~LEDD) spectrum can be modeled using, cutoff power law, soft X-ray blackbody, disk emission, and cyclotron absorption line. The blackbody component shows a sinusoidal behavior, expected from hard X-ray reprocessing on the inner edge of the accretion disk. The thickness of the inner accretion disk (width of ~75 km) can be constrained. The spin-up of the pulsar during the outburst is the signature of a (huge) accretion rate. Simbol-X will provide similar capabilities as XMM-Newton and RXTE together, for such bright events.

  11. Coherent spin-exchange via a quantum mediator.

    PubMed

    Baart, Timothy Alexander; Fujita, Takafumi; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven Mark Koenraad

    2017-01-01

    Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.

  12. Temperature dependence of pure spin current and spin-mixing conductance in the ferromagnetic—normal metal structure

    NASA Astrophysics Data System (ADS)

    Atsarkin, V. A.; Borisenko, I. V.; Demidov, V. V.; Shaikhulov, T. A.

    2018-06-01

    Temperature evolution of pure spin current has been studied in an epitaxial thin-film bilayer La2/3Sr1/3MnO3/Pt deposited on a NdGaO3 substrate. The spin current was generated by microwave pumping under conditions of ferromagnetic resonance in the ferromagnetic La2/3Sr1/3MnO3 layer and detected in the Pt layer due to the inverse spin Hall effect. A considerable increase in the spin current magnitude has been observed upon cooling from the Curie point (350 K) down to 100 K. Using the obtained data, the temperature evolution of the mixed spin conductance g mix (T) has been extracted. It was found that the g mix (T) dependence correlates with magnetization in a thin area adjacent to the ferromagnetic-normal metal interface.

  13. Dynamical Asteroseismology: towards improving the theories of stellar structure and (tidal) evolution

    NASA Astrophysics Data System (ADS)

    Tkachenko, Andrew

    2017-10-01

    The potential of the dynamical asteroseismology, the research area that builds upon the synergies between the asteroseismology and binary stars research fields, is discussed in this manuscript. We touch upon the following topics: i) the mass discrepancy observed in intermediate-to high-mass main-sequence and evolved binaries as well as in the low mass systems that are still in the pre-main sequence phase of their evolution; ii) the rotationally induced mixing in high-mass stars, in particular how the most recent theoretical predictions and spectroscopic findings compare to the results of asteroseismic investigations; iii) internal gravity waves and their potential role in the evolution of binary star systems and surface nitrogen enrichment in high-mass stars; iv) the tidal evolution theory, in particular how its predictions of spin-orbit synchronisation and orbital circularisation compare to the present-day high-quality observations; v) the tidally-induced pulsations and their role in the angular momentum transport within binary star systems; vi) the scaling relations between fundamental and seismic properties of stars across the entire HR-diagram.

  14. Spin period evolution of the newly identified ULX pulsar (NGC 300 ULX1) associated with the supernova impostor SN2010da

    NASA Astrophysics Data System (ADS)

    Vasilopoulos, G.; Haberl, F.; Carpano, S.; Maitra, C.

    2018-01-01

    Following the discovery of the newly discovered ULX pulsar in NGC 300 (ATel #11158) we searched the available X-ray data for the evolution of the spin period of the neutron star and the X-ray luminosity.

  15. A reevaluation of the proposed spin-down of the white dwarf pulsar in AR Scorpii.

    NASA Astrophysics Data System (ADS)

    Potter, Stephen B.; Buckley, David A. H.

    2018-05-01

    We present high-speed optical photometric observations, spanning ˜2 years, of the recently-discovered white dwarf pulsar AR Scorpii. The amplitudes of the orbital, spin and beat modulations appear to be remarkably stable and repeatable over the time span of our observations. It has been suggested that the polarized and non-polarized emission from AR Scorpii is powered by the spin-down of the white dwarf. However, we find that our new data is inconsistent with the published spin-down ephemeris. Whilst our data is consistent with a constant spin period further observations over an extended time-base are required in order to ascertain the true spin-evolution of the white dwarf. This may have implications for the various models put forward to explain the energetics and evolution of AR Scorpii.

  16. Spectrum, symmetries, and dynamics of Heisenberg spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Joel, Kira; Kollmar, Davida; Santos, Lea

    2013-03-01

    Quantum spin chains are prototype quantum many-body systems. They are employed in the description of various complex physical phenomena. Here we provide an introduction to the subject by focusing on the time evolution of Heisenberg spin-1/2 chains with couplings between nearest-neighbor sites only. We study how the anisotropy parameter and the symmetries of the model affect its time evolution. Our predictions are based on the analysis of the eigenvalues and eigenstates of the system and then confirmed with actual numerical results.

  17. Investigations of quantum pendulum dynamics in a spin-1 BEC

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael

    2013-05-01

    We investigate the quantum spin dynamics of a spin-1 BEC initialized to an unstable critical point of the dynamical phase space. The subsequent evolution of the collective states of the system is analogous to an inverted simple pendulum in the quantum limit and yields non-classical states with quantum correlations. For short evolution times in the low depletion limit, we observe squeezed states and for longer times beyond the low depletion limit we observe highly non-Gaussian distributions. C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Bookjans, and M.S. Chapman, ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).

  18. Pressure-induced cooperative spin transition in ironII 2D coordination polymers: room-temperature visible spectroscopic study.

    PubMed

    Levchenko, G; Bukin, G V; Terekhov, S A; Gaspar, A B; Martínez, V; Muñoz, M C; Real, J A

    2011-06-30

    For the 2D coordination polymers [Fe(3-Fpy)(2)M(II)(CN)(4)] (M(II) = Ni, Pd, Pt), the pressure-induced spin crossover behavior has been investigated at 298 K by monitoring the distinct optical properties associated with each spin state. Cooperative first-order spin transition characterized by a piezohysteresis loop ca. 0.1 GPa wide was observed for the three derivatives. Application of the mean field regular solution theory has enabled estimation of the cooperative parameter, Γ(p), and the enthalpy, ΔH(HL)(p), associated with the spin transition for each derivative. These values, found in the intervals 6.8-7.9 and 18.6-20.8 kJ mol(-1), respectively, are consistent with those previously reported for thermally induced spin transition at constant pressure for the title compounds (Chem.-Eur. J.2009, 15, 10960). Relevance of the elastic energy, Δ(elast), as a corrective parameter accounting for the pressure dependence of the critical temperature of thermally induced spin transitions (Clausius-Clapeiron equation) is also demonstrated and discussed.

  19. Constraints On the Emission Geometries and Spin Evolution Of Gamma-Ray Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Guillemot, L.; Smith, D. A.; Kramer, M.; Celik, O.; den Hartog, P. R.; Ferrara, E. C.; Hou, X.; hide

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using amaximum likelihood technique.We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  20. Constraints On The Emission Geometries And Spin Evolution Of Gamma-Ray Millisecond Pulsars

    DOE PAGES

    Johnson, T. J.; Venter, C.; Harding, A. K.; ...

    2014-06-18

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic eld. We modeled the radio pro les using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-raymore » and radio light curve peaks occurring at nearly the same rotational phase we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best- t parameters and con dence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II) or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best t roughly equal numbers of Class I and II, while Class III are exclusively t with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is diffcult. We explore the evolution of magnetic inclination angle with period and spin-down power, nding possible correlations. While the presence of signi cant off- peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.« less

  1. The quantum needle of the avian magnetic compass

    PubMed Central

    Hiscock, Hamish G.; Worster, Susannah; Kattnig, Daniel R.; Steers, Charlotte; Jin, Ye; Manolopoulos, David E.; Mouritsen, Henrik; Hore, P. J.

    2016-01-01

    Migratory birds have a light-dependent magnetic compass, the mechanism of which is thought to involve radical pairs formed photochemically in cryptochrome proteins in the retina. Theoretical descriptions of this compass have thus far been unable to account for the high precision with which birds are able to detect the direction of the Earth's magnetic field. Here we use coherent spin dynamics simulations to explore the behavior of realistic models of cryptochrome-based radical pairs. We show that when the spin coherence persists for longer than a few microseconds, the output of the sensor contains a sharp feature, referred to as a spike. The spike arises from avoided crossings of the quantum mechanical spin energy-levels of radicals formed in cryptochromes. Such a feature could deliver a heading precision sufficient to explain the navigational behavior of migratory birds in the wild. Our results (i) afford new insights into radical pair magnetoreception, (ii) suggest ways in which the performance of the compass could have been optimized by evolution, (iii) may provide the beginnings of an explanation for the magnetic disorientation of migratory birds exposed to anthropogenic electromagnetic noise, and (iv) suggest that radical pair magnetoreception may be more of a quantum biology phenomenon than previously realized. PMID:27044102

  2. Paramagnetic resonance studies of bistrispyrazolylborate cobalt(II) and related derivatives

    NASA Astrophysics Data System (ADS)

    Myers, William K.

    Herein, a systematic frozen solution electron-nuclear double resonance (ENDOR) study of high-spin Co(II) complexes is reported to demonstrate the efficacy of methyl substitutions as a means of separating dipolar and contact coupling, and further, to increase the utility of high-spin Co(II) as a spectroscopic probe for the ubiquitous, but spectroscopically-silent Zn(II) metalloenzymes. High-spin (hs) Co(II) has been subject of paramagnetic resonance studies for over 50 years and has been used as a spectroscopic probe for Zn metalloenzymes for over 35 years. However, as will be seen, the inherent complexity of the electronic properties of the cobaltous ion remains to be exploited to offer a wealth of information on Zn(II) enzymatic environments. Specifically, ENDOR measurements on bistrispyrazolylborate cobalt(II) confirm the utility of the novel method of methyl substitution to differentiate dipolar and Fermi contact couplings. An extensive set of electron paramagnetic resonance (EPR) simulations were performed. Software was developed to implement an ENDOR control interface. Finally, proton relaxation measurements were made in the range of 12-42 MHz, which were accounted for with the large g-value anisotropy of the Co(II) compounds. Taken as a whole, these studies point to the rich complexity of the electronic structure of high-spin cobalt(II) and, when sufficiently well-characterized, the great utility it has as a surrogate of biological Zn(II).

  3. Spin state switching in iron coordination compounds

    PubMed Central

    Gaspar, Ana B; Garcia, Yann

    2013-01-01

    Summary The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices. The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST) and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II), with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II) complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property. PMID:23504535

  4. Benchmarks and Reliable DFT Results for Spin Gaps of Small Ligand Fe(II) Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Suhwan; Kim, Min-Cheol; Sim, Eunji

    2017-05-01

    All-electron fixed-node diffusion Monte Carlo provides benchmark spin gaps for four Fe(II) octahedral complexes. Standard quantum chemical methods (semilocal DFT and CCSD(T)) fail badly for the energy difference between their high- and low-spin states. Density-corrected DFT is both significantly more accurate and reliable and yields a consistent prediction for the Fe-Porphyrin complex

  5. Evolution of multiple quantum coherences with scaled dipolar Hamiltonian

    NASA Astrophysics Data System (ADS)

    Sánchez, Claudia M.; Buljubasich, Lisandro; Pastawski, Horacio M.; Chattah, Ana K.

    2017-08-01

    In this article, we introduce a pulse sequence which allows the monitoring of multiple quantum coherences distribution of correlated spin states developed with scaled dipolar Hamiltonian. The pulse sequence is a modification of our previous Proportionally Refocused Loschmidt echo (PRL echo) with phase increment, in order to verify the accuracy of the weighted coherent quantum dynamics. The experiments were carried out with different scaling factors to analyze the evolution of the total magnetization, the time dependence of the multiple quantum coherence orders, and the development of correlated spins clusters. In all cases, a strong dependence between the evolution rate and the weighting factor is observed. Remarkably, all the curves appeared overlapped in a single trend when plotted against the self-time, a new time scale that includes the scaling factor into the evolution time. In other words, the spin system displayed always the same quantum evolution, slowed down as the scaling factor decreases, confirming the high performance of the new pulse sequence.

  6. Insights into the crystal-packing effects on the spin crossover of [Fe(II)(1-bpp)](2+)-based materials.

    PubMed

    Vela, Sergi; Novoa, Juan J; Ribas-Arino, Jordi

    2014-12-28

    Iron(II) complexes of the [Fe(II)(1-bpp2)](2+) type (1-bpp = 2,6-di(pyrazol-1-yl)pyridine) have been intensively investigated in the context of crystal engineering of switchable materials because their spin-crossover (SCO) properties dramatically depend on the counterions. Here, by means of DFT + U calculations at the molecular and solid state levels we provide a rationale for the different SCO behaviour of the BF4(-) and ClO4(-) salts of the parent complex; the former features Fe(II) complexes with a regular coordination geometry and undergoes a spin transition, whereas the Fe(II) complexes of the latter adopt a distorted structure and remain in the high-spin state at all temperatures. The different SCO behaviour of both salts can be explained on the basis of a combination of thermodynamic and kinetic effects. The shape of the SCO units at high temperature is thermodynamically controlled by the intermolecular interactions between the SCO units and counterions within the crystal. The spin trapping at low temperatures in the ClO4(-) salt, in turn, is traced back to a kinetic effect because our calculations have revealed the existence of a more stable polymorph having SCO units in their low-spin state that feature a regular structure. From the computational point of view, it is the first time that the U parameter is fine-tuned on the basis of CASPT2 calculations, thereby enabling an accurate description of the energetics of the spin transition at both molecular and solid-state levels.

  7. Near-Earth asteroid satellite spins under spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naidu, Shantanu P.; Margot, Jean-Luc

    We develop a fourth-order numerical integrator to simulate the coupled spin and orbital motions of two rigid bodies having arbitrary mass distributions under the influence of their mutual gravitational potential. We simulate the dynamics of components in well-characterized binary and triple near-Earth asteroid systems and use surface of section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis reveals large regions of phase space where the spin state of the satellite is chaotic. For synchronous satellites, we show that libration amplitudes can reach detectable values even for moderately elongated shapes. The presence of chaoticmore » regions in the phase space has important consequences for the evolution of binary asteroids. It may substantially increase spin synchronization timescales, explain the observed fraction of asychronous binaries, delay BYORP-type evolution, and extend the lifetime of binaries. The variations in spin rate due to large librations also affect the analysis and interpretation of light curve and radar observations.« less

  8. Metastable Defect Formation at Microvoids Identified as a Source of Light-Induced Degradation in a-Si :H

    NASA Astrophysics Data System (ADS)

    Fehr, M.; Schnegg, A.; Rech, B.; Astakhov, O.; Finger, F.; Bittl, R.; Teutloff, C.; Lips, K.

    2014-02-01

    Light-induced degradation of hydrogenated amorphous silicon (a-Si :H), known as the Staebler-Wronski effect, has been studied by time-domain pulsed electron-paramagnetic resonance. Electron-spin echo relaxation measurements in the annealed and light-soaked state revealed two types of defects (termed type I and II), which can be discerned by their electron-spin echo relaxation. Type I exhibits a monoexponential decay related to indirect flip-flop processes between dipolar coupled electron spins in defect clusters, while the phase relaxation of type II is dominated by H1 nuclear spin dynamics and is indicative for isolated spins. We propose that defects are either located at internal surfaces of microvoids (type I) or are isolated and uniformly distributed in the bulk (type II). The concentration of both defect type I and II is significantly higher in the light-soaked state compared to the annealed state. Our results indicate that in addition to isolated defects, defects on internal surfaces of microvoids play a role in light-induced degradation of device-quality a-Si :H.

  9. Magnetic properties of the Fe{sup II} spin crossover complex in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.j; Iguchi, Motoi; Oku, Takeo

    2010-04-15

    Influence of chemical substitution in the Fe{sup II} spin crossover complex on magnetic properties in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol) as a protective colloid was investigated near its high spin/low spin (HS/LS) phase transition. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiple spin states between the quintet (S=2) states to single state (S=0) across the excited triplet state (S=1). Magnetic parameters of gradual shifts of anisotropy g-tensor supported by the molecular distortion of the spin crossover complex would arise from a Jahn-Teller effect regarding ligand field theory on the basis ofmore » a B3LYP density functional theory using electron spin resonance (ESR) spectrum and X-ray powder diffraction. - Graphical abstract: AFM surface image of the emulsion particles with the spin crossover complex.« less

  10. Rapid evolution of the spin state of comet 41P/Tuttle-Giacobini-Kresak

    NASA Astrophysics Data System (ADS)

    Bodewits, Dennis; Farnham, Tony; Kelley, Michael S. P.; Manning Knight, Matthew

    2018-01-01

    Cometary outgassing can produce torques that change the spin state of the nucleus, influencing the evolution and lifetimes of comets. If these torques spin up the rotation to the point that centripetal forces exceed the material strength of the nucleus, the comet may fragment. Comet 41P/Tuttle-Giacobini-Kresak passed Earth as close as 0.142 au in April 2017, allowing observations of the inner coma and an assessment of the rotational state of the nucleus. We acquired observations of comet 41P between March and May 2017 using the 4.3-m Discovery Channel Telescope and the UltraViolet-Optical Telescope (UVOT) on board the Earth-orbiting Swift Gamma Ray Burst Mission.We combined CN narrowband imaging and aperture photometry and found that the apparent rotation period of comet 41P more than doubled between March and May 2017, increasing from 20 hours to over 46 hours. Measurements of the periodicity in late-March by Knight et al. (CBET 4377, 2017) are consistent with this rate of increase. Comet 41P is the ninth comet for which a rotation period change has been observed (c.f. Samarasinha et al., in Comets II, 2004), but both the fractional change and the rate of change of the period far exceed those observed in the other comets. It is the combination of a slow rotation, high activity, and a small nucleus that contribute to the rapid changes of the rotation state of 41P. In addition, the active regions on the surface of 41P are likely oriented in a way such that its torques are highly optimized in comparison to many other comets.Extrapolating the comet’s rotation period using its current gas production rates and a simple activity model suggests that the nucleus will continue to spin down, possibly leading to an excited spin state in the next apparitions. Finally, 41P is known for its large outbursts, and our extrapolation suggest that the comet’s rotation period may have been close to the critical period for splitting in 2001, when it exhibited two significant outbursts.

  11. A novel copper(II) coordination at His186 in full-length murine prion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yasuko; Hiraoka, Wakako; Igarashi, Manabu

    2010-04-09

    To explore Cu(II) ion coordination by His{sup 186} in the C-terminal domain of full-length prion protein (moPrP), we utilized the magnetic dipolar interaction between a paramagnetic metal, Cu(II) ion, and a spin probe introduced in the neighborhood of the postulated binding site by the spin labeling technique (SDSL technique). Six moPrP mutants, moPrP(D143C), moPrP(Y148C), moPrP(E151C), moPrP(Y156C), moPrP(T189C), and moPrP(Y156C,H186A), were reacted with a methane thiosulfonate spin probe and a nitroxide residue (R1) was created in the binding site of each one. Line broadening of the ESR spectra was induced in the presence of Cu(II) ions in moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), andmore » moPrP(T189R1) but not moPrP(D143R1). This line broadening indicated the presence of electron-electron dipolar interaction between Cu(II) and the nitroxide spin probe, suggesting that each interspin distance was within 20 A. The interspin distance ranges between Cu(II) and the spin probes of moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) were estimated to be 12.1 A, 18.1 A, 10.7 A, and 8.4 A, respectively. In moPrP(Y156R1,H186A), line broadening between Cu(II) and the spin probe was not observed. These results suggest that a novel Cu(II) binding site is involved in His186 in the Helix2 region of the C-terminal domain of moPrP{sup C}.« less

  12. Planar pyrochlore: A strong-coupling analysis

    NASA Astrophysics Data System (ADS)

    Brenig, Wolfram; Honecker, Andreas

    2002-04-01

    Recent investigations of the two-dimensional spin-1/2 checkerboard lattice favor a valence bond crystal with long-range quadrumer order [J.-B. Fouet, M. Mambrini, P. Sindzingre, and C. Lhuillier, cond-mat/0108070 (unpublished)]. Starting from the limit of isolated quadrumers, we perform a complementary analysis of the evolution of the spectrum as a function of the interquadrumer coupling j using both exact diagonalization (ED) and series expansion (SE) by continuous unitary transformation. We compute (i) the ground-state energy, (ii) the elementary triplet excitations, and (iii) singlet excitations on finite systems and find very good agreement between SE and ED. In the thermodynamic limit we find a ground-state energy substantially lower than that documented in the literature. The elementary triplet excitation is shown to be gapped and almost dispersionless, whereas the singlet sector contains strongly dispersive modes. Evidence is presented for the low energy singlet excitations in the spin gap in the vicinity of j=1 to result from a large downward renormalization of local high-energy states.

  13. Measurements of ultrafast spin-profiles and spin-diffusion properties in the domain wall area at a metal/ferromagnetic film interface.

    PubMed

    Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Manfredda, M; Kiskinova, M; Zabel, H; Kläui, M; Lüning, J; Pietsch, U; Gutt, C

    2017-11-08

    Exciting a ferromagnetic material with an ultrashort IR laser pulse is known to induce spin dynamics by heating the spin system and by ultrafast spin diffusion processes. Here, we report on measurements of spin-profiles and spin diffusion properties in the vicinity of domain walls in the interface region between a metallic Al layer and a ferromagnetic Co/Pd thin film upon IR excitation. We followed the ultrafast temporal evolution by means of an ultrafast resonant magnetic scattering experiment in surface scattering geometry, which enables us to exploit the evolution of the domain network within a 1/e distance of 3 nm to 5 nm from the Al/FM film interface. We observe a magnetization-reversal close to the domain wall boundaries that becomes more pronounced closer to the Al/FM film interface. This magnetization-reversal is driven by the different transport properties of majority and minority carriers through a magnetically disordered domain network. Its finite lateral extension has allowed us to measure the ultrafast spin-diffusion coefficients and ultrafast spin velocities for majority and minority carriers upon IR excitation.

  14. Signatures of spin-orbital states of t2g 2 system in optical conductivity: R VO3 (R =Y and La)

    NASA Astrophysics Data System (ADS)

    Kim, Minjae

    2018-04-01

    We investigate signatures of the spin and orbital states of R VO3 (R =Y and La) in optical conductivity using density functional theory plus dynamical mean-field theory (DFT+DMFT). From the assignment of multiplet state configurations to optical transitions, the DFT+DMFT reproduces experimental temperature-dependent evolutions of optical conductivity for both YVO3 and LaVO3. We also show that the optical conductivity is a useful quantity to probe the evolution of the orbital state even in the absence of spin order. The result provides a reference to investigate the spin and orbital states of t2g 2 vanadate systems, which is an important issue for both fundamental physics on spin and orbital states and applications of vanadates by means of orbital state control.

  15. A practical approach to calculate the time evolutions of magnetic field effects on photochemical reactions in nano-structured materials.

    PubMed

    Yago, Tomoaki; Wakasa, Masanobu

    2015-04-21

    A practical method to calculate time evolutions of magnetic field effects (MFEs) on photochemical reactions involving radical pairs is developed on the basis of the theory of the chemically induced dynamic spin polarization proposed by Pedersen and Freed. In theory, the stochastic Liouville equation (SLE), including the spin Hamiltonian, diffusion motions of the radical pair, chemical reactions, and spin relaxations, is solved by using the Laplace and the inverse Laplace transformation technique. In our practical approach, time evolutions of the MFEs are successfully calculated by applying the Miller-Guy method instead of the final value theorem to the inverse Laplace transformation process. Especially, the SLE calculations are completed in a short time when the radical pair dynamics can be described by the chemical kinetics consisting of diffusions, reactions and spin relaxations. The SLE analysis with a short calculation time enables one to examine the various parameter sets for fitting the experimental date. Our study demonstrates that simultaneous fitting of the time evolution of the MFE and of the magnetic field dependence of the MFE provides valuable information on the diffusion motions of the radical pairs in nano-structured materials such as micelles where the lifetimes of radical pairs are longer than hundreds of nano-seconds and the magnetic field dependence of the spin relaxations play a major role for the generation of the MFE.

  16. Tidal evolution of close binary asteroid systems

    NASA Astrophysics Data System (ADS)

    Taylor, Patrick A.; Margot, Jean-Luc

    2010-12-01

    We provide a generalized discussion of tidal evolution to arbitrary order in the expansion of the gravitational potential between two spherical bodies of any mass ratio. To accurately reproduce the tidal evolution of a system at separations less than 5 times the radius of the larger primary component, the tidal potential due to the presence of a smaller secondary component is expanded in terms of Legendre polynomials to arbitrary order rather than truncated at leading order as is typically done in studies of well-separated system like the Earth and Moon. The equations of tidal evolution including tidal torques, the changes in spin rates of the components, and the change in semimajor axis (orbital separation) are then derived for binary asteroid systems with circular and equatorial mutual orbits. Accounting for higher-order terms in the tidal potential serves to speed up the tidal evolution of the system leading to underestimates in the time rates of change of the spin rates, semimajor axis, and mean motion in the mutual orbit if such corrections are ignored. Special attention is given to the effect of close orbits on the calculation of material properties of the components, in terms of the rigidity and tidal dissipation function, based on the tidal evolution of the system. It is found that accurate determinations of the physical parameters of the system, e.g., densities, sizes, and current separation, are typically more important than accounting for higher-order terms in the potential when calculating material properties. In the scope of the long-term tidal evolution of the semimajor axis and the component spin rates, correcting for close orbits is a small effect, but for an instantaneous rate of change in spin rate, semimajor axis, or mean motion, the close-orbit correction can be on the order of tens of percent. This work has possible implications for the determination of the Roche limit and for spin-state alteration during close flybys.

  17. Divalent metal ions modulated strong frustrated M(II)-Fe(III)3O (M = Fe, Mn, Mg) chains with metamagnetism only in a mixed valence iron complex.

    PubMed

    Wu, Qi-Long; Han, Song-De; Wang, Qing-Lun; Zhao, Jiong-Peng; Ma, Feng; Jiang, Xue; Liu, Fu-Chen; Bu, Xian-He

    2015-10-25

    Linking magnetically frustrated triangular FeO units by divalent metal ions (M(II) = Fe(II) for 1, Mn(II) for 2) gives isostructural 1D spin chains. Strong antiferromagnetic interactions were found in these complexes with significant frustrations but very interesting ferrimagnetic like transition and metamagnetism were found in mixed valence 1. By comparing the magnetic behaviours with isostructural complex 3 (with M(II) = Mg(II)), it is proposed that the spins of Fe(II) ions and Mn(II) ions have ferromagnetic and antiferromagnetic contributions respectively.

  18. Mössbauer study of novel iron(II) complexes synthesized with Schiff bases

    NASA Astrophysics Data System (ADS)

    Várhelyi, Cs.; Lengyel, A.; Homonnay, Z.; Szalay, R.; Pokol, Gy.; Szilágyi, I.-M.; Huszthy, P.; Papp, J.; Goga, F.; Golban, L.-M.; Várhelyi, M.; Tomoaia-Cotisel, M.; Szőke, Á.; Kuzmann, E.

    2017-11-01

    Novel [Fe(4-benzyl-2-hydroxyphenyl-propylidene)2ethylene-diamine], and [Fe (2,4,6-trihydroxy-benzyl-4-metoxiphenyl-methylidene)2ethylene-diamine] complexes were synthesized by reacting FeII salt with the indicated Schiff-base ligands. The compounds were characterized by57Fe Mössbauer spectroscopy, FTIR, UV-VIS, TG-DTA-DTG, MS, AFM, XRD, cyclic voltammetry and biological activity measurements. 295 K and 78 K Mössbauer spectra revealed that iron is dominantly in high spin FeII state in both complexes while simultaneously a minor low spin FeII was also present in both complexes, furthermore a minor high spin FeIII was observed in [Fe(2,4,6-trihydroxy-benzyl-4-metoxiphenyl- methylidene) 2ethylene-diamine], too.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Elad; Sari, Re’em

    The Asteroid Belt and the Kuiper Belt are relics from the formation of our solar system. Understanding the size and spin distribution of the two belts is crucial for a deeper understanding of the formation of our solar system and the dynamical processes that govern it. In this paper, we investigate the effect of collisions on the evolution of the spin distribution of asteroids and KBOs. We find that the power law nature of the impactors’ size distribution leads to a Lévy distribution of the spin rates. This results in a power law tail in the spin distribution, in starkmore » contrast to the usually quoted Maxwellian distribution. We show that for bodies larger than 10 km, collisions alone lead to spin rates peaking at 0.15–0.5 revolutions per day. Comparing that to the observed spin rates of large asteroids (R > 50 km), we find that the spins of large asteroids, peaking at ∼1–2 revolutions per day, are dominated by a primordial component that reflects the formation mechanism of the asteroids. Similarly, the Kuiper Belt has undergone virtually no collisional spin evolution, assuming current densities. Collisions contribute a spin rate of ∼0.01 revolutions per day, thus the observed fast spin rates of KBOs are also primordial in nature.« less

  20. A general explanation on the correlation of dark matter halo spin with the large-scale environment

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Kang, Xi

    2017-06-01

    Both simulations and observations have found that the spin of halo/galaxy is correlated with the large-scale environment, and particularly the spin of halo flips in filament. A consistent picture of halo spin evolution in different environments is still lacked. Using N-body simulation, we find that halo spin with its environment evolves continuously from sheet to cluster, and the flip of halo spin happens both in filament and nodes. The flip in filament can be explained by halo formation time and migrating time when its environment changes from sheet to filament. For low-mass haloes, they form first in sheets and migrate into filaments later, so their mass and spin growth inside filament are lower, and the original spin is still parallel to filament. For high-mass haloes, they migrate into filaments first, and most of their mass and spin growth are obtained in filaments, so the resulted spin is perpendicular to filament. Our results well explain the overall evolution of cosmic web in the cold dark matter model and can be tested using high-redshift data. The scenario can also be tested against alternative models of dark matter, such as warm/hot dark matter, where the structure formation will proceed in a different way.

  1. Scan Rate Dependent Spin Crossover Iron(II) Complex with Two Different Relaxations and Thermal Hysteresis fac-[Fe(II)(HL(n-Pr))3]Cl·PF6 (HL(n-Pr) = 2-Methylimidazol-4-yl-methylideneamino-n-propyl).

    PubMed

    Fujinami, Takeshi; Nishi, Koshiro; Hamada, Daisuke; Murakami, Keishiro; Matsumoto, Naohide; Iijima, Seiichiro; Kojima, Masaaki; Sunatsuki, Yukinari

    2015-08-03

    Solvent-free spin crossover Fe(II) complex fac-[Fe(II)(HL(n-Pr))3]Cl·PF6 was prepared, where HL(n-Pr) denotes 2-methylimidazol-4-yl-methylideneamino-n-propyl. The magnetic susceptibility measurements at scan rate of 0.5 K min(-1) showed two successive spin transition processes consisting of the first spin transition T1 centered at 122 K (T1↑ = 127.1 K, T1↓ = 115.8 K) and the second spin transition T2 centered at ca. 105 K (T2↑ = 115.8 K, T2↓ = 97.2 K). The magnetic susceptibility measurements at the scan rate of 2.0, 1.0, 0.5, 0.25, and 0.1 K min(-1) showed two scan speed dependent spin transitions, while the Mössbauer spectra detected only the first spin transition T1. The crystal structures were determined at 160, 143, 120, 110, 95 K in the cooling mode, and 110, 120, and 130 K in the warming mode so as to follow the spin transition process of high-spin HS → HS(T1) → HS(T2) → low-spin LS → LS(T2) → LS(T1) → HS. The crystal structures at all temperatures have a triclinic space group P1̅ with Z = 2. The complex-cation has an octahedral N6 coordination geometry with three bidentate ligands and assume a facial-isomer with Δ- and Λ-enantimorphs. Three imidazole groups of fac-[Fe(II)(HL(n-Pr))3](2+) are hydrogen-bonded to three Cl(-) ions. The 3:3 NH(imidazole)···Cl(-) hydrogen-bonds form a stepwise ladder assembly structure, which is maintained during the spin transition process. The spin transition process is related to the structural changes of the FeN6 coordination environment, the order-disorder of PF6(-) anion, and the conformation change of n-propyl groups. The Fe-N bond distance in the HS state is longer by 0.2 Å than that in the LS state. Disorder of PF6(-) anion is not observed in the LS state but in the HS state. The conformational changes of n-propyl groups are found in the spin transition processes except for HS → HS(T1) → HS(T2).

  2. SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Greene, Thomas P.; Pinzon, Giovanni

    2010-05-10

    We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, wemore » neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than {approx}3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary.« less

  3. Controllability of symmetric spin networks

    NASA Astrophysics Data System (ADS)

    Albertini, Francesca; D'Alessandro, Domenico

    2018-05-01

    We consider a network of n spin 1/2 systems which are pairwise interacting via Ising interaction and are controlled by the same electro-magnetic control field. Such a system presents symmetries since the Hamiltonian is unchanged if we permute two spins. This prevents full (operator) controllability, in that not every unitary evolution can be obtained. We prove however that controllability is verified if we restrict ourselves to unitary evolutions which preserve the above permutation invariance. For low dimensional cases, n = 2 and n = 3, we provide an analysis of the Lie group of available evolutions and give explicit control laws to transfer between two arbitrary permutation invariant states. This class of states includes highly entangled states such as Greenberger-Horne-Zeilinger (GHZ) states and W states, which are of interest in quantum information.

  4. ROTATING STARS AND THE FORMATION OF BIPOLAR PLANETARY NEBULAE. II. TIDAL SPIN-UP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Segura, G.; Villaver, E.; Manchado, A.

    We present new binary stellar evolution models that include the effects of tidal forces, rotation, and magnetic torques with the goal of testing planetary nebulae (PNs) shaping via binary interaction. We explore whether tidal interaction with a companion can spin-up the asymptotic giant brach (AGB) envelope. To do so, we have selected binary systems with main-sequence masses of 2.5 M {sub ⊙} and 0.8 M {sub ⊙} and evolve them allowing initial separations of 5, 6, 7, and 8 au. The binary stellar evolution models have been computed all the way to the PNs formation phase or until Roche lobemore » overflow (RLOF) is reached, whatever happens first. We show that with initial separations of 7 and 8 au, the binary avoids entering into RLOF, and the AGB star reaches moderate rotational velocities at the surface (∼3.5 and ∼2 km s{sup −1}, respectively) during the inter-pulse phases, but after the thermal pulses it drops to a final rotational velocity of only ∼0.03 km s{sup −1}. For the closest binary separations explored, 5 and 6 au, the AGB star reaches rotational velocities of ∼6 and ∼4 km s{sup −1}, respectively, when the RLOF is initiated. We conclude that the detached binary models that avoid entering the RLOF phase during the AGB will not shape bipolar PNs, since the acquired angular momentum is lost via the wind during the last two thermal pulses. This study rules out tidal spin-up in non-contact binaries as a sufficient condition to form bipolar PNs.« less

  5. Inner main belt asteroids in Slivan states?

    NASA Astrophysics Data System (ADS)

    Vraštil, J.; Vokrouhlický, D.

    2015-07-01

    Context. The spin state of ten asteroids in the Koronis family has previously been determined. Surprisingly, all four asteroids with prograde rotation were shown to have spin axes nearly parallel in the inertial space. All asteroids with retrograde rotation had large obliquities and rotation periods that were either short or long. The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect has been demonstrated to be able to explain all these peculiar facts. In particular, the effect causes the spin axes of the prograde rotators to be captured in a secular spin-orbit resonance known as Cassini state 2, a configuration dubbed "Slivan state". Aims: It has been proposed based on an analysis of a sample of asteroids in the Flora family that Slivan states might also exist in this region of the main belt. This is surprising because convergence of the proper frequency s and the planetary frequency s6 was assumed to prevent Slivan states in this zone. We therefore investigated the possibility of a long-term stable capture in the Slivan state in the inner part of the main belt and among the asteroids previously observed. Methods: We used the swift integrator to determine the orbital evolution of selected asteroids in the inner part of the main belt. We also implemented our own secular spin propagator into the swift code to efficiently analyze their spin evolution. Results: Our experiments show that the previously suggested Slivan states of the Flora-region asteroids are marginally stable for only a small range of the flattening parameter Δ. Either the observed spins are close to the Slivan state by chance, or additional dynamical effects that were so far not taken into account change their evolution. We find that only the asteroids with very low-inclination orbits (lower than ≃4°, for instance) could follow a similar evolution path as the Koronis members and be captured in their spin state into the Slivan state. A greater number of asteroids in the inner main-belt Massalia family, which are at a slightly larger heliocentric distance and at lower inclination orbits than in the Flora region, may have their spin in the Slivan state.

  6. Evolution of Spin fluctuations in CaFe2As2 with Co-doping.

    NASA Astrophysics Data System (ADS)

    Sapkota, A.; Das, P.; Böhmer, A. E.; Abernathy, D. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    Spin fluctuations are an essential ingredient for superconductivity in Fe-based supercondcutors. In Co-doped BaFe2As2, the system goes from the antiferromagnetic (AFM) state to the superconducting (SC) state with Co doping, and the spin fluctuations also evolve from well-defined spin waves with spin gap in the AFM regime to gapless overdamped or diffused fluctuations in the SC regime. CaFe2As2 has a stronger magneto-elastic coupling than BaFe2As2 and no co-existence of SC and AFM region as observed in BaFe2As2 with Co doping. Here, we will discuss the evolution of spin fluctuations in CaFe2As2 with Co doping. Work at the Ames Laboratory was supported by US DOE, Basic Energy Sciences, Division of Material Sciences and Engineering, under contract No. DE-AC02-07CH11358. This research used resources of SNS, a DOE office of science user facility operated by ORNL.

  7. Flip-flopping binary black holes.

    PubMed

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  8. Langmuir instability in partially spin polarized bounded degenerate plasma

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Jamil, M.; Murtaza, G.

    2018-04-01

    Some new features of waves inside the cylindrical waveguide on employing the separated spin evolution quantum hydrodynamic model are evoked. Primarily, the instability of Langmuir wave due to the electron beam in a partially spin polarized degenerate plasma considering a nano-cylindrical geometry is discussed. Besides, the evolution of a new spin-dependent wave (spin electron acoustic wave) due to electron spin polarization effects in the real wave spectrum is elaborated. Analyzing the growth rate, it is found that in the absence of Bohm potential, the electron spin effects or exchange interaction reduce the growth rate as well as k-domain but the inclusion of Bohm potential increases both the growth rate and k-domain. Further, we investigate the geometry effects expressed by R and pon and find that they have opposite effects on the growth rate and k-domain of the instability. Additionally, how the other parameters like electron beam density or streaming speed of beam electrons influence the growth rate is also investigated. This study may find its applications for the signal analysis in solid state devices at nanoscales.

  9. Spin dynamics of close-in planets exhibiting large transit timing variations

    NASA Astrophysics Data System (ADS)

    Delisle, J.-B.; Correia, A. C. M.; Leleu, A.; Robutel, P.

    2017-09-01

    We study the spin evolution of close-in planets in compact multi-planetary systems. The rotation period of these planets is often assumed to be synchronous with the orbital period due to tidal dissipation. Here we show that planet-planet perturbations can drive the spin of these planets into non-synchronous or even chaotic states. In particular, we show that the transit timing variation (TTV) is a very good probe to study the spin dynamics, since both are dominated by the perturbations of the mean longitude of the planet. We apply our model to KOI-227 b and Kepler-88 b, which are both observed undergoing strong TTVs. We also perform numerical simulations of the spin evolution of these two planets. We show that for KOI-227 b non-synchronous rotation is possible, while for Kepler-88 b the rotation can be chaotic.

  10. Evolution of Italian Universities' Rules for Spin-Offs: The Usefulness of Formal Regulations

    ERIC Educational Resources Information Center

    Salvador, Elisa

    2009-01-01

    Spin-off firms may be seen as a key mechanism for the external transmission of knowledge developed at universities. The proliferation of academic spin-offs in recent years has led universities to develop specific rules for the regulation and management of the spin-off process. This paper draws on the Italian experience. More than fifty Italian…

  11. Explaining LIGO's observations via isolated binary evolution with natal kicks

    NASA Astrophysics Data System (ADS)

    Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel E.

    2018-02-01

    We compare binary evolution models with different assumptions about black-hole natal kicks to the first gravitational-wave observations performed by the LIGO detectors. Our comparisons attempt to reconcile merger rate, masses, spins, and spin-orbit misalignments of all current observations with state-of-the-art formation scenarios of binary black holes formed in isolation. We estimate that black holes (BHs) should receive natal kicks at birth of the order of σ ≃200 (50 ) km /s if tidal processes do (not) realign stellar spins. Our estimate is driven by two simple factors. The natal kick dispersion σ is bounded from above because large kicks disrupt too many binaries (reducing the merger rate below the observed value). Conversely, the natal kick distribution is bounded from below because modest kicks are needed to produce a range of spin-orbit misalignments. A distribution of misalignments increases our models' compatibility with LIGO's observations, if all BHs are likely to have natal spins. Unlike related work which adopts a concrete BH natal spin prescription, we explore a range of possible BH natal spin distributions. Within the context of our models, for all of the choices of σ used here and within the context of one simple fiducial parameterized spin distribution, observations favor low BH natal spin.

  12. Spin vectors in the Koronis family: III. (832) Karin

    NASA Astrophysics Data System (ADS)

    Slivan, Stephen M.; Molnar, Lawrence A.

    2012-08-01

    Studies of asteroid families constrain models of asteroid collisions and evolution processes, and the Karin cluster within the Koronis family is among the youngest families known (Nesvorný, D., Bottke, Jr., W.F., Dones, L., Levison, H.F. [2002]. Nature 417, 720-722). (832) Karin itself is by far the largest member of the Karin cluster, thus knowledge of Karin's spin vector is important to constrain family formation and evolution models that include spin, and to test whether its spin properties are consistent with the Karin cluster being a very young family. We observed rotation lightcurves of Karin during its four consecutive apparitions in 2006-2009, and combined the new observations with previously published lightcurves to determine its spin vector orientation and preliminary model shape. Karin is a prograde rotator with a period of (18.352 ± 0.003) h, spin obliquity near (42 ± 5)°, and pole ecliptic longitude near either (52 ± 5)° or (230 ± 5)°. The spin vector and shape results for Karin will constrain models of family formation that include spin properties; in the meantime we briefly discuss Karin's own spin in the context of those of other members of the Karin cluster and the parent body's siblings in the Koronis family.

  13. Electron doping evolution of the magnetic excitations in NaFe 1-xCo xAs

    DOE PAGES

    Carr, Scott V.; Zhang, Chenglin; Song, Yu; ...

    2016-06-13

    We use time-of-flight (TOF) inelastic neutron scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe 1-xCo xAs with x = 0, 0.0175, 0.0215, 0.05, and 0.11. The effect of electron-doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden and suppress low energy (E 80 meV) spin excitations compared with spin waves in undoped NaFeAs. However, high energy (E > 80 meV) spin excitations are weakly Co-doping dependent. Integration of the local spin dynamic susceptibility "(!) of NaFe 1-xCo xAs reveals a total fluctuating moment ofmore » 3.6 μ2 B/Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in the Cooverdoped nonsuperconducting NaFe0.89Co0.11As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel Ni-doping evolution of spin excitations in BaFe 2-xNi xAs 2, confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping dependent high-energy spin excitations result from localized moments.« less

  14. Distributions of spin/shape parameters of asteroid families and targeted photometry by ProjectSoft robotic observatory

    NASA Astrophysics Data System (ADS)

    Broz, Miroslav; Durech, Josef; Hanus, Josef; Lehky, Martin

    2014-11-01

    In our recent work (Hanus et al. 2013) we studied dynamics of asteroid families constrained by the distribution of pole latitudes vs semimajor axis. The model contained the following ingredients: (i) the Yarkovsky semimajor-axis drift, (ii) secular spin evolution due to the YORP effect, (iii) collisional reorientations, (iv) a simple treatment of spin-orbit resonances and (v) of mass shedding.We suggest to use a different complementary approach, based on distribution functions of shape parameters. Based on ~1000 old and new convex-hull shape models, we construct the distributions of suitable quantities (ellipticity, normalized facet areas, etc.) and we discuss differences among asteroid populations. We also check for outlier points which may then serve as a possible identification of (large) interlopers among "real" family members.This has also implications for SPH models of asteroid disruptions which can be possibly further constrained by the shape models of resulting fragments. Up to now, the observed size-frequency distribution and velocity field were used as constraints, sometimes allowing for a removal of interlopers (Michel et al. 2011).We also describe ongoing observations by the ProjectSoft robotic observatory called "Blue Eye 600", which supports our efforts to complete the sample of shapes for a substantial fraction of (large) family members. Dense photometry is targeted in such a way to maximize a possibility to derive a new pole/shape model.Other possible applications of the observatory include: (i) fast resolved observations of fireballs (thanks to a fast-motion capability, up to 90 degrees/second), or (ii) an automatic survey of a particular population of objects (MBAs, NEAs, variable stars, novae etc.)Acknowledgements: This work was supported by the Technology Agency of the Czech Republic (grant no. TA03011171) and Czech Science Foundation (grant no. 13-01308S).

  15. Asteroid families spin and shape models to be supported by the ProjectSoft robotic observatory

    NASA Astrophysics Data System (ADS)

    Brož, M.; Ďurech, J.; Hanuš, J.; Lehký, M.

    2014-07-01

    In our recent work (Hanuš et al. 2013), we studied dynamics of asteroid families constrained by the distribution of pole latitudes vs semimajor axis. The model contained the following ingredients: (i) the Yarkovsky semimajor-axis drift; (ii) secular spin evolution due to the YORP effect; (iii) collisional re-orientations; (iv) a simple treatment of spin-orbit resonances; and (v) of mass shedding. We suggest to use a different complementary approach, based on distribution functions of shape parameters. Based on ˜1000 old and new convex-hull shape models, we construct the distributions of suitable quantities (ellipticity, normalized facet areas, etc.) and we discuss a significance of differences among asteroid populations. We check for outlier points which may then serve as a possible identification of (large) interlopers among ''real'' family members. This has also implications for SPH models of asteroid disruptions which can be possibly further constrained by the shape models of resulting fragments. Up to now, the observed size-frequency distribution and velocity field were used as constraints, sometimes allowing for a removal of interlopers (Michel et al. 2011). We also outline an ongoing construction of the ProjectSoft robotic observatory called ''Blue Eye 600'', which will support our efforts to complete the sample of shapes for a substantial fraction of (large) family members. Dense photometry will be targeted in such a way to maximize a possibility to derive a new pole/shape model. Other possible applications of the observatory include: (i) fast resolved observations of fireballs (thanks to a fast-motion capability, tens of degrees per second); or, (ii) an automatic survey of a particular population of objects (main-belt and near-Earth asteroids, variable stars, novae etc.)

  16. Electron spin echo envelope modulation studies of the Cu(II)-substituted derivative of isopenicillin N synthase: A structural and spectroscopic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Jiang; Peisach, J.; Lijune Ming

    Electron spin echo envelope modulation spectroscopy (ESEEM) was used to study the active site structure of isopenicillin N synthase (IPNS) from Cephalosporium acremonium with Cu(II) as a spectroscopic probe. Fourier transform of the simulated electron spin-echo envelope for the Cu(II)-substituted enzyme, Cu(II)IPNS, revealed two nearly magnetically equivalent, equatorially coordinated His imidazoles. The superhyperfine coupling constant, A{sub iso}, for the remote {sup 14}N of each imidazole was 1.65 MHz. The binding of substrate to the enzyme altered the magnetic coupling so that A{sub iso} is 1.30 MHz for one nitrogen and 2.16 MHz for the other. From a comparison of themore » ESSEM of Cu(II)IPNS in D{sub 2}O and H{sub 2}O, it is suggested that water is a ligand of Cu(II) and this is displaced upon the addition of substrate.« less

  17. A two-step spin crossover mononuclear iron(II) complex with a [HS-LS-LS] intermediate phase.

    PubMed

    Bonnet, Sylvestre; Siegler, Maxime A; Costa, José Sánchez; Molnár, Gábor; Bousseksou, Azzedine; Spek, Anthony L; Gamez, Patrick; Reedijk, Jan

    2008-11-21

    The two-step spin crossover of a new mononuclear iron(ii) complex is studied by magnetic, crystallographic and calorimetric methods revealing two successive first-order phase transitions and an ordered intermediate phase built by the repetition of the unprecedented [HS-LS-LS] motif.

  18. Quantum Spin Glasses, Annealing and Computation

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Bikas K.; Inoue, Jun-ichi; Tamura, Ryo; Tanaka, Shu

    2017-05-01

    List of tables; List of figures, Preface; 1. Introduction; Part I. Quantum Spin Glass, Annealing and Computation: 2. Classical spin models from ferromagnetic spin systems to spin glasses; 3. Simulated annealing; 4. Quantum spin glass; 5. Quantum dynamics; 6. Quantum annealing; Part II. Additional Notes: 7. Notes on adiabatic quantum computers; 8. Quantum information and quenching dynamics; 9. A brief historical note on the studies of quantum glass, annealing and computation.

  19. Spin-dependent evolution of collectivity in 112Te

    NASA Astrophysics Data System (ADS)

    Doncel, M.; Bäck, T.; Qi, C.; Cullen, D. M.; Hodge, D.; Cederwall, B.; Taylor, M. J.; Procter, M.; Giles, M.; Auranen, K.; Grahn, T.; Greenlees, P. T.; Jakobsson, U.; Julin, R.; Juutinen, S.; HerzáÅ, A.; Konki, J.; Pakarinen, J.; Partanen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.; Uusitalo, J.

    2017-11-01

    The evolution of collectivity with spin along the yrast line in the neutron-deficient nucleus 112Te has been studied by measuring the reduced transition probability of excited states in the yrast band. In particular, the lifetimes of the 4+ and 6+ excited states have been determined by using the recoil distance Doppler-shift method. The results are discussed using both large-scale shell-model and total Routhian surface calculations.

  20. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    NASA Technical Reports Server (NTRS)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  1. Direct Observation of Very Large Zero-Field Splitting in a Tetrahedral Ni(II)Se4 Coordination Complex.

    PubMed

    Jiang, Shang-Da; Maganas, Dimitrios; Levesanos, Nikolaos; Ferentinos, Eleftherios; Haas, Sabrina; Thirunavukkuarasu, Komalavalli; Krzystek, J; Dressel, Martin; Bogani, Lapo; Neese, Frank; Kyritsis, Panayotis

    2015-10-14

    The high-spin (S = 1) tetrahedral Ni(II) complex [Ni{(i)Pr2P(Se)NP(Se)(i)Pr2}2] was investigated by magnetometry, spectroscopic, and quantum chemical methods. Angle-resolved magnetometry studies revealed the orientation of the magnetization principal axes. The very large zero-field splitting (zfs), D = 45.40(2) cm(-1), E = 1.91(2) cm(-1), of the complex was accurately determined by far-infrared magnetic spectroscopy, directly observing transitions between the spin sublevels of the triplet ground state. These are the largest zfs values ever determined--directly--for a high-spin Ni(II) complex. Ab initio calculations further probed the electronic structure of the system, elucidating the factors controlling the sign and magnitude of D. The latter is dominated by spin-orbit coupling contributions of the Ni ions, whereas the corresponding effects of the Se atoms are remarkably smaller.

  2. Halogenated Alkyltetrazoles for the Rational Design of FeII Spin-Crossover Materials: Fine-Tuning of the Ligand Size.

    PubMed

    Müller, Danny; Knoll, Christian; Seifried, Marco; Welch, Jan M; Giester, Gerald; Reissner, Michael; Weinberger, Peter

    2018-04-06

    1-(3-Halopropyl)-1H-tetrazoles and their corresponding Fe II spin-crossover complexes have been investigated in a combined experimental and theoretical study. Halogen substitution was found to positively influence the spin transition, shifting the transition temperature about 70 K towards room temperature. Halogens located at the ω position were found to be too far away from the coordinating tetrazole moiety to have an electronic impact on the spin transition. The subtle variation of the steric demand of the ligand in a highly comparable series was found to have a comparatively large impact on the spin-transition behavior, which highlights the sensitivity of the effect to subtle structural changes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Heavy ligand atom induced large magnetic anisotropy in Mn(ii) complexes.

    PubMed

    Chowdhury, Sabyasachi Roy; Mishra, Sabyashachi

    2017-06-28

    In the search for single molecule magnets, metal ions are considered pivotal towards achieving large magnetic anisotropy barriers. In this context, the influence of ligands with heavy elements, showing large spin-orbit coupling, on magnetic anisotropy barriers was investigated using a series of Mn(ii)-based complexes, in which the metal ion did not have any orbital contribution. The mixing of metal and ligand orbitals was achieved by explicitly correlating the metal and ligand valence electrons with CASSCF calculations. The CASSCF wave functions were further used for evaluating spin-orbit coupling and zero-field splitting parameters for these complexes. For Mn(ii) complexes with heavy ligand atoms, such as Br and I, several interesting inter-state mixings occur via the spin-orbit operator, which results in large magnetic anisotropy in these Mn(ii) complexes.

  4. Three-dimensional iron(ii) porous coordination polymer exhibiting carbon dioxide-dependent spin crossover.

    PubMed

    Shin, Jong Won; Jeong, Ah Rim; Jeoung, Sungeun; Moon, Hoi Ri; Komatsumaru, Yuki; Hayami, Shinya; Moon, Dohyun; Min, Kil Sik

    2018-04-24

    We report a three-dimensional Fe(ii) porous coordination polymer that exhibits a spin crossover temperature change following CO2 sorption (though not N2 sorption). Furthermore, single crystals of the desolvated polymer with CO2 molecules at three different temperatures were characterised by X-ray crystallography.

  5. An Artificial Enzyme Made by Covalent Grafting of an Fe(II) Complex into β-Lactoglobulin: Molecular Chemistry, Oxidation Catalysis, and Reaction-Intermediate Monitoring in a Protein.

    PubMed

    Buron, Charlotte; Sénéchal-David, Katell; Ricoux, Rémy; Le Caër, Jean-Pierre; Guérineau, Vincent; Méjanelle, Philippe; Guillot, Régis; Herrero, Christian; Mahy, Jean-Pierre; Banse, Frédéric

    2015-08-17

    An artificial metalloenzyme based on the covalent grafting of a nonheme Fe(II) polyazadentate complex into bovine β-lactoglobulin has been prepared and characterized by using various spectroscopic techniques. Attachment of the Fe(II) catalyst to the protein scaffold is shown to occur specifically at Cys121. In addition, spectrophotometric titration with cyanide ions based on the spin-state conversion of the initial high spin (S=2) Fe(II) complex into a low spin (S=0) one allows qualitative and quantitative characterization of the metal center's first coordination sphere. This biohybrid catalyst activates hydrogen peroxide to oxidize thioanisole into phenylmethylsulfoxide as the sole product with an enantiomeric excess of up to 20 %. Investigation of the reaction between the biohybrid system and H2 O2 reveals the generation of a high spin (S=5/2) Fe(III) (η(2) -O2 ) intermediate, which is proposed to be responsible for the catalytic sulfoxidation of the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. On the positronium spin conversion reactions caused by some macrocyclic Co II complexes

    NASA Astrophysics Data System (ADS)

    Fantola-Lazzarini, Anna L.; Lazzarini, Ennio

    2002-08-01

    The rate constants, kCR, of ortho- into para-positronium ( o-Ps→ p-Ps) spin conversion reactions, CR, caused by the high-spin [Co IIsep] 2+, [Co IIdinosar] 2+ and [Co IIdiamsar] 2+ macrocyclic complexes and also by high-spin [Co II sen] 2+ tripod complex were measured at several temperatures. The delocalizations, β, of Co II unpaired electrons, promoted by the mentioned ligands, were determined by using the previously established correlations between kCR and the electron delocalization β of unpaired metal electrons. β is given by the ratio between the Racah inter-electronic repulsion parameters of complexes, B, and that of the free ions, B0. The β values are compared with those of the Co II complexes with en (1,2-ethanediamine), pn (1,2 propanediamine) and dien (2,2' diamino diethylamine) ligands. The kCR rate constants are also compared with those of the Ps oxidation reactions, OR, promoted by the corresponding Co III complexes. It is concluded that, unlike OR's, the CR's do not occur by formation of hepta-coordinate adducts with Ps atoms.

  7. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

    NASA Astrophysics Data System (ADS)

    Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

    2007-04-01

    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

  8. Transverse momentum dependent evolution: Matching semi-inclusive deep inelastic scattering processes to Drell-Yan and W/Z boson production

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Yuan, Feng

    2013-12-01

    We examine the QCD evolution for the transverse momentum dependent observables in hard processes of semi-inclusive hadron production in deep inelastic scattering and Drell-Yan lepton pair production in pp collisions, including the spin-average cross sections and Sivers single transverse spin asymmetries. We show that the evolution equations derived by a direct integral of the Collins-Soper-Sterman evolution kernel from low to high Q can describe well the transverse momentum distributions of the unpolarized cross sections in the Q2 range from 2 to 100GeV2. In addition, the matching is established between our evolution and the Collins-Soper-Sterman resummation with b* prescription and Konychev-Nodalsky parametrization of the nonperturbative form factors, which are formulated to describe the Drell-Yan lepton pair and W/Z boson production in hadronic collisions. With these results, we present the predictions for the Sivers single transverse spin asymmetries in Drell-Yan lepton pair production and W± boson production in polarized pp and π-p collisions for several proposed experiments. We emphasize that these experiments will not only provide crucial test of the sign change of the Sivers asymmetry but also provide important opportunities to study the QCD evolution effects.

