Neutron Structure of Human Carbonic Anhydrase II: Implications for Proton Transfer†
Fisher, S. Zoë; Kovalevsky, Andrey Y.; Domsic, John F.; Mustyakimov, Marat; McKenna, Robert; Silverman, David N.; Langan, Paul A.
2010-01-01
Human carbonic anhydrase II (HCA II) catalyzes the reversible hydration of carbon dioxide to form bicarbonate and a proton. Despite many high-resolution X-ray crystal structures, mutagenesis, and kinetic data, the structural details of the active site, especially the proton transfer pathway, are unclear. A large HCA II crystal was prepared at pH 9.0 and subjected to vapor H–D exchange to replace labile hydrogens with deuteriums. Neutron diffraction studies were conducted at the Protein Crystallography Station at Los Alamos National Laboratory. The structure to 2.0 Å resolution reveals several interesting active site features: (1) the Zn-bound solvent appearing to be predominantly a D2O molecule, (2) the orientation and hydrogen bonding pattern of solvent molecules in the active site cavity, (3) the side chain of His64 being unprotonated (neutral) and predominantly in an inward conformation pointing toward the zinc, and (4) the phenolic side chain of Tyr7 appearing to be unprotonated. The implications of these details are discussed, and a proposed mechanism for proton transfer is presented. PMID:20025241
Hybrid Molecular Structure of the Giant Protease Tripeptidyl Peptidase II
Chuang, Crystal K.; Rockel, Beate; Seyit, Gönül; Walian, Peter J.; Schönegge, Anne–Marie; Peters, Jürgen; Zwart, Petrus H.; Baumeister, Wolfgang; Jap, Bing K.
2010-01-01
Tripeptidyl peptidase II (TPP II) is the largest known eukaryotic protease (6MDa). It is believed to act downstream of the 26S proteasome cleaving tripeptides from the N– termini of longer peptides and it is implicated in numerous cellular processes. Here we report the structure of Drosophila TPP II determined by a hybrid approach: The structure of the dimer was solved by x–ray crystallography and docked into the three– dimensional map of the holocomplex obtained by single-particle cryo-electron microscopy. The resulting structure reveals the compartmentalization of the active sites inside a system of chambers and suggests the existence of a molecular ruler determining the size of the cleavage products. Furthermore, the structure suggests a model for activation of TPP II involving the relocation of a flexible loop and a repositioning of the active–site serine, coupling it to holocomplex assembly and active site sequestration. PMID:20676100
Outer-sphere Pb(II) adsorbed at specific surface sites on single crystal α-alumina
Bargar, John R.; Towle, Steven N.; Brown, Gordon E.; Parks, George A.
1996-01-01
Solvated Pb(II) ions were found to adsorb as structurally well-defined outer-sphere complexes at specific sites on the α-Al2O3 (0001) single crystal surface, as determined by grazing-incidence X-ray absorption fine structure (GI-XAFS) measurements. The XAFS results suggest that the distance between Pb(II) adions and the alumina surface is approximately 4.2 Å. In contrast, Pb(II) adsorbs as more strongly bound inner-sphere complexes on α-Al2O3 (102). The difference in reactivities of the two alumina surfaces has implications for modeling surface complexation reactions of contaminants in natural environments, catalysis, and compositional sector zoning of oxide crystals.
Ka, Donghyun; Lee, Hasup; Jung, Yi-Deun; Kim, Kyunggon; Seok, Chaok; Suh, Nayoung; Bae, Euiyoung
2016-01-05
CRISPRs and Cas proteins constitute an RNA-guided microbial immune system against invading nucleic acids. Cas1 is a universal Cas protein found in all three types of CRISPR-Cas systems, and its role is implicated in new spacer acquisition during CRISPR-mediated adaptive immunity. Here, we report the crystal structure of Streptococcus pyogenes Cas1 (SpCas1) in a type II CRISPR-Cas system and characterize its interaction with S. pyogenes Csn2 (SpCsn2). The SpCas1 structure reveals a unique conformational state distinct from type I Cas1 structures, resulting in a more extensive dimerization interface, a more globular overall structure, and a disruption of potential metal-binding sites for catalysis. We demonstrate that SpCas1 directly interacts with SpCsn2, and identify the binding interface and key residues for Cas complex formation. These results provide structural information for a type II Cas1 protein, and lay a foundation for studying multiprotein Cas complexes functioning in type II CRISPR-Cas systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shao, W; Fernandez, E; Sachpatzidis, A; Wilken, J; Thompson, D A; Schweitzer, B I; Lolis, E
2001-05-01
Human herpesvirus-8 (HHV-8) is the infectious agent responsible for Kaposi's sarcoma and encodes a protein, macrophage inflammatory protein-II (vMIP-II), which shows sequence similarity to the human CC chemokines. vMIP-II has broad receptor specificity that crosses chemokine receptor subfamilies, and inhibits HIV-1 viral entry mediated by numerous chemokine receptors. In this study, the solution structure of chemically synthesized vMIP-II was determined by nuclear magnetic resonance. The protein is a monomer and possesses the chemokine fold consisting of a flexible N-terminus, three antiparallel beta strands, and a C-terminal alpha helix. Except for the N-terminal residues (residues 1-13) and the last two C-terminal residues (residues 73-74), the structure of vMIP-II is well-defined, exhibiting average rmsd of 0.35 and 0.90 A for the backbone heavy atoms and all heavy atoms of residues 14-72, respectively. Taking into account the sequence differences between the various CC chemokines and comparing their three-dimensional structures allows us to implicate residues that influence the quaternary structure and receptor binding and activation of these proteins in solution. The analysis of the sequence and three-dimensional structure of vMIP-II indicates the presence of epitopes involved in binding two receptors CCR2 and CCR5. We propose that vMIP-II was initially specific for CCR5 and acquired receptor-binding properties to CCR2 and other chemokine receptors.
Wolf, Nina M.; Gutka, Hiten J.; Movahedzadeh, Farahnaz; ...
2018-04-03
The crystal structures of native class II fructose-1,6-bisphosphatase (FBPaseII) from Mycobacterium tuberculosis at 2.6 Å resolution and two active-site protein variants are presented. The variants were complexed with the reaction product fructose 6-phosphate (F6P). The Thr84Ala mutant is inactive, while the Thr84Ser mutant has a lower catalytic activity. The structures reveal the presence of a 222 tetramer, similar to those described for fructose-1,6/sedoheptulose-1,7-bisphosphatase from Synechocystis (strain 6803) as well as the equivalent enzyme from Thermosynechococcus elongatus . This homotetramer corresponds to a homologous oligomer that is present but not described in the crystal structure of FBPaseII from Escherichia coli and ismore » probably conserved in all FBPaseIIs. The constellation of amino-acid residues in the active site of FBPaseII from M. tuberculosis ( Mt FBPaseII) is conserved and is analogous to that described previously for the E. coli enzyme. Moreover, the structure of the active site of the partially active (Thr84Ser) variant and the analysis of the kinetics are consistent with the previously proposed catalytic mechanism. The presence of metabolites in the crystallization medium (for example citrate and malonate) and in the corresponding crystal structures of Mt FBPaseII, combined with their observed inhibitory effect, could suggest the existence of an uncharacterized inhibition of this class of enzymes besides the allosteric inhibition by adenosine monophosphate observed for the Synechocystis enzyme. The structural and functional insights derived from the structure of Mt FBPaseII will provide critical information for the design of lead inhibitors, which will be used to validate this target for future chemical intervention.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Nina M.; Gutka, Hiten J.; Movahedzadeh, Farahnaz
The crystal structures of native class II fructose-1,6-bisphosphatase (FBPaseII) from Mycobacterium tuberculosis at 2.6 Å resolution and two active-site protein variants are presented. The variants were complexed with the reaction product fructose 6-phosphate (F6P). The Thr84Ala mutant is inactive, while the Thr84Ser mutant has a lower catalytic activity. The structures reveal the presence of a 222 tetramer, similar to those described for fructose-1,6/sedoheptulose-1,7-bisphosphatase from Synechocystis (strain 6803) as well as the equivalent enzyme from Thermosynechococcus elongatus . This homotetramer corresponds to a homologous oligomer that is present but not described in the crystal structure of FBPaseII from Escherichia coli and ismore » probably conserved in all FBPaseIIs. The constellation of amino-acid residues in the active site of FBPaseII from M. tuberculosis ( Mt FBPaseII) is conserved and is analogous to that described previously for the E. coli enzyme. Moreover, the structure of the active site of the partially active (Thr84Ser) variant and the analysis of the kinetics are consistent with the previously proposed catalytic mechanism. The presence of metabolites in the crystallization medium (for example citrate and malonate) and in the corresponding crystal structures of Mt FBPaseII, combined with their observed inhibitory effect, could suggest the existence of an uncharacterized inhibition of this class of enzymes besides the allosteric inhibition by adenosine monophosphate observed for the Synechocystis enzyme. The structural and functional insights derived from the structure of Mt FBPaseII will provide critical information for the design of lead inhibitors, which will be used to validate this target for future chemical intervention.« less
Yamashita, A; Kato, H; Wakatsuki, S; Tomizaki, T; Nakatsu, T; Nakajima, K; Hashimoto, T; Yamada, Y; Oda, J
1999-06-15
Tropinone reductase-II (TR-II) catalyzes the NADPH-dependent reduction of the carbonyl group of tropinone to a beta-hydroxyl group. The crystal structure of TR-II complexed with NADP+ and pseudotropine (psi-tropine) has been determined at 1.9 A resolution. A seven-residue peptide near the active site, disordered in the unliganded structure, is fixed in the ternary complex by participation of the cofactor and substrate binding. The psi-tropine molecule is bound in an orientation which satisfies the product configuration and the stereochemical arrangement toward the cofactor. The substrate binding site displays a complementarity to the bound substrate (psi-tropine) in its correct orientation. In addition, electrostatic interactions between the substrate and Glu156 seem to specify the binding position and orientation of the substrate. A comparison between the active sites in TR-II and TR-I shows that they provide different van der Waals surfaces and electrostatic features. These differences likely contribute to the correct binding mode of the substrates, which are in opposite orientations in TR-II and TR-I, and to different reaction stereospecificities. The active site structure in the TR-II ternary complex also suggests that the arrangement of the substrate, cofactor, and catalytic residues is stereoelectronically favorable for the reaction.
Giedroc, D P; Chen, X; Pennella, M A; LiWang, A C
2001-11-09
The human metalloregulatory transcription factor, metal-response element (MRE)-binding transcription factor-1 (MTF-1), contains six TFIIIA-type Cys(2)-His(2) motifs, each of which was projected to form well-structured betabetaalpha domains upon Zn(II) binding. In this report, the structure and backbone dynamics of a fragment containing the unusual C-terminal fingers F4-F6 has been investigated. (15)N heteronuclear single quantum coherence (HSQC) spectra of uniformly (15)N-labeled hMTF-zf46 show that Zn(II) induces the folding of hMTF-zf46. Analysis of the secondary structure of Zn(3) hMTF-zf46 determined by (13)Calpha chemical shift indexing and the magnitude of (3)J(Halpha-HN) clearly reveal that zinc fingers F4 and F6 adopt typical betabetaalpha structures. An analysis of the heteronuclear backbone (15)N relaxation dynamics behavior is consistent with this picture and further reveals independent tumbling of the finger domains in solution. Titration of apo-MTF-zf46 with Zn(II) reveals that the F4 domain binds Zn(II) significantly more tightly than do the other two finger domains. In contrast to fingers F4 and F6, the betabetaalpha fold of finger F5 is unstable and only partially populated at substoichiometric Zn(II); a slight molar excess of zinc results in severe conformational exchange broadening of all F5 NH cross-peaks. Finally, although Cd(II) binds to apo-hMTF-zf46 as revealed by intense S(-)-->Cd(II) absorption, a non-native structure results; addition of stoichiometric Zn(II) to the Cd(II) complex results in quantitative refolding of the betabetaalpha structure in F4 and F6. The functional implications of these results are discussed.
Selvin, Joseph; Sathiyanarayanan, Ganesan; Lipton, Anuj N.; Al-Dhabi, Naif Abdullah; Valan Arasu, Mariadhas; Kiran, George S.
2016-01-01
The important biological macromolecules, such as lipopeptide and glycolipid biosurfactant producing marine actinobacteria were analyzed and their potential linkage between type II polyketide synthase (PKS) genes was explored. A unique feature of type II PKS genes is their high amino acid (AA) sequence homology and conserved gene organization. These enzymes mediate the biosynthesis of polyketide natural products with enormous structural complexity and chemical nature by combinatorial use of various domains. Therefore, deciphering the order of AA sequence encoded by PKS domains tailored the chemical structure of polyketide analogs still remains a great challenge. The present work deals with an in vitro and in silico analysis of PKS type II genes from five actinobacterial species to correlate KS domain architecture and structural features. Our present analysis reveals the unique protein domain organization of iterative type II PKS and KS domain of marine actinobacteria. The findings of this study would have implications in metabolic pathway reconstruction and design of semi-synthetic genomes to achieve rational design of novel natural products. PMID:26903957
Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).
Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P
2016-04-01
Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(II). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(II)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(II) and Co(II) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(II) and Zn(II) and a pentacoordinate geometry for Co(II)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(II)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(II)-CP-1(CAHH) and Co(II)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(II) complexes.
Smith, Sarah J; Riley, Mark J; Noble, Christopher J; Hanson, Graeme R; Stranger, Robert; Jayaratne, Vidura; Cavigliasso, Germán; Schenk, Gerhard; Gahan, Lawrence R
2009-11-02
The binuclear heterovalent manganese model complex [Mn(II)Mn(III)(L1)(OAc)(2)] ClO(4) x H(2)O (H(2)L1 = 2-(((3-((bis(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)-methyl)phenol) has been prepared and studied structurally, spectroscopically, and computationally. The magnetic and electronic properties of the complex have been related to its structure. The complex is weakly antiferromagnetically coupled (J approximately -5 cm(-1), H = -2J S(1) x S(2)) and the electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectra identify the Jahn-Teller distortion of the Mn(III) center as predominantly a tetragonal compression, with a significant rhombic component. Electronic structure calculations using density functional theory have confirmed the conclusions derived from the experimental investigations. In contrast to isostructural M(II)Fe(III) complexes (M = Fe, Mn, Zn, Ni), the Mn(II)Mn(III) system is bifunctional possessing both catalase and hydrolase activities, and only one catalytically relevant pK(a) (= 8.2) is detected. Mechanistic implications are discussed.
NASA Technical Reports Server (NTRS)
Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.
2004-01-01
The relaxation phenomenon of semiconductor melts, or the change of melt structure with time, impacts the crystal growth process and the eventual quality of the crystal. The thermophysical properties of the melt are good indicators of such changes in melt structure. Also, thermophysical properties are essential to the accurate predication of the crystal growth process by computational modeling. Currently, the temperature dependent thermophysical property data for the Hg-based II-VI semiconductor melts are scarce. This paper reports the results on the temperature dependence of melt density, viscosity and electrical conductivity of Hg-based II-VI compounds. The melt density was measured using a pycnometric method, and the viscosity and electrical conductivity were measured by a transient torque method. Results were compared with available published data and showed good agreement. The implication of the structural changes at different temperature ranges was also studied and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jia; Harrison, Rane A.; Li, Lianbo
KRAS G12C, the most common RAS mutation found in non-small-cell lung cancer, has been the subject of multiple recent covalent small-molecule inhibitor campaigns including efforts directed at the guanine nucleotide pocket and separate work focused on an inducible pocket adjacent to the switch motifs. Multiple conformations of switch II have been observed, suggesting that switch II pocket (SIIP) binders may be capable of engaging a range of KRAS conformations. Here we report the use of hydrogen/deuterium-exchange mass spectrometry (HDX MS) to discriminate between conformations of switch II induced by two chemical classes of SIIP binders. We investigated the structural basismore » for differences in HDX MS using X-ray crystallography and discovered a new SIIP configuration in response to binding of a quinazoline chemotype. These results have implications for structure-guided drug design targeting the RAS SIIP.« less
Structure, Biology, and Therapeutic Application of Toxin-Antitoxin Systems in Pathogenic Bacteria.
Lee, Ki-Young; Lee, Bong-Jin
2016-10-22
Bacterial toxin-antitoxin (TA) systems have received increasing attention for their diverse identities, structures, and functional implications in cell cycle arrest and survival against environmental stresses such as nutrient deficiency, antibiotic treatments, and immune system attacks. In this review, we describe the biological functions and the auto-regulatory mechanisms of six different types of TA systems, among which the type II TA system has been most extensively studied. The functions of type II toxins include mRNA/tRNA cleavage, gyrase/ribosome poison, and protein phosphorylation, which can be neutralized by their cognate antitoxins. We mainly explore the similar but divergent structures of type II TA proteins from 12 important pathogenic bacteria, including various aspects of protein-protein interactions. Accumulating knowledge about the structure-function correlation of TA systems from pathogenic bacteria has facilitated a novel strategy to develop antibiotic drugs that target specific pathogens. These molecules could increase the intrinsic activity of the toxin by artificially interfering with the intermolecular network of the TA systems.
Tsai, Chi-Lin; Tainer, John A
2018-01-01
[Fe-S] clusters are essential cofactors in all domains of life. They play many biological roles due to their unique abilities for electron transfer and conformational control. Yet, producing and analyzing Fe-S proteins can be difficult and even misleading if not done anaerobically. Due to unique redox properties of [Fe-S] clusters and their oxygen sensitivity, they pose multiple challenges and can lose enzymatic activity or cause their component proteins to be structurally disordered due to [Fe-S] cluster oxidation and loss in air. Here we highlight tested protocols and strategies enabling efficient and stable [Fe-S] protein production, purification, crystallization, X-ray diffraction data collection, and structure determination. From multiple high-resolution anaerobic crystal structures, we furthermore analyze exemplary data defining [Fe-S] clusters, substrate entry, and product exit for the functional oxidation states of type II molybdo-bis(molybdopterin guanine dinucleotide) (Mo-bisMGD) enzymes. Notably, these enzymes perform electron shuttling between quinone pools and specific substrates to catalyze respiratory metabolism. The identified structure-activity relationships for this enzyme class have broad implications germane to perchlorate environments on Earth and Mars extending to an alternative mechanism underlying metabolic origins for the evolution of the oxygen atmosphere. Integrated structural analyses of type II Mo-bisMGD enzymes unveil novel distinctive shared molecular mechanisms for dynamic control of substrate entry and product release gated by hydrophobic residues. Collective findings support a prototypic model for type II Mo-bisMGD enzymes including insights for a fundamental molecular mechanistic understanding of selectivity and regulation by a conformationally gated channel with general implications for [Fe-S] cluster respiratory enzymes. © 2018 Elsevier Inc. All rights reserved.
Kulkarni, N; Lakshmikumaran, M; Rao, M
1999-10-05
A 1.0 kilobase gene fragment from the genomic DNA of an alkaliphilic thermophilic Bacillus was found to code for a functional xylanase (XynII). The complete nucleotide sequence including the structural gene and the 5' and 3' flanking sequences of the xylanase gene have been determined. An open reading frame starting from ATG initiator codon comprising 402 nucleotides gave a preprotein of 133 amino acids of calculated molecular mass 14.090 kDa. The occurrence of three potential N-glycosylation sites in XynII gene is a unique feature for a gene of bacterial origin. The stop codon was followed by hairpin loop structures indicating the presence of transcription termination signals. The secondary structure analysis of XynII predicted that the polypeptide was primarily formed of beta-sheets. XynII appeared to be a member of family G/11 of xylanases based on its molecular weight and basic pI (8.0). However, sequence homology revealed similar identity with families 10 and 11 of xylanases. The conserved triad (Val-Val-Xaa, where Xaa is Asn or Asp) was identified only in the xylanases from alkaliphilic organisms. Our results implicate for the first time the concept of convergent evolution for XynII and provide a basis for research in evolutionary relationship among the xylanases from alkaliphilic and neutrophilic organisms. Copyright 1999 Academic Press.
Crystal structure of plant light-harvesting complex shows the active, energy-transmitting state
Barros, Tiago; Royant, Antoine; Standfuss, Jörg; Dreuw, Andreas; Kühlbrandt, Werner
2009-01-01
Plants dissipate excess excitation energy as heat by non-photochemical quenching (NPQ). NPQ has been thought to resemble in vitro aggregation quenching of the major antenna complex, light harvesting complex of photosystem II (LHC-II). Both processes are widely believed to involve a conformational change that creates a quenching centre of two neighbouring pigments within the complex. Using recombinant LHC-II lacking the pigments implicated in quenching, we show that they have no particular role. Single crystals of LHC-II emit strong, orientation-dependent fluorescence with an emission maximum at 680 nm. The average lifetime of the main 680 nm crystal emission at 100 K is 1.31 ns, but only 0.39 ns for LHC-II aggregates under identical conditions. The strong emission and comparatively long fluorescence lifetimes of single LHC-II crystals indicate that the complex is unquenched, and that therefore the crystal structure shows the active, energy-transmitting state of LHC-II. We conclude that quenching of excitation energy in the light-harvesting antenna is due to the molecular interaction with external pigments in vitro or other pigment–protein complexes such as PsbS in vivo, and does not require a conformational change within the complex. PMID:19131972
The Mediator Complex and Transcription Elongation
Conaway, Ronald C.; Conaway, Joan Weliky
2013-01-01
Background Mediator is an evolutionarily conserved multisubunit RNA polymerase II (Pol II) coregulatory complex. Although Mediator was initially found to play a critical role in regulation of the initiation of Pol II transcription, recent studies have brought to light an expanded role for Mediator at post-initiation stages of transcription. Scope of review We provide a brief description of the structure of Mediator and its function in the regulation of Pol II transcription initiation, and we summarize recent findings implicating Mediator in the regulation of various stages of Pol II transcription elongation. Major conclusions Emerging evidence is revealing new roles for Mediator in nearly all stages of Pol II transcription, including initiation, promoter escape, elongation, pre-mRNA processing, and termination. General significance Mediator plays a central role in the regulation of gene expression by impacting nearly all stages of mRNA synthesis. PMID:22983086
Structure, Biology, and Therapeutic Application of Toxin–Antitoxin Systems in Pathogenic Bacteria
Lee, Ki-Young; Lee, Bong-Jin
2016-01-01
Bacterial toxin–antitoxin (TA) systems have received increasing attention for their diverse identities, structures, and functional implications in cell cycle arrest and survival against environmental stresses such as nutrient deficiency, antibiotic treatments, and immune system attacks. In this review, we describe the biological functions and the auto-regulatory mechanisms of six different types of TA systems, among which the type II TA system has been most extensively studied. The functions of type II toxins include mRNA/tRNA cleavage, gyrase/ribosome poison, and protein phosphorylation, which can be neutralized by their cognate antitoxins. We mainly explore the similar but divergent structures of type II TA proteins from 12 important pathogenic bacteria, including various aspects of protein–protein interactions. Accumulating knowledge about the structure–function correlation of TA systems from pathogenic bacteria has facilitated a novel strategy to develop antibiotic drugs that target specific pathogens. These molecules could increase the intrinsic activity of the toxin by artificially interfering with the intermolecular network of the TA systems. PMID:27782085
The Joint Structure of DSM–IV Axis I and Axis II Disorders
Røysamb, Espen; Tambs, Kristian; Ørstavik, Ragnhild E.; Torgersen, Svenn; Kendler, Kenneth S.; Neale, Michael C.; Aggen, Steven H.; Reichborn-Kjennerud, Ted
2011-01-01
The Diagnostic and Statistical Manual (4th ed. [DSM–IV]; American Psychiatric Association, 1994) distinction between clinical disorders on Axis I and personality disorders on Axis II has become increasingly controversial. Although substantial comorbidity between axes has been demonstrated, the structure of the liability factors underlying these two groups of disorders is poorly understood. The aim of this study was to determine the latent factor structure of a broad set of common Axis I disorders and all Axis II personality disorders and thereby to identify clusters of disorders and account for comorbidity within and between axes. Data were collected in Norway, through a population-based interview study (N = 2,794 young adult twins). Axis I and Axis II disorders were assessed with the Composite International Diagnostic Interview (CIDI) and the Structured Interview for DSM–IV Personality (SIDP–IV), respectively. Exploratory and confirmatory factor analyses were used to investigate the underlying structure of 25 disorders. A four-factor model fit the data well, suggesting a distinction between clinical and personality disorders as well as a distinction between broad groups of internalizing and externalizing disorders. The location of some disorders was not consistent with the DSM–IV classification; antisocial personality disorder belonged primarily to the Axis I externalizing spectrum, dysthymia appeared as a personality disorder, and borderline personality disorder appeared in an interspectral position. The findings have implications for a meta-structure for the DSM. PMID:21319931
Thinking style changes among deaf, hard-of-hearing, and hearing students.
Cheng, Sanyin; Zhang, Li-fang
2015-01-01
This study explores how university students' thinking styles changed over a single academic year by twice administering the Thinking Styles Inventory-Revised II to 256 deaf or hard-of-hearing (DHH) students and 286 hearing students from art and design academic disciplines in China. Results showed that after having studied at the university for one academic year, hearing students showed increased use of Type I thinking styles (more creativity generated, less structured, and more complex) and less use of Type II thinking styles (more norm favoring, more structured, and more simplistic), whereas DHH students demonstrated increased use of both Type I and Type II thinking styles. Moreover, students' changes in thinking styles differed across university class levels. The contributions, limitations, and implications of the present research are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Sivanesam, Kalkena
More than 40 diseases have been associated with the misfolding of peptides (or proteins) that form fibrils with a very specific morphology. These peptides classified as amyloidogenic peptides have been implicated in the development of Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, Hungtinton's Disease etc. To date, these diseases have no cure, only therapies that can ameliorate the symptoms to a degree. Inhibition of the amyloidogenesis of these peptides has been proposed as a possible treatment option. While small molecules have been heavily tested as inhibitors of amyloidogenesis, peptides have emerged as potential inhibitors. In this work, the ability of a set of designed hairpin peptides to inhibit the amyloidogenesis of two different systems, alpha-synuclein (implicated in Parkinson's Disease) and human amylin (implicated in Type II Diabetes) is tested. Using circular dichroism and thioflavin T fluorescence, the ability of these peptides to inhibit amyloidogenesis is tested. The binding loci of these inhibitors to alpha-synuclein are also explored. The use of peptides as antimicrobials on the other hand is not a novel concept. However, most antimicrobial peptides, both natural and designed, rely heavily on covalent stabilizations in order to maintain secondary structure. In this study, non-covalent stabilizations are applied to a couple of natural as well as designed antimicrobials in order to study the effects of secondary structure stabilization on biological activity.
ERIC Educational Resources Information Center
Bunzlova, Alice; Slovak, Leopold
The second in a series that examines the role of radio broadcasting in the process of socioeconomic and cultural change in three countries with different types of broadcasting organization--Austria, Czechoslovakia, and Venezuela--this volume focuses on Czechoslovakia. It deals with the cultural implications of broadcasting structures and their…
Healthy and unhealthy dependence: implications for major depression.
Schulte, Fiona S; Mongrain, Myriam; Flora, David B
2008-09-01
To examine the contribution of varying levels of dependency to Axis I and Axis II disorders, and to the recurrence of major depression in a graduate student sample diagnosed with a history of the disorder. At Time 1, participants were interviewed to confirm a current or past episode of major depression along with the presence of Axis II and other current or past Axis I disorders. Various measures of dependency were administered including the Depressive Experiences Questionnaire (DEQ; Blatt, D'Afflitti, & Quinlan, 1976), the 3-Vector Dependency Inventory (3VDI; Pincus & Gurtman, 1995), and the Personal Style Inventory (PSI; Robins et al., 1994). Participants were interviewed 20 months later to determine the recurrence of a depressive episode. A factor analysis conducted on scale scores for each dependency measure resulted in three factors labelled 'unhealthy', 'intermediate', and 'healthy' dependence. Controlling for history of major depression, structural equation modelling found 'unhealthy' dependence to be the only predictor of recurrences of major depression and Axis II disorders, while 'healthy' dependence was related to fewer depressive symptoms. These results have important implications for the conceptualization of the dependency construct.
Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes*
Tietz, Stefanie; Puthiyaveetil, Sujith; Enlow, Heather M.; Yarbrough, Robert; Wood, Magnus; Semchonok, Dmitry A.; Lowry, Troy; Li, Zhirong; Jahns, Peter; Boekema, Egbert J.; Lenhert, Steven; Niyogi, Krishna K.; Kirchhoff, Helmut
2015-01-01
The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion. PMID:25897076
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayeb, M.E.; Bahraoui, E.M.; Granier, C.
Two antibody subpopulations directed against Anemonia sulcata toxin I or II have been purified by immunoaffinity chromatography. These antibodies are specific for a single antigenic region and were used in a structure-antigenicity relationship study using homologous toxins and chemically modified derivatives of A. sulcata toxin II. Asp-7 and/or Asp=9 and Gln-47 of toxin II were found to be implicated in the antigenic region recognized by the two antibody subpopulations. On the contrary, Arg-14, Lys-35, -36, and -46, and ..cap alpha..-NH/sub 2/ of the glycine residue of A. sulcata toxin II are not involved in the corresponding antigenic region. When assayedmore » for interaction with the sodium channel, the antigenic region of toxin II, including Asp-9 and Gln-47, appeared fully accessible to its specific antibodies, suggesting that it is not involved in the binding of the toxin to its receptor.« less
Lunar and Planetary Science XXXVI, Part II
NASA Technical Reports Server (NTRS)
2005-01-01
Some topics covered: Implications of internal fragmentation on the structure of comets; Atmospheric excitation of mars polar motion; Dunite viscosity dependence on oxygen fugacity; Cross profile and volume analysis of bahram valles on mars; Calculations of the fluxes of 10-250 kV lunar leakage gamma rays; Alluvian fans on mars; Investigating the sources of the apollo 14 high-Al mare basalts; Relationship of coronae, regional plains and rift zones on venus; and Chemical differentiation and internal structure of europa and callisto.
Crystal Structure of West Nile Virus Envelope Glycoprotein Reveals Viral Surface Epitopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanai,R.; Kar, K.; Anthony, K.
2006-01-01
West Nile virus, a member of the Flavivirus genus, causes fever that can progress to life-threatening encephalitis. The major envelope glycoprotein, E, of these viruses mediates viral attachment and entry by membrane fusion. We have determined the crystal structure of a soluble fragment of West Nile virus E. The structure adopts the same overall fold as that of the E proteins from dengue and tick-borne encephalitis viruses. The conformation of domain II is different from that in other prefusion E structures, however, and resembles the conformation of domain II in postfusion E structures. The epitopes of neutralizing West Nile virus-specificmore » antibodies map to a region of domain III that is exposed on the viral surface and has been implicated in receptor binding. In contrast, we show that certain recombinant therapeutic antibodies, which cross-neutralize West Nile and dengue viruses, bind a peptide from domain I that is exposed only during the membrane fusion transition. By revealing the details of the molecular landscape of the West Nile virus surface, our structure will assist the design of antiviral vaccines and therapeutics.« less
Structure Expression and Function of kynurenine Aminotransferases in Human and Rodent Brains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Q Han; T Cai; D Tagle
Kynurenine aminotransferases (KATs) catalyze the synthesis of kynurenic acid (KYNA), an endogenous antagonist of N-methyl-D: -aspartate and alpha 7-nicotinic acetylcholine receptors. Abnormal KYNA levels in human brains are implicated in the pathophysiology of schizophrenia, Alzheimer's disease, and other neurological disorders. Four KATs have been reported in mammalian brains, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase. KAT II has a striking tertiary structure in N-terminal part and forms a new subgroup in fold type I aminotransferases, which has been classified as subgroup Iepsilon. Knowledge regarding KATsmore » is vast and complex; therefore, this review is focused on recent important progress of their gene characterization, physiological and biochemical function, and structural properties. The biochemical differences of four KATs, specific enzyme activity assays, and the structural insights into the mechanism of catalysis and inhibition of these enzymes are discussed.« less
Binding ability of impromidine, a potent H2 agonist of histamine
NASA Astrophysics Data System (ADS)
Anouar, A.; Lhadi, E.; Decock, P.; Kozlowskyinst4, H.
1999-09-01
Impromidine (fig.1) is a potent and selective histamine H2 receptor agonist and its structure comprises a strongly basic guanidine group containing two different imidazole-containing side chains. The present work deals with the study of coordination equilibria between impromidine and Cu(II) and Ni(II) in aqueous solution at 25 circC. Potentiometric, UV-Visible and EPR studies on Cu(II) complexes with impromidine have shown that this anti-ulcerogenic drug is a very potent chelating agent. This drug is found to be a very effective ligand for Ni(II) ions also. The effective coordination of impromidine to metal ions may have significant biological implications. L'impromidine est un agoniste H2 de l'histamine, sa structure possède un groupement guanidinique de forte basicité et dont l'environne ment des deux groupements imidazoliques est différent. Le présent travail consiste en l'étude de la coordination de l'impromidine avec le Cu(II) et le Ni(II) en milieu aqueux à 25 circC. La potentiométrie, LíUV-Visible et la RPE montrent que le cuivre se coordine très fortement avec l'impromidine. Nous avons trouvé que ce médicament se coordine aussi fortement avec le nickel(II). La coordination de l'impromidine avec les métaux pourrait avoir des applications importantes en médecine.
Fernald, L C; Ani, C; Gardner, J M
1997-12-01
Interpersonal violence is a major public health concern throughout the West Indies, particularly in Jamaica. Many factors contribute to a youth's violent or aggressive behaviour, ranging from individual temperament, to family structure, to large sociocultural influences. In Part I, we review the incidence and severity of violence, and discuss the effects of individual characteristics, and of family structure and discipline. In Part II, the reported effects of school structure, peer relationships and interaction, corporal punishment and the media on violent behaviour in children and adolescents are reviewed, and potential policy implications are discussed.
Recrystallization of Manganite (γ-MnOOH) and Implications for Trace Element Cycling.
Hens, Tobias; Brugger, Joël; Cumberland, Susan A; Etschmann, Barbara; Frierdich, Andrew J
2018-02-06
The recrystallization of Mn(III,IV) oxides is catalyzed by aqueous Mn(II) (Mn(II) aq ) during (bio)geochemical Mn redox cycling. It is poorly understood how trace metals associated with Mn oxides (e.g., Ni) are cycled during such recrystallization. Here, we use X-ray absorption spectroscopy (XAS) to examine the speciation of Ni associated with Manganite (γ-Mn(III)OOH) suspensions in the presence or absence of Mn(II) aq under variable pH conditions (pH 5.5 and 7.5). In a second set of experiments, we used a 62 Ni isotope tracer to quantify the amount of dissolved Ni that exchanges with Ni incorporated in the Manganite crystal structure during reactions in 1 mM Mn(II) aq and in Mn(II)-free solutions. XAS spectra show that Ni is initially sorbed on the Manganite mineral surface and is progressively incorporated into the mineral structure over time (13% after 51 days) even in the absence of dissolved Mn(II). The amount of Ni incorporation significantly increases to about 40% over a period of 51 days when Mn(II) aq is present in solution. Similarly, Mn(II) aq promotes Ni exchange between Ni-substituted Manganite and dissolved Ni(II), with around 30% of Ni exchanged at pH 7.5 over the duration of the experiment. No new mineral phases are detected following recrystallization as determined by X-ray diffraction and XAS. Our results reveal that Mn(II)-catalyzed mineral recrystallization partitions Ni between Mn oxides and aqueous fluids and can therefore affect Ni speciation and mobility in the environment.
ERIC Educational Resources Information Center
Smith, G. B.
Employer-sponsored recurrent (or lifelong) learning has grown from its World War II beginnings to become a large, important, but little-studied aspect of American education, one with major implications for the U.S. economy and society. U.S. employers spend from 20 to 100 billion dollars on educational programs for anywhere from 37 to 73 million…
ERIC Educational Resources Information Center
BISHOP, C.E.; TOLLEY, G.S.
THE EFFECTS OF ECONOMIC PROGRESS ON THE STRUCTURE OF AGRICULTURE, THE AMOUNT AND QUALITY OF HUMAN RESOURCES EMPLOYED IN FARMING AND RELATED OCCUPATIONS, AND EDUCATIONAL IMPLICATIONS OF AGRICULTURAL CHANGES ARE REPORTED. MECHANICAL, BIOLOGICAL, AND CHEMICAL CHANGES IN AGRICULTURAL TECHNOLOGY, WHICH PROVIDED INCENTIVES TO INCREASE THE SIZE OF THE…
Essential core of the Hawking–Ellis types
NASA Astrophysics Data System (ADS)
Martín-Moruno, Prado; Visser, Matt
2018-06-01
The Hawking–Ellis (Segre–Plebański) classification of possible stress–energy tensors is an essential tool in analyzing the implications of the Einstein field equations in a more-or-less model-independent manner. In the current article the basic idea is to simplify the Hawking–Ellis type I, II, III, and IV classification by isolating the ‘essential core’ of the type II, type III, and type IV stress–energy tensors; this being done by subtracting (special cases of) type I to simplify the (Lorentz invariant) eigenvalue structure as much as possible without disturbing the eigenvector structure. We will denote these ‘simplified cores’ type II0, type III0, and type IV0. These ‘simplified cores’ have very nice and simple algebraic properties. Furthermore, types I and II0 have very simple classical interpretations, while type IV0 is known to arise semi-classically (in renormalized expectation values of standard stress–energy tensors). In contrast type III0 stands out in that it has neither a simple classical interpretation, nor even a simple semi-classical interpretation. We will also consider the robustness of this classification considering the stability of the different Hawking–Ellis types under perturbations. We argue that types II and III are definitively unstable, whereas types I and IV are stable.
Thinking Styles and University Self-Efficacy Among Deaf, Hard-of-Hearing, and Hearing Students.
Cheng, Sanyin; Zhang, Li-Fang; Hu, Xiaozhong
2016-01-01
This study explores how students' thinking styles are related to their university self-efficacy, by administering the Thinking Styles Inventory-Revised II and the University Self-Efficacy Scale to 366 deaf or hard-of-hearing (DHH) and 467 hearing university students in mainland China. Results showed that, among all participants, those with Type I styles (i.e., more creativity-generating, less structured, and cognitively more complex) had higher levels of university self-efficacy. At the same time, DHH students with Type II styles (i.e., more norm-favoring, more structured, and cognitively more simplistic) had lower levels of university self-efficacy. The contributions, limitations, and implications of the present research are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cross-cultural examination of measurement invariance of the Beck Depression Inventory-II.
Dere, Jessica; Watters, Carolyn A; Yu, Stephanie Chee-Min; Bagby, R Michael; Ryder, Andrew G; Harkness, Kate L
2015-03-01
Given substantial rates of major depressive disorder among college and university students, as well as the growing cultural diversity on many campuses, establishing the cross-cultural validity of relevant assessment tools is important. In the current investigation, we examined the Beck Depression Inventory-Second Edition (BDI-II; Beck, Steer, & Brown, 1996) among Chinese-heritage (n = 933) and European-heritage (n = 933) undergraduates in North America. The investigation integrated 3 distinct lines of inquiry: (a) the literature on cultural variation in depressive symptom reporting between people of Chinese and Western heritage; (b) recent developments regarding the factor structure of the BDI-II; and (c) the application of advanced statistical techniques to the issue of cross-cultural measurement invariance. A bifactor model was found to represent the optimal factor structure of the BDI-II. Multigroup confirmatory factor analysis showed that the BDI-II had strong measurement invariance across both culture and gender. In group comparisons with latent and observed variables, Chinese-heritage students scored higher than European-heritage students on cognitive symptoms of depression. This finding deviates from the commonly held view that those of Chinese heritage somatize depression. These findings hold implications for the study and use of the BDI-II, highlight the value of advanced statistical techniques such as multigroup confirmatory factor analysis, and offer methodological lessons for cross-cultural psychopathology research more broadly. 2015 APA, all rights reserved
Molecular architecture of the TRAPPII complex and implications for vesicle tethering.
Yip, Calvin K; Berscheminski, Julia; Walz, Thomas
2010-11-01
Multisubunit tethering complexes participate in the process of vesicle tethering--the initial interaction between transport vesicles and their acceptor compartments. TRAPPII (named for transport protein particle II) is a highly conserved tethering complex that functions in the late Golgi apparatus and consists of all of the subunits of TRAPPI and three additional, specific subunits. We have purified native yeast TRAPPII and characterized its structure and subunit organization by single-particle EM. Our data show that the nine TRAPPII components form a core complex that dimerizes into a three-layered, diamond-shaped structure. The TRAPPI subunits assemble into TRAPPI complexes that form the outer layers. The three TRAPPII-specific subunits cap the ends of TRAPPI and form the middle layer, which is responsible for dimerization. TRAPPII binds the Ypt1 GTPase and probably uses the TRAPPI catalytic core to promote guanine nucleotide exchange. We discuss the implications of the structure of TRAPPII for coat interaction and TRAPPII-associated human pathologies.
Pipathsouk, Anne; Belotserkovskii, Boris P; Hanawalt, Philip C
2017-02-01
Non-canonical DNA structures can obstruct transcription. This transcription blockage could have various biological consequences, including genomic instability and gratuitous transcription-coupled repair. Among potential structures causing transcription blockage are Holliday junctions (HJs), which can be generated as intermediates in homologous recombination or during processing of stalled replication forks. Of particular interest is the double Holliday junction (DHJ), which contains two HJs. Topological considerations impose the constraint that the total number of helical turns in the DNA duplexes between the junctions cannot be altered as long as the flanking DNA duplexes are intact. Thus, the DHJ structure should strongly resist transient unwinding during transcription; consequently, it is predicted to cause significantly stronger blockage than single HJ structures. The patterns of transcription blockage obtained for RNA polymerase II transcription in HeLa cell nuclear extracts were in accordance with this prediction. However, we did not detect transcription blockage with purified T7 phage RNA polymerase; we discuss a possible explanation for this difference. In general, our findings implicate naturally occurring Holliday junctions in transcription arrest. Copyright © 2016 Elsevier B.V. All rights reserved.
Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Mir, Carmen; Gebe, John A; Admon, Arie; López, Daniel
2016-06-01
Proper antiviral humoral and cellular immune responses require previous recognition of viral antigenic peptides that are bound to HLA class II molecules, which are exposed on the surface of antigen-presenting cells. The helper immune response is critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, a virus with severe health risk in infected pediatric, immunocompromised, and elderly populations. In this study, using a mass spectrometry analysis of complex HLA class II-bound peptide pools that were isolated from large amounts of HRSV-infected cells, 19 naturally processed HLA-DR ligands, most of them included in a complex nested set of peptides, were identified. Both the immunoprevalence and the immunodominance of the HLA class II response to HRSV were focused on one nonstructural (NS1) and two structural (matrix and mainly fusion) proteins of the infective virus. These findings have clear implications for analysis of the helper immune response as well as for antiviral vaccine design. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Thinking Styles and Quality of University Life Among Deaf or Hard of Hearing and Hearing Students.
Cheng, Sanyin; Zhang, Li-Fang
2017-01-01
The authors explored how thinking styles relate to quality of university life among deaf or hard of hearing (DHH) and hearing university students in mainland China. The first of two studies affirmed the validity and reliability of a modified version of the Quality of University Life Measure (QULM; Sirgy, Grezskowiak, & Rahtz, 2007) among 833 university students (366 DHH, 467 hearing). The second investigated relationships between thinking styles and quality of university life; the Thinking Styles Inventory-Revised II (Sternberg, Wagner, & Zhang, 2007) and modified QULM were administered to 542 students (256 DHH, 286 hearing). Students scoring higher on Type I styles (i.e., more creativity-generating, less structured, cognitively more complex) tended toward greater satisfaction with university life; those scoring higher on Type II (i.e., more norm-favoring, more structured, cognitively more simplistic) tended toward less satisfaction. Contributions, limitations, and implications of the research are discussed.
Jeyakanthan, M; Tao, K; Zou, L; Meloncelli, P J; Lowary, T L; Suzuki, K; Boland, D; Larsen, I; Burch, M; Shaw, N; Beddows, K; Addonizio, L; Zuckerman, W; Afzali, B; Kim, D H; Mengel, M; Shapiro, A M J; West, L J
2015-10-01
Blood group ABH(O) carbohydrate antigens are carried by precursor structures denoted type I-IV chains, creating unique antigen epitopes that may differ in expression between circulating erythrocytes and vascular endothelial cells. Characterization of such differences is invaluable in many clinical settings including transplantation. Monoclonal antibodies were generated and epitope specificities were characterized against chemically synthesized type I-IV ABH and related glycans. Antigen expression was detected on endomyocardial biopsies (n = 50) and spleen (n = 11) by immunohistochemical staining and on erythrocytes by flow cytometry. On vascular endothelial cells of heart and spleen, only type II-based ABH antigens were expressed; type III/IV structures were not detected. Type II-based ABH were expressed on erythrocytes of all blood groups. Group A1 and A2 erythrocytes additionally expressed type III/IV precursors, whereas group B and O erythrocytes did not. Intensity of A/B antigen expression differed among group A1 , A2 , A1 B, A2 B and B erythrocytes. On group A2 erythrocytes, type III H structures were largely un-glycosylated with the terminal "A" sugar α-GalNAc. Together, these studies define qualitative and quantitative differences in ABH antigen expression between erythrocytes and vascular tissues. These expression profiles have important implications that must be considered in clinical settings of ABO-incompatible transplantation when interpreting anti-ABO antibodies measured by hemagglutination assays with reagent erythrocytes. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Romier, Christophe; James, Nicole; Birck, Catherine; Cavarelli, Jean; Vivarès, Christian; Collart, Martine A; Moras, Dino
2007-05-18
General transcription factor TFIID plays an essential role in transcription initiation by RNA polymerase II at numerous promoters. However, understanding of the assembly and a full structural characterization of this large 15 subunit complex is lacking. TFIID subunit TAF(II)5 has been shown to be present twice in this complex and to be critical for the function and assembly of TFIID. Especially, the TAF(II)5 N-terminal domain is required for its incorporation within TFIID and immuno-labelling experiments carried out by electron microscopy at low resolution have suggested that this domain might homodimerize, possibly explaining the three-lobed architecture of TFIID. However, the resolution at which the electron microscopy (EM) analyses were conducted is not sufficient to determine whether homodimerization occurs or whether a more intricate assembly implying other subunits is required. Here we report the X-ray structures of the fully evolutionary conserved C-terminal sub-domain of the TAF(II)5 N terminus, from yeast and the mammalian parasite Encephalitozoon cuniculi. This sub-domain displays a novel fold with specific surfaces having conserved physico-chemical properties that can form protein-protein interactions. Although a crystallographic dimer implying one of these surfaces is present in one of the crystal forms, several biochemical analyses show that this sub-domain is monomeric in solution, even at various salt conditions and in presence of different divalent cations. Consequently, the N-terminal sub-domain of the TAF(II)5 N terminus, which is homologous to a dimerization motif but has not been fully conserved during evolution, was studied by analytical ultracentrifugation and yeast genetics. Our results show that this sub-domain dimerizes at very high concentration but is neither required for yeast viability, nor for incorporation of two TAF(II)5 molecules within TFIID and for the assembly of this complex. Altogether, although our results do not argue in favour of a homodimerization of the TAF(II)5 N-terminal domain, our structural analyses suggest a role for this domain in assembly of TFIID and its related complexes SAGA, STAGA, TFTC and PCAF.
Yan, Weile; Herzing, Andrew A; Kiely, Christopher J; Zhang, Wei-Xian
2010-11-25
Aspects of the core-shell model of nanoscale zero-valent iron (nZVI) and their environmental implications were examined in this work. The structure and elemental distribution of nZVI were characterized by X-ray energy-dispersive spectroscopy (XEDS) with nanometer-scale spatial resolution in an aberration-corrected scanning transmission electron microscope (STEM). The analysis provides unequivocal evidence of a layered structure of nZVI consisting of a metallic iron core encapsulated by a thin amorphous oxide shell. Three aqueous environmental contaminants, namely Hg(II), Zn(II) and hydrogen sulfide, were studied to probe the reactive properties and the surface chemistry of nZVI. High-resolution X-ray photoelectron spectroscopy (HR-XPS) analysis of the reacted particles indicated that Hg(II) was sequestrated via chemical reduction to elemental mercury. On the other hand, Zn(II) removal was achieved via sorption to the iron oxide shell followed by zinc hydroxide precipitation. Hydrogen sulfide was immobilized on the nZVI surface as disulfide (S(2)(2-)) and monosulfide (S(2-)) species. Their relative abundance in the final products suggests that the retention of hydrogen sulfide occurs via reactions with the oxide shell to form iron sulfide (FeS) and subsequent conversion to iron disulfide (FeS(2)). The results presented herein highlight the multiple reactive pathways permissible with nZVI owing to its two functional constituents. The core-shell structure imparts nZVI with manifold functional properties previously unexamined and grants the material with potentially new applications. Copyright © 2010 Elsevier B.V. All rights reserved.
The Structure of Neurexin 1[alpha] Reveals Features Promoting a Role as Synaptic Organizer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Fang; Venugopal, Vandavasi; Murray, Beverly
{alpha}-Neurexins are essential synaptic adhesion molecules implicated in autism spectrum disorder and schizophrenia. The {alpha}-neurexin extracellular domain consists of six LNS domains interspersed by three EGF-like repeats and interacts with many different proteins in the synaptic cleft. To understand how {alpha}-neurexins might function as synaptic organizers, we solved the structure of the neurexin 1{alpha} extracellular domain (n1{alpha}) to 2.65 {angstrom}. The L-shaped molecule can be divided into a flexible repeat I (LNS1-EGF-A-LNS2), a rigid horseshoe-shaped repeat II (LNS3-EGF-B-LNS4) with structural similarity to so-called reelin repeats, and an extended repeat III (LNS5-EGF-B-LNS6) with controlled flexibility. A 2.95 {angstrom} structure of n1{alpha}more » carrying splice insert SS3 in LNS4 reveals that SS3 protrudes as a loop and does not alter the rigid arrangement of repeat II. The global architecture imposed by conserved structural features enables {alpha}-neurexins to recruit and organize proteins in distinct and variable ways, influenced by splicing, thereby promoting synaptic function.« less
NASA Astrophysics Data System (ADS)
Wu, Chun; Shea, Joan-Emma
Protein aggregation involves the self-assembly of proteins into large β-sheet-rich complexes. This process can be the result of aberrant protein folding and lead to "amyloidosis," a condition characterized by deposits of protein aggregates known as amyloids on various organs of the body [1]. Amyloid-related diseases include, among others, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease, and type II diabetes [2, 3, 4]. In other instances, however, protein aggregation is not a pathological process, but rather a functional one, with aggregates serving as structural scaffolds in a number of organisms [5].
Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state
NASA Astrophysics Data System (ADS)
Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.
2016-08-01
This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.
Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca
2016-08-15
This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better thanmore » the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.« less
A family of metal-dependent phosphatases implicated in metabolite damage-control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lili; Khusnutdinova, Anna; Nocek, Boguslaw
DUF89 family proteins occur widely in both prokaryotes and eukaryotes, but their functions are unknown. Here we define three DUF89 subfamilies (I, II, and III), with subfamily II being split into stand-alone proteins and proteins fused to pantothenate kinase (PanK). We demonstrated that DUF89 proteins have metal-dependent phosphatase activity against reactive phosphoesters or their damaged forms, notably sugar phosphates (subfamilies II and III), phosphopantetheine and its S-sulfonate or sulfonate (subfamily II-PanK fusions), and nucleotides (subfamily I). Genetic and comparative genomic data strongly associated DUF89 genes with phosphoester metabolism. The crystal structure of the yeast (Saccharomyces cerevisiae) subfamily III protein YMR027Wmore » revealed a novel phosphatase active site with fructose 6-phosphate and Mg2+ bound near conserved signature residues Asp254 and Asn255 that are critical for activity. These findings indicate that DUF89 proteins are previously unrecognized hydrolases whose characteristic in vivo function is to limit potentially harmful buildups of normal or damaged phosphometabolites.« less
A family of metal-dependent phosphatases implicated in metabolite damage-control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lili; Shanklin, John; Khusnutdinova, Anna
DUF89 family proteins occur widely in pro- and eukaryotes but their functions are unknown. Here we define three DUF89 subfamilies (I, II, and III), subfamily II being split into standalone proteins and proteins fused to pantothenate kinase (PanK). We demonstrated that DUF89 proteins have metaldependent phosphatase activity against reactive phosphoesters or their damaged forms, notably sugar phosphates (subfamilies II and III), phosphopantetheine and its S-sulfonate or sulfonate (subfamily II-PanK fusions), and nucleotides (subfamily I). Genetic and comparative genomic data strongly associated DUF89 genes with phosphoester metabolism. The crystal structure of the yeast (Saccharomyces cerevisiae) subfamily III protein YMR027W revealed amore » novel phosphatase active site with fructose 6-phosphate and Mg 2+ bound near conserved signature residues Asp254 and Asn255 that are critical for activity. These findings indicate that DUF89 proteins are previously unrecognized hydrolases whose characteristic in vivo function is to limit potentially harmful buildups of normal or damaged phosphometabolites.« less
A family of metal-dependent phosphatases implicated in metabolite damage-control
Huang, Lili; Shanklin, John; Khusnutdinova, Anna; ...
2016-06-20
DUF89 family proteins occur widely in pro- and eukaryotes but their functions are unknown. Here we define three DUF89 subfamilies (I, II, and III), subfamily II being split into standalone proteins and proteins fused to pantothenate kinase (PanK). We demonstrated that DUF89 proteins have metaldependent phosphatase activity against reactive phosphoesters or their damaged forms, notably sugar phosphates (subfamilies II and III), phosphopantetheine and its S-sulfonate or sulfonate (subfamily II-PanK fusions), and nucleotides (subfamily I). Genetic and comparative genomic data strongly associated DUF89 genes with phosphoester metabolism. The crystal structure of the yeast (Saccharomyces cerevisiae) subfamily III protein YMR027W revealed amore » novel phosphatase active site with fructose 6-phosphate and Mg 2+ bound near conserved signature residues Asp254 and Asn255 that are critical for activity. These findings indicate that DUF89 proteins are previously unrecognized hydrolases whose characteristic in vivo function is to limit potentially harmful buildups of normal or damaged phosphometabolites.« less
The role of defects in Fe(II) – goethite electron transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade de Notini, Luiza; Latta, Drew; Neumann, Anke
Despite accumulating experimental evidence for Fe(II)-Fe(III) oxide electron transfer, computational chemical calculations suggest that oxidation of sorbed Fe(II) is not energetically feasible unless defects are present. Here we used isotope specific 57Fe Mössbauer spectroscopy to investigate whether Fe(II)-goethite electron transfer is influenced by defects. Specifically, we heated the mineral to try to anneal the goethite surface and ground goethite to try to create defects. We found that heating goethite results in less oxidation of sorbed Fe(II) by goethite. When goethite was re-ground after heating, electron transfer was partially restored. X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) ofmore » heated and ground goethite confirm that heating and grinding alter the surface structure of the goethite. We propose that the heating process annealed the surface and decreased the number of sites where electron transfer could occur. Our experimental findings suggest that surface defects play an important role in Fe(II)-goethite electron transfer as suggested by computational calculations. Our finding that defects influence heterogeneous Fe(II)-goethite electron transfer has important implications for Fe(II) driven recrystallization of Fe oxides, as well as X and Y.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Kate N.; Reid, Hugh H.; Borg, Natalie A.
2007-12-01
The production and crystallization of human leukocyte antigen class II molecules HLA-DQ2 and HLA-DQ8 in complex with deamidated gliadin peptides is reported. Crystals of HLA-DQ2{sup PQPELPYPQ} diffracted to 3.9 Å, while the HLA-DQ8{sup EGSFQPSQE} crystals diffracted to 2.1 Å, allowing structure determination by molecular replacement. The major histocompatibility complex (MHC) class II molecules HLA-DQ2 and HLA-DQ8 are key risk factors in coeliac disease, as they bind deamidated gluten peptides that are subsequently recognized by CD4{sup +} T cells. Here, the production and crystallization of both HLA-DQ2 and HLA-DQ8 in complex with the deamidated gliadin peptides DQ2 α-I (PQPELPYPQ) and DQ8more » α-I (EGSFQPSQE), respectively, are reported.« less
Michalczyk, Ryszard; Unkefer, Clifford J.; Bacik, John-Paul; Schrader, Tobias E.; Ostermann, Andreas; Kovalevsky, Andrey Y.; McKenna, Robert; Fisher, Suzanne Zoë
2015-01-01
Human carbonic anhydrase II (HCA II) uses a Zn-bound OH−/H2O mechanism to catalyze the reversible hydration of CO2. This catalysis also involves a separate proton transfer step, mediated by an ordered solvent network coordinated by hydrophilic residues. One of these residues, Tyr7, was previously shown to be deprotonated in the neutron crystal structure at pH 10. This observation indicated that Tyr7 has a perturbed pKa compared with free tyrosine. To further probe the pKa of this residue, NMR spectroscopic measurements of [13C]Tyr-labeled holo HCA II (with active-site Zn present) were preformed to titrate all Tyr residues between pH 5.4–11.0. In addition, neutron studies of apo HCA II (with Zn removed from the active site) at pH 7.5 and holo HCA II at pH 6 were conducted. This detailed interrogation of tyrosines in HCA II by NMR and neutron crystallography revealed a significantly lowered pKa of Tyr7 and how pH and Tyr proximity to Zn affect hydrogen-bonding interactions. PMID:25902526
Spectroscopic Evidence for Nonuniform Starspot Properties on II Pegasi
NASA Technical Reports Server (NTRS)
ONeal, Douglas; Saar, Steven H.; Neff, James E.
1998-01-01
We present spectroscopic evidence for Multiple Spot temperatures on the RS CVn star II Pegasi (HD 224085). We model the strengths of the 7055 and 8860 A TiO absorption bands in the spectrum of II Peg using weighted sums of inactive comparison spectra: a K star to represent the nonspotted photosphere and an M star to represent the spots. The best fit yields independent measurements of the starspot filling factor (f(sub s) and mean spot temperature (T(sub s)) averaged over the visible hemisphere of the star. During three-fourths of a rotation of II Peg in late 1996, we measure a constant f(sub s) approximately equals 55% +/- 5%. However, (T(sub s) varies from 3350 +/- 60 to 3550 +/- 70 K. We compute (T(sub s) for two simple models: (1) a star with two distinct spot temperatures, and (2) a star with different umbral/penumbral area ratios. The changing (T(sub s) correlates with emission strengths of H(alpha) and the Ca II infrared triplet in the sense that cooler (T(sub s) accompanies weaker emission. We explore possible implications of these results for the physical properties of the spots on II Peg and for stellar surface structure in general.
The Mathematical Structure of Elementary Particles. II.
1985-05-01
apparently related to the Higgs fields of electroweak interactions. 6.11 UNITARY SYM’ILTRY OF THE STABLE QUANTA We still need to analyze the implications of...Remark this A has nothing to do with the cosmological constant in Chapter V.) From now on we agree to represent any complex number A in...bring in the axial symmetry effects, but this would be useless because in our case new phe- nomena arise (exchange forces, metric averaging, Higgs
Measuring psychological flexibility in medical students and residents: a psychometric analysis
Palladino, Christie L.; Ange, Brittany; Richardson, Deborah S.; Casillas, Rhonda; Decker, Matt; Gillies, Ralph A.; House, Amy; Rollock, Michael; Salazar, William H.; Waller, Jennifer L.; Zeidan, Ronnie; Stepleman, Lara
2013-01-01
Purpose Psychological flexibility involves mindful awareness of our thoughts and feelings without allowing them to prohibit acting consistently with our values and may have important implications for patient-centered clinical care. Although psychological flexibility appears quite relevant to the training and development of health care providers, prior research has not evaluated measures of psychological flexibility in medical learners. Therefore, we investigated the validity of our learners’ responses to three measures related to psychological flexibility. Methods Fourth-year medical students and residents (n=275) completed three measures of overlapping aspects of psychological flexibility: (1) Acceptance and Action Questionnaire-II (AAQ-II); (2) Cognitive Fusion Questionnaire (CFQ); and (3) Mindful Attention and Awareness Questionnaire (MAAS). We evaluated five aspects of construct validity: content, response process, internal structure, relationship with other variables, and consequences. Results We found good internal consistency for responses on the AAQ (α=0.93), MAAS (α=0.92), and CFQ (α=0.95). Factor analyses demonstrated a reasonable fit to previously published factor structures. As expected, scores on all three measures were moderately correlated with one another and with a measure of life satisfaction (p<0.01). Conclusion Our findings provide preliminary evidence supporting validity of the psychological flexibility construct in a medical education sample. As psychological flexibility is a central concept underlying self-awareness, this work may have important implications for clinical training and practice. PMID:23948496
Frost, Ray L; Reddy, B Jagannadha; Palmer, Sara J; Keeffe, Eloise C
2011-03-01
The NIR spectra of reichenbachite, scholzite and parascholzite have been studied at 298 K. The spectra of the minerals are different, in line with composition and crystal structural variations. Cation substitution effects are significant in their electronic spectra and three distinctly different electronic transition bands are observed in the near-infrared spectra at high wavenumbers in the 12,000-7600 cm(-1) spectral region. Reichenbachite electronic spectrum is characterised by Cu(II) transition bands at 9755 and 7520 cm(-1). A broad spectral feature observed for ferrous ion in the 12,000-9000 cm(-1) region both in scholzite and parascholzite. Some what similarities in the vibrational spectra of the three phosphate minerals are observed particularly in the OH stretching region. The observation of strong band at 5090 cm(-1) indicates strong hydrogen bonding in the structure of the dimorphs, scholzite and parascholzite. The three phosphates exhibit overlapping bands in the 4800-4000 cm(-1) region resulting from the combinations of vibrational modes of (PO(4))(3-) units. Copyright © 2010 Elsevier B.V. All rights reserved.
Yasuno, Shinji; Kuwahara, Koichiro; Kinoshita, Hideyuki; Yamada, Chinatsu; Nakagawa, Yasuaki; Usami, Satoru; Kuwabara, Yoshihiro; Ueshima, Kenji; Harada, Masaki; Nishikimi, Toshio; Nakao, Kazuwa
2013-12-01
Angiotensin II has been implicated in the development of various cardiovascular ailments, including cardiac hypertrophy and heart failure. The fact that inhibiting its signalling reduced the incidences of both sudden cardiac death and heart failure in several large-scale clinical trials suggests that angiotensin II is involved in increased cardiac arrhythmogenicity during the development of heart failure. However, because angiotensin II also promotes structural remodelling, including cardiomyocyte hypertrophy and cardiac fibrosis, it has been difficult to assess its direct contribution to cardiac arrhythmogenicity independently of the structural effects. We induced cardiac hypertrophy in wild-type (WT) and angiotensin II type 1a receptor knockout (AT1aR-KO) mice by transverse aortic constriction (TAC). The susceptibility to ventricular tachycardia (VT) assessed in an in vivo electrophysiological study was compared in the two genotypes. The effect of acute pharmacological blockade of AT1R on the incidences of arrhythmias was also assessed. As described previously, WT and AT1aR-KO mice with TAC developed cardiac hypertrophy to the same degree, but the incidence of VT was much lower in the latter. Moreover, although TAC induced an increase in tyrosine phosphorylation of connexin 43, a critical component of gap junctional channels, and a reduction in ventricular levels of connexin 43 protein in both genotypes, the effect was significantly ameliorated in AT1aR-KO mice. Acute pharmacological blockade of AT1R also reduced the incidence of arrhythmias. Our findings demonstrate that AT1aR-mediated signalling makes a direct contribution to the increase in arrhythmogenicity in hypertrophied hearts independently of structural remodelling. © 2013 The British Pharmacological Society.
Ayres, Cory M.; Corcelli, Steven A.; Baker, Brian M.
2017-01-01
Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic “energy landscapes” of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology. PMID:28824655
Ayres, Cory M; Corcelli, Steven A; Baker, Brian M
2017-01-01
Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic "energy landscapes" of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology.
The [N II] Kinematics of R Aquarii
NASA Technical Reports Server (NTRS)
Hollis, J. M.; Vogel, S. N.; VanBuren, D.; Strong, J. P.; Lyon, R. G.; Dorband, J. E.
1998-01-01
We report a kinematic study of the symbiotic star system R Aqr derived from [N H]lambda 6584 emission observations with a Fabry-Perot imaging spectrometer. The [N II] spatial structure of the R Aqr jet, first observed circa 1977, and surrounding hourglass-shaped nebulosity, due to an explosion approximately 660 years ago, are derived from 41 velocity planes spaced at approximately 12 km/s intervals. Fabry-Perot imagery shows the elliptical nebulosity comprising the waist of the hourglass shell is consistent with a circular ring expanding radially at 55 km/s as seen at an inclination angle, i approximately 70 deg. Fabry-Perot imagery shows the two-sided R Aqr jet is collimated flow in opposite directions. The intensity-velocity structure of the strong NE jet component is shown in contrast to the amorphous SW jet component. We offer a idealized schematic model for the R Aqr jet motion which results in a small-scale helical structure forming around a larger-scale helical path. The implications of such a jet model are discussed. We present a movie showing a side-by-side comparison of the spatial structure of the model and the data as a function of the 41 velocity planes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemmer, D.E.; Kumar, N.V.; Metrione, R.M.
Toxin II from Radianthus paumotensis (Rp/sub II/) has been investigated by high-resolution NMR and chemical sequencing methods. Resonance assignments have been obtained for this protein by the sequential approach. NMR assignments could not be made consistent with the previously reported primary sequence for this protein, and chemical methods have been used to determine a sequence with which the NMR data are consistent. Analysis of the 2D NOE spectra shows that the protein secondary structure is comprised of two sequences of ..beta..-sheet, probably joined into a distorted continuous sheet, connected by turns and extended loops, without any regular ..cap alpha..-helical segments.more » The residues previously implicated in activity in this class of proteins, D8 and R13, occur in a loop region.« less
NASA Astrophysics Data System (ADS)
Rose, Francis; Hodak, Miroslav; Bernholc, Jerry
2007-03-01
The Non-Amyloid-Beta Component Precursor (NACP) is a natively unfolded synaptic protein that is implicated in Alzheimers and Parkinsons diseases. Its aggregation into fibrillar structures is accelerated by the binding of copper(II). Experimental studies suggest that the dominant copper binding site is located at the histidine residue in NACP. Based on this evidence we assembled a model fragment of the binding site and used DFT to analyze the conformational details of the most probable binding motifs. We investigated the overall conformational effects with classical MD by constraining the copper binding site to the most energetically favorable geometry obtained from the DFT calculations. These results are compared and contrasted with those of the unbound NACP.
Mirkin, Noemi G; Krimm, Samuel
2016-02-02
As we have previously shown, the predominance of the polyproline II conformation in the circular dichroism spectra of aqueous polypeptides is related to its lower energy than that of the beta conformation. In order to test whether this is still the case in the presence of additional components in the medium, we have calculated the energy difference between these two conformations in an alanine-dipeptide/twelve-water system without and with the addition of an HCl molecule. We find in the latter case that the beta conformer is of lower energy than the polyproline II. Energy profiles near the minima in both cases also permit conclusions about the relative entropies of these structures. These results emphasize the importance of considering the peptide-plus-medium state as the relevant entity in determining the structural properties of such systems. Such an inversion could be relevant to the formation of amyloid and could thus lead to new strategies for studying its role in the development of neurodegenerative diseases. This article is protected by copyright. All rights reserved. © 2016 Wiley Periodicals, Inc.
Giri, Nitai Charan; Passantino, Lisa; Sun, Hong; Zoroddu, Maria Antonietta; Costa, Max; Maroney, Michael J.
2013-01-01
Occupational and/or environmental exposure to nickel has been implicated in various types of cancer, and in vitro exposure to nickel compounds results in accumulation of Ni(II) ions in cells. One of the major targets of Ni(II) ions inside the cell is Fe(II)- and αKG-dependent dioxygenases. Using JMJD2A and JMJD2C as examples, we show that JMJD2 family of histone demethylases, which are products of putative oncogenes as well as Fe(II)- and αKG-dependent dioxygenases, are highly sensitive to inhibition by Ni(II) ions. In this work, X-ray absorption spectroscopy (XAS) has been used to investigate the Fe(II) active site of truncated JMJD2A and JMJD2C (1 – 350 aa) in the presence and absence of αKG and/or substrate to obtain mechanistic details of the early steps in catalysis that precede O2 binding in histone demethylation by the JMJD2 family of histone demethylases. Zinc K-edge XAS has been performed on the resting JMJD2A (with iron in the active site) to confirm the presence of the expected structural zinc site. XAS of the Ni(II)-substituted enzymes has also been performed to investigate the inhibition of these enzymes by Ni(II) ions. Our XAS results indicate that the five-coordinate Fe(II) center in the resting enzyme is retained in the binary and ternary complexes. In contrast, the Ni(II) center is six-coordinate in the resting enzyme, binary and ternary complexes. XAS results indicate that both Fe(II) and Ni(II) bind αKG in the binary and ternary complexes. The electron density build-up that is observed at the Fe(II) center in the presence of αKG and substrate is not observed at the Ni(II) center. Thus, both electronic and steric factors are responsible for Ni-induced inhibition of the JMJD2 family of histone demethylases. Ni-induced inhibition of these enzymes may explain the alteration of the epigenetic mechanism of gene expression that is responsible for Ni-induced carcinogenesis. PMID:23692052
Mercury photolytic transformation affected by low-molecular-weight natural organics in water.
He, Feng; Zheng, Wang; Liang, Liyuan; Gu, Baohua
2012-02-01
Mechanisms by which dissolved organic matter (DOM) mediates the photochemical reduction of Hg(II) in aquatic ecosystems are not fully understood, owing to the heterogeneous nature and complex structural properties of DOM. In this work, naturally occurring aromatic compounds including salicylic, 4-hydrobenzoic, anthranilic, 4-aminobenzoic, and phthalic acid were systematically studied as surrogates for DOM in order to gain an improved mechanistic understanding of these compounds in the photoreduction of Hg(II) in water. We show that the photoreduction rates of Hg(II) are influenced not only by the substituent functional groups such as -OH, -NH(2) and -COOH on the benzene ring, but also the positioning of these functional groups on the ring structure. The Hg(II) photoreduction rate decreases in the order anthranilic acid>salicylic acid>phthalic acid according to the presence of the -NH(2), -OH, -COOH functional groups on benzoic acid. The substitution position of the functional groups affects reduction rates in the order anthranilic acid>4-aminobenzoic acid and salicylic acid>4-hydroxybenzoic acid. Reduction rates correlate strongly with ultraviolet (UV) absorption of these compounds and their concentrations, suggesting that the formation of organic free radicals during photolysis of these compounds is responsible for Hg(II) photoreduction. These results provide insight into the role of low-molecular-weight organic compounds and possibly DOM in Hg photoredox transformation and may thus have important implications for understanding Hg geochemical cycling in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.
Substrate complexes of human dipeptidyl peptidase III reveal the mechanism of enzyme inhibition
Kumar, Prashant; Reithofer, Viktoria; Reisinger, Manuel; Wallner, Silvia; Pavkov-Keller, Tea; Macheroux, Peter; Gruber, Karl
2016-01-01
Human dipeptidyl-peptidase III (hDPP III) is a zinc-dependent hydrolase cleaving dipeptides off the N-termini of various bioactive peptides. Thus, the enzyme is likely involved in a number of physiological processes such as nociception and is also implicated in several forms of cancer. We present high-resolution crystal structures of hDPP III in complex with opioid peptides (Met-and Leu-enkephalin, endomorphin-2) as well as with angiotensin-II and the peptide inhibitor IVYPW. These structures confirm the previously reported large conformational change of the enzyme upon ligand binding and show that the structure of the closed conformation is independent of the nature of the bound peptide. The overall peptide-binding mode is also conserved ensuring the correct positioning of the scissile peptide bond with respect to the catalytic zinc ion. The structure of the angiotensin-II complex shows, how longer peptides are accommodated in the binding cleft of hDPP III. Differences in the binding modes allow a distinction between real substrates and inhibitory peptides or “slow” substrates. The latter displace a zinc bound water molecule necessitating the energetically much less favoured anhydride mechanism as opposed to the favoured promoted-water mechanism. The structural data also form the necessary framework for the design of specific hDPP III inhibitors. PMID:27025154
Changes in the Near-UV Spectrum of eta Car 2002 - 2015
NASA Astrophysics Data System (ADS)
Martin, John; Davidson, Kris; Ishabashi, Kazunori; Humphreys, Roberta; Mehner, Andrea
2018-01-01
Eta Car's detailed UV spectrum has been somewhat neglected in recent years, because of its complexity. Here we report on NUV and FUV data obtained with the HST STIS/MAMA spanning a time interval of more than a decade. The main results fall into three categories: (1) Changes in a diverse set of absorption lines (Fe II, Si II, Si IV, Al III, etc.) indicate changes in the wind's ionization structure between 2002 and 2013. The trend is toward more highly ionized species. (2) The extremely luminous N III] 1750 A multiplet has also changed in the same sense. (3) Curiously, the N III] profile in 2015 closely resembled its 2013 state. This is a surprise because those two dates had very different orbital phases; in most models the Doppler velocity profiles should have differed because the shock structure's viewing angle changed. We discuss these results' implications for the primary stellar wind and for the secondary star's orbit.
AN IMAGING STUDY OF A COMPLEX SOLAR CORONAL RADIO ERUPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, S. W.; Chen, Y.; Song, H. Q.
2016-08-10
Solar coronal radio bursts are enhanced radio emission excited by energetic electrons accelerated during solar eruptions. Studying these bursts is important for investigating the origin and physical mechanism of energetic particles and further diagnosing coronal parameters. Earlier studies suffered from a lack of simultaneous high-quality imaging data of the radio burst and the eruptive structure in the inner corona. Here we present a study on a complex solar radio eruption consisting of a type II burst and three reversely drifting type III bursts, using simultaneous EUV and radio imaging data. It is found that the type II burst is closelymore » associated with a propagating and evolving CME-driven EUV shock structure, originated initially at the northern shock flank and later transferred to the top part of the shock. This source transfer is coincident with the presence of shock decay and enhancing signatures observed at the corresponding side of the EUV front. The electron energy accelerated by the shock at the flank is estimated to be ∼0.3 c by examining the imaging data of the fast-drifting herringbone structure of the type II burst. The reverse-drifting type III sources are found to be within the ejecta and correlated with a likely reconnection event therein. The implications for further observational studies and relevant space weather forecasting techniques are discussed.« less
Criminal Investigative Activities: World War II and Vietnam Battlefield Implications
1988-06-03
WORLD WAR II AND VIET NAM BATTLEFIELD IMPLICATIONS •A thesis presented to the Faculty of the U. S. Army Command and General Staff College in partial...TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT Master’s Thesis IFROM 8-1&~98 .TO..i-li38I 1988 June 3 I 145 16. SUPPLEMENTARY...CRIMINAL INVESTIGATIVE ACTIVITIES WORLD WAR II AND VIET NAM BATTLEFIELD !MPLICATIONS A thesis presented to the Faculty of the U. S. Army
Kinetics of FeII-polyaminocarboxylate oxidation by molecular oxygen
NASA Astrophysics Data System (ADS)
Wilson, Jessica M.; Farley, Kevin J.; Carbonaro, Richard F.
2018-03-01
Complexation of iron by naturally-occurring and synthetic organic ligands has a large effect on iron oxidation and reduction rates which in turn affect the aqueous geochemistry of many other chemical constituents. In this study, the kinetics of FeII oxidation in the presence of the polyaminocarboxylate synthetic chelating agents ethylene glycol tetraacetic acid (EGTA) and trimethylenediamine-N,N,N‧,N‧-tetraacetic acid (TMDTA) was investigated over the pH range 5.50-8.53. Batch oxidation experiments in the presence of molecular oxygen were conducted using a 2:1 M concentration ratio of polyaminocarboxylate (ligand, L) to FeII. The experimental data resembled first order kinetics for the oxidation of FeII-L to FeIII-L and observed rate constants at pH 6.0 were comparable to rate constants for the oxidation of inorganic FeII. Similar to other structurally-similar FeII-polyaminocarboxylate complexes, oxidation rates of FeII-EGTA and FeII-TMDTA decrease with increasing pH, which is the opposite trend for the oxidation of FeII complexed with inorganic ligands. However, the oxidation rates of FeII complexed with EGTA and TMDTA were considerably lower (4-5 orders of magnitude) than FeII complexed to ethylenediaminetetraacetic acid (EDTA). The distinguishing feature of the slower-reacting complexes is that they have a longer backbone between diamine functional groups. An analytical equilibrium model was developed to determine the contributions of the species FeIIL2- and FeII(H)L- to the overall oxidation rate of FeII-L. Application of this model indicated that the protonated FeII(H)L species are more than three orders of magnitude more reactive than FeIIL2-. These rate constants were used in a coupled kinetic equilibrium numerical model where the ligand to iron ratio (TOTL:TOTFe) and pH were varied to evaluate the effect on the FeII oxidation rate. Overall, increasing TOTL:TOTFe for EGTA and TMDTA enhances FeII oxidation rates at lower pH and inhibits FeII oxidation rates at higher pH. Finally, this work demonstrates that the rate of FeII oxidation is very sensitive to the identity and structure of the polyaminocarboxylate chelating agent, which has implications for any metal or organic chemical that reacts either directly or indirectly with iron.
Shoji, Mitsuo; Isobe, Hiroshi; Tanaka, Ayako; Fukushima, Yoshimasa; Kawakami, Keisuke; Umena, Yasufumi; Kamiya, Nobuo; Nakajima, Takahito
2017-01-01
Abstract Tanaka et al. (J. Am. Chem. Soc., 2017, 139, 1718) recently reported the three‐dimensional (3D) structure of the oxygen evolving complex (OEC) of photosystem II (PSII) by X‐ray diffraction (XRD) using extremely low X‐ray doses of 0.03 and 0.12 MGy. They observed two different 3D structures of the CaMn4O5 cluster with different hydrogen‐bonding interactions in the S1 state of OEC keeping the surrounding polypeptide frameworks of PSII the same. Our Jahn–Teller (JT) deformation formula based on large‐scale quantum mechanics/molecular mechanics (QM/MM) was applied for these low‐dose XRD structures, elucidating important roles of JT effects of the MnIII ion for subtle geometric distortions of the CaMn4O5 cluster in OEC of PSII. The JT deformation formula revealed the similarity between the low‐dose XRD and damage‐free serial femtosecond X‐ray diffraction (SFX) structures of the CaMn4O5 cluster in the dark stable state. The extremely low‐dose XRD structures were not damaged by X‐ray irradiation. Implications of the present results are discussed in relation to recent SFX results and a blue print for the design of artificial photocatalysts for water oxidation. PMID:29577075
Solution structure of CXCL5--a novel chemokine and adipokine implicated in inflammation and obesity.
Sepuru, Krishna Mohan; Poluri, Krishna Mohan; Rajarathnam, Krishna
2014-01-01
The chemokine CXCL5 is selectively expressed in highly specialized cells such as epithelial type II cells in the lung and white adipose tissue macrophages in muscle, where it mediates diverse functions from combating microbial infections by regulating neutrophil trafficking to promoting obesity by inhibiting insulin signaling. Currently very little is known regarding the structural basis of how CXCL5 mediates its novel functions. Towards this missing knowledge, we have solved the solution structure of the CXCL5 dimer by NMR spectroscopy. CXCL5 is a member of a subset of seven CXCR2-activating chemokines (CAC) that are characterized by the highly conserved ELR motif in the N-terminal tail. The structure shows that CXCL5 adopts the typical chemokine fold, but also reveals several distinct differences in the 30 s loop and N-terminal residues; not surprisingly, crosstalk between N-terminal and 30 s loop residues have been implicated as a major determinant of receptor activity. CAC function also involves binding to highly sulfated glycosaminoglycans (GAG), and the CXCL5 structure reveals a distinct distribution of positively charged residues, suggesting that differences in GAG interactions also influence function. The availability of the structure should now facilitate the design of experiments to better understand the molecular basis of various CXCL5 functions, and also serve as a template for the design of inhibitors for use in a clinical setting.
Performance of active vibration control technology: the ACTEX flight experiments
NASA Astrophysics Data System (ADS)
Nye, T. W.; Manning, R. A.; Qassim, K.