  9. KOI2138 -- a Spin-Orbit Aligned Intermediate Period Super-Earth

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.

    2015-11-01

    A planet's formation and evolution are encoded in spin-orbit alignment -- the planet's inclination relative to its star's equatorial plane. While the solar system's spin-orbit aligned planets indicate our own relatively quiescent history, many close-in giant planets show significant misalignment. Some planets even orbit retrograde! Hot Jupiters, then, have experienced fundamentally different histories than we experienced here in the solar system. In this presentation, I will show a new determination of the spin-orbit alignment of 2.1 REarth exoplanet candidate KOI2138. KOI2138 shows a gravity-darkened transit lightcurve that is consistent with spin-orbit alignment. This measurement is important because the only other super-Earth with an alignment determination (55 Cnc e, orbit period 0.74 days) is misaligned. With an orbital period of 23.55 days, KOI2138 is far enough from its star to avoid tidal orbit evolution. Therefore its orbit is likely primordial, and hence it may represent the tip of an iceberg of terrestrial, spin-orbit aligned planets that have histories that more closely resemble that of the solar system's terrestrial planets.

  10. Low-spin manganese(II) and high-spin manganese(III) complexes derived from disalicylaldehyde oxaloyldihydrazone: Synthesis, spectral characterization and electrochemical studies

    NASA Astrophysics Data System (ADS)

    Syiemlieh, Ibanphylla; Kumar, Arvind; Kurbah, Sunshine D.; De, Arjune K.; Lal, Ram A.

    2018-01-01

    Low-spin manganese(II) complexes [MnII(H2slox)].H2O (1), [MnII(H2slox)(SL)] (where SL (secondary ligand) = pyridine (py, 2), 2-picoline (2-pic, 3), 3-picoline (3-pic, 4), and 4-picoline (4-pic, 5) and high-spin manganese(III) complex Na(H2O)4[MnIII(slox)(H2O)2].2.5H2O have been synthesized from disalicyaldehyde oxaloyldihydrazone in methanolic - water medium. The composition of complexes has been established by elemental analyses and thermoanalytical data. The structures of the complexes have been discussed on the basis of data obtained from molar conductance, UV visible, 1H NMR, infrared spectra, magnetic moment and electron paramagnetic resonance spectroscopic studies. Conductivity measurements in DMF suggest that the complexes (1-5) are non-electrolyte while the complex (6) is 1:1 electrolyte. The electronic spectral studies and magnetic moment data suggest five - coordinate square pyramidal structure for the complexes (2-5) and square planar geometry for manganese(II) in complex (1). In complex (6), both sodium and manganese(III) have six coordinate octahedral geometry. IR spectral studies reveal that the dihydrazone coordinates to the manganese centre in keto form in complexes (1-5) and in enol form in complex (6). In all complexes, the ligand is present in anti-cis configuration. Magnetic moment and EPR studies indicate manganese in +2 oxidation state in complexes (1-5), with low-spin square planar complex (1) and square pyramidal stereochemistries complexes (2-5) while in +3 oxidation state in high-spin distorted octahedral stereochemistry in complex (6). The complex (1) involves significant metal - metal interaction in the solid state. All of the complexes show only one metal centred electron transfer reaction in DMF solution in cyclic voltammetric studies. The complexes (1-5) involve MnII→MnI redox reaction while the complex (6) involves MnIII→MnII redox reaction, respectively.

  11. Theoretical Modeling of the Magnetic Behavior of Thiacalix[4]arene Tetranuclear Mn(II)2Gd(III)2 and Co(II)2Eu(III)2 Complexes.

    PubMed

    Aldoshin, Sergey M; Sanina, Nataliya A; Palii, Andrew V; Tsukerblat, Boris S

    2016-04-04

    In view of a wide perspective of 3d-4f complexes in single-molecule magnetism, here we propose an explanation of the magnetic behavior of the two thiacalix[4]arene tetranuclear heterometallic complexes Mn(II)2Gd(III)2 and Co(II)2Eu(III)2. The energy pattern of the Mn(II)2Gd(III)2 complex evaluated in the framework of the isotropic exchange model exhibits a rotational band of the low-lying spin excitations within which the Landé intervals are affected by the biquadratic spin-spin interactions. The nonmonotonic temperature dependence of the χT product observed for the Mn(II)2Gd(III)2 complex is attributed to the competitive influence of the ferromagnetic Mn-Gd and antiferromagnetic Mn-Mn exchange interactions, the latter being stronger (J(Mn, Mn) = -1.6 cm(-1), Js(Mn, Gd) = 0.8 cm(-1), g = 1.97). The model for the Co(II)2Eu(III)2 complex includes uniaxial anisotropy of the seven-coordinate Co(II) ions and an isotropic exchange interaction in the Co(II)2 pair, while the Eu(III) ions are diamagnetic in their ground states. Best-fit analysis of χT versus T showed that the anisotropic contribution (arising from a large zero-field splitting in Co(II) ions) dominates (weak-exchange limit) in the Co(II)2Eu(III)2 complex (D = 20.5 cm(-1), J = -0.4 cm(-1), gCo = 2.22). This complex is concluded to exhibit an easy plane of magnetization (arising from the Co(II) pair). It is shown that the low-lying part of the spectrum can be described by a highly anisotropic effective spin-(1)/2 Hamiltonian that is deduced for the Co(II)2 pair in the weak-exchange limit.

  12. Control of electron spin decoherence in nuclear spin baths

    NASA Astrophysics Data System (ADS)

    Liu, Ren-Bao

    2011-03-01

    Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath. This work was supported by Hong Kong RGC/GRF CUHK402207, CUHK402209, and CUHK402410. The author acknowledges collaboration with Nan Zhao, Jian-Liang Hu, Sai Wah Ho, Jones T. K. Wan, and Jiangfeng Du.

  13. Spacer type mediated tunable spin crossover (SCO) characteristics of pyrene decorated 2,6-bis(pyrazol-1-yl)pyridine (bpp) based Fe(ii) molecular spintronic modules.

    PubMed

    Kumar, Kuppusamy Senthil; Šalitroš, Ivan; Moreno-Pineda, Eufemio; Ruben, Mario

    2017-08-14

    A simple "isomer-like" variation of the spacer group in a set of Fe(ii) spin crossover (SCO) complexes designed to probe spin state dependence of electrical conductivity in graphene-based molecular spintronic junctions led to the observation of remarkable variations in the thermal- and light-induced magnetic characteristics, paving a simple route for the design of functional SCO complexes with different temperature switching regimes based on a 2,6-bis(pyrazol-1-yl)pyridine ligand skeleton.

  14. Modeling the active site of [NiFe] hydrogenases and the [NiFeu] subsite of the C-cluster of carbon monoxide dehydrogenases: low-spin iron(II) versus high-spin iron(II).

    PubMed

    Weber, Katharina; Erdem, Özlen F; Bill, Eckhard; Weyhermüller, Thomas; Lubitz, Wolfgang

    2014-06-16

    A series of four [S2Ni(μ-S)2FeCp*Cl] compounds with different tetradentate thiolate/thioether ligands bound to the Ni(II) ion is reported (Cp* = C5Me5). The {S2Ni(μ-S)2Fe} core of these compounds resembles structural features of the active site of [NiFe] hydrogenases. Detailed analyses of the electronic structures of these compounds by Mössbauer and electron paramagnetic resonance spectroscopy, magnetic measurements, and density functional theory calculations reveal the oxidation states Ni(II) low spin and Fe(II) high spin for the metal ions. The same electronic configurations have been suggested for the Cred1 state of the C-cluster [NiFeu] subsite in carbon monoxide dehydrogenases (CODH). The Ni-Fe distance of ∼3 Å excludes a metal-metal bond between nickel and iron, which is in agreement with the computational results. Electrochemical experiments show that iron is the redox active site in these complexes, performing a reversible one-electron oxidation. The four complexes are discussed with regard to their similarities and differences both to the [NiFe] hydrogenases and the C-cluster of Ni-containing CODH.

  15. Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: creation and evolution of coherences.

    PubMed

    Ashbrook, Sharon E; Wimperis, Stephen

    2004-02-08

    Spin-locking of half-integer quadrupolar nuclei, such as 23Na (I=3/2) and 27Al (I=5/2), is of renewed interest owing to the development of variants of the multiple-quantum and satellite-transition magic angle spinning (MAS) nuclear magnetic resonance experiments that either utilize spin-locking directly or offer the possibility that spin-locked states may arise. However, the large magnitude and, under MAS, the time dependence of the quadrupolar interaction often result in complex spin-locking phenomena that are not widely understood. Here we show that, following the application of a spin-locking pulse, a variety of coherence transfer processes occur on a time scale of approximately 1/omegaQ before the spin system settles down into a spin-locked state which may itself be time dependent if MAS is performed. We show theoretically for both spin I=3/2 and 5/2 nuclei that the spin-locked state created by this initial rapid dephasing typically consists of a variety of single- and multiple-quantum coherences and nonequilibrium population states and we discuss the subsequent evolution of these under MAS. In contrast to previous work, we consider spin-locking using a wide range of radio frequency field strengths, i.e., a range that covers both the "strong-field" (omega1 > omegaQPAS and "weak-field" (omega1 < omegaQPAS limits. Single- and multiple-quantum filtered spin-locking experiments on NaNO2, NaNO3, and Al(acac)3, under both static and MAS conditions, are used to illustrate and confirm the results of the theoretical discussion.

  16. Vacancy-induced spin-glass behavior of Prussian blue analogue Fe II1.1Cr IIx[Cr III (CN) 6] 0.6- x· nH 2O nanowires

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Yao, Jinli; Xue, Desheng

    2010-09-01

    Prussian blue analogue Fe II1.1Cr IIx[Cr III(CN) 6] 0.6- x· nH 2O nanowires were synthesized by electrodeposition. The magnetic properties investigation indicates that the nanowires exhibit cluster spin-glass behavior, which undergoes a magnetic transition to a frozen state below about 62 K. Spin disorder arising from reduced coordination and broken exchange bonds between spin centers due to the structural defects may be the reason that causes the spin-glass freezing behavior. The negative magnetization observed at temperature lower than the compensation temperature ( Tcomp˜43 K) at a field of 10 Oe may be due to the different temperature dependences of the ferromagnetic site Fe-Cr and antiferromagnetic site Cr-Cr.

  17. Translation invariant time-dependent solutions to massive gravity II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourad, J.; Steer, D.A., E-mail: mourad@apc.univ-paris7.fr, E-mail: steer@apc.univ-paris7.fr

    2014-06-01

    This paper is a sequel to JCAP 12 (2013) 004 and is also devoted to translation-invariant solutions of ghost-free massive gravity in its moving frame formulation. Here we consider a mass term which is linear in the vielbein (corresponding to a β{sub 3} term in the 4D metric formulation) in addition to the cosmological constant. We determine explicitly the constraints, and from the initial value formulation show that the time-dependent solutions can have singularities at a finite time. Although the constraints give, as in the β{sub 1} case, the correct number of degrees of freedom for a massive spin twomore » field, we show that the lapse function can change sign at a finite time causing a singular time evolution. This is very different to the β{sub 1} case where time evolution is always well defined. We conclude that the β{sub 3} mass term can be pathological and should be treated with care.« less

  18. Dynamic Stabilization of a Quantum Many-Body Spin System

    NASA Astrophysics Data System (ADS)

    Hoang, T. M.; Gerving, C. S.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.

    2013-08-01

    We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis.

  19. The enigma of the magnetic pulsar SXP1062: a new look with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Oskinova, Lidia

    2012-10-01

    SXP 1062 is an exceptional case of a young neutron star with known age in a wind-fed HMXB. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. All current accretion scenarios encounter major difficulties explaining the spin-down rate of this accretion-powered pulsar. This study will allow us to construct a spin period-luminosity relation as a powerful tool for distinguishing between different accretion and evolution scenarios. The XMM-Newton observations of SXP 1062 will thus shed new light on the physics of accreting neutron stars.

  20. Spinning fluids in general relativity. II - Self-consistent formulation

    NASA Technical Reports Server (NTRS)

    Ray, John R.; Smalley, Larry, L.; Krisch, Jean P.

    1987-01-01

    Methods used earlier to derive the equations of motion for a spinning fluid in the Einstein-Cartan theory are specialized to the case of general relativity. The main idea is to include the spin as a thermodynamic variable in the theory.

  1. Magneto-optical studies of quantum dots

    NASA Astrophysics Data System (ADS)

    Russ, Andreas Hans

    Significant effort in condensed matter physics has recently been devoted to the field of "spintronics" which seeks to utilize the spin degree of freedom of electrons. Unlike conventional electronics that rely on the electron charge, devices exploiting their spin have the potential to yield new and novel technological applications, including spin transistors, spin filters, and spin-based memory devices. Any such application has the following essential requirements: 1) Efficient electrical injection of spin-polarized carriers; 2) Long spin lifetimes; 3) Ability to control and manipulate electron spins; 4) Effective detection of spin-polarized carriers. Recent work has demonstrated efficient electrical injection from ferromagnetic contacts such as Fe and MnAs, utilizing a spin-Light Emitting Diode (spin-LED) as a method of detection. Semiconductor quantum dots (QDs) are attractive candidates for satisfying requirements 2 and 3 as their zero dimensionality significantly suppresses many spin-flip mechanisms leading to long spin coherence times, as well as enabling the localization and manipulation of a controlled number of electrons and holes. This thesis is composed of three projects that are all based on the optical properties of QD structures including: I) Intershell exchange between spin-polarized electrons occupying adjacent shells in InAs QDs; II) Spin-polarized multiexitons in InAs QDs in the presence of spin-orbit interactions; III) The optical Aharonov-Bohm effect in AlxGa1-xAs/AlyGa1-yAs quantum wells (QWs). In the following we introduce some of the basic optical properties of quantum dots, describe the main tool (spin-LED) employed in this thesis to inject and detect spins in these QDs, and conclude with the optical Aharonov-Bohm effect (OAB) in type-II QDs.

  2. Electron spin dynamics and optical orientation of Mn2+ ions in GaAs

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.

    2013-04-01

    We present an overview of spin-related phenomena in GaAs doped with low concentration of Mn-acceptors (below 1018 cm-3). We use the combination of different experimental techniques such as spin-flip Raman scattering and time-resolved photoluminescence. This allows to evaluate the time evolution of both electron and Mn spins. We show that optical orientation of Mn ions is possible under application of weak magnetic field, which is required to suppress the manganese spin relaxation. The optically oriented Mn2+ ions maintain the spin and return part of the polarization back to the electron spin system providing a long-lived electron spin memory. This leads to a bunch of spectacular effects such as non-exponential electron spin decay and spin precession in the effective exchange fields.

  3. Syntheses, structures, and properties of trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)], constructed with the complexed bridging ligand [M(bpca)(2)] [M, M' = Ni(II), Mn(II); Cu(II), Mn(II); Fe(II), Mn(II); Ni(II), Fe(II); and Fe(II), Fe(II); Hbpca = Bis(2-pyridylcarbonyl)amine, Hhfac = Hexafluoroacetylacetone].

    PubMed

    Kamiyama, Asako; Noguchi, Tomoko; Kajiwara, Takashi; Ito, Tasuku

    2002-02-11

    Five trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)] (where MM'(2) = NiMn(2), CuMn(2), FeMn(2), NiFe(2), and FeFe(2); Hbpca = bis(2-pyridylcarbonyl)amine; and Hhfac = hexafluoroacetylacetone) were synthesized almost quantitatively by the reaction of [M(bpca)(2)] and [M'(hfac)(2)] in 1:2 molar ratio, and their structures and magnetic properties were investigated. Three complexes, with M' = Mn, crystallize in the same space group, Pna2(1), whereas two complexes, with M' = Fe, crystallize in P4(1), and complexes within each set are isostructural to one another. In all complexes, [M(bpca)(2)] acts as a bis-bidentate bridging ligand to form a linear trinuclear complex in which three metal ions are arranged in the manner M'-M-M'. The central metal ion is in a strong ligand field created by the N(6) donor set, and hence the Fe(II) in the [Fe(bpca)(2)] moiety is in a low-spin state. The terminal metal ions (M') are surrounded by O(6) donor sets with a moderate ligand field, which leads to the high-spin configuration of Fe(II). Three metal ions in all complexes are almost collinear, and metal-metal distances are ca. 5.5 A. The magnetic behavior of NiMn(2) and NiFe(2) shows a weak ferromagnetic interaction between the central Ni(II) ion and the terminal Mn(II) or Fe(II) ions. In these complexes, sigma-spin orbitals of the central Ni(II) ion and those of terminal metal ions have different symmetry about a 2-fold rotation axis through the Ni-N(amide)-M'(terminal) atoms, and this results in orthogonality between the neighboring sigma-spin orbitals and thus ferromagnetic interactions.

  4. Out-of-plane spin polarization of edge currents in Chern insulator with Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der

    2016-07-01

    We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from  +2 to  -1 (or  -2 to  +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.

  5. Out-of-plane spin polarization of edge currents in Chern insulator with Rashba spin-orbit interaction.

    PubMed

    Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der

    2016-07-13

    We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from  +2 to  -1 (or  -2 to  +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.

  6. Calculation of Transverse-Momentum-Dependent Evolution for Sivers Transverse Single Spin Asymmetry Measurements

    NASA Astrophysics Data System (ADS)

    Aybat, S. Mert; Prokudin, Alexei; Rogers, Ted C.

    2012-06-01

    The Sivers transverse single spin asymmetry (TSSA) is calculated and compared at different scales using the transverse-momentum-dependent (TMD) evolution equations applied to previously existing extractions. We apply the Collins-Soper-Sterman (CSS) formalism, using the version recently developed by Collins. Our calculations rely on the universality properties of TMD functions that follow from the TMD-factorization theorem. Accordingly, the nonperturbative input is fixed by earlier experimental measurements, including both polarized semi-inclusive deep inelastic scattering (SIDIS) and unpolarized Drell-Yan (DY) scattering. It is shown that recent preliminary COMPASS measurements are consistent with the suppression prescribed by TMD evolution.

  7. Ferromagnetic coupling by spin polarization in a trinuclear copper(II) metallacyclophane with a triangular cage-like structure.

    PubMed

    Dul, Marie-Claire; Ottenwaelder, Xavier; Pardo, Emilio; Lescouëzec, Rodrigue; Journaux, Yves; Chamoreau, Lise-Marie; Ruiz-García, Rafael; Cano, Joan; Julve, Miguel; Lloret, Francesc

    2009-06-15

    A series of trinuclear copper(II) complexes of general formula A(6)[Cu(3)L(2)] x nH(2)O [L = benzene-1,3,5-tris(oxamate); A = Li(+) (n = 8), 1a; Na(+) (n = 11.5), 1b; and K(+) (n = 8.5), 1c] have been synthesized, and they have been structurally and magnetically characterized. X-ray diffraction on single crystals of 1c shows the presence of three square-planar copper(II)-bis(oxamato) moieties which are connected by a double benzene-1,3,5-triyl skeleton to give a unique metallacyclophane-type triangular cage. The copper basal planes are virtually orthogonal to the two benzene rings, which adopt an almost perfect face-to-face alignment. Complexes 1a-c exhibit a quartet (S = 3/2) ground spin state resulting from the moderate ferromagnetic coupling (J values in the range of +7.3 to +16.5 cm(-1)) between the three Cu(II) ions across the two benzene-1,3,5-tris(amidate) bridges [H = -J(S(1) x S(2) + S(2) x S(3) + S(3) x S(1)) with S(1) = S(2) = S(3) = S(Cu) = 1/2]. Density functional theory calculations on the S = 3/2 Cu(II)(3) ground spin state of 1c support the occurrence of a spin polarization mechanism for the propagation of the exchange interaction, as evidenced by the sign alternation of the spin density in the 1,3,5-substituted benzene spacers.

  8. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Chou, Yi; Ng, C.-Y.; Lin, Lupin Chun-Che; Yen, David Chien-Chang

    2017-07-01

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparable to the local spin-up rate of OAO 1657-415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ˜1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.

  9. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Chin-Ping; Ng, C.-Y.; Chou, Yi

    2017-07-20

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparablemore » to the local spin-up rate of OAO 1657−415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ∼1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.« less

  10. Thermoelectronic transport through spin-crossover single molecule Fe[(H2Bpz2)2bipy

    NASA Astrophysics Data System (ADS)

    Liu, N.; Zhu, L.; Yao, K. L.

    2018-04-01

    By means of density functional theory combined with the method of Keldysh nonequilibrium Green’s function, the thermal transport properties of high- and low-spin states of mononuclear FeII molecules with spin-crossover characteristics are studied. It is found that the high-spin molecular junction has a larger current than the low-spin one, producing thermally-induced switching effect. Furthermore, for high spin state molecule, the spin-up thermo-current is strongly blocked, thus achieving a pure thermo spin current. The enhanced Seebeck coefficient and the figure of merit value of high-spin state indicate that it is an ideal candidate for thermoelectric applications.

  11. Obliquity evolution of the minor satellites of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Nichols-Fleming, Fiona; Chen, Yuan-Yuan; Noyelles, Benoît

    2017-09-01

    New Horizons mission observations show that the small satellites Styx, Nix, Kerberos and Hydra, of the Pluto-Charon system, have not tidally spun-down to near synchronous spin states and have high obliquities with respect to their orbit about the Pluto-Charon binary (Weaver, 2016). We use a damped mass-spring model within an N-body simulation to study spin and obliquity evolution for single spinning non-round bodies in circumbinary orbit. Simulations with tidal dissipation alone do not show strong obliquity variations from tidally induced spin-orbit resonance crossing and this we attribute to the high satellite spin rates and low orbital eccentricities. However, a tidally evolving Styx exhibits intermittent obliquity variations and episodes of tumbling. During a previous epoch where Charon migrated away from Pluto, the minor satellites could have been trapped in orbital mean motion inclination resonances. An outward migrating Charon induces large variations in Nix and Styx's obliquities. The cause is a commensurability between the mean motion resonance frequency and the spin precession rate of the spinning body. As the minor satellites are near mean motion resonances, this mechanism could have lifted the obliquities of all four minor satellites. The high obliquities need not be primordial if the minor satellites were at one time captured into mean motion resonances.

  12. THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Sudip; Chakrabarty, Deepto, E-mail: sudip@tifr.res.in

    A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due tomore » electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.« less

  13. Generating spin squeezing states and Greenberger-Horne-Zeilinger entanglement using a hybrid phonon-spin ensemble in diamond

    NASA Astrophysics Data System (ADS)

    Xia, Keyu; Twamley, Jason

    2016-11-01

    Quantum squeezing and entanglement of spins can be used to improve the sensitivity in quantum metrology. Here we propose a scheme to create collective coupling of an ensemble of spins to a mechanical vibrational mode actuated by an external magnetic field. We find an evolution time where the mechanical motion decouples from the spins, and the accumulated geometric phase yields a squeezing of 5.9 dB for 20 spins. We also show the creation of a Greenberger-Horne-Zeilinger spin state for 20 spins with a fidelity of ˜0.62 at cryogenic temperature. The numerical simulations show that the geometric-phase-based scheme is mostly immune to thermal mechanical noise.

  14. Detection of single electron spin resonance in a double quantum dota)

    NASA Astrophysics Data System (ADS)

    Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.

    2007-04-01

    Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.

  15. Time-resolved lateral spin-caloric transport of optically generated spin packets in n-GaAs

    NASA Astrophysics Data System (ADS)

    Göbbels, Stefan; Güntherodt, Gernot; Beschoten, Bernd

    2018-05-01

    We report on lateral spin-caloric transport (LSCT) of electron spin packets which are optically generated by ps laser pulses in the non-magnetic semiconductor n-GaAs at K. LSCT is driven by a local temperature gradient induced by an additional cw heating laser. The spatio-temporal evolution of the spin packets is probed using time-resolved Faraday rotation. We demonstrate that the local temperature-gradient induced spin diffusion is solely driven by a non-equilibrium hot spin distribution, i.e. without involvement of phonon drag effects. Additional electric field-driven spin drift experiments are used to verify directly the validity of the non-classical Einstein relation for moderately doped semiconductors at low temperatures for near band-gap excitation.

  16. Switching probability of all-perpendicular spin valve nanopillars

    NASA Astrophysics Data System (ADS)

    Tzoufras, M.

    2018-05-01

    In all-perpendicular spin valve nanopillars the probability density of the free-layer magnetization is independent of the azimuthal angle and its evolution equation simplifies considerably compared to the general, nonaxisymmetric geometry. Expansion of the time-dependent probability density to Legendre polynomials enables analytical integration of the evolution equation and yields a compact expression for the practically relevant switching probability. This approach is valid when the free layer behaves as a single-domain magnetic particle and it can be readily applied to fitting experimental data.

  17. What makes the family of barred disc galaxies so rich: damping stellar bars in spinning haloes

    NASA Astrophysics Data System (ADS)

    Collier, Angela; Shlosman, Isaac; Heller, Clayton

    2018-05-01

    We model and analyse the secular evolution of stellar bars in spinning dark matter (DM) haloes with the cosmological spin λ ˜ 0-0.09. Using high-resolution stellar and DM numerical simulations, we focus on angular momentum exchange between stellar discs and DM haloes of various axisymmetric shapes - spherical, oblate, and prolate. We find that stellar bars experience a diverse evolution that is guided by the ability of parent haloes to absorb angular momentum, J, lost by the disc through the action of gravitational torques, resonant and non-resonant. We confirm that dynamical bar instability is accelerated via resonant J-transfer to the halo. Our main findings relate to the long-term secular evolution of disc-halo systems: with an increasing λ, bars experience less growth and basically dissolve after they pass through vertical buckling instability. Specifically, with increasing λ, (1) the vertical buckling instability in stellar bars colludes with inability of the inner halo to absorb J - this emerges as the main factor weakening or destroying bars in spinning haloes; (2) bars lose progressively less J, and their pattern speeds level off; (3) bars are smaller, and for λ ≳ 0.06 cease their growth completely following buckling; (4) bars in λ > 0.03 haloes have ratio of corotation-to-bar radii, RCR/Rb > 2, and represent so-called slow bars without offset dust lanes. We provide a quantitative analysis of J-transfer in disc-halo systems, and explain the reasons for absence of growth in fast spinning haloes and its observational corollaries. We conclude that stellar bar evolution is substantially more complex than anticipated, and bars are not as resilient as has been considered so far.

  18. 14 CFR 23.221 - Spinning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...

  19. 14 CFR 23.221 - Spinning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...

  20. 14 CFR 23.221 - Spinning.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...

  1. 14 CFR 23.221 - Spinning.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...

  2. 14 CFR 23.221 - Spinning.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...

  3. Long-time efficacy of the surface code in the presence of a super-Ohmic environment

    NASA Astrophysics Data System (ADS)

    López-Delgado, D. A.; Novais, E.; Mucciolo, E. R.; Caldeira, A. O.

    2017-06-01

    We study the long-time evolution of a quantum memory coupled to a bosonic environment on which quantum error correction (QEC) is performed using the surface code. The memory's evolution encompasses N QEC cycles, each of them yielding a nonerror syndrome. This assumption makes our analysis independent of the recovery process. We map the expression for the time evolution of the memory onto the partition function of an equivalent statistical-mechanical spin system. In the super-Ohmic dissipation case the long-time evolution of the memory has the same behavior as the time evolution for just one QEC cycle. For this case we find analytical expressions for the critical parameters of the order-disorder phase transition of an equivalent spin system. These critical parameters determine the threshold value for the system-environment coupling below which it is possible to preserve the memory's state.

  4. Stern-Gerlach dynamics with quantum propagators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Bailey C.; Berrondo, Manuel; Van Huele, Jean-Francois S.

    2011-01-15

    We study the quantum dynamics of a nonrelativistic neutral particle with spin in inhomogeneous external magnetic fields. We first consider fields with one-dimensional inhomogeneities, both unphysical and physical, and construct the corresponding analytic propagators. We then consider fields with two-dimensional inhomogeneities and develop an appropriate numerical propagation method. We propagate initial states exhibiting different degrees of space localization and various initial spin configurations, including both pure and mixed spin states. We study the evolution of their spin densities and identify characteristic features of spin density dynamics, such as the spatial separation of spin components, and spin localization or accumulation. Wemore » compare our approach and our results with the coverage of the Stern-Gerlach effect in the literature, and we focus on nonstandard Stern-Gerlach outcomes, such as radial separation, spin focusing, spin oscillation, and spin flipping.« less

  5. Entanglement and quantum state geometry of a spin system with all-range Ising-type interaction

    NASA Astrophysics Data System (ADS)

    Kuzmak, A. R.

    2018-04-01

    The evolution of an N spin-1/2 system with all-range Ising-type interaction is considered. For this system we study the entanglement of one spin with the rest spins. It is shown that the entanglement depends on the number of spins and the initial state. Also, the geometry of the manifold, which contains entangled states, is obtained. For this case we find the dependence of entanglement on the scalar curvature of the manifold and examine it for different numbers of spins in the system. Finally we show that the transverse magnetic field leads to a change in the manifold topology.

  6. Efficient spin-filter and negative differential resistance behaviors in FeN4 embedded graphene nanoribbon device

    NASA Astrophysics Data System (ADS)

    Liu, N.; Liu, J. B.; Yao, K. L.; Ni, Y.; Wang, S. L.

    2016-03-01

    In this paper, we propose a new device of spintronics by embedding two FeN4 molecules into armchair graphene nanoribbon and sandwiching them between N-doped graphene nanoribbon electrodes. Our first-principle quantum transport calculations show that the device is a perfect spin filter with high spin-polarizations both in parallel configuration (PC) and antiparallel configuration (APC). Moreover, negative differential resistance phenomena are obtained for the spin-down current in PC, and the spin-up and spin-down currents in APC. These transport properties are explained by the bias-dependent evolution of molecular orbitals and the transmission spectra.

  7. Spin-down of radio millisecond pulsars at genesis.

    PubMed

    Tauris, Thomas M

    2012-02-03

    Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.

  8. Spin tuning of electron-doped metal-phthalocyanine layers.

    PubMed

    Stepanow, Sebastian; Lodi Rizzini, Alberto; Krull, Cornelius; Kavich, Jerald; Cezar, Julio C; Yakhou-Harris, Flora; Sheverdyaeva, Polina M; Moras, Paolo; Carbone, Carlo; Ceballos, Gustavo; Mugarza, Aitor; Gambardella, Pietro

    2014-04-09

    The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state.

  9. Quark-nova remnants. I. The leftover debris with applications to SGRs, AXPs, and XDINs

    NASA Astrophysics Data System (ADS)

    Ouyed, R.; Leahy, D.; Niebergal, B.

    2007-10-01

    We explore the formation and evolution of debris ejected around quark stars in the Quark Nova scenario, and the application to Soft Gamma-ray Repeaters (SGRs) and Anomolous X-ray Pulsars (AXPs). If an isolated neutron star explodes as a Quark Nova, an iron-rich shell of degenerate matter forms from its crust. This model can account for many of the observed features of SGRs and AXPs such as: (i) the two types of bursts (giant and regular); (ii) the spin-up and spin-down episodes during and following the bursts with associated increases in dot{P}; (iii) the energetics of the boxing day burst, SGR1806+20; (iv) the presence of an iron line as observed in SGR1900+14; (v) the correlation between the far-infrared and the X-ray fluxes during the bursting episode and the quiescent phase; (vi) the hard X-ray component observed in SGRs during the giant bursts, and (vii) the discrepancy between the ages of SGRs/AXPs and their supernova remnants. We also find a natural evolutionary relationship between SGRs and AXPs in our model which predicts that the youngest SGRs/AXPs are the most likely to exhibit strong bursting. Many features of X-ray Dim Isolated Neutron stars (XDINs) are also accounted for in our model such as, (i) the two-component blackbody spectra; (ii) the absorption lines around 300 eV; and (iii) the excess optical emission. Table 1 is only available in electronic form at http://www.aanda.org

  10. Spin evolution of Earth-sized exoplanets, including atmospheric tides and core-mantle friction

    NASA Astrophysics Data System (ADS)

    Cunha, Diana; Correia, Alexandre C. M.; Laskar, Jacques

    2015-04-01

    Planets with masses between 0.1 and 10 M ⊕ are believed to host dense atmospheres. These atmospheres can play an important role on the planet's spin evolution, since thermal atmospheric tides, driven by the host star, may counterbalance gravitational tides. In this work, we study the long-term spin evolution of Earth-sized exoplanets. We generalize previous works by including the effect of eccentric orbits and obliquity. We show that under the effect of tides and core-mantle friction, the obliquity of the planets evolves either to 0° or 180°. The rotation of these planets is also expected to evolve into a very restricted number of equilibrium configurations. In general, none of these equilibria is synchronous with the orbital mean motion. The role of thermal atmospheric tides becomes more important for Earth-sized planets in the habitable zones of their systems; so they cannot be neglected when we search for their potential habitability.

  11. Rotational Invariance of the 2d Spin - Spin Correlation Function

    NASA Astrophysics Data System (ADS)

    Pinson, Haru

    2012-09-01

    At the critical temperature in the 2d Ising model on the square lattice, we establish the rotational invariance of the spin-spin correlation function using the asymptotics of the spin-spin correlation function along special directions (McCoy and Wu in the two dimensional Ising model. Harvard University Press, Cambridge, 1973) and the finite difference Hirota equation for which the spin-spin correlation function is shown to satisfy (Perk in Phys Lett A 79:3-5, 1980; Perk in Proceedings of III international symposium on selected topics in statistical mechanics, Dubna, August 22-26, 1984, JINR, vol II, pp 138-151, 1985).

  12. Solution behavior of iron(III) and iron(II) porphyrins in DMSO and reaction with superoxide. Effect of neighboring positive charge on thermodynamics, kinetics and nature of iron-(su)peroxo product.

    PubMed

    Duerr, K; Troeppner, O; Olah, J; Li, J; Zahl, A; Drewello, T; Jux, N; Harvey, J N; Ivanović-Burmazović, I

    2012-01-14

    The solution behavior of iron(III) and iron(II) complexes of 5(4),10(4),15(4),20(4)-tetra-tert-butyl-5,10,15,20-tetraphenylporphyrin (H(2)tBuTPP) and the reaction with superoxide (KO(2)) in DMSO have been studied in detail. Applying temperature and pressure dependent NMR studies, the thermodynamics of the low-spin/high-spin equilibrium between bis- and mono-DMSO Fe(II) forms have been quantified (K(DMSO) = 0.082 ± 0.002 at 298.2 K, ΔH° = +36 ± 1 kJ mol(-1), ΔS° = +101 ± 4 J K(-1) mol(-1), ΔV° = +16 ± 2 cm(3) mol(-1)). This is a key activation step for substitution and inner-sphere electron transfer. The superoxide binding constant to the iron(II) form of the studied porphyrin complex was found to be (9 ± 0.5) × 10(3) M(-1), and does not change significantly in the presence of the externally added crown ether in DMSO (11 ± 4) × 10(3) M(-1). The rate constants for the superoxide binding (k(on) = (1.30 ± 0.01) × 10(5) M(-1) s(-1)) and release (k(off) = 11.6 ± 0.7 s(-1)) are not affected by the presence of the external crown ether in solution. The resulting iron(II)-superoxide adduct has been characterized (mass spectrometry, EPR, high-pressure UV/Vis spectroscopy) and upon controlled addition of a proton source it regenerates the starting iron(II) complex. Based on DFT calculations, the reaction product without neighboring positive charge has iron(II)-superoxo character in both high-spin side-on and low-spin end-on forms. The results are compared to those obtained for the analogous complex with covalently attached crown ether, and more general conclusions regarding the spin-state equilibrium of iron(II) porphyrins, their reaction with superoxide and the electronic structure of the product species are drawn.

  13. Quantum Information Processing with Large Nuclear Spins in GaAs Semiconductors

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael N.; Loss, Daniel; Poggio, M.; Awschalom, D. D.

    2002-10-01

    We propose an implementation for quantum information processing based on coherent manipulations of nuclear spins I=3/2 in GaAs semiconductors. We describe theoretically an NMR method which involves multiphoton transitions and which exploits the nonequidistance of nuclear spin levels due to quadrupolar splittings. Starting from known spin anisotropies we derive effective Hamiltonians in a generalized rotating frame, valid for arbitrary I, which allow us to describe the nonperturbative time evolution of spin states generated by magnetic rf fields. We identify an experimentally observable regime for multiphoton Rabi oscillations. In the nonlinear regime, we find Berry phase interference.

  14. Highly anisotropic exchange interactions in a trigonal bipyramidal cyanide-bridged Ni(II)3Os(III)2 cluster.

    PubMed

    Palii, Andrei V; Reu, Oleg S; Ostrovsky, Sergei M; Klokishner, Sophia I; Tsukerblat, Boris S; Hilfiger, Matthew; Shatruk, Michael; Prosvirin, Andrey; Dunbar, Kim R

    2009-06-25

    This article is a part of our efforts to control the magnetic anisotropy in cyanide-based exchange-coupled systems with the eventual goal to obtain single-molecule magnets with higher blocking temperatures. We give the theoretical interpretation of the magnetic properties of the new pentanuclear complex {[Ni(II)(tmphen)(2)](3)[Os(III)(CN)(6)](2)} x 6 CH(3)CN (Ni(II)(3)Os(III)(2) cluster). Because the system contains the heavy Os(III) ions, spin-orbit coupling considerably exceeds the contributions from the low-symmetry crystal field and exchange coupling. The magnetic properties of the Ni(II)(3)Os(III)(2) cluster are described in the framework of a highly anisotropic pseudo-spin Hamiltonian that corresponds to the limit of strong spin-orbital coupling and takes into account the complex molecular structure. The model provides a good fit to the experimental data and allows the conclusion that the trigonal axis of the bipyramidal Ni(II)(3)Os(III)(2) cluster is a hard axis of magnetization. This explains the fact that in contrast with the isostructural trigonal bipyramidal Mn(III)(2)Mn(II)(3) cluster, the Ni(II)(3)Os(III)(2) system does not exhibit the single-molecule magnetic behavior.

  15. Coherent evolution of parahydrogen induced polarisation using laser pump, NMR probe spectroscopy: Theoretical framework and experimental observation.

    PubMed

    Halse, Meghan E; Procacci, Barbara; Henshaw, Sarah-Louise; Perutz, Robin N; Duckett, Simon B

    2017-05-01

    We recently reported a pump-probe method that uses a single laser pulse to introduce parahydrogen (p-H 2 ) into a metal dihydride complex and then follows the time-evolution of the p-H 2 -derived nuclear spin states by NMR. We present here a theoretical framework to describe the oscillatory behaviour of the resultant hyperpolarised NMR signals using a product operator formalism. We consider the cases where the p-H 2 -derived protons form part of an AX, AXY, AXYZ or AA'XX' spin system in the product molecule. We use this framework to predict the patterns for 2D pump-probe NMR spectra, where the indirect dimension represents the evolution during the pump-probe delay and the positions of the cross-peaks depend on the difference in chemical shift of the p-H 2 -derived protons and the difference in their couplings to other nuclei. The evolution of the NMR signals of the p-H 2 -derived protons, as well as the transfer of hyperpolarisation to other NMR-active nuclei in the product, is described. The theoretical framework is tested experimentally for a set of ruthenium dihydride complexes representing the different spin systems. Theoretical predictions and experimental results agree to within experimental error for all features of the hyperpolarised 1 H and 31 P pump-probe NMR spectra. Thus we establish the laser pump, NMR probe approach as a robust way to directly observe and quantitatively analyse the coherent evolution of p-H 2 -derived spin order over micro-to-millisecond timescales. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz’menkov, L.S., E-mail: lsk@phys.msu.ru

    We consider quantum plasmas of electrons and motionless ions. We describe separate evolution of spin-up and spin-down electrons. We present corresponding set of quantum hydrodynamic equations. We assume that plasmas are placed in an uniform external magnetic field. We account different occupation of spin-up and spin-down quantum states in equilibrium degenerate plasmas. This effect is included via equations of state for pressure of each species of electrons. We study oblique propagation of longitudinal waves. We show that instead of two well-known waves (the Langmuir wave and the Trivelpiece–Gould wave), plasmas reveal four wave solutions. New solutions exist due to bothmore » the separate consideration of spin-up and spin-down electrons and different occupation of spin-up and spin-down quantum states in equilibrium state of degenerate plasmas.« less

  17. Spin Interactions and Spin Dynamics in Electronic Nanostructures

    DTIC Science & Technology

    2006-08-31

    in Semiconductor Nanostructures,” D. D. Awschalom, Plenary Speaker, 36th International Symposium on Compound Semiconductors, San Diego, CA, August 25...Electrical Manipulation of Spin Orientation in Compound Semiconductors”, M. E. Flatté, W. H. Lau, C. E. Pryor, and I. Tifrea, International Symposium...on Compound Semiconductors 2003, San Diego, August 25, 2003. 73. “Spin Dynamics in Semiconductors”, M. E. Flatté, SPINTECH II: 2nd International

  18. Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mert Aybat, Ted Rogers, Alexey Prokudin

    In this letter, we show that it is necessary to include the full treatment of QCD evolution of Transverse Momentum Dependent parton densities to explain discrepancies between HERMES data and recent COMPASS data on a proton target for the Sivers transverse single spin asymmetry in Semi-Inclusive Deep Inelastic Scattering (SIDIS). Calculations based on existing fits to TMDs in SIDIS, and including evolution within the Collins-Soper-Sterman with properly defined TMD PDFs are shown to provide a good explanation for the discrepancy. The non-perturbative input needed for the implementation of evolution is taken from earlier analyses of unpolarized Drell-Yan (DY) scattering atmore » high energy. Its success in describing the Sivers function in SIDIS data at much lower energies is strong evidence in support of the unifying aspect of the QCD TMD-factorization formalism.« less

  19. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    NASA Astrophysics Data System (ADS)

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-04-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties.

  20. High-spin ribbons and antiferromagnetic ordering of a Mn(II)-biradical-Mn(II) complex.

    PubMed

    Fatila, Elisabeth M; Clérac, Rodolphe; Rouzières, Mathieu; Soldatov, Dmitriy V; Jennings, Michael; Preuss, Kathryn E

    2013-09-11

    A binuclear metal coordination complex of the first thiazyl-based biradical ligand 1 is reported (1 = 4,6-bis(1,2,3,5-dithiadiazolyl)pyrimidine; hfac =1,1,1,5,5,5,-hexafluoroacetylacetonato-). The Mn(hfac)2-biradical-Mn(hfac)2 complex 2 is a rare example of a discrete, molecular species employing a neutral bridging biradical ligand. It is soluble in common organic solvents and can be easily sublimed as a crystalline solid. Complex 2 has a spin ground state of S(T) = 4 resulting from antiferromagnetic coupling between the S(birad) = 1 biradical bridging ligand and two S(Mn) = 5/2 Mn(II) ions. Electrostatic contacts between atoms with large spin density promote a ferromagnetic arrangement of the moments of neighboring complexes in ribbon-like arrays. Weak antiferromagnetic coupling between these high-spin ribbons stabilizes an ordered antiferromagnetic ground state below 4.5 K. This is an unusual example of magnetic ordering in a molecular metal-radical complex, wherein the electrostatic contacts that direct the crystal packing are also responsible for providing an efficient exchange coupling pathway between molecules.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastings, Danielle M.; Margot, Jean-Luc; Ragozzine, Darin

    Hi’iaka is the larger outer satellite of the dwarf planet Haumea. Using relative photometry from the Hubble Space Telescope and Magellan and a phase dispersion minimization analysis, we have identified the rotation period of Hi’iaka to be ∼9.8 hr (double peaked). This is ∼120 times faster than its orbital period, creating new questions about the formation of this system and possible tidal evolution. The rapid rotation suggests that Hi’iaka could have a significant obliquity and spin precession that could be visible in light curves within a few years. We then turn to an investigation of what we learn about themore » (currently unclear) formation of the Haumea system and family based on this unexpectedly rapid rotation rate. We explore the importance of the initial semimajor axis and rotation period in tidal evolution theory and find that they strongly influence the time required to despin to synchronous rotation, relevant to understanding a wide variety of satellite and binary systems. We find that despinning tides do not necessarily lead to synchronous spin periods for Hi’iaka, even if it formed near the Roche limit. Therefore, the short rotation period of Hi’iaka does not rule out significant tidal evolution. Hi’iaka’s spin period is also consistent with formation near its current location and spin-up due to Haumea-centric impactors.« less

  2. Monte Carlo generators for studies of the 3D structure of the nucleon

    DOE PAGES

    Avakian, Harut; D'Alesio, U.; Murgia, F.

    2015-01-23

    In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.

  3. Spin injection and detection in lateral spin valves with hybrid interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Le; Liu, Wenyu; Ying, Hao; Chen, Luchen; Lu, Zhanjie; Han, Shuo; Chen, Shanshan; Zhao, Bing; Xu, Xiaoguang; Jiang, Yong

    2018-06-01

    Spin injection and detection in lateral spin valves with hybrid interfaces comprising a Co/Ag transparent contact and a Co/MgO/Ag junction (III) are investigated at room temperature in comparison with pure Co/Ag transparent contacts (I) and Co/MgO/Ag junctions (II). The measured spin-accumulation signals of a type III device are five times higher than those for type I. The extracted spin diffusion length in Ag is 180 nm for all three types of devices. The enhancement of the spin signal of the hybrid structure is mainly attributed to the increase of the interfacial spin polarization from the Co/MgO/Ag junction.

  4. Multireversible redox processes in pentanuclear bis(triple-helical) manganese complexes featuring an oxo-centered triangular {Mn(II)2Mn(III)(μ3-O)}5+ or {Mn(II)Mn(III)2(μ3-O)}6+ core wrapped by two {Mn(II)2(bpp)3}-.

    PubMed

    Romain, Sophie; Rich, Jordi; Sens, Cristina; Stoll, Thibaut; Benet-Buchholz, Jordi; Llobet, Antoni; Rodriguez, Montserrat; Romero, Isabel; Clérac, Rodolphe; Mathonière, Corine; Duboc, Carole; Deronzier, Alain; Collomb, Marie-Noëlle

    2011-09-05

    A new pentanuclear bis(triple-helical) manganese complex has been isolated and characterized by X-ray diffraction in two oxidation states: [{Mn(II)(μ-bpp)(3)}(2)Mn(II)(2)Mn(III)(μ-O)](3+) (1(3+)) and [{Mn(II)(μ-bpp)(3)}(2)Mn(II)Mn(III)(2)(μ-O)](4+) (1(4+)). The structure consists of a central {Mn(3)(μ(3)-O)} core of Mn(II)(2)Mn(III) (1(3+)) or Mn(II)Mn(III)(2) ions (1(4+)) which is connected to two apical Mn(II) ions through six bpp(-) ligands. Both cations have a triple-stranded helicate configuration, and a pair of enantiomers is present in each crystal. The redox properties of 1(3+) have been investigated in CH(3)CN. A series of five distinct and reversible one-electron waves is observed in the -1.0 and +1.50 V potential range, assigned to the Mn(II)(4)Mn(III)/Mn(II)(5), Mn(II)(3)Mn(III)(2)/Mn(II)(4)Mn(III), Mn(II)(2)Mn(III)(3)/Mn(II)(3)Mn(III)(2), Mn(II)Mn(III)(4)/Mn(II)(2)Mn(III)(3), and Mn(III)(5)/Mn(II)Mn(III)(4) redox couples. The two first oxidation processes leading to Mn(II)(3)Mn(III)(2) (1(4+)) and Mn(II)(2)Mn(III)(3) (1(5+)) are related to the oxidation of the Mn(II) ions of the central core and the two higher oxidation waves, close in potential, are thus assigned to the oxidation of the two apical Mn(II) ions. The 1(4+) and 1(5+) oxidized species and the reduced Mn(4)(II) (1(2+)) species are quantitatively generated by bulk electrolyses demonstrating the high stability of the pentanuclear structure in four oxidation states (1(2+) to 1(5+)). The spectroscopic characteristics (X-band electron paramagnetic resonance, EPR, and UV-visible) of these species are also described as well as the magnetic properties of 1(3+) and 1(4+) in solid state. The powder X- and Q-band EPR signature of 1(3+) corresponds to an S = 5/2 spin state characterized by a small zero-field splitting parameter (|D| = 0.071 cm(-1)) attributed to the two apical Mn(II) ions. At 40 K, the magnetic behavior is consistent for 1(3+) with two apical S = 5/2 {Mn(II)(bpp)(3)}(-) and one S = 2 noninteracting spins (11.75 cm(3) K mol(-1)), and for 1(4+) with three S = 5/2 noninteracting spins (13.125 cm(3) K mol(-1)) suggesting that the {Mn(II)(2)Mn(III)(μ(3)-O)}(5+) and {Mn(II)Mn(III)(2)(μ(3)-O)}(6+) cores behave at low temperature like S = 2 and S = 5/2 spin centers, respectively. The thermal behavior below 40 K highlights the presence of intracomplex magnetic interactions between the two apical spins and the central core, which is antiferromagnetic for 1(3+) leading to an S(T) = 3 and ferromagnetic for 1(4+) giving thus an S(T) = 15/2 ground state.

  5. Soliton switching in a site-dependent ferromagnet

    NASA Astrophysics Data System (ADS)

    Senjudarvannan, R.; Sathishkumar, P.; Vijayalakshmi, S.

    2017-02-01

    Switching of soliton in a ferromagnetic medium offers the possibility of developing a new innovative approach for information storage technologies. The nonlinear spin dynamics of a site-dependent Heisenberg ferromagnetic spin chain with Gilbert damping under the influence of external magnetic field is expressed in the form of the Landau-Lifshitz-Gilbert equation in the classical continuum limit. The corresponding evolution equation is developed through stereographic projection technique by projecting the unit sphere of spin onto a complex plane. The exact soliton solutions are constructed by solving the associated evolution equation through the modified extended tanh-function method. The impact of damping and external magnetic field on the magnetic soliton under the invariant inhomogeneity is investigated and finally, the magnetization switching in the form of shape changing solitons are demonstrated.

  6. Time evolution of a pair of distinguishable interacting spins subjected to controllable and noisy magnetic fields

    NASA Astrophysics Data System (ADS)

    Grimaudo, R.; Belousov, Yu.; Nakazato, H.; Messina, A.

    2018-05-01

    The quantum dynamics of a Jˆ2 =(jˆ1 +jˆ2) 2-conserving Hamiltonian model describing two coupled spins jˆ1 and jˆ2 under controllable and fluctuating time-dependent magnetic fields is investigated. Each eigenspace of Jˆ2 is dynamically invariant and the Hamiltonian of the total system restricted to any one of such (j1 +j2) - |j1 -j2 | + 1 eigenspaces, possesses the SU(2) structure of the Hamiltonian of a single fictitious spin acted upon by the total magnetic field. We show that such a reducibility holds regardless of the time dependence of the externally applied field as well as of the statistical properties of the noise, here represented as a classical fluctuating magnetic field. The time evolution of the joint transition probabilities of the two spins jˆ1 and jˆ2 between two prefixed factorized states is examined, bringing to light peculiar dynamical properties of the system under scrutiny. When the noise-induced non-unitary dynamics of the two coupled spins is properly taken into account, analytical expressions for the joint Landau-Zener transition probabilities are reported. The possibility of extending the applicability of our results to other time-dependent spin models is pointed out.

  7. Dynamics of a localized spin excitation close to the spin-helix regime

    NASA Astrophysics Data System (ADS)

    Salis, Gian; Walser, Matthias; Altmann, Patrick; Reichl, Christian; Wegscheider, Werner

    2014-03-01

    The time evolution of a local spin excitation in a (001)-confined two-dimensional electron gas subjected to Rashba and Dresselhaus spin-orbit interactions of similar strength is investigated theoretically and compared with experimental data. Specifically, the consequences of a finite spatial extension of the initial spin polarization are studied for non-balanced Rashba and Dresselhaus terms and for finite cubic Dresselhaus spin-orbit interaction. We show that the initial out-of-plane spin polarization evolves into a helical spin pattern with a wave number that gradually approaches the value q0 of the persistent spin helix mode. In addition to an exponential decay of the spin polarization that is proportional to both the spin-orbit imbalance and the cubic Dresselhaus term, the finite width w of the spin excitation reduces the spin polarization by a factor that approaches exp(-q02w2 / 2) at longer times. This result bridges the gap between the formation of a long-lived helical spin mode and a spatially homogeneous spin decay described by the Dyakonov-Perel mechanism. This work is financially supported by NCCR QSIT.

  8. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition

    PubMed Central

    Zhou, Shiming; Miao, Xianbing; Zhao, Xu; Ma, Chao; Qiu, Yuhao; Hu, Zhenpeng; Zhao, Jiyin; Shi, Lei; Zeng, Jie

    2016-01-01

    The activity of electrocatalysts exhibits a strongly dependence on their electronic structures. Specifically, for perovskite oxides, Shao-Horn and co-workers have reported a correlation between the oxygen evolution reaction activity and the eg orbital occupation of transition-metal ions, which provides guidelines for the design of highly active catalysts. Here we demonstrate a facile method to engineer the eg filling of perovskite cobaltite LaCoO3 for improving the oxygen evolution reaction activity. By reducing the particle size to ∼80 nm, the eg filling of cobalt ions is successfully increased from unity to near the optimal configuration of 1.2 expected by Shao-Horn's principle. Consequently, the activity is significantly enhanced, comparable to those of recently reported cobalt oxides with eg∼1.2 configurations. This enhancement is ascribed to the emergence of spin-state transition from low-spin to high-spin states for cobalt ions at the surface of the nanoparticles, leading to more active sites with increased reactivity. PMID:27187067

  9. Puncture initial data for black-hole binaries with high spins and high boosts

    NASA Astrophysics Data System (ADS)

    Ruchlin, Ian; Healy, James; Lousto, Carlos O.; Zlochower, Yosef

    2017-01-01

    We solve the Hamiltonian and momentum constraints of general relativity for two black holes with nearly extremal spins and relativistic boosts in the puncture formalism. We use a non-conformally-flat ansatz with an attenuated superposition of two Lorentz-boosted, conformally Kerr or conformally Schwarzschild 3-metrics and their corresponding extrinsic curvatures. We compare evolutions of these data with the standard Bowen-York conformally flat ansatz (technically limited to intrinsic spins χ =S /MADM2=0.928 and boosts P /MADM=0.897 ), finding, typically, an order of magnitude smaller burst of spurious radiation and agreement with inspiral and merger. As a first case study, we evolve two equal-mass black holes from rest with an initial separation of d =12 M and spins χi=Si/mi2=0.99 , compute the waveforms produced by the collision, the energy and angular momentum radiated, and the recoil of the final remnant black hole. We find that the black-hole trajectories curve at close separations, leading to the radiation of angular momentum. We also study orbiting nonspinning and moderate-spin black-hole binaries and compare these with standard Bowen-York data. We find a substantial reduction in the nonphysical initial burst of radiation which leads to cleaner waveforms. Finally, we study the case of orbiting binary black-hole systems with spin magnitude χi=0.95 in an aligned configuration and compare waveform and final remnant results with those of the SXS Collaboration [54 A. H. Mroue et al., Phys. Rev. Lett. 111, 241104 (2013)., 10.1103/PhysRevLett.111.241104], finding excellent agreement. This represents the first moving puncture evolution of orbiting and spinning black holes exceeding the Bowen-York limit. Finally, we study different choices of the initial lapse and lapse evolution equation in the moving puncture approach to improve the accuracy and efficiency of the simulations.

  10. Electronic and transport properties of Cobalt-based valence tautomeric molecules and polymers

    NASA Astrophysics Data System (ADS)

    Chen, Yifeng; Calzolari, Arrigo; Buongiorno Nardelli, Marco

    2011-03-01

    The advancement of molecular spintronics requires further understandings of the fundamental electronic structures and transport properties of prototypical spintronics molecules and polymers. Here we present a density functional based theoretical study of the electronic structures of Cobalt-based valence tautomeric molecules Co III (SQ)(Cat)L Co II (SQ)2 L and their polymers, where SQ refers to the semiquinone ligand, and Cat the catecholate ligand, while L is a redox innocent backbone ligand. The conversion from low-spin Co III ground state to high-spin Co II excited state is realized by imposing an on-site potential U on the Co atom and elongating the Co-N bond. Transport properties are subsequently calculated by extracting electronic Wannier functions from these systems and computing the charge transport in the ballistic regime using a Non-Equilibrium Green's Function (NEGF) approach. Our transport results show distinct charge transport properties between low-spin ground state and high-spin excited state, hence suggesting potential spintronics devices from these molecules and polymers such as spin valves.

  11. A Crystal Field Approach to Orbitally Degenerate SMMs: Beyond the Spin-Only Hamiltonian

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Lakshmi; Marriott, Katie; Murrie, Mark; Hill, Stephen

    Single-Molecule Magnets (SMMs) with large magnetization reversal barriers are promising candidates for high-density information storage. Recently, a large uniaxial magnetic anisotropy was observed for a mononuclear trigonal bipyramidal (TBP) [NiIICl3(Me-abco)2] SMM. High-field EPR studies analyzed on the basis of a spin-only Hamiltonian give ¦D¦>400 cm-1, which is close to the spin-orbit coupling parameter λ = 668 cm-1 for NiII, suggesting an orbitally degenerate ground state. The spin-only description is ineffective in this limit, necessitating the development of a model that includes the orbital moment. Here we describe a phenomenological approach that takes into account a full description of crystal field, electron-electron repulsion and spin-orbit coupling effects on the ground state of a NiII ion in a TBP coordination geometry. The model is in good agreement with the high-field EPR experiments, validating its use for spectroscopic studies of orbitally degenerate molecular nanomagnets. This work was supported by the NSF (DMR-1309463).

  12. Isolation of EPR spectra and estimation of spin-states in two-component mixtures of paramagnets.

    PubMed

    Chabbra, Sonia; Smith, David M; Bode, Bela E

    2018-04-26

    The presence of multiple paramagnetic species can lead to overlapping electron paramagnetic resonance (EPR) signals. This complication can be a critical obstacle for the use of EPR to unravel mechanisms and aid the understanding of earth abundant metal catalysis. Furthermore, redox or spin-crossover processes can result in the simultaneous presence of metal centres in different oxidation or spin states. In this contribution, pulse EPR experiments on model systems containing discrete mixtures of Cr(i) and Cr(iii) or Cu(ii) and Mn(ii) complexes demonstrate the feasibility of the separation of the EPR spectra of these species by inversion recovery filters and the identification of the relevant spin states by transient nutation experiments. We demonstrate the isolation of component spectra and identification of spin states in a mixture of catalyst precursors. The usefulness of the approach is emphasised by monitoring the fate of the chromium species upon activation of an industrially used precatalyst system.

  13. Attitude orientation control for a spinning satellite

    NASA Astrophysics Data System (ADS)

    Frost, Gerald

    The Department of the Air Force, Headquarters Space Systems Division, and the National Aeronautics and Space Administration (NASA) are currently involved in litigation with Hughes Aircraft Company over the alledged infringement of the 'Williams patent,' which describes a method for attitude control of a spin-stabilized vehicle. Summarized here is pre-1960 RAND work on this subject and information obtained from RAND personnel knowledgeable on this subject. It was concluded that there is no RAND documentation that directly parallels the 'Williams patent' concept. Also, the TIROS II magnetic torque attitude control method is reviewed. The TIROS II meteorological satellite, launched on November 23, 1960, incorporated a magnetic actuation system for spin axis orientation control. The activation system was ground controlled to orient the satellite spin axis to obtain the desired pointing direction for optical and infrared sensor subsystems.

  14. Weak cooperativity in selected iron(II) 1D coordination polymers

    NASA Astrophysics Data System (ADS)

    Dîrtu, Marinela M.; Gillard, Damien; Naik, Anil D.; Rotaru, Aurelian; Garcia, Yann

    2012-03-01

    The spin crossover behaviour of a new class of FeII coordination polymers [Fe(phtptrz)3]I2 ( 1), [Fe(phtptrz)3](ReO4)2•CH3OH ( 2) and [Fe(phtptrz)3]TaF7•6H2O ( 3) based on a novel ligand 4-(3' -N-phtalimido-propyl)-1,2,4-triazole (phtptrz), were investigated by temperature dependent 57Fe Mössbauer spectroscopy and magnetic susceptibility measurements. The adverse effect of bulky substituent on 1,2,4-triazole, favorable supramolecular interactions and influence of increasing anion size on spin crossover profile is discussed. 1 and 2 show thermally induced spin conversions of gradual and incomplete nature with associated thermochromism, and transition temperatures T1/2 ~ 163 K and 137 K, respectively. A spin state crossover is also identified for 3.

  15. Theoretical study of diaquamalonatozinc(II) single crystal for applications in non-linear optical devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mitesh; Rai, Vineet Kumar

    2017-12-01

    The aim of the present paper is to employ theoretical methods to investigate the zero field splitting (ZFS) parameter and to investigate the position of the dopant in the host. These theoretical calculations have been compared with the empirical results. The superposition model (SPM) with the microscopic spin-Hamiltonian (MSH) theory and the coefficient of fractional parentage have been employed to investigate the dopant manganese(II) ion substitution in the diaquamalonatozinc(II) (DAMZ) single crystal. The magnetic parameters, viz. g-tensor and D-tensor, has been determined by using the ORCA program package developed by F Neese et al. The unrestricted Kohn-Sham orbitals-based Pederson-Khanna (PK) as the unperturbed wave function is observed to be the most suitable for the computational calculation of spin-orbit tensor (D^{SO}) of the axial ZFS parameter D. The effects of spin-spin dipolar couplings are taken into account. The unrestricted natural orbital (UNO) is used for the calculation of spin-spin dipolar contributions to the ZFS tensor. A comparative study of the quantum mechanical treatment of Pederson-Khanna (PK) with coupled perturbation (CP) is reported in the present study. The unrestricted Kohn-Sham-based natural orbital with Pederson-Khanna-type of perturbation approach validates the experimental results in the evaluation of ZFS parameters. The theoretical results are appropriate with the experimental ones and indicate the interstitial occupancy of Mn^{2+} ion in the host matrix.

  16. Spin Vector Distribution in the Koronis Family for a Sample Complete to IAU H=10.88

    NASA Astrophysics Data System (ADS)

    Slivan, Stephen M.; Hosek, Matt; Sokol, Alyssa; Maynard, Sarah; Payne, Anna; Radford, Arden; Springmann, Alessondra; Mailhot, Emily; Midkiff, Alan; Russell, April; Stephens, Robert D.

    2016-10-01

    Because they share the same formation age, asteroid family members have experienced similar evolution for similar lengths of time, offering valuable information to help understand spin evolution processes. Clustered distributions of spin vectors determined from observations of ten of the largest Koronis family members (Slivan 2002) revealed evidence of spin modification by YORP thermal radiation torques (Vokrouhlický et al. 2003). The currently known spin vector sample in the Koronis family (Slivan et al., 2003; Slivan et al., 2009, Hanuš et al., 2011; Hanuš et al., 2013; Durech et al., 2016) clearly shows the two spin groupings observed among the large members: (1) the larger group with low-obliquity retrograde spin and periods between about 3 h and 30 h, and (2) a smaller group with prograde spin obliquity near 45° and periods near 8 h, characteristic of trapping in the s6 spin-orbit resonance (Vokrouhlický et al. 2003). There's also one "stray" longer-period prograde object with smaller obliquity, perhaps trapped in some other resonance.A limitation of the existing spin vector sample, which (using IAU H as a proxy for size) includes 16 of the brightest 27 members of the family, is that selection biases render it complete only to the brightest 12 members. Slivan et al. (2008) began a lightcurve observing program to increase the sample of Koronis family spin vectors down to about 20 km diameter.We report pole solutions that were determined for fourteen survey objects using lightcurves recorded from 2005-2016, which complete the Koronis spin vector sample to the brightest 22 members, now including 24 of the brightest 27 members. The larger sample adds several objects to the existing group of low-obliquity retrograde rotators, increasing the period range upward to almost 60 h, and also identifies two companions for the stray longer-period prograde spin object, strengthening the case for the presence of a second cluster of objects trapped in a spin-orbit resonance. The more complete distribution also reveals two new "strays" of its own - one lone fast prograde rotator, and one spin vector of atypical high obliquity, close to the ecliptic plane.

  17. Quantum Information Processing with Large Nuclear Spins in GaAs Semiconductors

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael N.; Loss, Daniel; Poggio, M.; Awschalom, D. D.

    2003-03-01

    We propose an implementation for quantum information processing based on coherent manipulations of nuclear spins I=3/2 in GaAs semiconductors. We describe theoretically an NMR method which involves multiphoton transitions and which exploits the nonequidistance of nuclear spin levels due to quadrupolar splittings. Starting from known spin anisotropies we derive effective Hamiltonians in a generalized rotating frame, valid for arbitrary I, which allow us to describe the nonperturbative time evolution of spin states generated by magnetic rf fields. We identify an experimentally observable regime for multiphoton Rabi oscillations. In the nonlinear regime, we find Berry phase interference. Ref: PRL 89, 207601 (2002).

  18. Relativistic fluid dynamics with spin

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico

    2018-04-01

    Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.

  19. Peculiarities of magnetic and spin effects in a biradical/stable radical complex (three-spin system). Theory and comparison with experiment.

    PubMed

    Magin, Ilya M; Purtov, Petr A; Kruppa, Alexander I; Leshina, Tatiana V

    2005-08-25

    The field dependencies of biradical recombination probability in the presence of paramagnetic species with spins S(3) = 1 and S(3) = (1)/(2) have been calculated in the framework of the density matrix formalism. To describe the effect of the "third" spin on the spin evolution in biradical, we have also considered the spin exchange interaction between the added spin and one of the paramagnetic biradical centers. A characteristic feature of the calculated field dependencies is the existence of several extrema with positions and magnitudes depending on the signs and values of the exchange integrals in the system. The method proposed can be used to describe the effect of spin catalysis. It is shown that for the system with the third spin S(3) = 1 spin catalysis manifests itself stronger than in the case of spin S(3) = (1)/(2). The dependence of spin catalysis efficiency on the exchange interaction with the third spin has an extremum with position independent of the value of the spin added.

  20. Influence of water-insoluble nonionic copolymer E(6)P(39)E(6) on the microstructure and self-aggregation dynamics of aqueous SDS solution-NMR and SANS investigations.

    PubMed

    Prameela, G K S; Phani Kumar, B V N; Aswal, V K; Mandal, Asit Baran

    2013-10-28

    The influence of water-insoluble nonionic triblock copolymer PEO-PPO-PEO [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] i.e., E6P39E6 with molecular weight 2800, on the microstructure and self-aggregation dynamics of anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution (D2O) were investigated using high resolution nuclear magnetic resonance (NMR) and small-angle neutron scattering (SANS) measurements. Variable concentration and temperature proton ((1)H), carbon ((13)C) NMR chemical shifts, (1)H self-diffusion coefficients, (1)H spin-lattice and spin-spin relaxation rates data indicate that the higher hydrophobic nature of copolymer significantly influenced aggregation characteristics of SDS. The salient features of the NMR investigations include (i) the onset of mixed micelles at lower SDS concentrations (<3 mM) relative to the copolymer-free case and their evolution into SDS free micelles at higher SDS concentrations (~30 mM), (ii) disintegration of copolymer-SDS mixed aggregate at moderate SDS concentrations (~10 mM) and still binding of a copolymer with SDS and (iii) preferential localization of the copolymer occurred at the SDS micelle surface. SANS investigations indicate prolate ellipsoidal shaped mixed aggregates with an increase in SDS aggregation number, while a contrasting behavior in the copolymer aggregation is observed. The aggregation features of SDS and the copolymer, the sizes of mixed aggregates and the degree of counterion dissociation (α) extracted from SANS data analysis corroborate reasonably well with those of (1)H NMR self-diffusion and sodium ((23)Na) spin-lattice relaxation data.

  1. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    In the Payload Hazardous Servicing Facility resides one of the Mars Exploration Rovers, MER-2. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  2. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Technicians in the Payload Hazardous Servicing Facility look over the Mars Exploration Rover -2. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  3. Holistic Framework for Understanding the Evolution of Stellar Coronal Plasmas

    NASA Astrophysics Data System (ADS)

    Blackman, Eric; Owen, James

    2017-10-01

    Understanding how how the coronal X-ray activity of stars depends on magnetic field strength, dynamos, rotation, mass loss and age is of interest not only for the basic plasma physics of stars, but also for stellar age determination and implications for habitability. Approximate relations between field strength, activity, spin down, mass loss and age have been measured, but remain to be understood theoretically. The saturation of plasma activity of the fastest rotators and the decoupling of spin-down from magnetic field strengths for slow rotators are particular puzzles. To explain the observed trends, I discuss our minimalist holistic theoretical framework that combines a Parker wind with (i) magnetic dynamo sourcing of thermal energy, wind energy and x-ray luminosity (ii) dynamo saturation based on magnetic helicity conservation and shear-induced eddy shredding and (iii) coronal equilibrium to determine how the magnetic energy divides into wind, x-ray, and thermal conduction sinks. We find conduction to be important for older stars where it can reduce the efficacy of wind angular momentum loss, offering an alternative explanation of this trend to those which require dynamo transitions. Overall, the framework shows promise and provides opportunity for further Grant NSF-AST1515648 is acknowledged.

  4. Roto-chemical heating in a neutron star with fall-back disc accretion

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Liu, Xi-Wei; Zheng, Xiao-Ping

    2018-07-01

    Recent research on the classical pulsar B0950+08 demonstrates that the explanation of its high surface temperature by roto-chemical heating encounters some difficulties. We assume that there is a fall-back disc around the newborn neutron star, which originates from the supernova ejecta and influences the spin and magnetic evolution of the star. By taking into account disc accretion and magnetic field evolution simultaneously, the effect of the fall-back disc accretion process on the roto-chemical heating in the neutron star is studied. The results show that there are two roto-chemical deviation phases (spin-up deviation and spin-down deviation), but that only the spin-down deviation leads to heating. The specific cooling curve depends on the accretion disc mass, the initial magnetic field and the magnetic field decay rate. Most importantly, the observations of surface temperature, magnetic field strength and spin period of the classical pulsar B0950+08 are well explained by the accretion roto-chemical heating model. The fall-back accretion process is important in roto-chemical heating for explanations of classical pulsars with high temperature. Given the absence of any evidence of fall-back accretion on to B0950+08, our study is purely hypothetical.

  5. An introduction to the spectrum, symmetries, and dynamics of spin-1/2 Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Joel, Kira; Kollmar, Davida; Santos, Lea F.

    2013-06-01

    Quantum spin chains are prototype quantum many-body systems that are employed in the description of various complex physical phenomena. We provide an introduction to this subject by focusing on the time evolution of a Heisenberg spin-1/2 chain and interpreting the results based on the analysis of the eigenvalues, eigenstates, and symmetries of the system. We make available online all computer codes used to obtain our data.

  6. Product operator descriptions of INEPT and RINEPT NMR spectroscopies for ISn (I=1/2, S=3/2) spin systems.

    PubMed

    Tokatli, Ahmet; Gençten, Azmi; Sahin, Mükerrem; Tezel, Ozden; Bahçeli, Semiha

    2004-07-01

    The product operator descriptions of INEPT and reverse INEPT (RINEPT) NMR experiments are introduced for weakly coupled ISn (I=1/2, S=3/2 with n=1,2,3) spin systems. Explicit expressions for polarization transfer from spin-3/2 quadrupolar nuclei to spin-1/2 nuclei (and reversed polarization transfer) are given in detail by using the evolutions of product operators under the spin-spin coupling Hamiltonian. The results calculated for the intensities and positions of the observable signals are simulated in the molecules containing the 119Sn (I=1/2) and 35Cl (S=3/2) nuclei at the coupling constant of J(Sn-Cl)=375 Hz by using the Maple programme on computer.

  7. Product operator descriptions of INEPT and RINEPT NMR spectroscopies for ISn ( I=1/2, S=3/2) spin systems

    NASA Astrophysics Data System (ADS)

    Tokatlı, Ahmet; Gençten, Azmi; Şahin, Mükerrem; Tezel, Özden; Bahçeli, Semiha

    2004-07-01

    The product operator descriptions of INEPT and reverse INEPT (RINEPT) NMR experiments are introduced for weakly coupled ISn ( I=1/2, S=3/2 with n=1,2,3) spin systems. Explicit expressions for polarization transfer from spin-3/2 quadrupolar nuclei to spin-1/2 nuclei (and reversed polarization transfer) are given in detail by using the evolutions of product operators under the spin-spin coupling Hamiltonian. The results calculated for the intensities and positions of the observable signals are simulated in the molecules containning the 119Sn ( I=1/2) and 35Cl ( S=3/2) nuclei at the coupling constant of JSn-Cl=375 Hz by using the Maple programme on computer.

  8. Doping evolution of spin and charge excitations in the Hubbard model

    DOE PAGES

    Kung, Y. F.; Nowadnick, E. A.; Jia, C. J.; ...

    2015-11-05

    We shed light on how electronic correlations vary across the phase diagram of the cuprate superconductors, examining the doping evolution of spin and charge excitations in the single-band Hubbard model using determinant quantum Monte Carlo (DQMC). In the single-particle response, we observe that the effects of correlations weaken rapidly with doping, such that one may expect the random phase approximation (RPA) to provide an adequate description of the two-particle response. In contrast, when compared to RPA, we find that significant residual correlations in the two-particle excitations persist up to 40% hole and 15% electron doping (the range of dopings achievedmore » in the cuprates). Ultimately, these fundamental differences between the doping evolution of single- and multi-particle renormalizations show that conclusions drawn from single-particle processes cannot necessarily be applied to multi-particle excitations. Eventually, the system smoothly transitions via a momentum-dependent crossover into a weakly correlated metallic state where the spin and charge excitation spectra exhibit similar behavior and where RPA provides an adequate description.« less

  9. Characterization of the Solution Structure of Human Serum Albumin Loaded with a Metal Porphyrin and Fatty Acids

    PubMed Central

    Junk, Matthias J.N.; Spiess, Hans W.; Hinderberger, Dariush

    2011-01-01

    The structure of human serum albumin loaded with a metal porphyrin and fatty acids in solution is characterized by orientation-selective double electron-electron resonance (DEER) spectroscopy. Human serum albumin, spin-labeled fatty acids, and Cu(II) protoporphyrin IX—a hemin analog—form a fully self-assembled system that allows obtaining distances and mutual orientations between the paramagnetic guest molecules. We report a simplified analysis for the orientation-selective DEER data which can be applied when the orientation selection of one spin in the spin pair dominates the orientation selection of the other spin. The dipolar spectra reveal a dominant distance of 3.85 nm and a dominant orientation of the spin-spin vectors between Cu(II) protoporphyrin IX and 16-doxyl stearic acid, the electron paramagnetic resonance reporter group of the latter being located near the entry points to the fatty acid binding sites. This observation is in contrast to crystallographic data that suggest an asymmetric distribution of the entry points in the protein and hence the occurrence of various distances. In conjunction with the findings of a recent DEER study, the obtained data are indicative of a symmetric distribution of the binding site entries on the protein's surface. The overall anisotropic shape of the protein is reflected by one spin-spin vector orientation dominating the DEER data. PMID:21539799

  10. Doping evolution of spin fluctuations and their peculiar suppression at low temperatures in Ca(Fe 1 -xCox)2As2

    NASA Astrophysics Data System (ADS)

    Sapkota, A.; Das, P.; Böhmer, A. E.; Ueland, B. G.; Abernathy, D. L.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.

    2018-05-01

    Results of inelastic neutron scattering measurements are reported for two annealed compositions of Ca(Fe 1 -xCox)2As2,x =0.026 and 0.030, which possess stripe-type antiferromagnetically ordered and superconducting ground states, respectively. In the AFM ground state, well-defined and gapped spin waves are observed for x =0.026 , similar to the parent CaFe2As2 compound. We conclude that the well-defined spin waves are likely to be present for all x corresponding to the AFM state. This behavior is in contrast to the smooth evolution to overdamped spin dynamics observed in Ba(Fe 1 -xCox)2As2 , wherein the crossover corresponds to microscopically coexisting AFM order and SC at low temperature. The smooth evolution is likely absent in Ca(Fe 1 -xCox)2As2 due to the mutual exclusion of AFM ordered and SC states. Overdamped spin dynamics characterize paramagnetism of the x =0.030 sample and high-temperature x =0.026 sample. A sizable loss of magnetic intensity is observed over a wide energy range upon cooling the x =0.030 sample, at temperatures just above and within the superconducting phase. This phenomenon is unique amongst the iron-based superconductors and is consistent with a temperature-dependent reduction in the fluctuating moment. One possible scenario ascribes this loss of moment to a sensitivity to the c -axis lattice parameter in proximity to the nonmagnetic collapsed tetragonal phase and another scenario ascribes the loss to a formation of a pseudogap.

  11. Incorporation of Pyrazine and Bipyridine Linkers with High-Spin Fe(II) and Co(II) in a Metal–Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Airi; Greenwood, Arin R.; Filatov, Alexander S.

    2017-02-27

    A series of isoreticular metal organic frameworks (MOFs) of the formula M(BDC)(L) (M = Fe(II) or Co(II), BDC = 1,4-benzenedicarboxylate, L = pyrazine (pyz) or 4,4'-bipyridine (bipy)) has been synthesized and characterized by N-2 gas uptake Measurements, single crystal and powder X-ray diffraction, magnetometry, X-ray absorption spectroscopy, and Mossbauer spectroscopy. These studies indicate the formation of a permanently porous solid with high-spin Fe(II) and Co(II) centers that are weakly coupled, consistent with first-principles density functional theory calculations. This family of materials represents unusual examples of paramagnetic metal centers coordinated by linkers capable of mediating magnetic or electronic coupling in amore » porous framework. While only weak interactions are observed, the rigid 3D framework of the MOF dramatically impacts the properties of these materials when compared with close structural analogues.« less

  12. COUPLED SPIN AND SHAPE EVOLUTION OF SMALL RUBBLE-PILE ASTEROIDS: SELF-LIMITATION OF THE YORP EFFECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotto-Figueroa, Desireé; Statler, Thomas S.; Richardson, Derek C.

    2015-04-10

    We present the first self-consistent simulations of the coupled spin-shape evolution of small gravitational aggregates under the influence of the YORP effect. Because of YORP’s sensitivity to surface topography, even small centrifugally driven reconfigurations of aggregates can alter the YORP torque dramatically, resulting in spin evolution that can differ qualitatively from the rigid-body prediction. One-third of our simulations follow a simple evolution described as a modified YORP cycle. Two-thirds exhibit one or more of three distinct behaviors—stochastic YORP, self-governed YORP, and stagnating YORP—which together result in YORP self-limitation. Self-limitation confines rotation rates of evolving aggregates to far narrower ranges thanmore » those expected in the classical YORP cycle, greatly prolonging the times over which objects can preserve their sense of rotation. Simulated objects are initially randomly packed, disordered aggregates of identical spheres in rotating equilibrium, with low internal angles of friction. Their shape evolution is characterized by rearrangement of the entire body, including the deep interior. They do not evolve to axisymmetric top shapes with equatorial ridges. Mass loss occurs in one-third of the simulations, typically in small amounts from the ends of a prolate-triaxial body. We conjecture that YORP self-limitation may inhibit formation of top-shapes, binaries, or both, by restricting the amount of angular momentum that can be imparted to a deformable body. Stochastic YORP, in particular, will affect the evolution of collisional families whose orbits drift apart under the influence of Yarkovsky forces, in observable ways.« less

  13. Periodic density functional theory study of spin crossover in the cesium iron hexacyanochromate prussian blue analog

    NASA Astrophysics Data System (ADS)

    Wojdeł, Jacek C.; Moreira, Ibério de P. R.; Illas, Francesc

    2009-01-01

    This paper presents a detailed theoretical analysis of the electronic structure of the CsFe[Cr(CN)6] prussian blue analog with emphasis on the structural origin of the experimentally observed spin crossover transition in this material. Periodic density functional calculations using generalized gradient approximation (GGA)+U and nonlocal hybrid exchange-correlation potentials show that, for the experimental low temperature crystal structure, the t2g6eg0 low spin configuration of FeII is the most stable and CrIII (S =3/2, t2g3eg0) remains the same in all cases. This is also found to be the case for the low spin GGA+U fully relaxed structure with the optimized unit cell. A completely different situation emerges when calculations are carried out using the experimental high temperature structure. Here, GGA+U and hybrid density functional theory calculations consistently predict that the t2g4eg2 FeII high spin configuration is the ground state. However, the two spin configurations appear to be nearly degenerate when calculations are carried out for the geometries arising from a GGA+U full relaxation of the atomic structure carried out at experimental high temperature lattice constant. A detailed analysis of the energy difference between the two spin configurations as a function of the lattice constant strongly suggests that the observed spin crossover transition has a structural origin with non-negligible entropic contributions of the high spin state.

  14. The role of iron(II) dilution in the magnetic and photomagnetic properties of the series [Fe(x)Zn(1-x)(bpp)₂](NCSe)₂.

    PubMed

    Baldé, Chérif; Desplanches, Cédric; Le Gac, Fréderic; Guionneau, Philippe; Létard, Jean-François

    2014-06-07

    The effects of metal dilution on the spin-crossover behavior of iron(II) in the mixed crystal series [Fe(x)Zn(1-x)(bpp)2](NCSe)2 (bpp = 2,6-bis(pyrazol-3-yl)pyridine) have been studied using magnetic susceptibility, photomagnetism and diffuse reflectivity measurements. For each mixed-crystal system, the thermal spin transition temperature, T(1/2), and the relaxation temperature of the photo-induced high-spin state, T(LIESST), have been systematically determined. It appears that T(1/2) decreases with the metal dilution while T(LIESST) remains unchanged. Dilution also tends to decrease the hysteresis width and smooth the transition curves. These effects were discussed first qualitatively and then quantitatively on the basis of a kinetic study governing the photo-induced back conversion taking into account the relative sizes of Zn(II) and Fe(II) ions. Interestingly, single crystals were obtained for [Fe(0.6)Zn(0.4)(bpp)2](NCSe)2 allowing the X-ray diffraction crystal-structure determination.

  15. First iron and cobalt(II) hexabromoclathrochelates: structural, magnetic, redox, and electrocatalytic behavior.

    PubMed

    Dolganov, Alexander V; Belov, Alexander S; Novikov, Valentin V; Vologzhanina, Anna V; Romanenko, Galina V; Budnikova, Yulia G; Zelinskii, Genrikh E; Buzin, Michail I; Voloshin, Yan Z

    2015-02-07

    Template condensation of dibromoglyoxime with n-butylboronic acid on the corresponding metal ion as a matrix under vigorous reaction conditions afforded iron and cobalt(ii) hexabromoclathrochelates. The paramagnetic cobalt clathrochelate was found to be a low-spin complex at temperatures below 100 K, with a gradual increase in the effective magnetic moment at higher temperatures due to the temperature 1/2↔3/2 spin crossover and a gap caused by the structure phase transition. The multitemperature X-ray and DSC studies of this complex and its iron(ii)-containing analog also showed temperature structural transitions. The variation of an encapsulated metal ion's radius, electronic structure and spin state caused substantial differences in the geometry of its coordination polyhedron; these differences increase with the decrease in temperature due to Jahn-Teller distortion of the encapsulated cobalt(ii) ion with an electronic configuration d(7). As follows from CV and GC data, these cage iron and cobalt complexes undergo both oxidation and reduction quasireversibly, and showed an electrocatalytic activity for hydrogen production in different producing systems.

  16. Ultrafast Spin Crossover in [FeII (bpy)3 ]2+ : Revealing Two Competing Mechanisms by Extreme Ultraviolet Photoemission Spectroscopy.

    PubMed

    Moguilevski, Alexandre; Wilke, Martin; Grell, Gilbert; Bokarev, Sergey I; Aziz, Saadullah G; Engel, Nicholas; Raheem, Azhr A; Kühn, Oliver; Kiyan, Igor Yu; Aziz, Emad F

    2017-03-03

    Photoinduced spin-flip in Fe II complexes is an ultrafast phenomenon that has the potential to become an alternative to conventional processing and magnetic storage of information. Following the initial excitation by visible light into the singlet metal-to-ligand charge-transfer state, the electronic transition to the high-spin quintet state may undergo different pathways. Here we apply ultrafast XUV (extreme ultraviolet) photoemission spectroscopy to track the low-to-high spin dynamics in the aqueous iron tris-bipyridine complex, [Fe(bpy) 3 ] 2+ , by monitoring the transient electron density distribution among excited states with femtosecond time resolution. Aided by first-principles calculations, this approach enables us to reveal unambiguously both the sequential and direct de-excitation pathways from singlet to quintet state, with a branching ratio of 4.5:1. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis, characterization, experimental and theoretical structure of novel Dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) compounds, metal = Mn, Co and Ni

    NASA Astrophysics Data System (ADS)

    Conradie, J.; Conradie, M. M.; Tawfiq, K. M.; Al-Jeboori, M. J.; Coles, S. J.; Wilson, C.; Potgieter, J. H.

    2018-06-01

    The syntheses, characterizations and structures of three novel dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II), [M(L)2Cl2], complexes (metal = Mn, Co and Ni) are presented. In the solid state the molecules are arranged in infinite hydrogen-bonded 3D supramolecular structures, further stabilized by weak intermolecular π…π interactions. The DFT results for all the different spin states and isomers of dichloro(bis{2-[1-phenyl-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) complexes, [M(L1)2Cl2], support experimental measurements, namely that (i) d5 [Mn(L1)2Cl2] is high spin with S = 5/2; (ii) d7 [Co(L1)2Cl2] has a spin state of S = 3/2, (iii) d8 [Ni(L1)2Cl2] has a spin state of S = 1; and (iv) for all [M(L1)2Cl2] and [M(L)2Cl2] complexes, with M = Mn, Co and Ni, the cis-cis-trans and the trans-trans-trans isomers, with the pyridyl groups trans to each other, have the lowest energy.

  18. Dynamical control of a quantum Kapitza pendulum in a spin-1 BEC

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael

    2013-05-01

    We demonstrate dynamic stabilization of an unstable strongly interacting quantum many-body system by periodic manipulation of the phase of the collective states. The experiment employs a spin-1 atomic Bose condensate that has spin dynamics analogous to a non-rigid pendulum in the mean-field limit. The condensate spin is initialized to an unstable (hyperbolic) fixed point of the phase space, where subsequent free evolution gives rise to spin-nematic squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that manipulate the spin-nematic fluctuations and limit their growth. The range of pulse periods and phase shifts with which the condensate can be stabilized is measured and compares well with a linear stability analysis of the problem. C.D. Hamley, et al., ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).

  19. On Closed Shells in Nuclei. II

    DOE R&D Accomplishments Database

    Mayer, M. G.

    1949-04-01

    Discussion on the use of spins and magnetic moments of the even-odd nuclei by Feenberg and Nordheim to determine the angular momentum of the eigenfunction of the odd particle; discussion of prevalence of isomerism in certain regions of the isotope chart; tabulated data on levels of square well potential, spectroscopic levels, spin term, number of states, shells and known spins and orbital assignments.

  20. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    PubMed Central

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-01-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties. PMID:27033418

  1. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  2. Synthesis and Mossbauer spectroscopic studies of chemically oxidized ferrocenyl(phenyl)phosphines.

    PubMed

    Durfey, D A; Kirss, R U; Frommen, C; Feighery, W

    The electrochemical potentials of Fc3-xPPhx, (1-3, x = 0-2) and (FcPPh)n (4) indicate that iodine should oxidize ferrocenyl(phenyl)phosphines. The molar conductivity of solutions of 1-3 increases sharply when the solutions are titrated with iodine, leveling off after the addition of > 2 equiv of oxidant, consistent with formation of 1:1 electrolytes. Diamagnetic salts 6-9 are observed upon addition of a benzene solution of iodine to a benzene solution of 1-4 at ambient temperature in ratios of I2/metallocene ranging from 1:1 to 2:1. Well-resolved 1H and 31P NMR spectra are obtained for 6-8. Absorptions assigned to the I3- anion dominate the UV-vis spectrum of 6-8, whereas characteristic absorptions for [Fc][I3] are absent. Mossbauer spectra of 7-9 reveal isomer shifts consistent with low-spin iron(II) in ferrocene derivatives rather than those in ferricenium ions. Small amounts of low-spin FeIII appear to be present in 6. Taken together, the results suggest that 6-9 are iodophosphonium salts and not ferricenium salts. Diferrocenyl(phenyl)phosphine oxide (5) reacts with iodine to produce a diamagnetic, dark solid 10. Low-spin FeII is observed at 77 and 293 K in the Mossbauer spectra of 10 with no evidence for oxidation of FeII to FeIII. Compound 10 is proposed to be a neutral complex between 5 and I2. Reactions between 5 and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) yield [Fc2P(=O)][DDQ]2 (11). Mossbauer spectroscopy of 11 indicates the presence of a mixture of low-spin FeII and low-spin FeIII at 77 K, suggesting that some electron transfer occurs from 5 to DDQ. The fraction of low-spin FeIII increases at room temperature.

  3. Planet Formation in Disks with Inclined Binary Companions: Can Primordial Spin-Orbit Misalignment be Produced?

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary disks, and inclined binary companions may tilt the stellar spin axis with respect to the disk's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disk evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disk photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disk-binary systems. We take into account planet-disk interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disk via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with "cold" Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  4. Planet formation in discs with inclined binary companions: can primordial spin-orbit misalignment be produced?

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-07-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary discs, and inclined binary companions may tilt the stellar spin axis with respect to the disc's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disc evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disc photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disc-binary systems. We take into account planet-disc interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disc via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with `cold' Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  5. Coulomb Correlations Intertwined with Spin and Orbital Excitations in LaCoO_{3}.

    PubMed

    Tomiyasu, K; Okamoto, J; Huang, H Y; Chen, Z Y; Sinaga, E P; Wu, W B; Chu, Y Y; Singh, A; Wang, R-P; de Groot, F M F; Chainani, A; Ishihara, S; Chen, C T; Huang, D J

    2017-11-10

    We carried out temperature-dependent (20-550 K) measurements of resonant inelastic x-ray scattering on LaCoO_{3} to investigate the evolution of its electronic structure across the spin-state crossover. In combination with charge-transfer multiplet calculations, we accurately quantified the renomalized crystal-field excitation energies and spin-state populations. We show that the screening of the effective on-site Coulomb interaction of 3d electrons is orbital selective and coupled to the spin-state crossover in LaCoO_{3}. The results establish that the gradual spin-state crossover is associated with a relative change of Coulomb energy versus bandwidth, leading to a Mott-type insulator-to-metal transition.

  6. Temperature evolution of the charge and spin transport in Cu/Nb interface

    NASA Astrophysics Data System (ADS)

    Ishitaki, Masayuki; Ohnishi, Kohei; Kimura, Takashi

    2018-06-01

    The transport properties for the charge and spin currents in a normal-metal/superconductor interface have been investigated by using a nano-pillar based lateral spin valve. Owing to the efficient reduction of the Joule heating, we were able to observe the temperature and bias-current dependences of the spin transport in the Cu/Nb bilayer system. From the temperature dependence of the spin signal, the superconducting gap of the Nb in contact with Cu was found to open gradually with decreasing the temperature. We also found that the inhomogeneous superconducting property produces the significant temperature and field dependences of the background signal in the nonlocal measurement around the transition temperature.

  7. Quantum gap and spin-wave excitations in the Kitaev model on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Avella, Adolfo; Di Ciolo, Andrea; Jackeli, George

    2018-05-01

    We study the effects of quantum fluctuations on the dynamical generation of a gap and on the evolution of the spin-wave spectra of a frustrated magnet on a triangular lattice with bond-dependent Ising couplings, analog of the Kitaev honeycomb model. The quantum fluctuations lift the subextensive degeneracy of the classical ground-state manifold by a quantum order-by-disorder mechanism. Nearest-neighbor chains remain decoupled and the surviving discrete degeneracy of the ground state is protected by a hidden model symmetry. We show how the four-spin interaction, emergent from the fluctuations, generates a spin gap shifting the nodal lines of the linear spin-wave spectrum to finite energies.

  8. Pumped spin and charge currents from applying a microwave field to a quantum dot between two magnetic leads

    NASA Astrophysics Data System (ADS)

    Zhou, Yun-Qing; Wang, Rui-Qiang; Sheng, L.; Wang, Baigeng; Xing, D. Y.

    2008-10-01

    The evolution-operator approach is applied to studying photon-electron-pumping effects on a quantum dot connected to two magnetic leads in the presence of both via-dot and over-dot tunneling channels. It is found that a microwave field applied to the quantum dot may give rise to charge and spin pumpings at zero-bias voltage for asymmetric magnetic junctions. More interestingly, a pure spin current can be pumped for symmetric magnetic junctions in the antiparallel magnetization configuration, providing an idea for the design of spin batteries.

  9. Time-dependent dynamical behavior of surface tension on rotating fluids under microgravity environment

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1988-01-01

    Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) step functions of spin-up and spin-down in a low gravity environment, and (3) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds.

  10. Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.

    PubMed

    Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M

    2015-06-05

    We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling.

  11. Eating a planet and spinning up

    NASA Astrophysics Data System (ADS)

    Qureshi, Ahmed; Naoz, Smadar; Shkolnik, Evgenya L.

    2018-01-01

    One of the predictions of high eccentricity planetary migration is that many planets will end up plunging into their host stars. We investigate the consequence of planetary mergers on their stellar hosts’ spin-period. Energy and angular momentum conservation yield that a planet consumption by a star will spin-up of the star. We find that our calculations align with the observed bifurcation in the stellar spin-period in young clusters. After a Sun-like star has eaten a planet, it will then, spin down due to magnetic braking, consistent with the observed lack of fast rotators in old clusters. The agreement between the calculations presented here and the observed spin-period of stars in young clusters provides circumstantial evidence that planetary accretion onto their host stars is a generic feature in planetary-system evolution.

  12. Tailoring Spin Textures in Complex Oxide Micromagnets

    DOE PAGES

    Lee, Michael S.; Wynn, Thomas A.; Folven, Erik; ...

    2016-09-12

    Engineered topological spin textures with submicron dimensions in magnetic materials have emerged in recent years as the building blocks for various spin-based memory devices. Examples of these magnetic configurations include magnetic skyrmions, vortices, and domain walls. Here in this paper, we show the ability to control and characterize the evolution of spin textures in complex oxide micromagnets as a function of temperature through the delicate balance of fundamental materials parameters, micromagnet geometries, and epitaxial strain. These results demonstrate that in order to fully describe the observed spin textures, it is necessary to account for the spatial variation of the magneticmore » parameters within the micromagnet. This study provides the framework to accurately characterize such structures, leading to efficient design of spin-based memory devices based on complex oxide thin films.« less

  13. pH-Dependent spin state population and 19F NMR chemical shift via remote ligand protonation in an iron(ii) complex.

    PubMed

    Gaudette, Alexandra I; Thorarinsdottir, Agnes E; Harris, T David

    2017-11-30

    An Fe II complex that features a pH-dependent spin state population, by virtue of a variable ligand protonation state, is described. This behavior leads to a highly pH-dependent 19 F NMR chemical shift with a sensitivity of 13.9(5) ppm per pH unit at 37 °C, thereby demonstrating the potential utility of the complex as a 19 F chemical shift-based pH sensor.

  14. Electron charge and spin delocalization revealed in the optically probed longitudinal and transverse spin dynamics in n -GaAs

    NASA Astrophysics Data System (ADS)

    Belykh, V. V.; Kavokin, K. V.; Yakovlev, D. R.; Bayer, M.

    2017-12-01

    The evolution of the electron spin dynamics as consequence of carrier delocalization in n -type GaAs is investigated by the recently developed extended pump-probe Kerr/Faraday rotation spectroscopy. We find that isolated electrons localized on donors demonstrate a prominent difference between the longitudinal and transverse spin relaxation rates in a magnetic field, which is almost absent in the metallic phase. The inhomogeneous transverse dephasing time T2* of the spin ensemble strongly increases upon electron delocalization as a result of motional narrowing that can be induced by increasing either the donor concentration or the temperature. An unexpected relation between T2* and the longitudinal spin relaxation time T1 is found, namely, that their product is about constant, as explained by the magnetic field effect on the spin diffusion. We observe a two-stage longitudinal spin relaxation, which suggests the establishment of spin temperature in the system of exchange-coupled donor-bound electrons.

  15. The green hemoproteins of bovine erythrocytes. II. Spectral, ligand-binding, and electrochemical properties.

    PubMed

    DeFilippi, L J; Hultquist, D E

    1978-05-10

    The two green hemoproteins isolated from bovine erythrocytes (form I and form II) have been characterized as to spectral, electrochemical, and chemical properties. The absorption spectra of the isolated hemoproteins are typical of high spin ferric states. Reduction of the hemoproteins yields high spin ferrohemoproteins. Complexation of the ferrohemoproteins with CO and the ferrihemoproteins with cyanide yields low spin complexes, demonstrating the presence of an exchangeable weak field ligand in both the ferrous and ferric states of the hemoproteins. The differences in position and intensity of the absorption peaks of the visible spectra allow the two forms to be distinguished from one another. The midpoint potential of forms I and II were found to be +0.075 and +0.019 V, respectively, at pH 6.4 and +0.038 and -0.005 V, respectively, at pH 7.0. This is consistent with the gaining of 1 proton/electron during the reduction. The Nernst plot reveals an unusual 0.5-electron transfer, whereas a quantitative titration demonstrates a 1-electron transfer. Form I binds cyanide more tightly than form II (KD of 84 and 252 micrometer, respectively). The observed spectral, electrochemical, and ligand-binding differences between forms I and II can be explained in terms of a greater electron-withdrawing ability of the side chains of the heme of form I relative to the heme of form II.

  16. The long-term post-outburst spin down and flux relaxation of magnetar swift J1822.3–1606

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholz, P.; Kaspi, V. M.; Cumming, A., E-mail: pscholz@physics.mcgill.ca

    2014-05-01

    The magnetar Swift J1822.3–1606 entered an outburst phase in 2011 July. Previous X-ray studies of its post-outburst rotational evolution yielded inconsistent measurements of the spin-inferred magnetic field. Here we present the timing behavior and flux relaxation from over two years of Swift, RXTE, and Chandra observations following the outburst. We find that the ambiguity in previous timing solutions was due to enhanced spin down that resembles an exponential recovery following a glitch at the outburst onset. After fitting out the effects of the recovery, we measure a long-term spin-down rate of ν-dot =(−3.0 ± 0.3)×10{sup −16} s{sup –2} which impliesmore » a dipolar magnetic field of 1.35 × 10{sup 13} G, lower than all previous estimates for this source. We also consider the post-outburst flux evolution, and fit it with both empirical and crustal cooling models. We discuss the flux relaxation in the context of both crustal cooling and magnetospheric relaxation models.« less

  17. Complexes of ditopic carbo- and thio-carbohydrazone ligands--mononuclear, 1D chain, dinuclear and tetranuclear examples.

    PubMed

    Tandon, Santokh S; Dul, Marie-Claire; Lee, John L; Dawe, Louise N; Anwar, Muhammad U; Thompson, Laurence K

    2011-04-14

    Ligands based on carbo- and thio-carbohydrazone cores, modified with pyridine, carboxylate and oxime ends, have been examined. They display a tautomeric versatility based on the flexible nature of the hydrazone linkages, leading to varied coordination motifs. Examples of mononuclear (Co(II), Ni(II)), dinuclear (Co(III)), 1D chain (Cu(II)) and square [2 × 2] grid (Ni(II)) complexes are obtained. Ferromagnetic (Cu(II)) and antiferromagnetic (Ni(II)) exchange is observed, with spin coupling in the Ni(II)(4) square grids propagated through the μ-O and μ-S bridges. Weak antiferromagnetic exchange (J = -6.0 cm(-1)) is observed for the μ-O bridged grid, despite the large Ni-O-Ni angles (137-141°), while for the μ-S bridged grids much stronger exchange is observed (J = -148 cm(-1), -198 cm(-1)). This is much larger than expected based on the Ni-S-Ni bridge angles (151-169°), and is associated with the soft (less polarizing than oxygen) nature of the sulfur bridge, which would allow for much more efficient transmission of spin exchange than observed in the μ-O bridged case. Structures and variable temperature magnetic data are included, and spin exchange is analyzed using normal Heisenberg exchange models. No examples involving oxime (NO) bridging are reported, which reflects the positioning of the N,O and N,S donor combinations in each ligand, and the preferred coordination through these donor atoms. © The Royal Society of Chemistry 2011

  18. On the timing properties of SAX J1808.4-3658 during its 2015 outburst

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Di Salvo, T.; Burderi, L.; Riggio, A.; Pintore, F.; Gambino, A. F.; Iaria, R.; Tailo, M.; Scarano, F.; Papitto, A.

    2017-10-01

    We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuSTAR observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin-down at an average rate \\dot{ν }_{SD}=1.5(2)× 10^{-15} Hz s-1. We also discuss possible corrections to the spin-down rate accounting for mass accretion on to the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatible with a binary expansion at a mean rate \\dot{P}_{orb}=3.6(4)× 10^{-12} s s-1, in agreement with previously reported values. This fast evolution is incompatible with an evolution driven by angular momentum losses caused by gravitational radiation under the hypothesis of conservative mass transfer. We discuss the observed orbital expansion in terms of non-conservative mass transfer and gravitational quadrupole coupling mechanism. We find that the latter can explain, under certain conditions, small fluctuations (of the order of few seconds) of the orbital period around a global parabolic trend. At the same time, a non-conservative mass transfer is required to explain the observed fast orbital evolution, which likely reflects ejection of a large fraction of mass from the inner Lagrangian point caused by the irradiation of the donor by the magnetodipole rotator during quiescence (radio-ejection model). This strong outflow may power tidal dissipation in the companion star and be responsible of the gravitational quadrupole change oscillations.

  19. Quantum Chemical Calculations of Torsionally Mediated Hyperfine Splittings in States of E Symmetry of Acetaldehyde (CH_{3}CHO)

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Reid, Elias M.; Guislain, Bradley; Hougen, Jon T.; Alekseev, E. A.; Krapivin, Igor

    2017-06-01

    Hyperfine splittings in methanol have been revisited in three recent publications. (i) Coudert et al. [JCP 143 (2015) 044304] published an analysis of splittings observed in the low-J range. They calculated 32 spin-rotation, 32 spin-spin, and 16 spin-torsion hyperfine constants using the ACES2 package. Three of these constants were adjusted to fit hyperfine patterns for 12 transitions. (ii) Three present authors and collaborators [JCP 145 (2016) 024307] analyzed medium to high-J experimental Lamb-dip measurements in methanol and presented a theoretical spin-rotation explanation that was based on torsionally mediated spin-rotation hyperfine operators. These contain, in addition to the usual nuclear spin and overall rotational operators, factors in the torsional angle α of the form {e^{plusmn;{inα}}}. Such operators have non-zero matrix elements between the two components of a torsion-rotation ^{tr}E state, but have zero matrix elements within a ^{tr}A state. More than 55 hyperfine splittings were successfully fitted using three parameters and the fitted values agree well with ab initio values obtained in (i). (iii) Lankhaar et al. [JCP 145 (2016) 244301] published a reanalysis of the data set from (i), using CFOUR recalculated hyperfine constants based on their rederivation of the relevant expressions. They explain why their choice of fixed and floated parameters leads to numerical values for all parameters that seem to be more physical than those in (i). The results in (ii) raise the question of whether large torsionally-mediated spin-rotation splittings will occur in other methyl-rotor-containing molecules. This abstract presents ab initio calculations of torsionally mediated hyperfine splittings in the E states of acetaldehyde using the same three operators as in (ii) and spin-rotation constants computed by Gaussian09. We explored the first 13 K states for J from 10 to 40 and ν_{t} = 0, 1, and 2. Our calculations indicate that hyperfine splittings in CH_{3}CHO are just below current measurement capability. This conclusion is confirmed by available experimental measurements.

  20. Layered Chalcogenides beyond Graphene: from Electronic Structure Evolution to the Spin Transport

    NASA Astrophysics Data System (ADS)

    Yuan, Hongtao

    2014-03-01

    Recent efforts on graphene-like atomic layer materials, aiming at novel electronic properties and quantum phenomena beyond graphene, have attracted much attention for potential electronics/spintronics applications. Compared to the weak spin-orbit-interaction (SOI) in graphene, metal chalcogenides MX2 have heavy 4d/5d elements with strong atomic SOI, providing a unique way for generating spin polarization based on valleytronics physics. Indeed, such a spin-polarized band structure has been demonstrated theoretically and supported by optical investigations. However, despite these exciting progresses, following two important issues in MX2 community remain elusive: 1. the quantitative band structure of MX2 compounds (where are the valleys -band maxima/minima- locating in the BZ) have not been experimentally confirmed. Especially for those cleaved ultrathin mono- and bi-layer flakes hosting most of recently-reported exotic phenomena at the 2D limit, the direct detection for band dispersion becomes of great importance for valleytronics. 2. Spin transports have seldom been reported even though such a strong SOI system can serve as an ideal platform for the spin polarization and spin transport. In this work, we started from the basic electronic structures of representative MX2, obtained by ARPES, and investigated both the band variation between these compounds and their band evolution from bulk to the monolayer limit. After having a systematic understanding on band structures, we reported a giant Zeeman-type spin-polarization generated and modulated by an external electric field in WSe2 electric-double-layer transistors. The non-magnetic approach for realizing such an intriguing spin splitting not only keeps the system time-reversally invariant but also suggests a new paradigm for manipulating the spin-degrees of freedom of electrons. Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515.

  1. Von Neumann entropy in a Rashba-Dresselhaus nanodot; dynamical electronic spin-orbit entanglement

    NASA Astrophysics Data System (ADS)

    Safaiee, Rosa; Golshan, Mohammad Mehdi

    2017-06-01

    The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals' in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present article, with potent applications in the field of quantum information processing, provide a deeper understanding of the electronic von Neumann entropy and hybrid entanglement that occurs in two-dimensional nanodots.

  2. 1D and 2D assembly structures by imidazole···chloride hydrogen bonds of iron(II) complexes [Fe(II)(HL(n-Pr))3]Cl·Y (HL(n-Pr) = 2-methylimidazol-4-yl-methylideneamino-n-propyl; Y = AsF6, BF4) and their spin states.

    PubMed

    Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Iijima, Seiichiro; Halcrow, Malcolm A; Sunatsuki, Yukinari; Kojima, Masaaki

    2011-12-07

    Two Fe(II) complexes fac-[Fe(II)(HL(n-Pr))(3)]Cl·Y (Y = AsF(6) (1) and BF(4) (2)) were synthesized, where HL(n-Pr) is 2-methylimidazole-4-yl-methylideneamino-n-propyl. Each complex-cation has the same octahedral N(6) geometry coordinated by three bidentate ligands and assumes facial-isomerism, fac-[Fe(II)(HL(n-Pr))(3)](2+) with Δ- and Λ-enantiomorphs. Three imidazole groups per Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) are hydrogen-bonded to three Cl(-) ions or, from the viewpoint of the Cl(-) ion, one Cl(-) ion is hydrogen-bonded to three neighbouring fac-[Fe(II)(HL(n-Pr))(3)](2+) cations. The 3 : 3 NH···Cl(-) hydrogen bonds between Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) and Cl(-) generate two kinds of assembly structures. The directions of the 3 : 3 NH···Cl(-) hydrogen bonds and hence the resulting assembly structures are determined by the size of the anion Y, though Y is not involved into the network structure and just accommodated in the cavity. Compound 1 has a 1D ladder structure giving a larger cavity, in which the Δ- and Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) enantiomorphs are bridged by two NH···Cl(-) hydrogen bonds. Compound 2 has a 2D network structure with a net unit of a cyclic trimer of {fac-[Fe(II)(HL(n-Pr))(3)](2+)···Cl(-)}(3) giving a smaller cavity, in which Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) species with the same chirality are linked by NH···Cl(-) hydrogen bonds to give a homochiral 2D network structure. Magnetic susceptibility and Mössbauer spectral measurements demonstrated that compound 1 showed an abrupt one-step spin crossover with 4.0 K thermal hysteresis of T(c↓) = 125.5 K and T(c↑) = 129.5 K and compound 2 showed no spin transition and stayed in the high-spin state over the 5-300 K temperature range.

  3. Dynamical pairwise entanglement and two-point correlations in the three-ligand spin-star structure

    NASA Astrophysics Data System (ADS)

    Motamedifar, M.

    2017-10-01

    We consider the three-ligand spin-star structure through homogeneous Heisenberg interactions (XXX-3LSSS) in the framework of dynamical pairwise entanglement. It is shown that the time evolution of the central qubit ;one-particle; state (COPS) brings about the generation of quantum W states at periodical time instants. On the contrary, W states cannot be generated from the time evolution of a ligand ;one-particle; state (LOPS). We also investigate the dynamical behavior of two-point quantum correlations as well as the expectation values of the different spin-components for each element in the XXX-3LSSS. It is found that when a W state is generated, the same value of the concurrence between any two arbitrary qubits arises from the xx and yy two-point quantum correlations. On the opposite, zz quantum correlation between any two qubits vanishes at these time instants.

  4. The SOAPS project - Spin-orbit alignment of planetary systems. Exoplanets' evolution histories in systems with different architectures

    NASA Astrophysics Data System (ADS)

    Faedi, F.; Gómez Maqueo Chew, Y.; Fossati, L.; Pollacco, D.; McQuillan, A.; Hebb, L.; Chaplin, W. J.; Aigrain, S.

    2013-04-01

    The wealth of information rendered by Kepler planets and planet candidates is indispensable for statistically significant studies of distinct planet populations, in both single and multiple systems. Empirical evidences suggest that Kepler's planet population shows different physical properties as compared to the bulk of known exoplanets. The SOAPS project, aims to shed light on Kepler's planets formation, their migration and architecture. By measuring v sini accurately for Kepler hosts with rotation periods measured from their high-precision light curves, we will assess the alignment of the planetary orbit with respect to the stellar spin axis. This degree of alignment traces the formation history and evolution of the planetary systems, and thus, allows to distinguish between different proposed migration theories. SOAPS will increase by a factor of 2 the number of spin-orbit alignment measurements pushing the parameters space down to the SuperEarth domain. Here we present our preliminary results.

  5. Habitability of extrasolar planets and tidal spin evolution.

    PubMed

    Heller, René; Barnes, Rory; Leconte, Jérémy

    2011-12-01

    Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.

  6. Electron-nuclear spin dynamics of Ga centers in GaAsN dilute nitride semiconductors probed by pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Azaizia, S.; Carrère, H.; Bakaleinikov, L. A.; Kalevich, V. K.; Ivchenko, E. L.; Marie, X.; Amand, T.; Balocchi, A.; Kunold, A.

    2018-03-01

    We propose an experimental procedure to track the evolution of electronic and nuclear spins in Ga2+ centers in GaAsN dilute semiconductors. The method is based on a pump-probe scheme that enables to monitor the time evolution of the three components of the electronic and nuclear spin variables. In contrast to other characterization methods, as nuclear magnetic resonance, this one only needs moderate magnetic fields (B≈ 10 mT), and does not require microwave irradiation. Specifically, we carry out a series of tests for different experimental conditions in order to optimize the procedure for maximum sensitivity in the measurement of the circular degree of polarization. Based on previous experimental results and the theoretical calculations presented here, we estimate that the method could yield a time resolution of about 10ps.

  7. Computer studies of multiple-quantum spin dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murdoch, J.B.

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.

  8. Laser-muon spin spectroscopy in liquids - a technique to study the excited state chemistry of transients.

    PubMed

    Ghandi, Khashayar; Clark, Ian P; Lord, James S; Cottrell, Stephen P

    2007-01-21

    This study introduces laser-muon spin spectroscopy in the liquid phase, which extends muonium chemistry in liquids to the realm of excited states and enables the detection of muoniated molecules by their spin evolution after laser excitation. This leads to new opportunities to study the Kinetic Isotope Effects (KIEs) of muonium/atomic hydrogen reactions and to probe transient chemistry in radiolysis processes involved in muonium formation, as well as muoniated intermediates in excited states.

  9. Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry

    NASA Astrophysics Data System (ADS)

    Mambrini, Matthieu; Orús, Román; Poilblanc, Didier

    2016-11-01

    We elaborate a simple classification scheme of all rank-5 SU(2) spin rotational symmetric tensors according to (i) the onsite physical spin S , (ii) the local Hilbert space V⊗4 of the four virtual (composite) spins attached to each site, and (iii) the irreducible representations of the C4 v point group of the square lattice. We apply our scheme to draw a complete list of all SU(2)-symmetric translationally and rotationally invariant projected entangled pair states (PEPS) with bond dimension D ≤6 . All known SU(2)-symmetric PEPS on the square lattice are recovered and simple generalizations are provided in some cases. More generally, to each of our symmetry class can be associated a (D -1 )-dimensional manifold of spin liquids (potentially) preserving lattice symmetries and defined in terms of D -independent tensors of a given bond dimension D . In addition, generic (low-dimensional) families of PEPS explicitly breaking either (i) particular point-group lattice symmetries (lattice nematics) or (ii) time-reversal symmetry (chiral spin liquids) or (iii) SU(2) spin rotation symmetry down to U(1 ) (spin nematics or Néel antiferromagnets) can also be constructed. We apply this framework to search for new topological chiral spin liquids characterized by well-defined chiral edge modes, as revealed by their entanglement spectrum. In particular, we show how the symmetrization of a double-layer PEPS leads to a chiral topological state with a gapless edge described by a SU (2) 2 Wess-Zumino-Witten model.