1999-12-01
This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed spacecraft bus smart structures by developing over 20 new technologies. As pathfinders, experience was gained in the implications of space system analyses, verification tests, and for ways to leverage this technology to meet new satellite performance requirements.
Helix formation in arrestin accompanies recognition of photoactivated rhodopsin.
Feuerstein, Sophie E; Pulvermüller, Alexander; Hartmann, Rudolf; Granzin, Joachim; Stoldt, Matthias; Henklein, Peter; Ernst, Oliver P; Heck, Martin; Willbold, Dieter; Koenig, Bernd W
2009-11-17
Binding of arrestin to photoactivated phosphorylated rhodopsin terminates the amplification of visual signals in photoreceptor cells. Currently, there is no crystal structure of a rhodopsin-arrestin complex available, although structures of unbound rhodopsin and arrestin have been determined. High-affinity receptor binding is dependent on distinct arrestin sites responsible for recognition of rhodopsin activation and phosphorylation. The loop connecting beta-strands V and VI in rod arrestin has been implicated in the recognition of active rhodopsin. We report the structure of receptor-bound arrestin peptide Arr(67-77) mimicking this loop based on solution NMR data. The peptide binds photoactivated rhodopsin in the unphosphorylated and phosphorylated form with similar affinities and stabilizes the metarhodopsin II photointermediate. A largely alpha-helical conformation of the receptor-bound peptide is observed.
Structure of the C-terminal Domain of Transcription Facto IIB from Trypanosoma brucei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, B.; Kanneganti, N; Rieckhof, G
In trypanosomes, the production of mRNA relies on the synthesis of the spliced leader (SL) RNA. Expression of the SL RNA is initiated at the only known RNA polymerase II promoter in these parasites. In the pathogenic trypanosome, Trypanosoma brucei, transcription factor IIB (tTFIIB) is essential for SL RNA gene transcription and cell viability, but has a highly divergent primary sequence in comparison to TFIIB in well-studied eukaryotes. Here we describe the 2.3 A resolution structure of the C-terminal domain of tTFIIB (tTFIIBC). The tTFIIBC structure consists of 2 closely packed helical modules followed by a C-terminal extension of 32more » aa. Using the structure as a guide, alanine substitutions of basic residues in regions analogous to functionally important regions of the well-studied eukaryotic TFIIB support conservation of a general mechanism of TFIIB function in eukaryotes. Strikingly, tTFIIBC contains additional loops and helices, and, in contrast to the highly basic DNA binding surface of human TFIIB, contains a neutral surface in the corresponding region. These attributes probably mediate trypanosome-specific interactions and have implications for the apparent bidirectional transcription by RNA polymerase II in protein-encoding gene expression in these organisms.« less
Callahan, Damien M; Bedrin, Nicholas G; Subramanian, Meenakumari; Berking, James; Ades, Philip A; Toth, Michael J; Miller, Mark S
2014-06-15
Age-related loss of skeletal muscle mass and function is implicated in the development of disease and physical disability. However, little is known about how age affects skeletal muscle structure at the cellular and ultrastructural levels or how such alterations impact function. Thus we examined skeletal muscle structure at the tissue, cellular, and myofibrillar levels in young (21-35 yr) and older (65-75 yr) male and female volunteers, matched for habitual physical activity level. Older adults had smaller whole muscle tissue cross-sectional areas (CSAs) and mass. At the cellular level, older adults had reduced CSAs in myosin heavy chain II (MHC II) fibers, with no differences in MHC I fibers. In MHC II fibers, older men tended to have fewer fibers with large CSAs, while older women showed reduced fiber size across the CSA range. Older adults showed a decrease in intermyofibrillar mitochondrial size; however, the age effect was driven primarily by women (i.e., age by sex interaction effect). Mitochondrial size was inversely and directly related to isometric tension and myosin-actin cross-bridge kinetics, respectively. Notably, there were no intermyofibrillar or subsarcolemmal mitochondrial fractional content or myofilament ultrastructural differences in the activity-matched young and older adults. Collectively, our results indicate age-related reductions in whole muscle size do not vary by sex. However, age-related structural alterations at the cellular and subcellular levels are different between the sexes and may contribute to different functional phenotypes in ways that modulate sex-specific reductions in physical capacity with age. Copyright © 2014 the American Physiological Society.
Hornstein, G A
1986-09-01
The place of employment and the diversity of its relations to other roles within the life structure of midlife women were investigated. Three groups were compared: Group I (n = 44) had a continuous low level of involvement in employment from their early 20s to their early 40s; Group II (n = 20) changed from low to high involvement; and Group III (n = 32) maintained a continuous high level of involvement. Retrospective reports regarding subjects' commitment to a number of different roles and feelings during their early 30s and early 40s constituted the data. Findings indicated that: (1) women in Group I had a positive, confident view of their involvement in the traditional roles of mother, wife, and volunteer; (2) women in Group II, initially quite similar to those in Group I, restructured their role commitments by substituting involvement in employment for more traditional pursuits; and (3) women in Group III successfully integrated involvement in the multiple roles of worker, mother, wife, and volunteer. Implications for a more dynamic view of identity, which takes into account significant reorganization of the life structure after adolescence and variability among diverse groups of women, are discussed.
Phan, Isabelle Q. H.; Scheib, Holger; Subramanian, Sandhya; Edwards, Thomas E.; Lehman, Stephanie S.; Piitulainen, Hanna; Sayeedur Rahman, M.; Rennoll-Bankert, Kristen E.; Staker, Bart L.; Taira, Suvi; Stacy, Robin; Myler, Peter J.; Azad, Abdu F.
2015-01-01
ABSTRACT Prokaryotes use type IV secretion systems (T4SSs) to translocate substrates (e.g., nucleoprotein, DNA, and protein) and/or elaborate surface structures (i.e., pili or adhesins). Bacterial genomes may encode multiple T4SSs, e.g., there are three functionally divergent T4SSs in some Bartonella species (vir, vbh, and trw). In a unique case, most rickettsial species encode a T4SS (rvh) enriched with gene duplication. Within single genomes, the evolutionary and functional implications of cross-system interchangeability of analogous T4SS protein components remains poorly understood. To lend insight into cross-system interchangeability, we analyzed the VirB8 family of T4SS channel proteins. Crystal structures of three VirB8 and two TrwG Bartonella proteins revealed highly conserved C-terminal periplasmic domain folds and dimerization interfaces, despite tremendous sequence divergence. This implies remarkable structural constraints for VirB8 components in the assembly of a functional T4SS. VirB8/TrwG heterodimers, determined via bacterial two-hybrid assays and molecular modeling, indicate that differential expression of trw and vir systems is the likely barrier to VirB8-TrwG interchangeability. We also determined the crystal structure of Rickettsia typhi RvhB8-II and modeled its coexpressed divergent paralog RvhB8-I. Remarkably, while RvhB8-I dimerizes and is structurally similar to other VirB8 proteins, the RvhB8-II dimer interface deviates substantially from other VirB8 structures, potentially preventing RvhB8-I/RvhB8-II heterodimerization. For the rvh T4SS, the evolution of divergent VirB8 paralogs implies a functional diversification that is unknown in other T4SSs. Collectively, our data identify two different constraints (spatiotemporal for Bartonella trw and vir T4SSs and structural for rvh T4SSs) that mediate the functionality of multiple divergent T4SSs within a single bacterium. PMID:26646013
Comorbidity of obsessive-compulsive disorder in recovered inpatients with bipolar disorder.
Krüger, S; Bräunig, P; Cooke, R G
2000-03-01
To determine the frequency of obsessive-compulsive disorder (OCD) in inpatient subjects with bipolar disorder (BD) and to examine the clinical characteristics of BD subjects with OCD. The sample consisted of 143 inpatient subjects with DSM-III-R BD-I and BD-NOS (BD-II), recovered from a current episode of either depression or mania. Demographic and clinical variables were obtained on the day of admission. Current comorbid conditions including OCD were determined by the Structured Clinical Interview for DSM-III-R Ifollowing recovery from the acute affective episode. The frequency of current OCD was 7% (N = 10). All BD subjects with OCD were BD-II, were male, and had a diagnosis of current dysthymia. They had fewer episodes and a higher incidence of prior suicide attempts than bipolar subjects without OCD. None of the bipolar subjects with OCD fulfilled criteria for cyclothymia. Our findings suggest that BD-II, OCD, dysthymia, and suicidality cluster together in some subjects with BD. We discuss the clinical implications of our findings.
SPECTRAL LINE DE-CONFUSION IN AN INTENSITY MAPPING SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yun-Ting; Bock, James; Bradford, C. Matt
2016-12-01
Spectral line intensity mapping (LIM) has been proposed as a promising tool to efficiently probe the cosmic reionization and the large-scale structure. Without detecting individual sources, LIM makes use of all available photons and measures the integrated light in the source confusion limit to efficiently map the three-dimensional matter distribution on large scales as traced by a given emission line. One particular challenge is the separation of desired signals from astrophysical continuum foregrounds and line interlopers. Here we present a technique to extract large-scale structure information traced by emission lines from different redshifts, embedded in a three-dimensional intensity mapping data cube.more » The line redshifts are distinguished by the anisotropic shape of the power spectra when projected onto a common coordinate frame. We consider the case where high-redshift [C ii] lines are confused with multiple low-redshift CO rotational lines. We present a semi-analytic model for [C ii] and CO line estimates based on the cosmic infrared background measurements, and show that with a modest instrumental noise level and survey geometry, the large-scale [C ii] and CO power spectrum amplitudes can be successfully extracted from a confusion-limited data set, without external information. We discuss the implications and limits of this technique for possible LIM experiments.« less
Liu, Yang; Xu, Shenyuan; Woodruff, Andrew L; Xia, Ming; Tan, Ming; Kennedy, Michael A; Jiang, Xi
2017-11-01
Recognition of specific cell surface glycans, mediated by the VP8* domain of the spike protein VP4, is the essential first step in rotavirus (RV) infection. Due to lack of direct structural information of virus-ligand interactions, the molecular basis of ligand-controlled host ranges of the major human RVs (P[8] and P[4]) in P[II] genogroup remains unknown. Here, through characterization of a minor P[II] RV (P[19]) that can infect both animals (pigs) and humans, we made an important advance to fill this knowledge gap by solving the crystal structures of the P[19] VP8* in complex with its ligands. Our data showed that P[19] RVs use a novel binding site that differs from the known ones of other genotypes/genogroups. This binding site is capable of interacting with two types of glycans, the mucin core and type 1 histo-blood group antigens (HBGAs) with a common GlcNAc as the central binding saccharide. The binding site is apparently shared by other P[II] RVs and possibly two genotypes (P[10] and P[12]) in P[I] as shown by their highly conserved GlcNAc-interacting residues. These data provide strong evidence of evolutionary connections among these human and animal RVs, pointing to a common ancestor in P[I] with a possible animal host origin. While the binding properties to GlcNAc-containing saccharides are maintained, changes in binding to additional residues, such as those in the polymorphic type 1 HBGAs may occur in the course of RV evolution, explaining the complex P[II] genogroup that mainly causes diseases in humans but also in some animals.
Clinical Implications of DSM-IV Subtyping of Bipolar Disorders in Referred Children and Adolescents
ERIC Educational Resources Information Center
Masi, Gabriele; Perugi, Giulio; Millepiedi, Stefania; Mucci, Maria; Pari, Cinzia; Pfanner, Chiara; Berloffa, Stefano; Toni, Cristina
2007-01-01
Objective: According to DSM-IV, bipolar disorders (BDs) include four subtypes, BD I, BD II, cyclothymic disorder, and BD not otherwise specified (NOS). We explore the clinical implications of this subtyping in a naturalistic sample of referred youths with BD I, BD II, and BD-NOS. Method: The sample consisted of 217 patients, 135 males and 82…
Limitations and implications of stream classification
Juracek, K.E.; Fitzpatrick, F.A.
2003-01-01
Stream classifications that are based on channel form, such as the Rosgen Level II classification, are useful tools for the physical description and grouping of streams and for providing a means of communication for stream studies involving scientists and (or) managers with different backgrounds. The Level II classification also is used as a tool to assess stream stability, infer geomorphic processes, predict future geomorphic response, and guide stream restoration or rehabilitation activities. The use of the Level II classification for these additional purposes is evaluated in this paper. Several examples are described to illustrate the limitations and management implications of the Level II classification. Limitations include: (1) time dependence, (2) uncertain applicability across physical environments, (3) difficulty in identification of a true equilibrium condition, (4) potential for incorrect determination of bankfull elevation, and (5) uncertain process significance of classification criteria. Implications of using stream classifications based on channel form, such as Rosgen's, include: (1) acceptance of the limitations, (2) acceptance of the risk of classifying streams incorrectly, and (3) classification results may be used inappropriately. It is concluded that use of the Level II classification for purposes beyond description and communication is not appropriate. Research needs are identified that, if addressed, may help improve the usefulness of the Level II classification.
Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12
Maret, Wolfgang
2013-01-01
The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127
Characterization of cDNAs and genomic DNAs for human threonyl- and cysteinyl-tRNA synthetases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruzen, M.E.
1993-01-01
Techniques of molecular biology were used to clone, sequence and map two human aminoacyl-tRNA synthetase (aaRS) cDNAs: threonyl-tRNA synthetase (ThrRS) a class II enzyme and cysteinyl-tRNA synthetase (CysRS) a class I enzyme. The predicted protein sequence of human ThrRS is highly homologous to that of lower eukaryotic and prokaryotic ThRSs, particularly in the regions containing the three structural motifs common to all class II synthetases. Signature regions 1 and 2, which characterize the class IIa subgroup (SerRS, ThrRS and HisRS) are highly conserved from bacteria to human. Structural predictions for human ThrRS based on the known structure of the closelymore » related SerRS from E.coli implicate strongly conserved residues in the signature sequences to be important in substrate binding. The amino terminal 100 residues of the deduced amino acid sequence of ThrRS shares structural similarity to SerRS consistent with forming an antiparallel helix implicated in tRNA binding. The 5' untranslated sequence of the human ThrRS gene shares short stretches of common sequence with the gene for hamster HisRS including a binding site for the promoter specific transcription factor sp-1. The deduced amino acid sequence of human CysRS has a high degree of sequence identify to E. coli CysRS. Human CysRS possesses the classic characteristics of a class I synthetase and is most closely related to the MetRS subgroup. The amino terminal half of human CysRS can be modeled as a nucleotide binding fold and shares significant sequence and structural similarity to the other enzymes in this subgroup. The CysRS structural gene (CARS) was mapped to human chromosome 11p15.5 by fluorescent in situ hybridization. CARS is the first aaRS gene to be mapped to chromosome 11. The steady state of both CysRS and ThrRs mRNA were quantitated in several human tissues. Message levels for these enzymes appear to be subjected to differential regulation in different cell types.« less
Structure-driven turbulence in ``No man's Land''
NASA Astrophysics Data System (ADS)
Kosuga, Yusuke; Diamond, Patrick
2012-10-01
Structures are often observed in many physical systems. In tokamaks, for example, such structures are observed as density blobs and holes. Such density blobs and holes are generated at the tokamak edge, where strong gradient perturbations generate an outgoing blob and an incoming hole. Since density holes can propagate from the edge to the core, such structures may play an important role in understanding the phenomenology of the edge-core coupling region, so-called ``No Man's Land.'' In this work, we discuss the dynamics of such structures in real space. In particular, we consider the dynamics of density blobs and holes in the Hasegawa-Wakatani system. Specific questions addressed here include: i) how these structures extract free energy and enhance transport? how different is the relaxation driven by such structures from that driven by linear drift waves? ii) how these structures interact with shear flows? In particular, how these structures interact with a shear layer, which can absorb structures resonantly? iii) how can we calculate the coupled evolution of structures and shear flows? Implications for edge-core coupling problem are discussed as well.
PTP1B Inhibitors from the Entomogenous Fungi Isaria fumosorosea.
Zhang, Jun; Meng, Lin-Lin; Wei, Jing-Jing; Fan, Peng; Liu, Sha-Sha; Yuan, Wei-Yu; Zhao, You-Xing; Luo, Du-Qiang
2017-11-24
Protein tyrosine phosphatase 1B (PTP1B) is implicated as a negative regulator of insulin receptor (IR) signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. Thus, small molecule inhibitors of PTP1B can be considered as an attractive approach for the design of new therapeutic agents of type II diabetes and cancer diseases. In a continuing search for new PTP1B inhibitors, a new tetramic acid possessing a rare pyrrolidinedione skeleton named fumosorinone A ( 1 ), together with five known ones 2 - 6 were isolated from the entomogenous fungus Isaria fumosorosea. The structures of 2 - 6 were elucidated by extensive spectroscopic analysis. Fumosorinone A ( 1 ) and beauvericin ( 6 ) showed significant PTP1B inhibitory activity with IC 50 value of 3.24 μM and 0.59 μM.
Adaptation of the BDI-II in Mexico
González, David Andrés; Reséndiz, Areli; Reyes-Lagunes, Isabel
2017-01-01
The number of Spanish-speaking individuals and immigrants in the United States has risen dramatically and is projected to continue to rise. The availability of appropriately translated and validated measurement instruments, such as the Beck Depression Inventory, is a priority for researchers and clinicians in the U.S. and Mexico, where the first edition of the BDI is still prominently used. The purpose of this study was to pilot a Mexican adaptation of the BDI-II and report initial psychometric characteristics. Two samples were used: students from across Mexico and community adults from Mexico City. Results indicated that the translation was easily understood by most individuals, had adequate internal consistency, and a three-factor structure (negative attitude, performance difficulties, and somatic elements) had the best fit. Implications for use with Mexican-origin Spanish speakers are discussed. PMID:28936017
Microbial Impacts on Clay Mineral Transformation and Reactivity
NASA Astrophysics Data System (ADS)
Dong, H.; Jaisi, D.; Fredrickson, J.; Plymale, A.
2006-05-01
Clays and clay minerals are ubiquitous in soils, sedimentary rocks, and pelagic oozes. They play important roles in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. Iron is a major constituent in clay minerals, and its mobility and stability in different environmental processes is, in part, controlled by the oxidation state. Recent studies have shown that biological reduction of structural Fe(III) in clay minerals can change the physical and chemical properties of clay minerals, such as swelling, cation exchange and fixation capacity, specific surface area, color, and magnetic exchange interactions. As a result of biological reduction of Fe(III), clay minerals also undergo mineral transformations, such as dissolution of smectite and precipitation of illite, siderite and vivianite. These chemical, structural and mineralogical changes of clay minerals have a profound effect on clay mineral reactivity, such as their reactivity with organic and inorganic (i.e., heavy metals and radionuclides) contaminants. Our latest data show that biologically reduced nontronite (a smectite variety) is much more effective in reducing soluble and mobile Tc(VII) to Tc(IV) than unreduced nontronite. The reduced Tc(IV) is insoluble in groundwater and soil and thus is immobile. Biologically reduced nontronite can be prepared by microbially reducing Fe(III) in nontronite by Shewanella putrefaciens in the absence of oxygen. Approximately 30% of structurally Fe(III) can be reduced in this manner. Biogenic Fe(II) can then serve as an electron donor to reduce Tc(VII). Nearly all Fe(II) is available to reduce Tc(VII), with the rate of reduction (typically within weeks) possibly depending on the speciation of Fe(II) (surface sorbed Fe(II) vs. structural Fe(II)). Further investigations are underway to further assess the reversibility of Tc reduction upon exposure to oxygen and to elucidate Tc reduction kinetics. These preliminary results have important implications for in-situ bioremediation efforts, where either chemically or biologically reduced clay minerals can be introduced into a contaminant site for removing heavy metals and radionuclides in groundwater aquifers.
Whittaker, Jasmin L; Balu, Rajkamal; Knott, Robert; de Campo, Liliana; Mata, Jitendra P; Rehm, Christine; Hill, Anita J; Dutta, Naba K; Roy Choudhury, Namita
2018-07-15
Regenerated Bombyx mori silk fibroin (RSF) is a widely recognized protein for biomedical applications; however, its hierarchical gel structure is poorly understood. In this paper, the hierarchical structure of photocrosslinked RSF and RSF-based hybrid hydrogel systems: (i) RSF/Rec1-resilin and (ii) RSF/poly(N-vinylcaprolactam (PVCL) is reported for the first time using small-angle scattering (SAS) techniques. The structure of RSF in dilute to concentrated solution to fabricated hydrogels were characterized using small angle X-ray scattering (SAXS), small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) techniques. The RSF hydrogel exhibited three distinctive structural characteristics: (i) a Porod region in the length scale of 2 to 3nm due to hydrophobic domains (containing β-sheets) which exhibits sharp interfaces with the amorphous matrix of the hydrogel and the solvent, (ii) a Guinier region in the length scale of 4 to 20nm due to hydrophilic domains (containing turns and random coil), and (iii) a Porod-like region in the length scale of few micrometers due to water pores/channels exhibiting fractal-like characteristics. Addition of Rec1-resilin or PVCL to RSF and subsequent crosslinking systematically increased the nanoscale size of hydrophobic and hydrophilic domains, whereas decreased the homogeneity of pore size distribution in the microscale. The presented results have implications on the fundamental understanding of the structure-property relationship of RSF-based hydrogels. Copyright © 2018. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Leblanc, Thierry; McDermid, I. S.; Vomel, H.; Whiteman, D.; Twigg, Larry; McGee, T. G.
2008-01-01
1. MOHAVE+MOHAVE II = very successful. 2. MOHAVE -> Fluorescence was found to be inherent to all three participating lidars. 3. MOHAVE II -> Fluorescence was removed and agreement with CFH was extremely good up to 16-18 km altitude. 4. MOHAVE II -> Calibration tests revealed unsuspected shortfalls of widely used techniques, with important implications for their applicability to longterm measurements. 5. A factor of 5 in future lidar signal-to-noise ratio is reasonably achievable. When this level is achieved water vapor Raman lidar will become a key instrument for the long-term monitoring of water vapor in the UT/LS
Wang, Yun; Kendall, John; Cavet, Jennifer S.; Giedroc, David P.
2010-01-01
Metal homeostasis and resistance in bacteria is maintained by a panel of metal sensing transcriptional regulators that collectively control transition metal availability and mediate resistance to heavy metal xenobiotics, including AsIII, CdII, PbII and HgII. The ArsR family constitutes a superfamily of metal sensors that appear to conform to the same winged helical, homodimeric fold, that collectively “sense” a wide array of beneficial metal ions and heavy metal pollutants. The genomes of many actinomycetes, including the soil dwelling bacterium Streptomyces coelicolor and the human pathogen Mycobacterium tuberculosis, encode over ten ArsR family regulators, most of unknown function. Here, we present the characterization of a homolog of M. tuberculosis CmtR (CmtRMtb) from S. coelicolor, denoted CmtRSc. We show that CmtRSc, in contrast to CmtRMtb binds two monomer mol equivalents of PbII or CdII to form two pairs of trigonal S3 coordination complexes per dimer. Metal site 1 conforms exactly to the α4C site previously characterized in CmtRMtb while metal site 2 is coordinated by a C-terminal vicinal thiolate pair, Cys110 and Cys111. Biological assays reveal that only CdII and, to a lesser extent, PbII mediate transcriptional derepression in the heterologous host M. smegmatis in a way that requires metal site 1. In contrast, mutagenesis of metal site 2 ligands Cys110 or Cys111 significantly reduces CdII responsiveness, with no detectable effect on PbII sensing. The implications of these findings on the ability to predict metal specificity and function from metal-site “signatures” in the primary structure of ArsR family proteins are discussed. PMID:20586430
Reactivity of Uranium and Ferrous Iron with Natural Iron Oxyhydroxides.
Stewart, Brandy D; Cismasu, A Cristina; Williams, Kenneth H; Peyton, Brent M; Nico, Peter S
2015-09-01
Determining key reaction pathways involving uranium and iron oxyhydroxides under oxic and anoxic conditions is essential for understanding uranium mobility as well as other iron oxyhydroxide mediated processes, particularly near redox boundaries where redox conditions change rapidly in time and space. Here we examine the reactivity of a ferrihydrite-rich sediment from a surface seep adjacent to a redox boundary at the Rifle, Colorado field site. Iron(II)-sediment incubation experiments indicate that the natural ferrihydrite fraction of the sediment is not susceptible to reductive transformation under conditions that trigger significant mineralogical transformations of synthetic ferrihydrite. No measurable Fe(II)-promoted transformation was observed when the Rifle sediment was exposed to 30 mM Fe(II) for up to 2 weeks. Incubation of the Rifle sediment with 3 mM Fe(II) and 0.2 mM U(VI) for 15 days shows no measurable incorporation of U(VI) into the mineral structure or reduction of U(VI) to U(IV). Results indicate a significantly decreased reactivity of naturally occurring Fe oxyhydroxides as compared to synthetic minerals, likely due to the association of impurities (e.g., Si, organic matter), with implications for the mobility and bioavailability of uranium and other associated species in field environments.
Different Measures of Structural Similarity Tap Different Aspects of Visual Object Processing
Gerlach, Christian
2017-01-01
The structural similarity of objects has been an important variable in explaining why some objects are easier to categorize at a superordinate level than to individuate, and also why some patients with brain injury have more difficulties in recognizing natural (structurally similar) objects than artifacts (structurally distinct objects). In spite of its merits as an explanatory variable, structural similarity is not a unitary construct, and it has been operationalized in different ways. Furthermore, even though measures of structural similarity have been successful in explaining task and category-effects, this has been based more on implication than on direct empirical demonstrations. Here, the direct influence of two different measures of structural similarity, contour overlap and within-item structural diversity, on object individuation (object decision) and superordinate categorization performance is examined. Both measures can account for performance differences across objects, but in different conditions. It is argued that this reflects differences between the measures in whether they tap: (i) global or local shape characteristics, and (ii) between- or within-category structural similarity. PMID:28861027
Measuring the Progenitor Masses and Dense Circumstellar Material of Type II Supernovae
NASA Astrophysics Data System (ADS)
Morozova, Viktoriya; Piro, Anthony L.; Valenti, Stefano
2018-05-01
Recent modeling of hydrogen-rich Type II supernova (SN II) light curves suggests the presence of dense circumstellar material (CSM) surrounding the exploding progenitor stars. This has important implications for the activity and structure of massive stars near the end of their lives. Since previous work focused on just a few events, here we expand to a larger sample of 20 well-observed SNe II. For each event we are able to constrain the progenitor zero-age main-sequence (ZAMS) mass, explosion energy, and the mass and radial extent of the dense CSM. We then study the distribution of each of these properties across the full sample of SNe. The inferred ZAMS masses are found to be largely consistent with a Salpeter distribution with minimum and maximum masses of 10.4 and 22.9 M ⊙, respectively. We also compare the individual ZAMS masses we measure with specific SNe II that have pre-explosion imaging to check their consistency. Our masses are generally comparable to or higher than the pre-explosion imaging masses, potentially helping ease the red supergiant problem. The explosion energies vary from (0.1–1.3) × 1051 erg, and for ∼70% of the SNe we obtain CSM masses in the range between 0.18 and 0.83 M ⊙. We see a potential correlation between the CSM mass and explosion energy, which suggests that pre-explosion activity has a strong impact on the structure of the star. This may be important to take into account in future studies of the ability of the neutrino mechanism to explode stars. We also see a possible correlation between the CSM radial extent and ZAMS mass, which could be related to the time with respect to explosion when the CSM is first generated.
Fitzgerald, Jacqueline; Leemans, Alexander; Kehoe, Elizabeth; O'Hanlon, Erik; Gallagher, Louise; McGrath, Jane
2018-03-01
Core features of autism spectrum disorder (ASD) may be underpinned by disrupted functional and structural neural connectivity. Abnormal fronto-parietal functional connectivity has been widely reported in the literature; this may be underpinned by disrupted microstructural organisation of white matter. The superior longitudinal fasciculus (SLF) is a major fronto-parietal white matter tract, the structure of which has been little studied in ASD. The fronto-parietal projections of this tract (SLF I, II and III) are thought to play an important role in a number of cognitive functions including attention and visuospatial processing. To date, the isolation of the fronto-parietal branches of the SLF has been hampered by limitations of traditional tractography approaches. Constrained spherical deconvolution (CSD)-based tractography is an advanced approach that allows valid isolation of the fronto-parietal branches of the SLF. Diffusion MRI data were acquired from 45 participants with ASD and 45 age- and IQ-matched controls. The SLF I, II and III branches were isolated using CSD-based tractography in ExploreDTI. Significantly greater fractional anisotropy (FA) was observed in the right SLF II relative to controls. The ASD group also showed greater linear diffusion coefficient in the left SLF I and the right SLF II. In the SLF II, the ASD group had significantly greater right lateralisation of FA in comparison with the control group. The clinical and functional implications of increased FA in white matter are poorly understood; however, it is possible that this increased white matter organisation in the SLF in ASD may contribute to relative processing advantages in the condition. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
GnRH-II and its receptor are critical regulators of testicular steroidogenesis in swine
USDA-ARS?s Scientific Manuscript database
The second mammalian form of GnRH (GnRH-II) and its receptor (GnRHR-II) are produced in one livestock species, the pig. However, the interaction of GnRH-II with its receptor does not stimulate gonadotropin secretion. Instead, both are abundantly produced in the gonads and have been implicated in aut...
Potential for microbial oxidation of ferrous iron in basaltic glass.
Xiong, Mai Yia; Shelobolina, Evgenya S; Roden, Eric E
2015-05-01
Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and utilization of dissolved Fe(II) as an energy source is not likely to take place.
Angiotensin II and its different receptor subtypes in placenta and fetal membranes.
Kalenga, M K; de Gasparo, M; Thomas, K; de Hertogh, R
1996-01-01
The recent discovery of a local renin-angiotensin system in trophoblastic tissues has raised many questions regarding its role in the physiology of normal gestation and its implications in the pathophysiology of hypertension during pregnancy. In this article, the authors first review the most interesting aspects of the chorioplacental renin-angiotensin system, dwelling on the tissue distribution of angiotensin II and its receptor subtypes in the placenta and fetal membranes of different species. The relationship between angiotensin II and other locally synthesized chorioplacental substances is also analysed and the therapeutic implications of phenomena observed in pregnancy-associated hypertension are discussed.
Tanner, N K; Cech, T R
1985-01-01
The intervening sequence (IVS) excised from the rRNA precursor of Tetrahymena thermophila is converted to a covalently closed circular RNA in the absence of proteins in vitro. This self-catalyzed cyclization reaction is inhibited by the intercalating dye methidiumpropyl.EDTA (MPE; R.P. Hertzberg and P.B. Dervan (1982) J. Am. Chem. Soc. 104, 313-315). The MPE binding sites have been localized by mapping the sites of MPE.Fe(II) cleavage of the IVS RNA. There are three major binding sites within the 414 nucleotide IVS RNA. Two of these sites coincide with the A.B and 9L.2 pairings. These are structural elements that are conserved in all group I introns and are implicated as being functionally important for splicing. We propose that interaction of MPE with these sites is responsible for dye inhibition of cyclization. The reactions of MPE.Fe(II) with an RNA of known structure, tRNAPhe, and with the IVS RNA were studied as a function of temperature, ionic strength and ethidium concentration. Based on the comparison of the reaction with these two RNAs, we conclude that the dye is a very useful probe for structural regions of large RNAs, while it provides more limited structural information about the small, compact tRNA molecule. Images PMID:2415924
Binding Modes of Phthalocyanines to Amyloid β Peptide and Their Effects on Amyloid Fibril Formation.
Valiente-Gabioud, Ariel A; Riedel, Dietmar; Outeiro, Tiago F; Menacho-Márquez, Mauricio A; Griesinger, Christian; Fernández, Claudio O
2018-03-13
The inherent tendency of proteins to convert from their native states into amyloid aggregates is associated with a range of human disorders, including Alzheimer's and Parkinson's diseases. In that sense, the use of small molecules as probes for the structural and toxic mechanism related to amyloid aggregation has become an active area of research. Compared with other compounds, the structural and molecular basis behind the inhibitory interaction of phthalocyanine tetrasulfonate (PcTS) with proteins such as αS and tau has been well established, contributing to a better understanding of the amyloid aggregation process in these proteins. We present here the structural characterization of the binding of PcTS and its Cu(II) and Zn(II)-loaded forms to the amyloid β-peptide (Aβ) and the impact of these interactions on the peptide amyloid fibril assembly. Elucidation of the PcTS binding modes to Aβ 40 revealed the involvement of specific aromatic and hydrophobic interactions in the formation of the Aβ 40 -PcTS complex, ascribed to a binding mode in which the planarity and hydrophobicity of the aromatic ring system in the phthalocyanine act as main structural determinants for the interaction. Our results demonstrated that formation of the Aβ 40 -PcTS complex does not interfere with the progression of the peptide toward the formation of amyloid fibrils. On the other hand, conjugation of Zn(II) but not Cu(II) at the center of the PcTS macrocyclic ring modified substantially the binding profile of this phthalocyanine to Aβ 40 and became crucial to reverse the effects of metal-free PcTS on the fibril assembly of the peptide. Overall, our results provide a firm basis to understand the structural rules directing phthalocyanine-protein interactions and their implications on the amyloid fibril assembly of the target proteins; in particular, our results contradict the hypothesis that PcTS might have similar mechanisms of action in slowing the formation of a variety of pathological aggregates. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Angiotensin peptides attenuate platelet-activating factor-induced inflammatory activity in rats.
Sato, Akira; Yokoyama, Izumi; Ebina, Keiichi
2015-11-01
Angiotensin (Ang)--a peptide that is part of the renin-angiotensin system-induces vasoconstriction and a subsequent increase in blood pressure; Ang peptides, especially AngII, can also act as potent pro-inflammatory mediators. Platelet-activating factor (PAF) is a potent phospholipid mediator that is implicated in many inflammatory diseases. In this study, we investigated the effects of Ang peptides (AngII, AngIII, and AngIV) on PAF-induced inflammatory activity. In experiments using a rat hind-paw oedema model, AngII markedly and dose-dependently attenuated the paw oedema induced by PAF. The inhibitory effects of AngIII and AngIV on PAF-induced paw oedema were lower than that of AngII. Two Ang receptors, the AT1 and AT2 receptors, did not affect the AngII-mediated attenuation of PAF-induced paw oedema. Moreover, intrinsic tyrosine fluorescence studies demonstrated that AngII, AngIII, and AngIV interact with PAF, and that their affinities were closely correlated with their inhibitory effects on PAF-induced rat paw oedema. Also, AngII interacted with metabolite/precursor of PAF (lyso-PAF), and an oxidized phospholipid, 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), which bears a marked structural resemblance to PAF. Furthermore, POVPC dose-dependently inhibited AngII-mediated attenuation of PAF-induced paw oedema. These results suggest that Ang peptides can attenuate PAF-induced inflammatory activity through binding to PAF and lyso-PAF in rats. Therefore, Ang peptides may be closely involved in the regulation of many inflammatory diseases caused by PAF. Copyright © 2015 Elsevier Inc. All rights reserved.
Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier
2015-01-01
The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. PMID:25568337
Wong, Pauline; Colucci-Guyon, Emma; Takahashi, Kenzo; Gu, Changhong; Babinet, Charles; Coulombe, Pierre A.
2000-01-01
Mammalian genomes feature multiple genes encoding highly related keratin 6 (K6) isoforms. These type II keratins show a complex regulation with constitutive and inducible components in several stratified epithelia, including the oral mucosa and skin. Two functional genes, K6α and K6β, exist in a head-to-tail tandem array in mouse genomes. We inactivated these two genes simultaneously via targeting and homologous recombination. K6 null mice are viable and initially indistinguishable from their littermates. Starting at two to three days after birth, they show a growth delay associated with reduced milk intake and the presence of white plaques in the posterior region of dorsal tongue and upper palate. These regions are subjected to greater mechanical stress during suckling. Morphological analyses implicate the filiform papillae as being particularly sensitive to trauma in K6α/K6β null mice, and establish the complete absence of keratin filaments in their anterior compartment. All null mice die about a week after birth. These studies demonstrate an essential structural role for K6 isoforms in the oral mucosa, and implicate filiform papillae as being the major stress bearing structures in dorsal tongue epithelium. PMID:10953016
Wang, Wei; Lim, Liangzhong; Baskaran, Yohendran; Manser, Ed; Song, Jianxing
2013-08-16
Six human PAK members are classified into groups I (PAKs 1-3) and II (PAK4-6). Previously, only group I PAKs were thought to be auto-inhibited but very recently PAK4, the prototype of group II PAKs, has also been shown to be auto-inhibited by its N-terminal regulatory domain. However, the complete auto-inhibitory domain (AID) sequence remains undefined and the mechanism underlying its auto-inhibition is largely elusive. Here, the N-terminal regulatory domain of PAK4 sufficient for auto-inhibiting and binding Cdc42/Rac was characterized to be intrinsically unstructured, but nevertheless we identified the entire AID sequence by NMR. Strikingly, an AID peptide was derived by deleting the binding-unnecessary residues, which has a Kd of 320 nM to the PAK4 catalytic domain. Consequently, the PAK4 crystal structure complexed with the entire AID has been determined, which reveals that the complete kinase cleft is occupied by 20 AID residuescomposed of an N-terminal α-helix and a previously-identified pseudosubstrate motif, thus achieving auto-inhibition. Our study reveals that PAK4 is auto-inhibited by a novel mechanism which is completely different from that for PAK1, thus bearing critical implications for design of inhibitors specific for group II PAKs. Copyright © 2013 Elsevier Inc. All rights reserved.
Oocyte cryopreservation beyond cancer: tools for ethical reflection.
Linkeviciute, Alma; Peccatori, Fedro A; Sanchini, Virginia; Boniolo, Giovanni
2015-08-01
This article offers physicians a tool for structured ethical reflection on challenging situations surrounding oocyte cryopreservation in young healthy women. A systematic literature review offers a comprehensive overview of the ethical debate surrounding the practice. Ethical Counseling Methodology (ECM) offers a practical approach for addressing ethical uncertainties. ECM consists of seven steps: (i) case presentation; (ii) analysis of possible implications; (iii) presentation of ethical question(s); (iv) explanation of ethical terms; (v) presentation of the ethical arguments in favor of and against the procedure; (vi) examination of the individual patient's beliefs and wishes; and (vii) conclusive summary. The most problematic aspects in the ethical debate include the distinction between medical and non-medical use of oocyte cryopreservation, safety and efficiency of the procedure, and marketing practices aimed at healthy women. Female empowerment and enhanced reproductive choices (granted oocyte cryopreservation is a safe and efficient technique) are presented as ethical arguments supporting the practice, while ethical reservations towards oocyte cryopreservation are based on concerns about maternal and fetal safety and wider societal implications. Oocyte cryopreservation is gaining popularity among healthy reproductive age women. However, despite promised benefits it also involves risks that are not always properly communicated in commercialized settings. ECM offers clinicians a tool for structured ethical analysis taking into consideration a wide range of implications, various ethical standpoints, and patients' perceptions and beliefs.
Wilson, Samuel A.; Kroll, Thomas; Decreau, Richard A.; Hocking, Rosalie K.; Lundberg, Marcus; Hedman, Britt; Hodgson, Keith O.; Solomon, Edward I.
2013-01-01
The electronic structure of the Fe–O2 center in oxy-hemoglobin and oxy-myoglobin is a long-standing issue in the field of bioinorganic chemistry. Spectroscopic studies have been complicated by the highly delocalized nature of the porphyrin and calculations require interpretation of multi-determinant wavefunctions for a highly covalent metal site. Here, iron L-edge X-ray absorption spectroscopy (XAS), interpreted using a valence bond configuration interaction (VBCI) multiplet model, is applied to directly probe the electronic structure of the iron in the biomimetic Fe–O2 heme complex [Fe(pfp)(1-MeIm)O2] (pfp = meso-tetra(α,α,α,α-o-pivalamidophenyl) porphyrin or TpivPP). This method allows separate estimates of σ-donor, π-donor, and π-acceptor interactions through ligand to metal charge transfer (LMCT) and metal to ligand charge transfer (MLCT) mixing pathways. The L-edge spectrum of [Fe(pfp)(1-MeIm)O2] is further compared to those of [FeII(pfp)(1-MeIm)2], [FeII(pfp)], and [FeIII(tpp)(ImH)2]Cl (tpp = meso-tetraphenylporphyrin) which have FeII S = 0, FeII S = 1 and FeIII S = 1/2 ground states, respectively. These serve as references for the three possible contributions to the ground state of oxy-pfp. The Fe–O2 pfp site is experimentally determined to have both significant σ-donation and a strong π-interaction of the O2 with the iron, with the latter having implications with respect to the spin polarization of the ground state. PMID:23259487
Assessment of DSM-5 Section II Personality Disorders With the MMPI-2-RF in a Nonclinical Sample.
Sellbom, Martin; Smith, Alexander
2017-01-01
The Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008 / 2011 ) is frequently used in clinical practice. However, there has been a dearth of literature on how well this instrument can assess symptoms associated with personality disorders (PDs). This investigation examined a range of hypothesized MMPI-2-RF scales in predicting PD symptoms. We evaluated these associations in a sample of 397 university students who had been administered the MMPI-2-RF and the Structured Clinical Interview for DSM-IV Axis II Disorders-Personality Questionnaire (First, Gibbon, Spitzer, Williams, & Benjamin, 1997 ). Zero-order correlation analyses and negative binomial regression models indicated that a wide range of MMPI-2-RF scale hypotheses were supported; however, the least support was available for predicting schizoid and obsessive-compulsive PDs. Implications for MMPI-2-RF interpretation and PD diagnosis are discussed.
Bonales, L J; Muñoz-Iglesias, V; Santamaría-Pérez, D; Caceres, M; Fernandez-Remolar, D; Prieto-Ballesteros, O
2013-12-01
We have carried out a systematic study of abiotic precipitation at different temperatures of several Mg and Ca carbonates (calcite, nesquehonite, hydrocalcite) present in carbonaceous chondrites. This study highlights the capability of Raman spectroscopy as a primary tool for performing full mineralogical analysis. The precipitation reaction and the structure of the resulting carbonates were monitored and identified with Raman spectroscopy. Raman spectroscopy enabled us to confirm that the precipitation reaction is very fast (minutes) when Ca(II) is present in the solution, whereas for Mg(II) such reactions developed at rather slow rates (weeks). We also observed that both the composition and the reaction mechanisms depended on temperature, which might help to clarify several issues in the fields of planetology and geology, because of the environmental implications of these carbonates on both terrestrial and extraterrestrial objects. Copyright © 2013 Elsevier B.V. All rights reserved.
Cu(II)-catalyzed degradation of ampicillin: effect of pH and dissolved oxygen.
Guo, Yiming; Tsang, Daniel C W; Zhang, Xinran; Yang, Xin
2018-02-01
Cu(II)-catalyzed hydrolysis of β-lactam antibiotics has been well-identified and recognized as the key mechanism of antibiotic degradation. However, the overlooked Cu(II) oxidation susceptibly also plays an important role comparably with hydrolysis. This study evaluated the roles of hydrolysis and oxidation in Cu(II)-catalyzed degraded ampicillin (AMP), as a typical β-lactam antibiotic, under relevant environmental conditions (pH 5.0, 7.0, and 9.0; oxygen 0.2 and 6.2 mg/L). Under AMP and Cu(II) molar ratio of 1:1, AMP degradation was the fastest at pH 9.0, followed by pH 5.0 and pH 7.0. The facilitation of oxygen on AMP degradation was notable at pH 5.0 and 7.0 rather than pH 9.0. AMP degradation rate increased from 21.8% in 0.2 mg/L O 2 solution to 85.9% in 6.2 mg/L O 2 solution at pH 7.0 after 4-h reaction. AMP oxidation was attributed to both oxygen-derived Cu(I)/Cu(II) cycle and intermediate reactive oxygen species (HO . and O 2 .- ). Several intermediate and final products in AMP degradation were firstly identified by LC-quadrupole time-of-flight-MS analysis. Phenylglycine primary amine on the AMP structure was the essential complexation site to proceed with the oxidation reaction. The oxidation of AMP preferentially occurred on the β-lactam structure. The inherent mechanisms related to pH and oxygen conditions were firstly investigated, which could enhance the understanding of both oxidation and hydrolysis mechanisms in AMP degradation. This study not only has an important implication in predicting β-lactam antibiotic transformation and fate in natural environment but also benefits the developing of strategies of antibiotic control to reduce the environmental risk.
Walroth, Richard C.; Miles, Kelsey C.; Lukens, James T.; ...
2017-09-18
Copper/aminoxyl species are proposed as key intermediates in aerobic alcohol oxidation. Several possible electronic structural descriptions of these species are possible, and here we probe this issue by examining four crystallographically characterized Cu/aminoxyl halide complexes by Cu K-edge, Cu L 2,3- edge, and Cl K-edge X-ray absorption spectroscopy. The mixing coefficients between Cu, aminoxyl, and halide orbitals are determined via these techniques with support from density functional theory. The emergent electronic structure picture reveals that Cu coordination confers appreciable oxoammonium character to the aminoxyl ligand. The computational methodology is extended to one of the putative intermediates invoked in catalytic Cu/aminoxyl-drivenmore » alcohol oxidation reactions, with similar findings. On the whole, the results have important implications for the mechanism of alcohol oxidation and the underlying basis for cooperativity in this co- catalyst system.« less
Helicity and singular structures in fluid dynamics
Moffatt, H. Keith
2014-01-01
Helicity is, like energy, a quadratic invariant of the Euler equations of ideal fluid flow, although, unlike energy, it is not sign definite. In physical terms, it represents the degree of linkage of the vortex lines of a flow, conserved when conditions are such that these vortex lines are frozen in the fluid. Some basic properties of helicity are reviewed, with particular reference to (i) its crucial role in the dynamo excitation of magnetic fields in cosmic systems; (ii) its bearing on the existence of Euler flows of arbitrarily complex streamline topology; (iii) the constraining role of the analogous magnetic helicity in the determination of stable knotted minimum-energy magnetostatic structures; and (iv) its role in depleting nonlinearity in the Navier-Stokes equations, with implications for the coherent structures and energy cascade of turbulence. In a final section, some singular phenomena in low Reynolds number flows are briefly described. PMID:24520175
Dragomirescu, M; Buzinschi, S
1980-01-01
The authors discuss the applicability of general cybernetic principles (the theory of systems and self-regulated mechanisms based on inversed connections) to the pathophysiologic structure of infections. With reference to concrete examples they outline the following elements: the appartenance of the infectious process to the notion of system (as conceived in the theory of systems), the previsible character of the functional potential of the structured system in the components of infection, and the sequental correspondence between system dynamics and the dynamics of the infectious process. Starting from the mechanism of action of the main microbial toxins, the aptitude of the latter to act upon the functional code of the macroorganism, altering the cellular and supracellular self-regulated biosystems, is demonstrated. Finally, the practical implications of assimilating cybernetic processes in the pathophysiology of infectious diseases are analyzed.
Dumont, Marie; Lehner, Arnaud; Bouton, Sophie; Kiefer-Meyer, Marie Christine; Voxeur, Aline; Pelloux, Jérôme; Lerouge, Patrice; Mollet, Jean-Claude
2014-10-01
Rhamnogalacturonan-II (RG-II) is one of the pectin motifs found in the cell wall of all land plants. It contains sugars such as 2-keto-3-deoxy-d-lyxo-heptulosaric acid (Dha) and 2-keto-3-deoxy-d-manno-octulosonic acid (Kdo), and within the wall RG-II is mostly found as a dimer via a borate diester cross-link. To date, little is known regarding the biosynthesis of this motif. Here, after a brief review of our current knowledge on RG-II structure, biosynthesis and function in plants, this study explores the implications of the presence of a Golgi-localized sialyltransferase-like 2 (SIA2) protein that is possibly involved in the transfer of Dha or Kdo in the RG-II of Arabidopsis thaliana pollen tubes, a fast-growing cell type used as a model for the study of cell elongation. Two heterozygous mutant lines of arabidopsis (sia2-1+/- and qrt1 × sia2-2+/-) were investigated. sia2-2+/- was in a quartet1 background and the inserted T-DNA contained the reporter gene β-glucuronidase (GUS) under the pollen-specific promoter LAT52. Pollen germination and pollen tube phenotype and growth were analysed both in vitro and in vivo by microscopy. Self-pollination of heterozygous lines produced no homozygous plants in the progeny, which may suggest that the mutation could be lethal. Heterozygous mutants displayed a much lower germination rate overall and exhibited a substantial delay in germination (20 h of delay to reach 30 % of pollen grain germination compared with the wild type). In both lines, mutant pollen grains that were able to produce a tube had tubes that were either bursting, abnormal (swollen or dichotomous branching tip) or much shorter compared with wild-type pollen tubes. In vivo, mutant pollen tubes were restricted to the style, whereas the wild-type pollen tubes were detected at the base of the ovary. This study highlights that the mutation in arabidopsis SIA2 encoding a sialyltransferase-like protein that may transfer Dha or Kdo on the RG-II motif has a dramatic effect on the stability of the pollen tube cell wall. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Marziani, Paola; Dultzin, Deborah; Sulentic, Jack W.; Del Olmo, Ascensión; Negrete, C. A.; Martínez-Aldama, Mary L.; D'Onofrio, Mauro; Bon, Edi; Bon, Natasa; Stirpe, Giovanna M.
2018-03-01
The last 25 years saw a major step forward in the analysis of optical and UV spectroscopic data of large quasar samples. Multivariate statistical approaches have led to the definition of systematic trends in observational properties that are the basis of physical and dynamical modeling of quasar structure. We discuss the empirical correlates of the so-called “main sequence” associated with the quasar Eigenvector 1, its governing physical parameters and several implications on our view of the quasar structure, as well as some luminosity effects associated with the virialized component of the line emitting regions. We also briefly discuss quasars in a segment of the main sequence that includes the strongest FeII emitters. These sources show a small dispersion around a well-defined Eddington ratio value, a property which makes them potential Eddington standard candles.
NASA Astrophysics Data System (ADS)
Han, Seungwu; Cho, Kyeongjae; Ihm, Jisoon
1999-02-01
We have performed ab initio pseudopotential calculations to study the effects of structural deformations of iron porphyrin on the configuration of a carbon monoxide (CO) attached to it. We have considered two proximal deformations around the heme group: (i) rotation of a pyrrole ring in the iron porphyrin, and (ii) rotation of the imidazole side chain bound to the iron atom. We have identified induced changes of the atomic geometry and the electronic structure of the iron porphyrin-CO complex, and the results elucidate the microscopic nature of the CO interaction with the iron porphyrin. Implications on the controversies over the binding angle of the CO molecule on the iron porphyrin under different circumstances are discussed. A potential application to the simulation-based chemical sensor design is also discussed.
NASA Astrophysics Data System (ADS)
Schmid, S.; Bogner, F. X.
2017-11-01
Three subscales of the 'Science Motivation Questionnaire II' (SMQII; motivational components: career motivation, self-efficacy and self-determination), with 4 items each, were applied to a sample of 209 secondary school students to monitor the impact of a 3-hour structured inquiry lesson. Four testing points (before, immediately after, 6 and 12 weeks after) were applied. The modified SMQII was factor-analyzed at each testing cycle and the structure confirmed. Only self-determination was shown to be influenced by an inquiry course, while self-efficacy and career motivation did not. Only self-efficacy and career motivation were intercorrelated and also correlated with science subject grades and subsequent achievement. Implications for using the modified SMQII subscales for research and teaching in secondary school are discussed.
Formation of Deep Sea Umber Deposits Linked to Microbial Metal Oxidation at the South Atlantic Ridge
NASA Astrophysics Data System (ADS)
Peng, Xiaotong; Ta, Kaiwen; Chen, Shun; Zhang, Lijuan; Xu, Hengchao
2015-04-01
Umber deposits are important metalliferous deposits, which occur in off-axis half-graben structures at ancient and modern ocean floor. The genesis of umber deposits has remained controversial for several decades. Recently, microbial Fe(II) oxidation associated with low-temperature diffuse venting has been identified as a key process for the formation of umber deposits, but the exact biochemical mechanisms involved to the precipitation of Mn oxides and co-precipitation of Fe oxyhydroxides and Mn oxides in umber deposits still remain unknown. Here, we used nano secondary ion mass spectrometer, synchrotron-based X-ray absorption spectroscopy, electron microscopy, and molecular techniques to demonstrate the coexistence of two types of metal-oxidizing bacteria within deep-sea hydrothermal umber deposits at the South Atlantic Ridge, where we found unique spheroids composed of biogenic Fe oxyhydroxides and Mn oxides in the deposits. Our data suggest that Fe oxyhydroxides and Mn oxides are metabolic by-products of lithotrophic Fe(II)-oxidizing bacteria and heterotrophic Mn(II)-oxidizing bacteria, respectively. The hydrothermal vents fuel lithotrophic Fe(II)-oxidizing bacteria, which constitute a trophic base that may support the activities of heterotrophic Mn(II)-oxidizing bacteria. The biological origin of umber deposits underscore the importance of geomicrobiologcial interaction in triggering the formation of deep-sea deposits, with important implications for the generation of submarine Mn deposits and crusts.
Ultra-high resolution X-ray structures of two forms of human recombinant insulin at 100 K.
Lisgarten, David R; Palmer, Rex A; Lobley, Carina M C; Naylor, Claire E; Chowdhry, Babur Z; Al-Kurdi, Zakieh I; Badwan, Adnan A; Howlin, Brendan J; Gibbons, Nicholas C J; Saldanha, José W; Lisgarten, John N; Basak, Ajit K
2017-08-01
The crystal structure of a commercially available form of human recombinant (HR) insulin, Insugen (I), used in the treatment of diabetes has been determined to 0.92 Å resolution using low temperature, 100 K, synchrotron X-ray data collected at 16,000 keV (λ = 0.77 Å). Refinement carried out with anisotropic displacement parameters, removal of main-chain stereochemical restraints, inclusion of H atoms in calculated positions, and 220 water molecules, converged to a final value of R = 0.1112 and R free = 0.1466. The structure includes what is thought to be an ordered propanol molecule (POL) only in chain D(4) and a solvated acetate molecule (ACT) coordinated to the Zn atom only in chain B(2). Possible origins and consequences of the propanol and acetate molecules are discussed. Three types of amino acid representation in the electron density are examined in detail: (i) sharp with very clearly resolved features; (ii) well resolved but clearly divided into two conformations which are well behaved in the refinement, both having high quality geometry; (iii) poor density and difficult or impossible to model. An example of type (ii) is observed for the intra-chain disulphide bridge in chain C(3) between Sγ6-Sγ11 which has two clear conformations with relative refined occupancies of 0.8 and 0.2, respectively. In contrast the corresponding S-S bridge in chain A(1) shows one clearly defined conformation. A molecular dynamics study has provided a rational explanation of this difference between chains A and C. More generally, differences in the electron density features between corresponding residues in chains A and C and chains B and D is a common observation in the Insugen (I) structure and these effects are discussed in detail. The crystal structure, also at 0.92 Å and 100 K, of a second commercially available form of human recombinant insulin, Intergen (II), deposited in the Protein Data Bank as 3W7Y which remains otherwise unpublished is compared here with the Insugen (I) structure. In the Intergen (II) structure there is no solvated propanol or acetate molecule. The electron density of Intergen (II), however, does also exhibit the three types of amino acid representations as in Insugen (I). These effects do not necessarily correspond between chains A and C or chains B and D in Intergen (II), or between corresponding residues in Insugen (I). The results of this comparison are reported. Graphical abstract Conformations of PheB25 and PheD25 in three insulin structures: implications for biological activity? Insulin residues PheB25 and PheD25 are considered to be important for insulin receptor binding and changes in biological activity occur when these residues are modified. In porcine insulin and Intergen (II) PheB25 adopts conformation B and PheD25 conformation D. However, unexpectedly PheB25 in Insugen (I) human recombinant insulin adopts two distinct conformations corresponding to B and D, Figure 1 and PheD25 adopts a single conformation corresponding to B not D, Figure 2. Conformations of this residue in the ultra-high resolution structure of Insugen (I) are therefore unique within this set. Figures were produced with Biovia, Discovery Studio 2016.
Liu, Yen-Yi; Hwang, Jenn-Kang; Barrio, Maria Jesus; Rodrigo, Maximiliano; Garcia-Toro, Enrique; Herreros-Villanueva, Marta
2013-01-01
Background The issue of whether patients diagnosed with metastatic colorectal cancer who harbor KRAS codon 13 mutations could benefit from the addition of anti-epidermal growth factor receptor therapy remains under debate. The aim of the current study was to perform computational analysis to investigate the structural implications of the underlying mutations caused by c.38G>A (p.G13D) on protein conformation. Methods Molecular dynamics (MD) simulations were performed to understand the plausible structural and dynamical implications caused by c.35G>A (p.G12D) and c.38G>A (p.G13D). The potential of mean force (PMF) simulations were carried out to determine the free energy profiles of the binding processes of GTP interacting with wild-type (WT) KRAS and its mutants (MT). Results Using MD simulations, we observed that the root mean square deviation (RMSD) increased as a function of time for the MT c.35G>A (p.G12D) and MT c.38G>A (p.G13D) when compared with the WT. We also observed that the GTP-binding pocket in the c.35G>A (p.G12D) mutant is more open than that of the WT and the c.38G>A (p.G13D) proteins. Intriguingly, the analysis of atomic fluctuations and free energy profiles revealed that the mutation of c.35G>A (p.G12D) may induce additional fluctuations in the sensitive sites (P-loop, switch I and II regions). Such fluctuations may promote instability in these protein regions and hamper GTP binding. Conclusions Taken together with the results obtained from MD and PMF simulations, the present findings implicate fluctuations at the sensitive sites (P-loop, switch I and II regions). Our findings revealed that KRAS mutations in codon 13 have similar behavior as KRAS WT. To gain a better insight into why patients with metastatic colorectal cancer (mCRC) and the KRAS c.38G>A (p.G13D) mutation appear to benefit from anti-EGFR therapy, the role of the KRAS c.38G>A (p.G13D) mutation in mCRC needs to be further investigated. PMID:23437064
Madan, Bharat; Sokalingam, Sriram; Raghunathan, Govindan; Lee, Sun-Gu
2014-10-01
Both Type I' and Type II' β-turns have the same sense of the β-turn twist that is compatible with the β-sheet twist. They occur predominantly in two residue β-hairpins, but the occurrence of Type I' β-turns is two times higher than Type II' β-turns. This suggests that Type I' β-turns may be more stable than Type II' β-turns, and Type I' β-turn sequence and structure can be more favorable for protein folding than Type II' β-turns. Here, we redesigned the native Type II' β-turn in GFP to Type I' β-turn, and investigated its effect on protein folding and stability. The Type I' β-turns were designed based on the statistical analysis of residues in natural Type I' β-turns. The substitution of the native "GD" sequence of i+1 and i+2 residues with Type I' preferred "(N/D)G" sequence motif increased the folding rate by 50% and slightly improved the thermodynamic stability. Despite the enhancement of in vitro refolding kinetics and stability of the redesigned mutants, they showed poor soluble expression level compared to wild type. To overcome this problem, i and i + 3 residues of the designed Type I' β-turn were further engineered. The mutation of Thr to Lys at i + 3 could restore the in vivo soluble expression of the Type I' mutant. This study indicates that Type II' β-turns in natural β-hairpins can be further optimized by converting the sequence to Type I'. © 2014 Wiley Periodicals, Inc.
Zhang, Hong; Liu, Xuewen; He, Xiaojun; Liu, Ying; Tan, Lifeng
2014-11-01
There is renewed interest in investigating triple helices because these novel structures have been implicated as a possible means of controlling cellular processes by endogenous or exogenous mechanisms. Due to the Hoogsteen base pairing, triple helices are, however, thermodynamically less stable than the corresponding duplexes. The poor stability of triple helices limits their practical applications under physiological conditions. In contrast to DNA triple helices, small molecules stabilizing RNA triple helices at present are less well established. Furthermore, most of these studies are limited to organic compounds and, to a far lesser extent, to metal complexes. In this work, two Ru(II) complexes, [Ru(bpy)2(btip)](2+) (Ru1) and [Ru(phen)2(btip)](2+) (Ru2), have been synthesized and characterized. The binding properties of the two metal complexes with the triple RNA poly(U)˙poly(A)*poly(U) were studied by various biophysical and density functional theory methods. The main results obtained here suggest that the slight binding difference in Ru1 and Ru2 may be attributed to the planarity of the intercalative ligand and the LUMO level of Ru(II) complexes. This study further advances our knowledge on the triplex RNA-binding by metal complexes, particularly Ru(II) complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner-Allen, Jon W.; Lee, Chul-Jin; Liu, Pengda
2012-05-16
RNA polymerase II coordinates co-transcriptional events by recruiting distinct sets of nuclear factors to specific stages of transcription via changes of phosphorylation patterns along its C-terminal domain (CTD). Although it has become increasingly clear that proline isomerization also helps regulate CTD-associated processes, the molecular basis of its role is unknown. Here, we report the structure of the Ser(P){sup 5} CTD phosphatase Ssu72 in complex with substrate, revealing a remarkable CTD conformation with the Ser(P){sup 5}-Pro{sup 6} motif in the cis configuration. We show that the cis-Ser(P){sup 5}-Pro{sup 6} isomer is the minor population in solution and that Ess1-catalyzed cis-trans-proline isomerizationmore » facilitates rapid dephosphorylation by Ssu72, providing an explanation for recently discovered in vivo connections between these enzymes and a revised model for CTD-mediated small nuclear RNA termination. This work presents the first structural evidence of a cis-proline-specific enzyme and an unexpected mechanism of isomer-based regulation of phosphorylation, with broad implications for CTD biology« less
Kaushik, Aman Chandra; Sahi, Shakti
2018-05-01
G protein coupled receptors (GPCRs) are source machinery in signal transduction pathways and being one of the major therapeutic targets play a significant in drug discovery. GPR142, an orphan GPCR, has been implicated in the regulation of insulin, thereby having a crucial role in Type II diabetes management. Deciphering of the structures of orphan, GPCRs (O-GPCRs) offer better prospects for advancements in research in ion translocation and transduction of extracellular signals. As the crystallographic structure of GPR142 is not available in PDB, therefore, threading and ab initio-based approaches were used for 3D modeling of GPR142. Molecular dynamic simulations (900 ns) were performed on the 3D model of GPR142 and complexes of GPR142 with top five hits, obtained through virtual screening, embedded in lipid bilayer with aqueous system using OPLS force field. Compound 1, 3, and 4 may act as scaffolds for designing potential lead agonists for GPR142. The finding of GPR142 MD simulation study provides more comprehensive representation of the functional properties. The concern for Type II diabetes is increasing worldwide and successful treatment of this disease demands novel drugs with better efficacy.
Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability
Woodward, Jessica; Taylor, Gillian C.; Soares, Dinesh C.; Boyle, Shelagh; Sie, Daoud; Read, David; Chathoth, Keerthi; Vukovic, Milica; Tarrats, Nuria; Jamieson, David; Campbell, Kirsteen J.; Blyth, Karen; Acosta, Juan Carlos; Ylstra, Bauke; Arends, Mark J.; Kranc, Kamil R.; Jackson, Andrew P.; Bickmore, Wendy A.
2016-01-01
Chromosomal instability is a hallmark of cancer, but mitotic regulators are rarely mutated in tumors. Mutations in the condensin complexes, which restructure chromosomes to facilitate segregation during mitosis, are significantly enriched in cancer genomes, but experimental evidence implicating condensin dysfunction in tumorigenesis is lacking. We report that mice inheriting missense mutations in a condensin II subunit (Caph2nes) develop T-cell lymphoma. Before tumors develop, we found that the same Caph2 mutation impairs ploidy maintenance to a different extent in different hematopoietic cell types, with ploidy most severely perturbed at the CD4+CD8+ T-cell stage from which tumors initiate. Premalignant CD4+CD8+ T cells show persistent catenations during chromosome segregation, triggering DNA damage in diploid daughter cells and elevated ploidy. Genome sequencing revealed that Caph2 single-mutant tumors are near diploid but carry deletions spanning tumor suppressor genes, whereas P53 inactivation allowed Caph2 mutant cells with whole-chromosome gains and structural rearrangements to form highly aggressive disease. Together, our data challenge the view that mitotic chromosome formation is an invariant process during development and provide evidence that defective mitotic chromosome structure can promote tumorigenesis. PMID:27737961
Tetteh, Ato Kwamena; Agyarko, Edward
2017-01-01
Screening results of 488 pregnant women aged 15-44 years whose blood samples had been tested on-site, using First Response® HIV 1/2, and confirmed with INNO-LIA™ HIV I/II Score were used. Of this total, 178 were reactive (HIV I, 154; HIV II, 2; and HIV I and HIV II, 22). Of the 154 HIV I-reactive samples, 104 were confirmed to be HIV I-positive and 2 were confirmed to be HIV II-positive, while 48 were confirmed to be negative [false positive rate = 17.44% (13.56-21.32)]. The two HIV II samples submitted were confirmed to be negative with the confirmatory test. For the 22 HIV I and HIV II samples, 7 were confirmed to be HIV I-positive and 1 was confirmed to be HIV I- and HIV II-positive, while 14 were confirmed to be negative. Of the 310 nonreactive samples, 6 were confirmed to be HIV I-positive and 1 was confirmed to be HIV II-positive [false negative rate = 5.79% (1.63-8.38)], while 303 were negative. False negative outcomes will remain unconfirmed, with no management options for the client. False negative rate of 5.79% requires attention, as its resultant implications on control of HIV/AIDS could be dire.
Huang, Claire Yu-Mei; Zhang, Chuansheng; Ho, Tammy Szu-Yu; Oses-Prieto, Juan; Burlingame, Alma L; Lalonde, Joshua; Noebels, Jeffrey L; Leterrier, Christophe; Rasband, Matthew N
2017-11-22
Spectrins form a submembranous cytoskeleton proposed to confer strength and flexibility to neurons and to participate in ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Neuronal spectrin cytoskeletons consist of diverse β subunits and αII spectrin. Although αII spectrin is found in neurons in both axonal and somatodendritic domains, using proteomics, biochemistry, and superresolution microscopy, we show that αII and βIV spectrin interact and form a periodic AIS cytoskeleton. To determine the role of spectrins in the nervous system, we generated Sptan1 f/f mice for deletion of CNS αII spectrin. We analyzed αII spectrin-deficient mice of both sexes and found that loss of αII spectrin causes profound reductions in all β spectrins. αII spectrin-deficient mice die before 1 month of age and have disrupted AIS and many other neurological impairments including seizures, disrupted cortical lamination, and widespread neurodegeneration. These results demonstrate the importance of the spectrin cytoskeleton both at the AIS and throughout the nervous system. SIGNIFICANCE STATEMENT Spectrin cytoskeletons play diverse roles in neurons, including assembly of excitable domains such as the axon initial segment (AIS) and nodes of Ranvier. However, the molecular composition and structure of these cytoskeletons remain poorly understood. Here, we show that αII spectrin partners with βIV spectrin to form a periodic cytoskeleton at the AIS. Using a new αII spectrin conditional knock-out mouse, we show that αII spectrin is required for AIS assembly, neuronal excitability, cortical lamination, and to protect against neurodegeneration. These results demonstrate the broad importance of spectrin cytoskeletons for nervous system function and development and have important implications for nervous system injuries and diseases because disruption of the spectrin cytoskeleton is a common molecular pathology. Copyright © 2017 the authors 0270-6474/17/3711311-12$15.00/0.
The mediator complex in genomic and non-genomic signaling in cancer.
Weber, Hannah; Garabedian, Michael J
2018-05-01
Mediator is a conserved, multi-subunit macromolecular machine divided structurally into head, middle, and tail modules, along with a transiently associating kinase module. Mediator functions as an integrator of transcriptional regulatory activity by interacting with DNA-bound transcription factors and with RNA polymerase II (Pol II) to both activate and repress gene expression. Mediator has been shown to affect multiple steps in transcription, including chromatin looping between enhancers and promoters, pre-initiation complex formation, transcriptional elongation, and mRNA splicing. Individual Mediator subunits participate in regulation of gene expression by the estrogen and androgen receptors and are altered in a number of endocrine cancers, including breast and prostate cancer. In addition to its role in genomic signaling, MED12 has been implicated in non-genomic signaling by interacting with and activating TGF-beta receptor 2 in the cytoplasm. Recent structural studies have revealed extensive inter-domain interactions and complex architecture of the Mediator-Pol II complex, suggesting that Mediator is capable of reorganizing its conformation and composition to fit cellular needs. We propose that alterations in Mediator subunit expression that occur in various cancers could impact the organization and function of Mediator, resulting in changes in gene expression that promote malignancy. A better understanding of the role of Mediator in cancer could reveal new approaches to the diagnosis and treatment of Mediator-dependent endocrine cancers, especially in settings of therapy resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
Cubellis, M V; Caillez, F; Blundell, T L; Lovell, S C
2005-03-01
The polyproline II (PPII) conformation of protein backbone is an important secondary structure type. It is unusual in that, due to steric constraints, its main-chain hydrogen-bond donors and acceptors cannot easily be satisfied. It is unable to make local hydrogen bonds, in a manner similar to that of alpha-helices, and it cannot easily satisfy the hydrogen-bonding potential of neighboring residues in polyproline conformation in a manner analogous to beta-strands. Here we describe an analysis of polyproline conformations using the HOMSTRAD database of structurally aligned proteins. This allows us not only to determine amino acid propensities from a much larger database than previously but also to investigate conservation of amino acids in polyproline conformations, and the conservation of the conformation itself. Although proline is common in polyproline helices, helices without proline represent 46% of the total. No other amino acid appears to be greatly preferred; glycine and aromatic amino acids have low propensities for PPII. Accordingly, the hydrogen-bonding potential of PPII main-chain is mainly satisfied by water molecules and by other parts of the main-chain. Side-chain to main-chain interactions are mostly nonlocal. Interestingly, the increased number of nonsatisfied H-bond donors and acceptors (as compared with alpha-helices and beta-strands) makes PPII conformers well suited to take part in protein-protein interactions. Copyright 2005 Wiley-Liss, Inc.
Force Exertion and Transmission in Cross-Linked Actin Networks
NASA Astrophysics Data System (ADS)
Stam, Samantha
Cells are responsive to external cues in their environment telling them to proliferate or migrate within their surrounding tissue. Sensing of cues that are mechanical in nature, such stiffness of a tissue or forces transmitted from other cells, is believed to involve the cytoskeleton of a cell. The cytoskeleton is a complex network of proteins consisting of polymers that provide structural support, motor proteins that remodel these structures, and many others. We do not yet have a complete understanding of how cytoskeletal components respond to either internal or external mechanical force and stiffness. Such an understanding should involve mechanisms by which constituent molecules, such as motor proteins, are responsive to mechanics. Additionally, physical models of how forces are transmitted through biopolymer networks are necessary. My research has focused on networks formed by the cytoskeletal filament actin and the molecular motor protein myosin II. Actin filaments form networks and bundles that form a structural framework of the cell, and myosin II slides actin filaments. In this thesis, we show that stiffness of an elastic load that opposes myosin-generated actin sliding has a very sharp effect on the myosin force output in simulations. Secondly, we show that the stiffness and connectivity of cytoskeletal filaments regulates the contractility and anisotropy of network deformations that transmit force on material length scales. Together, these results have implications for predicting and interpreting the deformations and forces in biopolymeric active materials.
Exarchos, Konstantinos P; Exarchos, Themis P; Rigas, Georgios; Papaloukas, Costas; Fotiadis, Dimitrios I
2011-05-10
In peptides and proteins, only a small percentile of peptide bonds adopts the cis configuration. Especially in the case of amide peptide bonds, the amount of cis conformations is quite limited thus hampering systematic studies, until recently. However, lately the emerging population of databases with more 3D structures of proteins has produced a considerable number of sequences containing non-proline cis formations (cis-nonPro). In our work, we extract regular expression-type patterns that are descriptive of regions surrounding the cis-nonPro formations. For this purpose, three types of pattern discovery are performed: i) exact pattern discovery, ii) pattern discovery using a chemical equivalency set, and iii) pattern discovery using a structural equivalency set. Afterwards, using each pattern as predicate, we search the Eukaryotic Linear Motif (ELM) resource to identify potential functional implications of regions with cis-nonPro peptide bonds. The patterns extracted from each type of pattern discovery are further employed, in order to formulate a pattern-based classifier, which is used to discriminate between cis-nonPro and trans-nonPro formations. In terms of functional implications, we observe a significant association of cis-nonPro peptide bonds towards ligand/binding functionalities. As for the pattern-based classification scheme, the highest results were obtained using the structural equivalency set, which yielded 70% accuracy, 77% sensitivity and 63% specificity.
Scrutinizing the alignment limit in two-Higgs-doublet models. II. mH=125 GeV
NASA Astrophysics Data System (ADS)
Bernon, Jérémy; Gunion, John F.; Haber, Howard E.; Jiang, Yun; Kraml, Sabine
2016-02-01
In the alignment limit of a multidoublet Higgs sector, one of the Higgs mass eigenstates aligns in field space with the direction of the scalar field vacuum expectation values, and its couplings approach those of the Standard Model (SM) Higgs boson. We consider C P -conserving two-Higgs-doublet models (2HDMs) of type I and type II near the alignment limit in which the heavier of the two C P -even Higgs bosons, H , is the SM-like state observed with a mass of 125 GeV, and the couplings of H to gauge bosons approach those of the SM. We review the theoretical structure and analyze the phenomenological implications of this particular realization of the alignment limit, where decoupling of the extra states cannot occur given that the lighter C P -even state h must, by definition, have a mass below 125 GeV. For the numerical analysis, we perform scans of the 2HDM parameter space employing the software packages 2hdmc and lilith, taking into account all relevant pre-LHC constraints, constraints from the measurements of the 125 GeV Higgs signal at the LHC, as well as the most recent limits coming from searches for other Higgs-like states. Implications for Run 2 at the LHC, including expectations for observing the other scalar states, are also discussed.
Customizing G Protein-coupled receptor models for structure-based virtual screening.
de Graaf, Chris; Rognan, Didier
2009-01-01
This review will focus on the construction, refinement, and validation of G Protein-coupled receptor models for the purpose of structure-based virtual screening. Practical tips and tricks derived from concrete modeling and virtual screening exercises to overcome the problems and pitfalls associated with the different steps of the receptor modeling workflow will be presented. These examples will not only include rhodopsin-like (class A), but also secretine-like (class B), and glutamate-like (class C) receptors. In addition, the review will present a careful comparative analysis of current crystal structures and their implication on homology modeling. The following themes will be discussed: i) the use of experimental anchors in guiding the modeling procedure; ii) amino acid sequence alignments; iii) ligand binding mode accommodation and binding cavity expansion; iv) proline-induced kinks in transmembrane helices; v) binding mode prediction and virtual screening by receptor-ligand interaction fingerprint scoring; vi) extracellular loop modeling; vii) virtual filtering schemes. Finally, an overview of several successful structure-based screening shows that receptor models, despite structural inaccuracies, can be efficiently used to find novel ligands.
Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly.
Bernecky, Carrie; Grob, Patricia; Ebmeier, Christopher C; Nogales, Eva; Taatjes, Dylan J
2011-03-01
The macromolecular assembly required to initiate transcription of protein-coding genes, known as the Pre-Initiation Complex (PIC), consists of multiple protein complexes and is approximately 3.5 MDa in size. At the heart of this assembly is the Mediator complex, which helps regulate PIC activity and interacts with the RNA polymerase II (pol II) enzyme. The structure of the human Mediator-pol II interface is not well-characterized, whereas attempts to structurally define the Mediator-pol II interaction in yeast have relied on incomplete assemblies of Mediator and/or pol II and have yielded inconsistent interpretations. We have assembled the complete, 1.9 MDa human Mediator-pol II-TFIIF complex from purified components and have characterized its structural organization using cryo-electron microscopy and single-particle reconstruction techniques. The orientation of pol II within this assembly was determined by crystal structure docking and further validated with projection matching experiments, allowing the structural organization of the entire human PIC to be envisioned. Significantly, pol II orientation within the Mediator-pol II-TFIIF assembly can be reconciled with past studies that determined the location of other PIC components relative to pol II itself. Pol II surfaces required for interacting with TFIIB, TFIIE, and promoter DNA (i.e., the pol II cleft) are exposed within the Mediator-pol II-TFIIF structure; RNA exit is unhindered along the RPB4/7 subunits; upstream and downstream DNA is accessible for binding additional factors; and no major structural re-organization is necessary to accommodate the large, multi-subunit TFIIH or TFIID complexes. The data also reveal how pol II binding excludes Mediator-CDK8 subcomplex interactions and provide a structural basis for Mediator-dependent control of PIC assembly and function. Finally, parallel structural analysis of Mediator-pol II complexes lacking TFIIF reveal that TFIIF plays a key role in stabilizing pol II orientation within the assembly.
NASA Technical Reports Server (NTRS)
Brown, A.; Jordan, C.; Stencel, R. E.; Linsky, J. L.; Ayres, T. R.
1984-01-01
High-resolution far ultraviolet spectra of the star Beta Draconis have been obtained with the IUE satellite. The observations and emission line data from the spectra are presented, the interpretation of the emission line widths and shifts is discussed, and the implications are given in terms of atmospheric properties. The emission measure distribution is derived, and density diagnostics involving both line ratios and line opacity arguments is investigated. The methods for calculating spherically symmetric models of the atmospheric structure are outlined, and several such models are presented. The extension of these models to log T(e) greater than 5.3 using the observed X-ray flux is addressed, the energy balance of an 'optimum' model is investigated, and possible models of energy transport and deposition are discussed.
Koua, Faisal Hammad Mekky; Umena, Yasufumi; Kawakami, Keisuke; Shen, Jian-Ren
2013-03-05
Oxygen-evolving complex of photosystem II (PSII) is a tetra-manganese calcium penta-oxygenic cluster (Mn4CaO5) catalyzing light-induced water oxidation through several intermediate states (S-states) by a mechanism that is not fully understood. To elucidate the roles of Ca(2+) in this cluster and the possible location of water substrates in this process, we crystallized Sr(2+)-substituted PSII from Thermosynechococcus vulcanus, analyzed its crystal structure at a resolution of 2.1 Å, and compared it with the 1.9 Å structure of native PSII. Our analysis showed that the position of Sr was moved toward the outside of the cubane structure of the Mn4CaO5-cluster relative to that of Ca(2+), resulting in a general elongation of the bond distances between Sr and its surrounding atoms compared with the corresponding distances in the Ca-containing cluster. In particular, we identified an apparent elongation in the bond distance between Sr and one of the two terminal water ligands of Ca(2+), W3, whereas that of the Sr-W4 distance was not much changed. This result may contribute to the decrease of oxygen evolution upon Sr(2+)-substitution, and suggests a weak binding and rather mobile nature of this particular water molecule (W3), which in turn implies the possible involvement of this water molecule as a substrate in the O-O bond formation. In addition, the PsbY subunit, which was absent in the 1.9 Å structure of native PSII, was found in the Sr-PSII structure.
Neumeyer, Tobias; Schiffler, Bettina; Maier, Elke; Lang, Alexander E; Aktories, Klaus; Benz, Roland
2008-02-15
Clostridium botulinum C2 toxin belongs to the family of binary AB type toxins that are structurally organized into distinct enzyme (A, C2I) and binding (B, C2II) components. The proteolytically activated 60-kDa C2II binding component is essential for C2I transport into target cells. It oligomerizes into heptamers and forms channels in lipid bilayer membranes. The C2II channel is cation-selective and can be blocked by chloroquine and related compounds. Residues 303-330 of C2II contain a conserved pattern of alternating hydrophobic and hydrophilic residues, which has been implicated in the formation of two amphipathic beta-strands involved in membrane insertion and channel formation. In the present study, C2II mutants created by substitution of different negatively charged amino acids by alanine-scanning mutagenesis were analyzed in artificial lipid bilayer membranes. The results suggested that most of the C2II mutants formed SDS-resistant oligomers (heptamers) similar to wild type. The mutated negatively charged amino acids did not influence channel properties with the exception of Glu(399) and Asp(426), which are probably localized in the vestibule near the channel entrance. These mutants show a dramatic decrease in their affinity for binding of chloroquine and its analogues. Similarly, F428A, which represents the Phi-clamp in anthrax protective antigen, was mutated in C2II in several other amino acids. The C2II mutants F428A, F428D, F428Y, and F428W not only showed altered chloroquine binding but also had drastically changed single channel properties. The results suggest that amino acids Glu(399), Asp(426), and Phe(428) have a major impact on the function of C2II as a binding protein for C2I delivery into target cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appleton, P. N.; Lord, S.; Lu, N.