  10. A separation of antiferromagnetic spin motion modes in the training effect of exchange biased Co/CoO film with in-plane anisotropy

    NASA Astrophysics Data System (ADS)

    Wu, R.; Yun, C.; Ding, S. L.; Wen, X.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Du, H. L.; Yang, J. B.

    2016-08-01

    The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n-1/2 function. A larger CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.

  11. Magnetization reversal in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jia, E-mail: lijia@wipm.ac.cn

    2014-10-07

    We theoretically investigate the dynamics of magnetization in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque. We reproduce the experimental results of perpendicular magnetic anisotropy films by micromagnetic simulation. Due to the spin-orbit interaction, the magnetization can be switched by changing the direction of the current with the assistant of magnetic field. By increasing the current amplitude, wider range of switching events can be achieved. Time evolution of magnetization has provided us a clear view of the process, and explained the role of minimum external field. Slonczewski-like spin transfer torque modifies the magnetization when current ismore » present. The magnitude of the minimum external field is determined by the strength of the Slonczewski-like spin transfer torque. The investigations may provide potential applications in magnetic memories.« less

  12. Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.

    PubMed

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2017-09-22

    Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

  13. How well can we measure black hole spin?

    NASA Astrophysics Data System (ADS)

    Bonson, K.; Gallo, L.

    2015-07-01

    Being one of only two fundamental properties black holes possess, the spin of supermassive black holes (SMBHs) is of great interest for understanding accretion processes and galaxy evolution. However, in these early days of spin measurements, we often struggle to obtain consistent spin values for the same object because of different modeling approaches. Here we examine various techniques and observing conditions to determine which yield the most accurate spin measurements. We have created and fit over 6500 simulated Seyfert 1 spectra, using both XMM-Newton and NuStar responses, in an effort to uncover any systematic ``blind spots'' and determine how best to approach measuring spin in AGN. With the next generation of high-energy observatories like Astro-H and ATHENA, it is imperative that we understand just how well we are presently measuring spin and how we can maximize the potential of current and future missions.

  14. Spin Seebeck effect and ballistic transport of quasi-acoustic magnons in room-temperature yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Noack, Timo B.; Musiienko-Shmarova, Halyna Yu; Langner, Thomas; Heussner, Frank; Lauer, Viktor; Heinz, Björn; Bozhko, Dmytro A.; Vasyuchka, Vitaliy I.; Pomyalov, Anna; L’vov, Victor S.; Hillebrands, Burkard; Serga, Alexander A.

    2018-06-01

    We studied the transient behavior of the spin current generated by the longitudinal spin Seebeck effect (LSSE) in a set of platinum-coated yttrium iron garnet (YIG) films of different thicknesses. The LSSE was induced by means of pulsed microwave heating of the Pt layer and the spin currents were measured electrically using the inverse spin Hall effect in the same layer. We demonstrate that the time evolution of the LSSE is determined by the evolution of the thermal gradient triggering the flux of thermal magnons in the vicinity of the YIG/Pt interface. These magnons move ballistically within the YIG film with a constant group velocity, while their number decays exponentially within an effective propagation length. The ballistic flight of the magnons with energies above 20 K is a result of their almost linear dispersion law, similar to that of acoustic phonons. By fitting the time-dependent LSSE signal for different film thicknesses varying by almost an order of magnitude, we found that the effective propagation length is practically independent of the YIG film thickness. We consider this fact as strong support of a ballistic transport scenario—the ballistic propagation of quasi-acoustic magnons in room temperature YIG.

  15. Spin asymmetries for vector boson production in polarized p + p collisions

    DOE PAGES

    Huang, Jin; Kang, Zhong-Bo; Vitev, Ivan; ...

    2016-01-28

    We study the cross section for vector boson (W ±/Z 0/γ more » $$\\star$$) production in polarized nucleon-nucleon collisions for low transverse momentum of the observed vector boson. For the case where one measures the transverse momentum and azimuthal angle of the vector bosons, we present the cross sections and the associated spin asymmetries in terms of transverse momentum dependent parton distribution functions (TMDs) at tree level within the TMD factorization formalism. To assess the feasibility of experimental measurements, we estimate the spin asymmetries forW ±/Z 0 boson production in polarized proton-proton collisions at the Relativistic Heavy Ion Collider by using current knowledge of the relevant TMDs. Here, we find that some of these asymmetries can be sizable if the suppression effect from TMD evolution is not too strong. The W program at RHIC can, thus, test and constrain spin theory by providing unique information on the universality properties of TMDs, TMD evolution, and the nucleon structure. For example, the single transverse spin asymmetries could be used to probe the well-known Sivers function f$$⊥q\\atop{1T}$$, as well as the transversal helicity distribution g$$q\\atop{1T}$$ via the parity-violating nature of W production.« less

  16. Doping evolution of spin fluctuations and their peculiar suppression at low temperatures in Ca ( Fe 1 – x Co x ) 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapkota, A.; Das, P.; Bohmer, A. E.

    Results of inelastic neutron scattering measurements are reported for two annealed compositions of Ca(Fe 1–xCo x) 2As 2, x = 0.026 and 0.030, which possess stripe-type antiferromagnetically ordered and superconducting ground states, respectively. In the AFM ground state, well-defined and gapped spin waves are observed for x = 0.026, similar to the parent CaFe 2As 2 compound. We conclude that the well-defined spin waves are likely to be present for all x corresponding to the AFM state. This behavior is in contrast to the smooth evolution to overdamped spin dynamics observed in Ba(Fe 1–xCo x) 2As 2, wherein the crossovermore » corresponds to microscopically coexisting AFM order and SC at low temperature. The smooth evolution is likely absent in Ca(Fe 1–xCo x) 2As 2 due to the mutual exclusion of AFM ordered and SC states. Overdamped spin dynamics characterize paramagnetism of the x = 0.030 sample and high-temperature x = 0.026 sample. A sizable loss of magnetic intensity is observed over a wide energy range upon cooling the x = 0.030 sample, at temperatures just above and within the superconducting phase. This phenomenon is unique amongst the iron-based superconductors and is consistent with a temperature-dependent reduction in the fluctuating moment. In conclusion, one possible scenario ascribes this loss of moment to a sensitivity to the c-axis lattice parameter in proximity to the nonmagnetic collapsed tetragonal phase and another scenario ascribes the loss to a formation of a pseudogap.« less

  17. The Unbiased Velocity Distribution of Neutron Stars from a Simulation of Pulsar Surveys

    NASA Astrophysics Data System (ADS)

    Arzoumanian, Z.; Cordes, J. M.; Chernoff, D.

    1997-12-01

    We present the results of a new simulation of the Galactic population of neutron stars: their birthrate, velocity distribution, luminosities, beaming characteristics, and spin evolution. The many simulations in the literature differ from one another primarily in their treatment of the selection effects associated with pulsar detection. Our method, the most realistic to date, goes beyond earlier efforts by retaining the full kinematic, rotational, luminosity, and beaming evolution of each simulated star: ``Monte-Carlo'' neutron stars are created according to assumed distributions (at birth) in spatial coordinates, kick velocity, and magnitudes and orientations of the spin and magnetic field vectors. The neutron stars spin down following an assumed braking law, and their Galactic trajectories are traced to the present epoch. For each star, a pulse waveform is generated using a phenomenological radio-beam model, obviating the need for an arbitrary beaming fraction. Luminosity is assumed to be a parameterized function of period and spin-down rate, with no intrinsic spread, and a parameterized death-line is applied. Interstellar dispersion and scattering consistent with survey instrumentation and the galactic locales of the neutron stars are applied to the pulse waveforms, which are Fourier analyzed and tested for detection following the techniques of real-world surveys. A unique algorithm is used to compare the populations of simulated and known, non-millisecond, pulsars in the multi-dimensional space of observables (any subset of galactic coordinates, dispersion measure, period, spin-down rate, flux, and proper motion). Model parameters are varied, and statistically independent neutron star populations are created until a maximum likelihood model is found. The highlight of this effort is an unbiased determination of the velocity distribution of neutron stars. We discuss the implications of our results for supernova physics, binary evolution, and the nature of gamma -ray transients.

  18. Doping evolution of spin fluctuations and their peculiar suppression at low temperatures in Ca ( Fe 1 – x Co x ) 2 As 2

    DOE PAGES

    Sapkota, A.; Das, P.; Bohmer, A. E.; ...

    2018-05-29

    Results of inelastic neutron scattering measurements are reported for two annealed compositions of Ca(Fe 1–xCo x) 2As 2, x = 0.026 and 0.030, which possess stripe-type antiferromagnetically ordered and superconducting ground states, respectively. In the AFM ground state, well-defined and gapped spin waves are observed for x = 0.026, similar to the parent CaFe 2As 2 compound. We conclude that the well-defined spin waves are likely to be present for all x corresponding to the AFM state. This behavior is in contrast to the smooth evolution to overdamped spin dynamics observed in Ba(Fe 1–xCo x) 2As 2, wherein the crossovermore » corresponds to microscopically coexisting AFM order and SC at low temperature. The smooth evolution is likely absent in Ca(Fe 1–xCo x) 2As 2 due to the mutual exclusion of AFM ordered and SC states. Overdamped spin dynamics characterize paramagnetism of the x = 0.030 sample and high-temperature x = 0.026 sample. A sizable loss of magnetic intensity is observed over a wide energy range upon cooling the x = 0.030 sample, at temperatures just above and within the superconducting phase. This phenomenon is unique amongst the iron-based superconductors and is consistent with a temperature-dependent reduction in the fluctuating moment. In conclusion, one possible scenario ascribes this loss of moment to a sensitivity to the c-axis lattice parameter in proximity to the nonmagnetic collapsed tetragonal phase and another scenario ascribes the loss to a formation of a pseudogap.« less

  19. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Technicians in the Payload Hazardous Servicing Facility work on components of the Mars Exploration Rovers. In the center is a lander. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  20. Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble.

    PubMed

    Pozsgay, B; Mestyán, M; Werner, M A; Kormos, M; Zaránd, G; Takács, G

    2014-09-12

    We study the nonequilibrium time evolution of the spin-1/2 anisotropic Heisenberg (XXZ) spin chain, with a choice of dimer product and Néel states as initial states. We investigate numerically various short-ranged spin correlators in the long-time limit and find that they deviate significantly from predictions based on the generalized Gibbs ensemble (GGE) hypotheses. By computing the asymptotic spin correlators within the recently proposed quench-action formalism [Phys. Rev. Lett. 110, 257203 (2013)], however, we find excellent agreement with the numerical data. We, therefore, conclude that the GGE cannot give a complete description even of local observables, while the quench-action formalism correctly captures the steady state in this case.

  1. Feynman propagator for spin foam quantum gravity.

    PubMed

    Oriti, Daniele

    2005-03-25

    We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".

  2. Spin singlet and spin triplet pairing correlations on shape evolution in s d -shell N =Z Nuclei

    NASA Astrophysics Data System (ADS)

    Ha, Eunja; Cheoun, Myung-Ki; Sagawa, H.

    2018-02-01

    We study the shape evolution of N =Z nuclei 24Mg,28Si, and 32S in the axially symmetric deformed Woods-Saxon model, taking into account both T =0 and T =1 pairing interactions. We find the coexistence of T =0 and T =1 superfluidity phases in the large deformation region | β2|>0.3 in these three nuclei. The interplay between the two pairing interactions has an important effect on determining the deformation of the ground states in these nuclei. The self-energy contributions from the pairing correlations to the single particle (s.p.) energies are also examined.

  3. Ab initio and DFT studies of the spin-orbit and spin-spin contributions to the zero-field splitting tensors of triplet nitrenes with aryl scaffolds.

    PubMed

    Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji

    2011-04-21

    Spin-orbit and spin-spin contributions to the zero-field splitting (ZFS) tensors (D tensors) of spin-triplet phenyl-, naphthyl-, and anthryl-nitrenes in their ground state are investigated by quantum chemical calculations, focusing on the effects of the ring size and substituted position of nitrene on the D tensor. A hybrid CASSCF/MRMP2 approach to the spin-orbit term of the D tensor (D(SO) tensor), which was recently proposed by us, has shown that the spin-orbit contribution to the entire D value, termed the ZFS parameter or fine-structure constant, is about 10% in all the arylnitrenes under study and less depends on the size and connectivity of the aryl groups. Order of the absolute values for D(SO) can be explained by the perturbation on the energy level and spatial distributions of π-SOMO through the orbital interaction between SOMO of the nitrene moiety and frontier orbitals of the aryl scaffolds. Spin-spin contribution to the D tensor (D(SS) tensor) has been calculated in terms of the McWeeny-Mizuno equation with the DFT/EPR-II spin densities. The D(SS) value calculated with the RO-B3LYP spin density agrees well with the D(Exptl) -D(SO) reference value in phenylnitrene, but agreement with the reference value gradually becomes worse as the D value decreases. Exchange-correlation functional dependence on the D(SS) tensor has been explored with standard 23 exchange-correlation functionals in both RO- and U-DFT methodologies, and the RO-HCTH/407 method gives the best agreement with the D(Exptl) -D(SO) reference value. Significant exchange-correlation functional dependence is observed in spin-delocalized systems such as 9-anthrylnitrene (6). By employing the hybrid CASSCF/MRMP2 approach and the McWeeny-Mizuno equation combined with the RO-HCTH/407/EPR-II//U-HCTH/407/6-31G* spin densities for D(SO) and D(SS), respectively, a quantitative agreement with the experiment is achieved with errors less than 10% in all the arylnitrenes under study. Guidelines to the putative approaches to D(SS) tensor calculations are given.

  4. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%

    NASA Astrophysics Data System (ADS)

    Yoneda, Jun; Takeda, Kenta; Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Allison, Giles; Honda, Takumu; Kodera, Tetsuo; Oda, Shunri; Hoshi, Yusuke; Usami, Noritaka; Itoh, Kohei M.; Tarucha, Seigo

    2018-02-01

    The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility1-4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5-7. Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations8-10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.

  5. The Long-term Post-outburst Spin Down and Flux Relaxation of Magnetar Swift J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Scholz, P.; Kaspi, V. M.; Cumming, A.

    2014-05-01

    The magnetar Swift J1822.3-1606 entered an outburst phase in 2011 July. Previous X-ray studies of its post-outburst rotational evolution yielded inconsistent measurements of the spin-inferred magnetic field. Here we present the timing behavior and flux relaxation from over two years of Swift, RXTE, and Chandra observations following the outburst. We find that the ambiguity in previous timing solutions was due to enhanced spin down that resembles an exponential recovery following a glitch at the outburst onset. After fitting out the effects of the recovery, we measure a long-term spin-down rate of \\dot{\

  6. Enhanced Materials Based on Submonolayer Type-II Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamargo, Maria C; Kuskovsky, Igor L.; Meriles, Carlos

    2017-04-15

    We have investigated a nanostructured material known as sub-monolayer type-II QDs, made from wide bandgap II-VI semiconductors. Our goal is to understand and exploit their tunable optical and electrical properties by taking advantage of the type-II band alignment and quantum confinement effects. Type-II ZnTe quantum dots (QDs) in a ZnSe host are particularly interesting because of their relatively large valence band and conduction band offsets. In the current award we have developed new materials based on sub-monolayer type-II QDs that may be advantageous for photovoltaic and spintronics applications. We have also expanded the structural characterization of these materials by refiningmore » the X-ray diffraction methodologies needed to investigate them. In particular, we have 1) demonstrated ZnCdTe/ZnCdSe type-II QDs materials that have ideal properties for the development of novel high efficiency “intermediate band solar cells”, 2) we developed a comprehensive approach to describe and model the growth of these ultra-small type-II QDs, 3) analysis of the evolution of the photoluminescence (PL) emission, combined with other characterization probes allowed us to predict the size and density of the QDs as a function of the growth conditions, 4) we developed and implemented novel sophisticated X-ray diffraction techniques from which accurate size and shape of the buried type-II QDs could be extracted, 5) a correlation of the shape anisotropy with polarization dependent PL was observed, confirming the QDs detailed shape and providing insight about the effects of this shape anisotropy on the physical properties of the type-II QD systems, and 6) a detailed “time-resolved Kerr rotation” investigation has led to the demonstration of enhanced electron spin lifetimes for the samples with large densities of type-II QDs and an understanding of the interplay between the QDs and Te-isoelectroic centers, a defect that forms in the spacer layers that separate the QDs.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafuente-Sampietro, A.; CNRS, Institut Néel, F-38000 Grenoble; Institute of Materials Science, University of Tsukuba, 305-8573 Tsukuba

    We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Crmore » interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.« less

  8. Dynamical control of Mn spin-system cooling by photogenerated carriers in a (Zn,Mn)Se/BeTe heterostructure

    NASA Astrophysics Data System (ADS)

    Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.

    2010-08-01

    The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.

  9. Origin and evolution of surface spin current in topological insulators

    NASA Astrophysics Data System (ADS)

    Dankert, André; Bhaskar, Priyamvada; Khokhriakov, Dmitrii; Rodrigues, Isabel H.; Karpiak, Bogdan; Kamalakar, M. Venkata; Charpentier, Sophie; Garate, Ion; Dash, Saroj P.

    2018-03-01

    The Dirac surface states of topological insulators offer a unique possibility for creating spin polarized charge currents due to the spin-momentum locking. Here we demonstrate that the control over the bulk and surface contribution is crucial to maximize the charge-to-spin conversion efficiency. We observe an enhancement of the spin signal due to surface-dominated spin polarization while freezing out the bulk conductivity in semiconducting Bi1.5Sb0.5Te1.7Se1.3 below 100 K . Detailed measurements up to room temperature exhibit a strong reduction of the magnetoresistance signal between 2 and100 K , which we attribute to the thermal excitation of bulk carriers and to the electron-phonon coupling in the surface states. The presence and dominance of this effect up to room temperature is promising for spintronic science and technology.

  10. Photomagnetic studies on spin-crossover solid solutions containing two different metal complexes, [Fe(1-bpp)(2)](x)[M(terpy)2](1-x)[BF4]2 (M = Ru or Co).

    PubMed

    Chastanet, Guillaume; Tovee, Clare A; Hyett, Geoffrey; Halcrow, Malcolm A; Létard, Jean-François

    2012-04-28

    The photomagnetic properties of two series of spin-crossover solid solutions, [Fe(1-bpp)(2)](x)[Ru(terpy)(2)](1-x)(BF(4))(2) and [Fe(1-bpp)(2)](x)[Co(terpy)(2)](1-x)(BF(4))(2) (1-bpp = 2,6-bis[pyrazol-1-yl]pyridine), have been investigated. For all the materials, the evolution of the T(LIESST) value, the high-spin → low-spin relaxation parameters and the LITH loops were thoroughly studied. Interestingly in the Fe:Co series, along the photo-excitation, cobalt ions are concomitantly converted from low-spin to high-spin states with the iron centres, and also fully relax after light excitation. This journal is © The Royal Society of Chemistry 2012

  11. Voltage-controlled spin selection in a magnetic resonant tunneling diode.

    PubMed

    Slobodskyy, A; Gould, C; Slobodskyy, T; Becker, C R; Schmidt, G; Molenkamp, L W

    2003-06-20

    We have fabricated all II-VI semiconductor resonant tunneling diodes based on the (Zn,Mn,Be)Se material system, containing dilute magnetic material in the quantum well, and studied their current-voltage characteristics. When subjected to an external magnetic field the resulting spin splitting of the levels in the quantum well leads to a splitting of the transmission resonance into two separate peaks. This is interpreted as evidence of tunneling transport through spin polarized levels, and could be the first step towards a voltage controlled spin filter.

  12. Room temperature ferromagnetism in BiFe1-xMnxO3 thin film induced by spin-structure manipulation

    NASA Astrophysics Data System (ADS)

    Shigematsu, Kei; Asakura, Takeshi; Yamamoto, Hajime; Shimizu, Keisuke; Katsumata, Marin; Shimizu, Haruki; Sakai, Yuki; Hojo, Hajime; Mibu, Ko; Azuma, Masaki

    2018-05-01

    The evolution of crystal structure, spin structure, and macroscopic magnetization of manganese-substituted BiFeO3 (BiFe1-xMnxO3), a candidate for multiferroic materials, were investigated on bulk and epitaxial thin-film. Mn substitution for Fe induced collinear antiferromagnetic spin structure around room temperature by destabilizing the cycloidal spin modulation which prohibited the appearance of net magnetization generated by Dzyaloshinskii-Moriya interaction. For the bulk samples, however, no significant signal of ferromagnetism was observed because the direction of the ordered spins was close to parallel to the electric polarization so that spin-canting did not occur. On the contrary, BiFe1-xMnxO3 thin film on SrTiO3 (001) had a collinear spin structure with the spin direction perpendicular to the electric polarization at room temperature, where the appearance of spontaneous magnetization was expected. Indeed, ferromagnetic hysteresis behavior was observed for BiFe0.9Mn0.1O3 thin film.

  13. Tuning the interfacial charge, orbital, and spin polarization properties in La0.67Sr0.33MnO3/La1-xSrxMnO3 bilayers

    NASA Astrophysics Data System (ADS)

    Carreira, Santiago J.; Aguirre, Myriam H.; Briatico, Javier; Weschke, Eugen; Steren, Laura B.

    2018-01-01

    The possibility of controlling the interfacial properties of artificial oxide heterostructures is still attracting researchers in the field of materials engineering. Here, we used surface sensitive techniques and high-resolution transmission electron microscopy to investigate the evolution of the surface spin-polarization and lattice strains across the interfaces between La0.66Sr0.33MnO3 thin films and low-doped manganites as capping layers. We have been able to fine tune the interfacial spin-polarization by changing the capping layer thickness and composition. The spin-polarization was found to be the highest at a critical capping thickness that depends on the Sr doping. We explain the non-trivial magnetic profile by the combined effect of two mechanisms: On the one hand, the extra carriers supplied by the low-doped manganites that tend to compensate the overdoped interface, favouring locally a ferromagnetic double-exchange coupling. On the other hand, the evolution from a tensile-strained structure of the inner layers to a compressed structure at the surface that changes gradually the orbital occupation and hybridization of the 3d-Mn orbitals, being detrimental for the spin polarization. The finding of an intrinsic spin-polarization at the A-site cation observed in x-ray magnetic circular dichroism (XMCD) measurements also reveals the existence of a complex magnetic configuration at the interface, different from the magnetic phases observed at the inner layers.

  14. Reflection from the strong gravity regime in a lensed quasar at redshift z = 0.658.

    PubMed

    Reis, R C; Reynolds, M T; Miller, J M; Walton, D J

    2014-03-13

    The co-evolution of a supermassive black hole with its host galaxy through cosmic time is encoded in its spin. At z > 2, supermassive black holes are thought to grow mostly by merger-driven accretion leading to high spin. It is not known, however, whether below z ≈ 1 these black holes continue to grow by coherent accretion or in a chaotic manner, though clear differences are predicted in their spin evolution. An established method of measuring the spin of black holes is through the study of relativistic reflection features from the inner accretion disk. Owing to their greater distances from Earth, there has hitherto been no significant detection of relativistic reflection features in a moderate-redshift quasar. Here we report an analysis of archival X-ray data together with a deep observation of a gravitationally lensed quasar at z = 0.658. The emission originates within three or fewer gravitational radii from the black hole, implying a spin parameter (a measure of how fast the black hole is rotating) of a = 0.87(+0.08)(-0.15) at the 3σ confidence level and a > 0.66 at the 5σ level. The high spin found here is indicative of growth by coherent accretion for this black hole, and suggests that black-hole growth at 0.5 ≤ z ≤ 1 occurs principally by coherent rather than chaotic accretion episodes.

  15. S K-edge XAS and DFT Calculations on Square Planar NiII-thiolate Complexes: Effects of Active and Passive H-bonding

    PubMed Central

    Dey, Abhishek; Green, Kayla N.; Jenkins, Roxanne M.; Jeffrey, Stephen P.; Darensbourg, Marcetta; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.

    2008-01-01

    S K-edge XAS for a low-spin NiII-thiolate complex shows a 0.2 eV shift to higher pre-edge energy but no change in Ni-S bond covalency upon H-bonding. This is different from the H-bonding effect we observed in high spin FeIII-thiolate complexes where there is a significant decrease in Fe-S bond covalency but no change in energy due to H-bonding (Dey, A.; Okamura, T.-A.; Ueyama, N.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc.; 2005; 127, 12046-12053.). These differences were analyzed using DFT calculations and the results indicate that two different types of H-bonding interactions are possible in metal-thiolate systems. In the high-spin FeIII-thiolate case, the H-bonding involves a thiolate donor orbital which is also involved in bonding with the metal (active), while in the low-spin NiII-thiolate the orbital involved in H-bonding is non-bonding with respect to the M-S bonding (passive). The contributions of active and passive H-bonds to the reduction potential and Lewis acid properties of a metal center are evaluated. PMID:17949080

  16. SK-Edge XAS And DFT Calculations on Square-Planar NiII-Thiolate Complexes: Effects of Active And Passive H-Bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, A.; Green, K.N.; Jenkins, R.M.

    S K-edge XAS for a low-spin Ni{sup II}-thiolate complex shows a 0.2 eV shift to higher pre-edge energy but no change in Ni-S bond covalency upon H-bonding. This is different from the H-bonding effect we observed in high-spin Fe{sup III}-thiolate complexes where there is a significant decrease in Fe-S bond covalency but no change in energy due to H-bonding (Dey, A.; Okamura, T.-A.; Ueyama, N.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 2005, 127, 12046-12053). These differences were analyzed using DFT calculations, and the results indicate that two different types of H-bonding interactions are possiblemore » in metal-thiolate systems. In the high-spin Fe{sup III}-thiolate case, the H-bonding involves a thiolate donor orbital which is also involved in bonding with the metal (active), while in the low-spin Ni{sup II}-thiolate, the orbital involved in H-bonding is nonbonding with respect to the M-S bonding (passive). The contributions of active and passive H-bonds to the reduction potential and Lewis acid properties of a metal center are evaluated.« less

  17. Bidirectional Photoswitching via Alternating NIR and UV Irradiation on a Core-Shell UCNP-SCO Nanosphere.

    PubMed

    Luo, Yang-Hui; Wang, Jing-Wen; Wang, Wen; He, Xiao-Tong; Hong, Dan-Li; Chen, Chen; Xu, Tao; Shao, Qiyue; Sun, Bai-Wang

    2018-05-16

    Bidirectional photoswitching of molecular materials under ambient condition is of significant importance. Herein, we present for the first time that a core-shell UCNP-SCO nanosphere (UCNP = upconversion nanophosphor, SCO = spin crossover), which was composed of a UCNP core (NaYF 4 : 20 mol % Yb 3+ , 1 mol % Er 3+ ) and an SCO iron(II) shell ([Fe(H 2 Bpz) 2 (bipy-COOH)], H 2 Bpz = dihydrobis(1-pyrazolyl)borate, bipy-COOH = 4,4'-dicarboxy-2,2'-bipyridine), can be reversibly photoswitched between the high-spin and low-spin states at room temperature in the solid state, via alternating irradiation with near-infrared (λ = 980 nm) and ultraviolet (λ = 310 nm) light. What's more, this reversible spin-state switching was accompanied by a variation of fluorescent spectrum and dielectric constants. The strategy here, that is, integrating the SCO iron(II) complex into a UCNP-SCO nanosphere for molecular photoswitching, may open a new area in the development of photocontrolled molecular devices.

  18. Spin diffusion in the Mn2+ ion system of II-VI diluted magnetic semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Maksimov, A. A.; Yakovlev, D. R.; Debus, J.; Tartakovskii, I. I.; Waag, A.; Karczewski, G.; Wojtowicz, T.; Kossut, J.; Bayer, M.

    2010-07-01

    The magnetization dynamics in diluted magnetic semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te were studied optically and simulated numerically. In samples with inhomogeneous magnetic ion distribution, these dynamics are contributed by spin-lattice relaxation and spin diffusion in the Mn spin system. A spin-diffusion coefficient of 7×10-8cm2/s was evaluated for Zn0.99Mn0.01Se from comparison of experiment and theory. Calculations of the exciton giant Zeeman splitting and the magnetization dynamics in ordered alloys and digitally grown parabolic quantum wells show perfect agreement with the experimental data. In both structure types, spin diffusion contributes essentially to the magnetization dynamics.

  19. Trinuclear Mn(II) complex with paramagnetic bridging 1,2,3-dithiazolyl ligands.

    PubMed

    Sullivan, David J; Clérac, Rodolphe; Jennings, Michael; Lough, Alan J; Preuss, Kathryn E

    2012-11-18

    The first metal coordination complex of a radical ligand based on the 1,2,3-dithiazolyl heterocycle is reported. 6,7-Dimethyl-1,4-dioxo-naphtho[2,3-d][1,2,3]dithiazolyl acts as a bridging ligand in the volatile trinuclear Mn(hfac)(2)-Rad-Mn(hfac)(2)-Rad-Mn(hfac)(2) complex (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-). The Mn(II) and radical ligand spins are coupled anti-ferromagnetically (AF) resulting in an S(T) = 13/2 spin ground state.

  20. Complete tidal evolution of Pluto-Charon

    NASA Astrophysics Data System (ADS)

    Cheng, W. H.; Lee, Man Hoi; Peale, S. J.

    2014-05-01

    Both Pluto and its satellite Charon have rotation rates synchronous with their orbital mean motion. This is the theoretical end point of tidal evolution where transfer of angular momentum has ceased. Here we follow Pluto’s tidal evolution from an initial state having the current total angular momentum of the system but with Charon in an eccentric orbit with semimajor axis a≈4RP (where RP is the radius of Pluto), consistent with its impact origin. Two tidal models are used, where the tidal dissipation function Q∝1/frequency and Q = constant, where details of the evolution are strongly model dependent. The inclusion of the gravitational harmonic coefficient C22 of both bodies in the analysis allows smooth, self consistent evolution to the dual synchronous state, whereas its omission frustrates successful evolution in some cases. The zonal harmonic J2 can also be included, but does not cause a significant effect on the overall evolution. The ratio of dissipation in Charon to that in Pluto controls the behavior of the orbital eccentricity, where a judicious choice leads to a nearly constant eccentricity until the final approach to dual synchronous rotation. The tidal models are complete in the sense that every nuance of tidal evolution is realized while conserving total angular momentum-including temporary capture into spin-orbit resonances as Charon’s spin decreases and damped librations about the same.

  1. Spin-pumping and spin-Hall magnetoresistance (SMR) at transition metal interfaces: case of (Co/Pt) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jaffres, Henri; George, Jean-Marie; Laczowski, Piotr; Reyren, Nicolas; Vila, Laurent

    2016-10-01

    Spintronic phenomena are made possible via the diffusion of spin-currents or the generation of spin-accumulation. Spinorbitronics uses the electronic spin-orbit coupling (SOC) and emerges as a new route to create spin-currents in the transverse direction of the charge flow. This is made possible via the intrinsic spin Hall conduction (SHE) of heavy metals or extrinsic spin-Hall effect of metallic alloys. SHE borrows its concept from the anomalous Hall effect (AHE) where the relativistic spin-orbit coupling (SOC) promotes an asymmetric deflection of the spin-current. SHE is now at the base of magnetization commutation and domain wall moving via spin-orbit torque (SOT) and spin-transfer torque operations in the FMR regime. However, the exact anatomy of SOT at spin-orbit active interfaces like Co/Pt is still missing. In the case of Pt, recent studies have put forward the major role played by i) the spin-memory loss (SML) and the electronic transparency at 3d/5d interfaces and ii) the inhomogeneity of the conductivity in the current-in-plane (CIP) geometry to explain the discrepancy in the SHE. Ingredients to consider then are the profiles of both the conductivity and spin-current across the multilayers and spin-transmission. In this talk, we will present robust SMR measurements observed on NiCo/Pt multilayer stacks characterized by a perpendicular magnetic anisotropy (PMA). The SMR occurs for both in-plane magnetization rotation or from nominal out-of-plane to the in-plane direction transverse to the current flow. This clearly departs from standard AMR or pure interfacial anisotropic-AMR symmetries. We analyze in large details our SMR signals for the whole series of samples owing to two main guidelines: i) we consider the exact conductivity profile across the multilayers, in particular near the Co/Pt interface, via the Camley-Barnas approach and ii) we derive the spin current profile generated by SHE along the perpendicular direction responsible for SMR. We consider pure interfacial spin dissipation by SML (decoherence, interfacial enhanced scattering) and give out a general analytical expression for SMR. Our conclusions go towards a robust value of the spin-Hall conductivity and SML like previously published. The CIP spin-Hall angle, of the order of 0.10 is larger than the one found in spin-pumping experiments (CPP geometry) owing to the smaller conductivity at the Co/Pt interface, in agreement with the results of STT-FMR experiments.

  2. The Effect of Combined Magnetic Geometries on Thermally Driven Winds. II. Dipolar, Quadrupolar, and Octupolar Topologies

    NASA Astrophysics Data System (ADS)

    Finley, Adam J.; Matt, Sean P.

    2018-02-01

    During the lifetime of Sun-like or low-mass stars a significant amount of angular momentum is removed through magnetized stellar winds. This process is often assumed to be governed by the dipolar component of the magnetic field. However, observed magnetic fields can host strong quadrupolar and/or octupolar components, which may influence the resulting spin-down torque on the star. In Paper I, we used the MHD code PLUTO to compute steady-state solutions for stellar winds containing a mixture of dipole and quadrupole geometries. We showed the combined winds to be more complex than a simple sum of winds with these individual components. This work follows the same method as Paper I, including the octupole geometry, which not only increases the field complexity but also, more fundamentally, looks for the first time at combining the same symmetry family of fields, with the field polarity of the dipole and octupole geometries reversing over the equator (unlike the symmetric quadrupole). We show, as in Paper I, that the lowest-order component typically dominates the spin-down torque. Specifically, the dipole component is the most significant in governing the spin-down torque for mixed geometries and under most conditions for real stars. We present a general torque formulation that includes the effects of complex, mixed fields, which predicts the torque for all the simulations to within 20% precision, and the majority to within ≈5%. This can be used as an input for rotational evolution calculations in cases where the individual magnetic components are known.

  3. Femtosecond optical reflectivity measurements of lattice-mediated spin repulsions in photoexcited LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Bielecki, J.; Rata, A. D.; Börjesson, L.

    2014-01-01

    We present results on the temperature dependence of ultrafast electron and lattice dynamics, measured with pump-probe transient reflectivity experiments, of an epitaxially grown LaCoO3 thin film under tensile strain. Probing spin-polarized transitions into the antibonding eg band provides a measure of the low-spin fraction, both as a function of temperature and time after photoexcitation. It is observed that femtosecond laser pulses destabilize the constant low-spin fraction (˜63%-64%) in equilibrium into a thermally activated state, driven by a subpicosecond change in spin gap Δ. From the time evolution of the low-spin fraction, it is possible to disentangle the thermal and lattice contributions to the spin state. A lattice mediated spin repulsion, identified as the governing factor determining the equilibrium spin state in thin-film LaCoO3, is observed. These results suggests that time-resolved spectroscopy is a sensitive probe of the spin state in LaCoO3 thin films, with the potential to bring forward quantitative insight into the complicated interplay between structure and spin state in LaCoO3.

  4. EFFECT OF CADMIUM(II) ON FREE RADICALS IN DOPA-MELANIN TESTED BY EPR SPECTROSCOPY.

    PubMed

    Zdybel, Magdalena; Pilawa, Barbara; Chodurek, Ewa

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy may be applied to examine interactions of melanin with metal ions and drugs. In this work EPR method was used to examination of changes in free radical system of DOPA-melanin--the model eumelanin after complexing with diamagnetic cadmium(II) ions. Cadmium(II) may affect free radicals in melanin and drugs binding by this polymer, so the knowledge of modification of properties and free radical concentration in melanin is important to pharmacy. The effect of cadmium(II) in different concentrations on free radicals in DOPA-melanin was determined. EPR spectra of DOPA-melanin, and DOPA-melanin complexes with cadmium(II) were measured by an X-band (9.3 GHz) EPR spectrometer produced by Radiopan (Poznań, Poland) and the Rapid Scan Unit from Jagmar (Krak6w, Poland). The DOPA (3,4-dihydroxyphenylalanine) to metal ions molar ratios in the reaction mixtures were 2:1, 1:1, and 1: 2. High concentrations of o-semiquinone (g ~2.0040) free radicals (~10(21)-10(22) spin/g) characterize DOPA-melanin and its complexes with cadmium(II). Formation of melanin complexes with cadmium(II) increase free radical concentration in DOPA-melanin. The highest free radical concentration was obtained for DOPA-melanin-cadmium(II) (1:1) complexes. Broad EPR lines with linewidths: 0.37-0.73 mT, were measured. Linewidths increase after binding of cadmium(II) to melanin. Changes of integral intensities and linewidths with increasing microwave power indicate the homogeneous broadening of EPR lines, independently on the metal ion concentration. Slow spin-lattice relaxation processes existed in all the tested samples, their EPR lines saturated at low microwave powers. Cadmium(II) causes fastening of spin-lattice relaxation processes in DOPA-melanin. The EPR results bring to light the effect of cadmium(II) on free radicals in melanin, and probably as the consequence on drug binding to eumelanin.

  5. A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques

    NASA Astrophysics Data System (ADS)

    Verel, René; Baldus, Marc; Ernst, Matthias; Meier, Beat H.

    1998-05-01

    A filtering scheme for the selection of spin pairs (and larger spin clusters) under fast magic-angle spinning is proposed. The scheme exploits the avoided level crossing in spin pairs during an adiabatic amplitude sweep through the so-called HORROR recoupling condition. The advantages over presently used double-quantum filters are twofold. (i) The maximum theoretical filter efficiency is, due to the adiabatic variation, 100% instead of 73% as for transient methods. (ii) Since the filter does not rely on the phase-cycling properties of the double-quantum coherence, there is no need to obtain the full double-quantum intensity for all spins in the sample at one single point in time. The only important requirement is that all coupled spins pass through a two-spin state during the amplitude sweep. This makes the pulse scheme robust with respect to rf-amplitude missetting, rf-field inhomogeneity and chemical-shift offset.

  6. Persistent spin helix manipulation by optical doping of a CdTe quantum well

    NASA Astrophysics Data System (ADS)

    Passmann, F.; Anghel, S.; Tischler, T.; Poshakinskiy, A. V.; Tarasenko, S. A.; Karczewski, G.; Wojtowicz, T.; Bristow, A. D.; Betz, M.

    2018-05-01

    Time-resolved Kerr-rotation microscopy explores the influence of optical doping on the persistent spin helix in a [001]-grown CdTe quantum well at cryogenic temperatures. Electron spin-diffusion dynamics reveal a momentum-dependent effective magnetic field providing SU(2) spin-rotation symmetry, consistent with kinetic theory. The Dresselhaus and Rashba spin-orbit coupling parameters are extracted independently from rotating the spin helix with external magnetic fields applied parallel and perpendicular to the effective magnetic field. Most importantly, a nonuniform spatiotemporal precession pattern is observed. The kinetic-theory framework of spin diffusion allows for modeling of this finding by incorporating the photocarrier density into the Rashba (α) and the Dresselhaus (β3) parameters. Corresponding calculations are further validated by an excitation-density-dependent measurement. This work shows universality of the persistent spin helix by its observation in a II-VI compound and the ability to fine-tune it by optical doping.

  7. FK COMAE BERENICES, KING OF SPIN: THE COCOA-PUFS PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, Thomas R.; Kashyap, V.; Saar, S.

    COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast spinning, heavily spotted, yellow giant FK Comae Berenices (FK Com: HD117555; G4 III). This single star is thought to be a recent binary merger, and is exceptionally active by measure of its intense ultraviolet (UV) and X-ray emissions, and proclivity to flare. COCOA-PUFS was carried out with the Hubble Space Telescope in the UV (1200–3000 Å), using mainly its high-performance Cosmic Origins Spectrograph, but also high precision Space Telescope Imaging Spectrograph; Chandra X-ray Observatory in the soft X-rays (0.5–10 keV), utilizing its High-Energy Transmission Grating Spectrometer; together with supporting photometry andmore » spectropolarimetry in the visible from the ground. This is an introductory report on the project. FK Com displayed variability on a wide range of timescales over all wavelengths during the week-long main campaign, including a large X-ray flare; “super-rotational broadening” of the far-ultraviolet “hot lines” (e.g., Si iv 1393 Å; 8 × 10{sup 4} K) together with chromospheric Mg ii 2800 Å and C ii 1335 Å (1–3 × 10{sup 4} K); large Doppler swings suggestive of bright regions alternately on advancing and retreating limbs of the star; and substantial redshifts of the epoch-average emission profiles. These behaviors paint a picture of a highly extended, dynamic, hot (∼10 MK) coronal magnetosphere around the star, threaded by cooler structures perhaps analogous to solar prominences and replenished continually by surface activity and flares. Suppression of angular momentum loss by the confining magnetosphere could temporarily postpone the inevitable stellar spindown, thereby lengthening this highly volatile stage of coronal evolution.« less

  8. FK Comae Berenices, King of Spin: The COCOA-PUFS Project

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.; Kashyap, V.; Saar, S.; Huenemoerder, D.; Korhonen, H.; Drake, J. J.; Testa, P.; Cohen, O.; Garraffo, C.; Granzer, T.; Strassmeier, K.

    2016-03-01

    COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast spinning, heavily spotted, yellow giant FK Comae Berenices (FK Com: HD117555; G4 III). This single star is thought to be a recent binary merger, and is exceptionally active by measure of its intense ultraviolet (UV) and X-ray emissions, and proclivity to flare. COCOA-PUFS was carried out with the Hubble Space Telescope in the UV (1200-3000 Å), using mainly its high-performance Cosmic Origins Spectrograph, but also high precision Space Telescope Imaging Spectrograph; Chandra X-ray Observatory in the soft X-rays (0.5-10 keV), utilizing its High-Energy Transmission Grating Spectrometer; together with supporting photometry and spectropolarimetry in the visible from the ground. This is an introductory report on the project. FK Com displayed variability on a wide range of timescales over all wavelengths during the week-long main campaign, including a large X-ray flare; “super-rotational broadening” of the far-ultraviolet “hot lines” (e.g., Si IV 1393 Å 8 × 104 K) together with chromospheric Mg II 2800 Å and C II 1335 Å (1-3 × 104 K); large Doppler swings suggestive of bright regions alternately on advancing and retreating limbs of the star; and substantial redshifts of the epoch-average emission profiles. These behaviors paint a picture of a highly extended, dynamic, hot (˜10 MK) coronal magnetosphere around the star, threaded by cooler structures perhaps analogous to solar prominences and replenished continually by surface activity and flares. Suppression of angular momentum loss by the confining magnetosphere could temporarily postpone the inevitable stellar spindown, thereby lengthening this highly volatile stage of coronal evolution. COordinated Campaign of Observations and Analysis, Photosphere to Upper Atmosphere, of a Fast-rotating Star.

  9. Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Anquez, M.; Robbins, B. A.; Bharath, H. M.; Boguslawski, M.; Hoang, T. M.; Chapman, M. S.

    2016-04-01

    The dynamics of a quantum phase transition are explored using slow quenches from the polar to the broken-axisymmetry phases in a small spin-1 ferromagnetic Bose-Einstein condensate. Measurements of the evolution of the spin populations reveal a power-law scaling of the temporal onset of excitations versus quench speed as predicted from quantum extensions of the Kibble-Zurek mechanism. The satisfactory agreement of the measured scaling exponent with the analytical theory and numerical simulations provides experimental confirmation of the quantum Kibble-Zurek model.

  10. Negative-Mass Instability of the Spin and Motion of an Atomic Gas Driven by Optical Cavity Backaction

    NASA Astrophysics Data System (ADS)

    Kohler, Jonathan; Gerber, Justin A.; Dowd, Emma; Stamper-Kurn, Dan M.

    2018-01-01

    We realize a spin-orbit interaction between the collective spin precession and center-of-mass motion of a trapped ultracold atomic gas, mediated by spin- and position-dependent dispersive coupling to a driven optical cavity. The collective spin, precessing near its highest-energy state in an applied magnetic field, can be approximated as a negative-mass harmonic oscillator. When the Larmor precession and mechanical motion are nearly resonant, cavity mediated coupling leads to a negative-mass instability, driving exponential growth of a correlated mode of the hybrid system. We observe this growth imprinted on modulations of the cavity field and estimate the full covariance of the resulting two-mode state by observing its transient decay during subsequent free evolution.

  11. Spin coherent states phenomena probed by quantum state tomography in Zeeman perturbed nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Teles, João; Auccaise, Ruben; Rivera-Ascona, Christian; Araujo-Ferreira, Arthur G.; Andreeta, José P.; Bonagamba, Tito J.

    2018-07-01

    Recently, we reported an experimental implementation of quantum information processing (QIP) by nuclear quadrupole resonance (NQR). In this work, we present the first quantum state tomography (QST) experimental implementation in the NQR QIP context. Two approaches are proposed, employing coherence selection by temporal and spatial averaging. Conditions for reduction in the number of cycling steps are analyzed, which can be helpful for larger spin systems. The QST method was applied to the study of spin coherent states, where the alignment-to-orientation phenomenon and the evolution of squeezed spin states show the effect of the nonlinear quadrupole interaction intrinsic to the NQR system. The quantum operations were implemented using a single-crystal sample of KClO3 and observing ^{35}Cl nuclei, which posses spin 3/2.

  12. Nonequilibrium spin transport in integrable spin chains: Persistent currents and emergence of magnetic domains

    NASA Astrophysics Data System (ADS)

    De Luca, Andrea; Collura, Mario; De Nardis, Jacopo

    2017-07-01

    We construct exact steady states of unitary nonequilibrium time evolution in the gapless XXZ spin-1/2 chain where integrability preserves ballistic spin transport at long times. We characterize the quasilocal conserved quantities responsible for this feature and introduce a computationally effective way to evaluate their expectation values on generic matrix product initial states. We employ this approach to reproduce the long-time limit of local observables in all quantum quenches which explicitly break particle-hole or time-reversal symmetry. We focus on a class of initial states supporting persistent spin currents and our predictions remarkably agree with numerical simulations at long times. Furthermore, we propose a protocol for this model where interactions, even when antiferromagnetic, are responsible for the unbounded growth of a macroscopic magnetic domain.

  13. Surface spin-electron acoustic waves in magnetically ordered metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz'menkov, L. S., E-mail: lsk@phys.msu.ru

    2016-05-09

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma, we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area, the dispersion branches are located close to each other. In this area, there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuirmore » waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the spin-electron acoustic waves.« less

  14. In Situ GIWAXS Analysis of Solvent and Additive Effects on PTB7 Thin Film Microstructure Evolution during Spin Coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manley, Eric F.; Strzalka, Joseph; Fauvell, Thomas J.

    The influence of solvent and processing additives on the pathways and rates of crystalline morphology formation for spin-coated semiconducting PTB7 (poly[[4,8-bis[(2- ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)- carbonyl]-thieno[3,4-b]thiophenediyl

  15. In Situ GIWAXS Analysis of Solvent and Additive Effects on PTB7 Thin Film Microstructure Evolution during Spin Coating

    DOE PAGES

    Manley, Eric F.; Strzalka, Joseph; Fauvell, Thomas J.; ...

    2017-10-09

    The influence of solvent and processing additives on the pathways and rates of crystalline morphology formation for spin-coated semiconducting PTB7 (poly[[4,8-bis[(2- ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)- carbonyl]-thieno[3,4-b]thiophenediyl

  16. Paloma (RX J0524+42): the missing link in magnetic CV evolution?

    NASA Astrophysics Data System (ADS)

    Schwarz, R.; Schwope, A. D.; Staude, A.; Rau, A.; Hasinger, G.; Urrutia, T.; Motch, C.

    2007-10-01

    Decent optical photometry of the canditate magnetic CV Paloma has uncovered three persistent periods at 157, 146, and 136 min, which we interpret as the manifestation of the orbital motion of the system, the white dwarf's spin, and a related side-band frequency of the other two. All three periodicities are caused by a double-humped modulation of about 1 mag appearing only at certain fractions of the beat cycle, and it probably originates from one or two accretion spots. Our data is consistent with two plausible solutions, with the spin period being either 146 or 136 min. The appearance of a corresponding spin-folded light curve suggests two different scenarios, for which either pole switching between two diametrically opposed accretion regions (for P_spin = 146 min) or pole migration of one single spot (with P_spin = 136 min) is the preferred accretion mode. Complementary ROSAT X-ray observations and low-resolution spectroscopy provide supporting evidence of the magnetic nature of the object. Depending on the choice of the spin period, the degree of asynchronism with respect to the orbital period is 7% or 14%, implying a beat period of 0.7 or 1.4 days. Thus, the source populates the gap between the near-synchronous polars (<2%) and the DQ Herculis stars with long spin periods (e.g. EX Hya, V1025 Cen, DW Cnc). With an orbital period right within the period gap, Paloma is a key object for magnetic CV evolution: it might be the first bona fide transition object between the DQ Her and AM Her system with a white dwarf currently in the process of synchronisation. Based in part on observations made at Observatoire de Haute Provence (CNRS), France.

  17. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  18. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  19. The Big Glitcher - the Rotation History of PSR JO537-6910

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.; Gotthelf, E. V.; Middleditch, J.; Wang, Q. D.; Zhang, W.

    2003-01-01

    We report the results of an extensive monitoring campaign of PSR 50537-6910, the 16 ms pulsar in the Large Magellanic Cloud, using data acquired with the Rossi X-ray Timing Explorer. The spin evolution of this pulsar is found to experience extreme episodic discontinuities in its spin-down rate during the 2.6 year campaign. The rate of occurance of these timing glitches is 2.3 per year, comparable to the highest seen for any pulsar. The mean glitch amplitude produced a fraction change in the frequency of Delta(nu)/nu = 0.36 x l0(exp -6) and in the frequency derivative of Delta(dot nu)/dot nu = 3 x 10(exp -4). Despite this prodigous timing activity we are able to derive a phase connected timing solution between glitch events with an average spin-down rate of -1.9743 x 10(exp 10) Hz/s. The integrated effect of the glitches in dot nu was so large that the apparent characteristic age of the pulsar (-nu/2dot nu) decreased significantly during the campaign. We discuss the implications of a large glitch activity and high braking index on the spin evolution of young pulsars.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, E.; Huang, Y.; Chu, S.

    We show that cyclic quantum evolution can be realized and the Aharonov-Anandan (AA) geometric phase can be determined for any spin-{ital j} system driven by periodic fields. Two methods are extended for the study of this problem: the generalized spin-coherent-state technique and the Floquet quasienergy approach. Using the former approach, we have developed a {ital generalized} Bloch-sphere model and presented a SU(2) Lie-group formulation of the AA geometric phase in the spin-coherent state. We show that the AA phase is equal to {ital j} times the solid angle enclosed by the trajectory traced out by the tip of a generalizedmore » Bloch vector. General analytic formulas are obtained for the Bloch vector trajectory and the AA geometric phase in terms of external physical parameters. In addition to these findings, we have also approached the same problem from an alternative but complementary point of view without recourse to the concept of coherent-state terminology. Here we first determine the Floquet quasienergy eigenvalues and eigenvectors for the spin-{ital j} system driven by periodic fields. This in turn allows the construction of the time-evolution propagator, the total wave function, and the AA geometric phase in a more general fashion.« less

  1. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya

    2016-05-01

    As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.

  2. Spin Filtering in Storage Rings

    NASA Astrophysics Data System (ADS)

    Nikolaev, N. N.; Pavlov, F. F.

    The spin filtering in storage rings is based on a multiple passage of a stored beam through a polarized internal gas target. Apart from the polarization by the spin-dependent transmission, a unique geometrical feature of interaction with the target in such a filtering process, pointed out by H.O. Meyer,1 is a scattering of stored particles within the beam. A rotation of the spin in the scattering process affects the polarization buildup. We derive here a quantum-mechanical evolution equation for the spin-density matrix of a stored beam which incorporates the scattering within the beam. We show how the interplay of the transmission and scattering within the beam changes from polarized electrons to polarized protons in the atomic target. After discussions of the FILTEX results on the filtering of stored protons,2 we comment on the strategy of spin filtering of antiprotons for the PAX experiment at GSI FAIR.3.

  3. Evolution of Post-accretion-induced Collapse Binaries: The Effect of Evaporation

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Min; Li, Xiang-Dong

    2017-12-01

    Accretion-induced collapse (AIC) is widely accepted to be one of the formation channels for millisecond pulsars (MSPs). Since the MSPs have high spin-down luminosities, they can immediately start to evaporate their companion stars after birth. In this paper, we present a detailed investigation on the evolution of the post-AIC binaries, taking into account the effect of evaporation both before and during the Roche-lobe overflow process. We discuss the possible influence of the input parameters including the evaporation efficiency, the initial spin period, and the initial surface magnetic field of the newborn neutron star. We compare the calculated results with the traditional low-mass X-ray binary evolution and suggest that they may reproduce at least part of the observed redbacks and black widows in the companion mass–orbital period plane depending on the mechanisms of angular momentum loss associated with evaporation.

  4. Asteroid rotation. I - Tabulation and analysis of rates, pole positions and shapes. II - A theory for the collisional evolution of rotation rates

    NASA Technical Reports Server (NTRS)

    Harris, A. W.; Burns, J. A.

    1979-01-01

    Rotation properties and shape data for 182 asteroids are compiled and analyzed, and a collisional model for the evolution of the mean rotation rate of asteroids is proposed. Tabulations of asteroid rotation rates, taxonomic types, pole positions, sizes and shapes and plots of rotation frequency and light curve amplitude against size indicate that asteroid rotational frequency increases with decreasing size for all asteroids except those of the C or S classes. Light curve data also indicate that small asteroids are more irregular in shape than large asteroids. The dispersion in rotation rates observed is well represented by a three dimensional Maxwellian distribution, suggestive of collisional encounters between asteroids. In the proposed model, the rotation rate is found to tend toward an equilibrium value, at which spin-up due to infrequent, large collisions is balanced by a drag due to the larger number of small collisions. The lower mean rotation rate of C-type asteroids is attributed to a lower means density of that class, and the increase in rotation rate with decreasing size is interpreted as indicative of a substantial population of strong asteroids.

  5. Synthesis, characterization, and reactivity studies of heterodinuclear complexes modeling active sites in purple acid phospatases.

    PubMed

    Jarenmark, Martin; Haukka, Matti; Demeshko, Serhiy; Tuczek, Felix; Zuppiroli, Luca; Meyer, Franc; Nordlander, Ebbe

    2011-05-02

    To model the heterodinuclear active sites in plant purple acid phosphatases, a mononuclear synthon, [Fe(III)(H(2)IPCPMP)(Cl(2))][PF(6)] (1), has been generated in situ from the ligand 2-(N-isopropyl-N-((2-pyridyl)methyl)aminomethyl)-6-(N-(carboxylmethyl)-N-((2-pyridyl)methyl)amino methyl)-4-methylphenol (IPCPMP) and used to synthesize heterodinuclear complexes of the formulas [Fe(III)M(II)(IPCPMP)(OAc)(2)(CH(3)OH)][PF(6)] (M = Zn (2), Co (3), Ni (4), Mn (5)), [Fe(III)Zn(II)(IPCPMP)(mpdp)][PF(6)] (6) (mpdp = meta-phenylene-dipropionate), and [Fe(III)Cu(II)(IPCPMP) (OAc)}(2)(μ-O)][PF(6)] (7). Complexes 2-4, 6, and 7 have been crystallographically characterized. The structure of 6 is a solid state coordination polymer with heterodinuclear monomeric units, and 7 is a tetranuclear complex consisting of two heterodinuclear phenolate-bridged Fe(III)Cu(II) units bridged through a μ-oxido group between the two Fe(III) ions. Mössbauer spectra confirm the presence of high spin Fe(III) in an octahedral environment for 1, 3, and 5 while 2 and 4 display relaxation effects. Magnetic susceptibility measurements indicate weak antiferromagnetic coupling for 3, 4, and 5 and confirm the assignment of the metal centers in 2-5 as high spin Fe(III)-M(II) (M = Zn, Co (high spin), Ni (high spin), Mn (high spin)). Complexes 2-5 are intact in acetonitrile solution as indicated by IR spectroscopy (for 2-4) and electrospray ionization mass spectrometry (ESI-MS) but partly dissociate to hydroxide species and a mononuclear complex in water/acetonitrile solutions. UV-vis spectroscopy reveal pH-dependent behavior, and species that form upon increasing the pH have been assigned to μ-hydroxido-bridged Fe(III)M(II) complexes for 2-5 although 2 and 3 is further transformed into what is propsed to be a μ-oxido-bridged tetranuclear complex similar to 7. Complexes 2-5 enhance phosphodiester cleavage of 2-hydroxy-propyl-p-nitrophenyl phosphate (HPNP) and bis(2,4-dinitrophenyl)phosphate (BDNPP), but the reactivities are different for different complexes and generally show strong pH dependence. © 2011 American Chemical Society

  6. Rapid evolution of the spin state of comet 41P/Tuttle-Giacobini-Kresak

    NASA Astrophysics Data System (ADS)

    Bodewits, Dennis; Farnham, Tony; Knight, Matthew M.; Kelley, Michael S.

    2017-10-01

    Comet nuclei are small, dynamic objects influenced strongly by their individual history, orbit, rotation and inhomogeneity. Mass loss due to sublimation can exert a profound influence on the physical nature of the cometary nucleus, changing the shape, size, and rotation (Jewitt, in Comets II, 2004). The Rosetta mission to comet 67P showed that these effects are all interrelated (Sierks et al., Science 347, 2015).Comet 41P/Tuttle-Giacobini-Kresak passed Earth as close as 0.142 au in April 2017, allowing observations of the inner coma and an assessment of the rotational state of the nucleus. We acquired observations of comet 41P between March and May 2017 using the 4.3-m Discovery Channel Telescope and the UltraViolet-Optical Telescope (UVOT) on board the Earth-orbiting Swift Gamma Ray Burst Mission.Using CN narrowband imaging and aperture photometry we found that the apparent rotation period of comet 41P more than doubled between March and May 2017, increasing from 20 hours to 50 hours. Measurements of the periodicity in late-March by Knight et al. (CBET 4377, 2017) are consistent with this rate of increase. Comet 41P is the ninth comet for which a rotation period change has been observed (c.f. Samarasinha et al., in Comets II, 2004), but both the fractional change and the rate of change of the period far exceed those observed in the other comets. It is presumably the combination of a long rotation period, high surface activity, and a small nucleus that makes 41P highly susceptible to changes in its rotational state.Extrapolating the comet’s rotation period using its current gas production rates and a simple activity model suggests that the nucleus will continue to spin down, possibly leading to an excited spin state in the next few apparitions. Finally, 41P is known for its large outbursts, and our extrapolation suggest that the comet’s rotation period may have been close to the critical period for splitting in 2001, when it exhibited two significant outbursts.

  7. Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and FLEX results [Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and RPA+FLEX results

    DOE PAGES

    Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.; ...

    2018-05-31

    Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less

  8. A primordial origin for misalignments between stellar spin axes and planetary orbits.

    PubMed

    Batygin, Konstantin

    2012-11-15

    The existence of gaseous giant planets whose orbits lie close to their host stars ('hot Jupiters') can largely be accounted for by planetary migration associated with viscous evolution of proto-planetary nebulae. Recently, observations of the Rossiter-McLaughlin effect during planetary transits have revealed that a considerable fraction of hot Jupiters are on orbits that are misaligned with respect to the spin axes of their host stars. This observation has cast doubt on the importance of disk-driven migration as a mechanism for producing hot Jupiters. Here I show that misaligned orbits can be a natural consequence of disk migration in binary systems whose orbital plane is uncorrelated with the spin axes of the individual stars. The gravitational torques arising from the dynamical evolution of idealized proto-planetary disks under perturbations from massive distant bodies act to misalign the orbital planes of the disks relative to the spin poles of their host stars. As a result, I suggest that in the absence of strong coupling between the angular momentum of the disk and that of the host star, or of sufficient dissipation that acts to realign the stellar spin axis and the planetary orbits, the fraction of planetary systems (including systems of 'hot Neptunes' and 'super-Earths') whose angular momentum vectors are misaligned with respect to their host stars will be commensurate with the rate of primordial stellar multiplicity.

  9. Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and FLEX results [Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and RPA+FLEX results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.

    Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less

  10. Light-Induced Type-II Band Inversion and Quantum Anomalous Hall State in Monolayer FeSe

    NASA Astrophysics Data System (ADS)

    Wang, Z. F.; Liu, Zhao; Yang, Jinlong; Liu, Feng

    2018-04-01

    Coupling a quantum anomalous Hall (QAH) state with a superconducting state offers an attractive approach to detect the signature alluding to a topological superconducting state [Q. L. He et al., Science 357, 294 (2017), 10.1126/science.aag2792], but its explanation could be clouded by disorder effects in magnetic doped QAH materials. On the other hand, an antiferromagnetic (AFM) quantum spin Hall (QSH) state is identified in the well-known high-temperature 2D superconductor of monolayer FeSe [Z. F. Wang et al., Nat. Mater. 15, 968 (2016), 10.1038/nmat4686]. Here, we report a light-induced type-II band inversion (BI) and a QSH-to-QAH phase transition in the monolayer FeSe. Depending on the handedness of light, a spin-tunable QAH state with a high Chern number of ±2 is realized. In contrast to the conventional type-I BI resulting from intrinsic spin-orbital coupling (SOC), which inverts the band an odd number of times and respects time reversal symmetry, the type-II BI results from a light-induced handedness-dependent effective SOC, which inverts the band an even number of times and does not respect time reversal symmetry. The interplay between these two SOC terms makes the spin-up and -down bands of an AFM QSH state respond oppositely to a circularly polarized light, leading to the type-II BI and an exotic topological phase transition. Our finding affords an exciting opportunity to detect Majorana fermions in one single material without magnetic doping.

  11. Dynamics of bright-bright solitons in Bose-Einstein condensate with Raman-induced one-dimensional spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wen, Lin; Zhang, Xiao-Fei; Hu, Ai-Yuan; Zhou, Jing; Yu, Peng; Xia, Lei; Sun, Qing; Ji, An-Chun

    2018-03-01

    We investigate the dynamics of bright-bright solitons in one-dimensional two-component Bose-Einstein condensates with Raman-induced spin-orbit coupling, via the variational approximation and the numerical simulation of Gross-Pitaevskii equations. For the uniform system without trapping potential, we obtain two population balanced stationary solitons. By performing the linear stability analysis, we find a Goldstone eigenmode and an oscillation eigenmode around these stationary solitons. Moreover, we derive a general dynamical solution to describe the center-of-mass motion and spin evolution of the solitons under the action of spin-orbit coupling. The effects of a harmonic trap have also been discussed.

  12. Ridge Formation And De-spinning Of Iapetus Via An Impact-generated Satellite

    NASA Astrophysics Data System (ADS)

    Levison, Harold F.; Walsh, K. J.; Barr, A. C.; Dones, L.

    2011-04-01

    We present a scenario for building the equatorial ridge and de-spinning Iapetus through an impact-generated disk and satellite. This impact puts debris into orbit, forming a ring inside the Roche limit and a satellite outside. This satellite rapidly pushes the ring material down to the surface of Iapetus, and then itself tidally evolves outward, thereby helping to de-spin Iapetus. This scenario can de-spin Iapetus an order of magnitude faster than when tides due to Saturn act alone, almost independently of its interior geophysical evolution. Eventually, the satellite is stripped from its orbit by Saturn. The range of satellite and impactor masses required is compatible with the estimated impact history of Iapetus.

  13. Ridge formation and de-spinning of Iapetus via an impact-generated satellite

    NASA Astrophysics Data System (ADS)

    Levison, H. F.; Walsh, K. J.; Barr, A. C.; Dones, L.

    2011-08-01

    We present a scenario for building the equatorial ridge and de-spinning Iapetus through an impact-generated disk and satellite. This impact puts debris into orbit, forming a ring inside the Roche limit and a satellite outside. This satellite rapidly pushes the ring material down to the surface of Iapetus, and then itself tidally evolves outward, thereby helping to de-spin Iapetus. This scenario can de-spin Iapetus an order of magnitude faster than when tides due to Saturn act alone, almost independently of its interior geophysical evolution. Eventually, the satellite is stripped from its orbit by Saturn. The range of satellite and impactor masses required is compatible with the estimated impact history of Iapetus.

  14. Linear wide angle sun sensor for spinning satellites

    NASA Astrophysics Data System (ADS)

    Philip, M. P.; Kalakrishnan, B.; Jain, Y. K.

    1983-08-01

    A concept is developed which overcomes the defects of the nonlinearity of response and limitation in range exhibited by the V-slit, N-slit, and crossed slit sun sensors normally used for sun elevation angle measurements on spinning spacecraft. Two versions of sensors based on this concept which give a linear output and have a range of nearly + or - 90 deg of elevation angle are examined. Results are presented for the application of the twin slit version of the sun sensor in the three Indian satellites, Rohini, Apple, and Bhaskara II, which was successfully used for spin rate control and spin axis orientation control corrections as well as for sun elevation angle and spin period measurements.

  15. New opportunities at the frontiers of spintronics

    DOE PAGES

    Hoffmann, Axel; Bader, Sam D.

    2015-10-05

    The field of spintronics, or magnetic electronics, is maturing and giving rise to new subfields. These new directions involve the study of collective spin excitations and couplings of the spin system to additional degrees of freedom of a material, as well as metastable phenomena due to perturbations that drive the system far from equilibrium. The interactions lead to possibilities for future applications within the realm of energy-efficient information technologies. Examples discussed herein include research opportunities associated with (i) various spin-orbit couplings, such as spin Hall effects, (ii) couplings to the thermal bath of a system, such as in spin Seebeckmore » effects, (iii) spin-spin couplings, such as via induced and interacting magnon excitations, and (iv) spin-photon couplings, such as in ultra-fast magnetization switching due to coherent photon pulses. These four basic frontier areas of research are giving rise to new applied disciplines known as spin-orbitronics, spin-caloritronics, magnonics, and spin-photonics, respectively. These topics are highlighted in order to stimulate interest in the new directions that spintronics research is taking, and to identify open issues to pursue.« less

  16. A separation of antiferromagnetic spin motion modes in the training effect of exchange biased Co/CoO film with in-plane anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R.; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS; Yun, C.

    2016-08-07

    The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n{sup −1/2} function. A largermore » CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.« less

  17. Superaging and Subaging Phenomena in a Nonequilibrium Critical Behavior of the Structurally Disordered Two-Dimensional XY Model

    NASA Astrophysics Data System (ADS)

    Prudnikov, V. V.; Prudnikov, P. V.; Popov, I. S.

    2018-03-01

    A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation-dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation-dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin-spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin-spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.

  18. The expected spins of gravitational wave sources with isolated field binary progenitors

    NASA Astrophysics Data System (ADS)

    Zaldarriaga, Matias; Kushnir, Doron; Kollmeier, Juna A.

    2018-01-01

    We explore the consequences of dynamical evolution of field binaries composed of a primary black hole (BH) and a Wolf-Rayet (WR) star in the context of gravitational wave (GW) source progenitors. We argue, from general considerations, that the spin of the WR-descendent BH will be maximal in a significant number of cases due to dynamical effects. In other cases, the spin should reflect the natal spin of the primary BH which is currently theoretically unconstrained. We argue that the three currently published LIGO systems (GW150914, GW151226, LVT151012) suggest that this spin is small. The resultant effective spin distribution of gravitational wave sources should thus be bi-model if this classic GW progenitor channel is indeed dominant. While this is consistent with the LIGO detections thus far, it is in contrast to the three best-measured high-mass X-ray binary (HMXB) systems. A comparison of the spin distribution of HMXBs and GW sources should ultimately reveal whether or not these systems arise from similar astrophysical channels.

  19. Dyakonov-Perel Effect on Spin Dephasing in n-Type GaAs

    NASA Technical Reports Server (NTRS)

    Ning, C. Z.; Wu, M. W.

    2003-01-01

    A paper presents a study of the contribution of the Dyakonov-Perel (DP) effect to spin dephasing in electron-donor-doped bulk GaAs in the presence of an applied steady, moderate magnetic field perpendicular to the growth axis of the GaAs crystal. (The DP effect is an electron-wave-vector-dependent spin-state splitting of the conduction band, caused by a spin/orbit interaction in a crystal without an inversion center.) The applicable Bloch equations of kinetics were constructed to include terms accounting for longitudinal optical and acoustic phonon scattering as well as impurity scattering. The contributions of the aforementioned scattering mechanisms to spin-dephasing time in the presence of DP effect were examined by solving the equations numerically. Spin-dephasing time was obtained from the temporal evolution of the incoherently summed spin coherence. Effects of temperature, impurity level, magnetic field, and electron density on spin-dephasing time were investigated. Spin-dephasing time was found to increase with increasing magnetic field. Contrary to predictions of previous simplified treatments of the DP effect, spin-dephasing time was found to increase with temperature in the presence of impurity scattering. These results were found to agree qualitatively with results of recent experiments.

  20. Analytical approaches to the determination of spin-dependent parton distribution functions at NNLO approximation

    NASA Astrophysics Data System (ADS)

    Salajegheh, Maral; Nejad, S. Mohammad Moosavi; Khanpour, Hamzeh; Tehrani, S. Atashbar

    2018-05-01

    In this paper, we present SMKA18 analysis, which is a first attempt to extract the set of next-to-next-leading-order (NNLO) spin-dependent parton distribution functions (spin-dependent PDFs) and their uncertainties determined through the Laplace transform technique and Jacobi polynomial approach. Using the Laplace transformations, we present an analytical solution for the spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NNLO approximation. The results are extracted using a wide range of proton g1p(x ,Q2) , neutron g1n(x ,Q2) , and deuteron g1d(x ,Q2) spin-dependent structure functions data set including the most recent high-precision measurements from COMPASS16 experiments at CERN, which are playing an increasingly important role in global spin-dependent fits. The careful estimations of uncertainties have been done using the standard Hessian error propagation. We will compare our results with the available spin-dependent inclusive deep inelastic scattering data set and other results for the spin-dependent PDFs in literature. The results obtained for the spin-dependent PDFs as well as spin-dependent structure functions are clearly explained both in the small and large values of x .

  1. Density matrix-based time-dependent configuration interaction approach to ultrafast spin-flip dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver

    2017-08-01

    Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.

  2. The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr)

    NASA Astrophysics Data System (ADS)

    Folsom, C. P.; Bouvier, J.; Petit, P.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Vidotto, A. A.

    2018-03-01

    There is a large change in surface rotation rates of sun-like stars on the pre-main sequence and early main sequence. Since these stars have dynamo-driven magnetic fields, this implies a strong evolution of their magnetic properties over this time period. The spin-down of these stars is controlled by interactions between stellar and magnetic fields, thus magnetic evolution in turn plays an important role in rotational evolution. We present here the second part of a study investigating the evolution of large-scale surface magnetic fields in this critical time period. We observed stars in open clusters and stellar associations with known ages between 120 and 650 Myr, and used spectropolarimetry and Zeeman Doppler Imaging to characterize their large-scale magnetic field strength and geometry. We report 15 stars with magnetic detections here. These stars have masses from 0.8 to 0.95 M⊙, rotation periods from 0.326 to 10.6 d, and we find large-scale magnetic field strengths from 8.5 to 195 G with a wide range of geometries. We find a clear trend towards decreasing magnetic field strength with age, and a power law decrease in magnetic field strength with Rossby number. There is some tentative evidence for saturation of the large-scale magnetic field strength at Rossby numbers below 0.1, although the saturation point is not yet well defined. Comparing to younger classical T Tauri stars, we support the hypothesis that differences in internal structure produce large differences in observed magnetic fields, however for weak-lined T Tauri stars this is less clear.

  3. Half-metallicity in the ferrimagnet [MnII(enH)(H2O)][CrIII(CN)6]·H2O: Ab initio study

    NASA Astrophysics Data System (ADS)

    Li, N.; Yao, K. L.; Zhong, G. H.; Ching, W. Y.

    2013-03-01

    The density-functional theory (DFT) within the full potential linearized augmented plane wave (FPLAPW) method is applied to study the two-dimensional achiral soft ferrimagnet [MnII(enH)(H2O)][CrIII(CN)6]·H2O. The phase stability, electronic structure, magnetic and conducting properties are investigated. Our results reveal that the compound has a stable ferrimagnetic ground state in good agreement with the experiment. From the spin density distribution, the spin magnetic moment of the compound is mainly from Cr3+ and Mn2+ ions with small contributions from the oxygen, nitrogen and carbon ions. The calculated electronic band structure predicts the compound to be a half-metal with the spin magnetic moment of 1.000 μB per molecule.

  4. Summary of spin technology as related to light general-aviation airplanes

    NASA Technical Reports Server (NTRS)

    Bowman, J. S., Jr.

    1971-01-01

    A summary was made of all NASA (and NACA) research and experience related to the spin and recovery characteristics of light personal-owner-type general-aviation airplanes. Very little of the research deals with light general-aviation airplanes as such, but many of the airplanes and models tested before and during World War II were similar to present-day light general-aviation airplanes with regard to the factors that are important in spinning. The material is based mainly on the results of spin-tunnel tests of free-spinning dynamically scaled models of about 100 different airplane designs and, whenever possible, includes correlation with full-scale spin tests. The research results are discussed in terms of airplane design considerations and the proper use of controls for recovery.

  5. A spin-crossover complex based on a 2,6-bis(pyrazol-1-yl)pyridine (1-bpp) ligand functionalized with a carboxylate group.

    PubMed

    Abhervé, Alexandre; Clemente-León, Miguel; Coronado, Eugenio; Gómez-García, Carlos J; López-Jordà, Maurici

    2014-07-07

    Combining Fe(ii) with the carboxylate-functionalized 2,6-bis(pyrazol-1-yl)pyridine (bppCOOH) ligand results in the spin-crossover compound [Fe(bppCOOH)2](ClO4)2 which shows an abrupt spin transition with a T1/2 of ca. 380 K and a TLIESST of 60 K due to the presence of a hydrogen-bonded linear network of complexes.

  6. Adiabatic quantum computing with spin qubits hosted by molecules.

    PubMed

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  7. Time-reversal-based SU(2) x Sn scalar invariants as (Lie Algebraic) group measures: a structured overview of generalised democratic-recoupled, uniform non-Abelian [AX]n NMR spin systems, as abstract [Formula: see text] chain networks.

    PubMed

    Temme, F P

    2004-03-01

    The physics of dual group scalar invariants (SIs) as (Lie algebraic) group measures (L-GMs) and its significance to non-Abelian NMR spin systems motivates this overview of uniform general-2n [AX](2n) spin evolution, which represents an extensive addendum to Corio's earlier (essentially restricted) view of Abelian spin system SU(2)-based SI-cardinalities. The [Formula: see text] values in [J. Magn. Reson., 134 (1998) 131] arise from strictly linear recoupled time-reversal invariance (TRI) models. In contrast, here we discuss the physical significance of an alternative polyhedral combinatorics approach to democratic recoupling (DR), a property inherent in both the TRI and statistical sampling. Recognition of spin ensemble SIs as being L-GMs over isomorphic algebras is invaluable in many DR-based NMR problems. Various [AX]n model spin systems, including the [AX]3 bis odd-odd parity spin system, are examined as direct applications of these L-GM- and combinatorial-based SI ideas. Hence in place of /SI/=15 (implied by Corio's [Formula: see text] approach), the bis 3-fold spin system cardinality is seen now as constrained to a single invariant on an isomorphic product algebra under L-GMs, in accord with the subspectral analysis of Jones et al. [Canad. J. Chem., 43 (1965) 683]. The group projective ideas cited here for DR (as cf. to graph theoretic views) apply to highly degenerate non-Abelian problems. Over dual tensorial bases, they define models of spin dynamical evolution whose (SR) quasiparticle superboson carrier (sub)spaces are characterised by SIs acting as explicit auxiliary labels [Physica, A198 (1993) 245; J. Math. Chem., 31 (2002) 281]. A deeper [Formula: see text] network-based view of spin-alone space developed in Balasubramanian's work [J. Chem. Phys., 78 (1983) 6358] is especially important, (e.g.) in the study of spin waves [J. Math. Chem., 31 (2002) 363]. Beyond the specific NMR SIs derived here, there are DR applications where a sporadic, still higher, 2n-fold regular uniform spin ensemble exhibits a topological FG duality to some known modest /SI/(2i<2n) cardinality--in principle providing for the (sparce) existence of other /SI/(2n) DR-based values.

  8. Divergent Coordination Chemistry: Parallel Synthesis of [2×2] Iron(II) Grid-Complex Tauto-Conformers.

    PubMed

    Schäfer, Bernhard; Greisch, Jean-François; Faus, Isabelle; Bodenstein, Tilmann; Šalitroš, Ivan; Fuhr, Olaf; Fink, Karin; Schünemann, Volker; Kappes, Manfred M; Ruben, Mario

    2016-08-26

    The coordination of iron(II) ions by a homoditopic ligand L with two tridentate chelates leads to the tautomerism-driven emergence of complexity, with isomeric tetramers and trimers as the coordination products. The structures of the two dominant [Fe(II) 4 L4 ](8+) complexes were determined by X-ray diffraction, and the distinctness of the products was confirmed by ion-mobility mass spectrometry. Moreover, these two isomers display contrasting magnetic properties (Fe(II) spin crossover vs. a blocked Fe(II) high-spin state). These results demonstrate how the coordination of a metal ion to a ligand that can undergo tautomerization can increase, at a higher hierarchical level, complexity, here expressed by the formation of isomeric molecular assemblies with distinct physical properties. Such results are of importance for improving our understanding of the emergence of complexity in chemistry and biology. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Noise-resilient quantum evolution steered by dynamical decoupling

    PubMed Central

    Liu, Gang-Qin; Po, Hoi Chun; Du, Jiangfeng; Liu, Ren-Bao; Pan, Xin-Yu

    2013-01-01

    Realistic quantum computing is subject to noise. Therefore, an important frontier in quantum computing is to implement noise-resilient quantum control over qubits. At the same time, dynamical decoupling can protect the coherence of qubits. Here we demonstrate non-trivial quantum evolution steered by dynamical decoupling control, which simultaneously suppresses noise effects. We design and implement a self-protected controlled-NOT gate on the electron spin of a nitrogen-vacancy centre and a nearby carbon-13 nuclear spin in diamond at room temperature, by employing an engineered dynamical decoupling control on the electron spin. Final state fidelity of 0.91(1) is observed in preparation of a Bell state using the gate. At the same time, the qubit coherence time is elongated at least 30 fold. The design scheme does not require the dynamical decoupling control to commute with the qubit interaction and therefore works for general qubit systems. This work marks a step towards implementing realistic quantum computing systems. PMID:23912335

  10. Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment

    NASA Astrophysics Data System (ADS)

    Liang, Feng; Yang, Xiao-Dong; Zhang, Wei; Qian, Ying-Jing

    2018-03-01

    In this paper, a dynamical model of simply-supported spinning pipes conveying fluid with axial deployment is proposed and the transverse free vibration and stability for such a doubly gyroscopic system involving time-dependent parameters are investigated. The partial differential equations of motion are derived by the extended Hamilton principle and then truncated by the Galerkin technique. The time-variant frequencies, mode shapes and responses to initial conditions are comprehensively investigated to reveal the dynamical essence of the system. It is indicated that the qualitative stability evolution of the system mainly depends on the effect of fluid-structure interaction (FSI), while the spinning motion will enhance the pipe rigidity and eliminate the buckling instability. The dynamical evolution of a retracting pipe is almost inverse to that of the deploying one. The pipe possesses different mode configurations of spatial curves as the pipe length increases and some modal and response characteristics of the present system are found rather distinct from those of deploying cantilevered structures.

  11. Noise-resilient quantum evolution steered by dynamical decoupling.

    PubMed

    Liu, Gang-Qin; Po, Hoi Chun; Du, Jiangfeng; Liu, Ren-Bao; Pan, Xin-Yu

    2013-01-01

    Realistic quantum computing is subject to noise. Therefore, an important frontier in quantum computing is to implement noise-resilient quantum control over qubits. At the same time, dynamical decoupling can protect the coherence of qubits. Here we demonstrate non-trivial quantum evolution steered by dynamical decoupling control, which simultaneously suppresses noise effects. We design and implement a self-protected controlled-NOT gate on the electron spin of a nitrogen-vacancy centre and a nearby carbon-13 nuclear spin in diamond at room temperature, by employing an engineered dynamical decoupling control on the electron spin. Final state fidelity of 0.91(1) is observed in preparation of a Bell state using the gate. At the same time, the qubit coherence time is elongated at least 30 fold. The design scheme does not require the dynamical decoupling control to commute with the qubit interaction and therefore works for general qubit systems. This work marks a step towards implementing realistic quantum computing systems.

  12. Structure, magnetic properties, polarized neutron diffraction, and theoretical study of a copper(II) cubane.

    PubMed

    Aronica, Christophe; Chumakov, Yurii; Jeanneau, Erwann; Luneau, Dominique; Neugebauer, Petr; Barra, Anne-Laure; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Tercero, Javier; Ruiz, Eliseo

    2008-01-01

    The paper reports the synthesis, X-ray and neutron diffraction crystal structures, magnetic properties, high field-high frequency EPR (HF-EPR), spin density and theoretical description of the tetranuclear CuII complex [Cu4L4] with cubane-like structure (LH2=1,1,1-trifluoro-7-hydroxy-4-methyl-5-aza-hept-3-en-2-one). The simulation of the magnetic behavior gives a predominant ferromagnetic interaction J1 (+30.5 cm(-1)) and a weak antiferromagnetic interaction J2 (-5.5 cm(-1)), which correspond to short and long Cu-Cu distances, respectively, as evidence from the crystal structure [see formulate in text]. It is in agreement with DFT calculations and with the saturation magnetization value of an S=2 ground spin state. HF-EPR measurements at low temperatures (5 to 30 K) provide evidence for a negative axial zero-field splitting parameter D (-0.25+/-0.01 cm(-1)) plus a small rhombic term E (0.025+/-0.001 cm(-1), E/D = 0.1). The experimental spin distribution from polarized neutron diffraction is mainly located in the basal plane of the CuII ion with a distortion of yz-type for one CuII ion. Delocalization on the ligand (L) is observed but to a smaller extent than expected from DFT calculations.

  13. Level crossing analysis of chemically induced dynamic nuclear polarization: Towards a common description of liquid-state and solid-state cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosnovsky, Denis V.; Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru; Novosibirsk State University, Pirogova 2, 630090, Novosibirsk

    Chemically Induced Dynamic Nuclear Polarization (CIDNP) is an efficient method of creating non-equilibrium polarization of nuclear spins by using chemical reactions, which have radical pairs as intermediates. The CIDNP effect originates from (i) electron spin-selective recombination of radical pairs and (ii) the dependence of the inter-system crossing rate in radical pairs on the state of magnetic nuclei. The CIDNP effect can be investigated by using Nuclear Magnetic Resonance (NMR) methods. The gain from CIDNP is then two-fold: it allows one to obtain considerable amplification of NMR signals; in addition, it provides a very useful tool for investigating elusive radicals andmore » radical pairs. While the mechanisms of the CIDNP effect in liquids are well established and understood, detailed analysis of solid-state CIDNP mechanisms still remains challenging; likewise a common theoretical frame for the description of CIDNP in both solids and liquids is missing. Difficulties in understanding the spin dynamics that lead to the CIDNP effect in the solid-state case are caused by the anisotropy of spin interactions, which increase the complexity of spin evolution. In this work, we propose to analyze CIDNP in terms of level crossing phenomena, namely, to attribute features in the CIDNP magnetic field dependence to Level Crossings (LCs) and Level Anti-Crossings (LACs) in a radical pair. This approach allows one to describe liquid-state CIDNP; the same holds for the solid-state case where anisotropic interactions play a significant role in CIDNP formation. In solids, features arise predominantly from LACs, since in most cases anisotropic couplings result in perturbations, which turn LCs into LACs. We have interpreted the CIDNP mechanisms in terms of the LC/LAC concept. This consideration allows one to find analytical expressions for a wide magnetic field range, where several different mechanisms are operative; furthermore, the LAC description gives a way to determine CIDNP sign rules. Thus, LCs/LACs provide a consistent description of CIDNP in both liquids and solids with the prospect of exploiting it for the analysis of short-lived radicals and for optimizing the polarization level.« less

  14. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Components of the two Mars Exploration Rovers (MER) reside in the Payload Hazardous Servicing Facility. At right MER-2. At left is a lander. In the background is one of the aeroshells. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  15. Stochastic YORP On Real Asteroid Shapes

    NASA Astrophysics Data System (ADS)

    McMahon, Jay W.

    2015-05-01

    Since its theoretical foundation and subsequent observational verification, the YORP effect has been understood to be a fundamental process that controls the evolution of small asteroids in the inner solar system. In particular, the coupling of the YORP and Yarkovsky effects are hypothesized to be largely responsible for the transport of asteroids from the main belt to the inner solar system populations. Furthermore, the YORP effect is thought to lead to rotational fission of small asteroids, which leads to the creation of multiple asteroid systems, contact binary asteroids, and asteroid pairs. However recent studies have called into question the ability of YORP to produce these results. In particular, the high sensitivity of the YORP coefficients to variations in the shape of an asteroid, combined with the possibility of a changing shape due to YORP accelerated spin rates can combine to create a stochastic YORP coefficient which can arrest or change the evolution of a small asteroid's spin state. In this talk, initial results are presented from new simulations which comprehensively model the stochastic YORP process. Shape change is governed by the surface slopes on radar based asteroid shape models, where the highest slope regions change first. The investigation of the modification of YORP coefficients and subsequent spin state evolution as a result of this dynamically influenced shape change is presented and discussed.

  16. Relevance of supramolecular interactions, texture and lattice occupancy in the designer iron(II) spin crossover complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naik, Anil D.; Tinant, Bernard; Muffler, Kai

    New Fe{sup II} complexes of formula [Fe(3-Br-phen){sub 2}(NCS){sub 2}].Solvent (Solvent=0.5 CH{sub 3}OH (1), 2 CH{sub 2}Cl{sub 2} (2), desolvation of 2 (3), 0.5 CH{sub 3}COCH{sub 3} (4) and 0 (5)) have been synthesized. {sup 57}Fe Moessbauer and magnetic investigation reveal unique features atypical of classic [Fe(phen){sub 2}(NCS){sub 2}] polymorphs. Complex 1, prepared by precipitation in MeOH, undergoes upon cooling below room temperature an incomplete and gradual thermally induced spin conversion, while 4 prepared by an extraction method remains mostly in the low-spin state. The non solvated compounds 3 and 5, display a more abrupt spin crossover on cooling around T{submore » 1/2}=175 K and T{sub 1/2}=198 K, respectively. Defects/soft lattice inclusion due to different methods of material synthesis, extent of aging, reaction medium and associated solvent molecules have enormous influence on the particle size and magnetic properties of these complexes. Scanning electron micrographs helps to establish a logical relationship among methods employed for synthesis, texture of materials and their effect on magnetic properties. The crystal structure of 2 determined in the monoclinic space group P2/c (100 K) reveals a mononuclear complex consisting of a distorted FeN{sub 6} octahedron in the low-spin state, constructed from two 3-bromo-1, 10-phenanthroline and two isothiocyanato anions in cis position. Intermolecular interactions between mononuclear units of the S...Br, S...C(H) and pi-pi type afford a 2D supramolecular network. DFT calculations for the single molecule 2 reveals an energy difference between high-spin and low-spin isomers of 7 kJ/mol suggesting a slight destabilization of the low-spin state compared to [Fe(phen){sub 2}(NCS){sub 2}]. Normal co-ordinate analysis was also carried out for 3 and compared with experimental temperature dependent Raman spectra for 5. - Graphical abstract: New Fe{sup II} complexes of formula [Fe(3-Br-phen){sub 2}(NCS){sub 2}].Solvent have been synthesized by precipitation (1) and extraction (4) methods. {sup 57}Fe Moessbauer and magnetic investigation reveal unique features atypical of classic [Fe(phen){sub 2}(NCS){sub 2}] polymorphs. Complex 1, undergoes upon cooling below room temperature an incomplete and gradual thermally induced spin conversion, while 4 remains mostly in the low-spin state. Role of supramolecular interactions, particles size, lattice solvents have profound influence on magnetic properties.« less

  17. Rampant Horizontal Transfer of SPIN Transposons in Squamate Reptiles

    PubMed Central

    Gilbert, Clément; Hernandez, Sharon S.; Flores-Benabib, Jaime; Smith, Eric N.; Feschotte, Cédric

    2012-01-01

    Transposable elements (TEs) are highly abundant in the genome and capable of mobility, two properties that make them particularly prone to transfer horizontally between organisms. Although the impact of horizontal transfer (HT) of TEs is well recognized in prokaryotes, the frequency of this phenomenon and its contribution to genome evolution in eukaryotes remain poorly appreciated. Here, we provide evidence that a DNA transposon called SPIN has colonized the genome of 17 species of reptiles representing nearly every major lineage of squamates, including 14 families of lizards, snakes, and amphisbaenians. Slot blot analyses indicate that SPIN has amplified to high copy numbers in most of these species, ranging from 2,000–28,000 copies per haploid genome. In contrast, we could not detect the presence of SPIN in any of the turtles (seven species from seven families) and crocodiles (four species) examined. Genetic distances between SPIN sequences from species belonging to different squamate families are consistently very low (average = 0.1), considering the deep evolutionary divergence of the families investigated (most are >100 My diverged). Furthermore, these distances fall below interfamilial distances calculated for two genes known to have evolved under strong functional constraint in vertebrates (RAG1, average = 0.24 and C-mos, average = 0.27). These data, combined with phylogenetic analyses, indicate that the widespread distribution of SPIN among squamates is the result of at least 13 independent events of HTs. Molecular dating and paleobiogeographical data suggest that these transfers took place during the last 50 My on at least three different continents (North America, South America and, Africa). Together, these results triple the number of known SPIN transfer events among tetrapods, provide evidence for a previously hypothesized transoceanic movement of SPIN transposons during the Cenozoic, and further underscore the role of HT in the evolution of vertebrate genomes. PMID:21771716

  18. Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.

    PubMed

    Zhu, Zhen-Gang; Berakdar, Jamal

    2009-04-08

    We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.

  19. Orbitally dependent kinetic exchange in a heterobimetallic pair: Ferromagnetic spin alignment and magnetic anisotropy in the cyano-bridged Cr(III)Fe(II) dimer

    NASA Astrophysics Data System (ADS)

    Palii, A. V.; Tsukerblat, B. S.; Verdaguer, M.

    2002-11-01

    The problem of the kinetic exchange interaction in the cyanide-bridged heterobinuclear dimers involving orbitally degenerate transition metal ions is considered. The developed approach is based on the concept of the effective Hamiltonian of the orbitally dependent kinetic exchange. We deduce this many-electron Hamiltonian on the microscopic background so that all relevant biorbital transfer processes are taken into account as well as the properties of the many-electron states. The bioctahedral cyanide-bridged Cr(III)Fe(II) dimer is considered in detail as an example distinctly exhibiting new quantitative and qualitative features of the orbitally dependent exchange and as a structural unit of three-dimensional ferromagnetic crystals {Fe(II)3)Cr(III)(CN62}[middle dot]13H2O. The proposed mechanism of the kinetic exchange involves the electron transfer from the double occupied t2 orbitals of Fe(II) [ground state 5T2(t2)4e2] to the half occupied t2 orbitals of Cr(III) [ground state 4A2(t2)3] resulting in the charge transfer state 3T1(t2)4Cr(II)- 6A1(t2)3e2 Fe(III) and the transfer between the half-occupied t2 orbitals of the metal ions resulting in the charge transfer state 3T1(t2)4Cr(II)- 4T2(t2)3e2 Fe(III). The effective Hamiltonian of the orbitally dependent exchange for the Cr(III)Fe(II) pair deduced within this theoretical framework describes competitive ferro- and antiferromagnetic contributions arising from these two charge transfer states. This Hamiltonian leads to a complex energy pattern, consisting of two interpenetrating Heisenberg-like schemes, one exhibiting ferromagnetic and another one antiferromagnetic splitting. The condition for the ferromagnetic spin alignment in the ground state is deduced. The orbitally dependent terms of the Hamiltonian are shown to give rise to a strong magnetic anisotropy of the system, this result as well as the condition for the spin alignment in the ground term are shown to be out of the scope of the Goodenough-Kanamori rules. Along with the full spin S the energy levels are labeled by the orbital quantum numbers providing thus the direct information about the magnetic anisotropy of the system. Under a reasonable estimation of the excitation energies based on the optical absorption data we conclude that the kinetic exchange in the cyanide-bridged Cr(III)Fe(II) pair leads to the ferromagnetic spin alignment exhibiting at the same time strong axial magnetic anisotropy with C4 easy axis of magnetization.

  20. Can spin-up go down in a Stern-Gerlach device? The propagator approach to Stern-Gerlach wavepacket dynamics

    NASA Astrophysics Data System (ADS)

    Hsu, Bailey; van Huele, Jean-Francois

    2009-10-01

    The Stern-Gerlach effect (SGE) is iconic for visualizing spin. We analyze the evolution of atomic wavepackets by constructing exact solutions using propagators in SGE field configurations in different approximations. We contrast our results with the standard presentation of the SGE in textbooks and literature and illustrate with visual animations in 2D and 3D.

  1. Spin vectors of asteroids 21 Lutetia, 196 Philomela, 250 Bettina, 337 Devosa, and 804 Hispania

    NASA Technical Reports Server (NTRS)

    Michalowski, Tadeusz

    1992-01-01

    Such parameters as shape, orientation of spin axis, prograde or retrograde rotation are important for understanding the collisional evolution of asteroids since the primordial epochs of solar system history. These parameters remain unknown for most asteroids and poorly constrained for all but a few. This work presents results for five asteroids: 21, 196, 250, 337, and 804.

  2. Correlating nuclear frequencies by two-dimensional ELDOR-detected NMR spectroscopy.

    PubMed

    Kaminker, Ilia; Wilson, Tiffany D; Savelieff, Masha G; Hovav, Yonatan; Zimmermann, Herbert; Lu, Yi; Goldfarb, Daniella

    2014-03-01

    ELDOR (Electron Double Resonance)-detected NMR (EDNMR) is a pulse EPR experiment that is used to measure the transition frequencies of nuclear spins coupled to electron spins. These frequencies are further used to determine hyperfine and quadrupolar couplings, which are signatures of the electronic and spatial structures of paramagnetic centers. In recent years, EDNMR has been shown to be particularly useful at high fields/high frequencies, such as W-band (∼95 GHz, ∼3.5 T), for low γ quadrupolar nuclei. Although at high fields the nuclear Larmor frequencies are usually well resolved, the limited resolution of EDNMR still remains a major concern. In this work we introduce a two dimensional, triple resonance, correlation experiment based on the EDNMR pulse sequence, which we term 2D-EDNMR. This experiment allows circumventing the resolution limitation by spreading the signals in two dimensions and the observed correlations help in the assignment of the signals. First we demonstrate the utility of the 2D-EDNMR experiment on a nitroxide spin label, where we observe correlations between (14)N nuclear frequencies. Negative cross-peaks appear between lines belonging to different MS electron spin manifolds. We resolved two independent correlation patterns for nuclear frequencies arising from the EPR transitions corresponding to the (14)N mI=0 and mI=-1 nuclear spin states, which severely overlap in the one dimensional EDNMR spectrum. The observed correlations could be accounted for by considering changes in the populations of energy levels that S=1/2, I=1 spin systems undergo during the pulse sequence. In addition to these negative cross-peaks, positive cross-peaks appear as well. We present a theoretical model based on the Liouville equation and use it to calculate the time evolution of populations of the various energy levels during the 2D-EDNMR experiment and generated simulated 2D-EDMR spectra. These calculations show that the positive cross-peaks appear due to off resonance effects and/or nuclear relaxation effects. These results suggest that the 2D-EDNMR experiment can be also useful for relaxation pathway studies. Finally we present preliminary results demonstrating that 2D-EDNMR can resolve overlapping (33)S and (14)N signals of type 1 Cu(II) center in (33)S enriched Azurin. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Spin-glass behaviors in carrier polarity controlled Fe{sub 3−x}Ti{sub x}O{sub 4} semiconductor thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamahara, H., E-mail: yamahara@bioxide.t.u-tokyo.ac.jp; Seki, M.; Adachi, M.

    2015-08-14

    Carrier-type control of spin-glass (cluster spin-glass) is studied in order to engineer basic magnetic semiconductor elements using the memory functions of spin-glass. A key of carrier-polarity control in magnetite is the valence engineering between Fe(II) and Fe(III) that is achieved by Ti(IV) substitution. Single phases of (001)-oriented Fe{sub 3−x}Ti{sub x}O{sub 4} thin films have been obtained on spinel MgAl{sub 2}O{sub 4} substrates by pulsed laser deposition. Thermoelectric power measurements reveal that Ti-rich films (x = 0.8) show p-type conduction, while Ti-poor films (x = 0.6–0.75) show n-type conduction. The systematic Fe(III) reduction to Fe(II) followed by Ti(IV) substitution in the octahedral sublattice is confirmedmore » by the X-ray absorption spectra. All of the Fe{sub 3−x}Ti{sub x}O{sub 4} films (x = 0.6–0.8) exhibit ferrimagnetism above room temperature. Next, the spin-glass behaviors of Ti-rich Fe{sub 2.2}Ti{sub 0.8}O{sub 4} film are studied, since this magnetically diluted system is expected to exhibit the spin-glass behaviors. The DC magnetization and AC susceptibility measurements for the Ti-rich Fe{sub 2.2}Ti{sub 0.8}O{sub 4} film reveal the presence of the spin glass phase. Thermal- and magnetic-field-history memory effects are observed and are attributed to the long time-decay nature of remanent magnetization. The detailed analysis of the time-dependent thermoremanent magnetization reveals the presence of the cluster spin glass state.« less

  4. Influence of the domain structure of nano-oxide layers on the transport properties of specular spin valves

    NASA Astrophysics Data System (ADS)

    Ventura, J.; Sousa, J. B.; Veloso, A.; Freitas, P. P.

    2007-05-01

    Specular spin valves show enhanced giant magnetoresistive ratio when compared to other simpler, spin valve structures as a result of specular reflection in nano-oxide layers (NOLs) formed by the partial oxidation of the CoFe pinned and free layers. The oxides forming the NOL were recently shown to order antiferromagnetically below T ˜175K. Here we study the training effect in MnIr /CoFe/NOL/CoFe/Cu/CoFe/NOL specular spin valves at low temperatures (15K). We observed that the training effect is related to the nano-oxide layer antiferromagnet ordering and to the evolution of the corresponding domain structure with the number of cycles performed. This allowed us to study the influence of the NOL domain structure on the magnetotransport of specular spin valves.

  5. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  6. Ultrafast probes of nonequilibrium hole spin relaxation in the ferromagnetic semiconductor GaMnAs

    NASA Astrophysics Data System (ADS)

    Patz, Aaron; Li, Tianqi; Liu, Xinyu; Furdyna, Jacek K.; Perakis, Ilias E.; Wang, Jigang

    2015-04-01

    We report direct measurements of hole spin lifetimes in ferromagnetic GaMnAs carried out by time- and polarization-resolved spectroscopy. Below the Curie temperature, ultrafast photoexcitation of GaMnAs with linearly polarized light is shown to create a nonequilibrium hole spin population via dynamical polarization of the holes through p -d exchange scattering with ferromagnetically ordered Mn spins. The system is then observed to relax in a distinct three-step recovery process: (i) a femtosecond hole spin relaxation, on the scale of 160-200 fs; (ii) a picosecond hole energy relaxation, on the scale of 1-2 ps; and (iii) a coherent, damped Mn spin precession with a period of 250 ps. The transient amplitude of the hole spin relaxation component diminishes with increasing temperature, directly following the ferromagnetic order of GaMnAs, while the hole energy amplitude shows negligible temperature change. Our results serve to establish the hole spin lifetimes in the ferromagnetic semiconductor GaMnAs, at the same time demonstrating a spectroscopic method for studying nonequilibrium hole spins in the presence of magnetic order and spin-exchange interaction.

  7. Recent advancements in 2D-materials interface based magnetic junctions for spintronics

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Zahir; Qureshi, Nabeel Anwar; Hussain, Ghulam

    2018-07-01

    Two-dimensional (2D) materials comprising of graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs) have revealed fascinating properties in various spintronic architectures. Here, we review spin valve effect in lateral and vertical magnetic junctions incorporating 2D materials as non-magnetic layer between ferromagnetic (FM) electrodes. The magnetic field dependent spin transport properties are studied by measuring non-local resistance (RNL) and relative magnetoresistance ratio (MR) for lateral and vertical structures, respectively. The review consists of (i) studying spin lifetimes and spin diffusion length thereby exploring the effect of tunneling and transparent contacts in lateral spin valve structures, temperature dependence, gate tunability and contrasting mechanisms of spin relaxation in single layer graphene (SLG) and bilayer graphene (BLG) devices. (ii) Perpendicular spin valve devices are thoroughly investigated thereby studying the role of different 2D materials in vertical spin dynamics. The dependence of spin valve signal on interface quality, temperature and various other parameters is also investigated. Furthermore, the spin reversal in graphene-hBN hybrid system is examined on the basis of Julliere model.

  8. Spin-orbital model of stoichiometric LaMnO3 with tetragonal distortions

    NASA Astrophysics Data System (ADS)

    Snamina, Mateusz; Oleś, Andrzej M.

    2018-03-01

    The spin-orbital superexchange model is derived for the cubic (perovskite) symmetry of LaMnO3, whereas real crystal structure is strongly deformed. We identify and explain three a priori important physical effects arising from tetragonal deformation: (i) the splitting of eg orbitals ∝Ez , (ii) the directional renormalization of d -p hybridization tp d, and (iii) the directional renormalization of charge excitation energies. Using the example of LaMnO3 crystal we evaluate their magnitude. It is found that the major effects of deformation are an enhanced amplitude of x2-y2 orbitals induced in the orbital order by Ez≃300 meV and anisotropic tp d≃2.0 (2.35) eV along the a b (c ) cubic axis, in very good agreement with Harrison's law. We show that the improved tetragonal model analyzed within mean field approximation provides a surprisingly consistent picture of the ground state. Excellent agreement with the experimental data is obtained simultaneously for: (i) eg orbital mixing angle, (ii) spin exchange constants, and (iii) the temperatures of spin and orbital phase transition.

  9. A Mössbauer spectroscopic study of the six-coordinate high-spin ferrous compound (meso-tetraphenylporphinato) bis(tetrahydrofuran) iron(II)

    NASA Astrophysics Data System (ADS)

    Boso, Brian; Lang, George; Reed, Christopher A.

    1983-03-01

    Mössbauer spectra of a polycrystalline form of the six-coordinate high-spin ferrous compound (meso-tetraphenylporphinato) bis(tetrahydrofuran) iron (II) have been recorded over a range of temperatures (4.2-195 K) and magnetic fields (0-6.0 T). Analysis of the spectra using a phenomenological model of the internal magnetic field and using an S=2 spin Hamiltonian, where applicable, yield the sign of Vzz negative, η=0.4, D=6.0 cm-1, E/D=0.1, and Ã*/g*N βN =(-7.2, -7.2, and -24.3 T). These results suggest that the iron experiences an octahedral crystal field, trigonally distorted in the (1, 1, 1) direction, producing a prolate orbital dz2 as the ground state. Crystal field calculations confirm this interpretation by reproducing the spin Hamiltonian parameters listed above. The calculation predicts an orbital doublet 1667 cm-1 above the ground state. Comparisons with deoxyheme proteins and their synthetic analogs suggest some common gross features of the orbital state and structure-related trends in the character of the ground quintet.

  10. Adjustable shunt valve-induced magnetic resonance imaging artifact: a comparative study.

    PubMed

    Toma, Ahmed K; Tarnaris, Andrew; Grieve, Joan P; Watkins, Laurence D; Kitchen, Neil D

    2010-07-01

    In this paper, the authors' goal was to compare the artifact induced by implanted (in vivo) adjustable shunt valves in spin echo, diffusion weighted (DW), and gradient echo MR imaging pulse sequences. The MR images obtained in 8 patients with proGAV and 6 patients with Strata II adjustable shunt valves were assessed for artifact areas in different planes as well as the total volume for different pulse sequences. Artifacts induced by the Strata II valve were significantly larger than those induced by proGAV valve in spin echo MR imaging pulse sequence (29,761 vs 2450 mm(3) on T2-weighted fast spin echo, p = 0.003) and DW images (100,138 vs 38,955 mm(3), p = 0.025). Artifacts were more marked on DW MR images than on spin echo pulse sequence for both valve types. Adjustable valve-induced artifacts can conceal brain pathology on MR images. This should influence the choice of valve implantation site and the type of valve used. The effect of artifacts on DW images should be highlighted pending the development of less MR imaging artifact-inducing adjustable shunt valves.

  11. Cobaltites: Emergence of magnetism and metallicity from a non-magnetic, insulating state

    NASA Astrophysics Data System (ADS)

    Phelan, Daniel Patrick

    In cobalt oxides, the energy splitting between different spin-states of Co3+ ions can be quite small, which means that more than one spin-state can simultaneously co-exist in the same compound and that transitions between different spin-state can occur. This makes understanding the magnetic coupling between cobalt sites rather complex. Such is the case for pure and hole-doped LaCoO3. In its ground state, LaCoO3 is a non-magnetic insulator. The lack of a magnetic moment, is due to the fact that the ground spin-state of Co3+ ions is a low-spin, S=0, state. However, since a spin-state that has a net spin is on the order of 100 K higher in energy than the ground spin-state, a magnetic moment appears as the temperature is increased, and the system behaves as a paramagnet above 100 K. The higher-energy spin-state is either an intermediate-spin (S=1) state of a high-spin (S=2) state - an issue that has been debated for quite some time. When holes are chemically doped into the system, as in La1- xSrxCoO3 (LSCO), the non-magnetic, insulating ground state evolves into a ferromagnetic, metallic state. This evolution is complicated because it occurs due to the convoluted effects of Co4+ ions being doped into the system and the fact that the ground spin-state of Co3+ ions changes as a function of the hole concentration. In this dissertation, the magnetic transitions in pure and hole-doped LaCoO3 are investigated by neutron scattering techniques. In the pure compound, it is shown that thermally excited spins have both fluctuating ferromagnetic and antiferro-magnetic spin-correlations, which is suggested to result from a dynamic orbital ordering of the occupied e. g orbitals of the intermediate-spin state. It is also shown that the thermally excited spin-state is split in energy by 0.6 meV. In the hole-doped compound, LSCO, it is shown that the evolution into a metallic ferromagnet occurs by the percolation of isotropic ferromagnetic droplets. It is also shown that incommensurate spin-correlations co-exist and compete with ferromagnetic spin correlations in LSCO, and it is argued that this competition is manifested in the thermodynamic properties. The role of the lattice upon the magnetic transitions in the hole-doped compounds is addressed by simultaneous analysis of magnetic Bragg peaks, the local atomic structure, and the average crystal structure from powder neutron diffraction patterns of La1- xCaxCoO3 and La 1-xBaxCoO3. It is suggested that the fraction of ions with intermediate spin-states at a fixed hole concentration depends on the radius of the A-site dopant.

  12. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi

    As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarizedmore » electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of {sup 75}As, {sup 69}Ga and {sup 71}Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.« less

  13. Dinuclear complexes containing linear M-F-M [M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)] bridges: trends in structures, antiferromagnetic superexchange interactions, and spectroscopic properties.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2012-11-05

    The reaction of M(BF(4))(2)·xH(2)O, where M is Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), with the new ditopic ligand m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (L(m)*) leads to the formation of monofluoride-bridged dinuclear metallacycles of the formula [M(2)(μ-F)(μ-L(m)*)(2)](BF(4))(3). The analogous manganese(II) species, [Mn(2)(μ-F)(μ-L(m)*)(2)](ClO(4))(3), was isolated starting with Mn(ClO(4))(2)·6H(2)O using NaBF(4) as the source of the bridging fluoride. In all of these complexes, the geometry around the metal centers is trigonal bipyramidal, and the fluoride bridges are linear. The (1)H, (13)C, and (19)F NMR spectra of the zinc(II) and cadmium(II) compounds and the (113)Cd NMR of the cadmium(II) compound indicate that the metallacycles retain their structure in acetonitrile and acetone solution. The compounds with M = Mn(II), Fe(II), Co(II), Ni(II), and Cu(II) are antiferromagnetically coupled, although the magnitude of the coupling increases dramatically with the metal as one moves to the right across the periodic table: Mn(II) (-6.7 cm(-1)) < Fe(II) (-16.3 cm(-1)) < Co(II) (-24.1 cm(-1)) < Ni(II) (-39.0 cm(-1)) ≪ Cu(II) (-322 cm(-1)). High-field EPR spectra of the copper(II) complexes were interpreted using the coupled-spin Hamiltonian with g(x) = 2.150, g(y) = 2.329, g(z) = 2.010, D = 0.173 cm(-1), and E = 0.089 cm(-1). Interpretation of the EPR spectra of the iron(II) and manganese(II) complexes required the spin Hamiltonian using the noncoupled spin operators of two metal ions. The values g(x) = 2.26, g(y) = 2.29, g(z) = 1.99, J = -16.0 cm(-1), D(1) = -9.89 cm(-1), and D(12) = -0.065 cm(-1) were obtained for the iron(II) complex and g(x) = g(y) = g(z) = 2.00, D(1) = -0.3254 cm(-1), E(1) = -0.0153, J = -6.7 cm(-1), and D(12) = 0.0302 cm(-1) were found for the manganese(II) complex. Density functional theory (DFT) calculations of the exchange integrals and the zero-field splitting on manganese(II) and iron(II) ions were performed using the hybrid B3LYP functional in association with the TZVPP basis set, resulting in reasonable agreement with experiment.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yuxin; Suto, Yasushi; Taruya, Atsushi

    The angle between the stellar spin and the planetary orbit axes (the spin-orbit angle) is supposed to carry valuable information concerning the initial condition of planetary formation and subsequent migration history. Indeed, current observations of the Rossiter-McLaughlin effect have revealed a wide range of spin-orbit misalignments for transiting exoplanets. We examine in detail the tidal evolution of a simple system comprising a Sun-like star and a hot Jupiter adopting the equilibrium tide and the inertial wave dissipation effects simultaneously. We find that the combined tidal model works as a very efficient realignment mechanism; it predicts three distinct states of themore » spin-orbit angle (i.e., parallel, polar, and antiparallel orbits) for a while, but the latter two states eventually approach the parallel spin-orbit configuration. The intermediate spin-orbit angles as measured in recent observations are difficult to obtain. Therefore the current model cannot reproduce the observed broad distribution of the spin-orbit angles, at least in its simple form. This indicates that the observed diversity of the spin-orbit angles may emerge from more complicated interactions with outer planets and/or may be the consequence of the primordial misalignment between the protoplanetary disk and the stellar spin, which requires future detailed studies.« less

  15. Synthesis and Ligand Non-Innocence of Thiolate-Ligated (N4S) Iron(II) and Nickel(II) Bis(imino)pyridine Complexes

    PubMed Central

    Widger, Leland R.; Jiang, Yunbo; Siegler, Maxime; Kumar, Devesh; Latifi, Reza; de Visser, Sam P.; Jameson, Guy N.L.; Goldberg, David P.

    2013-01-01

    The known iron(II) complex [FeII(LN3S)(OTf)] (1) was used as starting material to prepare the new biomimetic (N4S(thiolate)) iron(II) complexes [FeII(LN3S)(py)](OTf) (2) and [FeII(LN3S)(DMAP)](OTf) (3), where LN3S is a tetradentate bis(imino)pyridine (BIP) derivative with a covalently tethered phenylthiolate donor. These complexes were characterized by X-ray crystallography, UV-vis, 1H NMR, and Mössbauer spectroscopy, as well as electrochemistry. A nickel(II) analogue, [NiII(LN3S)](BF4) (5), was also synthesized and characterized by structural and spectroscopic methods. Cyclic voltammetric studies showed 1 – 3 and 5 undergo a single reduction process with E1/2 between −0.9 to −1.2 V versus Fc+/Fc. Treatment of 3 with 0.5% Na/Hg amalgam gave the mono-reduced complex [Fe(LN3S)(DMAP)]0 (4), which was characterized by X-ray crystallography, UV-vis, EPR (g = [2.155, 2.057, 2.038]) and Mössbauer (δ = 0.33 mm s−1; ΔEQ = 2.04 mm s−1) spectroscopies. Computational methods (DFT) were employed to model complexes 3 – 5. The combined experimental and computational studies show that 1 – 3 are 5-coordinate, high-spin (S = 2) FeII complexes, whereas 4 is best described as a 5-coordinate, intermediate-spin (S = 1) FeII complex antiferromagnetically coupled to a ligand radical. This unique electronic configuration leads to an overall doublet spin (Stotal = ½) ground state. Complexes 2 and 3 are shown to react with O2 to give S-oxygenated products, as previously reported for 1. In contrast, the mono-reduced 4 appears to react with O2 to give a mixture of S- and Fe-oxygenates. The nickel(II) complex 5 does not react with O2, and even when the mono-reduced nickel complex is produced, it appears to undergo only outer-sphere oxidation with O2. PMID:23992096

  16. The current-induced heat generation in a spin-flip quantum dot sandwiched between a ferromagnetic and a superconducting electrode

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing

    2017-12-01

    Using non-equilibrium Green's functions' theory based on extended Nambu representation and small polaron transformation, we studied the current-induced heat generation in a spin-flip quantum dot sandwiched between a ferromagnetic and a superconducting electrode. We focused on moderate dot-leads coupling and relative small phonon energy, and derived the detailed expression of heat generation. The numerical results show (i) the heat generation decreases with polarization degree increasing, (ii) the intradot spin-flip can have a great effect on the heat generation at both zero temperature and finite temperature and (iii) at finite temperature an optimal workspace of keeping spin current and tuning heat generation by modulating the spin-flip intensity can be found.