2013-11-01
We present the first Herschel spectroscopic detections of the [O I] 63 μm and [C II] 158 μm fine-structure transitions, and a single para-H{sub 2}O line from the 35 × 15 kpc{sup 2} shocked intergalactic filament in Stephan's Quintet. The filament is believed to have been formed when a high-speed intruder to the group collided with a clumpy intergroup gas. Observations with the PACS spectrometer provide evidence for broad (>1000 km s{sup –1}) luminous [C II] line profiles, as well as fainter [O I] 63 μm emission. SPIRE FTS observations reveal water emission from the p-H{sub 2}O (1{sub 11}-0{sub 00})more » transition at several positions in the filament, but no other molecular lines. The H{sub 2}O line is narrow and may be associated with denser intermediate-velocity gas experiencing the strongest shock-heating. The [C II]/PAH{sub tot} and [C II]/FIR ratios are too large to be explained by normal photo-electric heating in photodissociation regions. H II region excitation or X-ray/cosmic-ray heating can also be ruled out. The observations lead to the conclusion that a large fraction the molecular gas is diffuse and warm. We propose that the [C II], [O I], and warm H{sub 2} line emission is powered by a turbulent cascade in which kinetic energy from the galaxy collision with the intergalactic medium is dissipated to small scales and low velocities, via shocks and turbulent eddies. Low-velocity magnetic shocks can help explain both the [C II]/[O I] ratio, and the relatively high [C II]/H{sub 2} ratios observed. The discovery that [C II] emission can be enhanced, in large-scale turbulent regions in collisional environments, has implications for the interpretation of [C II] emission in high-z galaxies.« less
Miskolzie, Mark; Lucyk, Scott; Kotovych, George
2003-12-01
The preferred conformation of orexin-B, an orphan G-protein coupled receptor agonist (the human sequence is RSGPPGLQGRLQRLLQASGNHAAGILTM-NH(2)) has been determined by (1)H and (13)C 2D NMR spectroscopy and molecular modeling. Orexin-B has been implicated in sleep-wakefulness and feeding regulation. The membrane mimetic, sodium dodecylsulphate-d(25) (SDS), was used to mimic a physiological environment for the peptide. The secondary structure of orexin-B in SDS consists of two helical sections; helix I spans Leu(7) to Ser(18) and helix II spans Ala(22) to Leu(26). Helices I and II are believed to be involved in membrane binding, as is supported by the results of the spin label studies with 5-doxylstearic acid. Lee et al. (Eur. J. Biochem. 266, 831-839 (1999)) determined the [Phe(1)]-orexin-B conformation in water solution by NMR and showed that helix II extends from Ala(23) to Met(28). The C-terminal dipeptide, Thr(27)-Met(28), is unstructured is SDS, whereas in water it forms the end of helix II. The lack of apparent structure for Thr(27)-Met(28) in SDS allows the dipeptide to have conformational freedom to interact with the receptor. The conformation of orexin-B can now be used to explain the Ala substitution mutagenesis experiments and the D-amino acid substitution experiments (S. Asahi et al., Bioorg. Med. Chem. Lett. 13, 111-113, 2003). Asahi et al. have shown that Ala substitution from Gly(24) to Met(28) or D-amino acid substitution from Ala(23) to Met(28) causes a significant reduction in the potency of orexin-B for both OX(1)R and OX(2)R receptors. We postulate that helix II is involved in membrane recognition, and its binding to the membrane is essential for Thr(27)-Met(28) to adopt the correct receptor-binding conformation.
Nicotianamine forms complexes with Zn(II) in vivo.
Trampczynska, Aleksandra; Küpper, Hendrik; Meyer-Klaucke, Wolfram; Schmidt, Holger; Clemens, Stephan
2010-01-01
The non-proteinogenic amino acid nicotianamine (NA) is a major player in plant metal homeostasis. It is known to form complexes with different transition metals in vitro. Available evidence associates NA with translocation of Fe, and possibly other micronutrients, to and between different plant cells and tissues. To date, however, it is still extremely challenging to detect metal-ligand complexes in vivo because tissue disruption immediately changes the chemical environment and thereby the availability of binding partners. In order to overcome this limitation we used various Schizosaccharomyces pombe strains expressing a plant NAS gene to study formation of metal-NA complexes in vivo. Tolerance, accumulation and competition data clearly indicated formation of Zn(ii)-NA but not of Cu(ii)-NA complexes. Zn(ii)-NA was then identified by X-ray absorption spectroscopy (XAS). About half of the cellular Zn was found to be bound by NA in NAS-expressing cells while no NA-like ligands were detected by XAS in control cells not expressing NAS. Given the high conservation of eukaryotic metal homeostasis components, these results strongly suggest the possible existence of Zn(ii)-NA complexes also in planta. Reported observations implicating NA in plant Zn homeostasis would then indeed be attributable to direct interaction of Zn(ii) with NA rather than only indirectly to perturbations in Fe metabolism. Re-evaluation of extended X-ray absorption fine structure (EXAFS) spectra for the Zn hyperaccumulator Thlaspi caerulescens showed that NA is as expected not a major storage ligand for Zn. Instead it is hypothesized to be involved in efficient translocation of Zn to above-ground tissues in hyperaccumulators.
Heilek, G M; Noller, H F
1996-01-01
Directed hydroxyl radical probing was used to probe the rRNA neighborhood around protein S13 in the 30S ribosomal subunit. The unique cysteine at position 84 of S13 served as a tethering site for attachment of Fe(II)-1-(p-bromoacetamidobenzyl)-EDTA. Derivatized S13 (Fe-C84-S13) was then assembled into 30S ribosomal subunits by in vitro reconstitution with 16S rRNA and a mixture of the remaining 30S subunit proteins. Hydroxyl radicals generated from the tethered Fe(II) resulted in cleavage of the RNA backbone in two localized regions of the 3' major domain of 16S rRNA. One region spans nt 1308-1333 and is close to a site previously crosslinked to S13. A second set of cleavages is found in the 950/1230 helix. Both regions have been implicated in binding of S13 by previous chemical footprinting studies using base-specific chemical probes and solution-based hydroxyl radical probing. These results place both regions of 16S rRNA in proximity to position C84 of S13 in the three-dimensional structure of the 30S ribosomal subunit. PMID:8718688
Mineral transformations associated with goethite reduction by Methanosarcina barkeri
Liu, D.; Wang, Hongfang; Dong, H.; Qiu, X.; Dong, X.; Cravotta, C.A.
2011-01-01
To investigate the interaction between methanogens and iron-containing minerals in anoxic environments, we conducted batch culture experiments with Methanosarcina barkeri in a phosphate-buffered basal medium (PBBM) to bioreduce structural Fe(III) in goethite with hydrogen as the sole substrate. Fe(II) and methane concentrations were monitored over the course of the bioreduction experiments with wet chemistry and gas chromatography, respectively. Subsequent mineralogical changes were characterized with X-ray diffraction (XRD) and scanning electron microscopy (SEM). In the presence of an electron shuttle anthraquinone-2,6-disulfonate (AQDS), 30% Fe(III) in goethite (weight basis) was reduced to Fe(II). In contrast, only 2% Fe(III) (weight basis) was bioreduced in the absence of AQDS. Most of the bioproduced Fe(II) was incorporated into secondary minerals including dufr??nite and vivianite. Our data implied a dufr??nite-vivianite transformation mechanism where a metastable dufr??nite transformed to a more stable vivianite over extended time in anaerobic conditions. Methanogenesis was greatly inhibited by bioreduction of goethite Fe(III). These results have important implications for the methane flux associated with Fe(III) bioreduction and ferrous iron mineral precipitation in anaerobic soils and sediments. ?? 2011 Elsevier B.V.
Zhang, Minhua; Bao, Zhihao; Zhao, Qin; Guo, Hui; Xu, Ke; Wang, Chengcheng
2014-01-01
Energy-coupling factor (ECF) transporters are a unique group of ATP-binding cassette (ABC) transporters responsible for micronutrient uptake from the environment. Each ECF transporter is composed of an S component (or EcfS protein) and T/A/A′ components (or EcfT/A/A′ proteins; ECF module). Among the group II ECF transporters, several EcfS proteins share one ECF module; however, the underlying mechanism remains unknown. Here we report the structure of a group II ECF transporter–pantothenate transporter from Lactobacillus brevis (LbECF-PanT), which shares the ECF module with the folate and hydroxymethylpyrimidine transporters (LbECF-FolT and LbECF-HmpT). Structural and mutational analyses revealed the residues constituting the pantothenate-binding pocket. We found that although the three EcfS proteins PanT, FolT, and HmpT are dissimilar in sequence, they share a common surface area composed of the transmembrane helices 1/2/6 (SM1/2/6) to interact with the coupling helices 2/3 (CH2/3) of the same EcfT. CH2 interacts mainly with SM1 via hydrophobic interactions, which may modulate the sliding movement of EcfS. CH3 binds to a hydrophobic surface groove formed by SM1, SM2, and SM6, which may transmit the conformational changes from EcfA/A′ to EcfS. We also found that the residues at the intermolecular surfaces in LbECF-PanT are essential for transporter activity, and that these residues may mediate intermolecular conformational transmission and/or affect transporter complex stability. In addition, we found that the structure of EcfT is conformationally dynamic, which supports its function as a scaffold to mediate the interaction of the ECF module with various EcfS proteins to form different transporter complexes. PMID:25512487
Chen, Yu-Peng; Yang, Chun-Gui; Wei, Pei-Yao; Li, Lin; Luo, Du-Qiang; Zheng, Zhi-Hui; Lu, Xin-Hua
2014-01-29
Protein tyrosine phosphatase 1B (PTP1B) is implicated as a negative regulator of insulin receptor (IR) signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. Therefore, small molecular inhibitors of PTP1B can be considered as an attractive approach for the design of new therapeutic agents of type II diabetes diseases. In a continuing search for new protein phosphatase inhibitors from fungi, we have isolated a new compound, named penostatin J (1), together with three known ones, penostatin C (2), penostatin A (3), and penostatin B (4), from cultures of the entomogenous fungus Isaria tenuipes. The structure of penostatin J (1) was elucidated by extensive spectroscopic analysis. We also demonstrate for the first time that penostatin derivatives exhibit the best PTP1B inhibitory action. These findings suggest that penostatin derivatives are a potential novel kind of PTP1B inhibitors.
Hypertensive response to exercise: mechanisms and clinical implication.
Kim, Darae; Ha, Jong-Won
2016-01-01
A hypertensive response to exercise (HRE) is frequently observed in individuals without hypertension or other cardiovascular disease. However, mechanisms and clinical implication of HRE is not fully elucidated. Endothelial dysfunction and increased stiffness of large artery contribute to development of HRE. From neurohormonal aspects, excess stimulation of sympathetic nervous system and augmented rise of angiotensin II seems to be important mechanism in HRE. Increasing evidences indicates that a HRE is associated with functional and structural abnormalities of left ventricle, especially when accompanied by increased central blood pressure. A HRE harbors prognostic significance in future development of hypertension and increased cardiovascular events, particularly if a HRE is documented in moderate intensity of exercise. As supported by previous studies, a HRE is not a benign phenomenon, however, currently, whether to treat a HRE is controversial with uncertain treatment strategy. Considering underlying mechanisms, angiotensin receptor blockers and beta blockers can be suggested in individuals with HRE, however, evidences for efficacy and outcomes of treatment of HRE in individuals without hypertension is scarce and therefore warrants further studies.
The function of metabotropic glutamate receptors in thalamus and cortex.
Sherman, S Murray
2014-04-01
Metabotropic glutamate receptors (mGluRs) are found throughout thalamus and cortex and are clearly important to circuit behavior in both structures, and so considering only participation of ionotropic glutamate receptors (e.g., [R,S]-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and N-methyl-d-aspartate receptors [NMDA] receptors) in glutamatergic processing would be an unfortunate oversimplification. These mGluRs are found both postsynaptically, on target cells of glutamatergic afferents, and presynaptically, on various synaptic terminals themselves, and when activated, they produce prolonged effects lasting at least hundreds of msec to several sec and perhaps longer. Two main types exist: activation of group I mGluRs causes postsynaptic depolarization, and group II, hyperpolarization. Both types are implicated in synaptic plasticity, both short term and long term. Their evident importance in functioning of thalamus and cortex makes it critical to develop a better understanding of how these receptors are normally activated, especially because they also seem implicated in a wide range of neurological and cognitive pathologies.
The Function of Metabotropic Glutamate Receptors in Thalamus and Cortex
Sherman, S. Murray
2016-01-01
Metabotropic glutamate receptors (mGluRs) are found throughout thalamus and cortex and are clearly important to circuit behavior in both structures, and so considering only participation of ionotropic glutamate receptors (e.g., [R,S]-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and N-methyl-d-aspartate receptors [NMDA] receptors) in glutamatergic processing would be an unfortunate oversimplification. These mGluRs are found both postsynaptically, on target cells of glutamatergic afferents, and presynaptically, on various synaptic terminals themselves, and when activated, they produce prolonged effects lasting at least hundreds of msec to several sec and perhaps longer. Two main types exist: activation of group I mGluRs causes postsynaptic depolarization, and group II, hyperpolarization. Both types are implicated in synaptic plasticity, both short term and long term. Their evident importance in functioning of thalamus and cortex makes it critical to develop a better understanding of how these receptors are normally activated, especially because they also seem implicated in a wide range of neurological and cognitive pathologies. PMID:23459618
John, Aesha
2012-07-01
The study assessed stress among mothers of young children with intellectual disabilities in urban India and examined the extent to which child functioning and maternal coping predict maternal stress. Through qualitative analyses, the study identified negative and positive dimensions of Indian mothers' caregiving experiences. Mothers completed Parenting Stress Index-Short Form, and children's teachers completed Vineland-II teacher rating form. Maternal responses to a semi-structured interview were rated to assess maternal coping and content analysed to derive qualitative themes. Three-fourths of the sample obtained a clinically significant stress score, and maternal coping emerged as a robust predictor of stress for mothers of boys with intellectual disabilities. Qualitative analyses indicated positive and negative maternal experiences related to self, child, family and community. The high level of stress has important clinical implications. Similarly, the significant role of maternal coping, moderating role of child gender and the multidimensional caregiving experiences have implications for future research and family interventions in India. © 2012 Blackwell Publishing Ltd.
Norm-Referenced Language Measures: Implications for Assessment of Infants and Toddlers.
ERIC Educational Resources Information Center
Costarides, Anna H.; Shulman, Brian B.
1998-01-01
Examines the relationship and predictive power of the Early Language Milestone Scale-2 (ELM-2)and the Bayley Scales of Infant Development-II (BSID-II). Both scales were administered to 90 infants at risk for developmental delay due to prematurity and low birth weight. Results of the ELM-2 correlated with BSID-II scores of infants 12 months of age.…
NASA Technical Reports Server (NTRS)
Ioannou, Petros J.; Lindzen, Richard S.
1993-01-01
Classical tidal theory is applied to the atmospheres of the outer planets. The tidal geopotential due to satellites of the outer planets is discussed, and the solution of Laplace's tidal equation for Hough modes appropriate to tides on the outer planets is examined. The vertical structure of tidal modes is described, noting that only relatively high-order meridional mode numbers can propagate vertically with growing amplitude. Expected magnitudes for tides in the visible atmosphere of Jupiter are discussed. The classical theory is extended to planetary interiors taking the effects of spherically and self-gravity into account. The thermodynamic structure of Jupiter is described and the WKB theory of the vertical structure equation is presented. The regions for which inertial, gravity, and acoustic oscillations are possible are delineated. The case of a planet with a neutral interior is treated, discussing the various atmospheric boundary conditions and showing that the tidal response is small.
Zerovalent iron is being used in permeable reactive barriers (PRBs) to remediate groundwater arsenic contamination. Iron(II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron under anaerobic conditions. The interaction between arsenic and this green...
Plant-specific multisubunit RNA polymerase in gene silencing.
Lahmy, Sylvie; Bies-Etheve, Natacha; Lagrange, Thierry
2010-01-01
In recent years, a major breakthrough in the study of epigenetic silencing in eukaryotes came with the discovery that the RNA-interference pathway (RNAi) is generally implicated in heterochromatin assembly and gene silencing. An important and paradoxical feature of the RNAi-mediated heterochromatin pathways is their requirement for some form of transcription. In fission yeast, Schizosaccharomyces pombe, centromeric siRNAs have been shown to derive from chromatin-bound nascent transcripts produced by RNA polymerase II (PolII) at the site of heterochromatin formation. Likewise, chromatin-bound nascent transcripts generated by a PolII-related DNA-dependent RNA polymerase, known as PolIVb/PolV, have recently been implicated in RNA-directed DNA methylation (RdDM), the prominent RNAi-mediated chromatin pathway in plants. In this review we discuss recent work on the plant-specific PolII variant enzymes and discuss the mechanistic convergences that have been observed in the role of these enzymes in their respective siRNA-mediated heterochromatin formation pathways.
Huang-Pollock, Cynthia L; Maddox, W Todd; Tam, Helen
2014-07-01
Suboptimal functioning of the basal ganglia is implicated in attention-deficit/hyperactivity disorder (ADHD). These structures are important to the acquisition of associative knowledge, leading some to theorize that associative learning deficits might be expected, despite the fact that most extant research in ADHD has focused on effortful control. We present 2 studies that examined the acquisition of explicit rule-based (RB) and associative information integration (II) category learning among school-age children with ADHD. In Study 1, we found deficits in both RB and II category learning tasks among children with ADHD (n = 81) versus controls (n = 42). Children with ADHD tended to sort by the more salient but irrelevant dimension (in the RB paradigm) and were unable to acquire a consistent sorting strategy (in the II paradigm). To disentangle whether the deficit was localized to II category learning versus a generalized inability to consider more than 1 stimulus dimension, in Study 2 children completed a conjunctive RB paradigm that required consideration of 2 stimulus dimensions. Children with ADHD (n = 50) continued to underperform controls (n = 33). Results provide partial support for neurocognitive developmental theories of ADHD that suggest that associative learning deficits should be found, and highlight the importance of using analytic approaches that go beyond asking whether an ADHD-related deficit exists to why such deficits exist.
Dassama, Laura M.K.; Krebs, Carsten; Bollinger, J. Martin; Rosenzweig, Amy C.; Boal, Amie K.
2013-01-01
The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) employs a MnIV/FeIII cofactor in each monomer of its β2 subunit to initiate nucleotide reduction. The cofactor forms by reaction of MnII/FeII-β2 with O2. Previously, in vitro cofactor assembly from apo β2 and divalent metal ions produced a mixture of two forms, with Mn in site 1 (MnIV/FeIII) or site 2 (FeIII/MnIV), of which the more active MnIV/FeIII product predominates. Here we have addressed the basis for metal site-selectivity by solving X-ray crystal structures of apo, MnII, and MnII/FeII complexes of Ct β2. A structure obtained anaerobically with equimolar MnII, FeII, and apo protein reveals exclusive incorporation of MnII in site 1 and FeII in site 2, in contrast to the more modest site-selectivity achieved previously. Site-specificity is controlled thermodynamically by the apo protein structure, as only minor adjustments of ligands occur upon metal binding. Additional structures imply that, by itself, MnII binds in either site. Together the structures are consistent with a model for in vitro cofactor assembly in which FeII specificity for site 2 drives assembly of the appropriately configured heterobimetallic center, provided that FeII is substoichiometric. This model suggests that use of an MnIV/FeIII cofactor in vivo could be an adaptation to FeII limitation. A 1.8 Å resolution model of the MnII/FeII-β2 complex reveals additional structural determinants for activation of the cofactor, including a proposed site for side-on (η2) addition of O2 to FeII and a short (3.2 Å) MnII-FeII interionic distance, promoting formation of the MnIV/FeIV activation intermediate. PMID:23924396
Inhibitor-based validation of a homology model of the active-site of tripeptidyl peptidase II.
De Winter, Hans; Breslin, Henry; Miskowski, Tamara; Kavash, Robert; Somers, Marijke
2005-04-01
A homology model of the active site region of tripeptidyl peptidase II (TPP II) was constructed based on the crystal structures of four subtilisin-like templates. The resulting model was subsequently validated by judging expectations of the model versus observed activities for a broad set of prepared TPP II inhibitors. The structure-activity relationships observed for the prepared TPP II inhibitors correlated nicely with the structural details of the TPP II active site model, supporting the validity of this model and its usefulness for structure-based drug design and pharmacophore searching experiments.
Thermal stability of DNA quadruplex-duplex hybrids.
Lim, Kah Wai; Khong, Zi Jian; Phan, Anh Tuân
2014-01-14
DNA has the capacity to adopt several distinct structural forms, such as duplex and quadruplex helices, which have been implicated in cellular processes and shown to exhibit important functional properties. Quadruplex-duplex hybrids, generated from the juxtaposition of these two structural elements, could find applications in therapeutics and nanotechnology. Here we used NMR and CD spectroscopy to investigate the thermal stability of two classes of quadruplex-duplex hybrids comprising fundamentally distinct modes of duplex and quadruplex connectivity: Construct I involves the coaxial orientation of the duplex and quadruplex helices with continual base stacking across the two components; Construct II involves the orthogonal orientation of the duplex and quadruplex helices with no base stacking between the two components. We have found that for both constructs, the stability of the quadruplex generally increases with the length of the stem-loop incorporated, with respect to quadruplexes comprising nonstructured loops of the same length, which showed a continuous drop in stability with increasing loop length. The stability of these complexes, particularly Construct I, can be substantially influenced by the base-pair steps proximal to the quadruplex-duplex junction. Bulges at the junction are largely detrimental to the adoption of the desired G-quadruplex topology for Construct I but not for Construct II. These findings should facilitate future design and prediction of quadruplex-duplex hybrids.
NASA Astrophysics Data System (ADS)
Veiga, R. G. A.; Miwa, R. H.; McLean, A. B.
2016-03-01
We report first-principles calculations of the energetic stability and electronic properties of metal-phthalocyanine (MPc) molecules (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) adsorbed on the δ -doped Si(111)-B (√{3 }×√{3 }) reconstructed surface. (i) It can be seen that CrPc, MnPc, FePc, and CoPc are chemically anchored to the topmost Si atom. (ii) Contrastingly, the binding of the NiPc, CuPc, and ZnPc molecules to the Si (111 ) -B (√{3 }×√{3 }) surface is exclusively ruled by van der Waals interactions, the main implication being that these molecules may diffuse and rearrange to form clusters and/or self-organized structures on this surface. The electronic structure calculations reveal that in point (i), owing to the formation of the metal-Si covalent bond, the net magnetic moment of the molecule is quenched by 1 μB , remaining unchanged in point (ii). In particular, the magnetic moment of CuPc (1 μB ) is preserved after adsorption. Finally, we verify that the formation of ZnPc, CuPc, and NiPc molecular (self-assembled) arrangements on the Si(111)-B (√{3 }×√{3 } ) surface is energetically favorable, in good agreement with recent experimental findings.
Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.
Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo
2010-09-09
Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.
Atomic Resolution Study of the Interfacial Bonding at Si3N4/CeO2-δ Grain Boundaries
NASA Astrophysics Data System (ADS)
Klie, Robert F.; Walkosz, Weronika; Ogut, Serdar; Borisevich, A.; Becher, Paul F.; Pennycook, Steve J.; Idrobo, Juan C.
2008-03-01
Using a combination of atomic resolution Z-contrast imaging and electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope, we examine the atomic and electronic structures at the interface between Si3N4 (10 10) and CeO2-δ inter-granular film (IGF). Ce atoms are observed to segregate to the interface in a two-layer periodic arrangement, which is significantly different compared to the structure observed in a previous study. Our EELS experiments show that (i) oxygen is present at the interface in direct contact with the terminating Si3N4 open-ring structures, (ii) the Ce valence state changes from +3 to +4 in going from the interface into the IGF, and (iii) while the N concentration decreases away from the Si3N4 grains into the IGF, the Si concentration remains uniform across the whole width of the IGF. Possible reasons for these observed structural and electronic variations at the interface and their implications for future studies on Si3N4/rare-earth oxide interfaces are briefly discussed.
Chen, Wei; Qu, Mingbo; Zhou, Yong; Yang, Qing
2018-02-23
Chitin is a linear homopolymer of N -acetyl-β-d-glucosamines and a major structural component of insect cuticles. Chitin hydrolysis involves glycoside hydrolase family 18 (GH18) chitinases. In insects, chitin hydrolysis is essential for periodic shedding of the old cuticle ecdysis and proceeds via a pathway different from that in the well studied bacterial chitinolytic system. Group II chitinase (ChtII) is a widespread chitinolytic enzyme in insects and contains the greatest number of catalytic domains and chitin-binding domains among chitinases. In Lepidopterans, ChtII and two other chitinases, ChtI and Chi-h, are essential for chitin hydrolysis. Although ChtI and Chi-h have been well studied, the role of ChtII remains elusive. Here, we investigated the structure and enzymology of Of ChtII, a ChtII derived from the insect pest Ostrinia furnacalis We present the crystal structures of two catalytically active domains of Of ChtII, Of ChtII-C1 and Of ChtII-C2, both in unliganded form and complexed with chitooligosaccharide substrates. We found that Of ChtII-C1 and Of ChtII-C2 both possess long, deep substrate-binding clefts with endochitinase activities. Of ChtII exhibited structural characteristics within the substrate-binding cleft similar to those in Of Chi-h and Of ChtI. However, Of ChtII lacked structural elements favoring substrate binding beyond the active sites, including an extra wall structure present in Of Chi-h. Nevertheless, the numerous domains in Of ChtII may compensate for this difference; a truncation containing one catalytic domain and three chitin-binding modules ( Of ChtII-B4C1) displayed activity toward insoluble polymeric substrates that was higher than those of Of Chi-h and Of ChtI. Our observations provide the last piece of the puzzle of chitin hydrolysis in insects. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Structure and proposed mechanism of α-glycerophosphate oxidase from Mycoplasma pneumoniae
Elkhal, Callia K.; Kean, Kelsey M.; Parsonage, Derek; ...
2015-03-14
In this study, the formation of hydrogen peroxide (H₂O₂) by the FAD-dependent α-glycerophosphate oxidase (GlpO), is important for the pathogenesis of Streptococcus pneumoniae and Mycoplasma pneumoniae. The structurally known GlpO from Streptococcus sp. ( SspGlpO) is similar to the pneumococcal protein ( SpGlpO) and provides a guide for drug design against that target. However, M. pneumoniae GlpO ( MpGlpO), having <20% sequence identity with structurally known GlpOs, appears to represent a second type of GlpO we designate as Type II GlpOs. Here, the recombinant His-tagged MpGlpO structure is described at ~2.5 Å resolution, solved by molecular replacement using as amore » search model the Bordetella pertussis protein 3253 (Bp3253) a protein of unknown function solved by structural genomics efforts. Recombinant MpGlpO is an active oxidase with a turnover number of ~580 min⁻¹ while Bp3253 showed no GlpO activity. No substantial differences exist between the oxidized and dithionite-reduced MpGlpO structures. Although, no liganded structures were determined, a comparison with the tartrate-bound Bp3253 structure and consideration of residue conservation patterns guided the construction of a model for α-glycerophosphate (Glp) recognition and turnover by MpGlpO. The predicted binding mode also appears relevant for the type I GlpOs (such as SspGlpO) despite differences in substrate recognition residues, and it implicates a histidine conserved in type I and II Glp oxidases and dehydrogenases as the catalytic acid/base. This work provides a solid foundation for guiding further studies of the mitochondrial Glp dehydrogenases as well as for continued studies of M. pneumoniae and S. pneumoniae glycerol metabolism and the development of novel therapeutics targeting MpGlpO and SpGlpO.« less
Structure and proposed mechanism of α-glycerophosphate oxidase from Mycoplasma pneumoniae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elkhal, Callia K.; Kean, Kelsey M.; Parsonage, Derek
In this study, the formation of hydrogen peroxide (H₂O₂) by the FAD-dependent α-glycerophosphate oxidase (GlpO), is important for the pathogenesis of Streptococcus pneumoniae and Mycoplasma pneumoniae. The structurally known GlpO from Streptococcus sp. ( SspGlpO) is similar to the pneumococcal protein ( SpGlpO) and provides a guide for drug design against that target. However, M. pneumoniae GlpO ( MpGlpO), having <20% sequence identity with structurally known GlpOs, appears to represent a second type of GlpO we designate as Type II GlpOs. Here, the recombinant His-tagged MpGlpO structure is described at ~2.5 Å resolution, solved by molecular replacement using as amore » search model the Bordetella pertussis protein 3253 (Bp3253) a protein of unknown function solved by structural genomics efforts. Recombinant MpGlpO is an active oxidase with a turnover number of ~580 min⁻¹ while Bp3253 showed no GlpO activity. No substantial differences exist between the oxidized and dithionite-reduced MpGlpO structures. Although, no liganded structures were determined, a comparison with the tartrate-bound Bp3253 structure and consideration of residue conservation patterns guided the construction of a model for α-glycerophosphate (Glp) recognition and turnover by MpGlpO. The predicted binding mode also appears relevant for the type I GlpOs (such as SspGlpO) despite differences in substrate recognition residues, and it implicates a histidine conserved in type I and II Glp oxidases and dehydrogenases as the catalytic acid/base. This work provides a solid foundation for guiding further studies of the mitochondrial Glp dehydrogenases as well as for continued studies of M. pneumoniae and S. pneumoniae glycerol metabolism and the development of novel therapeutics targeting MpGlpO and SpGlpO.« less
Molecular Architecture of the Human Mediator–RNA Polymerase II–TFIIF Assembly
Bernecky, Carrie; Grob, Patricia; Ebmeier, Christopher C.; Nogales, Eva; Taatjes, Dylan J.
2011-01-01
The macromolecular assembly required to initiate transcription of protein-coding genes, known as the Pre-Initiation Complex (PIC), consists of multiple protein complexes and is approximately 3.5 MDa in size. At the heart of this assembly is the Mediator complex, which helps regulate PIC activity and interacts with the RNA polymerase II (pol II) enzyme. The structure of the human Mediator–pol II interface is not well-characterized, whereas attempts to structurally define the Mediator–pol II interaction in yeast have relied on incomplete assemblies of Mediator and/or pol II and have yielded inconsistent interpretations. We have assembled the complete, 1.9 MDa human Mediator–pol II–TFIIF complex from purified components and have characterized its structural organization using cryo-electron microscopy and single-particle reconstruction techniques. The orientation of pol II within this assembly was determined by crystal structure docking and further validated with projection matching experiments, allowing the structural organization of the entire human PIC to be envisioned. Significantly, pol II orientation within the Mediator–pol II–TFIIF assembly can be reconciled with past studies that determined the location of other PIC components relative to pol II itself. Pol II surfaces required for interacting with TFIIB, TFIIE, and promoter DNA (i.e., the pol II cleft) are exposed within the Mediator–pol II–TFIIF structure; RNA exit is unhindered along the RPB4/7 subunits; upstream and downstream DNA is accessible for binding additional factors; and no major structural re-organization is necessary to accommodate the large, multi-subunit TFIIH or TFIID complexes. The data also reveal how pol II binding excludes Mediator–CDK8 subcomplex interactions and provide a structural basis for Mediator-dependent control of PIC assembly and function. Finally, parallel structural analysis of Mediator–pol II complexes lacking TFIIF reveal that TFIIF plays a key role in stabilizing pol II orientation within the assembly. PMID:21468301
IGF-II and IGFBP-6 regulate cellular contractility and proliferation in Dupuytren's disease.
Raykha, Christina; Crawford, Justin; Gan, Bing Siang; Fu, Ping; Bach, Leon A; O'Gorman, David B
2013-10-01
Dupuytren's disease (DD) is a common and heritable fibrosis of the palmar fascia that typically manifests as permanent finger contractures. The molecular interactions that induce the development of hyper-contractile fibroblasts, or myofibroblasts, in DD are poorly understood. We have identified IGF2 and IGFBP6, encoding insulin-like growth factor (IGF)-II and IGF binding protein (IGFBP)-6 respectively, as reciprocally dysregulated genes and proteins in primary cells derived from contracture tissues (DD cells). Recombinant IGFBP-6 inhibited the proliferation of DD cells, patient-matched control (PF) cells and normal palmar fascia (CT) cells. Co-treatments with IGF-II, a high affinity IGFBP-6 ligand, were unable to rescue these effects. A non-IGF-II binding analog of IGFBP-6 also inhibited cellular proliferation, implicating IGF-II-independent roles for IGFBP-6 in this process. IGF-II enhanced the proliferation of CT cells, but not DD or PF cells, and significantly enhanced DD and PF cell contractility in stressed collagen lattices. While IGFBP-6 treatment did not affect cellular contractility, it abrogated the IGF-II-induced contractility of DD and PF cells in stressed collagen lattices. IGF-II also significantly increased the contraction of DD cells in relaxed lattices, however this effect was not evident in relaxed collagen lattices containing PF cells. The disparate effects of IGF-II on DD and PF cells in relaxed and stressed contraction models suggest that IGF-II can enhance lattice contractility through more than one mechanism. This is the first report to implicate IGFBP-6 as a suppressor of cellular proliferation and IGF-II as an inducer of cellular contractility in this connective tissue disease. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Metastable Amyloid Phases and their Conversion to Mature Fibrils
NASA Astrophysics Data System (ADS)
Muschol, Martin; Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy
Self-assembly of proteins into amyloid fibrils plays a key role in both functional biological responses and pathogenic disorders which include Alzheimer's disease and type II diabetes. Amyloid fibril assembly frequently generates compact oligomeric and curvilinear polymeric intermediates which are implicated to be toxic to cells. Yet, the relation between these early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. Our measurements indicate that lysozyme amyloid oligomers and their curvilinear fibrils only form after crossing a salt and protein concentration dependent threshold. These oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. Our experimental transition boundaries match well with colloidal model predictions accounting for salt-modulated charge repulsion. We also report our preliminary findings on the mechanism by which these metastable oligomeric phases are converted into stable amyloid fibrils.
Atomistic Interface Dynamics in Sn-Catalyzed Growth of Wurtzite and Zinc-Blende ZnO Nanowires.
Jia, Shuangfeng; Hu, Shuaishuai; Zheng, He; Wei, Yanjie; Meng, Shuang; Sheng, Huaping; Liu, Huihui; Zhou, Siyuan; Zhao, Dongshan; Wang, Jianbo
2018-06-11
Unraveling the phase selection mechanisms of semiconductor nanowires (NWs) is critical for the applications in future advanced nanodevices. In this study, the atomistic vapor-solid-liquid growth processes of Sn-catalyzed wurtzite (WZ) and zinc blende (ZB) ZnO are directly revealed based on the in situ transmission electron microscopy. The growth kinetics of WZ and ZB crystal phases in ZnO appear markedly different in terms of the NW-droplet interface, whereas the nucleation site as determined by the contact angle ϕ between the seed particle and the NW is found to be crucial for tuning the NW structure through combined experimental and theoretical investigations. These results offer an atomic-scale view into the dynamic growth process of ZnO NW, which has implications for the phase-controllable synthesis of II-VI compounds and heterostructures with tunable band structures.
The Extended Granin Family: Structure, Function, and Biomedical Implications
Bartolomucci, Alessandro; Possenti, Roberta; Mahata, Sushil K.; Fischer-Colbrie, Reiner; Loh, Y. Peng
2011-01-01
The chromogranins (chromogranin A and chromogranin B), secretogranins (secretogranin II and secretogranin III), and additional related proteins (7B2, NESP55, proSAAS, and VGF) that together comprise the granin family subserve essential roles in the regulated secretory pathway that is responsible for controlled delivery of peptides, hormones, neurotransmitters, and growth factors. Here we review the structure and function of granins and granin-derived peptides and expansive new genetic evidence, including recent single-nucleotide polymorphism mapping, genomic sequence comparisons, and analysis of transgenic and knockout mice, which together support an important and evolutionarily conserved role for these proteins in large dense-core vesicle biogenesis and regulated secretion. Recent data further indicate that their processed peptides function prominently in metabolic and glucose homeostasis, emotional behavior, pain pathways, and blood pressure modulation, suggesting future utility of granins and granin-derived peptides as novel disease biomarkers. PMID:21862681
Non-Porod scattering and non-integer scaling of resistance in rough films
NASA Astrophysics Data System (ADS)
Bupathy, Arunkumar; Verma, Rupesh; Banerjee, Varsha; Puri, Sanjay
2017-04-01
In many physical systems, films are rough due to the stochastic behavior of depositing particles. They are characterized by non-Porod power law decays in the structure factor S (k) . Theoretical studies predict anomalous diffusion in such morphologies, with important implications for diffusivity, conductivity, etc. We use the non-Porod decay to accurately determine the fractal properties of two prototypical nanoparticle films: (i) Palladium (Pd) and (ii) Cu2O. Using scaling arguments, we find that the resistance of rough films of lateral size L obeys a non-integer power law R ∼L-ζ , in contrast to integer power laws for compact structures. The exponent ζ is anisotropic. We confirm our predictions by re-analyzing experimental data from Cu2O nano-particle films. Our results are valuable for understanding recent experiments that report anisotropic electrical properties in (rough) thin films.
The extended granin family: structure, function, and biomedical implications.
Bartolomucci, Alessandro; Possenti, Roberta; Mahata, Sushil K; Fischer-Colbrie, Reiner; Loh, Y Peng; Salton, Stephen R J
2011-12-01
The chromogranins (chromogranin A and chromogranin B), secretogranins (secretogranin II and secretogranin III), and additional related proteins (7B2, NESP55, proSAAS, and VGF) that together comprise the granin family subserve essential roles in the regulated secretory pathway that is responsible for controlled delivery of peptides, hormones, neurotransmitters, and growth factors. Here we review the structure and function of granins and granin-derived peptides and expansive new genetic evidence, including recent single-nucleotide polymorphism mapping, genomic sequence comparisons, and analysis of transgenic and knockout mice, which together support an important and evolutionarily conserved role for these proteins in large dense-core vesicle biogenesis and regulated secretion. Recent data further indicate that their processed peptides function prominently in metabolic and glucose homeostasis, emotional behavior, pain pathways, and blood pressure modulation, suggesting future utility of granins and granin-derived peptides as novel disease biomarkers. Copyright © 2011 by The Endocrine Society
NASA Astrophysics Data System (ADS)
Rahman, H. M. Tuihedur; Sarker, Swapan Kumar; Hickey, Gordon M.; Mohasinul Haque, M.; Das, Niamjit
2014-11-01
Madhupur National Park is renowned for severe resource ownership conflicts between ethnic communities and government authorities in Bangladesh. In this study, we applied the Institutional Analysis and Development framework to identify: (i) past and present informal institutional structures within the ethnic Garo community for land resource management; (ii) the origin of the land ownership dispute; (iii) interaction mechanisms between formal and informal institutions; and (iv) change in land management authority and informal governance structures. We identify that the informal institutions of the traditional community have undergone radical change due to government interventions with implications for the regulation of land use, informal institutional functions, and joint-decision-making. Importantly, the government's persistent denial of the role of existing informal institutions is widening the gap between government and community actors, and driving land ownership conflicts in a cyclic way with associated natural resource degradation.
Rahman, H M Tuihedur; Sarker, Swapan Kumar; Hickey, Gordon M; Mohasinul Haque, M; Das, Niamjit
2014-11-01
Madhupur National Park is renowned for severe resource ownership conflicts between ethnic communities and government authorities in Bangladesh. In this study, we applied the Institutional Analysis and Development framework to identify: (i) past and present informal institutional structures within the ethnic Garo community for land resource management; (ii) the origin of the land ownership dispute; (iii) interaction mechanisms between formal and informal institutions; and (iv) change in land management authority and informal governance structures. We identify that the informal institutions of the traditional community have undergone radical change due to government interventions with implications for the regulation of land use, informal institutional functions, and joint-decision-making. Importantly, the government's persistent denial of the role of existing informal institutions is widening the gap between government and community actors, and driving land ownership conflicts in a cyclic way with associated natural resource degradation.