  17. Spin Forming Aluminum Crew Module (CM) Metallic Aft Pressure Vessel Bulkhead (APVBH) - Phase II

    NASA Technical Reports Server (NTRS)

    Hoffman, Eric K.; Domack, Marcia S.; Torres, Pablo D.; McGill, Preston B.; Tayon, Wesley A.; Bennett, Jay E.; Murphy, Joseph T.

    2015-01-01

    The principal focus of this project was to assist the Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the Orion crew module (CM) aft pressure vessel bulkhead. The spin forming process will enable a single piece aluminum (Al) alloy 2219 aft bulkhead resulting in the elimination of the current multiple piece welded construction, simplify CM fabrication, and lead to an enhanced design. Phase I (NASA TM-2014-218163 (1)) of this assessment explored spin forming the single-piece CM forward pressure vessel bulkhead. The Orion MPCV Program and Lockheed Martin (LM) recently made two critical decisions relative to the NESC Phase I work scope: (1) LM selected the spin forming process to manufacture a single-piece aft bulkhead for the Orion CM, and (2) the aft bulkhead will be manufactured from Al 2219. Based on the Program's new emphasis related to the spin forming process, the NESC was asked to conduct a Phase II assessment to assist in the LM manufacture of the aft bulkhead and to conduct a feasibility study into spin forming the Orion CM cone. This activity was approved on June 19, 2013. Dr. Robert Piascik, NASA Technical Fellow for Materials at the Langley Research Center (LaRC), was selected to lead this assessment. The project plan was approved by the NASA Engineering and Safety Center (NESC) Review Board (NRB) on July 18, 2013. The primary stakeholders for this assessment were the NASA and LM MPCV Program offices. Additional benefactors are commercial launch providers developing CM concepts.

  18. Spin Forming Aluminum Crew Module (CM) Metallic Aft Pressure Vessel Bulkhead (APVBH) - Phase II

    NASA Technical Reports Server (NTRS)

    Hoffman, Eric K.; Domack, Marcia S.; Torres, Pablo D.; McGill, Preston B.; Tayon, Wesley A.; Bennett, Jay E.; Murphy, Joseph T.

    2015-01-01

    The principal focus of this project was to assist the Multi-Purpose Crew Vehicle (MPCV) program in developing a spin forming fabrication process for manufacture of the Orion crew module (CM) aft pressure vessel bulkhead. The spin forming process will enable a single piece aluminum (Al) alloy 2219 aft bulkhead resulting in the elimination of the current multiple piece welded construction, simplify CM fabrication, and lead to an enhanced design. Phase I (NASA TM-2014-218163, (1)) of this assessment explored spin forming the single-piece CM forward pressure vessel bulkhead. The MPCV Program and Lockheed Martin (LM) recently made two critical decisions relative to the NESC Phase I work scope: (1) LM selected the spin forming process to manufacture a singlepiece aft bulkhead for the Orion CM, and (2) the aft bulkhead will be manufactured from Al 2219. Based on the Program's new emphasis related to the spin forming process, the NESC was asked to conduct a Phase II assessment to assist in the LM manufacture of the aft bulkhead and to conduct a feasibility study into spin forming the Orion CM cone. This activity was approved on June 19, 2013. Dr. Robert Piascik, NASA Technical Fellow for Materials at the Langley Research Center (LaRC), was selected to lead this assessment. The project plan was approved by the NASA Engineering and Safety Center (NESC) Review Board (NRB) on July 18, 2013. The primary stakeholders for this assessment are the NASA and LM MPCV Program offices. Additional benefactors are commercial launch providers developing CM concepts.

  19. Computations of the chirality-sensitive effect induced by an antisymmetric indirect spin–spin coupling

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2018-05-01

    Results of quantum mechanical computations of the antisymmetric part of the indirect spin-spin coupling tensor, ?, performed using the coupled-cluster method, the second-order polarisation propagator approximation, and the density functional theory for 25 molecules and nearly 100 spin-spin couplings are reported. These results are used for an estimation of the magnitude of the recently proposed liquid-state nuclear magnetic resonance chirality-sensitive effect, which allows to determine the molecular chirality directly, i.e. without the need for the application of any chiral agent. The following were found: (i) the antisymmetry J⋆ is usually larger for the coupling between spins separated by two chemical bonds in comparison with the coupling through one bond, (ii) promising samples are those which contain fluorine, and (iii) the antisymmetry of the spin-spin coupling tensor is of the order of a few hertz for commercially available chemical compounds. Therefore, the relevant property of the experiment, the pseudoscalar Jc, for them is of the order of 1 nHz m/V.

  20. General theory of feedback control of a nuclear spin ensemble in quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Sham, L. J.

    2013-12-01

    We present a microscopic theory of the nonequilibrium nuclear spin dynamics driven by the electron and/or hole under continuous-wave pumping in a quantum dot. We show the correlated dynamics of the nuclear spin ensemble and the electron and/or hole under optical excitation as a quantum feedback loop and investigate the dynamics of the many nuclear spins as a nonlinear collective motion. This gives rise to three observable effects: (i) hysteresis, (ii) locking (avoidance) of the pump absorption strength to (from) the natural resonance, and (iii) suppression (amplification) of the fluctuation of weakly polarized nuclear spins, leading to prolonged (shortened) electron-spin coherence time. A single nonlinear feedback function is constructed which determines the different outcomes of the three effects listed above depending on the feedback being negative or positive. The general theory also helps to put in perspective the wide range of existing theories on the problem of a single electron spin in a nuclear spin bath.

  1. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    PubMed

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  2. Influence of pH, buffers and role of quinolinic acid, a novel iron chelating agent, in the determination of hydroxyl radical scavenging activity of plant extracts by Electron Paramagnetic Resonance (EPR).

    PubMed

    Fadda, Angela; Barberis, Antonio; Sanna, Daniele

    2018-02-01

    The Fenton reaction is used to produce hydroxyl radicals for the evaluation of the antioxidant activity of plant extracts. In this paper the parameters affecting the production of hydroxyl radicals and their spin trapping with DMPO were studied. The use of quinolinic acid (Quin) as an Fe(II) ligand was proposed for antioxidant activity determination of Green tea, orange juice and asparagus extracts. Quin, buffers and pH affect the DMPO-OH signal intensity of the EPR spectra. Quin/Fe(II) and low pH enhance the OH generation. Phosphate and Tris-HCl buffers decrease the signal intensity measured in Fe(II)-sulfate and Fe(II)-Quin systems. The extracts were analyzed with Fenton systems containing Fe(II)-sulfate and Fe(II)-Quin with and without buffer. The highest activity was shown with Fe(II)-Quin without buffer, this system being less influenced by pH and chelating agents present in the extracts. This paper will help researchers to better design spin trapping experiments for food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Low- and high-spin iron (II) complexes studied by effective crystal field method combined with molecular mechanics.

    PubMed

    Darkhovskii, M B; Pletnev, I V; Tchougréeff, A L

    2003-11-15

    A computational method targeted to Werner-type complexes is developed on the basis of quantum mechanical effective Hamiltonian crystal field (EHCF) methodology (previously proposed for describing electronic structure of transition metal complexes) combined with the Gillespie-Kepert version of molecular mechanics (MM). It is a special version of the hybrid quantum/MM approach. The MM part is responsible for representing the whole molecule, including ligand atoms and metal ion coordination sphere, but leaving out the effects of the d-shell. The quantum mechanical EHCF part is limited to the metal ion d-shell. The method reproduces with reasonable accuracy geometry and spin states of the Fe(II) complexes with monodentate and polydentate aromatic ligands with nitrogen donor atoms. In this setting a single set of MM parameters set is shown to be sufficient for handling all spin states of the complexes under consideration. Copyright 2003 Wiley Periodicals, Inc.

  4. Zero-field splitting in the isoelectronic aqueous Gd(III) and Eu(II) complexes from a first principles analysis

    NASA Astrophysics Data System (ADS)

    Khan, S.; Peters, V.; Kowalewski, J.; Odelius, M.

    2018-03-01

    The zero-field splitting (ZFS) of the ground state octet in aqueous Eu(II) and Gd(III) solutions was investigated through multi- configurational quantum chemical calculations and ab initio molecular dynamics (AIMD) simulations. Investigation of the ZFS of the lanthanide ions is essential to understand the electron spin dynamics and nuclear spin relaxation around paramagnetic ions and consequently the mechanisms underlying applications like magnetic resonance imaging. We found by comparing clusters at identical geometries but different metallic centres that there is not a simple relationship for their ZFS, in spite of the complexes being isoelectronic - each containing 7 unpaired f electrons. Through sampling it was established that inclusion of the first hydration shell has a dominant (over 90 %) influence on the ZFS. Extended sampling of aqueous Gd(III) showed that the 2 nd order spin Hamiltonian formalism is valid and that the rhombic ZFS component is decisive.

  5. A statics-dynamics equivalence through the fluctuation–dissipation ratio provides a window into the spin-glass phase from nonequilibrium measurements

    PubMed Central

    Baity-Jesi, Marco; Calore, Enrico; Cruz, Andres; Fernandez, Luis Antonio; Gil-Narvión, José Miguel; Gordillo-Guerrero, Antonio; Iñiguez, David; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor; Monforte-Garcia, Jorge; Muñoz Sudupe, Antonio; Navarro, Denis; Parisi, Giorgio; Perez-Gaviro, Sergio; Ricci-Tersenghi, Federico; Ruiz-Lorenzo, Juan Jesus; Schifano, Sebastiano Fabio; Tarancón, Alfonso; Tripiccione, Raffaele; Yllanes, David

    2017-01-01

    We have performed a very accurate computation of the nonequilibrium fluctuation–dissipation ratio for the 3D Edwards–Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. Our main result is a quantitative statics-dynamics dictionary, which could allow the experimental exploration of important features of the spin-glass phase without requiring uncontrollable extrapolations to infinite times or system sizes. PMID:28174274

  6. Spin-crossover in an iron(III)-bispidine-alkylperoxide system.

    PubMed

    Bautz, Jochen; Comba, Peter; Que, Lawrence

    2006-09-04

    The iron(II) complex of a tetradentate bispidine ligand with two tertiary amines and two pyridine groups (L = dimethyl [3,7-dimethyl-9,9'-dihydroxy-2,4-di-(2-pyridyl)-3,7-diazabicyclo nonan-1,5-dicaboxylate]) is oxidized with tert-butyl hydroperoxide to the corresponding end-on tert-butylperoxo complex [Fe(III)(L)(OOtBu)(X)]n+ (X = solvent, anion). UV-vis, resonance Raman, and EPR spectroscopy, as a function of the solvent, show that this is a spin-crossover compound. The experimentally observed Raman vibrations for both low-spin and high-spin isomers are in good agreement with those computed by DFT.

  7. Spin Forming of an Aluminum 2219-T6 Aft Bulkhead for the Orion Multi-Purpose Crew Vehicle: Phase II Supplemental Report

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Squire, Michael D.; Domack, Marcia S.; Hoffman, Eric K.

    2015-01-01

    The principal focus of this project was to assist the Orion Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the aft bulkhead of the pressure vessel. The spin forming process will enable a single piece aluminum (Al) 2219 aft bulkhead which will eliminate the current multiple piece welded construction, simplify fabrication, and lead to an enhanced design that will reduce vehicle weight by eliminating welds. Phase I of this assessment explored spin forming the single-piece forward pressure vessel bulkhead from aluminum-lithium 2195.

  8. Characterization of the fluid and solid components of cyanogel systems during the gelation process

    NASA Astrophysics Data System (ADS)

    Fortmeyer, Ivy Camille

    The work in this thesis concerns the sol-gel transformation in cyanogel systems comprised of d8 square planar chlorometalates (M=Pd(II), Pt(II)) and d6 octahedral hexacyanometalates (M=Fe(II), Co(III), Ru(II)). The body of this thesis is split into two chapters. The first chapter examines the physical changes in the solvent phase of the sol-gel network, and the second focuses on the polymer backbone of the gel. Studies on the water component of cyanogel systems during the gelation process were carried out with a variety of in situ spectroscopic techniques. The use of high resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) to identify and characterize different water environments was explored, but was ultimately found to disrupt gelation. Standard solution-phase 1H NMR proved sufficient for calculation and qualitative modeling of spin-spin and spin-lattice relaxations, providing distinct spectral markers of the gelation point and subsequent aging process. Vibrational spectroscopy was used to explore the hydrogen bonding environment of the water during gelation. The kinetics of polymerization of the cyanogel backbone was explored using both in situ and ex situ techniques. Data collected by 13C NMR and 195Pt NMR primarily demonstrated first order kinetics, implying a dissociative substitution mechanism at the chlorometalate center. Rate constants for gelation in the presence of various added monopotassium and nitrate salts were calculated. Added chloride was found to significantly slow gelation and was further explored using NMR and vibrational spectroscopy. A mechanism was proposed for the polymerization taking into account the dissociative substitution and the bridging geometries implied by 13C NMR.

  9. Impact of nearest-neighbor repulsion on superconducting pairing in 2D extended Hubbard model

    NASA Astrophysics Data System (ADS)

    Jiang, Mi; Hahner, U. R.; Maier, T. A.; Schulthess, T. C.

    Using dynamical cluster approximation (DCA) with an continuous-time QMC solver for the two-dimensional extended Hubbard model, we studied the impact of nearest-neighbor Coulomb repulsion V on d-wave superconducting pairing dynamics. By solving Bethe-Salpeter equation for particle-particle superconducting channel, we focused on the evolution of leading d-wave eigenvalue with V and the momentum and frequency dependence of the corresponding eigenfunction. The comparison with the evolution of both spin and charge susceptibilities versus V is presented showing the competition between spin and charge fluctuations. This research received generous support from the MARVEL NCCR and used resources of the Swiss National Supercomputing Center, as well as (INCITE) program in Oak Ridge Leadership Computing Facility.

  10. Evolution of the phonon density of states of LaCoO3 over the spin state transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golosova, N. O.; Kozlenko, D. P.; Kolesnikov, Alexander I

    2011-01-01

    The phonon spectra of LaCoO3 were studied by inelastic neutron scattering in the temperature range of 4 120 K. The DFT calculations of the lattice dynamics have been made for interpretation of the experimental data. The observed and calculated phonon frequencies were found to be in a reasonable agreement. The evolution of the phonon density of states over the spin state transition was analyzed. In the low-temperature range (T < 50 K), an increase in the energy of resolved breathing, stretching, and bending phonon modes was found, followed by their softening and broadening at higher temperatures due to the spinmore » state transition and relevant orbital-phonon coupling.« less

  11. Evolution of magnetic Dirac bosons in a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Boyko, D.; Balatsky, A. V.; Haraldsen, J. T.

    2018-01-01

    We examine the presence and evolution of magnetic Dirac nodes in the Heisenberg honeycomb lattice. Using linear spin theory, we evaluate the collinear phase diagram as well as the change in the spin dynamics with various exchange interactions. We show that the ferromagnetic structure produces bosonic Dirac and Weyl points due to the competition between the interactions. Furthermore, it is shown that the criteria for magnetic Dirac nodes are coupled to the magnetic structure and not the overall crystal symmetry, where the breaking of inversion symmetry greatly affects the antiferromagnetic configurations. The tunability of the nodal points through variation of the exchange parameters leads to the possibility of controlling Dirac symmetries through an external manipulation of the orbital interactions.

  12. Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves

    PubMed Central

    Giordano, A.; Verba, R.; Zivieri, R.; Laudani, A.; Puliafito, V.; Gubbiotti, G.; Tomasello, R.; Siracusano, G.; Azzerboni, B.; Carpentieri, M.; Slavin, A.; Finocchio, G.

    2016-01-01

    Spin-Hall oscillators (SHO) are promising sources of spin-wave signals for magnonics applications, and can serve as building blocks for magnonic logic in ultralow power computation devices. Thin magnetic layers used as “free” layers in SHO are in contact with heavy metals having large spin-orbital interaction, and, therefore, could be subject to the spin-Hall effect (SHE) and the interfacial Dzyaloshinskii-Moriya interaction (i-DMI), which may lead to the nonreciprocity of the excited spin waves and other unusual effects. Here, we analytically and micromagnetically study magnetization dynamics excited in an SHO with oblique magnetization when the SHE and i-DMI act simultaneously. Our key results are: (i) excitation of nonreciprocal spin-waves propagating perpendicularly to the in-plane projection of the static magnetization; (ii) skyrmions generation by pure spin-current; (iii) excitation of a new spin-wave mode with a spiral spatial profile originating from a gyrotropic rotation of a dynamical skyrmion. These results demonstrate that SHOs can be used as generators of magnetic skyrmions and different types of propagating spin-waves for magnetic data storage and signal processing applications. PMID:27786261

  13. Spin-Polarization-Induced Preedge Transitions in the Sulfur K-Edge XAS Spectra of Open-Shell Transition-Metal Sulfates: Spectroscopic Validation of σ-Bond Electron Transfer.

    PubMed

    Frank, Patrick; Szilagyi, Robert K; Gramlich, Volker; Hsu, Hua-Fen; Hedman, Britt; Hodgson, Keith O

    2017-02-06

    Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M II (itao)(SO 4 )(H 2 O) 0,1 ] (M = Co, Ni, Cu) and [Cu(Me 6 tren)(SO 4 )] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal-sulfur bond, while the XAS preedge of [Zn(itao)(SO 4 )] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO 4 )] but not of [Cu(Me 6 tren)(SO 4 )] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M II (SO 4 )(H 2 O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5-2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal-absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which extends across a hydrogen-bond bridge between sulfate and the itao ligand and involves orbitals at energies below the frontier set. This electronic structure feature provides a direct spectroscopic confirmation of the through-bond electron-transfer mechanism of redox-active metalloproteins.

  14. Spin-Polarization-Induced Preedge Transitions in the Sulfur K-Edge XAS Spectra of Open-Shell Transition-Metal Sulfates: Spectroscopic Validation of σ-Bond Electron Transfer

    DOE PAGES

    Frank, Patrick; Szilagyi, Robert K.; Gramlich, Volker; ...

    2017-01-09

    Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M II(itao)(SO 4)(H 2O) 0,1] (M = Co, Ni, Cu) and [Cu(Me 6tren)(SO 4)] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal–sulfur bond, while the XAS preedge of [Zn(itao)(SO 4)] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO 4)] but not of [Cu(Me 6tren)(SO 4)] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M II(SO 4)(Hmore » 2O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5–2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal–absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which extends across a hydrogen-bond bridge between sulfate and the itao ligand and involves orbitals at energies below the frontier set. In conclusion, this electronic structure feature provides a direct spectroscopic confirmation of the through-bond electron-transfer mechanism of redox-active metalloproteins.« less

  15. Orbital occupancy evolution across spin- and charge-ordering transitions in YBaFe2O5

    NASA Astrophysics Data System (ADS)

    Lindén, J.; Lindroos, F.; Karen, P.

    2017-08-01

    Thermal evolution of the Fe2+-Fe3+ valence mixing in YBaFe2O5 is investigated using Mössbauer spectroscopy. In this high-spin double-cell perovskite, the d6 and d5 Fe states differ by the single minority-spin electron which then controls all the spin- and charge-ordering transitions. Orbital occupancies can be extracted from the spectra in terms of the dxz , dz2 and either dx2-y2 (Main Article) or dxy (Supplement) populations of this electron upon conserving its angular momentum. At low temperatures, the minority-spin electrons fill up the ordered dxz orbitals of Fe2+, in agreement with the considerable orthorhombic distortion of the structure. Heating through the Verwey transition supplies 93% of the mixing entropy, at which point the predominantly mixing electron occupies mainly the dx2-y2 /dxy orbitals weakly bonding the two Fe atoms that face each other across the bases of their coordination pyramids. This might stabilize a weak coulombic checkerboard order suggested by McQueeney et alii in Phys. Rev. B 87(2013)045127. When the remaining 7% of entropy is supplied at a subsequent transition, the mixing electron couples the two Fe atoms predominantly via their dz2 orbitals. The valence mixing concerns more than 95% of the Fe atoms present in the crystalline solid; the rest is semi-quantitatively interpreted as domain walls and antiphase boundaries formed upon cooling through the Néel and Verwey-transition temperatures, respectively.

  16. Interfering with the neutron spin

    NASA Astrophysics Data System (ADS)

    Wagh, Apoorva G.; Rakhecha, Veer Chand

    2004-07-01

    Charge neutrality, a spin frac{1}{2} and an associated magnetic moment of the neu- tron make it an ideal probe of quantal spinor evolutions. Polarized neutron interferometry in magnetic field Hamiltonians has thus scored several firsts such as direct verification of Pauli anticommutation, experimental separation of geometric and dynamical phases and observation of non-cyclic amplitudes and phases. This paper provides a flavour of the physics learnt from such experiments.

  17. Duality and integrability: Electromagnetism, linearized gravity, and massless higher spin gauge fields as bi-Hamiltonian systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnich, Glenn; Troessaert, Cedric

    2009-04-15

    In the reduced phase space of electromagnetism, the generator of duality rotations in the usual Poisson bracket is shown to generate Maxwell's equations in a second, much simpler Poisson bracket. This gives rise to a hierarchy of bi-Hamiltonian evolution equations in the standard way. The result can be extended to linearized Yang-Mills theory, linearized gravity, and massless higher spin gauge fields.

  18. Bound state and localization of excitation in many-body open systems

    NASA Astrophysics Data System (ADS)

    Cui, H. T.; Shen, H. Z.; Hou, S. C.; Yi, X. X.

    2018-04-01

    We study the exact bound state and time evolution for single excitations in one-dimensional X X Z spin chains within a non-Markovian reservoir. For the bound state, a common feature is the localization of single excitations, which means the spontaneous emission of excitations into the reservoir is prohibited. Exceptionally, the pseudo-bound state can be found, for which the single excitation has a finite probability of emission into the reservoir. In addition, a critical energy scale for bound states is also identified, below which only one bound state exists, and it is also the pseudo-bound state. The effect of quasirandom disorder in the spin chain is also discussed; such disorder induces the single excitation to locate at some spin sites. Furthermore, to display the effect of bound state and disorder on the preservation of quantum information, the time evolution of single excitations in spin chains is studied exactly. An interesting observation is that the excitation can stay at its initial location with high probability only when the bound state and disorder coexist. In contrast, when either one of them is absent, the information of the initial state can be erased completely or becomes mixed. This finding shows that the combination of bound state and disorder can provide an ideal mechanism for quantum memory.

  19. Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence

    NASA Astrophysics Data System (ADS)

    Zhang, Zuo-Yuan; Wei, DaXiu; Liu, Jin-Ming

    2018-06-01

    The precision of measurements for two incompatible observables in a physical system can be improved with the assistance of quantum memory. In this paper, we investigate the quantum-memory-assisted entropic uncertainty relation for a spin-1 Heisenberg model in the presence of external magnetic fields, the systemic quantum entanglement (characterized by the negativity) is analyzed as contrast. Our results show that for the XY spin chain in thermal equilibrium, the entropic uncertainty can be reduced by reinforcing the coupling between the two particles or decreasing the temperature of the environment. At zero-temperature, the strong magnetic field can result in the growth of the entropic uncertainty. Moreover, in the Ising case, the variation trends of the uncertainty are relied on the choices of anisotropic parameters. Taking the influence of intrinsic decoherence into account, we find that the strong coupling accelerates the inflation of the uncertainty over time, whereas the high magnetic field contributes to its reduction during the temporal evolution. Furthermore, we also verify that the evolution behavior of the entropic uncertainty is roughly anti-correlated with that of the entanglement in the whole dynamical process. Our results could offer new insights into quantum precision measurement for the high spin solid-state systems.

  20. CONDITIONS OF PASSAGE AND ENTRAPMENT OF TERRESTRIAL PLANETS IN SPIN-ORBIT RESONANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Valeri V., E-mail: vvm@usno.navy.mil

    The dynamical evolution of terrestrial planets resembling Mercury in the vicinity of spin-orbit resonances is investigated using comprehensive harmonic expansions of the tidal torque taking into account the frequency-dependent quality factors and Love numbers. The torque equations are integrated numerically with a small step in time, including the oscillating triaxial torque components but neglecting the layered structure of the planet and assuming a zero obliquity. We find that a Mercury-like planet with a current value of orbital eccentricity (0.2056) is always captured in 3:2 resonance. The probability of capture in the higher 2:1 resonance is approximately 0.23. These results aremore » confirmed by a semi-analytical estimation of capture probabilities as functions of eccentricity for both prograde and retrograde evolutions of spin rate. As follows from analysis of equilibrium torques, entrapment in 3:2 resonance is inevitable at eccentricities between 0.2 and 0.41. Considering the phase space parameters at the times of periastron, the range of spin rates and phase angles for which an immediate resonance passage is triggered is very narrow, and yet a planet like Mercury rarely fails to align itself into this state of unstable equilibrium before it traverses 2:1 resonance.« less

  1. Engineering On-Surface Spin Crossover: Spin-State Switching in a Self-Assembled Film of Vacuum-Sublimable Functional Molecule.

    PubMed

    Kumar, Kuppusamy Senthil; Studniarek, Michał; Heinrich, Benoît; Arabski, Jacek; Schmerber, Guy; Bowen, Martin; Boukari, Samy; Beaurepaire, Eric; Dreiser, Jan; Ruben, Mario

    2018-03-01

    The realization of spin-crossover (SCO)-based applications requires study of the spin-state switching characteristics of SCO complex molecules within nanostructured environments, especially on surfaces. Except for a very few cases, the SCO of a surface-bound thin molecular film is either quenched or heavily altered due to: (i) molecule-surface interactions and (ii) differing intermolecular interactions in films relative to the bulk. By fabricating SCO complexes on a weakly interacting surface, the interfacial quenching problem is tackled. However, engineering intermolecular interactions in thin SCO active films is rather difficult. Here, a molecular self-assembly strategy is proposed to fabricate thin spin-switchable surface-bound films with programmable intermolecular interactions. Molecular engineering of the parent complex system [Fe(H 2 B(pz) 2 ) 2 (bpy)] (pz = pyrazole, bpy = 2,2'-bipyridine) with a dodecyl (C 12 ) alkyl chain yields a classical amphiphile-like functional and vacuum-sublimable charge-neutral Fe II complex, [Fe(H 2 B(pz) 2 ) 2 (C 12 -bpy)] (C 12 -bpy = dodecyl[2,2'-bipyridine]-5-carboxylate). Both the bulk powder and 10 nm thin films sublimed onto either quartz glass or SiO x surfaces of the complex show comparable spin-state switching characteristics mediated by similar lamellar bilayer like self-assembly/molecular interactions. This unprecedented observation augurs well for the development of SCO-based applications, especially in molecular spintronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Time evolution as refining, coarse graining and entangling

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Steinhaus, Sebastian

    2014-12-01

    We argue that refining, coarse graining and entangling operators can be obtained from time evolution operators. This applies in particular to geometric theories, such as spin foams. We point out that this provides a construction principle for the physical vacuum in quantum gravity theories and more generally allows construction of a (cylindrically) consistent continuum limit of the theory.

  3. Spiders spinning electrically charged nano-fibres

    PubMed Central

    Kronenberger, Katrin; Vollrath, Fritz

    2015-01-01

    Most spider threads are on the micrometre and sub-micrometre scale. Yet, there are some spiders that spin true nano-scale fibres such as the cribellate orb spider, Uloborus plumipes. Here, we analyse the highly specialized capture silk-spinning system of this spider and compare it with the silk extrusion systems of the more standard spider dragline threads. The cribellar silk extrusion system consists of tiny, morphologically basic glands each terminating through exceptionally long and narrow ducts in uniquely shaped silk outlets. Depending on spider size, hundreds to thousands of these outlet spigots cover the cribellum, a phylogenetically ancient spinning plate. We present details on the unique functional design of the cribellate gland–duct–spigot system and discuss design requirements for its specialist fibrils. The spinning of fibres on the nano-scale seems to have been facilitated by the evolution of a highly specialist way of direct spinning, which differs from the aqua-melt silk extrusion set-up more typical for other spiders. PMID:25631231

  4. Spiders spinning electrically charged nano-fibres.

    PubMed

    Kronenberger, Katrin; Vollrath, Fritz

    2015-01-01

    Most spider threads are on the micrometre and sub-micrometre scale. Yet, there are some spiders that spin true nano-scale fibres such as the cribellate orb spider, Uloborus plumipes. Here, we analyse the highly specialized capture silk-spinning system of this spider and compare it with the silk extrusion systems of the more standard spider dragline threads. The cribellar silk extrusion system consists of tiny, morphologically basic glands each terminating through exceptionally long and narrow ducts in uniquely shaped silk outlets. Depending on spider size, hundreds to thousands of these outlet spigots cover the cribellum, a phylogenetically ancient spinning plate. We present details on the unique functional design of the cribellate gland-duct-spigot system and discuss design requirements for its specialist fibrils. The spinning of fibres on the nano-scale seems to have been facilitated by the evolution of a highly specialist way of direct spinning, which differs from the aqua-melt silk extrusion set-up more typical for other spiders. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Accidental degeneracy in k-space, geometrical phase, and the perturbation of π by spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Allen, Philip B.; Pickett, Warren E.

    2018-06-01

    Since closed lines of accidental electronic degeneracies were demonstrated to be possible, even frequent, by Herring in 1937, no further developments arose for eight decades. The earliest report of such a nodal loop in a real material - aluminum - is recounted and elaborated on. Nodal loop semimetals have become a focus of recent activity, with emphasis on other issues. Band degeneracies are, after all, the origin of topological phases in crystalline materials. Spin-orbit interaction lifts accidental band degeneracies, with the resulting spectrum being provided here. The geometric phase γ(C) = ± π for circuits C surrounding a line of such degeneracy cannot survive completely unchanged. The change depends on how the spin is fixed during adiabatic evolution. For spin fixed along the internal spin-orbit field, γ(C) decreases to zero as the circuit collapses around the line of lifted degeneracy. For spin fixed along a perpendicular axis, the conical intersection persists and γ(C) = ± π is unchanged.

  6. Quantum spin liquid signatures in Kitaev-like frustrated magnets

    NASA Astrophysics Data System (ADS)

    Gohlke, Matthias; Wachtel, Gideon; Yamaji, Youhei; Pollmann, Frank; Kim, Yong Baek

    2018-02-01

    Motivated by recent experiments on α -RuCl3 , we investigate a possible quantum spin liquid ground state of the honeycomb-lattice spin model with bond-dependent interactions. We consider the K -Γ model, where K and Γ represent the Kitaev and symmetric-anisotropic interactions between spin-1/2 moments on the honeycomb lattice. Using the infinite density matrix renormalization group, we provide compelling evidence for the existence of quantum spin liquid phases in an extended region of the phase diagram. In particular, we use transfer-matrix spectra to show the evolution of two-particle excitations with well-defined two-dimensional dispersion, which is a strong signature of a quantum spin liquid. These results are compared with predictions from Majorana mean-field theory and used to infer the quasiparticle excitation spectra. Further, we compute the dynamical structure factor using finite-size cluster computations and show that the results resemble the scattering continuum seen in neutron-scattering experiments on α -RuCl3 . We discuss these results in light of recent and future experiments.

  7. Elongated phase separation domains in spin-cast polymer blend thin films characterized using a panoramic image.

    PubMed

    Zhang, Hong; Okamura, Yosuke

    2018-02-14

    Polymer thin films with micro/nano-structures can be prepared by a solvent evaporation induced phase separation process via spin-casting a polymer blend, where the elongated phase separation domains are always inevitable. The striation defect, as a thickness nonunifomity in spin-cast films, is generally coexistent with the elongated domains. Herein, the morphologies of polymer blend thin films are recorded from the spin-cast center to the edge in a panoramic view. The elongated domains are inclined to appear at the ridge regions of striations with increasing radial distance and align radially, exhibiting a coupling between the phase separation morphology and the striation defect that may exist. We demonstrate that the formation of elongated domains is not attributed to shape deformation, but is accomplished in situ. A possible model to describe the initiation and evolution of the polymer blend phase separation morphology during spin-casting is proposed.

  8. Aging dynamics of quantum spin glasses of rotors

    NASA Astrophysics Data System (ADS)

    Kennett, Malcolm P.; Chamon, Claudio; Ye, Jinwu

    2001-12-01

    We study the long time dynamics of quantum spin glasses of rotors using the nonequilibrium Schwinger-Keldysh formalism. These models are known to have a quantum phase transition from a paramagnetic to a spin-glass phase, which we approach by looking at the divergence of the spin-relaxation rate at the transition point. In the aging regime, we determine the dynamical equations governing the time evolution of the spin response and correlation functions, and show that all terms in the equations that arise solely from quantum effects are irrelevant at long times under time reparametrization group (RPG) transformations. At long times, quantum effects enter only through the renormalization of the parameters in the dynamical equations for the classical counterpart of the rotor model. Consequently, quantum effects only modify the out-of-equilibrium fluctuation-dissipation relation (OEFDR), i.e. the ratio X between the temperature and the effective temperature, but not the form of the classical OEFDR.

  9. High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking

    PubMed Central

    Lorenzana, J.; Seibold, G.; Peng, Y. Y.; Amorese, A.; Yakhou-Harris, F.; Kummer, K.; Brookes, N. B.; Konik, R. M.; Thampy, V.; Gu, G. D.; Ghiringhelli, G.; Braicovich, L.

    2017-01-01

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates. PMID:29114049

  10. Evolution of Spin and Superorbital Modulation in 4U 0114+650

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Ng, Chi-Yung; Chou, Yi

    2016-09-01

    We report on a systematic analysis of the spin and superorbital modulations of the high-mass X-ray binary 4U 0114+650, which consists of the slowest spinning neutron star known. Utilizing dynamic power spectra, we found that the spin period varied dramatically during the RXTE ASM and Swift BAT observations. This variation consists of a long-term spin-up trend, and two ~1,000 day and one ~600 day random walk epochs previously, MJD 51,000, ~MJD 51,400-52,000, and ~MJD 55,100-56,100. We further found that the events appear together with depressions of superorbital modulation amplitude. This provides evidence of the existence of an accretion disk, although the physical mechanism of superorbital modulation remains unclear. Furthermore, the decrease of the superorbital modulation amplitude may be associated with the decrease of mass accretion rate from the disk, and may distribute the accretion torque of the neutron star randomly in time.

  11. Spin-polaron nature of fermion quasiparticles and their d-wave pairing in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Dzebisashvili, D. M.; Barabanov, A. F.

    2016-11-01

    In the framework of the spin-fermion model, to which the Emery model is reduced in the limit of strong electron correlations, it is shown that the fermion quasiparticles in cuprate high- T c superconductors (HTSCs) arise under a strong effect of exchange coupling between oxygen holes and spins of copper ions. This underlies the spin-polaron nature of fermion quasiparticles in cuprate HTSCs. The Cooper instability with respect to the d-wave symmetry of the order parameter is revealed for an ensemble of such quasiparticles. For the normal phase, the spin-polaron concept allows us to reproduce the fine details in the evolution of the Fermi surface with the changes in the doping level x observed in experiment for La2-xSrxCuO4. The calculated T-x phase diagram correlates well with the available experimental data for cuprate HTSCs.

  12. Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges and future

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyan; Gao, Wei; Zhang, Xuqiang; Li, Zhen; Lu, Gongxuan

    2018-03-01

    Hydrogen is a green energy carrier with high enthalpy and zero environmental pollution emission characteristics. Photocatalytic hydrogen evolution (HER) is a sustainable and promising way to generate hydrogen. Despite of great achievements in photocatalytic HER research, its efficiency is still limited due to undesirable electron transfer loss, high HER over-potential and low stability of some photocatalysts, which lead to their unsatisfied performance in HER and anti-photocorrosion properties. In recent years, many spintronics works have shown their enhancing effects on photo-catalytic HER. For example, it was reported that spin polarized photo-electrons could result in higher photocurrents and HER turn-over frequency (up to 200%) in photocatalytic system. Two strategies have been developed for electron spin polarizing, which resort to heavy atom effect and magnetic induction respectively. Both theoretical and experimental studies show that controlling spin state of OHrad radicals in photocatalytic reaction can not only decrease OER over-potential (even to 0 eV) of water splitting, but improve stability and charge lifetime of photocatalysts. A convenient strategy have been developed for aligning spin state of OHrad by utilizing chiral molecules to spin filter photo-electrons. By chiral-induced spin filtering, electron polarization can approach to 74%, which is significantly larger than some traditional transition metal devices. Those achievements demonstrate bright future of spintronics in enhancing photocatalytic HER, nevertheless, there is little work systematically reviewing and analysis this topic. This review focuses on recent achievements of spintronics in photocatalytic HER study, and systematically summarizes the related mechanisms and important strategies proposed. Besides, the challenges and developing trends of spintronics enhanced photo-catalytic HER research are discussed, expecting to comprehend and explore such interdisciplinary research in photocatalytic HER.

  13. Universal scheme for finite-probability perfect transfer of arbitrary multispin states through spin chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Zhong-Xiao, E-mail: zxman@mail.qfnu.edu.cn; An, Nguyen Ba, E-mail: nban@iop.vast.ac.vn; Xia, Yun-Jie, E-mail: yjxia@mail.qfnu.edu.cn

    In combination with the theories of open system and quantum recovering measurement, we propose a quantum state transfer scheme using spin chains by performing two sequential operations: a projective measurement on the spins of ‘environment’ followed by suitably designed quantum recovering measurements on the spins of interest. The scheme allows perfect transfer of arbitrary multispin states through multiple parallel spin chains with finite probability. Our scheme is universal in the sense that it is state-independent and applicable to any model possessing spin–spin interactions. We also present possible methods to implement the required measurements taking into account the current experimental technologies.more » As applications, we consider two typical models for which the probabilities of perfect state transfer are found to be reasonably high at optimally chosen moments during the time evolution. - Highlights: • Scheme that can achieve perfect quantum state transfer is devised. • The scheme is state-independent and applicable to any spin-interaction models. • The scheme allows perfect transfer of arbitrary multispin states. • Applications to two typical models are considered in detail.« less

  14. Evolution of the Carter constant for inspirals into a black hole: Effect of the black hole quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Eanna E.; Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853; Hinderer, Tanja

    2007-06-15

    We analyze the effect of gravitational radiation reaction on generic orbits around a body with an axisymmetric mass quadrupole moment Q to linear order in Q, to the leading post-Newtonian order, and to linear order in the mass ratio. This system admits three constants of the motion in absence of radiation reaction: energy, angular momentum along the symmetry axis, and a third constant analogous to the Carter constant. We compute instantaneous and time-averaged rates of change of these three constants. For a point particle orbiting a black hole, Ryan has computed the leading order evolution of the orbit's Carter constant,more » which is linear in the spin. Our result, when combined with an interaction quadratic in the spin (the coupling of the black hole's spin to its own radiation reaction field), gives the next to leading order evolution. The effect of the quadrupole, like that of the linear spin term, is to circularize eccentric orbits and to drive the orbital plane towards antialignment with the symmetry axis. In addition we consider a system of two point masses where one body has a single mass multipole or current multipole of order l. To linear order in the mass ratio, to linear order in the multipole, and to the leading post-Newtonian order, we show that there does not exist an analog of the Carter constant for such a system (except for the cases of an l=1 current moment and an l=2 mass moment). Thus, the existence of the Carter constant in Kerr depends on interaction effects between the different multipoles. With mild additional assumptions, this result falsifies the conjecture that all vacuum, axisymmetric spacetimes possess a third constant of the motion for geodesic motion.« less

  15. SD-CAS: Spin Dynamics by Computer Algebra System.

    PubMed

    Filip, Xenia; Filip, Claudiu

    2010-11-01

    A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Structural and magnetic properties of Prussian blue analogue molecular magnet Fe1.5[Cr(CN)6].mH2O

    NASA Astrophysics Data System (ADS)

    Bhatt, Pramod; Meena, S. S.; Mukadam, M. D.; Yusuf, S. M.

    2016-05-01

    Molecular magnets, based on Prussian blue analogues, Fe1.5[Cr(CN)6].mH2O have been synthesized in the bulk as well as nanoparticle forms using a co-precipitation method, and their structural and magnetic properties have been investigated using x-ray diffraction (XRD) Mössbauer spectroscopy and dc magnetization. The XRD study confirms the single phase crystalline and nanoparticle nature of the compounds with a face centered cubic (fcc) structure of space group Fm3m. The values of lattice constant are found to be ~10.18(5) Å and ~9.98(9)Å, for the bulk and nanoparticle samples, respectively. The dc magnetization shows a Curie temperature (TC) of ~17 K and ~5 K for the bulk and nanopartcile samples, respectively. The Mossouber spectroscopy reveal that the compound shows spin flipping from the high spin (HS) Fe (CrIII-C≡N-FeII) to low spin (LS) FeII ions (CrIII-N≡C-FeII). Moreover, the TC and the HS state of the Fe ions decreases (converts to its LS states) with time as well as in the nanoparticle form compared to bulk.

  17. Theoretical study of hydrated copper(II) interactions with guanine: a computational density functional theory study.

    PubMed

    Pavelka, Matej; Shukla, Manoj K; Leszczynski, Jerzy; Burda, Jaroslav V

    2008-01-17

    Optimization of the hydrated Cu(II)(N7-guanine) structures revealed a number of minima on the potential energy surface. For selected structures, energy decompositions together with the determination of electronic properties (partial charges and electron spin densities) were performed. In the complexes of guanine with the bare copper cation and that with the monoaqua ligated cation, an electron transfer from guanine to Cu(II) was observed, resulting in a Cu(I)-guanine(+) type of complex. Conformers with two aqua ligands are borderline systems characterized by a Cu partial charge of +0.7e and a similar value of the spin density (0.6e) localized on guanine. When tetracoordination of copper was achieved, only then the prevailing electron spin density is unambiguously localized on copper. The energetic preference of diaqua-Cu-(N7,O6-guanine) over triaqua-Cu-(N7-guanine) was found for the four-coordinate structures. However, the energy difference between these two conformations decreases with the number of water molecules present in the systems, and in complexes with five water molecules this preference is preserved only at DeltaG level where thermal and entropy terms are included.

  18. Syntheses, crystal structures, and magnetic properties of the oxalato-bridged mixed-valence complexes (FeII(bpm)3]2[FeIII2(ox)5].8H2O and FeII(bpm)3Na(H2O)2Fe(ox)(3).4H2O (bpm = 2,2'-bipyrimidine).

    PubMed

    Armentano, D; De Munno, G; Faus, J; Lloret, F; Julve, M

    2001-02-12

    The preparation and crystal structures of two oxalato-bridged FeII-FeIII mixed-valence compounds, [FeII(bpm)3]2[FeIII2(ox)5].8H2O (1) and FeII(bpm)3Na(H2O)2FeIII(ox)(3).4H2O (2) (bpm = 2,2'-bipyrimidine; ox = oxalate dianion) are reported here. Complex 1 crystallizes in the triclinic system, space group P1, with a = 10.998(2) A, b = 13.073(3) A, c = 13.308(3) A, alpha = 101.95(2) degrees, beta = 109.20(2) degrees, gamma = 99.89(2) degrees, and Z = 1. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 12.609(2) A, b = 19.670(5) A, c = 15.843(3) A, beta = 99.46(1) degrees, and Z = 4. The structure of complex 1 consists of centrosymmetric oxalato-bridged dinuclear high-spin iron(III) [Fe2(ox)5]2- anions, tris-chelated low-spin iron(II) [Fe(bpm)3]2+ cations, and lattice water molecules. The iron atoms are hexacoordinated: six oxygen atoms (iron(III)) from two bidentate and one bisbidentate oxalato ligands and six nitrogen atoms (iron(II)) from three bidentate bpm groups. The Fe(III)-O(ox) and Fe(II)-N(bpm) bond distances vary in the ranges 1.967(3)-2.099(3) and 1.967(4)-1.995(3) A, respectively. The iron(III)-iron(III) separation across the bridging oxalato is 5.449(2) A, whereas the shortest intermolecular iron(III)-iron(II) distance is 6.841(2) A. The structure of complex 2 consists of neutral heterotrinuclear Fe(bpm)2Na(H2O)2Fe(ox)3 units and water molecules of crystallization. The tris-chelated low-spin iron(II) ([Fe(bpm)3]2+) and high-spin iron(III) ([Fe(ox)3]3-) entities act as bidentate ligands (through two bpm-nitrogen and two oxalato-oxygen atoms, respectively) toward the univalent sodium cation, yielding the trinuclear (bpm)2Fe(II)-bpm-Na(I)-ox-Fe(III)(ox)2 complex. Two cis-coordinated water molecules complete the distorted octahedral surrounding of the sodium atom. The ranges of the Fe(II)-N(bpm) and Fe(III)-O(ox) bond distances [1.968(6)-1.993(5) and 1.992(6)-2.024(6) A, respectively] compare well with those observed in 1. The Na-N(bpm) bond lengths (2.548(7) and 2.677(7) A) are longer than those of Na-O(ox) (2.514(7) and 2.380(7) A) and Na-O(water) (2.334(15) and 2.356(12) A). The intramolecular Fe(II)...Fe(III) separation is 6.763(2) A, whereas the shortest intermolecular Fe(II)...Fe(II) and Fe(III)...Fe(III) distances are 8.152(2) and 8.992(2) A, respectively. Magnetic susceptibility measurements in the temperature range 2.0-290 K for 1 reveal that the high-spin iron(III) ions are antiferromagnetically coupled (J = -6.6 cm-1, the Hamiltonian being defined as H = -JS1.S2). The magnitude of the antiferromagnetic coupling through the bridging oxalato in the magneto-structurally characterized family of formula [M2(ox)5](2m-10)+ (M = Fe(III) (1), Cr(III), and Ni(II)) is analyzed and discussed by means of a simple orbital model.

  19. Exploiting the hidden symmetry of spinning black holes: conservation laws and numerical tests

    NASA Astrophysics Data System (ADS)

    Witzany, Vojtěch

    2018-01-01

    The Kerr black hole is stationary and axisymmetric, which leads to conservation of energy and azimuthal angular momentum along the orbits of free test particles in its vicinity, but also to conservation laws for the evolution of continuum matter fields. However, the Kerr space-time possesses an additional 'hidden symmetry', which exhibits itself in an unexpected conserved quantity along geodesics known as the Carter constant. We investigate the possibility of using this hidden symmetry to obtain conservation laws and other identities that could be used to test astrophysical simulations of the evolution of matter fields near spinning black holes. After deriving such identities, we set up a simple numerical toy model on which we demonstrate how they can detect the violations of evolution equations in a numerical simulation. Even though one of the expressions we derive is in the form of a conservation law, we end up recommending an equivalent but simpler expression that is not in the form of a conservation law for practical implementation.

  20. Spin-dependent electron many-body effects in GaAs

    NASA Astrophysics Data System (ADS)

    Nemec, P.; Kerachian, Y.; van Driel, H. M.; Smirl, Arthur L.

    2005-12-01

    Time- and polarization-resolved differential transmission measurements employing same and oppositely circularly polarized 150fs optical pulses are used to investigate spin characteristics of conduction band electrons in bulk GaAs at 295K . Electrons and holes with densities in the 2×1016cm-3-1018cm-3 range are generated and probed with pulses whose center wavelength is between 865 and 775nm . The transmissivity results can be explained in terms of the spin sensitivity of both phase-space filling and many-body effects (band-gap renormalization and screening of the Coulomb enhancement factor). For excitation and probing at 865nm , just above the band-gap edge, the transmissivity changes mainly reflect spin-dependent phase-space filling which is dominated by the electron Fermi factors. However, for 775nm probing, the influence of many-body effects on the induced transmission change are comparable with those from reduced phase space filling, exposing the spin dependence of the many-body effects. If one does not take account of these spin-dependent effects one can misinterpret both the magnitude and time evolution of the electron spin polarization. For suitable measurements we find that the electron spin relaxation time is 130ps .

  1. Relation between halo spin and cosmic-web filaments at z ≃ 3

    NASA Astrophysics Data System (ADS)

    González, Roberto E.; Prieto, Joaquin; Padilla, Nelson; Jimenez, Raul

    2017-02-01

    We investigate the spin evolution of dark matter haloes and their dependence on the number of connected filaments from the cosmic web at high redshift (spin-filament relation hereafter). To this purpose, we have simulated 5000 haloes in the mass range 5 × 109 h-1 M⊙ to 5 × 1011 h-1 M⊙ at z = 3 in cosmological N-body simulations. We confirm the relation found by Prieto et al. (2015) where haloes with fewer filaments have larger spin. We also found that this relation is more significant for higher halo masses, and for haloes with a passive (no major mergers) assembly history. Another finding is that haloes with larger spin or with fewer filaments have their filaments more perpendicularly aligned with the spin vector. Our results point to a picture in which the initial spin of haloes is well described by tidal torque theory and then gets subsequently modified in a predictable way because of the topology of the cosmic web, which in turn is given by the currently favoured Lambda cold dark matter (LCDM) model. Our spin-filament relation is a prediction from LCDM that could be tested with observations.

  2. Superconducting spin valves controlled by spiral re-orientation in B20-family magnets

    NASA Astrophysics Data System (ADS)

    Pugach, N. G.; Safonchik, M.; Champel, T.; Zhitomirsky, M. E.; Lähderanta, E.; Eschrig, M.; Lacroix, C.

    2017-10-01

    We propose a superconducting spin-triplet valve, which consists of a superconductor and an itinerant magnetic material, with the magnet showing an intrinsic non-collinear order characterized by a wave vector that may be aligned in a few equivalent preferred directions under the control of a weak external magnetic field. Re-orienting the spiral direction allows one to controllably modify long-range spin-triplet superconducting correlations, leading to spin-valve switching behavior. Our results indicate that the spin-valve effect may be noticeable. This bilayer may be used as a magnetic memory element for cryogenic nanoelectronics. It has the following advantages in comparison to superconducting spin valves proposed previously: (i) it contains only one magnetic layer, which may be more easily fabricated and controlled; (ii) its ground states are separated by a potential barrier, which solves the "half-select" problem of the addressed switch of memory elements.

  3. Observation of spin-polarized photoconductivity in (Ga,Mn)As/GaAs heterojunction without magnetic field

    PubMed Central

    Wu, Qing; Liu, Yu; Wang, Hailong; Li, Yuan; Huang, Wei; Zhao, Jianhua; Chen, Yonghai

    2017-01-01

    In the absent of magnetic field, we have observed the anisotropic spin polarization degree of photoconduction (SPD-PC) in (Ga,Mn)As/GaAs heterojunction. We think three kinds of mechanisms contribute to the magnetic related signal, (i) (Ga,Mn)As self-producing due to the valence band polarization, (ii) unequal intensity of left and right circularly polarized light reaching to GaAs layer to excite unequal spin polarized carriers in GaAs layer, and (iii) (Ga,Mn)As as the spin filter layer for spin transport from GaAs to (Ga,Mn)As. Different from the previous experiments, the influence coming from the Zeeman splitting induced by an external magnetic field can be avoided here. While temperature dependence experiment indicates that the SPD-PC is mixed with the magnetic uncorrelated signals, which may come from current induced spin polarization. PMID:28084437

  4. Time-reversal-based SU(2)× Sn scalar invariants as (Lie Algebraic) group measures: a structured overview of generalised democratic-recoupled, uniform non-Abelian [ AX] n NMR spin systems, as abstract Sn⊃ Sn-1../U n⊃U n-1.. chain networks

    NASA Astrophysics Data System (ADS)

    Temme, F. P.

    2004-03-01

    The physics of dual group scalar invariants (SIs) as (Lie algebraic) group measures (L-GMs) and its significance to non-Abelian NMR spin systems motivates this overview of uniform general-2 n [ AX] 2 n spin evolution, which represents an extensive addendum to Corio's earlier (essentially restricted) view of Abelian spin system SU(2)-based SI-cardinalities. The |D 0( U)|((⊗SU(2)) (2n))|SI| values in [J. Magn. Reson., 134 (1998) 131] arise from strictly linear recoupled time-reversal invariance (TRI) models. In contrast, here we discuss the physical significance of an alternative polyhedral combinatorics approach to democratic recoupling (DR), a property inherent in both the TRI and statistical sampling. Recognition of spin ensemble SIs as being L-GMs over isomorphic algebras is invaluable in many DR-based NMR problems. Various [ AX] n model spin systems, including the [ AX] 3bis odd-odd parity spin system, are examined as direct applications of these L-GM- and combinatorial-based SI ideas. Hence in place of | SI|=15 (implied by Corio's | D0|((⊗ SU(2)) 2 n) approach), the bis 3-fold spin system cardinality is seen now as constrained to a single invariant on an isomorphic product algebra under L-GMs, in accord with the subspectral analysis of Jones et al. [Canad. J. Chem., 43 (1965) 683]. The group projective ideas cited here for DR (as cf. to graph theoretic views) apply to highly degenerate non-Abelian problems. Over dual tensorial bases, they define models of spin dynamical evolution whose (SR) quasiparticle superboson carrier (sub)spaces are characterised by SIs acting as explicit auxiliary labels [Physica, A198 (1993) 245; J. Math. Chem., 31 (2002) 281]. A deeper S2n network-based view of spin-alone space developed in Balasubramanian's work [J. Chem. Phys., 78 (1983) 6358] is especially important, (e.g.) in the study of spin waves [J. Math. Chem., 31 (2002) 363]. Beyond the specific NMR SIs derived here, there are DR applications where a sporadic, still higher, 2 n-fold regular uniform spin ensemble exhibits a topological FG duality to some known modest | SI| (2 i<2 n) cardinality—in principle providing for the (sparce) existence of other | SI| (2 n) DR-based values.

  5. Novel CoIII complexes containing fluorescent coumarin-N-acylhydrazone hybrid ligands: Synthesis, crystal structures, solution studies and DFT calculations

    NASA Astrophysics Data System (ADS)

    Areas, Esther S.; Bronsato, Bruna Juliana da S.; Pereira, Thiago M.; Guedes, Guilherme P.; Miranda, Fábio da S.; Kümmerle, Arthur E.; da Cruz, Antônio G. B.; Neves, Amanda P.

    2017-12-01

    A series of new CoIII complexes of the type [Co(dien)(L1 -L3)]ClO4 (1-3), containing fluorescent coumarin-N-acylhydrazonate hybrid ligands, (E)-N‧-(1-(7-oxido-2-oxo-2H-chromen-3-yl)ethylidene)-4-R-benzohydrazonate [where R = H (L12 -), OCH3 (L22 -) or Cl (L32 -)], were obtained and isolated in the low spin CoIII configuration. Single-crystal X-ray diffraction showed that the coumarin-N-acylhydrazones act as tridentate ligands in their deprotonated form (L2 -). The cation (+ 1) complexes contain a diethylenetriamine (dien) as auxiliary ligand and their structures were calculated by DFT studies which were also performed for the CoII (S = 1/2 and S = 3/2) configurations. The LS CoII (S = 1/2) concentrated the spin density on the O-Co-O axis while the HS CoII (S = 3/2) exhibited a broad spin density distribution around the metallic center. Cyclic voltammetry studies showed that structural modifications made in the L2 - ligands caused a slight influence on the electronic density of the metal center, and the E1/2 values for the CoIII/CoII redox couple increased following the electronic effect of the R-substituent, in the order: 2 (R = OCH3) < 1 (R = H) < 3 (R = Cl). The theoretical redox potentials (E°) of the process CoIII → CoII were calculated for both CoII spin states (S = 1/2 and S = 3/2) and a better correlation was found for CoIII → CoII (S = 1/2), compared with experimental values vs SHE (E°calc = - 0.37, - 0.36 and - 0.32 V vs E°exp. = - 0.371, - 0.406 and - 0.358 V, for 1-3 respectively). Complexes 1-3 exhibited a very intense absorption band around 470 nm, assigned by DFT calculations as π-π* transitions from the delocalized coumarin-N-acylhydrazone system. 1-3 were very stable in MeOH for several days. Likewise, 1-3 were stable in phosphate buffer containing sodium ascorbate after 15 h, which was attributed to the high chelate effect and σ-donor ability of the L2 - and dien ligands.

  6. Empirical Monod-Beuneu relation of spin relaxation revisited for elemental metals

    NASA Astrophysics Data System (ADS)

    Szolnoki, L.; Kiss, A.; Forró, L.; Simon, F.

    2014-03-01

    Monod and Beuneu [P. Monod and F. Beuneu, Phys. Rev. B 19, 911 (1979), 10.1103/PhysRevB.19.911] established the validity of the Elliott-Yafet theory for elemental metals through correlating the experimental electron spin resonance linewidth with the so-called spin-orbit admixture coefficients and the momentum-relaxation theory. The spin-orbit admixture coefficients data were based on atomic spin-orbit splitting. We highlight two shortcomings of the previous description: (i) the momentum-relaxation involves the Debye temperature and the electron-phonon coupling whose variation among the elemental metals was neglected, (ii) the Elliott-Yafet theory involves matrix elements of the spin-orbit coupling (SOC), which are however not identical to the SOC induced energy splitting of the atomic levels, even though the two have similar magnitudes. We obtain the empirical spin-orbit admixture parameters for the alkali metals by considering the proper description of the momentum relaxation theory. In addition we present a model calculation, which highlights the difference between the SOC matrix element and energy splitting.

  7. Dynamic symmetries and quantum nonadiabatic transitions

    DOE PAGES

    Li, Fuxiang; Sinitsyn, Nikolai A.

    2016-05-30

    Kramers degeneracy theorem is one of the basic results in quantum mechanics. According to it, the time-reversal symmetry makes each energy level of a half-integer spin system at least doubly degenerate, meaning the absence of transitions or scatterings between degenerate states if the Hamiltonian does not depend on time explicitly. Here we generalize this result to the case of explicitly time-dependent spin Hamiltonians. We prove that for a spin system with the total spin being a half integer, if its Hamiltonian and the evolution time interval are symmetric under a specifically defined time reversal operation, the scattering amplitude between anmore » arbitrary initial state and its time reversed counterpart is exactly zero. Lastly, we also discuss applications of this result to the multistate Landau–Zener (LZ) theory.« less

  8. Experimental creation of quantum Zeno subspaces by repeated multi-spin projections in diamond

    NASA Astrophysics Data System (ADS)

    Kalb, N.; Cramer, J.; Twitchen, D. J.; Markham, M.; Hanson, R.; Taminiau, T. H.

    2016-10-01

    Repeated observations inhibit the coherent evolution of quantum states through the quantum Zeno effect. In multi-qubit systems this effect provides opportunities to control complex quantum states. Here, we experimentally demonstrate that repeatedly projecting joint observables of multiple spins creates quantum Zeno subspaces and simultaneously suppresses the dephasing caused by a quasi-static environment. We encode up to two logical qubits in these subspaces and show that the enhancement of the dephasing time with increasing number of projections follows a scaling law that is independent of the number of spins involved. These results provide experimental insight into the interplay between frequent multi-spin measurements and slowly varying noise and pave the way for tailoring the dynamics of multi-qubit systems through repeated projections.

  9. The influence of ligand field effects on the magnetic exchange of high-spin Co(II)-semiquinonate complexes.

    PubMed

    Bencini, Alessandro; Beni, Alessandra; Costantino, Ferdinando; Dei, Andrea; Gatteschi, Dante; Sorace, Lorenzo

    2006-02-07

    [Co(Me(4)cyclam)(tropolonate)](PF(6)) was synthesised and structurally characterised. Its electronic and W-band EPR spectra have been analysed by means of the angular overlap calculation of the Spin Hamiltonian parameters that provided also a satisfactory reproduction of the temperature dependence of the magnetic susceptibility. The present results can be interpreted assuming a pseudo-octahedral character for the Co(II) center. This prompted us to reconsider the model formerly used for the analysis of the magnetic coupling between hs-Co(II) and the paramagnetic o-semiquinonate ligand in the corresponding derivatives [Co(Me(4)cyclam)(PhenSQ)](PF(6)) and [Co(Me(4)cyclam)(DTBSQ)](PF(6)). These results indicate that the effect of the magnetic coupling is active only below 50 K and that a more refined model of exchange coupling between Co(II) and semiquinonato ligands is needed to quantitatively analyze the magnetic behaviour of this class of systems.

  10. SPIN–SPIN COUPLING IN THE SOLAR SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batygin, Konstantin; Morbidelli, Alessandro, E-mail: kbatygin@gps.caltech.edu

    The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In thismore » work, we explore the rotational evolution of such systems with specific emphasis on quadrupole–quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin–spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin–spin coupling may be consequential for highly elongated, tightly orbiting binary objects.« less

  11. Influence of toroidal magnetic field in multiaccreting tori

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Montani, G.

    2018-06-01

    We analysed the effects of a toroidal magnetic field in the formation of several magnetized accretion tori, dubbed as ringed accretion discs (RADs), orbiting around one central Kerr supermassive black hole (SMBH) in active galactic nuclei (AGNs), where both corotating and counterotating discs are considered. Constraints on tori formation and emergence of RADs instabilities, accretion on to the central attractor and tori collision emergence, are investigated. The results of this analysis show that the role of the central BH spin-mass ratio, the magnetic field and the relative fluid rotation and tori rotation with respect the central BH, are crucial elements in determining the accretion tori features, providing ultimately evidence of a strict correlation between SMBH spin, fluid rotation, and magnetic fields in RADs formation and evolution. More specifically, we proved that magnetic field and discs rotation are in fact strongly constrained, as tori formation and evolution in RADs depend on the toroidal magnetic fields parameters. Eventually, this analysis identifies specific classes of tori, for restrict ranges of magnetic field parameter, that can be observed around some specific SMBHs identified by their dimensionless spin.

  12. Q2 Evolution of the Neutron Spin Structure Moments using a 3He Target

    NASA Astrophysics Data System (ADS)

    Amarian, M.; Auerbach, L.; Averett, T.; Berthot, J.; Bertin, P.; Bertozzi, B.; Black, T.; Brash, E.; Brown, D.; Burtin, E.; Calarco, J.; Cates, G.; Chai, Z.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Cisbani, E.; de Jager, C. W.; Deur, A.; Disalvo, R.; Dieterich, S.; Djawotho, P.; Finn, M.; Fissum, K.; Fonvieille, H.; Frullani, S.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Goldberg, E.; Gomez, J.; Gorbenko, V.; Hansen, J.-O.; Hersman, B.; Holmes, R.; Huber, G. M.; Hughes, E.; Humensky, B.; Incerti, S.; Iodice, M.; Jensen, S.; Jiang, X.; Jones, C.; Jones, G.; Jones, M.; Jutier, C.; Ketikyan, A.; Kominis, I.; Korsch, W.; Kramer, K.; Kumar, K.; Kumbartzki, G.; Kuss, M.; Lakuriqi, E.; Laveissiere, G.; Lerose, J.; Liang, M.; Liyanage, N.; Lolos, G.; Malov, S.; Marroncle, J.; McCormick, K.; McKeown, R.; Meziani, Z.-E.; Michaels, R.; Mitchell, J.; Papandreou, Z.; Pavlin, T.; Petratos, G. G.; Pripstein, D.; Prout, D.; Ransome, R.; Roblin, Y.; Rowntree, D.; Rvachev, M.; Sabatie, F.; Saha, A.; Slifer, K.; Souder, P.; Saito, T.; Strauch, S.; Suleiman, R.; Takahashi, K.; Teijiro, S.; Todor, L.; Tsubota, H.; Ueno, H.; Urciuoli, G.; van der Meer, R.; Vernin, P.; Voskanian, H.; Wojtsekhowski, B.; Xiong, F.; Xu, W.; Yang, J.-C.; Zhang, B.; Zolnierczuk, P.

    2004-01-01

    We have measured the spin structure functions g1 and g2 of 3He in a double-spin experiment by inclusively scattering polarized electrons at energies ranging from 0.862 to 5.058GeV off a polarized 3He target at a 15.5° scattering angle. Excitation energies covered the resonance and the onset of the deep inelastic regions. We have determined for the first time the Q2 evolution of Γ1(Q2)=∫10g1(x,Q2)dx, Γ2(Q2)=∫10g2(x,Q2)dx, and d2(Q2)=∫10x2[2g1(x,Q2)+3g2(x,Q2)]dx for the neutron in the range 0.1≤Q2≤0.9 GeV2 with good precision. Γ1(Q2) displays a smooth variation from high to low Q2. The Burkhardt-Cottingham sum rule holds within uncertainties and d2 is nonzero over the measured range.

  13. Rotation histories of the natural satellites

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1977-01-01

    Recent advances in the theory of rotation are combined with traditional approaches to study the rotational evolution of the 33 known natural satellites. A calculation similar to that reported by Burns and Safronov (1973) is applied to each satellite to obtain the characteristic time of decay of any wobble motion to smooth rotation about the principal axis of maximum moment of inertia. Stability criteria and capture probabilities are calculated for the 3/2 spin resonance. Results show that only the regular satellites and Iapetus, Hyperion, Triton, and the moon are tidally evolved. Of these, 13 have confirmed synchronous rotation periods; capture probabilities into the 3/2 resonance indicate that none of the remaining 10 should be captured in nonsynchronous, commensurate spin states. For the most part, the irregular satellites retain their original spins except for a relaxation to principal axis rotation. Tidal evolution of the obliquities of the satellites is evaluated in the framework of the generalization of Cassini's laws for the moon. Nearly resonant, forced librations in longitude of 4.8 and 0.5 deg are calculated on the basis of the observed shapes of Phobos and Deimos, respectively.

  14. Fast generation of spin-squeezed states in bosonic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Juliá-Díaz, B.; Torrontegui, E.; Martorell, J.; Muga, J. G.; Polls, A.

    2012-12-01

    We describe methods for the fast production of highly coherent-spin-squeezed many-body states in bosonic Josephson junctions. We start from the known mapping of the two-site Bose-Hubbard (BH) Hamiltonian to that of a single effective particle evolving according to a Schrödinger-like equation in Fock space. Since, for repulsive interactions, the effective potential in Fock space is nearly parabolic, we extend recently derived protocols for shortcuts to adiabatic evolution in harmonic potentials to the many-body BH Hamiltonian. A comparison with current experiments shows that our methods allow for an important reduction in the preparation times of highly squeezed spin states.

  15. Higgs mechanism for gravity. II. Higher spin connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulanger, Nicolas; Kirsch, Ingo; Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

    We continue the work of [Phys. Rev. D 72, 024001 (2005)] in which gravity is considered as the Goldstone realization of a spontaneously broken diffeomorphism group. We complete the discussion of the coset space Diff (d,R)/SO(1,d-1) formed by the d-dimensional group of analytic diffeomorphisms and the Lorentz group. We find that this coset space is parametrized by coordinates, a metric, and an infinite tower of higher-spin or generalized connections. We then study effective actions for the corresponding symmetry breaking which gives mass to the higher spin connections. Our model predicts that gravity is modified at high energies by the exchangemore » of massive higher spin particles.« less

  16. Wind-accelerated orbital evolution in binary systems with giant stars

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Blackman, Eric G.; Nordhaus, Jason; Frank, Adam; Carroll-Nellenback, Jonathan

    2018-01-01

    Using 3D radiation-hydrodynamic simulations and analytic theory, we study the orbital evolution of asymptotic giant branch (AGB) binary systems for various initial orbital separations and mass ratios, and thus different initial accretion modes. The time evolution of binary separations and orbital periods are calculated directly from the averaged mass-loss rate, accretion rate and angular momentum loss rate. We separately consider spin-orbit synchronized and zero-spin AGB cases. We find that the angular momentum carried away by the mass loss together with the mass transfer can effectively shrink the orbit when accretion occurs via wind-Roche lobe overflow. In contrast, the larger fraction of mass lost in Bondi-Hoyle-Lyttleton accreting systems acts to enlarge the orbit. Synchronized binaries tend to experience stronger orbital period decay in close binaries. We also find that orbital period decay is faster when we account for the non-linear evolution of the accretion mode as the binary starts to tighten. This can increase the fraction of binaries that result in common envelope, luminous red novae, Type Ia supernovae and planetary nebulae with tight central binaries. The results also imply that planets in the habitable zone around white dwarfs are unlikely to be found.

  17. Improvements to the construction of binary black hole initial data

    NASA Astrophysics Data System (ADS)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald P.; Boyle, Michael; Szilágyi, Béla

    2015-12-01

    Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the spectral Einstein code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation.

  18. Collisional evolution of rotating, non-identical particles. [in Saturn rings

    NASA Technical Reports Server (NTRS)

    Salo, H.

    1987-01-01

    Hameen-Anttila's (1984) theory of self-gravitating collisional particle disks is extended to include the effects of particle spin. Equations are derived for the coupled evolution of random velocities and spins, showing that friction and surface irregularity both reduce the local velocity dispersion and transfer significant amounts of random kinetic energy to rotational energy. Results for the equilibrium ratio of rotational energy to random kinetic energy are exact not only for identical nongravitating mass points, but also if finite size, self-gravitating forces, or size distribution are included. The model is applied to the dynamics of Saturn's rings, showing that the inclusion of rotation reduces the geometrical thickness of the layer of cm-sized particles to, at most, about one-half, with large particles being less affected.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) themore » source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, [pi]-nucleon physics looked attractive, since the determination of spin and parity of possible [pi]p resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy.« less

  20. Copper(II) Thiosemicarbazone Complexes and Their Proligands upon UVA Irradiation: An EPR and Spectrophotometric Steady-State Study.

    PubMed

    Hricovíni, Michal; Mazúr, Milan; Sîrbu, Angela; Palamarciuc, Oleg; Arion, Vladimir B; Brezová, Vlasta

    2018-03-21

    X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.

  1. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.

    PubMed

    Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun

    2017-08-15

    Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.

  2. Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damour, Thibault; Jaranowski, Piotr; Schaefer, Gerhard

    2008-07-15

    Using a recent, novel Hamiltonian formulation of the gravitational interaction of spinning binaries, we extend the effective one body (EOB) description of the dynamics of two spinning black holes to next-to-leading order (NLO) in the spin-orbit interaction. The spin-dependent EOB Hamiltonian is constructed from four main ingredients: (i) a transformation between the 'effective' Hamiltonian and the 'real' one; (ii) a generalized effective Hamilton-Jacobi equation involving higher powers of the momenta; (iii) a Kerr-type effective metric (with Pade-resummed coefficients) which depends on the choice of some basic 'effective spin vector' S{sub eff}, and which is deformed by comparable-mass effects; and (iv)more » an additional effective spin-orbit interaction term involving another spin vector {sigma}. As a first application of the new, NLO spin-dependent EOB Hamiltonian, we compute the binding energy of circular orbits (for parallel spins) as a function of the orbital frequency, and of the spin parameters. We also study the characteristics of the last stable circular orbit: binding energy, orbital frequency, and the corresponding dimensionless spin parameter a{sub LSO}{identical_to}cJ{sub LSO}/(G(H{sub LSO}/c{sup 2}){sup 2}). We find that the inclusion of NLO spin-orbit terms has a significant 'moderating' effect on the dynamical characteristics of the circular orbits for large and parallel spins.« less

  3. The effect of electrodes on 11 acene molecular spin valve: Semi-empirical study

    NASA Astrophysics Data System (ADS)

    Aadhityan, A.; Preferencial Kala, C.; John Thiruvadigal, D.

    2017-10-01

    A new revolution in electronics is molecular spintronics, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. The key point is the creation of molecular spin valve which consists of a diamagnetic molecule in between two magnetic leads. In this paper, non-equilibrium Green's function (NEGF) combined with Extended Huckel Theory (EHT); a semi-empirical approach is used to analyse the electron transport characteristics of 11 acene molecular spin valve. We examine the spin-dependence transport on 11 acene molecular junction with various semi-infinite electrodes as Iron, Cobalt and Nickel. To analyse the spin-dependence transport properties the left and right electrodes are joined to the central region in parallel and anti-parallel configurations. We computed spin polarised device density of states, projected device density of states of carbon and the electrode element, and transmission of these devices. The results demonstrate that the effect of electrodes modifying the spin-dependence behaviours of these systems in a controlled way. In Parallel and anti-parallel configuration the separation of spin up and spin down is lager in the case of iron electrode than nickel and cobalt electrodes. It shows that iron is the best electrode for 11 acene spin valve device. Our theoretical results are reasonably impressive and trigger our motivation for comprehending the transport properties of these molecular-sized contacts.

  4. New observations and new models of spin-orbit coupling in binary asteroids

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc; Naidu, Shantanu

    2015-08-01

    The YORP-induced rotational fission hypothesis is the leading candidate for explaining the formation of binaries, triples, and pairs among small (<20 km) asteroids (e.g., Margot et al, Asteroids IV, subm., 2015). Various evolutionary paths following rotational fission have been suggested, but many important questions remain about the evolutionary mechanisms and timescales. We test hypotheses about the evolution of binary asteroids by obtaining precise descriptions of the orbits and components of binary systems with radar and by examining the system dynamics with detailed numerical simulations. Predictions for component spin states and orbital precession rates can then be compared to observables in our data sets or in other data sets to elucidate the states of various systems and their likely evolutionary paths.Accurate simulations require knowledge of the masses, shapes, and spin states of individual binary components. Because radar observations can provide exquisite data sets spanning days with spatial resolutions at the decameter level, we can invert for the component shapes and measure spin states. We can also solve for the mutual orbit by fitting the observed separations between components. In addition, the superb (10e-7--10e-8) fractional uncertainties in range allow us to measure the reflex motions directly, allowing masses of individual components to be determined.We use recently published observations of the binary 2000 DP107 (Naidu et al. AJ, subm., 2015) and that of other systems to simulate the dynamics of components in well-characterized binary systems (Naidu and Margot, AJ 149, 80, 2015). We model the coupled spin and orbital motions of two rigid, ellipsoidal bodies under the influence of their mutual gravitational potential. We use surface of section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis reveals large regions of phase space where the spin state of the satellite is chaotic. The presence of chaotic regions may substantially increase spin synchronization timescales, delay BYORP-type evolution, extend the lifetime of binaries, and explain the observed fraction of asynchronous binaries.

  5. Quantum irreversible decoherence behaviour in open quantum systems with few degrees of freedom: Application to 1H NMR reversion experiments in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Segnorile, H. H.; Zamar, R. C.

    2013-10-01

    An experimental study of NMR spin decoherence in nematic liquid crystals is presented. Decoherence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions. The experimental technique used in this work is based on the MREV8 pulse sequence. The aim of the work is to detect the main features of the irreversible quantum decoherence in liquid crystals, on the basis of the theory presented by the authors recently. The focus is laid on experimentally probing the eigen-selection process in the intermediate time scale, between quantum interference of a closed system and thermalization, as a signature of the quantum spin decoherence of the open quantum system, as well as on quantifying the effects of non-idealities as possible sources of signal decays which could mask the intrinsic decoherence. In order to contrast experiment and theory, the theory was adapted to obtain the decoherence function corresponding to the MREV8 reversion experiments. Non-idealities of the experimental setting, like external field inhomogeneity, pulse misadjustments, and the presence of non-reverted spin interaction terms are analysed in detail within this framework, and their effects on the observed signal decay are numerically estimated. It is found that though all these non-idealities could in principle affect the evolution of the spin dynamics, their influence can be mitigated and they do not present the characteristic behaviour of the irreversible spin decoherence. As unique characteristic of decoherence, the experimental results clearly show the occurrence of eigen-selectivity in the intermediate timescale, in complete agreement with the theoretical predictions. We conclude that the eigen-selection effect is the fingerprint of decoherence associated with a quantum open spin system in liquid crystals. Besides, these features of the results account for the quasi-equilibrium states of the spin system, which were observed previously in these mesophases, and lead to conclude that the quasi-equilibrium is a definite stage of the spin dynamics during its evolution towards equilibrium.

  6. Higher spin Chern-Simons theory and the super Boussinesq hierarchy

    NASA Astrophysics Data System (ADS)

    Gutperle, Michael; Li, Yi

    2018-05-01

    In this paper, we construct a map between a solution of supersymmetric Chern-Simons higher spin gravity based on the superalgebra sl(3|2) with Lifshitz scaling and the N = 2 super Boussinesq hierarchy. We show that under this map the time evolution equations of both theories coincide. In addition, we identify the Poisson structure of the Chern-Simons theory induced by gauge transformation with the second Hamiltonian structure of the super Boussinesq hierarchy.

  7. Computational models for the berry phase in semiconductor quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakar, S., E-mail: rmelnik@wlu.ca; Melnik, R. V. N., E-mail: rmelnik@wlu.ca; Sebetci, A.

    2014-10-06

    By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.

  8. In-field {sup 57}Fe Mössbauer spectroscopy below spin-flop transition in powdered troilite (FeS) mineral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuda, Jan, E-mail: jan.cuda@upol.cz; Tucek, Jiri; Filip, Jan

    2014-10-27

    Powdered troilite (FeS), extracted from the Cape York IIIA octahedrite meteorite, was investigated employing in-field {sup 57}Fe Mössbauer spectroscopy. The study identified a typical behavior of polycrystalline antiferromagnetic material under external magnetic fields. The in-field evolution of the {sup 57}Fe Mössbauer spectra showed that the spin-flop transition in the FeS system occurs at a field higher than 5 T.

  9. Eight- and six-coordinated Mn(II) complexes of heteroaromatic alcohol and aldehyde: Crystal structure, spectral, magnetic, thermal and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Jabłońska-Wawrzycka, Agnieszka; Barszcz, Barbara; Zienkiewicz, Małgorzata; Hodorowicz, Maciej; Jezierska, Julia; Stadnicka, Katarzyna; Lechowicz, Łukasz; Kaca, Wiesław

    2014-08-01

    Crystal, molecular and electronic structure of new manganese(II) compounds: [Mn(2-CH2OHpy)2(NO3)2] (1), [Mn(4-CHO-5-MeIm)2(NO3)2] (2) and [Mn(4-CHO-5-MeIm)2Cl2] (3), where 2-hydroxymethylpyridine (2-CH2OHpy) and 5(4)-carbaldehyde-4(5)-methylimidazole (5(4)-CHO-4(5)-MeIm), have been characterised using X-ray, spectroscopic, magnetic and TG/DTG data. In compounds 1 and 2, the Mn(II) ion is eight-coordinated forming distorted pseudo-dodecahedron, that is rather unusual for the manganese(II) complexes, whereas in 3 the Mn(II) ion environment is a distorted octahedron. The high coordination number (CN = 8) of 1 and 2 results from bidentate character of the nitrate ligands. The X-band EPR spectra of compounds 2 and 3 exhibit fine structure signals resulting from zero-field splitting (ZFS) of the spin states for high spin d5 Mn(II), whereas for 1 the broad isotropic signals were observed. The estimation of ZFS for individual Mn(II) ions was carried out for all compounds using DFT calculations. The free ligands and their manganese(II) complexes have been tested in vitro against gram-positive and gram-negative bacteria in order to assess their antimicrobial properties.

  10. 77 FR 46428 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Generator Status of Spinning Spur Wind LLC. Filed Date: 7/27/12. Accession Number: 20120727-5038. Comments... II Wind Farm LLC, Fowler Ridge III Wind Farm LLC, Fowler Ridge Wind Farm LLC, Goshen Phase II, LLC... that the Commission received the following exempt wholesale generator filings: Docket Numbers: EG12-93...

  11. Chemical trend of exchange coupling in diluted magnetic II-VI semiconductors: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Chanier, T.; Virot, F.; Hayn, R.

    2009-05-01

    We have calculated the chemical trend of magnetic exchange parameters ( Jdd , Nα , and Nβ ) of Zn-based II-VI semiconductors ZnA ( A=O , S, Se, and Te) doped with Co or Mn. We show that a proper treatment of electron correlations by the local spin-density approximation (LSDA)+U method leads to good agreement between experimental and theoretical values of the nearest-neighbor exchange coupling Jdd between localized 3d spins in contrast to the LSDA method. The exchange couplings between localized spins and doped electrons in the conduction band Nα are in good agreement with experiment as well. But the values for Nβ (coupling to doped holes in the valence band) indicate a crossover from weak coupling (for A=Te and Se) to strong coupling (for A=O ) and a localized hole state in ZnO:Mn. This hole localization explains the apparent discrepancy between photoemission and magneto-optical data for ZnO:Mn.

  12. Contact Resistance Evolution and Degradation of Highly Cycled

    DTIC Science & Technology

    2014-03-27

    i List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii I. Introduction...scanning electron microscope EDS energy dispersive X-ray spectroscopy ii CONTACT RESISTANCE EVOLUTION AND DEGRADATION OF HIGHLY CYCLED MICRO-CONTACTS I

  13. Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe 1 - x Co x As

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yu; Yin, Zhiping; Wang, Xiancheng

    We use neutron scattering to study spin excitations in single crystals of LiFe 0.88Co 0.12As, which is located near the boundary of the superconducting phase of LiFe 1-xCo xAs and exhibits non- Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe 0.88Co 0.12As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the dxy orbitals, while high-energy spin excitations arise from the dyz and dxz orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAsmore » family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe 1-xCo xAs are consistent with electron-hole Fermi surface nesting condition for the dxy orbital, the reduced superconductivity in LiFe 0.88Co 0.12As suggests that Fermi surface nesting conditions for the dyz and dxz orbitals are also important for superconductivity in iron pnictides.« less

  14. Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe 1 - x Co x As

    DOE PAGES

    Li, Yu; Yin, Zhiping; Wang, Xiancheng; ...

    2016-06-17

    We use neutron scattering to study spin excitations in single crystals of LiFe 0.88Co 0.12As, which is located near the boundary of the superconducting phase of LiFe 1-xCo xAs and exhibits non- Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe 0.88Co 0.12As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the dxy orbitals, while high-energy spin excitations arise from the dyz and dxz orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAsmore » family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe 1-xCo xAs are consistent with electron-hole Fermi surface nesting condition for the dxy orbital, the reduced superconductivity in LiFe 0.88Co 0.12As suggests that Fermi surface nesting conditions for the dyz and dxz orbitals are also important for superconductivity in iron pnictides.« less

  15. Dynamics of quantum tomography in an open system

    NASA Astrophysics Data System (ADS)

    Uchiyama, Chikako

    2015-06-01

    In this study, we provide a way to describe the dynamics of quantum tomography in an open system with a generalized master equation, considering a case where the relevant system under tomographic measurement is influenced by the environment. We apply this to spin tomography because such situations typically occur in μSR (muon spin rotation/relaxation/resonance) experiments where microscopic features of the material are investigated by injecting muons as probes. As a typical example to describe the interaction between muons and a sample material, we use a spin-boson model where the relevant spin interacts with a bosonic environment. We describe the dynamics of a spin tomogram using a time-convolutionless type of generalized master equation that enables us to describe short time scales and/or low-temperature regions. Through numerical evaluation for the case of Ohmic spectral density with an exponential cutoff, a clear interdependency is found between the time evolution of elements of the density operator and a spin tomogram. The formulation in this paper may provide important fundamental information for the analysis of results from, for example, μSR experiments on short time scales and/or in low-temperature regions using spin tomography.

  16. Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe_{1-x}Co_{x}As.

    PubMed

    Li, Yu; Yin, Zhiping; Wang, Xiancheng; Tam, David W; Abernathy, D L; Podlesnyak, A; Zhang, Chenglin; Wang, Meng; Xing, Lingyi; Jin, Changqing; Haule, Kristjan; Kotliar, Gabriel; Maier, Thomas A; Dai, Pengcheng

    2016-06-17

    We use neutron scattering to study spin excitations in single crystals of LiFe_{0.88}Co_{0.12}As, which is located near the boundary of the superconducting phase of LiFe_{1-x}Co_{x}As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe_{0.88}Co_{0.12}As with a combined density functional theory and dynamical mean field theory calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the d_{xy} orbitals, while high-energy spin excitations arise from the d_{yz} and d_{xz} orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in the LiFeAs family cannot be described by an anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe_{1-x}Co_{x}As is consistent with the electron-hole Fermi surface nesting conditions for the d_{xy} orbital, the reduced superconductivity in LiFe_{0.88}Co_{0.12}As suggests that Fermi surface nesting conditions for the d_{yz} and d_{xz} orbitals are also important for superconductivity in iron pnictides.

  17. Spin Dependence in Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Kesden, Michael; Stone, Nicholas; van Velzen, Sjoert

    2018-01-01

    A supermassive black hole (SBH) can tidally disrupt stars when its tidal field overwhelms the stars’ self-gravity. The stellar debris produced in such tidal disruption events (TDEs) evolves into tidal streams that can self-intersect. These inelastic stream collisions dissipate orbital energy, both circularizing the tidal stream and contributing to the emission observed during the TDE. Once circularized into a disk, the stellar debris can be viscously accreted by the SBH powering additional luminous emission. We explore how SBH spin can affect the tidal disruption process. Tidal forces are spin dependent, as is the minimum orbital angular momentum below which stars are directly captured by the SBH. This implies that the TDE rate will be spin dependent, particularly for more massive SBHs for which relativistic effects are more significant. SBH spin also affects TDE light curves through the initial debris orbits, the nature of the stream collisions, the viscous evolution of the accretion disk, and the possibility of launching jets. We explore the spin dependence of these phenomena to identify promising signatures for upcoming surveys expected to discover hundreds of TDE candidates in the next decade.

  18. Symmetry-protected topological phases of one-dimensional interacting fermions with spin-charge separation

    NASA Astrophysics Data System (ADS)

    Montorsi, Arianna; Dolcini, Fabrizio; Iotti, Rita C.; Rossi, Fausto

    2017-06-01

    The low energy behavior of a huge variety of one-dimensional interacting spinful fermionic systems exhibits spin-charge separation, described in the continuum limit by two sine-Gordon models decoupled in the charge and spin channels. Interaction is known to induce, besides the gapless Luttinger liquid phase, eight possible gapped phases, among which are the Mott, Haldane, charge-/spin-density, and bond-ordered wave insulators, and the Luther Emery liquid. Here we prove that some of these physically distinct phases have nontrivial topological properties, notably the presence of degenerate protected edge modes with fractionalized charge/spin. Moreover, we show that the eight gapped phases are in one-to-one correspondence with the symmetry-protected topological (SPT) phases classified by group cohomology theory in the presence of particle-hole symmetry P. The latter result is also exploited to characterize SPT phases by measurable nonlocal order parameters which follow the system evolution to the quantum phase transition. The implications on the appearance of exotic orders in the class of microscopic Hubbard Hamiltonians, possibly without P symmetry at higher energies, are discussed.

  19. Low-Spin States From Decay Studies in the Mass 80 Region

    PubMed Central

    Döring, J.; Aprahamian, A.; Wiescher, M.

    2000-01-01

    Neutron-deficient nuclei in the mass 80 region are known to exhibit strongly deformed ground states deduced mainly from yrast-state properties measured in-beam via heavy-ion fusion-evaporation reactions. Vibrational excitations and non-yrast states as well as their interplay with the observed rotational collectivity have been less studied to date within this mass region. Thus, several β-decay experiments have been performed to populate low-spin states in the neutron-deficient 80,84Y and 80,84Sr nuclei. An overview of excited 0+ states in Sr and Kr nuclei is given and conclusions about shape evolution at low-spins are presented. In general, the non-yrast states in even-even Sr nuclei show mainly vibration-like collectivity which evolves to rotational behavior with increasing spin and decreasing neutron number. PMID:27551586

  20. Pressure-induced magnetic order in FeSe: A muon spin rotation study

    NASA Astrophysics Data System (ADS)

    Khasanov, Rustem; Guguchia, Zurab; Amato, Alex; Morenzoni, Elvezio; Dong, Xiaoli; Zhou, Fang; Zhao, Zhongxian

    2017-05-01

    The magnetic order induced by the pressure was studied in FeSe by means of muon spin rotation (μ SR ) technique. By following the evolution of the oscillatory part of the μ SR signal as a function of angle between the initial muon spin polarization and 101 axis of the studied FeSe sample, it was found that the pressure-induced magnetic order in FeSe corresponds either to the collinear (single-stripe) antiferromagnetic order as observed in parent compounds of various FeAs-based superconductors or to the bi-collinear order as obtained in the FeTe system, but with the Fe spins turned by 45o within the a b plane. The value of the magnetic moment per Fe atom was estimated to be ≃0.13 -0.14 μB at p ≃1.9 GPa.

  1. Spin Andreev-like Reflection in Metal-Mott Insulator Heterostructures

    DOE PAGES

    Al-Hassanieh, K. A.; Rincón, Julián; Alvarez, G.; ...

    2015-02-09

    Here we used the time-dependent density-matrix renormalization group (tDMRG) to study the time evolution of electron wave packets in one-dimensional (1D) metal-superconductor heterostructures. The results show Andreev reflection at the interface, as expected. By combining these results with the well-known single- spin-species electron-hole transformation in the Hubbard model, we predict an analogous spin Andreev reflection in metal-Mott insulator heterostructures. This effect is numerically confirmed using 1D tDMRG, but it is expected to also be present in higher dimensions, as well as in more general Hamiltonians. We present an intuitive picture of the spin reflection, analogous to that of Andreev reflectionmore » at metal- superconductor interfaces. This allows us to discuss a novel antiferromagnetic proximity effect. Possible experimental realizations are discussed.« less

  2. Open quantum system approach to the modeling of spin recombination reactions.

    PubMed

    Tiersch, M; Steiner, U E; Popescu, S; Briegel, H J

    2012-04-26

    In theories of spin-dependent radical pair reactions, the time evolution of the radical pair, including the effect of the chemical kinetics, is described by a master equation in the Liouville formalism. For the description of the chemical kinetics, a number of possible reaction operators have been formulated in the literature. In this work, we present a framework that allows for a unified description of the various proposed mechanisms and the forms of reaction operators for the spin-selective recombination processes. On the basis of the concept that master equations can be derived from a microscopic description of the spin system interacting with external degrees of freedom, it is possible to gain insight into the underlying microscopic processes and develop a systematic approach toward determining the specific form of the reaction operator in concrete scenarios.

  3. Impurity bound states in mesoscopic topological superconducting loops

    NASA Astrophysics Data System (ADS)

    Jin, Yan-Yan; Zha, Guo-Qiao; Zhou, Shi-Ping

    2018-06-01

    We study numerically the effect induced by magnetic impurities in topological s-wave superconducting loops with spin-orbit interaction based on spin-generalized Bogoliubov-de Gennes equations. In the case of a single magnetic impurity, it is found that the midgap bound states can cross the Fermi level at an appropriate impurity strength and the circulating spin current jumps at the crossing point. The evolution of the zero-energy mode can be effectively tuned by the located site of a single magnetic impurity. For the effect of many magnetic impurities, two independent midway or edge impurities cannot lead to the overlap of zero modes. The multiple zero-energy modes can be effectively realized by embedding a single Josephson junction with impurity scattering into the system, and the spin current displays oscillatory feature with increasing the layer thickness.

  4. X-ray Studies of Regenerated Cellulose Fibers Wet Spun from Cotton Linter Pulp in NaOH/Thiourea Aqueous Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen,X.; Burger, C.; Fang, D.

    Regenerated cellulose fibers were fabricated by dissolution of cotton linter pulp in NaOH (9.5 wt%) and thiourea (4.5 wt%) aqueous solution followed by wet-spinning and multi-roller drawing. The multi-roller drawing process involved three stages: coagulation (I), coagulation (II) and post-treatment (III). The crystalline structure and morphology of regenerated cellulose fiber was investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. Results indicated that only the cellulose II crystal structure was found in regenerated cellulose fibers, proving that the cellulose crystals were completely transformed from cellulose I to II structure during spinning from NaOH/thiourea aqueous solution. Themore » crystallinity, orientation and crystal size at each stage were determined from the WAXD analysis. Drawing of cellulose fibers in the coagulation (II) bath (H{sub 2}SO{sub 4}/H{sub 2}O) was found to generate higher orientation and crystallinity than drawing in the post-treatment (III). Although the post-treatment process also increased crystal orientation, it led to a decrease in crystallinity with notable reduction in the anisotropic fraction. Compared with commercial rayon fibers fabricated by the viscose process, the regenerated cellulose fibers exhibited higher crystallinity but lower crystal orientation. SAXS results revealed a clear scattering maximum along the meridian direction in all regenerated cellulose fibers, indicating the formation of lamellar structure during spinning.« less

  5. Magnetic field effects on coenzyme B12- and B6-dependent lysine 5,6-aminomutase: switching of the J-resonance through a kinetically competent radical-pair intermediate.

    PubMed

    Chen, Jun-Ru; Ke, Shyue-Chu

    2018-05-09

    The environmental magnetic field is beneficial to migratory bird navigation through the radical-pair mechanism. One of the continuing challenges in understanding how magnetic fields may perturb biological processes is that only a very few field-sensitive examples have been explored despite the prevalence of radical pairs in enzymatic reactions. We show that the reaction of adenosylcobalamin- and pyridoxal-5'-phosphate-dependent lysine 5,6-aminomutase proceeds via radical-pair intermediates and is magnetic field dependent. The 5'-deoxyadenosyl radical from adenosylcobalamin abstracts a C5(H) from the substrate to yield a {cob(ii)alamin - substrate} radical pair wherein the large spin-spin interaction (2J = 8000 gauss) locks the radical pair in a triplet state, as evidenced by electron paramagnetic resonance spectroscopy. Application of an external magnetic field in the range of 6500 to 8500 gauss triggers intersystem crossing to the singlet {cob(ii)alamin - substrate} radical-pair state. Spin-conserved H back-transfer from deoxyadenosine to the substrate radical yields a singlet {cob(ii)alamin-5'-deoxyadenosyl} radical pair. Spin-selective recombination to adenosylcobalamin decreased the enzyme catalytic efficiency kcat/Km by 16% at 7600 gauss. As a mechanistic probe, observation of magnetic field effects successfully demonstrates the presence of a kinetically significant radical pair in this enzyme. The study of a pronounced high-field level-crossing characteristic through an immobilized radical pair with a constant exchange interaction deepens our understanding of how a magnetic field may interact with an enzyme.

  6. Regular oscillatory behavior of aqueous solutions of CuII salts related to effects on equilibrium dynamics of ortho/para hydrogen spin isomers of water.

    PubMed

    Morré, D J; Orczyk, J; Hignite, H; Kim, C

    2008-02-01

    Cell surface and growth-related NADH oxidases with protein disulfide-thiol interchange activity, ECTO-NOX, exhibit copper-dependent, clock-related, temperature-independent and entrainable patterns of regular oscillations in the rate of oxidation of NAD(P)H as do aqueous solutions of copper salts. Because of time scale similarities, a basis for the oscillatory patterns in nuclear spin orientations of the hydrogen atoms of the copper-associated water was sought. Extended X-ray absorption fine structure (EXAFS) measurements at 9302 eV on pure water were periodic with a ca. 3.5 min peak to peak separation. Decomposition fits revealed 5 unequally spaced maxima similar to those observed previously for Cu(II)Cl(2) to generate a period length of about 18 min. With D(2)O, the period length was proportionately increased by 30% to 24 min. The redox potential of water and of D(2)O also oscillated with 18 and 24 min period lengths, respectively. Measurements in the middle infrared spectral region above a water sample surface revealed apparent oscillations in the two alternative orientations of the nuclear spins (ortho and para) of the hydrogen atoms of the water or D(2)O with 5 unequally spaced maxima and respective period lengths of 18 and 24 min. Thus, the time keeping oscillations of ECTO-NOX proteins appear to reflect the equilibrium dynamics of ortho-para hydrogen atom spin ratios of water where the presence of metal cations such as Cu(II) in solution determine period length.

  7. Free-radical probes for functional in vivo EPR imaging

    NASA Astrophysics Data System (ADS)

    Subramanian, S.; Krishna, M. C.

    2007-02-01

    Electron paramagnetic resonance imaging (EPRI) is one of the recent functional imaging modalities that can provide valuable in vivo physiological information on its own merit and aids as a complimentary imaging technique to MRI and PET of tissues especially with respect to in vivo pO II (oxygen partial pressure), redox status and pharmacology. EPR imaging mainly deals with the measurement of distribution and in vivo dynamics and redox changes using special nontoxic paramagnetic spin probes that can be infused into the object of investigation. These spin probes should be characterized by simple EPR spectra, preferably with narrow EPR lines. The line width should be reversibly sensitive to the concentration of in vivo pO II with a linear dependence. Several non-toxic paramagnetic probes, some particulate and insoluble and others water-soluble and infusible (by intravenous or intramuscular injection) have been developed which can be effectively used to quantitatively assess tissue redox status, and tumor hypoxia. Quantitative assessment of the redox status of tissue in vivo is important in investigating oxidative stress, and that of tissue pO II is very important in radiation oncology. Other areas in which EPR imaging and oxymetry may help are in the investigation of tumorangiogenesis, wound healing, oxygenation of tumor tissue by the ingestion of oxygen-rich gases, etc. The correct choice of the spin probe will depend on the modality of measurement (whether by CW or time-domain EPR imaging) and the particular physiology interrogated. Examples of the available spin probes and some EPR imaging applications employing them are presented.

  8. Black Hole Spin Evolution and Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Chen, W.; Cui, W.; Zhang, S. N.

    1999-04-01

    We show that the accretion process in X-ray binaries is not likely to spin up or spin down the accreting black holes due to the short lifetime of the system or the lack of sufficient mass supply from the donor star. Therefore, the black hole mass and spin distribution we observe today also reflects that at birth and places interesting constraints on the supernova explosion models across the mass spectrum. On the other hand, it has long been puzzled that accretion from a Keplerian accretion disk with large enough mass supply might spin up the black hole to extremity, thus violate Penrose's cosmic censorship conjecture and the third law of black hole dynamics. This prompted Thorne to propose an astrophysical solution which caps the maximum attainable black hole spin to a value slightly below unity. We show that the black hole will never reach extreme Kerr state under any circumstances by accreting Keplerian angular momentum from the last stable orbit and the cosmic censorship will always be upheld. The maximum black hole spin which can be reached for a fixed, astrophysically meaningful accretion rate is, however, very close to unity, thus the peak spin rate of black holes one can hope to observe from Nature is still 0.998, the Thorne limit.

  9. Helicity Evolution at Small x

    NASA Astrophysics Data System (ADS)

    Sievert, Michael; Kovchegov, Yuri; Pitonyak, Daniel

    2017-01-01

    We construct small- x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the g1 structure function. These evolution equations resum powers of ln2(1 / x) in the polarization-dependent evolution along with the powers of ln(1 / x) in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-Nc and large-Nc &Nf limits. After solving the large-Nc equations numerically we obtain the following small- x asymptotics for the flavor-singlet g1 structure function along with quarks hPDFs and helicity TMDs (in absence of saturation effects): g1S(x ,Q2) ΔqS(x ,Q2) g1L S(x ,kT2) (1/x) > αh (1/x) 2.31√{αsNc/2 π. We also give an estimate of how much of the proton's spin may be at small x and what impact this has on the so-called ``spin crisis.'' Work supported by the U.S. DOE, Office of Science, Office of Nuclear Physics under Award Number DE-SC0004286 (YK), the RIKEN BNL Research Center, and TMD Collaboration (DP), and DOE Contract No. DE-SC0012704 (MS).

  10. Magnetic anisotropy in nickel complexes as determined by combined magnetic susceptibility/magnetization/theoretical studies

    NASA Astrophysics Data System (ADS)

    Mašlejová, Anna; Boča, Roman; Dlháň, L.'ubor; Herchel, Radovan

    2004-05-01

    The zero-field splitting in nickel(II) complexes was modeled by considering all relevant operators (electron repulsion, crystal-field, spin-orbit coupling, orbital-Zeeman, and spin-Zeeman) in the complete basis set spanned by d n-atomic terms. D-values between weak and strong crystal field limits were evaluated from the crystal-field multiplets as well as using the spin Hamiltonian formalism. Importance of the anisotropic orbital reduction factors is discussed and exemplified by D/hc=-22 cm-1 as subtracted from magnetic data for [Ni(imidazole) 4(acetate) 2] complex.

  11. Correlation effect and magnetic moments in Cr2Te3

    NASA Astrophysics Data System (ADS)

    Youn, S. J.; Kwon, S. K.; Min, B. I.

    2007-05-01

    The electronic and magnetic structures of Cr2Te3 have been studied theoretically using the linearized muffin-tin orbitals band method. Experimental photoemission spectra and magnetic moments can be described better when the on-site Coulomb correlation U of Cr 3d electrons is considered using the local spin-density approximation+U method. The proper size of U is found to be U ˜1.7eV. The complex magnetic behaviors of Cr2Te3 come from the degeneracy of parallel and antiparallel alignments of CrI spin to CrII and CrIII spins.

  12. Time-resolved spectroscopic characterization of photo-induced valence tautomerism for a cobalt dioxolene complex

    NASA Astrophysics Data System (ADS)

    Gentili, Pier Luigi; Bussotti, Laura; Righini, Roberto; Beni, Alessandra; Bogani, Lapo; Dei, Andrea

    2005-07-01

    The valence tautomerism of low-spin Co III(Cat-N-BQ)(Cat-N-SQ) (where Cat-N-BQ is 2-(2-hydroxy-3,5-di- tert-butylphenylimino)-4,6-di- tert-butylcyclohexa-3,5-dienone and Cat-N-SQ is the dianionic radical analogue) was investigated by means of UV-vis pump-probe transient absorption spectroscopy and 1H NMR technique in chloroform and dichloromethane. By exciting the CT transition of the complex at 480 nm, an intramolecular electron transfer process is selectively triggered. The photo-induced charge transfer is pursued by a cascade of two main molecular events characterized by the ultrafast transient absorption spectroscopy: the first gives rise to the metastable high-spin Co II(Cat-N-BQ) 2 that, secondly, reaches the chemical equilibrium with the reactant species. The rate constant of back valence tautomerization estimated by measuring the lifetime of high-spin Co II(Cat-N-BQ) 2 species and the equilibrium constant for the Co III(Cat-N-BQ)(Cat-N-SQ) ⇄ Co II(Cat-N-BQ) 2 interconversion, is significantly large (on the order of 10 9 s -1). It is interpreted under the point of view of the theory formulated by Jortner and Buhks et al. for non-adiabatic radiationless processes.

  13. Ferromagnetic interaction in an asymmetric end-to-end azido double-bridged copper(II) dinuclear complex: a combined structure, magnetic, polarized neutron diffraction and theoretical study.

    PubMed

    Aronica, Christophe; Jeanneau, Erwann; El Moll, Hani; Luneau, Dominique; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Carvajal, Maria Angels; Robert, Vincent

    2007-01-01

    A new end-to-end azido double-bridged copper(II) complex [Cu(2)L(2)(N(3))2] (1) was synthesized and characterized (L=1,1,1-trifluoro-7-(dimethylamino)-4-methyl-5-aza-3-hepten-2-onato). Despite the rather long Cu-Cu distance (5.105(1) A), the magnetic interaction is ferromagnetic with J= +16 cm(-1) (H=-JS(1)S(2)), a value that has been confirmed by DFT and high-level correlated ab initio calculations. The spin distribution was studied by using the results from polarized neutron diffraction. This is the first such study on an end-to-end system. The experimental spin density was found to be localized mainly on the copper(II) ions, with a small degree of delocalization on the ligand (L) and terminal azido nitrogens. There was zero delocalization on the central nitrogen, in agreement with DFT calculations. Such a picture corresponds to an important contribution of the d(x2-y2) orbital and a small population of the d(z2) orbital, in agreement with our calculations. Based on a correlated wavefunction analysis, the ferromagnetic behavior results from a dominant double spin polarization contribution and vanishingly small ionic forms.

  14. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical point of view, focusing on well-established and accepted physics. In such a young field, there remains much to be understood and explored, hence some of the future challenges and opportunities of this rapidly evolving area of spintronics are outlined.

  15. High-temperature charge density wave correlations in La 1.875Ba 0.125CuO 4 without spin–charge locking

    DOE PAGES

    Miao, H.; Lorenzana, J.; Seibold, G.; ...

    2017-11-07

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less

  16. Strain-sensitive spin-state ordering in thin films of perovskite LaCoO3

    NASA Astrophysics Data System (ADS)

    Fujioka, J.; Yamasaki, Y.; Doi, A.; Nakao, H.; Kumai, R.; Murakami, Y.; Nakamura, M.; Kawasaki, M.; Arima, T.; Tokura, Y.

    2015-11-01

    We have investigated the lattice distortion coupled to the Co 3 d -spin-state ordering in thin films of perovskite LaCoO3 with various epitaxial strains by measurements of the magnetization, x-ray diffraction, and optical spectra. In the system with tensile strain about 0.5%, a lattice distortion characterized by the modulation vector q =(1 /6 ,1 /6 ,1 /6 ) emerges at 40 K, followed by a ferromagnetic ordering at 24 K. Alternatively, in systems with tensile strain exceeding 1%, the lattice distortion characterized by q =(1 /4 ,1 /4 ,1 /4 ) emerges at 120 K or higher, and subsequently the ferromagnetic or ferrimagnetic ordering occurs around 90 K. The evolution of infrared phonon spectra and resonant x-ray scattering at the Co K edge suggests that the population change in the Co 3 d spin state causes the strain-induced switching of spin-state ordering as well as of magnetic ordering in this canonical spin-state crossover system.

  17. Surprising loss of three-dimensionality in low-energy spin correlations on approaching superconductivity in Fe 1 + y Te 1 - x Se x

    DOE PAGES

    Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng; ...

    2017-10-06

    We report inelastic neutron scattering measurements of low-energy ( ℏ ω ≲ 10 meV) magnetic excitations in the “11” system Fe 1+y Te 1-x Se x. The spin correlations are two-dimensional (2D) in the superconducting samples at low temperature, but appear much more three-dimensional (3D) when the temperature rises well above T c ~ 15 K, with a clear increase of the (dynamic) spin correlation length perpendicular to the Fe planes. This behavior is extremely unusual; typically, the suppression of thermal fluctuations at low temperature would favor the enhancement of 3D correlations, or even ordering, and the reversion to 2Dmore » cannot be naturally explained when only the spin degree of freedom is considered. Our results suggest that the low temperature physics in the 11 system, in particular the evolution of low-energy spin excitations towards superconducting pairing, intrinsically involves changes in orbital correlations.« less

  18. Surprising loss of three-dimensionality in low-energy spin correlations on approaching superconductivity in Fe1 +yTe1 -xSex

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng; Winn, B. L.; Granroth, G. E.; Zhao, Yang; Gu, Genda; Zaliznyak, Igor; Tranquada, J. M.; Birgeneau, R. J.; Xu, Guangyong

    2017-10-01

    We report inelastic neutron scattering measurements of low-energy (ℏ ω ≲10 meV) magnetic excitations in the "11" system Fe1 +yTe1 -xSex . The spin correlations are two-dimensional (2D) in the superconducting samples at low temperature, but appear much more three-dimensional (3D) when the temperature rises well above Tc˜15 K, with a clear increase of the (dynamic) spin correlation length perpendicular to the Fe planes. This behavior is extremely unusual; typically, the suppression of thermal fluctuations at low temperature would favor the enhancement of 3D correlations, or even ordering, and the reversion to 2D cannot be naturally explained when only the spin degree of freedom is considered. Our results suggest that the low temperature physics in the 11 system, in particular the evolution of low-energy spin excitations towards superconducting pairing, intrinsically involves changes in orbital correlations.

  19. Combined Molecular and Spin Dynamics Simulation of Lattice Vacancies in BCC Iron

    NASA Astrophysics Data System (ADS)

    Mudrick, Mark; Perera, Dilina; Eisenbach, Markus; Landau, David P.

    Using an atomistic model that treats translational and spin degrees of freedom equally, combined molecular and spin dynamics simulations have been performed to study dynamic properties of BCC iron at varying levels of defect impurity. Atomic interactions are described by an empirical many-body potential, and spin interactions with a Heisenberg-like Hamiltonian with a coordinate dependent exchange interaction. Equations of motion are solved numerically using the second-order Suzuki-Trotter decomposition for the time evolution operator. We analyze the spatial and temporal correlation functions for atomic displacements and magnetic order to obtain the effect of vacancy defects on the phonon and magnon excitations. We show that vacancy clusters in the material cause splitting of the characteristic transverse spin-wave excitations, indicating the production of additional excitation modes. Additionally, we investigate the coupling of the atomic and magnetic modes. These modes become more distinct with increasing vacancy cluster size. This material is based upon work supported by the U.S. Department of Energy Office of Science Graduate Student Research (SCGSR) program.

  20. Signs of magnetic accretion in the young Be/X-ray pulsar SXP 1062

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.

    2012-07-01

    The spin behaviour of the neutron star in the newly discovered young Be/X-ray long-period pulsar SXP 1062 is discussed. The star is observed to rotate with the period of 1062 s, and spin down at the rate ˜-2.6 × 10-12 Hz s-1. I show that all of the conventional accretion scenarios encounter major difficulties in explaining the rapid spin-down of the pulsar. These difficulties can be, however, avoided within the magnetic accretion scenario in which the neutron star is assumed to accrete from a magnetized wind. The spin-down rate of the pulsar can be explained within this scenario provided the surface magnetic field of the neutron star is B*˜ 4 × 1013 G. I show that the age of the pulsar in this case lies in the range (2-4) × 104 yr, which is consistent with observations. The spin evolution of the pulsar is briefly discussed.

  1. Progressive slowing down of spin fluctuations in underdoped LaFeAsO1-xFx

    NASA Astrophysics Data System (ADS)

    Hammerath, F.; Gräfe, U.; Kühne, T.; Kühne, H.; Kuhns, P. L.; Reyes, A. P.; Lang, G.; Wurmehl, S.; Büchner, B.; Carretta, P.; Grafe, H.-J.

    2013-09-01

    The evolution of low-energy spin dynamics in the iron-based superconductor LaFeAsO1-xFx was studied over a broad doping, temperature, and magnetic field range (x= 0-0.15, T≤ 480 K, μ0H≤ 30 T) by means of 75As nuclear magnetic resonance. An enhanced spin-lattice relaxation rate divided by temperature (T1T)-1 in underdoped superconducting samples (x= 0.045, 0.05, and 0.075) suggests the presence of antiferromagnetic spin fluctuations, which are strongly reduced in optimally doped (x=0.10) and completely absent in overdoped (x=0.15) samples. In contrast to previous analysis, Curie-Weiss fits are shown to be insufficient to describe the data over the whole temperature range. Instead, a Bloembergen-Purcell-Pound (BPP) model is used to describe the occurrence of a peak in (T1T)-1 clearly above the superconducting transition, reflecting a progressive slowing down of the spin fluctuations down to the superconducting phase transition.

  2. High-temperature charge density wave correlations in La 1.875Ba 0.125CuO 4 without spin–charge locking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, H.; Lorenzana, J.; Seibold, G.

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less

  3. Surprising loss of three-dimensionality in low-energy spin correlations on approaching superconductivity in Fe 1 + y Te 1 - x Se x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng

    We report inelastic neutron scattering measurements of low-energy ( ℏ ω ≲ 10 meV) magnetic excitations in the “11” system Fe 1+y Te 1-x Se x. The spin correlations are two-dimensional (2D) in the superconducting samples at low temperature, but appear much more three-dimensional (3D) when the temperature rises well above T c ~ 15 K, with a clear increase of the (dynamic) spin correlation length perpendicular to the Fe planes. This behavior is extremely unusual; typically, the suppression of thermal fluctuations at low temperature would favor the enhancement of 3D correlations, or even ordering, and the reversion to 2Dmore » cannot be naturally explained when only the spin degree of freedom is considered. Our results suggest that the low temperature physics in the 11 system, in particular the evolution of low-energy spin excitations towards superconducting pairing, intrinsically involves changes in orbital correlations.« less

  4. Contact Resistance Evolution and Degradation of Highly Cycled Micro-Contacts

    DTIC Science & Technology

    2014-03-27

    i List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii I. Introduction...scanning electron microscope EDS energy dispersive X-ray spectroscopy ii CONTACT RESISTANCE EVOLUTION AND DEGRADATION OF HIGHLY CYCLED MICRO-CONTACTS I

  5. Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets

    NASA Astrophysics Data System (ADS)

    Mochizuki, Masahito; Kobayashi, Masaya; Okabe, Reoya; Yamamoto, Daisuke

    2018-02-01

    Nontrivial magnetic orders in the inverse-perovskite manganese nitrides are theoretically studied by constructing a classical spin model describing the magnetic anisotropy and frustrated exchange interactions inherent in specific crystal and electronic structures of these materials. With a replica-exchange Monte Carlo technique, a theoretical analysis of this model reproduces the experimentally observed triangular Γ5 g and Γ4 g spin-ordered patterns and the systematic evolution of magnetic orders. Our Rapid Communication solves a 40-year-old problem of nontrivial magnetism for the inverse-perovskite manganese nitrides and provides a firm basis for clarifying the magnetism-driven negative thermal expansion phenomenon discovered in this class of materials.