Fang, Xiangdong; Sun, Jin; Xiang, Ping; Yu, Man; Navas, Patrick A; Peterson, Kenneth R; Stamatoyannopoulos, George; Li, Qiliang
2005-08-01
Deletion of the 234-bp core element of the DNase I hypersensitive site 3 (5'HS3) of the locus control region (LCR) in the context of a human beta-globin locus yeast artificial chromosome (beta-YAC) results in profound effects on globin gene expression in transgenic mice. In contrast, deletion of a 2.3-kb 5'HS3 region, which includes the 234-bp core sequence, has a much milder phenotype. Here we report the effects of these deletions on chromatin structure in the beta-globin locus of adult erythroblasts. The 234-bp 5'HS3 deletion abolished histone acetylation throughout the beta-globin locus; recruitment of RNA polymerase II (pol II) to the LCR and beta-globin gene promoter was reduced to a basal level; and formation of all the 5' DNase I hypersensitive sites of the LCR was disrupted. The 2.3-kb 5'HS3 deletion mildly reduced the level of histone acetylation but did not change the profile across the whole locus; the 5' DNase I hypersensitive sites of the LCR were formed, but to a lesser extent; and recruitment of pol II was reduced, but only marginally. These data support the hypothesis that the LCR forms a specific chromatin structure and acts as a single entity. Based on these results we elaborate on a model of LCR chromatin architecture which accommodates the distinct phenotypes of the 5'HS3 and HS3 core deletions.
Early Design Choices: Capture, Model, Integrate, Analyze, Simulate
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2004-01-01
I. Designs are constructed incrementally to meet requirements and solve problems: a) Requirements types: objectives, scenarios, constraints, ilities. etc. b) Problem/issue types: risk/safety, cost/difficulty, interaction, conflict, etc. II. Capture requirements, problems and solutions: a) Collect design and analysis products and make them accessible for integration and analysis; b) Link changes in design requirements, problems and solutions; and c) Harvest design data for design models and choice structures. III. System designs are constructed by multiple groups designing interacting subsystems a) Diverse problems, choice criteria, analysis methods and point solutions. IV. Support integration and global analysis of repercussions: a) System implications of point solutions; b) Broad analysis of interactions beyond totals of mass, cost, etc.
The Spatially-resolved Interacting Winds of Eta Carinae: Implications on the Orbit Orientation
NASA Technical Reports Server (NTRS)
Gull, Theodore R.; Nielsen, K.E.; Corcoran, M.; Hamaguchi, K.; Madura, T.; Russell, C.; Hillier, D.J.; Owocki. S.; Okazaki, A.T.
2010-01-01
Medium-dispersion long slit spectra, recorded by HST/STIS (R=8000, Theta=0.l"), resolve the extended wind-wind interaction region of the massive binary, Eta Carinae. During the high state, extending for about five years of the 5.54-year binary period, lines of [N II], [Fe III], [S III], [Ar III] and [Ne III] extend outwards to 0.4" with a velocity range of -500 to +200 km/s. By comparison, lines of [Fe II] and [Ni II] extend to 0.7" with a velocity range of -500 to +500 km/s. During the high state, driven by the lesser wind of Eta Car B and photo-ionized by the FUV of Eta Car B, the high excitation lines originate in or near the outer ballistic portions of the wind-wind interaction region. The lower excitation lines ([Fe II] and [Ni II D originate from the boundary regions of the dominating wind of Eta Car A. As the binary system has an eccentricity exceeding 0.9, the two stars approach quite close across the periastron, estimated to be within 1 to 2 AU. As a result, Eta Car B moves into the primary wind structure, cutting off the FUV supporting the ionization of the high state lines. Forbidden emission lines of the doubly-ionized species disappear, He II 4686 drops along with the collapse of the X-ray flux. This behavior is understood through the 3-D models of A. Okazaki and of E. R. Parkin and Pittard. Discussion will address the orbit orientation relative to the geometry of the Homunculus, ejected by Eta Carinae in the 1840s.
The Spatially-resolved Interacting Winds of Eta Carinae: Implications on the Orbit Orientation
NASA Astrophysics Data System (ADS)
Gull, Theodore R.; Nielsen, K. E.; Corcoran, M.; Hamaguchi, K.; Madura, T.; Russell, C.; Hillier, D. J.; Owocki, S.; Okazaki, A. T.
2010-01-01
Medium-dispersion long slit spectra, recorded by HST/STIS (R=8000, Theta=0.1"), resolve the extended wind-wind interaction region of the massive binary, Eta Carinae. During the high state, extending for about five years of the 5.54-year binary period, lines of [N II], [Fe III], [S III], [Ar III] and [Ne III] extend outwards to 0.4" with a velocity range of -500 to +200 km/s. By comparison, lines of [Fe II] and [Ni II] extend to 0.7" with a velocity range of -500 to +500 km/s. During the high state, driven by the lesser wind of Eta Car B and photo-ionized by the FUV of Eta Car B, the high excitation lines originate in or near the outer ballistic portions of the wind-wind interaction region. The lower excitation lines ([Fe II] and [Ni II]) originate from the boundary regions of the dominating wind of Eta Car A. As the binary system has an eccentricity exceeding 0.9, the two stars approach quite close across the periastron, estimated to be within 1 to 2 AU. As a result, Eta Car B moves into the primary wind structure, cutting off the FUV supporting the ionization of the high state lines. Forbidden emission lines of the doubly-ionized species disappear, He II 4686 drops along with the collapse of the X-ray flux. This behavior is understood through the 3-D models of A. Okazaki and of E. R. Parkin and Pittard. Discussion will address the orbit orientation relative to the geometry of the Homunculus, ejected by Eta Carinae in the 1840s.
Complications of Diabetes and Their Implications for Service Providers.
ERIC Educational Resources Information Center
Ponchillia, S. V.
1993-01-01
This article presents information on the complications of both Type I and Type II diabetes and the implications for the rehabilitation of persons with diabetes and visual impairment. Topics covered include retinopathy, cataracts, glaucoma, peripheral neuropathy, carpal tunnel syndrome, diabetic hand syndrome, neuropathy of the autonomic nervous…
Dudley, Brooke; Heiland, Brianne; Kohler-Rausch, Elizabeth; Kovic, Mark
2014-01-01
The incidence of type II diabetes mellitus (DMT2) is expected to continue to rise. Current research has analyzed various tools, strategies, programs, barriers, and support in regards to the self-management of this condition. However, past researchers have yet to analyze the education process; including the adaptation of specific strategies in activities of daily living and roles, as well as the influence of health care providers in the integration of these strategies. The purpose of this qualitative case study was to identify the strengths and limitations of the current model of diabetes education in the United States and hypothesize how technology can impact quality of life. Key informants on diabetes education were recruited from diabetes education centers through the American Association of Diabetes Educators. Semi-structured interviews were conducted with participants. Health care practitioners convey limited knowledge of DMT2. Individuals with DMT2 often have limited understanding of the implications of poor self-management. There appears to be no consistent standard of care for how to effectively incorporate self-management strategies. There is limited education for the use of technology in self-management. Diabetes educators describe that technology could be beneficial. Findings suggest the importance of the role of care providers in emphasizing the implications of poor self-management strategies; that a multidisciplinary approach may enhance the education process; and a need for further developments in technology to address DMT2 self-management strategies.
Pb(II) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves.
Zhang, Zengsheng; Wang, Xuejiang; Wang, Yin; Xia, Siqing; Chen, Ling; Zhang, Yalei; Zhao, Jianfu
2013-05-01
Bamboo charcoal (BC) was used as starting material to prepare iron-modified bamboo charcoal (Fe-MBC) by its impregnation in FeCl3 and HNO3 solutions simultaneously, followed by microwave heating. The material can be used as an adsorbent for Pb(II) contaminants removal in water. The composites were prepared with Fe molar concentration of 0.5, 1.0 and 2.0 mol/L and characterized by means of N2 adsorption-desorption isotherms, X-ray diffraction spectroscopy (XRD), scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDS), Fourier transform infrared (FT-IR) and point of zero charge (pH(pzc)) measurements. Nitrogen adsorption analyses showed that the BET specific surface area and total pore volume increased with iron impregnation. The adsorbent with Fe molar concentration of 2 mol/L (2Fe-MBC) exhibited the highest surface area and produced the best pore structure. The Pb(II) adsorption process of 2Fe-MBC and BC were evaluated in batch experiments and 2Fe-MBC showed an excellent adsorption capability for removal Pb(II). The adsorption of Pb(II) strongly depended on solution pH, with maximum values at pH 5.0. The ionic strength had a significant effect on the adsorption at pH < 6.0. The adsorption isotherms followed the Langmuir isotherm model well, and the maximum adsorption capacity for Pb(II) was 200.38 mg/g for 2Fe-MBC. The adsorption processes were well fitted by a pseudo second-order kinetic model. Thermodynamic parameters showed that the adsorption of Pb(II) onto Fe-MBC was feasible, spontaneous, and exothermic under the studied conditions, and the ion exchange mechanism played an significant role. These results have important implications for the design of low-cost and effective adsorbents in the removal of Pb(II) from wastewater.
Colucci, Rocchina; Fornai, Matteo; Duranti, Emiliano; Antonioli, Luca; Rugani, Ilaria; Aydinoglu, Fatma; Ippolito, Chiara; Segnani, Cristina; Bernardini, Nunzia; Taddei, Stefano; Blandizzi, Corrado; Virdis, Agostino
2013-01-01
Background and Purpose NAD(P)H oxidase and COX-1 participate in vascular damage induced by angiotensin II. We investigated the effect of rosuvastatin on endothelial dysfunction, vascular remodelling, changes in extracellular matrix components and mechanical properties of small mesenteric arteries from angiotensin II-infused rats. Experimental Approach Male rats received angiotensin II (120 ng·kg−1·min−1, subcutaneously) for 14 days with or without rosuvastatin (10 mg·kg−1·day−1, oral gavage) or vehicle. Vascular functions and morphological parameters were assessed by pressurized myography. Key Results In angiotensin II-infused rats, ACh-induced relaxation was attenuated compared with controls, less sensitive to L-NAME, enhanced by SC-560 (COX-1 inhibitor) or SQ-29548 (prostanoid TP receptor antagonist), and normalized by the antioxidant ascorbic acid or NAD(P)H oxidase inhibitors. After rosuvastatin, relaxations to ACh were normalized, fully sensitive to L-NAME, and no longer affected by SC-560, SQ-29548 or NAD(P)H oxidase inhibitors. Angiotensin II enhanced intravascular superoxide generation, eutrophic remodelling, collagen and fibronectin depositions, and decreased elastin content, resulting in increased vessel stiffness. All these changes were prevented by rosuvastatin. Angiotensin II increased phosphorylation of NAD(P)H oxidase subunit p47phox and its binding to subunit p67phox, effects inhibited by rosuvastatin. Rosuvastatin down-regulated vascular Nox4/NAD(P)H isoform and COX-1 expression, attenuated the vascular release of 6-keto-PGF1α, and enhanced copper/zinc-superoxide dismutase expression. Conclusion and Implications Rosuvastatin prevents angiotensin II-induced alterations in resistance arteries in terms of function, structure, mechanics and composition. These effects depend on restoration of NO availability, prevention of NAD(P)H oxidase-derived oxidant excess, reversal of COX-1 induction and its prostanoid production, and stimulation of endogenous vascular antioxidant defences. PMID:22817606
Musie, Ghezai; Farmer, Patrick J.; Tuntulani, Thawatchai; Reibenspies, Joseph H.; Darensbourg, Marcetta Y.
1996-04-10
A redox model study of [NiFe] hydrogenase has examined a series of five polymetallics based on the metalation of the dithiolate complex [1,5-bis(mercaptoethyl)-1,5-diazacyclooctane]Ni(II), Ni-1. Crystal structures of three polymetallics of the series have been reported earlier: [(Ni-1)(2)()Ni]Cl(2)(), [(Ni-1)(2)()FeCl(2)()](2)(), and [(Ni-1)(3)()(ZnCl)(2)()]Cl(2)(). Two are described here: [(Ni-1)(2)()Pd]Cl(2)().2H(2)()Ocrystallizes in the monoclinic system, space group P2(1)/c with cell constants a = 12.212(4) Å, b = 7.642(2) Å, c = 16.625(3) Å, beta = 107.69(2) degrees, V = 1443.230(0) Å(3), Z = 2, R = 0.051, and R(w) = 0.056. [(Ni-1)(2)()CoCl]PF(6)() crystallizes in the triclinic system, space group P&onemacr;, with cell constants a = 8.14(2) Å, b = 13.85(2) Å, c = 15.67(2) Å, alpha = 113.59(10) degrees, beta = 101.84(14) degrees, gamma = 94.0(2) degrees, V = 1561.620(0)Å(3), Z = 2, R = 0.072, and R(w) = 0.077. In all Ni-1 serves as a bidentate metallothiolate ligand with a "hinge" angle in the range 105-118 degrees and Ni-M distances of 2.7- 3.7 Å. The most accessible redox event is shown by EPR and electrochemistry to reside in the N(2)S(2)Ni unit and is the Ni(II/I) couple. Charge neutralization of the thiolate sulfurs by metalation can (dependent on the interacting metal) stabilize the Ni(I) state as efficiently as methylation forming a thioether. The implication of these results for the heterometallic active site of [NiFe]-hydrogenase as structured from Desulfovibrio gigas (Volbeda, A., et al. Nature, 1995, 373, 580), the generality of the Ni(&mgr;-SR)(2)M hinge structure, and a possible explanation for the unusual redox potentials are discussed.
Kondo, Jiro; Yamada, Tom; Hirose, Chika; Okamoto, Itaru; Tanaka, Yoshiyuki; Ono, Akira
2014-02-24
The metallo DNA duplex containing mercury-mediated T-T base pairs is an attractive biomacromolecular nanomaterial which can be applied to nanodevices such as ion sensors. Reported herein is the first crystal structure of a B-form DNA duplex containing two consecutive T-Hg(II)-T base pairs. The Hg(II) ion occupies the center between two T residues. The N3-Hg(II) bond distance is 2.0 Å. The relatively short Hg(II)-Hg(II) distance (3.3 Å) observed in consecutive T-Hg(II)-T base pairs suggests that the metallophilic attraction could exist between them and may stabilize the B-form double helix. To support this, the DNA duplex is largely distorted and adopts an unusual nonhelical conformation in the absence of Hg(II). The structure of the metallo DNA duplex itself and the Hg(II)-induced structural switching from the nonhelical form to the B-form provide the basis for structure-based design of metal-conjugated nucleic acid nanomaterials. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Twilight reloaded: the peptide experience
Weichenberger, Christian X.; Pozharski, Edwin; Rupp, Bernhard
2017-01-01
The de facto commoditization of biomolecular crystallography as a result of almost disruptive instrumentation automation and continuing improvement of software allows any sensibly trained structural biologist to conduct crystallographic studies of biomolecules with reasonably valid outcomes: that is, models based on properly interpreted electron density. Robust validation has led to major mistakes in the protein part of structure models becoming rare, but some depositions of protein–peptide complex structure models, which generally carry significant interest to the scientific community, still contain erroneous models of the bound peptide ligand. Here, the protein small-molecule ligand validation tool Twilight is updated to include peptide ligands. (i) The primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) a new method used to score peptide-ligand models is presented; (iii) a few instructive and specific examples, including an electron-density-based analysis of peptide-ligand structures that do not contain any ligands, are discussed in detail; (iv) means to avoid such mistakes and the implications for database integrity are discussed and (v) some suggestions as to how journal editors could help to expunge errors from the Protein Data Bank are provided. PMID:28291756
Twilight reloaded: the peptide experience.
Weichenberger, Christian X; Pozharski, Edwin; Rupp, Bernhard
2017-03-01
The de facto commoditization of biomolecular crystallography as a result of almost disruptive instrumentation automation and continuing improvement of software allows any sensibly trained structural biologist to conduct crystallographic studies of biomolecules with reasonably valid outcomes: that is, models based on properly interpreted electron density. Robust validation has led to major mistakes in the protein part of structure models becoming rare, but some depositions of protein-peptide complex structure models, which generally carry significant interest to the scientific community, still contain erroneous models of the bound peptide ligand. Here, the protein small-molecule ligand validation tool Twilight is updated to include peptide ligands. (i) The primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) a new method used to score peptide-ligand models is presented; (iii) a few instructive and specific examples, including an electron-density-based analysis of peptide-ligand structures that do not contain any ligands, are discussed in detail; (iv) means to avoid such mistakes and the implications for database integrity are discussed and (v) some suggestions as to how journal editors could help to expunge errors from the Protein Data Bank are provided.
2014-04-01
with the idea that Merlin serves as an adaptor linking LC3 to DIC. Moreover, Merlin-KD led to reduce levels of p62 degradation and LC3 -II accumulation...autophagy flux In response to nutrient starvation (Stv), Merlin-knockdown (KD) MEFs show attenuated levels of LC3 -II accumulation or p62 ...degradation, as compared with control MEFs (Cr-KD). Graphs: Densitometric analysis of LC3 -II and p62 on Western blots. Pixel intensities of LC3 -II and p62
Nucleus structure and dust morphology: Post-Rosetta understanding and implications
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, A.; Bentley, Mark; Ciarletti, Valérie; Kofman, Woldek; Lasue, Jeremie; Mannel, Thurid; Herique, Alain
2017-10-01
The structure of cometary nuclei and the morphology of dust particles they eject have long been unknowns in cometary science. The combination of these two subjects, as revealed by the Rosetta mission at 67P/C-G, is currently providing an unprecedented insight about Solar System formation and early evolution.Rosetta has established that the bulk porosity of 67P/C-G nucleus is high, in the 70% to 85% range, both from the determination of its density and from permittivity measurements with CONSERT bistatic radar experiment [1-2]. CONSERT, through operations after Philae landing on 12-13 November 2014, has also allowed us to estimate that i) the porosity is likely to be higher inside the nucleus than on its subsurface, ii) a major component of the nucleus is refractory carbonaceous compounds, and iii) the small lobe is homogeneous at a scale of a few wavelengths (i.e., about 10 m), while heterogeneities in the 3-m range (similar to the rounded nodules noticed on walls of large pits) cannot be ruled out [2-4].Rosetta has also established, through its 26 months rendezvous with 67P/C-G, the aggregated structure of dust particles within a wide range of sizes in the inner cometary coma. The MIDAS atomic force microscope experiment has given us evidence (from 3D topographic images with nano- to micrometer resolution) for i) a hierarchical structure of aggregated dust particles, down to tens of nm-sized grains, ii) one extremely porous dust particle, with a fractal dimension of (1.7 ± 0.1) [5-6]. The accuracy of comparisons between cometary dust particles and interplanetary dust particles collected in the stratosphere (including CP-IDPs) could thus be improved.Such results should further refine the main processes (e.g., low velocity aggregation) that allowed the formation of comets in the early Solar System, and the implications of a possible late heavy bombardment on the interplanetary dust clouds and on telluric planets.References. 1. Pätzold et al. Nature 530 63 2016. 2. Kofman et al. Science 349 6247 2015. 3. Herique et al. MNRAS 462 S516 2016. 4. Ciarletti et al. A&A 583 A40 2015. 5. Bentley et al., Nature 537 73 2016. 6. Mannel et al., MNRAS 462 S304 2016.
Daroles, Laura; Gribaudo, Simona; Doulazmi, Mohamed; Scotto-Lomassese, Sophie; Dubacq, Caroline; Mandairon, Nathalie; Greer, Charles August; Didier, Anne; Trembleau, Alain; Caillé, Isabelle
2016-07-15
In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Anderson, Jaime L; Sellbom, Martin; Pymont, Carly; Smid, Wineke; De Saeger, Hilde; Kamphuis, Jan H
2015-09-01
In the current study, we evaluated the associations between the Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) scale scores and the Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5; American Psychiatric Association, 2013) Section II personality disorder (PD) criterion counts in inpatient and forensic psychiatric samples from The Netherlands using structured clinical interviews to operationalize PDs. The inpatient psychiatric sample included 190 male and female patients and the forensic sample included 162 male psychiatric patients. We conducted correlation and count regression analyses to evaluate the utility of relevant MMPI-2-RF scales in predicting PD criterion count scores. Generally, results from these analyses emerged as conceptually expected and provided evidence that MMPI-2-RF scales can be useful in assessing PDs. At the zero-order level, most hypothesized associations between Section II disorders and MMPI-2-RF scales were supported. Similarly, in the regression analyses, a unique set of predictors emerged for each PD that was generally in line with conceptual expectations. Additionally, the results provided general evidence that PDs can be captured by dimensional psychopathology constructs, which has implications for both DSM-5 Section III specifically and the personality psychopathology literature more broadly. (c) 2015 APA, all rights reserved.
Faithful transcription initiation from a mitochondrial promoter in transgenic plastids
Bohne, Alexandra-Viola; Ruf, Stephanie; Börner, Thomas; Bock, Ralph
2007-01-01
The transcriptional machineries of plastids and mitochondria in higher plants exhibit striking similarities. All mitochondrial genes and part of the plastid genes are transcribed by related phage-type RNA polymerases. Furthermore, the majority of mitochondrial promoters and a subset of plastid promoters show a similar structural organization. We show here that the plant mitochondrial atpA promoter is recognized by plastid RNA polymerases in vitro and in vivo. The Arabidopsis phage-type RNA polymerase RpoTp, an enzyme localized exclusively to plastids, was found to recognize the mitochondrial atpA promoter in in vitro assays suggesting the possibility that mitochondrial promoters might function as well in plastids. We have, therefore, generated transplastomic tobacco plants harboring in their chloroplast genome the atpA promoter fused to the coding region of the bacterial nptII gene. The chimeric nptII gene was found to be efficiently transcribed in chloroplasts. Mapping of the 5′ ends of the nptII transcripts revealed accurate recognition of the atpA promoter by the chloroplast transcription machinery. We show further that the 5′ untranslated region (UTR) of the mitochondrial atpA transcript is capable of mediating translation in chloroplasts. The functional and evolutionary implications of these findings as well as possible applications in chloroplast genome engineering are discussed. PMID:17959651
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujihisa, Hiroshi; Yamawaki, Hiroshi; Sakashita, Mami
2004-10-01
The structure of high pressure phases, selenium-II{sup '} (Se-II{sup '}) and sulfur-II (S-II), for {alpha}-Se{sub 8} (monoclinic Se-I) and {alpha}-S{sub 8} (orthorhombic S-I) was studied by powder x-ray diffraction experiments. Se-II{sup '} and S-II were found to be isostructural and to belong to the tetragonal space group I4{sub 1}/acd, which is made up of 16 atoms in the unit cell. The structure consisted of unique spiral chains with both 4{sub 1} and 4{sub 3} screws. The results confirmed that the structure sequence of the pressure-induced phase transitions for the group VIb elements depended on the initial molecular form. The chemicalmore » bonds of the phases are also discussed from the interatomic distances that were obtained.« less
1981-07-01
ADVANCED COMPOSITE STRUCTURES VOLUME II - TASKS Ix AND III K. N. Lauraitis Tl J. T. Ryder ?l4 D. E. Pettit ~ Lockheed-California Company S Burbank...Strength Degradation Rate Final Report Modeling for Advanced Composite Structures 1 July 1979 to 29 May 1981 Vol II - Task II and III S. PERFORMIN ONG...identify by block namber) composites , graphite/epoxy, impact damage, damaged holes, fatigue, damage propagation, residual strength, NDI 20. ABSTRACT
Inaoka, Daniel Ken; Shiba, Tomoo; Sato, Dan; Balogun, Emmanuel Oluwadare; Sasaki, Tsuyoshi; Nagahama, Madoka; Oda, Masatsugu; Matsuoka, Shigeru; Ohmori, Junko; Honma, Teruki; Inoue, Masayuki; Kita, Kiyoshi; Harada, Shigeharu
2015-07-07
Recent studies on the respiratory chain of Ascaris suum showed that the mitochondrial NADH-fumarate reductase system composed of complex I, rhodoquinone and complex II plays an important role in the anaerobic energy metabolism of adult A. suum. The system is the major pathway of energy metabolism for adaptation to a hypoxic environment not only in parasitic organisms, but also in some types of human cancer cells. Thus, enzymes of the pathway are potential targets for chemotherapy. We found that flutolanil is an excellent inhibitor for A. suum complex II (IC50 = 0.058 μM) but less effectively inhibits homologous porcine complex II (IC50 = 45.9 μM). In order to account for the specificity of flutolanil to A. suum complex II from the standpoint of structural biology, we determined the crystal structures of A. suum and porcine complex IIs binding flutolanil and its derivative compounds. The structures clearly demonstrated key interactions responsible for its high specificity to A. suum complex II and enabled us to find analogue compounds, which surpass flutolanil in both potency and specificity to A. suum complex II. Structures of complex IIs binding these compounds will be helpful to accelerate structure-based drug design targeted for complex IIs.
Inaoka, Daniel Ken; Shiba, Tomoo; Sato, Dan; Balogun, Emmanuel Oluwadare; Sasaki, Tsuyoshi; Nagahama, Madoka; Oda, Masatsugu; Matsuoka, Shigeru; Ohmori, Junko; Honma, Teruki; Inoue, Masayuki; Kita, Kiyoshi; Harada, Shigeharu
2015-01-01
Recent studies on the respiratory chain of Ascaris suum showed that the mitochondrial NADH-fumarate reductase system composed of complex I, rhodoquinone and complex II plays an important role in the anaerobic energy metabolism of adult A. suum. The system is the major pathway of energy metabolism for adaptation to a hypoxic environment not only in parasitic organisms, but also in some types of human cancer cells. Thus, enzymes of the pathway are potential targets for chemotherapy. We found that flutolanil is an excellent inhibitor for A. suum complex II (IC50 = 0.058 μM) but less effectively inhibits homologous porcine complex II (IC50 = 45.9 μM). In order to account for the specificity of flutolanil to A. suum complex II from the standpoint of structural biology, we determined the crystal structures of A. suum and porcine complex IIs binding flutolanil and its derivative compounds. The structures clearly demonstrated key interactions responsible for its high specificity to A. suum complex II and enabled us to find analogue compounds, which surpass flutolanil in both potency and specificity to A. suum complex II. Structures of complex IIs binding these compounds will be helpful to accelerate structure-based drug design targeted for complex IIs. PMID:26198225
Poulin, Brett; Gerbig, Chase A.; Kim, Christopher S.; Stegemeier, John P.; Ryan, Joseph N.; Aiken, George R.
2017-01-01
Understanding the speciation of divalent mercury (Hg(II)) in aquatic systems containing dissolved organic matter (DOM) and sulfide is necessary to predict the conversion of Hg(II) to bioavailable methylmercury. We used X-ray absorption spectroscopy to characterize the structural order of mercury in Hg(II)–DOM–sulfide systems for a range of sulfide concentration (1–100 μM), DOM aromaticity (specific ultraviolet absorbance (SUVA254)), and Hg(II)–DOM and Hg(II)–DOM–sulfide equilibration times (4–142 h). In all systems, Hg(II) was present as structurally disordered nanocolloidal metacinnabar (β-HgS). β-HgS nanocolloids were significantly smaller or less ordered at lower sulfide concentration, as indicated by under-coordination of Hg(II) in β-HgS. The size or structural order of β-HgS nanocolloids increased with increasing sulfide abundance and decreased with increasing SUVA254 of the DOM. The Hg(II)–DOM or Hg(II)–DOM–sulfide equilibration times did not significantly influence the extent of structural order in nanocolloidal β-HgS. Geochemical factors that control the structural order of nanocolloidal β-HgS, which are expected to influence nanocolloid surface reactivity and solubility, should be considered in the context of mercury bioavailability.
C. Vásquez-Carrillo; V. Friesen; L. Hall; M.Z. Peery
2013-01-01
Conserving genetic variation is critical for maintaining the evolutionary potential and viability of a species. Genetic studies seeking to delineate conservation units, however, typically focus on characterizing neutral genetic variation and may not identify populations harboring local adaptations. Here, variation at two major histocompatibility complex (MHC) class II...
Impact of Legislation upon Management: A U.S. Perspective.
ERIC Educational Resources Information Center
Trezza, Alphonse F.
Federal and state legislation which provides funds in support of library programs and legislation that has financial implications for libraries are reviewed with examples from public and academic libraries. Implications of accepting library funds, the impact of the Copyright Act law, Title II-C of the Higher Education Act, postal regulations, the…
2012-10-01
REPORT 3. DATES COVERED (From - To) MAR 2010 – APR 2012 4 . TITLE AND SUBTITLE IMPLICATIONS OF MULT-CORE ARCHITECTURES ON THE DEVELOPMENT OF...Framework for Multicore Information Flow Analysis ...................................... 23 4 4.1 A Hypothetical Reference Architecture... 4 Figure 2: Pentium II Block Diagram
Structural response of phyllomanganates to wet aging and aqueous Mn(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinkle, Margaret A. G.; Flynn, Elaine D.; Catalano, Jeffrey G.
Naturally occurring Mn(IV/III) oxides are often formed through microbial Mn(II) oxidation, resulting in reactive phyllomanganates with varying Mn(IV), Mn(III), and vacancy contents. Residual aqueous Mn(II) may adsorb in the interlayer of phyllomanganates above vacancies in their octahedral sheets. The potential for interlayer Mn(II)-layer Mn(IV) comproportionation reactions and subsequent formation of structural Mn(III) suggests that aqueous Mn(II) may cause phyllomanganate structural changes that alters mineral reactivity or trace metal scavenging. Here we examine the effects of aging phyllomanganates with varying initial vacancy and Mn(III) content in the presence and absence of dissolved Mn(II) at pH 4 and 7. Three phyllomanganates weremore » studied: two exhibiting turbostratic layer stacking (δ-MnO2 with high vacancy content and hexagonal birnessite with both vacancies and Mn(III) substitutions) and one with rotationally ordered layer stacking (triclinic birnessite containing predominantly Mn(III) substitutions). Structural analyses suggest that during aging at pH 4, Mn(II) adsorbs above vacancies and promotes the formation of phyllomanganates with rotationally ordered sheets and mixed symmetries arranged into supercells, while structural Mn(III) undergoes disproportionation. These structural changes at pH 4 correlate with reduced Mn(II) uptake onto triclinic and hexagonal birnessite after 25 days relative to 48 h of reaction, indicating that phyllomanganate reactivity decreases upon aging with Mn(II), or that recrystallization processes involving Mn(II) uptake occur over 25 days. At pH 7, Mn(II) adsorbs and causes limited structural effects, primarily increasing sheet stacking in δ-MnO2. These results show that aging-induced structural changes in phyllomanganates are affected by aqueous Mn(II), pH, and initial solid-phase Mn(III) content. In conclusion, such restructuring likely alters manganese oxide reactions with other constituents in environmental and geologic systems, particularly trace metals and redox-active compounds.« less
Structural response of phyllomanganates to wet aging and aqueous Mn(II)
Hinkle, Margaret A. G.; Flynn, Elaine D.; Catalano, Jeffrey G.
2016-08-06
Naturally occurring Mn(IV/III) oxides are often formed through microbial Mn(II) oxidation, resulting in reactive phyllomanganates with varying Mn(IV), Mn(III), and vacancy contents. Residual aqueous Mn(II) may adsorb in the interlayer of phyllomanganates above vacancies in their octahedral sheets. The potential for interlayer Mn(II)-layer Mn(IV) comproportionation reactions and subsequent formation of structural Mn(III) suggests that aqueous Mn(II) may cause phyllomanganate structural changes that alters mineral reactivity or trace metal scavenging. Here we examine the effects of aging phyllomanganates with varying initial vacancy and Mn(III) content in the presence and absence of dissolved Mn(II) at pH 4 and 7. Three phyllomanganates weremore » studied: two exhibiting turbostratic layer stacking (δ-MnO2 with high vacancy content and hexagonal birnessite with both vacancies and Mn(III) substitutions) and one with rotationally ordered layer stacking (triclinic birnessite containing predominantly Mn(III) substitutions). Structural analyses suggest that during aging at pH 4, Mn(II) adsorbs above vacancies and promotes the formation of phyllomanganates with rotationally ordered sheets and mixed symmetries arranged into supercells, while structural Mn(III) undergoes disproportionation. These structural changes at pH 4 correlate with reduced Mn(II) uptake onto triclinic and hexagonal birnessite after 25 days relative to 48 h of reaction, indicating that phyllomanganate reactivity decreases upon aging with Mn(II), or that recrystallization processes involving Mn(II) uptake occur over 25 days. At pH 7, Mn(II) adsorbs and causes limited structural effects, primarily increasing sheet stacking in δ-MnO2. These results show that aging-induced structural changes in phyllomanganates are affected by aqueous Mn(II), pH, and initial solid-phase Mn(III) content. In conclusion, such restructuring likely alters manganese oxide reactions with other constituents in environmental and geologic systems, particularly trace metals and redox-active compounds.« less
NASA Technical Reports Server (NTRS)
Hamill, Patrick; Toon, O. B.
1990-01-01
The SAM II extinction profiles and the associated temperature profiles are used to determine the amount of denitrification of the winter polar stratospheres. Clear evidence of the denitrification process in the Antarctic data is seen. There are indications in the Arctic data that denitrification mechanisms may be at work there also. At the latitudes observed by the SAM II satellite system, denitrification begins before the formation of extensive ice clouds and may be due to sedimentation of nitric acid particles. However, the possibility of dinitrification by type II PSCs at latitudes not observed by SAM II cannot be excluded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, C.-M.S.; Lukens, W.W.; Poineau, F.
2009-05-18
Reductive nitrosylation and complexation of ammonium pertechnetate by acetohydroxamic acid has been achieved in aqueous nitric and perchloric acid solutions. The kinetics of the reaction depend on the relative concentrations of the reaction components and are accelerated at higher temperatures. The reaction does not occur unless conditions are acidic. Analysis of the X-ray absorption fine structure spectroscopic data is consistent with a pseudo-octahedral geometry and the linear Tc-N-O bond typical of technetium nitrosyl compounds, and electron spin resonance spectroscopy is consistent with a d{sup 5} Tc(II) nitrosyl complex. The nitrosyl source is generally AHA, but it may be augmented bymore » some products of the reaction with nitric acid. The resulting low-valency trans-aquonitrosyl(diacetohydroxamic)-technetium(II) complex ([Tc{sup II}(NO)(AHA){sub 2}H{sub 2}O]{sup +}, 1) is highly soluble in water, extremely hydrophilic, and is not extracted by tri-n-butylphosphate in a dodecane diluent. Its extraction properties are not pH-dependent: potentiometric-spectrophotometric titration studies indicate a single species from pH 4 down to -0.6 (calculated). This molecule is resistant to oxidation by H{sub 2}O{sub 2}, even at high pH, and can undergo substitution to form other technetium nitrosyl complexes. The potential formation of 1 during reprocessing may strongly impact the fate of technetium in the nuclear fuel cycle.« less
NASA Astrophysics Data System (ADS)
Ren, Xiu-Hui; Wang, Peng; Cheng, Jun-Yan; Dong, Yu-Bin
2018-06-01
Three M(II)-coordination polymers (M dbnd Zn(II), Mn(II)) were synthesized based on a pyridine N-oxide bridging ligand 3,5-bis(4-carboxylphenyl)-pyridine N-oxide (L1). Compounds 1-3 all have novel complicated structures. Compound 1 (Zn(L1)2(H2O)2) and 2 (Zn2(L1)2(H2O)2) are two single crystals obtained in "one pot" and 1 features 1D double chains motif and 2 features 3D network structure. Compound 3 shows 3D network structure with triangular tunnels. The thermogravimetric analyses and photoluminescence properties were also used to investigate the title compounds.
Crystal structure of E. coli ZinT with one zinc-binding mode and complexed with citrate.
Chen, Jinli; Wang, Lulu; Shang, Fei; Dong, Yuesheng; Ha, Nam-Chul; Nam, Ki Hyun; Quan, Chunshan; Xu, Yongbin
2018-06-02
The ZnuABC ATP-binding cassette transporter found in gram-negative bacteria has been implicated in ensuring adequate zinc import into Zn(II)-poor environments. ZinT is an essential component of ZnuABC and contributes to metal transport by transferring metals to ZnuA, which delivers them to ZnuB in periplasmic zinc recruitment. Although several structures of E. coli ZinT have been reported, its zinc-binding sites and oligomeric state have not been clearly identified. Here, we report the crystal structure of E. coli ZinT at 1.76 Å resolution. This structure contains one zinc ion in its calycin-like domain, and this ion is coordinated by three highly conserved histidine residues (His167, His176 and His178). Moreover, three oxygen atoms (O 1 , O 6 and O 7 ) from the citrate molecule interact with zinc, giving the zinc ion stable octahedral coordination. Our EcZinT structure shows the fewest zinc ions bound of all reported EcZinT structures. Crystallographic packing and size exclusion chromatography suggest that EcZinT prefers to form monomers in solution. Our results provide insights into the molecular function of ZinT. Copyright © 2018. Published by Elsevier Inc.
Rocco, Alessandro Guerini; Mollica, Luca; Gianazza, Elisabetta; Calabresi, Laura; Franceschini, Guido; Sirtori, Cesare R.; Eberini, Ivano
2006-01-01
In this study, we propose a structure for the heterodimer between apolipoprotein A-IMilano and apolipoprotein A-II (apoA-IM–apoA-II) in a synthetic high-density lipoprotein (HDL) containing L-α-palmitoyloleoyl phosphatidylcholine. We applied bioinformatics/computational tools and procedures, such as molecular docking, molecular and essential dynamics, starting from published crystal structures for apolipoprotein A-I and apolipoprotein A-II. Structural and energetic analyses onto the simulated system showed that the molecular dynamics produced a stabilized synthetic HDL. The essential dynamic analysis showed a deviation from the starting belt structure. Our structural results were validated by limited proteolysis experiments on HDL from apoA-IM carriers in comparison with control HDL. The high sensitivity of apoA-IM–apoA-II to proteases was in agreement with the high root mean-square fluctuation values and the reduction in secondary structure content from molecular dynamics data. Circular dichroism on synthetic HDL containing apoA-IM–apoA-II was consistent with the α-helix content computed on the proposed model. PMID:16891368
Liu, Yupeng; Yu, Deyong; Xun, Bin; Sun, Yun; Hao, Ruifang
2014-01-01
Climate changes may have immediate implications for forest productivity and may produce dramatic shifts in tree species distributions in the future. Quantifying these implications is significant for both scientists and managers. Cunninghamia lanceolata is an important coniferous timber species due to its fast growth and wide distribution in China. This paper proposes a methodology aiming at enhancing the distribution and productivity of C. lanceolata against a background of climate change. First, we simulated the potential distributions and establishment probabilities of C. lanceolata based on a species distribution model. Second, a process-based model, the PnET-II model, was calibrated and its parameterization of water balance improved. Finally, the improved PnET-II model was used to simulate the net primary productivity (NPP) of C. lanceolata. The simulated NPP and potential distribution were combined to produce an integrated indicator, the estimated total NPP, which serves to comprehensively characterize the productivity of the forest under climate change. The results of the analysis showed that (1) the distribution of C. lanceolata will increase in central China, but the mean probability of establishment will decrease in the 2050s; (2) the PnET-II model was improved, calibrated, and successfully validated for the simulation of the NPP of C. lanceolata in China; and (3) all scenarios predicted a reduction in total NPP in the 2050s, with a markedly lower reduction under the a2 scenario than under the b2 scenario. The changes in NPP suggested that forest productivity will show a large decrease in southern China and a mild increase in central China. All of these findings could improve our understanding of the impact of climate change on forest ecosystem structure and function and could provide a basis for policy-makers to apply adaptive measures and overcome the unfavorable influences of climate change.
Patel, Sunita; Sasidhar, Yellamraju U
2007-10-01
Recently we performed molecular dynamics (MD) simulations on the folding of the hairpin peptide DTVKLMYKGQPMTFR from staphylococcal nuclease in explicit water. We found that the peptide folds into a hairpin conformation with native and nonnative hydrogen-bonding patterns. In all the folding events observed in the folding of the hairpin peptide, loop formation involving the region YKGQP was an important event. In order to trace the origins of the loop propensity of the sequence YKGQP, we performed MD simulations on the sequence starting from extended, polyproline II and native type I' turn conformations for a total simulation length of 300 ns, using the GROMOS96 force field under constant volume and temperature (NVT) conditions. The free-energy landscape of the peptide YKGQP shows minima corresponding to loop conformation with Tyr and Pro side-chain association, turn and extended conformational forms, with modest free-energy barriers separating the minima. To elucidate the role of Gly in facilitating loop formation, we also performed MD simulations of the mutated peptide YKAQP (Gly --> Ala mutation) under similar conditions starting from polyproline II conformation for 100 ns. Two minima corresponding to bend/turn and extended conformations were observed in the free-energy landscape for the peptide YKAQP. The free-energy barrier between the minima in the free-energy landscape of the peptide YKAQP was also modest. Loop conformation is largely sampled by the YKGQP peptide, while extended conformation is largely sampled by the YKAQP peptide. We also explain why the YKGQP sequence samples type II turn conformation in these simulations, whereas the sequence as part of the hairpin peptide DTVKLMYKGQPMTFR samples type I' turn conformation both in the X-ray crystal structure and in our earlier simulations on the folding of the hairpin peptide. We discuss the implications of our results to the folding of the staphylococcal nuclease. Copyright (c) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Association of tRNA methyltransferase NSUN2/IGF-II molecular signature with ovarian cancer survival.
Yang, Jia-Cheng; Risch, Eric; Zhang, Meiqin; Huang, Chan; Huang, Huatian; Lu, Lingeng
2017-09-01
To investigate the association between NSUN2/IGF-II signature and ovarian cancer survival. Using a publicly accessible dataset of RNA sequencing and clinical follow-up data, we performed Classification and Regression Tree and survival analyses. Patients with NSUN2 high IGF-II low had significantly superior overall and disease progression-free survival, followed by NSUN2 low IGF-II low , NSUN2 high IGF-II high and NSUN2 low IGF-II high (p < 0.0001 for overall, p = 0.0024 for progression-free survival, respectively). The associations of NSUN2/IGF-II signature with the risks of death and relapse remained significant in multivariate Cox regression models. Random-effects meta-analyses show the upregulated NSUN2 and IGF-II expression in ovarian cancer versus normal tissues. The NSUN2/IGF-II signature associates with heterogeneous outcome and may have clinical implications in managing ovarian cancer.
Rovira, P; Buckle, M; Abastado, J P; Peumans, W J; Truffa-Bachi, P
1999-05-01
The Urtica dioica agglutinin (UDA) shares with the superantigens the property of activating T cell subsets bearing particular Vbeta segments of the TCR. However, UDA is a lectin capable of binding to many glycoproteins on cell membranes. The implication of MHC versus other glycoproteins in UDA presentation was presently studied. Using mutant mice lacking MHC class I (MHC-I), MHC class II (MHC-II) or both MHC antigens, we provided evidence that MHC-I and MHC-II molecules serve as UDA receptors. Presentation by either one of these molecules ensured similar T cell responses and co-stimulatory signals were mandatory for optimal T cell activation and proliferation both in MHC-I and MHC-II contexts. Remarkably, in the absence of MHC molecules, UDA could not be efficiently presented to T cells by other glycosylated proteins. Surface plasmon resonance studies were used to confirm the binding of UDA to MHC-I molecules using a fusion protein consisting of MHC-I domains and beta2-microglobulin. The results indicated that the interaction between UDA and MHC-I molecules implicated lectin-binding site(s) of UDA. Taken together, our data demonstrate that, in addition to MHC-II antigens, MHC-I molecules serve as an alternative ligand for UDA.
Von Dreele, Robert
2017-08-29
One of the goals in developing GSAS-II was to expand from the capabilities of the original General Structure Analysis System (GSAS) which largely encompassed just structure refinement and post refinement analysis. GSAS-II has been written almost entirely in Python loaded with graphics, GUI and mathematical packages (matplotlib, pyOpenGL, wxpython, numpy and scipy). Thus, GSAS-II has a fully developed modern GUI as well as extensive graphical display of data and results. However, the structure and operation of Python has required new approaches to many of the algorithms used in crystal structure analysis. The extensions beyond GSAS include image calibration/integration as wellmore » as peak fitting and unit cell indexing for powder data which are precursors for structure solution. Structure solution within GSAS-II begins with either Pawley or LeBail extracted structure factors from powder data or those measured in a single crystal experiment. Both charge flipping and Monte Carlo-Simulated Annealing techniques are available; the former can be applied to (3+1) incommensurate structures as well as conventional 3D structures.« less
Prion protein conversion induced by trivalent iron in vesicular trafficking.
Choi, Bo-Ran; Lee, Jeongmin; Kim, Su Yeon; Yim, Inbeen; Kim, Eun-Hee; Woo, Hee-Jong
2013-03-15
Iron dyshomeostasis has been observed in prion diseases; however, little is known regarding the contribution of the oxidation state of iron to prion protein (PrP) conversion. In this study, PrP(C)-deficient HpL3-4 cells were exposed to divalent [Fe(II)] or trivalent [Fe(III)] iron, followed by exogenous recombinant PrP (rPrP) treatment. We then analyzed the accumulation of internalized rPrP and its biochemical properties, including its resistance to both proteinase K (PK) digestion and detergent solubility. Fe(III), but not Fe(II), induced the accumulation of internalized rPrP, which was partially converted to detergent-insoluble and PK-resistant PrP (PrP(res)). The Fe(III)-induced PrP(res) generation required an intact cell structure, and it was hindered by U18666A, an inhibitor of vesicular trafficking, but not by NH4Cl, an inhibitor of endolysosomal acidification. These observations implicated that the Fe(III)-mediated PrP(res) conversion likely occurs during endosomal vesicular trafficking rather than in the acidic environment of lysosomes. Copyright © 2013 Elsevier Inc. All rights reserved.
Artificial Photosystem I and II: Highly Selective solar fuels and tandem photocatalysis
NASA Astrophysics Data System (ADS)
Ding, Yuchen; Castellanos, Ignacio; Cerkovnik, Logan; Nagpal, Prashant
2014-03-01
Artificial photosynthesis, or generation of solar fuels from CO2/H2O, can provide an important alternative for rising CO2 emission and renewable energy generation. In our recent work, composite photocatalysts (CPCs) made from widebandgap nanotubes and different QDs were used to mimic Photosystem II (PS680) and I (PS700), respectively. By tuning the redox potentials using the size, composition and energy band alignment of QDs, we demonstrate highly selective (>90%) and efficient production of ethane, ethanol and acetaldehyde as solar fuels with different wavelengths of light. We also show that this selectivity is a result of precise energy band alignments (using cationic/anionic doping of nanotubes, QD size etc.), confirmed using measurements of electronic density of states, and alignment of higher redox potentials with hot-carriers can also lead to hot-carrier photocatalysis. This wavelength-selective CPCs can have important implications for inexpensive production of solar fuels including alkanes, alcohols, aldehydes and hydrogen, and making tandem structures (red, green, blue) with three CPCs, allowing almost full visible spectrum (410 ~ 730nm) utilization with different fuels produced simultaneously.
NASA Astrophysics Data System (ADS)
Zhu, Shan; Hu, Huiping; Hu, Jiugang; Li, Jiyuan; Hu, Fang; Wang, Yongxi
2017-09-01
In continuation of our interest in the coordination structure of the nickel(II) complex with dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexyl 4-pyridinecarboxylate ester (4PC), it was observed that the coordination sphere was completed by the coordination of two N atoms of pyridine rings in ligands 4PC and four water molecules while no direct interaction between Ni(II) and deprotonated HDNNS was observed. To investigate whether the coordination structure of nickel(II) with the synergistic mixture containing HDNNS and 4PC predominates or not in the copper(II) complex with the synergistic mixtures containing HDNNS and pyridinecarboxylate esters, a copper(II) synergist complex with n-hexyl 3-pyridinecarboxylate ester (L) and naphthalene-2-sulfonic acid (HNS, the short chain analogue of HDNNS), was prepared and studied by X-ray single crystal diffraction, elemental analyses and thermo gravimetric analysis (TGA), respectively. It was shown that the composition of the copper(II) synergist complex was [Cu(H2O)2(L)2(NS)2] and formed a trans-form distorted octahedral coordination structure. Two oxygen atoms of the two coordinated water molecules and two N atoms of the pyridine rings in the ligands L defined the basal plane while two O atoms from two sulfonate anions of the deprotonated HNS ligands occupied the apical positions by direct coordination with Cu(II), which was distinguished from the coordination structure of the nickel(II) synergist complex as reported in our previous work. In the crystal lattice, neighboring molecules [Cu(H2O)2L2(NS)2] were linked through the intermolecular hydrogen bonds between the hydrogen atoms of the coordinated water molecules and the oxygen atoms of the sulfonate anions in the copper(II) synergist complex to form a 2D plane. In order to bridge the gap between the solid state structure of the copper(II) synergist complex and the solution structure of the extracted copper(II) complex with the actual synergistic mixture containing L and HDNNS in the non-polar organic phase, the structures of the two copper(II) complexes were further investigated by Fourier transform infrared spectroscopy (FT-IR) and electrospray ionization mass spectrometry (ESI-MS), and the results indicated that the extracted copper(II) complex in the non-polar organic phase might possess a similar coordination structure as the copper(II) synergist complex.
Hemodynamics of the Aortic Jet and Implications for Detection of Aortic Stenosis Murmurs
NASA Astrophysics Data System (ADS)
Zhu, Chi; Seo, Junghee; Bakhshaee, Hani; Mittal, Rajat
2016-11-01
Cardiac auscultation with a stethoscope has served as the primary method for qualitative screening of cardiovascular conditions for over a hundred years. However, a lack of quantitative understanding of the flow mechanism(s) responsible for the generation of the murmurs, as well as the effect of intervening tissue on the propagation of these murmurs has been a significant limiting factor in the advancement of automated cardiac auscultation. In this study, a multiphysics computational modeling approach is used to investigate these issues. Direct numerical simulation (DNS) is used to explore the fluid dynamics of the jets formed at the aortic valve and the pressure fluctuations generated by the interaction of this jet with the aortic wall. Subsequently, structural wave propagation in the tissue is resolved by a high-order, linear viscoelastic wave solver in order to explore the propagation of the murmurs through a tissue-like material. The implications of these results for cardiac auscultation are discussed. The authors would like to acknowledge the financial support from NSF Grants IIS-1344772, CBET-1511200, and computational resource by XSEDE NSF Grant TG-CTS100002.
Vitamin D receptor signaling and its therapeutic implications: Genome-wide and structural view.
Carlberg, Carsten; Molnár, Ferdinand
2015-05-01
Vitamin D3 is one of the few natural compounds that has, via its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and the transcription factor vitamin D receptor (VDR), a direct effect on gene regulation. For efficiently applying the therapeutic and disease-preventing potential of 1,25(OH)2D3 and its synthetic analogs, the key steps in vitamin D signaling need to be understood. These are the different types of molecular interactions with the VDR, such as (i) the complex formation of VDR with genomic DNA, (ii) the interaction of VDR with its partner transcription factors, (iii) the binding of 1,25(OH)2D3 or its synthetic analogs within the ligand-binding pocket of the VDR, and (iv) the resulting conformational change on the surface of the VDR leading to a change of the protein-protein interaction profile of the receptor with other proteins. This review will present the latest genome-wide insight into vitamin D signaling, and will discuss its therapeutic implications.
Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature
Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko
2013-01-01
Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188
Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.
Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; Schafer, Donald W; Messerschmidt, Marc; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Grosse-Kunstleve, Ralf W; Zwart, Petrus H; White, William E; Glatzel, Pieter; Adams, Paul D; Bogan, Michael J; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko
2013-04-26
Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.
Plant nucleolar DNA: Green light shed on the role of Nucleolin in genome organization
Picart, Claire
2017-01-01
ABSTRACT The nucleolus forms as a consequence of ribosome biogenesis, but it is also implicated in other cell functions. The identification of nucleolus-associated chromatin domains (NADs) in animal and plant cells revealed the presence of DNA sequences other than rRNA genes in and around the nucleolus. NADs display repressive chromatin signatures and harbour repetitive DNA, but also tRNA genes and RNA polymerase II-transcribed genes. Furthermore, the identification of NADs revealed a specific function of the nucleolus and the protein Nucleolin 1 (NUC1) in telomere biology. Here, we discuss the significance of these data with regard to nucleolar structure and to the role of the nucleolus and NUC1 in global genome organization and stability. PMID:27644794
Correlations of RMT characteristic polynomials and integrability: Hermitean matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipov, Vladimir Al., E-mail: Vladimir.Osipov@uni-due.d; Kanzieper, Eugene, E-mail: Eugene.Kanzieper@hit.ac.i; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100
Integrable theory is formulated for correlation functions of characteristic polynomials associated with invariant non-Gaussian ensembles of Hermitean random matrices. By embedding the correlation functions of interest into a more general theory of {tau} functions, we (i) identify a zoo of hierarchical relations satisfied by {tau} functions in an abstract infinite-dimensional space and (ii) present a technology to translate these relations into hierarchically structured nonlinear differential equations describing the correlation functions of characteristic polynomials in the physical, spectral space. Implications of this formalism for fermionic, bosonic, and supersymmetric variations of zero-dimensional replica field theories are discussed at length. A particular emphasismore » is placed on the phenomenon of fermionic-bosonic factorisation of random-matrix-theory correlation functions.« less
A Successful Anticoagulation Protocol for the First HeartMate® II Implantation in the United States
Amir, Offer; Bracey, Arthur W.; Smart, Frank W.; Delgado, Reynolds M.; Shah, Nyma; Kar, Biswajit; Gregoric, Igor D.
2005-01-01
Bleeding and thrombus formation are common problems with life-threatening implications in patients receiving a left ventricular assist device. We describe the anticoagulation protocol for the 1st patient in the United States to undergo successful implantation of the HeartMate® II left ventricular assist system. PMID:16392229
Modeling Line Emission from Structures Seen at High Resolution in the Nebulae m1 and M16
NASA Astrophysics Data System (ADS)
Sankrit, Ravi
1998-12-01
Narrow band images of the Crab Nebula supernova remnant and of the Eagle Nebula H II region taken with the Hubble Space Telescope (HST) show the ionization structure of the emitting gas in unprecedented detail because of the high spatial resolution. The physics of the emission processes-shock excited emission and photoionized emission-is well understood. Sophisticated numerical codes are used to model the ionization structure and emission observed in these images. It is found that the thin skin of material around the Crab synchrotron nebula visible in (O III) λ5007 emission is best explained as the cooling region behind a shock driven by the synchrotron nebula into a surrounding remnant of freely expanding ejecta. Shock models, with parameters derived from independently known properties of the Crab, explain the observed spectrum of the skin while photoionization models fail to explain the observed strength of high ionization lines such as C IV λ1549. This result is clear evidence that the synchrotron nebula is interacting with an extended remnant of ejecta, which in turn has significant implications for the structure and evolution of the Crab. At HST resolution, it is seen that low ionization emission, from lines such as (O I) λ6300, is concentrated in sharp structures while high ionization emission (from (O III) λ5007) is much more diffuse. Individual filaments are found to lie along a sequence of ionization structure ranging from features in which all lines are concentrated in the same compact volume through features with low ionization cores surrounded by high ionization envelopes. Photoionization models of cylindrically symmetrical filaments with varying 'core-halo' density profiles can match the observed variation in the filament structure in the Crab. A photoionization model of a uniform low density medium matches the extended diffuse component which dominates the high ionization emission. It is found that detailed knowledge of the filament structures present in an aperture is needed to correctly interpret ground-based spectra of the Crab. The images also show that many filament cores coincide with dust extinction features, which suggest that the dust to gas mass ratio may be up to an order of magnitude higher than is typical in the interstellar medium. Nebula show the interface between the ionized gas and the molecular cloud in tangency against the background of the ionized cavity which constitutes the H II region. A photoionization model using a density profile for the photoevaporative flow that is expected at such an interface is successful at explaining the observed emission profiles of Hα λ6563, (S II) λλ6716,6731, and (O III) λ5007. The ionizing flux is well constrained by the Hα emission and the sulphur abundance is constrained by the peak of the (S II) emission. A grid of models using the same density profiles shows how various emission properties depend on the ionizing continuum shape, ionizing flux and elemental abundances.
A Study of the Commission on Implications of Armed Services Educational Programs, 1945-1948.
ERIC Educational Resources Information Center
Price, Herbert Hamilton, Jr.
In 1945, the American Council on Education created the civilian Commission on Implications of Armed Forces Educational Programs to study the armed forces education of World War II and its possible effects on postwar civilian education. Those features of the wartime training and education programs which appeared to be worthy of adaptation and…
Raffo, Pablo A; Suárez, Sebastián; Fantoni, Adolfo C; Baggio, Ricardo; Cukiernik, Fabio D
2017-09-01
After reporting the structure of a new polymorph of 1,3,5-trifluoro-2,4,6-triiodobenzene (denoted BzF3I3), C 6 F 3 I 3 , (I), which crystallized in the space group P2 1 /c, we perform a comparative analysis with the already reported P2 1 /n polymorph, (II) [Reddy et al. (2006). Chem. Eur. J. 12, 2222-2234]. In polymorph (II), type-II I...I halogen bonds and I...π interactions connect molecules in such a way that a three-dimensional structure is formed; however, the way in which molecules are connected in polymorph (I), through type-II I...I halogen bonds and π-π interactions, gives rise to an exfoldable lamellar structure, which looks less tightly bound than that of (II). In agreement with this structural observation, both the melting point and the melting enthalpy of (I) are lower than those of (II).
NASA Astrophysics Data System (ADS)
Lalegani, Arash; Khalaj, Mehdi; Sedaghat, Sajjad; Łyczko, Krzysztof; Lipkowski, Janusz
2017-11-01
Two new coordination polymers, {[Co(bib)3](PF6)2}n (1) and [Cd (bib) Cl2]n (2), were prepared at room temperature by the reaction of appropriate salts of cobalt (II) and cadmium (II) with the flexible linker ligands 1,4-bis(imidazolyl) butane (bib). The compounds were characterized by elemental analyses, IR spectroscopy and single crystal X-ray diffraction. In the polymeric structure of 1, the Co(II) ion lies on an inversion centre and adopts the CoN6 octahedral geometry, while in the structure of 2, the Cd(II) ions adopt the CdN2Cl4 pseudo-octahedral geometry. In compound 1, six bib ligands are coordinated to one central cobalt (II) to form an open 3D 2-fold interpenetrating framework of the α-polonium (pcu) type topology, while in compound 2 two bib ligands are coordinated to one central cadmium (II) to form 2D network structure.
Schuster, Astrid; Lopez, Jose V; Becking, Leontine E; Kelly, Michelle; Pomponi, Shirley A; Wörheide, Gert; Erpenbeck, Dirk; Cárdenas, Paco
2017-03-20
Mitochondrial introns intermit coding regions of genes and feature characteristic secondary structures and splicing mechanisms. In metazoans, mitochondrial introns have only been detected in sponges, cnidarians, placozoans and one annelid species. Within demosponges, group I and group II introns are present in six families. Based on different insertion sites within the cox1 gene and secondary structures, four types of group I and two types of group II introns are known, which can harbor up to three encoding homing endonuclease genes (HEG) of the LAGLIDADG family (group I) and/or reverse transcriptase (group II). However, only little is known about sponge intron mobility, transmission, and origin due to the lack of a comprehensive dataset. We analyzed the largest dataset on sponge mitochondrial group I introns to date: 95 specimens, from 11 different sponge genera which provided novel insights into the evolution of group I introns. For the first time group I introns were detected in four genera of the sponge family Scleritodermidae (Scleritoderma, Microscleroderma, Aciculites, Setidium). We demonstrated that group I introns in sponges aggregate in the most conserved regions of cox1. We showed that co-occurrence of two introns in cox1 is unique among metazoans, but not uncommon in sponges. However, this combination always associates an active intron with a degenerating one. Earlier hypotheses of HGT were confirmed and for the first time VGT and secondary losses of introns conclusively demonstrated. This study validates the subclass Spirophorina (Tetractinellida) as an intron hotspot in sponges. Our analyses confirm that most sponge group I introns probably originated from fungi. DNA barcoding is discussed and the application of alternative primers suggested.
Shim, Sang-Heon; Bengtson, Amelia; Morgan, Dane; Sturhahn, Wolfgang; Catalli, Krystle; Zhao, Jiyong; Lerche, Michael; Prakapenka, Vitali
2009-01-01
Recent studies have shown that high pressure (P) induces the metallization of the Fe2+–O bonding, the destruction of magnetic ordering in Fe, and the high-spin (HS) to low-spin (LS) transition of Fe in silicate and oxide phases at the deep planetary interiors. Hematite (Fe2O3) is an important magnetic carrier mineral for deciphering planetary magnetism and a proxy for Fe in the planetary interiors. Here, we present synchrotron Mössbauer spectroscopy and X-ray diffraction combined with ab initio calculations for Fe2O3 revealing the destruction of magnetic ordering at the hematite → Rh2O3-II type (RhII) transition at 70 GPa and 300 K, and then the revival of magnetic ordering at the RhII → postperovskite (PPv) transition after laser heating at 73 GPa. At the latter transition, at least half of Fe3+ ions transform from LS to HS and Fe2O3 changes from a semiconductor to a metal. This result demonstrates that some magnetic carrier minerals may experience a complex sequence of magnetic ordering changes during impact rather than a monotonic demagnetization. Also local Fe enrichment at Earth's core-mantle boundary will lead to changes in the electronic structure and spin state of Fe in silicate PPv. If the ultra-low-velocity zones are composed of Fe-enriched silicate PPv and/or the basaltic materials are accumulated at the lowermost mantle, high electrical conductivity of these regions will play an important role for the electromagnetic coupling between the mantle and the core. PMID:19279204
NASA Astrophysics Data System (ADS)
Enciu, Dana-Mihaela
Integration of active and passive-source seismic data is employed to study the relationships between crustal structures and seismicity in the SE Carpathian foreland of Romania, and the connection with the Vrancea Seismogenic Zone. Relocated crustal epicenters and focal mechanisms are correlated with industry seismic profiles Comanesti, Ramnicu Sarat, Braila and Buzau, the reprocessed DACIA PLAN profile and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles in order to understand the link between neo-tectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identified active crustal faults suggesting a mechanical coupling between sedimentary, crustal and upper mantle structures on the Trotus, Sinaia and newly observed Ialomita Faults. Seismic reflection imaging revealed the absence of west dipping reflectors in the crust and an east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against both 'subduction-in-place' and 'slab break-off' as viable mechanisms for generating Vrancea mantle seismicity.
Influence of Aluminium and EGCG on Fibrillation and Aggregation of Human Islet Amyloid Polypeptide
Xu, Zhi-Xue; Zhang, Qiang; Ma, Gong-Li; Chen, Cong-Heng; He, Yan-Ming; Xu, Li-Hui; Zhang, Yuan; Zhou, Guang-Rong; Li, Zhen-Hua
2016-01-01
The abnormal fibrillation of human islet amyloid polypeptide (hIAPP) has been implicated in the development of type II diabetes. Aluminum is known to trigger the structural transformation of many amyloid proteins and induce the formation of toxic aggregate species. The (−)-epigallocatechin gallate (EGCG) is considered capable of binding both metal ions and amyloid proteins with inhibitory effect on the fibrillation of amyloid proteins. However, the effect of Al(III)/EGCG complex on hIAPP fibrillation is unclear. In the present work, we sought to view insight into the structures and properties of Al(III) and EGCG complex by using spectroscopic experiments and quantum chemical calculations and also investigated the influence of Al(III) and EGCG on hIAPP fibrillation and aggregation as well as their combined interference on this process. Our studies demonstrated that Al(III) could promote fibrillation and aggregation of hIAPP, while EGCG could inhibit the fibrillation of hIAPP and lead to the formation of hIAPP amorphous aggregates instead of the ordered fibrils. Furthermore, we proved that the Al(III)/EGCG complex in molar ratio of 1 : 1 as Al(EGCG)(H2O)2 could inhibit the hIAPP fibrillation more effectively than EGCG alone. The results provide the invaluable reference for the new drug development to treat type II diabetes. PMID:28074190
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández-Fueyo, Elena; Acebes, Sandra; Ruiz-Dueñas, Francisco J.
2014-12-01
The variable C-terminal tail of manganese peroxidases, a group of enzymes involved in lignin degradation, is implicated in their catalytic and stability properties, as shown by new crystal structures, molecular-simulation and directed-mutagenesis data. Based on this structural–functional evaluation, short and long/extralong manganese peroxidase subfamilies have been accepted; the latter are characterized by exceptional stability, while it is shown for the first time that the former are able to oxidize other substrates at the same site where manganese(II) is oxidized. The genome of Ceriporiopsis subvermispora includes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, whichmore » share an Mn{sup 2+}-oxidation site and have varying lengths of the C-terminal tail. Short, long and extralong MnPs were heterologously expressed and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn{sup 2+} oxidation by the internal propionate, but prevents the oxidation of 2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. The tail, which is anchored by numerous contacts, not only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd{sup 2+} binds at the Mn{sup 2+}-oxidation site and competitively inhibits oxidation of both Mn{sup 2+} and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of an in silico shortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Only small differences exist between the long and the extralong MnPs, which do not justify their classification as two different subfamilies, but they significantly differ from the short MnPs, with the presence/absence of the C-terminal tail extension being implicated in these differences.« less
NASA Astrophysics Data System (ADS)
Barabash, Sergey V.; Pramanik, Dipankar
2015-03-01
Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.
NASA Technical Reports Server (NTRS)
Burr, Devon M.; Bruno, Barbara C.; Lanagan, Peter D.; Glaze, Lori; Jaeger, Windy L.; Soare, Richard J.; Tseung, Jean-Michel Wan Bun; Skinner, James A. Jr.; Baloga, Stephen M.
2008-01-01
Fields of mesoscale raised rim depressions (MRRDs) of various origins are found on Earth and Mars. Examples include rootless cones, mud volcanoes, collapsed pingos, rimmed kettle holes, and basaltic ring structures. Correct identification of MRRDs on Mars is valuable because different MRRD types have different geologic and/or climatic implications and are often associated with volcanism and/or water, which may provide locales for biotic or prebiotic activity. In order to facilitate correct identification of fields of MRRDs on Mars and their implications, this work provides a review of common terrestrial MRRD types that occur in fields. In this review, MRRDs by formation mechanism, including hydrovolcanic (phreatomagmatic cones, basaltic ring structures), sedimentological (mud volcanoes), and ice-related (pingos, volatile ice-block forms) mechanisms. For each broad mechanism, we present a comparative synopsis of (i) morphology and observations, (ii) physical formation processes, and (iii) published hypothesized locations on Mars. Because the morphology for MRRDs may be ambiguous, an additional tool is provided for distinguishing fields of MRRDs by origin on Mars, namely, spatial distribution analyses for MRRDs within fields on Earth. We find that MRRDs have both distinguishing and similar characteristics, and observation that applies both to their mesoscale morphology and to their spatial distribution statistics. Thus, this review provides tools for distinguishing between various MRRDs, while highlighting the utility of the multiple working hypotheses approach.
Mackintosh, Nicola; Berridge, Emma-Jane; Freeth, Della
2009-02-01
'Human factors' (non-technical skills such as communication and teamwork) have been strongly implicated in adverse events during labour and delivery. The importance of shared 'situation awareness' between team members is highlighted as a key factor in patient safety. Arising from an ethnographic study of safety culture in the delivery suites of four UK hospitals, the aim of this study is to describe the main mechanisms supporting team situation awareness (TSA) and examine contrasting configurations of supports. Stage I: 177 hours of lightly structured non-participant observation (sensitizing concepts: safety culture, non-technical skills, teamwork and decision making) analysed to identify a core organizing concept, main supporting categories and preliminary conceptual models. Stage II: (approximately 11 months after first observations) 104 hours of observation to test and elaborate stage I analyses. Handover, whiteboard use and a coordinator role emerged as the key processes facilitating work and team coordination. The interplay between these supporting processes and the contextual features of each site promoted or inhibited TSA. Three configurations of supports for TSA were evident. These are described. Context configurations of supporting mechanisms and artefacts influence TSA, with implications for the maintenance of patient safety on delivery suites. A balanced model of supports for TSA is commended. Examining contrasting configurations helps reveal how local mechanisms or organizational, environmental and temporal factors might be manipulated to improve TSA.
Xiao, Jie; Dowben, Peter A
2009-02-04
In combined photoemission and inverse photoemission spectroscopy studies, we observe changes in the metal phthalocyanine molecular orbital offsets with respect to the conducting gold substrate Fermi level, with the changing d-electron filling of the metal (II) (Co, Ni, Cu) phthalocyanines. The implication is that the interfacial dipole layer depends upon the choice of metal (Co, Ni, Cu) centers within the metal (II) phthalocyanines adsorbed on Au(111).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, Carolyn E.; Musiani, Francesco; Huang, Hsin-Ting
Escherichia coli RcnR (resistance to cobalt and nickel regulator, EcRcnR) is a metal-responsive repressor of the genes encoding the Ni(II) and Co(II) exporter proteins RcnAB by binding to PRcnAB. The DNA binding affinity is weakened when the cognate ions Ni(II) and Co(II) bind to EcRcnR in a six-coordinate site that features a (N/O)5S ligand donor-atom set in distinct sites: while both metal ions are bound by the N terminus, Cys35, and His64, Co(II) is additionally bound by His3. On the other hand, the noncognate Zn(II) and Cu(I) ions feature a lower coordination number, have a solvent-accessible binding site, and coordinatemore » protein ligands that do not include the N-terminal amine. A molecular model of apo-EcRcnR suggested potential roles for Glu34 and Glu63 in binding Ni(II) and Co(II) to EcRcnR. The roles of Glu34 and Glu63 in metal binding, metal selectivity, and function were therefore investigated using a structure/function approach. X-ray absorption spectroscopy was used to assess the structural changes in the Ni(II), Co(II), and Zn(II) binding sites of Glu → Ala and Glu → Cys variants at both positions. The effect of these structural alterations on the regulation of PrcnA by EcRcnR in response to metal binding was explored using LacZ reporter assays. These combined studies indicate that while Glu63 is a ligand for both metal ions, Glu34 is a ligand for Co(II) but possibly not for Ni(II). The Glu34 variants affect the structure of the cognate metal sites, but they have no effect on the transcriptional response. In contrast, the Glu63 variants affect both the structure and transcriptional response, although they do not completely abolish the function of EcRcnR. The structure of the Zn(II) site is not significantly perturbed by any of the glutamic acid variations. The spectroscopic and functional data obtained on the mutants were used to calculate models of the metal-site structures of EcRcnR bound to Ni(II), Co(II), and Zn(II). The results are interpreted in terms of a switch mechanism, in which a subset of the metal-binding ligands is responsible for the allosteric response required for DNA release.« less
Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy
Goldsbury, Claire; Baxa, Ulrich; Simon, Martha N.; Steven, Alasdair C.; Engel, Andreas; Wall, Joseph S.; Aebi, Ueli; Müller, Shirley A.
2010-01-01
Amyloid fibrils are filamentous protein aggregates implicated in several common diseases like Alzheimer’s disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies like Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). PMID:20868754
NASA Astrophysics Data System (ADS)
Wan, Zhi Hong; Lee, John Chi Kin
2017-03-01
This study explored two under-researched areas on students' attitudes towards science, that is, the structural models representing these attitudes and the role played by school bands in moderating the gender differences in such attitudes. The participants were 360 ninth graders in Hong Kong from 3 school bands. The structural equation modelling method was adopted to compare four hypothetical models for students' attitudes towards science. Results reflect that (i) the data supported the three-factor structure of the behavioural domain of students' attitudes towards science; (ii) the four lower level dimensions of the attitudes towards science (i.e. value of science to society, self-concept in science, anxiety towards science and enjoyment of science) could be further integrated into broader categories; (iii) male students demonstrated significantly more positive attitudes towards science in five dimensions (i.e. self-concept in science, enjoyment in science, learning science in and outside the classroom and future participation) and (iv) school bands played a prominent moderating role in gender differences in students' attitudes towards science. Implications for studying and developing students' attitudes towards science are discussed in the paper.
Roudier, B; Davit, B; Schütz, H; Cardot, J-M
2015-01-01
The in vitro-in vivo correlation (IVIVC) (Food and Drug Administration 1997) aims to predict performances in vivo of a pharmaceutical formulation based on its in vitro characteristics. It is a complex process that (i) incorporates in a gradual and incremental way a large amount of information and (ii) requires information from different properties (formulation, analytical, clinical) and associated dedicated treatments (statistics, modeling, simulation). These results in many studies that are initiated and integrated into the specifications (quality target product profile, QTPP). This latter defines the appropriate experimental designs (quality by design, QbD) (Food and Drug Administration 2011, 2012) whose main objectives are determination (i) of key factors of development and manufacturing (critical process parameters, CPPs) and (ii) of critical points of physicochemical nature relating to active ingredients (API) and critical quality attribute (CQA) which may have implications in terms of efficiency, safety, and inoffensiveness for the patient, due to their non-inclusion. These processes generate a very large amount of data that is necessary to structure. In this context, the storage of information in a database (DB) and the management of this database (database management system, DBMS) become an important issue for the management of projects and IVIVC and more generally for development of new pharmaceutical forms. This article describes the implementation of a prototype object-oriented database (OODB) considered as a tool, which is helpful for decision taking, responding in a structured and consistent way to the issues of project management of IVIVC (including bioequivalence and bioavailability) (Food and Drug Administration 2003) necessary for the implementation of QTPP.
Ortega, Rebeca; Martínez-Júlvez, Marta; Revilla-Guarinos, Ainhoa; Pérez-Pertejo, Yolanda; Velázquez-Campoy, Adrián; Sanz-Aparicio, Julia; Pajares, María A.
2012-01-01
Mammalian methionine adenosyltransferase II (MAT II) is the only hetero-oligomer in this family of enzymes that synthesize S-adenosylmethionine using methionine and ATP as substrates. Binding of regulatory β subunits and catalytic α2 dimers is known to increase the affinity for methionine, although scarce additional information about this interaction is available. This work reports the use of recombinant α2 and β subunits to produce oligomers showing kinetic parameters comparable to MAT II purified from several tissues. According to isothermal titration calorimetry data and densitometric scanning of the stained hetero-oligomer bands on denatured gels, the composition of these oligomers is that of a hetero-trimer with α2 dimers associated to single β subunits. Additionally, the regulatory subunit is able to bind NADP+ with a 1∶1 stoichiometry, the cofactor enhancing β to α2-dimer binding affinity. Mutants lacking residues involved in NADP+ binding and N-terminal truncations of the β subunit were able to oligomerize with α2-dimers, although the kinetic properties appeared altered. These data together suggest a role for both parts of the sequence in the regulatory role exerted by the β subunit on catalysis. Moreover, preparation of a structural model for the hetero-oligomer, using the available crystal data, allowed prediction of the regions involved in β to α2-dimer interaction. Finally, the implications that the presence of different N-terminals in the β subunit could have on MAT II behavior are discussed in light of the recent identification of several splicing forms of this subunit in hepatoma cells. PMID:23189196
Validation of Arabic and English versions of the ARSMA-II Acculturation Rating Scale.
Jadalla, Ahlam; Lee, Jerry
2015-02-01
To translate and adapt the Acculturation Rating Scale of Mexican-Americans II (ARSMA-II) for Arab Americans. A multistage translation process followed by a pilot and a large study. The translated and adapted versions, Acculturation Rating Scale for Arabic Americans-II Arabic and English (ARSAA-IIA, ARSAA-IIE), were validated in a sample of 297 Arab Americans. Factor analyses with principal axis factoring extractions and direct oblimin rotations were used to identify the underlying structure of ARSAA-II. Factor analysis confirmed the underlying structure of ARSAA-II and produced two interpretable factors labeled as 'Attraction to American Culture' (AAmC) and 'Attraction to Arabic Culture' (AArC). The Cronbach's alphas of AAmC and AArC were .89 and .85 respectively. Findings support ARSAA-II A & E to assess acculturation among Arab Americans. The emergent factors of ARSAA-II support the theoretical structure of the original ARSMA-II tool and show high internal consistency.
Teoh, Chai Lean; Pham, Chi L L; Todorova, Nevena; Hung, Andrew; Lincoln, Craig N; Lees, Emma; Lam, Yuen Han; Binger, Katrina J; Thomson, Neil H; Radford, Sheena E; Smith, Trevor A; Müller, Shirley A; Engel, Andreas; Griffin, Michael D W; Yarovsky, Irene; Gooley, Paul R; Howlett, Geoffrey J
2011-02-04
The self-assembly of specific proteins to form insoluble amyloid fibrils is a characteristic feature of a number of age-related and debilitating diseases. Lipid-free human apolipoprotein C-II (apoC-II) forms characteristic amyloid fibrils and is one of several apolipoproteins that accumulate in amyloid deposits located within atherosclerotic plaques. X-ray diffraction analysis of aligned apoC-II fibrils indicated a simple cross-β-structure composed of two parallel β-sheets. Examination of apoC-II fibrils using transmission electron microscopy, scanning transmission electron microscopy, and atomic force microscopy indicated that the fibrils are flat ribbons composed of one apoC-II molecule per 4.7-Å rise of the cross-β-structure. Cross-linking results using single-cysteine substitution mutants are consistent with a parallel in-register structural model for apoC-II fibrils. Fluorescence resonance energy transfer analysis of apoC-II fibrils labeled with specific fluorophores provided distance constraints for selected donor-acceptor pairs located within the fibrils. These findings were used to develop a simple 'letter-G-like' β-strand-loop-β-strand model for apoC-II fibrils. Fully solvated all-atom molecular dynamics (MD) simulations showed that the model contained a stable cross-β-core with a flexible connecting loop devoid of persistent secondary structure. The time course of the MD simulations revealed that charge clusters in the fibril rearrange to minimize the effects of same-charge interactions inherent in parallel in-register models. Our structural model for apoC-II fibrils suggests that apoC-II monomers fold and self-assemble to form a stable cross-β-scaffold containing relatively unstructured connecting loops. Copyright © 2010 Elsevier Ltd. All rights reserved.
van Rooij, Antonius J; Van Looy, Jan; Billieux, Joël
2017-07-01
Some people have serious problems controlling their Internet and video game use. The DSM-5 now includes a proposal for 'Internet Gaming Disorder' (IGD) as a condition in need of further study. Various studies aim to validate the proposed diagnostic criteria for IGD and multiple new scales have been introduced that cover the suggested criteria. Using a structured approach, we demonstrate that IGD might be better interpreted as a formative construct, as opposed to the current practice of conceptualizing it as a reflective construct. Incorrectly approaching a formative construct as a reflective one causes serious problems in scale development, including: (i) incorrect reliance on item-to-total scale correlation to exclude items and incorrectly relying on indices of inter-item reliability that do not fit the measurement model (e.g., Cronbach's α); (ii) incorrect interpretation of composite or mean scores that assume all items are equal in contributing value to a sum score; and (iii) biased estimation of model parameters in statistical models. We show that these issues are impacting current validation efforts through two recent examples. A reinterpretation of IGD as a formative construct has broad consequences for current validation efforts and provides opportunities to reanalyze existing data. We discuss three broad implications for current research: (i) composite latent constructs should be defined and used in models; (ii) item exclusion and selection should not rely on item-to-total scale correlations; and (iii) existing definitions of IGD should be enriched further. © 2016 The Authors. Psychiatry and Clinical Neurosciences © 2016 Japanese Society of Psychiatry and Neurology.
Regad, Leslie; Martin, Juliette; Camproux, Anne-Claude
2011-06-20
One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P) and SAH/SAM. Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.
2011-01-01
Background One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Results Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P) and SAH/SAM. Conclusions Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins. PMID:21689388
Wilson, Parker C.; Fitzgibbon, Wayne R.; Garrett, Sara M.; Jaffa, Ayad A.; Luttrell, Louis M.; Brands, Michael W.
2015-01-01
Angiotensin II (AngII) plays a critical role in the regulation of vascular tone and blood pressure mainly via regulation of Ca2+ mobilization. Several reports have implicated sphingosine kinase 1 (SK1)/sphingosine 1-phosphate (S1P) in the mobilization of intracellular Ca2+ through a yet-undefined mechanism. Here we demonstrate that AngII-induces biphasic calcium entry in vascular smooth muscle cells, consisting of an immediate peak due to inositol tris-phosphate-dependent release of intracellular calcium, followed by a sustained transmembrane Ca2+ influx through store-operated calcium channels (SOCs). Inhibition of SK1 attenuates the second phase of transmembrane Ca2+ influx, suggesting a role for SK1 in AngII-dependent activation of SOC. Intracellular S1P triggers SOC-dependent Ca2+ influx independent of S1P receptors, whereas external application of S1P stimulated S1P receptor-dependent Ca2+ influx that is insensitive to inhibitors of SOCs, suggesting that the SK1/S1P axis regulates store-operated calcium entry via intracellular rather than extracellular actions. Genetic deletion of SK1 significantly inhibits both the acute hypertensive response to AngII in anaesthetized SK1 knockout mice and the sustained hypertensive response to continuous infusion of AngII in conscious animals. Collectively these data implicate SK1 as the missing link that connects the angiotensin AT1A receptor to transmembrane Ca2+ influx and identify SOCs as a potential intracellular target for SK1. PMID:25871850
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Patel, Manisha H.