  6. Phonon-mediated nuclear spin relaxation in H2O

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Azami, Shinya; Arakawa, Ichiro

    2017-03-01

    A theoretical model of the phonon-mediated nuclear spin relaxation in H2O trapped by cryomatrices has been established for the first time. In order to test the validity of this model, we measured infrared spectra of H2O trapped in solid Ar, which showed absorption peaks due to rovibrational transitions of ortho- and para-H2O in the spectral region of the bending vibration. We monitored the time evolution of the spectra and analyzed the rotational relaxation associated with the nuclear spin flip to obtain the relaxation rates of H2O at temperatures of 5-15 K. Temperature dependence of the rate is discussed in terms of the devised model.

  7. Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.

    Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less

  8. Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4

    DOE PAGES

    Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.; ...

    2017-09-13

    Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less

  9. The build up of the correlation between halo spin and the large-scale structure

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Kang, Xi

    2018-01-01

    Both simulations and observations have confirmed that the spin of haloes/galaxies is correlated with the large-scale structure (LSS) with a mass dependence such that the spin of low-mass haloes/galaxies tend to be parallel with the LSS, while that of massive haloes/galaxies tend to be perpendicular with the LSS. It is still unclear how this mass dependence is built up over time. We use N-body simulations to trace the evolution of the halo spin-LSS correlation and find that at early times the spin of all halo progenitors is parallel with the LSS. As time goes on, mass collapsing around massive halo is more isotropic, especially the recent mass accretion along the slowest collapsing direction is significant and it brings the halo spin to be perpendicular with the LSS. Adopting the fractional anisotropy (FA) parameter to describe the degree of anisotropy of the large-scale environment, we find that the spin-LSS correlation is a strong function of the environment such that a higher FA (more anisotropic environment) leads to an aligned signal, and a lower anisotropy leads to a misaligned signal. In general, our results show that the spin-LSS correlation is a combined consequence of mass flow and halo growth within the cosmic web. Our predicted environmental dependence between spin and large-scale structure can be further tested using galaxy surveys.

  10. A unified stochastic formulation of dissipative quantum dynamics. II. Beyond linear response of spin baths

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Yu; Cao, Jianshu

    2018-01-01

    We use the "generalized hierarchical equation of motion" proposed in Paper I [C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148, 014103 (2018)] to study decoherence in a system coupled to a spin bath. The present methodology allows a systematic incorporation of higher-order anharmonic effects of the bath in dynamical calculations. We investigate the leading order corrections to the linear response approximations for spin bath models. Two kinds of spin-based environments are considered: (1) a bath of spins discretized from a continuous spectral density and (2) a bath of localized nuclear or electron spins. The main difference resides with how the bath frequency and the system-bath coupling parameters are distributed in an environment. When discretized from a continuous spectral density, the system-bath coupling typically scales as ˜1 /√{NB } where NB is the number of bath spins. This scaling suppresses the non-Gaussian characteristics of the spin bath and justifies the linear response approximations in the thermodynamic limit. For the nuclear/electron spin bath models, system-bath couplings are directly deduced from spin-spin interactions and do not necessarily obey the 1 /√{NB } scaling. It is not always possible to justify the linear response approximations in this case. Furthermore, if the spin-spin Hamiltonian is highly symmetrical, there exist additional constraints that generate highly non-Markovian and persistent dynamics that is beyond the linear response treatments.

  11. Inferences about Supernova Physics from Gravitational-Wave Measurements: GW151226 Spin Misalignment as an Indicator of Strong Black-Hole Natal Kicks

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Richard; Gerosa, Davide; Wysocki, Daniel

    2017-07-01

    The inferred parameters of the binary black hole GW151226 are consistent with nonzero spin for the most massive black hole, misaligned from the binary's orbital angular momentum. If the black holes formed through isolated binary evolution from an initially aligned binary star, this misalignment would then arise from a natal kick imparted to the first-born black hole at its birth during stellar collapse. We use simple kinematic arguments to constrain the characteristic magnitude of this kick, and find that a natal kick vk≳50 km /s must be imparted to the black hole at birth to produce misalignments consistent with GW151226. Such large natal kicks exceed those adopted by default in most of the current supernova and binary evolution models.

  12. Inferences about Supernova Physics from Gravitational-Wave Measurements: GW151226 Spin Misalignment as an Indicator of Strong Black-Hole Natal Kicks.

    PubMed

    O'Shaughnessy, Richard; Gerosa, Davide; Wysocki, Daniel

    2017-07-07

    The inferred parameters of the binary black hole GW151226 are consistent with nonzero spin for the most massive black hole, misaligned from the binary's orbital angular momentum. If the black holes formed through isolated binary evolution from an initially aligned binary star, this misalignment would then arise from a natal kick imparted to the first-born black hole at its birth during stellar collapse. We use simple kinematic arguments to constrain the characteristic magnitude of this kick, and find that a natal kick v_{k}≳50  km/s must be imparted to the black hole at birth to produce misalignments consistent with GW151226. Such large natal kicks exceed those adopted by default in most of the current supernova and binary evolution models.

  13. Numerical simulation of a device with two spin crossover complexes: application for temperature and pressure sensors

    NASA Astrophysics Data System (ADS)

    Linares, Jorge; Eddine Allal, Salah; Dahoo, Pierre Richard; Garcia, Yann

    2017-12-01

    The spin-crossover (SCO) phenomenon is related to the ability of a transition metal to change its spin state vs. a given perturbation. For an iron(II) SCO complexes the reversible changes involve the diamagnetic low-spin (S = 0) and the paramagnetic high-spin (HS S = 2) states [1,2,3]. In this contribution we simulate the HS Fraction (nHS) for different set values of temperature and pressure for a device using two SCO complexes with weak elastic interactions. We improve the calculation given by Linares et al. [4], taking also into account different volume (VHS, VLS) changes of the SCO. We perform all the calculation in the frame work of an Ising-like model solved in the mean-field approximation. The two SCO show in the case of “weak elastic interactions”, gradual spin transitions such that both temperature and pressure values can be obtained from the optical observation in the light of calculations discussed in this article.

  14. Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching.

    PubMed

    Smeigh, Amanda L; Creelman, Mark; Mathies, Richard A; McCusker, James K

    2008-10-29

    A combination of femtosecond electronic absorption and stimulated Raman spectroscopies has been employed to determine the kinetics associated with low-spin to high-spin conversion following charge-transfer excitation of a FeII spin-crossover system in solution. A time constant of tau = 190 +/- 50 fs for the formation of the 5T2 ligand-field state was assigned based on the establishment of two isosbestic points in the ultraviolet in conjunction with changes in ligand stretching frequencies and Raman scattering amplitudes; additional dynamics observed in both the electronic and vibrational spectra further indicate that vibrational relaxation in the high-spin state occurs with a time constant of ca. 10 ps. The results set an important precedent for extremely rapid, formally forbidden (DeltaS = 2) nonradiative relaxation as well as defining the time scale for intramolecular optical switching between two electronic states possessing vastly different spectroscopic, geometric, and magnetic properties.

  15. Electron transfer flavoprotein domain II orientation monitored using double electron-electron resonance between an enzymatically reduced, native FAD cofactor, and spin labels

    PubMed Central

    Swanson, Michael A; Kathirvelu, Velavan; Majtan, Tomas; Frerman, Frank E; Eaton, Gareth R; Eaton, Sandra S

    2011-01-01

    Human electron transfer flavoprotein (ETF) is a soluble mitochondrial heterodimeric flavoprotein that links fatty acid β-oxidation to the main respiratory chain. The crystal structure of human ETF bound to medium chain acyl-CoA dehydrogenase indicates that the flavin adenine dinucleotide (FAD) domain (αII) is mobile, which permits more rapid electron transfer with donors and acceptors by providing closer access to the flavin and allows ETF to accept electrons from at least 10 different flavoprotein dehydrogenases. Sequence homology is high and low-angle X-ray scattering is identical for Paracoccus denitrificans (P. denitrificans) and human ETF. To characterize the orientations of the αII domain of P. denitrificans ETF, distances between enzymatically reduced FAD and spin labels in the three structural domains were measured by double electron-electron resonance (DEER) at X- and Q-bands. An FAD to spin label distance of 2.8 ± 0.15 nm for the label in the FAD-containing αII domain (A210C) agreed with estimates from the crystal structure (3.0 nm), molecular dynamics simulations (2.7 nm), and rotamer library analysis (2.8 nm). Distances between the reduced FAD and labels in αI (A43C) were between 4.0 and 4.5 ± 0.35 nm and for βIII (A111C) the distance was 4.3 ± 0.15 nm. These values were intermediate between estimates from the crystal structure of P. denitrificans ETF and a homology model based on substrate-bound human ETF. These distances suggest that the αII domain adopts orientations in solution that are intermediate between those which are observed in the crystal structures of free ETF (closed) and ETF bound to a dehydrogenase (open). PMID:21308847

  16. Neutron scattering investigations of frustated magnets

    NASA Astrophysics Data System (ADS)

    Fennell, Tom

    This thesis describes the experimental investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Ho2Ti207 and Dy2Ti207 are examples of spin ices, in which the manifold of disordered magnetic groundstates maps onto that of the proton positions in ice. Using single crystal neutron scattering to measure Bragg and diffuse scattering, the effect of applying magnetic fields along different directions in the crystal was investigated. Different schemes of degeneracy removal were observed for different directions. Long and short range order, and the coexistence of both could be observed by this technique.The field and temperature dependence of magnetic ordering was studied in Ho2Ti207 and Dy2Ti207. Ho2Ti2()7 has been more extensively investigated. The field was applied on [00l], [hh0], [hhh] and [hh2h]. Dy2Ti207 was studied with the field applied on [00l] and [hho] but more detailed information about the evolution of the scattering pattern across a large area of reciprocal space was obtained.With the field applied on [00l] both materials showed complete degeneracy removal. A long range ordered structure was formed. Any magnetic diffuse scattering vanished and was entirely replaced by strong magnetic Bragg scattering. At T =0.05 K both materials show unusual magnetization curves, with a prominent step and hysteresis. This was attributed to the extremely slow dynamics of spin ice materials at this temperature.Both materials were studied in greatest detail with the field applied on [hh0]. The coexistence of long and short range order was observed when the field was raised at T = 0.05 K. The application of a field in this direction separated the spin system into two populations. One could be ordered by the field, and one remained disordered. However, via spin-spin interactions, the field restricted the degeneracy of the disordered spin population. The neutron scattering pattern of Dy2Ti207 shows that the spin system was separated into two populations of spin chains, one set ordered and the other only partly so. Cycling the field induced dynamics in these chains, again via spin-spin interactions, as the field acted on the ordered si)in chains. These field regulated dynamics were particularly noted in Ho2Ti207 where a full field cycle was executed. Raising the temperature in an applied field also activated the dynamics of the partially ordered spin chains. The continued evolution of the spin system toward a more ordered state, when dynamics can be induced, suggested that a spin ice does indeed have an energetic groundstate.The remaining two directions probed in Ho2Ti20y both have two populations of spins with different Zeeman energies. The competition of the field and the spin- spin interactions was used to investigate the onset of the ice rules regime (field on [hh2h] and the breaking of the ice rules by a strong field (field on [hhh]). It was shown that the behavior of Ho2Ti207 with field on [hhh] was consistent with the "kagome ice" hypothesis.

  17. Two-State Reactivity in Low-Valent Iron-Mediated C-H Activation and the Implications for Other First-Row Transition Metals.

    PubMed

    Sun, Yihua; Tang, Hao; Chen, Kejuan; Hu, Lianrui; Yao, Jiannian; Shaik, Sason; Chen, Hui

    2016-03-23

    C-H bond activation/functionalization promoted by low-valent iron complexes has recently emerged as a promising approach for the utilization of earth-abundant first-row transition metals to carry out this difficult transformation. Herein we use extensive density functional theory and high-level ab initio coupled cluster calculations to shed light on the mechanism of these intriguing reactions. Our key mechanistic discovery for C-H arylation reactions reveals a two-state reactivity (TSR) scenario in which the low-spin Fe(II) singlet state, which is initially an excited state, crosses over the high-spin ground state and promotes C-H bond cleavage. Subsequently, aryl transmetalation occurs, followed by oxidation of Fe(II) to Fe(III) in a single-electron transfer (SET) step in which dichloroalkane serves as an oxidant, thus promoting the final C-C coupling and finalizing the C-H functionalization. Regeneration of the Fe(II) catalyst for the next round of C-H activation involves SET oxidation of the Fe(I) species generated after the C-C bond coupling. The ligand sphere of iron is found to play a crucial role in the TSR mechanism by stabilization of the reactive low-spin state that mediates the C-H activation. This is the first time that the successful TSR concept conceived for high-valent iron chemistry is shown to successfully rationalize the reactivity for a reaction promoted by low-valent iron complexes. A comparative study involving other divalent middle and late first-row transition metals implicates iron as the optimum metal in this TSR mechanism for C-H activation. It is predicted that stabilization of low-spin Mn(II) using an appropriate ligand sphere should produce another promising candidate for efficient C-H bond activation. This new TSR scenario therefore emerges as a new strategy for using low-valent first-row transition metals for C-H activation reactions.

  18. Probing the Impact of Solvation on Photoexcited Spin Crossover Complexes with High-Precision X-ray Transient Absorption Spectroscopy

    DOE PAGES

    Liu, Cunming; Zhang, Jianxin; Lawson Daku, Latevi M.; ...

    2017-11-10

    Investigating the photoinduced electronic and structural response of bistable molecular building blocks incorporating transition metals in solution phase constitutes a necessary stepping stone for steering their properties towards applications and perfomance optimizations. Here, this paper presents a detailed X-ray transient absorption (XTA) spectroscopy study of a prototypical spin crossover (SCO) complex [Fe II(mbpy) 3] 2+ (where mbpy=4,4’-dimethyl-2,2’-bipyridine) with a [Fe IIN 6] first coordination shell in water (H 2O) and acetonitrile (CH 3CN). The unprecedented data quality of the XTA spectra together with the direct fitting of the difference spectra in k space using a large number of scattering pathsmore » enables resolving the subtle difference in the photoexcited structures of an Fe II complex in two solvents for the first time. Also, compared to the low spin (LS) 1A 1 state, the average Fe-N bond elongations for the photoinduced high spin (HS) 5T 2 state are found to be 0.181 ± 0.003 Å in H 2O and 0.199 ± 0.003 Å in CH 3CN. This difference in structural response is attributed to ligand-solvent interactions that are stronger in H 2O than in CH 3CN for the HS excited state. Our studies demonstrate that, although the metal center of [Fe II(mbpy) 3] 2+ could have been expected to be rather shielded by the three bidentate ligands with quasi-octahedral-coordination, the ligand field strength in the HS excited state is nevertheless indirectly affected by solvation that modifies the charge distribution within the Fe-N covalent bonds. More generally, this work highlights the importance of including solvation effects in order to develop a generalized understanding of the spin-state switching at the atomic level.« less

  19. Femtosecond Measurements Of Size-Dependent Spin Crossover In FeII(pyz)Pt(CN)4 Nanocrystals

    DOE PAGES

    Sagar, D. M.; Baddour, Frederick G.; Konold, Patrick; ...

    2016-01-07

    We report a femtosecond time-resolved spectroscopic study of size-dependent dynamics in nanocrystals (NCs) of Fe(pyz)Pt(CN) 4. We observe that smaller NCs (123 or 78 nm cross section and < 25 nm thickness) exhibit signatures of spin crossover (SCO) with time constants of ~ 5-10 ps whereas larger NCs with 375 nm cross section and 43 nm thickness exhibit a weaker SCO signature accompanied by strong spectral shifting on a ~20 ps time scale. For the small NCs, the fast dynamics appear to result from thermal promotion of residual low-spin states to high-spin states following nonradiative decay, and the size dependencemore » is postulated to arise from differing high-spin vs low-spin fractions in domains residing in strained surface regions. The SCO is less efficient in larger NCs owing to their larger size and hence lower residual LS/HS fractions. Our results suggest that size-dependent dynamics can be controlled by tuning surface energy in NCs with dimensions below ~25 nm for use in energy harvesting, spin switching, and other applications.« less

  20. Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4

    PubMed Central

    Tsurkan, Vladimir; Zherlitsyn, Sergei; Prodan, Lilian; Felea, Viorel; Cong, Pham Thanh; Skourski, Yurii; Wang, Zhe; Deisenhofer, Joachim; von Nidda, Hans-Albrecht Krug; Wosnitza, Joahim; Loidl, Alois

    2017-01-01

    Frustrated magnets provide a promising avenue for realizing exotic quantum states of matter, such as spin liquids and spin ice or complex spin molecules. Under an external magnetic field, frustrated magnets can exhibit fractional magnetization plateaus related to definite spin patterns stabilized by field-induced lattice distortions. Magnetization and ultrasound experiments in MnCr2S4 up to 60 T reveal two fascinating features: (i) an extremely robust magnetization plateau with an unusual spin structure and (ii) two intermediate phases, indicating possible realizations of supersolid phases. The magnetization plateau characterizes fully polarized chromium moments, without any contributions from manganese spins. At 40 T, the middle of the plateau, a regime evolves, where sound waves propagate almost without dissipation. The external magnetic field exactly compensates the Cr–Mn exchange field and decouples Mn and Cr sublattices. In analogy to predictions of quantum lattice-gas models, the changes of the spin order of the manganese ions at the phase boundaries of the magnetization plateau are interpreted as transitions to supersolid phases. PMID:28345038

  1. KSC-97PC1228

    NASA Image and Video Library

    1997-08-05

    The Advanced Composition Explorer (ACE) spacecraft undergoes a spin test in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA

  2. KSC-97PC1227

    NASA Image and Video Library

    1997-08-05

    The Advanced Composition Explorer (ACE) spacecraft undergoes a spin test in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Qing; Department of Modern Physics, University of Science and Technology of China, Hefei 230026; Cheng Jianhua

    In this paper we demonstrate that optimal 1{yields}M phase-covariant cloning quantum cloning is available via free dynamical evolution of spin networks. By properly designing the network and the couplings between spins, we show that optimal 1{yields}M phase-covariant cloning can be achieved if the initial state is prepared as a specific symmetric state. Especially, when M is an odd number, the optimal phase-covariant cloning can be achieved without ancillas. Moreover, we demonstrate that the same framework is capable for optimal 1{yields}2 universal cloning.

  4. Revisiting Kawasaki dynamics in one dimension

    NASA Astrophysics Data System (ADS)

    Grynberg, M. D.

    2010-11-01

    Critical exponents of the Kawasaki dynamics in the Ising chain are re-examined numerically through the spectrum gap of evolution operators constructed both in spin and domain-wall representations. At low-temperature regimes the latter provides a rapid finite-size convergence to these exponents, which tend to z≃3.11 for instant quenches under ferromagnetic couplings, while approaching to z≃2 in the antiferro case. The spin representation complements the evaluation of dynamic exponents at higher temperature scales, where the kinetics still remains slow.

  5. On the Lagrangian description of unsteady boundary-layer separation. II - The spinning sphere

    NASA Technical Reports Server (NTRS)

    Van Dommelen, Leon L.

    1990-01-01

    A theory to explain the initial stages of unsteady separation was proposed by Van Dommelen and Cowley (1989). This theory is verified for the separation process that occurs at the equatorial plane of a sphere or a spheroid which is impulsively spun around an axis of symmetry. A Lagrangian numerical scheme is developed which gives results in good agreement with Eulerian computations, but which is significantly more accurate. This increased accuracy, and a simpler structure to the solution, also allows verification of the Eulerian structure, including the presence of logarithmic terms. Further, while the Eulerian computations broke down at the first occurrence of separation, it is found that the Lagrangian computation can be continued. It is argued that this separated solution does provide useful insight into the further evolution of the separated flow. A remarkable conclusion is that an unseparated vorticity layer at the wall, a familiar feature in unsteady separation processes, disappears in finite time.

  6. KSC-03pd0536

    NASA Image and Video Library

    2003-02-24

    KENNEDY SPACE CENTER, FLA. -- The cruise stage, aeroshell and lander for the Mars Exploration Rover-1 mission and the MER-2 rover arrive at KSC. The same flight hardware for the MER-2 rover arrived Jan. 27; however, the MER-2 rover is scheduled to arrive at KSC in March. While at KSC, each of the two rovers, the aeroshells and the landers will undergo a full mission simulation. All of these flight elements will then be integrated together. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers will be identical to each other, but will land at different regions of Mars. Launch of the MER-1 is scheduled for May 30. MER-2 will follow June 25.

  7. Evolution of deformation in neutron-rich Ba isotopes up to A =150

    NASA Astrophysics Data System (ADS)

    Licǎ, R.; Benzoni, G.; Rodríguez, T. R.; Borge, M. J. G.; Fraile, L. M.; Mach, H.; Morales, A. I.; Madurga, M.; Sotty, C. O.; Vedia, V.; De Witte, H.; Benito, J.; Bernard, R. N.; Berry, T.; Bracco, A.; Camera, F.; Ceruti, S.; Charviakova, V.; Cieplicka-Oryńczak, N.; Costache, C.; Crespi, F. C. L.; Creswell, J.; Fernandez-Martínez, G.; Fynbo, H.; Greenlees, P. T.; Homm, I.; Huyse, M.; Jolie, J.; Karayonchev, V.; Köster, U.; Konki, J.; Kröll, T.; Kurcewicz, J.; Kurtukian-Nieto, T.; Lazarus, I.; Lund, M. V.; Mǎrginean, N.; Mǎrginean, R.; Mihai, C.; Mihai, R. E.; Negret, A.; Orduz, A.; Patyk, Z.; Pascu, S.; Pucknell, V.; Rahkila, P.; Rapisarda, E.; Regis, J. M.; Robledo, L. M.; Rotaru, F.; Saed-Samii, N.; Sánchez-Tembleque, V.; Stanoiu, M.; Tengblad, O.; Thuerauf, M.; Turturica, A.; Van Duppen, P.; Warr, N.; IDS Collaboration

    2018-02-01

    The occurrence of octupolar shapes in the Ba isotopic chain was recently established experimentally up to N =90 . To further extend the systematics, the evolution of shapes in the most neutron-rich members of the Z =56 isotopic chain accessible at present, Ba,150148, has been studied via β decay at the ISOLDE Decay Station. This paper reports on the first measurement of the positive- and negative-parity low-spin excited states of 150Ba and presents an extension of the β -decay scheme of 148Cs. Employing the fast timing technique, half-lives for the 21+ level in both nuclei have been determined, resulting in T1 /2=1.51 (1 ) ns for 148Ba and T1 /2=3.4 (2 ) ns for 150Ba. The systematics of low-spin states, together with the experimental determination of the B (E 2 :2+→0+) transition probabilities, indicate an increasing collectivity in Ba-150148, towards prolate deformed shapes. The experimental data are compared to symmetry conserving configuration mixing (SCCM) calculations, confirming an evolution of increasingly quadrupole deformed shapes with a definite octupolar character.

  8. Dicopper(II) metallacyclophanes as multifunctional magnetic devices: a joint experimental and computational study.

    PubMed

    Castellano, María; Ruiz-García, Rafael; Cano, Joan; Ferrando-Soria, Jesús; Pardo, Emilio; Fortea-Pérez, Francisco R; Stiriba, Salah-Eddine; Julve, Miguel; Lloret, Francesc

    2015-03-17

    Metallosupramolecular complexes constitute an important advance in the emerging fields of molecular spintronics and quantum computation and a useful platform in the development of active components of spintronic circuits and quantum computers for applications in information processing and storage. The external control of chemical reactivity (electro- and photochemical) and physical properties (electronic and magnetic) in metallosupramolecular complexes is a current challenge in supramolecular coordination chemistry, which lies at the interface of several other supramolecular disciplines, including electro-, photo-, and magnetochemistry. The specific control of current flow or spin delocalization through a molecular assembly in response to one or many input signals leads to the concept of developing a molecule-based spintronics that can be viewed as a potential alternative to the classical molecule-based electronics. A great variety of factors can influence over these electronically or magnetically coupled, metallosupramolecular complexes in a reversible manner, electronic or photonic external stimuli being the most promising ones. The response ability of the metal centers and/or the organic bridging ligands to the application of an electric field or light irradiation, together with the geometrical features that allow the precise positioning in space of substituent groups, make these metal-organic systems particularly suitable to build highly integrated molecular spintronic circuits. In this Account, we describe the chemistry and physics of dinuclear copper(II) metallacyclophanes with oxamato-containing dinucleating ligands featuring redox- and photoactive aromatic spacers. Our recent works on dicopper(II) metallacyclophanes and earlier ones on related organic cyclophanes are now compared in a critical manner. Special focus is placed on the ligand design as well as in the combination of experimental and computational methods to demonstrate the multifunctionality nature of these metallosupramolecular complexes. This new class of oxamato-based dicopper(II) metallacyclophanes affords an excellent synthetic and theoretical set of models for both chemical and physical fundamental studies on redox- and photo-triggered, long-distance electron exchange phenomena, which are two major topics in molecular magnetism and molecular electronics. Apart from their use as ground tests for the fundamental research on the relative importance of the spin delocalization and spin polarization mechanisms of the electron exchange interaction through extended π-conjugated aromatic ligands in polymetallic complexes, oxamato-based dicopper(II) metallacyclophanes possessing spin-containing electro- and chromophores at the metal and/or the ligand counterparts emerge as potentially active (magnetic and electronic) molecular components to build a metal-based spintronic circuit. They are thus unique examples of multifunctional magnetic complexes to get single-molecule spintronic devices by controlling and allowing the spin communication, when serving as molecular magnetic couplers and wires, or by exhibiting bistable spin behavior, when acting as molecular magnetic rectifiers and switches. Oxamato-based dicopper(II) metallacyclophanes also emerge as potential candidates for the study of coherent electron transport through single molecules, both experimentally and theoretically. The results presented herein, which are a first step in the metallosupramolecular approach to molecular spintronics, intend to attract the attention of physicists and materials scientists with a large expertice in the manipulation and measurement of single-molecule electron transport properties, as well as in the processing and addressing of molecules on different supports.

  9. N-tert-butylmethanimine N-oxide is an efficient spin-trapping probe for EPR analysis of glutathione thiyl radical

    PubMed Central

    Scott, Melanie J.; Billiar, Timothy R.; Stoyanovsky, Detcho A.

    2016-01-01

    The electron spin resonance (EPR) spin-trapping technique allows detection of radical species with nanosecond half-lives. This technique is based on the high rates of addition of radicals to nitrones or nitroso compounds (spin traps; STs). The paramagnetic nitroxides (spin-adducts) formed as a result of reactions between STs and radical species are relatively stable compounds whose EPR spectra represent “structural fingerprints” of the parent radical species. Herein we report a novel protocol for the synthesis of N-tert-butylmethanimine N-oxide (EBN), which is the simplest nitrone containing an α-H and a tertiary α′-C atom. We present EPR spin-trapping proof that: (i) EBN is an efficient probe for the analysis of glutathione thiyl radical (GS•); (ii) β-cyclodextrins increase the kinetic stability of the spin-adduct EBN/•SG; and (iii) in aqueous solutions, EBN does not react with superoxide anion radical (O2−•) to form EBN/•OOH to any significant extent. The data presented complement previous studies within the context of synthetic accessibility to EBN and efficient spin-trapping analysis of GS•. PMID:27941944

  10. Spin-Dependent Processes Measured without a Permanent Magnet.

    PubMed

    Fontanesi, Claudio; Capua, Eyal; Paltiel, Yossi; Waldeck, David H; Naaman, Ron

    2018-05-07

    A novel Hall circuit design that can be incorporated into a working electrode, which is used to probe spin-selective charge transfer and charge displacement processes, is reviewed herein. The general design of a Hall circuit based on a semiconductor heterostructure, which forms a shallow 2D electron gas and is used as an electrode, is described. Three different types of spin-selective processes have been studied with this device in the past: i) photoinduced charge exchange between quantum dots and the working electrode through chiral molecules is associated with spin polarization that creates a local magnetization and generates a Hall voltage; ii) charge polarization of chiral molecules by an applied voltage is accompanied by a spin polarization that generates a Hall voltage; and iii) cyclic voltammetry (current-voltage) measurements of electrochemical redox reactions that can be spin-analyzed by the Hall circuit to provide a third dimension (spin) in addition to the well-known current and voltage dimensions. The three studies reviewed open new doors into understanding both the spin current and the charge current in electronic materials and electrochemical processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Homoleptic versus Heteroleptic Formation of Mononuclear Fe(II) Complexes with Tris-Imine Ligands

    DOE PAGES

    Barrios, Leoni A.; Bartual-Murgui, Carlos; Peyrecave-Lleixa, Eugenia; ...

    2016-04-13

    In this paper, we show a marked tendency of Fe(II) to form heteroleptic [Fe(L)(L')](ClO 4) 2 complexes from pairs of chelating tris-imine 3bpp, tpy, or 2bbp ligands. New synthetic avenues for spin crossover research become thus available, here illustrated with three new heteroleptic compounds with differing magnetic behaviors: [Fe(H 4L1)(Cl-tpy)](ClO 4) 2 ·C 3H 6O (1), [Fe(H 2L3)(Me3bpp)](ClO 4) 2 ·C 3H 6O (2), [Fe(H 4L1)(2bbp)](ClO 4) 2 ·3C 3H 6O (3). Structural studies demonstrate that 1 is in the low-spin (LS) state up to 350 K, while complexes 2 and 3 are, by contrast, in the high-spin (HS) statemore » down to 2 K, as corroborated through magnetic susceptibility measurements. Upon exposure to the atmosphere, the latter exhibits the release of three molecules of acetone per complex, turning into the solvent-free analogue [Fe(H 4L1)(2bbp)](ClO 4) 2 (3a), through a single-crystal-to-single-crystal transformation. Lastly, this guest extrusion process is accompanied by a spin switch, from HS to LS.« less

  12. Electronic structure of PrBa2Cu3O7: A local-spin-density approximation with on-site Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Biagini, M.; Calandra, C.; Ossicini, Stefano

    1995-10-01

    Electronic structure calculations based on the local-spin-density approximation (LSDA) fail to reproduce the antiferromagnetic ground state of PrBa2Cu3O7 (PBCO). We have performed linear muffin-tin orbital-atomic sphere approximation calculations, based on the local-spin-density approximation with on-site Coulomb correlation applied to Cu(1) and Cu(2) 3d states. We have found that inclusion of the on-site Coulomb interaction modifies qualitatively the electronic structure of PBCO with respect to the LSDA results, and gives Cu spin moments in good agreement with the experimental values. The Cu(2) upper Hubbard band lies about 1 eV above the Fermi energy, indicating a CuII oxidation state. On the other hand, the Cu(1) upper Hubbard band is located across the Fermi level, which implies an intermediate oxidation state for the Cu(1) ion, between CuI and CuII. The metallic character of the CuO chains is preserved, in agreement with optical reflectivity [K. Takenaka et al., Phys. Rev. B 46, 5833 (1992)] and positron annihilation experiments [L. Hoffmann et al., Phys. Rev. Lett. 71, 4047 (1993)]. These results support the view of an extrinsic origin of the insulating character of PrBa2Cu3O7.

  13. Preparation, ferromagnetic and photocatalytic performance of NiO and hollow Co{sub 3}O{sub 4} fibers through centrifugal-spinning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Cong; Lin, Xuejun; Wang, Xinqiang, E-mail: xqwang@sdu.edu.cn

    Highlights: • NiO and hollow Co{sub 3}O{sub 4} fibers with the diameter of about 10 μm were prepared through centrifugal-spinning technique. • The evolution mechanism from precursor to crystalline fibers was explored. • Both NiO and hollow Co{sub 3}O{sub 4} fibers show ferromagnetism. • The NiO fibers exhibit good photocatalytic performance. - Abstract: Both NiO and hollow Co{sub 3}O{sub 4} fibers with the diameter of about 10 μm have been successfully prepared through spinning high viscous sols into precursor fibers and followed calcination process. The evolution process from precursor to crystalline fibers and the microstructures of the obtained fibers weremore » characterized by TG-DSC, FT-IR, XRD, HRTEM, SEM and the like. The method is facile and cost-effective for mass production of fibers and the obtained fibers are pure phase with high crystallinity. Their magnetic properties were investigated, showing that both the fibers are ferromagnetic. Meanwhile, the NiO fibers exhibit good photocatalytic performance for the removal of Congo red from water under UV light irradiation.« less

  14. Emergence of entanglement with temperature and time in factorization-surface states

    NASA Astrophysics Data System (ADS)

    Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal

    2018-01-01

    There exist zero-temperature states in quantum many-body systems that are fully factorized, thereby possessing vanishing entanglement, and hence being of no use as resource in quantum information processing tasks. Such states can become useful for quantum protocols when the temperature of the system is increased, and when the system is allowed to evolve under either the influence of an external environment, or a closed unitary evolution driven by its own Hamiltonian due to a sudden change in the system parameters. Using the one-dimensional anisotropic XY model in a uniform and an alternating transverse magnetic field, we show that entanglement of the thermal states, corresponding to the factorization points in the space of the system parameters, revives once or twice with increasing temperature. We also study the closed unitary evolution of the quantum spin chain driven out of equilibrium when the external magnetic fields are turned off, and show that considerable entanglement is generated during the dynamics, when the initial state has vanishing entanglement. Interestingly, we find that creation of entanglement for a pair of spins is possible when the system is made open to an external heat bath, interacting with the system through that spin-pair via a repetitive quantum interaction.

  15. Pulsed field gradients in simulations of one- and two-dimensional NMR spectra.

    PubMed

    Meresi, G H; Cuperlovic, M; Palke, W E; Gerig, J T

    1999-03-01

    A method for the inclusion of the effects of z-axis pulsed field gradients in computer simulations of an arbitrary pulsed NMR experiment with spin (1/2) nuclei is described. Recognizing that the phase acquired by a coherence following the application of a z-axis pulsed field gradient bears a fixed relation to its order and the spatial position of the spins in the sample tube, the sample is regarded as a collection of volume elements, each phase-encoded by a characteristic, spatially dependent precession frequency. The evolution of the sample's density matrix is thus obtained by computing the evolution of the density matrix for each volume element. Following the last gradient pulse, these density matrices are combined to form a composite density matrix which evolves through the rest of the experiment to yield the observable signal. This approach is implemented in a program which includes capabilities for rigorous inclusion of spin relaxation by dipole-dipole, chemical shift anisotropy, and random field mechanisms, plus the effects of arbitrary RF fields. Mathematical procedures for accelerating these calculations are described. The approach is illustrated by simulations of representative one- and two-dimensional NMR experiments. Copyright 1999 Academic Press.

  16. Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics.

    PubMed

    Correia, Alexandre C M; Laskar, Jacques

    2004-06-24

    Mercury is locked into a 3/2 spin-orbit resonance where it rotates three times on its axis for every two orbits around the sun. The stability of this equilibrium state is well established, but our understanding of how this state initially arose remains unsatisfactory. Unless one uses an unrealistic tidal model with constant torques (which cannot account for the observed damping of the libration of the planet) the computed probability of capture into 3/2 resonance is very low (about 7 per cent). This led to the proposal that core-mantle friction may have increased the capture probability, but such a process requires very specific values of the core viscosity. Here we show that the chaotic evolution of Mercury's orbit can drive its eccentricity beyond 0.325 during the planet's history, which very efficiently leads to its capture into the 3/2 resonance. In our numerical integrations of 1,000 orbits of Mercury over 4 Gyr, capture into the 3/2 spin-orbit resonant state was the most probable final outcome of the planet's evolution, occurring 55.4 per cent of the time.

  17. A BROADBAND EMISSION MODEL OF MAGNETAR WIND NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Shuta J.

    2016-08-20

    Angular momentum loss by the plasma wind is considered as a universal feature of isolated neutron stars including magnetars. The wind nebulae that are powered by magnetars allow us to compare the wind properties and the spin evolution of magnetars with those of rotation-powered pulsars (RPPs). In this paper, we construct a broadband emission model of magnetar wind nebulae (MWNe). This model is similar to past studies of young pulsar wind nebulae (PWNe) around RPPs, but is modified for the application to MWNe that have far less observational information than the young PWNe. We apply the model to the MWNmore » around the youngest (∼1 kyr) magnetar, 1E 1547.0-5408, which has the largest spin-down power L {sub spin} among all the magnetars. However, the MWN is faint because of the low L {sub spin} of 1E 1547.0-5408 when compared to the young RPPs. Since most parameters are not well constrained by only an X-ray flux upper limit of the MWN, we adopt the model’s parameters from the young PWN Kes 75 around PSR J1846-0258, which is a peculiar RPP showing magnetar-like behaviors. The model predicts that γ -ray flux will be detected in a future TeV γ -ray observation by CTA (Cherenkov Telescope Array). The MWN spectrum does not allow us to test the hypothesis that 1E 1547.0-5408 had a period of milliseconds at its birth because the particles injected during the early phase of evolution suffered from severe adiabatic and synchrotron losses. Furthermore, both observational and theoretical studies of the wind nebulae around magnetars are required to constrain the wind and the spin-down properties of magnetars.« less

  18. A Broadband Emission Model of Magnetar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuta J.

    2016-08-01

    Angular momentum loss by the plasma wind is considered as a universal feature of isolated neutron stars including magnetars. The wind nebulae that are powered by magnetars allow us to compare the wind properties and the spin evolution of magnetars with those of rotation-powered pulsars (RPPs). In this paper, we construct a broadband emission model of magnetar wind nebulae (MWNe). This model is similar to past studies of young pulsar wind nebulae (PWNe) around RPPs, but is modified for the application to MWNe that have far less observational information than the young PWNe. We apply the model to the MWN around the youngest (˜1 kyr) magnetar, 1E 1547.0-5408, which has the largest spin-down power L spin among all the magnetars. However, the MWN is faint because of the low L spin of 1E 1547.0-5408 when compared to the young RPPs. Since most parameters are not well constrained by only an X-ray flux upper limit of the MWN, we adopt the model’s parameters from the young PWN Kes 75 around PSR J1846-0258, which is a peculiar RPP showing magnetar-like behaviors. The model predicts that γ-ray flux will be detected in a future TeV γ-ray observation by CTA (Cherenkov Telescope Array). The MWN spectrum does not allow us to test the hypothesis that 1E 1547.0-5408 had a period of milliseconds at its birth because the particles injected during the early phase of evolution suffered from severe adiabatic and synchrotron losses. Furthermore, both observational and theoretical studies of the wind nebulae around magnetars are required to constrain the wind and the spin-down properties of magnetars.

  19. Long-term evolution of the neutron-star spin period of SXP 1062

    NASA Astrophysics Data System (ADS)

    Sturm, R.; Haberl, F.; Oskinova, L. M.; Schurch, M. P. E.; Hénault-Brunet, V.; Gallagher, J. S.; Udalski, A.

    2013-08-01

    Context. The Be/X-ray binary SXP 1062 is of especial interest owing to the large spin period of the neutron star, its large spin-down rate, and the association with a supernova remnant constraining its age. This makes the source an important probe for accretion physics. Aims: To investigate the long-term evolution of the spin period and associated spectral variations, we performed an XMM-Newton target-of-opportunity observation of SXP 1062 during X-ray outburst. Methods: Spectral and timing analysis of the XMM-Newton data was compared with previous studies, as well as complementary Swift/XRT monitoring and optical spectroscopy with the SALT telescope were obtained. Results: The spin period was measured to be Ps = (1071.01 ± 0.16) s on 2012 Oct. 14. The X-ray spectrum is similar to that of previous observations. No convincing cyclotron absorption features, which could be indicative for a high magnetic field strength, are found. The high-resolution RGS spectra indicate the presence of emission lines, which may not completely be accounted for by the SNR emission. The comparison of multi-epoch optical spectra suggest an increasing size or density of the decretion disc around the Be star. Conclusions: SXP 1062 showed a net spin-down with an average of Ṗs = (2.27 ± 0.44) s yr-1 over a baseline of 915 days. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA and on observations made with the Southern African Large Telescope (SALT).The reduced SALT spectra is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A139

  20. Shape evolution with angular momentum in Lu isotopes

    NASA Astrophysics Data System (ADS)

    Kardan, Azam; Sayyah, Sepideh

    2016-06-01

    The nuclear potential energies of Lu isotopes with neutron number N = 90 - 98 up to high spins are computed within the framework of the unpaired cranked Nilsson-Strutinsky method. The potential and the macroscopic Lublin-Strasbourg drop (LSD) energy-surface diagrams are analyzed in terms of quadrupole deformation and triaxiality parameter. The shape evolution of these isotopes with respect to angular momentum, as well as the neutron number is studied.

  1. Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Yun, Su-Jin

    In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.

  2. Discovery of the Largest Orbweaving Spider Species: The Evolution of Gigantism in Nephila

    PubMed Central

    Kuntner, Matjaž; Coddington, Jonathan A.

    2009-01-01

    Background More than 41,000 spider species are known with about 400–500 added each year, but for some well-known groups, such as the giant golden orbweavers, Nephila, the last valid described species dates from the 19th century. Nephila are renowned for being the largest web-spinning spiders, making the largest orb webs, and are model organisms for the study of extreme sexual size dimorphism (SSD) and sexual biology. Here, we report on the discovery of a new, giant Nephila species from Africa and Madagascar, and review size evolution and SSD in Nephilidae. Methodology We formally describe N. komaci sp. nov., the largest web spinning species known, and place the species in phylogenetic context to reconstruct the evolution of mean size (via squared change parsimony). We then test female and male mean size correlation using phylogenetically independent contrasts, and simulate nephilid body size evolution using Monte Carlo statistics. Conclusions Nephila females increased in size almost monotonically to establish a mostly African clade of true giants. In contrast, Nephila male size is effectively decoupled and hovers around values roughly one fifth of female size. Although N. komaci females are the largest Nephila yet discovered, the males are also large and thus their SSD is not exceptional. PMID:19844575

  3. Discovery of the largest orbweaving spider species: the evolution of gigantism in Nephila.

    PubMed

    Kuntner, Matjaz; Coddington, Jonathan A

    2009-10-21

    More than 41,000 spider species are known with about 400-500 added each year, but for some well-known groups, such as the giant golden orbweavers, Nephila, the last valid described species dates from the 19(th) century. Nephila are renowned for being the largest web-spinning spiders, making the largest orb webs, and are model organisms for the study of extreme sexual size dimorphism (SSD) and sexual biology. Here, we report on the discovery of a new, giant Nephila species from Africa and Madagascar, and review size evolution and SSD in Nephilidae. We formally describe N. komaci sp. nov., the largest web spinning species known, and place the species in phylogenetic context to reconstruct the evolution of mean size (via squared change parsimony). We then test female and male mean size correlation using phylogenetically independent contrasts, and simulate nephilid body size evolution using Monte Carlo statistics. Nephila females increased in size almost monotonically to establish a mostly African clade of true giants. In contrast, Nephila male size is effectively decoupled and hovers around values roughly one fifth of female size. Although N. komaci females are the largest Nephila yet discovered, the males are also large and thus their SSD is not exceptional.

  4. Using Spin to Understand the Formation of LIGO and Virgo’s Black Holes

    NASA Astrophysics Data System (ADS)

    Farr, Ben; Holz, Daniel E.; Farr, Will M.

    2018-02-01

    With the growing number of binary black hole (BBH) mergers detected by the Advanced LIGO and Virgo detectors, it is becoming possible to constrain the properties of the underlying population and better understand the formation of these systems. Black hole (BH) spin orientations are one of the cleanest discriminators of formation history, with BHs in dynamically formed binaries in dense stellar environments expected to have spins distributed isotropically, in contrast to isolated populations where stellar evolution is expected to induce spins preferentially aligned with the orbital angular momentum. In this work, we propose a simple, model-agnostic approach to characterizing the spin properties of LIGO/Virgo’s BBH population. Using measurements of the effective spin of the binaries, we introduce a simple parameter to quantify the fraction of the population that is isotropically distributed, regardless of the spin magnitude distribution of the population. Once the orientation characteristics of the population have been determined, we show how measurements of effective spin can be used to directly constrain the BH spin magnitude distribution. We find that most effective spin measurements are too small to be informative, with the first four events showing a slight preference for a population with alignment, with an odds ratio of 1.2. We argue that it will be possible to distinguish symmetric and anti-symmetric populations at high confidence with tens of additional detections, although mixed populations may take significantly longer to disentangle. We also derive BH spin magnitude distributions from LIGO’s first four BBHs under the assumption of aligned or isotropic populations.

  5. Terminal NiII-OH/-OH2 complexes in trigonal bipyramidal geometries derived from H2O.

    PubMed

    Lau, Nathanael; Sano, Yohei; Ziller, Joseph W; Borovik, A S

    2017-03-29

    The preparation and characterization of two Ni II complexes are described, a terminal Ni II -OH complex with the tripodal ligand tris[(N)-tertbutylureaylato)-N-ethyl)]aminato ([H 3 buea] 3- ) and a terminal Ni II -OH 2 complex with the tripodal ligand N , N ', N ″-[2,2',2″-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido) ([MST] 3- ). For both complexes, the source of the -OH and -OH 2 ligand is water. The salts K 2 [Ni II H 3 buea(OH)] and NMe 4 [Ni II MST(OH 2 )] were characterized using perpendicular-mode X-band electronic paramagnetic resonance, Fourier transform infrared, UV-visible spectroscopies, and its electrochemical properties were evaluated using cyclic voltammetry. The solid state structures of these complexes determined by X-ray diffraction methods reveal that they adopt a distorted trigonal bipyramidal geometry, an unusual structure for 5-coordinate Ni II complexes. Moreover, the Ni II -OH and Ni II -OH 2 units form intramolecular hydrogen bonding networks with the [H 3 buea] 3- and [MST] 3- ligands. The oxidation chemistry of these complexes was explored by treating the high-spin Ni II compounds with one-electron oxidants. Species were formed with S = 1/2 spin ground states that are consistent with formation of monomeric Ni III species. While the formation of Ni III -OH complexes cannot be ruled out, the lack of observable O-H vibrations from the putative Ni-OH units suggest the possibility that other high valent Ni species are formed.

  6. Photonic simulation of entanglement growth and engineering after a spin chain quench.

    PubMed

    Pitsios, Ioannis; Banchi, Leonardo; Rab, Adil S; Bentivegna, Marco; Caprara, Debora; Crespi, Andrea; Spagnolo, Nicolò; Bose, Sougato; Mataloni, Paolo; Osellame, Roberto; Sciarrino, Fabio

    2017-11-17

    The time evolution of quantum many-body systems is one of the most important processes for benchmarking quantum simulators. The most curious feature of such dynamics is the growth of quantum entanglement to an amount proportional to the system size (volume law) even when interactions are local. This phenomenon has great ramifications for fundamental aspects, while its optimisation clearly has an impact on technology (e.g., for on-chip quantum networking). Here we use an integrated photonic chip with a circuit-based approach to simulate the dynamics of a spin chain and maximise the entanglement generation. The resulting entanglement is certified by constructing a second chip, which measures the entanglement between multiple distant pairs of simulated spins, as well as the block entanglement entropy. This is the first photonic simulation and optimisation of the extensive growth of entanglement in a spin chain, and opens up the use of photonic circuits for optimising quantum devices.

  7. On the origin of the peculiar cataclysmic variable AE Aquarii

    NASA Astrophysics Data System (ADS)

    Beskrovnaya, N. G.; Ikhsanov, N. R.

    2015-02-01

    The nova-like variable AE Aquarii is a close binary system containing a red dwarf and a magnetized white dwarf rotating with the period of 33 s. A short spin period of the white dwarf is caused by an intensive mass exchange between the system components during a previous epoch. We show that a high rate of disk accretion onto the white dwarf surface resulted in temporary screening of its magnetic field and spin-up of the white dwarf to its present spin period. Transition of the white dwarf to the ejector state occurred at a final stage of the spin-up epoch after its magnetic field had emerged from the accreted plasma due to diffusion. In the frame of this scenario AE Aqr represents a missing link in the chain of Polars evolution and the white dwarf resembles a recycled pulsar.

  8. 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer spin valve component investigated by polarized neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callori, S. J., E-mail: sara.callori@ansto.gov.au; Bertinshaw, J.; Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234

    2014-07-21

    We have observed 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer system using polarized neutron reflectometry. Magnetometry results show magnetic switching for both the biased and free NiFe layers, the latter of which reverses at low applied fields. As these measurements are only capable of providing information about the total magnetization within a sample, polarized neutron reflectometry was used to investigate the reversal behavior of the NiFe layers individually. Both the non-spin-flip and spin-flip neutron reflectometry signals were tracked around the free NiFe layer hysteresis loop and were used to detail the evolution of the magnetization during reversal. At lowmore » magnetic fields near the free NiFe coercive field, a large spin-flip signal was observed, indicating magnetization aligned perpendicular to both the applied field and pinned layer.« less

  9. Effect of surface tension on the dynamical behavior of bubble in rotating fluids under low gravity environment

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.

    1988-01-01

    Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) linear functions of increasing and decreasing gravity enviroment in high and low rotating cylidner speeds, (3) step functions of spin-up and spin-down in a low gravity environment, and (4) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds. The initial condition of bubble profiles was adopted from the steady-state formulations in which the computer algorithms have been developed by Hung and Leslie (1988), and Hung et al. (1988).

  10. Dynamical behavior of surface tension on rotating fluids in low and microgravity environments

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1989-01-01

    Consideration is given to the time-dependent evolutions of the free surface profile (bubble shapes) of a cylindrical container, partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry in low and microgravity environments. The dynamics of the bubble shapes are calculated for four cases: linear time-dependent functions of spin-up and spin-down in low and microgravity, linear time-dependent functions of increasing and decreasing gravity at high and low rotating cylinder speeds, time-dependent step functions of spin-up and spin-down in low gravity, and sinusoidal function oscillation of the gravity environment in high and low rotating cylinder speeds. It is shown that the computer algorithms developed by Hung et al. (1988) may be used to simulate the profile of time-dependent bubble shapes under variations of centrifugal, capillary, and gravity forces.

  11. Spin-flop and magnetodielectric reversal in Yb substituted GdMnO3

    NASA Astrophysics Data System (ADS)

    Pal, A.; Prellier, W.; Murugavel, P.

    2018-03-01

    The evolution of various spin structures in Yb doped GdMnO3 distorted orthorhombic perovskite system was investigated from their magnetic, dielectric and magnetodielectric characteristics. The Gd1-x Yb x MnO3 (0  ⩽  x  ⩽  0.15) revealed an enhanced magnetodielectric coupling when their magnetic structure is guided from ab to the bc-cycloidal spin structure upon Yb doping. The compounds exhibit magnetic field and temperature controlled spin-flop from c to a-axis. Additionally, magnetodielectric reversal is observed for the x  =  0.1 sample which depends on both magnetic field and temperature. The resultant correlation between magnetic and electric orderings is discussed in the frame of symmetric and antisymmetric exchange interaction models. These findings provide further insight in understanding the magnetoelectric materials and importantly show a way to tune the magnetic and magnetodielectric properties towards better application potential.

  12. Spiral magnetic order and pressure-induced superconductivity in transition metal compounds.

    PubMed

    Wang, Yishu; Feng, Yejun; Cheng, J-G; Wu, W; Luo, J L; Rosenbaum, T F

    2016-10-06

    Magnetic and superconducting ground states can compete, cooperate and coexist. MnP provides a compelling and potentially generalizable example of a material where superconductivity and magnetism may be intertwined. Using a synchrotron-based non-resonant X-ray magnetic diffraction technique, we reveal a spiral spin order in MnP and trace its pressure evolution towards superconducting order via measurements in a diamond anvil cell. Judging from the magnetostriction, ordered moments vanish at the quantum phase transition as pressure increases the electron kinetic energy. Spins remain local in the disordered phase, and the promotion of superconductivity is likely to emerge from an enhanced coupling to residual spiral spin fluctuations and their concomitant suppression of phonon-mediated superconductivity. As the pitch of the spiral order varies across the 3d transition metal compounds in the MnP family, the magnetic ground state switches between antiferromagnet and ferromagnet, providing an additional tuning parameter in probing spin-fluctuation-induced superconductivity.

  13. Calculation of exchange coupling constants in triply-bridged dinuclear Cu(II) compounds based on spin-flip constricted variational density functional theory.

    PubMed

    Seidu, Issaka; Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2012-03-08

    The performance of the second-order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) for the calculation of the exchange coupling constant (J) is assessed by application to a series of triply bridged Cu(II) dinuclear complexes. A comparison of the J values based on SF-CV(2)-DFT with those obtained by the broken symmetry (BS) DFT method and experiment is provided. It is demonstrated that our methodology constitutes a viable alternative to the BS-DFT method. The strong dependence of the calculated exchange coupling constants on the applied functionals is demonstrated. Both SF-CV(2)-DFT and BS-DFT affords the best agreement with experiment for hybrid functionals.

  14. POET: Planetary Orbital Evolution due to Tides

    NASA Astrophysics Data System (ADS)

    Penev, Kaloyan

    2014-08-01

    POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Shuang; Yi, Fei-Yan; Li, Guanghua

    Two coordination polymers [Co{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 2}]·H{sub 2}O (1) and [Ni{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 4}]·3H{sub 2}O (2) were prepared by hydrothermal reactions of MCl{sub 2}·6H{sub 2}O (M = Co, Ni) with a V-shaped ligand TDPA (3,3′,4,4′-thiodiphthalic anhydride) and a I-shaped N-donor co-ligand (4,4′-bipy). They were characterized by elemental analyses, thermogravinetric analyses, and magnetic behavior. As is expected, TDPA hydrolyzes into the corresponding tetra-carboxylate acid H{sub 4}TA (3,3′,4,4′-thiodiphthalic acid) during the reactions. Co{sub 2} dimer and Ni mononuclear center are connected into two-dimensional (2D) layers by H{sub 4}TA and 4,4′-bipy bridge in 1 and 2, respectively. The most amazing featuremore » is that 1 and 2 exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively, with the critical Néel temperature of T{sub N} =4 K for 1 and T{sub N} =13 K for 2, based on variable temperature magnetic susceptibility measurements. In low mono- or dinuclear metal system, such magnetic behaviors have rare been observed. Furthermore, complex 1 will be a potential metamagnet material. - Graphical abstract: Two Co(II) and Ni(II) coordination polymers were synthesized by hydrothermal reactions from a V-shape ligand (3,3′,4,4′-thiodiphthalic anhydride) and a I-shape ligand (4,4′-bipy), which were characterized by single crystal X-ray diffraction, elemental analyses, thermogravinetric analyses, and magnetic behavior, and exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively. - Highlights: • Two Co(II) and Ni(II) coordination polymers were successfully synthesized. • Co(II) coordination polymer shows an interesting spin-canting metamagnetism. • Ni(II) coordination polymer exhibits a weak ferromagnetic behavior.« less

  16. The catalase activity of diiron adenine deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometrymore » and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.« less

  17. State diagram of magnetostatic coupling phase-locked spin-torque oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Mengwei; Wang, Longze; Wei, Dan, E-mail: weidan@mail.tsinghua.edu.cn

    2015-05-07

    The state diagram of magnetostatic coupling phase-locked spin torque oscillator (STO) with perpendicular reference layer and planar field generation layer (FGL) is studied by the macrospin model and the micromagnetic model. The state diagrams of current densities are calculated under various external fields. The simulation shows that there are two phase-lock current density regions. In the phase-locked STOs in low current region I, the spin configuration of FGL is uniform; in high current region II, the spin configuration of FGL is highly nonuniform. In addition, the results with different STOs separation L{sub s} are compared, and the coupling between twomore » STOs is largely decreased when L{sub s} is increased from 40 nm to 60 nm.« less

  18. H and H2 NMR properties in amorphous hydrogenated silicon (a-Si:H)

    NASA Astrophysics Data System (ADS)

    Lee, Sook

    1986-07-01

    It is shown that the basic NMR properties of ortho-H2 molecules with a rotational angular momentum J and a spin angular momentum I under the influence of a completely asymmetric crystalline field in an amorphous matrix can be described by an effective nuclear spin Hamiltonian which contains only the nuclear spin angular momentum operators (Ii), but is independent of the molecular rotational angular momentum operators (Ji). By directly applying the existing magnetic-resonance theories to this effective nuclear spin Hamiltonian, a simple description is presented for various static and dynamic NMR properties of the ortho-H2 NMR centers in amorphous hydrogenated silicon (a-Si:H), thereby resolving many difficulties and uncertainties encountered in understanding and explaining the H and H2 NMR observations in a-Si:H.

  19. SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.

    PubMed

    Lee, Hyunyeol; Park, Jaeseok

    2013-07-01

    Phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo imaging was recently introduced, producing high-resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted-averaging-based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal-to-noise ratio-optimized version of the phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three-step prescribed signal evolution while those in the second acquisition are calculated using a two-step pseudo-steady state signal transition with a high flip-angle pseudo-steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip-angle pseudo-steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal-to-noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid-attenuated imaging. Copyright © 2012 Wiley Periodicals, Inc.

  20. Exact sampling hardness of Ising spin models

    NASA Astrophysics Data System (ADS)

    Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.

    2017-09-01

    We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.

Top