2010-08-18
Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein adhesin that interacts with salivary components within the salivary pellicle. AgI/II contributes to virulence and has been studied as an immunological and structural target, but a fundamental understanding of its underlying architecture has been lacking. Here we report a high-resolution (1.8 {angstrom}) crystal structure of the A{sub 3}VP{sub 1} fragment of S. mutans AgI/II that demonstrates a unique fibrillar form (155 {angstrom}) through the interaction of two noncontiguous regions in the primary sequence. The A{sub 3} repeat of the alanine-rich domain adopts an extended {alpha}-helix that intertwines with the P{submore » 1} repeat polyproline type II (PPII) helix to form a highly extended stalk-like structure heretofore unseen in prokaryotic or eukaryotic protein structures. Velocity sedimentation studies indicate that full-length AgI/II that contains three A/P repeats extends over 50 nanometers in length. Isothermal titration calorimetry revealed that the high-affinity association between the A{sub 3} and P{sub 1} helices is enthalpically driven. Two distinct binding sites on AgI/II to the host receptor salivary agglutinin (SAG) were identified by surface plasmon resonance (SPR). The current crystal structure reveals that AgI/II family proteins are extended fibrillar structures with the number of alanine- and proline-rich repeats determining their length.« less
Pushie, M. Jake; Nienaber, Kurt H.; McDonald, Alex; Millhauser, Glenn L.; George, Graham N.
2014-01-01
The metal coordinating properties of the prion protein (PrP) have been the subject of intense focus and debate since the first reports of copper interaction with PrP just before the turn of the century. The picture of metal coordination to PrP has been improved and refined over the past decade, and yet the structural details of the various metal coordination modes have not been fully elucidated in some cases. Herein we employ X-ray absorption near edge spectroscopy as well as extended X-ray absorption fine structure (EXAFS) spectroscopy to structurally characterize the dominant 1:1 coordination modes for CuII, CuI and ZnII with an N-terminal fragment of PrP. The PrP fragment constitutes four tandem repeats representative of the mammalian octarepeat domain, designated OR4, which is also the most studied PrP fragment for metal interactions, making our findings applicable to a large body of previous work. Density functional theory (DFT) calculations provide additional structural and thermodynamic data, and candidate structures are used to inform EXAFS data analysis. The optimized geometries from DFT calculations are used to identify potential coordination complexes for multi-histidine coordination of CuII, CuI and ZnII in an aqueous medium, modeled using 4-methylimidazole to represent the histidine side chain. Through a combination of in silico coordination chemistry as well as rigorous EXAFS curve fitting, using full multiple scattering on candidate structures from DFT calculations, we have characterized the predominant coordination modes for the 1:1 complexes of CuII, CuI and ZnII with the OR4 peptide at pH 7.4 at atomic resolution, which are best represented as a square planar [CuII(His)4]2+, digonal [CuI(His)2]+ and tetrahedral [ZnII(His)3(OH2)]2+, respectively. PMID:25042361
Altomonte, M; Pucillo, C; Maio, M
1999-06-01
Besides their "classical" antigenic peptide-presenting activity, major histocompatibility complex (MHC) class II antigens can activate different cellular functions in immune and nonimmune cells. However, this "nonclassical" role and its functional consequences are still substantially overlooked. In this review, we will focus on these alternative functional properties of MHC class II antigens, to reawaken attention to their present and foreseeable immunobiologic and pathogenetic implications. The main issues that will be addressed concern 1) the role of MHC class II molecules as basic components of exchangeable oligomeric protein complexes with intracellular signaling ability; 2) the nonclassical functions of MHC class II antigens in immune cells; 3) the pathogenetic role of MHC class II antigens in inflammatory/autoimmune and infectious disease; and 4) the functional role of MHC class II antigens in solid malignancies.
Barnes, Christopher O.; Calero, Monica; Malik, Indranil; Graham, Brian W.; Spahr, Henrik; Lin, Guowu; Cohen, Aina; Brown, Ian S.; Zhang, Qiangmin; Pullara, Filippo; Trakselis, Michael A.; Kaplan, Craig D.; Calero, Guillermo
2015-01-01
Summary Notwithstanding numerous published structures of RNA Polymerase II (Pol II), structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. Here, we report the structures of TFIIF stabilized transcribing Pol II complexes, revealing the upstream duplex and full transcription bubble. The upstream duplex lies over a wedge-shaped loop from Rpb2 that engages its minor groove, providing part of the structural framework for DNA tracking during elongation. At the upstream transcription bubble fork, rudder and fork loop-1 residues spatially coordinate strand annealing and the nascent RNA transcript. At the downstream fork, a network of Pol II interactions with the non-template strand forms a rigid domain with the Trigger Loop (TL), allowing visualization of its open state. Overall, our observations suggest that “open/closed” conformational transitions of the TL may be linked to interactions with the non-template strand, possibly in a synchronized ratcheting manner conducive to polymerase translocation. PMID:26186291
Mantegazza, R; Gebbia, M; Mora, M; Barresi, R; Bernasconi, P; Baggi, F; Cornelio, F
1996-08-01
Major histocompatibility complex (MHC) class II molecules are expressed on myoblasts after interferon-gamma (IFN-gamma) treatment, suggesting a muscle cell involvement in antigen presentation in inflammatory myopathies. However, they were not observed on normal or pathological myofibers. This discrepancy might be related to different responsiveness of developmentally differentiated muscle cells to IFN-gamma. Myoblasts expressed class II transcripts and proteins after IFN-gamma, while myotubes and innervated contracting muscle cells did not show staining for class II molecules. At all cell stages no loss of IFN-gamma receptor was detected indicating that myofiber maturation blocks their capacity to express MHC class II molecules. This suggests that completely differentiated myofibers cannot participate in class II restricted immunological reactions.
How Mature-Age Students Succeed in Higher Education: Implications for Institutional Support
ERIC Educational Resources Information Center
Heagney, Margaret; Benson, Robyn
2017-01-01
This article draws on stories of success in higher education by mature-age students of diverse backgrounds to highlight some key implications for institutional support. We begin by reviewing the post-World War II background of mature-age study in Australian higher education to provide a context for presenting some major findings from a small,…
Breslin, Henry J; Miskowski, Tamara A; Kukla, Michael J; De Winter, Hans L; Somers, Maria V F; Roevens, Peter W M; Kavash, Robert W
2003-12-15
We have systematically explored the structure-activity relationship (SAR) for a series of compounds 2 as inhibitors of tripeptidyl-peptidase II (TPP II), a serine protease responsible for the degradation of cholecystokinin-8 (CCK-8). This SAR evaluation of the core structure 2 suggest a fairly restrictive pharmacophore for such related structures, but has yielded a limited set of compounds (2b, 2c, 2d, 2s, and 2t) with potent TPP II inhibitory activity (IC(50) 4-11 nM).
Global megatrends and their implications for environmental assessment practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Retief, Francois, E-mail: francois.retief@nwu.ac.za; Bond, Alan; Research Unit for Environmental Sciences and Management, North-West University
This paper addresses the future of environmental assessment (EA) practice in light of a rapidly changing world. We apply a literature review-based methodology to firstly identify key global megatrends and then reflect upon the implications for EA practice based on some known challenges. The key megatrends identified are synthesised into six categories: i) demographics, ii) urbanization, iii) technological innovation, iv) power shifts, v) resource scarcity and vi) climate change. We then discuss the implications of these megatrends for EA practice against four known EA challenges namely: dealing with i) complexity and uncertainty, ii) efficiency, iii) significance and iv) communication andmore » participation. Our analysis suggests important implications for EA practice such as: increased difficulties with accuracy of prediction; the need for facilitative adaptation; an increase in the occurrence of unexpected events; higher expectations for procedural efficiency; challenges with information and communication management; dealing with significance judgements; and mitigation amidst resource scarcity and increasing pressures on earth systems. The megatrends underscore the need for continued evolution of EA thinking and practice, especially moving away from seeking a predictable single future or outcome towards the possibility of multiple scenarios with associated adaptability and enhanced system resilience capable of responding to rapid change.« less
NASA Astrophysics Data System (ADS)
Ramli, Aizi Nor Mazila; Mahadi, Nor Muhammad; Shamsir, Mohd Shahir; Rabu, Amir; Joyce-Tan, Kwee Hong; Murad, Abdul Munir Abdul; Illias, Rosli Md.
2012-08-01
The structure of psychrophilic chitinase (CHI II) from Glaciozyma antarctica PI12 has yet to be studied in detail. Due to its low sequence identity (<30 %), the structural prediction of CHI II is a challenge. A 3D model of CHI II was built by first using a threading approach to search for a suitable template and to generate an optimum target-template alignment, followed by model building using MODELLER9v7. Analysis of the catalytic insertion domain structure in CHI II revealed an increase in the number of aromatic residues and longer loops compared to mesophilic and thermophilic chitinases. A molecular dynamics simulation was used to examine the stability of the CHI II structure at 273, 288 and 300 K. Structural analysis of the substrate-binding cleft revealed a few exposed aromatic residues. Substitutions of certain amino acids in the surface and loop regions of CHI II conferred an increased flexibility to the enzyme, allowing for an adaptation to cold temperatures. A substrate binding comparison of CHI II with the mesophilic chitinase from Coccidioides immitis, 1D2K, suggested that the psychrophilic adaptation and catalytic activity at low temperatures were achieved through a reduction in the number of salt bridges, fewer hydrogen bonds and an increase in the exposure of the hydrophobic side chains to the solvent.
The Factor Structure of the Beck Depression Inventory-II: An Evaluation
ERIC Educational Resources Information Center
Vanheule, Stijn; Desmet, Mattias; Groenvynck, Hans; Rosseel, Yves; Fontaine, Johnny
2008-01-01
The Beck Depression Inventory-II (BDI-II) is a frequently used scale for measuring depressive severity. BDI-II data (404 clinical; 695 nonclinical adults) were analyzed by means of confirmatory factor analysis to test whether the factor structure model with a somatic-affective and cognitive component of depression, formulated by Beck and…
Cosmic Ray Experiments and the Implications for Indirect Detection of Dark Matter
NASA Technical Reports Server (NTRS)
Mitchell, John W.; Ormes, Jonathan F.; Streitmatter, Robert E.
2013-01-01
Detection of cosmic-ray antiprotons was first reported by Golden et al. in 1979 and their existence was firmly established by the BESS and IMAX collaborations in the early 1990s. Increasingly precise measurements of the antiproton spectrum, most recently from BESS-Polar and PAMELA, have made it an important tool for investigating cosmic-ray transport in the galaxy and heliosphere and for constraining dark-matter models. The history of antiproton measurements will be briefly reviewed. The current status will be discussed, focusing on the results of BESS-Polar II and their implications for the possibility of antiprotons from primordial black hole evaporation. The current results of the BESS-Polar II antihelium search are also presented.
Structural and electronic properties of CdS/ZnS core/shell nanowires: A first-principles study
NASA Astrophysics Data System (ADS)
Kim, Hyo Seok; Kim, Yong-Hoon
2015-03-01
Carrying out density functional theory (DFT) calculation, we studied the relative effects of quantum confinement and strain on the electronic structures of II-IV semiconductor compounds with a large lattice-mismatch, CdS and ZnS, in the core/shell nanowire geometry. We considered different core radii and shell thickness of the CdS/ZnS core/shell nanowire, different surface facets, and various defects in the core/shell interface and surface regions. To properly describe the band level alignment at the core/shell boundary, we adopted the self-interaction correction (SIC)-DFT scheme. Implications of our findings in the context of device applications will be also discussed. This work was supported by the Basic Science Research Grant (No. 2012R1A1A2044793), Global Frontier Program (No. 2013-073298), and Nano-Material Technology Development Program (2012M3A7B4049888) of the National Research Foundation funded by the Ministry of Education, Science and Technology of Korea. Corresponding author
NASA Astrophysics Data System (ADS)
Fausnaugh, Michael; Agn Storm Team
2015-01-01
The AGN STORM collaboration recently completed an extensive reverberation mapping campaign, targeting NGC 5548 with observations spanning the hard X-rays to mid-infrared. This campaign represents a massive collaborative effort, with far UV continuum spectrophotometry obtained through an intensive HST COS program, and near-UV/optical broad band photometry obtained from Swift and over 25 ground-based telescopes (in BVR and griz). The campaign spanned the entire 2014 observing season with virtually daily cadence, which allows us to compare with unprecedented accuracy the detailed structure of the observed UV and optical continuum emission signals in this archetypal AGN. We find statistically significant time delays between lightcurves from different wavebands, and this result has implications for the temperature, ionization, and geometric configuration of the AGN's sub-parsec scale environment. We will present the UV/optical continuum lightcurves from this campaign, as well as an analysis of the wavelength-dependent structure of the time delays.
Barber, James
2016-10-05
Photosystem II is the chlorophyll containing enzyme in which the very first chemical energy storing reaction of photosynthesis occurs. It does so by splitting water into molecular oxygen and hydrogen equivalents at a catalytic centre composed of four Mn ions and one Ca2+. All the oxygen in the atmosphere is derived from this reaction and without it the biosphere, as we know it, would not exist. Indeed its appearance about 3 billion years ago gave rise to the "big bang of evolution". Thus understanding the structure and functioning of this metal cluster is a major topic in science and here I discuss it in terms of research over of the last twelve years dating back to when it was first proposed to be a Mn3CaO4 cubane with the fourth Mn attached to cubane by one of its oxo bridging bonds. In so doing a number of novel properties emerge for this metallo-protein with implications for its mechanism and evolutionary origin.
The Nuclear Symmetry Energy and the Mass-Radius Relation of Neutron Stars
NASA Astrophysics Data System (ADS)
Lattimer, James
2017-01-01
The assumptions that i) neutron stars have hadronic crusts, ii) the equation of state is causal, iii) GR is the correct theory of gravity, and iv) their largest observed mass is 2 solar masses, when coupled with recent results from nuclear experiment and theoretical studies of neutron matter, generate powerful constraints on their structure. These include restriction of the radii of typical neutron stars to the range 11-13 km, as well as significant correlations among their masses, compactnesses, moments of inertia, binding energies, and tidal deformabilities. In addition, properties of quark matter, including the location and magnitude of the quark-hadron phase transition, can also be limited. The implications of recent and forthcoming experiments, such as those pertaining to the neutron skin thickness and astrophysical measurements of various structural properties is discussed. For the latter, emphasis is placed on pulsar timing, X-ray observations, supernova neutrino detections, and gravitational waves from mergers involving neutron stars. Supported in part by the US DOE grant DE-AC02-87ER40317.
Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.
Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A; Chong, Jenny; Hare, Alissa A; Dervan, Peter B; DiMaio, Frank; Leschziner, Andres E; Wang, Dong
2017-11-30
Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II). Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during the initiation of eukaryotic TCR. Mutations in CSB are associated with the autosomal-recessive neurological disorder Cockayne syndrome, which is characterized by progeriod features, growth failure and photosensitivity. The molecular mechanism of eukaryotic TCR initiation remains unclear, with several long-standing unanswered questions. How cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II, the role of CSB in TCR initiation, and how CSB interacts with the arrested Pol II complex are all unknown. The lack of structures of CSB or the Pol II-CSB complex has hindered our ability to address these questions. Here we report the structure of the S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy. The structure reveals that Rad26 binds to the DNA upstream of Pol II, where it markedly alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes the forward movement of Pol II, and elucidate key roles for Rad26 in both TCR and transcription elongation.
NASA Technical Reports Server (NTRS)
Johnson, Craig A.; Prinz, Martin
1991-01-01
Unequilibrated chromite and olivine margin compositions in type II chondrules are noted to differ systematically among three of the chondrite groups, suggesting that type II liquids differed in composition among the groups. These differences may be interpreted as indicators of different chemical compositions of the precursor solids which underwent melting, or, perhaps, as differences in the extent to which immiscible metal sulfide droplets were lost during chondrule formation. Because zinc is detectable only in type II chromites which have undergone reequilibration, the high zinc contents reported for chondritic chromites in other studies probably reflect redistribution during thermal metamorphism.
A rare polyglycine type II-like helix motif in naturally occurring proteins.
Warkentin, Eberhard; Weidenweber, Sina; Schühle, Karola; Demmer, Ulrike; Heider, Johann; Ermler, Ulrich
2017-11-01
Common structural elements in proteins such as α-helices or β-sheets are characterized by uniformly repeating, energetically favorable main chain conformations which additionally exhibit a completely saturated hydrogen-bonding network of the main chain NH and CO groups. Although polyproline or polyglycine type II helices (PP II or PG II ) are frequently found in proteins, they are not considered as equivalent secondary structure elements because they do not form a similar self-contained hydrogen-bonding network of the main chain atoms. In this context our finding of an unusual motif of glycine-rich PG II -like helices in the structure of the acetophenone carboxylase core complex is of relevance. These PG II -like helices form hexagonal bundles which appear to fulfill the criterion of a (largely) saturated hydrogen-bonding network of the main-chain groups and therefore may be regarded in this sense as a new secondary structure element. It consists of a central PG II -like helix surrounded by six nearly parallel PG II -like helices in a hexagonal array, plus an additional PG II -like helix extending the array outwards. Very related structural elements have previously been found in synthetic polyglycine fibers. In both cases, all main chain NH and CO groups of the central PG II -helix are saturated by either intra- or intermolecular hydrogen-bonds, resulting in a self-contained hydrogen-bonding network. Similar, but incomplete PG II -helix patterns were also previously identified in a GTP-binding protein and an antifreeze protein. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gupta, Shraddha Rani; Mourya, Punita; Singh, M. M.; Singh, Vinod P.
2017-06-01
A Schiff base, (E)-N‧-((1H-indol-3-yl)methylene)-2-aminobenzohydrazide (Iabh) and its Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. These compounds have been characterized by different physico-chemical and spectroscopic tools (UV-Vis, IR, NMR and ESI-Mass). The molecular structure of Iabh is determined by single crystal X-ray diffraction technique. The ligand Iabh displays E-configuration about the >Cdbnd N- bond. The structure of ligand is stabilized by intra-molecular H-bonding. In all the metal complexes the ligand coordinates through azomethine-N and carbonyl-O resulting a distorted octahedral geometry for Mn(II), Co(II) and Cu(II) complexes in which chloride ions occupy axial positions. Ni(II) and Zn(II) complexes, however, form 4-coordinate distorted square planer and tetrahedral geometry around metal ion, respectively. The structures of the complexes have been satisfactorily modeled by calculations based on density functional theory (DFT) and time dependent-DFT (TD-DFT). The corrosion inhibition study of the compounds have been performed against mild steel in 0.5 M H2SO4 solution at 298 K by using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). They show appreciable corrosion inhibition property.
NASA Astrophysics Data System (ADS)
Bouchoucha, Afaf; Zaater, Sihem; Bouacida, Sofiane; Merazig, Hocine; Djabbar, Safia
2018-06-01
The synthesis, characterization and biological study of new nickel (II), palladium (II), and platinum (II) complexes with sulfamethoxazole ligand used in pharmaceutical field, were reported. [MLCl2].nH2O is the general formula obtained for Pd(II) and Pt(II) complexes. These complexes have been prepared and characterized by elemental analysis, FTIR, 1HNMR spectral, magnetic measurements, UV-Visible spectra, and conductivity. The DFT calculation was applied to optimize the geometric structure of the Pd(II) and Pt(II) complexes. A new single-crystal X-ray structure of the Ni(II) complex has been determined. It crystallized in monoclinic system with P 21/c space group and Z = 8. The invitro antibacterial activity of ligand and complexes against Escherichia coli, P. aeruginosa, Klebsiella pneumoniae, S. aureus, Bacillus subtilis species has been carried out and compared using agar-diffusion method. The Pd(II) and Pt(II) complexes showed a remarkable inhibition against bacteria tested. The invitro cytotoxicity assay of the complexes against three cell lines chronic myelogenous leukaemia (K562), human colon adenocarcinoma (HT-29) and breast cancer (MCF-7) was also reported.
Guan, Jingang; Puskar, Ljiljana; Esplugas, Ricardo O; Cox, Hazel; Stace, Anthony J
2007-08-14
Experiments have been undertaken to record photofragmentation spectra from a series of [Ag(L)N]2+ complexes in the gas phase. Spectra have been obtained for silver(II) complexed with the ligands (L): acetone, 2-pentanone, methyl-vinyl ketone, pyridine, and 4-methyl pyridine (4-picoline) with N in the range of 4-7. A second series of experiments using 1,1,1,3-fluoroacetone, acetonitrile, and CO2 as ligands failed to show any evidence of photofragmentation. Interpretation of the experimental data has come from time-dependent density functional theory (TDDFT), which very successfully accounts for trends in the spectra in terms of subtle differences in the properties of the ligands. Taking a sample of three ligands, acetone, pyridine, and acetonitrile, the calculations show all the spectral transitions to involve ligand-to-metal charge transfer, and that wavelength differences (or lack of spectra) arise from small changes in the energies of the molecular orbitals concerned. The calculations account for an absence in the spectra of any effects due to Jahn-Teller distortion, and they also reveal structural differences between complexes where the coordinating atom is either oxygen or nitrogen that have implications for the stability of silver(II) compounds. Where possible, comparisons have also been made with the physical properties of condensed phase silver(II) complexes.
Crystal structure of mitochondrial respiratory membrane protein complex II.
Sun, Fei; Huo, Xia; Zhai, Yujia; Wang, Aojin; Xu, Jianxing; Su, Dan; Bartlam, Mark; Rao, Zihe
2005-07-01
The mitochondrial respiratory Complex II or succinate:ubiquinone oxidoreductase (SQR) is an integral membrane protein complex in both the tricarboxylic acid cycle and aerobic respiration. Here we report the first crystal structure of Complex II from porcine heart at 2.4 A resolution and its complex structure with inhibitors 3-nitropropionate and 2-thenoyltrifluoroacetone (TTFA) at 3.5 A resolution. Complex II is comprised of two hydrophilic proteins, flavoprotein (Fp) and iron-sulfur protein (Ip), and two transmembrane proteins (CybL and CybS), as well as prosthetic groups required for electron transfer from succinate to ubiquinone. The structure correlates the protein environments around prosthetic groups with their unique midpoint redox potentials. Two ubiquinone binding sites are discussed and elucidated by TTFA binding. The Complex II structure provides a bona fide model for study of the mitochondrial respiratory system and human mitochondrial diseases related to mutations in this complex.
NMR structures of anti-HIV D-peptides derived from the N-terminus of viral chemokine vMIP-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Mayuko; Liu Dongxiang; Kumar, Santosh
2005-09-30
The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus has unique biological activities in that it blocks the cell entry by several different human immunodeficiency virus type 1 (HIV-1) strains via chemokine receptors including CXCR4 and CCR5. In this paper, we report the solution structure of all-D-amino acid peptides derived from the N-terminus of vMIP-II, which have been shown to have strong CXCR4 binding activity and potently inhibit HIV-1 entry via CXCR4, by using long mixing time two-dimensional nuclear Overhauser enhancement spectroscopy experiments. Both of all-D-peptides vMIP-II (1-10) and vMIP-II (1-21), which are designated as DV3 and DV1,more » respectively, have higher CXCR4 binding ability than their L-peptide counterparts. They are partially structured in aqueous solution, displaying a turn-like structure over residues 5-8. The small temperature coefficients of His-6 amide proton for both peptides also suggest the formation of a small hydrophobic pocket centered on His-6. The structural features of DV3 are very similar to the reported solution structure of all-L-peptide vMIP-II (1-10) [M.P. Crump, E. Elisseeva, J. Gong, I. Clark-Lewis, B.D. Sykes, Structure/function of human herpesvirus-8 MIP-II (1-71) and the antagonist N-terminal segment (1-10), FEBS Lett. 489 (2001) 171], which is consistent with the notion that D- and L-enantiomeric peptides can adopt mirror image conformations. The NMR structures of the D-peptides provide a structural basis to understand their mechanism of action and design new peptidomimetic analogs to further explore the structure-activity relationship of D-peptide ligand binding to CXCR4.« less
Unbiased quantitative testing of conventional orthodontic beliefs.
Baumrind, S
1998-03-01
This study used a preexisting database to test in hypothesis from the appropriateness of some common orthodontic beliefs concerning upper first molar displacement and changes in facial morphology associated with conventional full bonded/banded treatment in growing subjects. In an initial pass, the author used data from a stratified random sample of 48 subjects drawn retrospectively from the practice of a single, experienced orthodontist. This sample consisted of 4 subgroups of 12 subjects each: Class I nonextraction, Class I extraction, Class II nonextraction, and Class II extraction. The findings indicate that, relative to the facial profile, chin point did not, on average, displace anteriorly during treatment, either overall or in any subgroup. Relative to the facial profile, Point A became significantly less prominent during treatment, both overall and in each subgroup. The best estimate of the mean displacement of the upper molar cusp relative to superimposition on Anterior Cranial Base was in the mesial direction in each of the four subgroups. In only one extraction subject out of 24 did the cusp appear to be displaced distally. Mesial molar cusp displacement was significantly greater in the Class II extraction subgroup than in the Class II nonextraction subgroup. Relative to superimposition on anatomical "best fit" of maxillary structures, the findings for molar cusp displacement were similar, but even more dramatic. Mean mesial migration was highly significant in both the Class II nonextraction and Class II extraction subgroups. In no subject in the entire sample was distal displacement noted relative to this superimposition. Mean increase in anterior Total Face Height was significantly greater in the Class II extraction subgroup than in the Class II nonextraction subgroup. (This finding was contrary to the author's original expectation.) The generalizability of the findings from the initial pass to other treated growing subjects was then assessed by retesting modified hypotheses against a second database stored sample that earlier had been drawn randomly from two other orthodontic practices. The implications of the author's study strategy to the design of future shared digital databases is discussed briefly.
Comparative analyses identify molecular signature of MRI-classified SVZ-associated glioblastoma
Lin, Chin-Hsing Annie; Rhodes, Christopher T.; Lin, ChenWei; Phillips, Joanna J.; Berger, Mitchel S.
2017-01-01
ABSTRACT Glioblastoma (GBM) is a highly aggressive brain cancer with limited therapeutic options. While efforts to identify genes responsible for GBM have revealed mutations and aberrant gene expression associated with distinct types of GBM, patients with GBM are often diagnosed and classified based on MRI features. Therefore, we seek to identify molecular representatives in parallel with MRI classification for group I and group II primary GBM associated with the subventricular zone (SVZ). As group I and II GBM contain stem-like signature, we compared gene expression profiles between these 2 groups of primary GBM and endogenous neural stem progenitor cells to reveal dysregulation of cell cycle, chromatin status, cellular morphogenesis, and signaling pathways in these 2 types of MRI-classified GBM. In the absence of IDH mutation, several genes associated with metabolism are differentially expressed in these subtypes of primary GBM, implicating metabolic reprogramming occurs in tumor microenvironment. Furthermore, histone lysine methyltransferase EZH2 was upregulated while histone lysine demethylases KDM2 and KDM4 were downregulated in both group I and II primary GBM. Lastly, we identified 9 common genes across large data sets of gene expression profiles among MRI-classified group I/II GBM, a large cohort of GBM subtypes from TCGA, and glioma stem cells by unsupervised clustering comparison. These commonly upregulated genes have known functions in cell cycle, centromere assembly, chromosome segregation, and mitotic progression. Our findings highlight altered expression of genes important in chromosome integrity across all GBM, suggesting a common mechanism of disrupted fidelity of chromosome structure in GBM. PMID:28278055
Kozhevnikov, V.; Valente-Feliciano, A. -M.; Curran, P. J.; ...
2017-05-17
The standard interpretation of the phase diagram of type-II superconductors was developed in the 1960s and has since been considered a well-established part of classical superconductivity. However, upon closer examination a number of fundamental issues arises that leads one to question this standard picture. To address these issues we studied equilibrium properties of niobium samples near and above the upper critical field H c2 in parallel and perpendicular magnetic fields. The samples investigated were very high quality films and single-crystal disks with the Ginzburg-Landau parameters 0.8 and 1.3, respectively. A range of complementary measurements has been performed, which include dcmore » magnetometry, electrical transport, muon spin rotation spectroscopy, and scanning Hall-probe microscopy. Contrary to the standard scenario, we observed that a superconducting phase is present in the sample bulk above H c2 and the field H c3 is the same in both parallel and perpendicular fields. Our findings suggest that above H c2 the superconducting phase forms filaments parallel to the field regardless of the field orientation. Near H c2 the filaments preserve the hexagonal structure of the preceding vortex lattice of the mixed state, and the filament density continuously falls to zero at H c3. Finally, our paper has important implications for the correct interpretation of the properties of type-II superconductors and can be essential for practical applications of these materials.« less
Deutsch, E; Elder, R C; Lange, B A; Vaal, M J; Lay, D G
1976-01-01
Reduction of pertechnetate by tin(II) in the presence of dimethylglyoxime is shown, by single crystal x-ray analysis, to yield a technetium-tin-dimethylglyoxime complex in which tin and technetium are intimately connected by a triple bridging arrangement. One bridge consists of a single oxygen atom and it is hypothesized that this bridge arises from the inner sphere reduction of technetium by tin(II), the electrons being transferred through a technetium "yl" oxygen which eventually becomes the bridging atom. Two additional bridges arise from two dimethylglyoxime ligands that function as bidentate nitrogen donors towards Tc and monodentate oxygen donors towards Sn. The tin atom can thus be viewed as providing a three-pronged "cap" on one end of the Tc-dimethylglyoxime complex. The additional coordination sites around Tc are occupied by the two nitrogens of a third dimethylglyoxime ligand, making the Tc seven-coordinate. The additional coordination sites around Sn are occupied by three chloride anions, giving the Sn a fac octahedral coordination environment. From indirect evidence the oxidation states of tin and technetium are tentatively assigned to be IV and V, respectively. Since most 99mTc-radiopharmaceuticals are synthesized by the tin(II) reduction of pertechnetate, it is likely that the Sn-O-Tc linkage described in this work is an important feature of the chemistry of these species. This linkage also provides a ready rationale for the close association of tin and technetium observed in many 99mTc-radiopharmaceuticals. PMID:1069984
Kuch, Ulrich; Keogh, J Scott; Weigel, John; Smith, Laurie A; Mebs, Dietrich
2005-03-01
King brown snakes or mulga snakes (Pseudechis australis) are the largest and among the most dangerous and wide-ranging venomous snakes in Australia and New Guinea. They occur in diverse habitats, are important predators, and exhibit considerable morphological variation. We infer the relationships and historical biogeography of P. australis based on phylogenetic analysis of 1,249 base pairs from the mitochondrial cytochrome b, NADH dehydrogenase subunit 4 and three adjacent tRNA genes using Bayesian, maximum-likelihood, and maximum-parsimony methods. All methods reveal deep phylogenetic structure with four strongly supported clades comprising snakes from New Guinea (I), localities all over Australia (II), the Kimberleys of Western Australia (III), and north-central Australia (IV), suggesting a much more ancient radiation than previously believed. This conclusion is robust to different molecular clock estimations indicating divergence in Pliocene or Late Miocene, after landbridge dispersal to New Guinea had occurred. While members of clades I, III and IV are medium-sized, slender snakes, those of clade II attain large sizes and a robust build, rendering them top predators in their ecosystems. Genetic differentiation within clade II is low and haplotype distribution largely incongruent with geography or colour morphs, suggesting Pleistocene dispersal and recent ecomorph evolution. Significant haplotype diversity exists in clades III and IV, implying that clade IV comprises two species. Members of clade II are broadly sympatric with members of both northern Australian clades. Thus, our data support the recognition of at least five species from within P. australis (auct.) under various criteria. We discuss biogeographical, ecological and medical implications of our findings.
NASA Astrophysics Data System (ADS)
Kuch, Ulrich; Keogh, J. Scott; Weigel, John; Smith, Laurie A.; Mebs, Dietrich
2005-03-01
King brown snakes or mulga snakes (Pseudechis australis) are the largest and among the most dangerous and wide-ranging venomous snakes in Australia and New Guinea. They occur in diverse habitats, are important predators, and exhibit considerable morphological variation. We infer the relationships and historical biogeography of P. australis based on phylogenetic analysis of 1,249 base pairs from the mitochondrial cytochrome b, NADH dehydrogenase subunit 4 and three adjacent tRNA genes using Bayesian, maximum-likelihood, and maximum-parsimony methods. All methods reveal deep phylogenetic structure with four strongly supported clades comprising snakes from New Guinea (I), localities all over Australia (II), the Kimberleys of Western Australia (III), and north-central Australia (IV), suggesting a much more ancient radiation than previously believed. This conclusion is robust to different molecular clock estimations indicating divergence in Pliocene or Late Miocene, after landbridge dispersal to New Guinea had occurred. While members of clades I, III and IV are medium-sized, slender snakes, those of clade II attain large sizes and a robust build, rendering them top predators in their ecosystems. Genetic differentiation within clade II is low and haplotype distribution largely incongruent with geography or colour morphs, suggesting Pleistocene dispersal and recent ecomorph evolution. Significant haplotype diversity exists in clades III and IV, implying that clade IV comprises two species. Members of clade II are broadly sympatric with members of both northern Australian clades. Thus, our data support the recognition of at least five species from within P. australis (auct.) under various criteria. We discuss biogeographical, ecological and medical implications of our findings.
Mali, Aniket V; Bhise, Sunita S; Katyare, Surendra S; Hegde, Mahabaleshwar V
2018-01-01
Recent studies have been noted that the erythrocytes from Type II diabetic patients show significantly altered structural and functional characteristics along with the changed intracellular concentrations of glycolytic intermediates. More recent studies from our laboratory have shown that the activities of enzymes of glycolytic pathway changed significantly in RBCs from Type II diabetic patients. In particular the levels of lactate dehydrogenase (LDH) increased significantly. Lactic acidosis is an established feature of diabetes and LDH plays a crucial role in conversion of pyruvate to lactate and reportedly, the levels of lactate are significantly high which is consistent with our observation on increased levels of LDH. Owing to this background, we examined the role of erythrocyte LDH in lactic acidosis by studying its kinetics properties in Type II diabetic patients. Km, Vmax and apparent catalytic efficiency were determined using pyruvate and NADH as the substrates. With pyruvate as the substrate the Km values were comparable but Vmax increased significantly in the diabetic group. With NADH as the substrate the enzyme activity of the diabetic group resolved in two components as against a single component in the controls. The Apparent Kcat and Kcat/Km values for pyruvate increased in the diabetic group. The Ki for pyruvate increased by two fold for the enzyme from diabetic group with a marginal decrease in Ki for NADH. The observed changes in catalytic attributes are conducive to enable the enzyme to carry the reaction in forward direction towards conversion of pyruvate to lactate leading to lactic acidosis.
Conrad, Karen S; Jordan, Christopher D; Brown, Kenneth L; Brunold, Thomas C
2015-04-20
5'-deoxyadenosylcobalamin (coenzyme B12, AdoCbl) serves as the cofactor for several enzymes that play important roles in fermentation and catabolism. All of these enzymes initiate catalysis by promoting homolytic cleavage of the cofactor's Co-C bond in response to substrate binding to their active sites. Despite considerable research efforts, the role of the lower axial ligand in facilitating Co-C bond homolysis remains incompletely understood. In the present study, we characterized several derivatives of AdoCbl and its one-electron reduced form, Co(II)Cbl, by using electronic absorption and magnetic circular dichroism spectroscopies. To complement our experimental data, we performed computations on these species, as well as additional Co(II)Cbl analogues. The geometries of all species investigated were optimized using a quantum mechanics/molecular mechanics method, and the optimized geometries were used to compute absorption spectra with time-dependent density functional theory. Collectively, our results indicate that a reduction in the basicity of the lower axial ligand causes changes to the cofactor's electronic structure in the Co(II) state that replicate the effects seen upon binding of Co(II)Cbl to Class I isomerases, which replace the lower axial dimethylbenzimidazole ligand of AdoCbl with a protein-derived histidine (His) residue. Such a reduction of the basicity of the His ligand in the enzyme active site may be achieved through proton uptake by the catalytic triad of conserved residues, DXHXGXK, during Co-C bond homolysis.
Structure and magnetism of a Mn(III)-Mn(II)-Mn(II)-Mn(III) chain complex.
Uhrecký, Róbert; Moncoľ, Ján; Koman, Marian; Titiš, Ján; Boča, Roman
2013-07-14
A novel tetranuclear manganese(II/III) complex with anions of pyridine-2,6-dicarboxylic acid (dipicolinic acid) has been synthesised and magneto-structurally characterised. The crystal structure of [Mn(II)2Mn(III)2(dipic)6(H2O)4]·2CH3OH·4H2O has been determined by single-crystal X-ray diffraction. The tetranuclear complex molecule [Mn(II)2Mn(III)2(dipic)6(H2O)4] is centrosymmetric and two manganese(II) and two manganese(III) atoms are bridged by four dipicolinate ligands. The complex molecules and uncoordinated water and methanol molecules are connected through hydrogen bonds and they form a 3D supramolecular hydrogen-bonding network.
Born to run: control of transcription elongation by RNA polymerase II.
Chen, Fei Xavier; Smith, Edwin R; Shilatifard, Ali
2018-05-08
The dynamic regulation of transcription elongation by RNA polymerase II (Pol II) is an integral part of the implementation of gene expression programmes during development. In most metazoans, the majority of transcribed genes exhibit transient pausing of Pol II at promoter-proximal regions, and the release of Pol II into gene bodies is controlled by many regulatory factors that respond to environmental and developmental cues. Misregulation of the elongation stage of transcription is implicated in cancer and other human diseases, suggesting that mechanistic understanding of transcription elongation control is therapeutically relevant. In this Review, we discuss the features, establishment and maintenance of Pol II pausing, the transition into productive elongation, the control of transcription elongation by enhancers and by factors of other cellular processes, such as topoisomerases and poly(ADP-ribose) polymerases (PARPs), and the potential of therapeutic targeting of the elongation stage of transcription by Pol II.
Zinc(II) binds to the neuroprotective peptide humanin.
Armas, Ambar; Sonois, Vanessa; Mothes, Emmanuelle; Mazarguil, Honoré; Faller, Peter
2006-10-01
The abnormal accumulation of the peptide amyloid-beta in the form of senile (or amyloid) plaques is one of the hallmarks of Alzheimer's disease (AD). Zinc ions have been implicated in AD and plaques formation. Recently, the peptide humanin has been discovered. Humanin showed neuroprotective activity against amyloid-beta insults. Here the question investigated is if humanin could interact directly with Zn(II). It is shown that Zn(II) and its substitutes Cd(II)/Co(II) bind to humanin via a thiolate bond from the side chain of the single cysteine at position 8. The low intensity of the d-d bands of Co(II)-humanin indicated an octahedral coordination geometry. Titration experiments suggest that Zn(II) binds to humanin with an apparent affinity in the low muM range. This apparent Zn-binding affinity is in the same order as for amyloid-beta and glutathione and could thus be of physiological relevance.
Nordqvist, A C; Peyrard, M; Pettersson, H; Mathiesen, T; Collins, V P; Dumanski, J P; Schalling, M
1997-07-01
Insulin-like growth factors (IGFs) I and II have been implicated as autocrine or paracrine growth promoters. These growth factors bind to specific receptors, and the response is modulated by interaction with IGF-binding proteins (IGFBPs). We observed a strong correlation between anaplastic/atypical histopathology and a high IGF-II/IGFBP-2 mRNA ratio in a set of 68 sporadic meningiomas. A strong correlation was also found between clinical outcome and IGF-II/IGFBP-2 ratio, whereas previously used histochemical markers were less correlated to outcome. We suggest that a high IGF-II/IGFBP-2 mRNA ratio may be a sign of biologically aggressive behavior in meningiomas that can influence treatment strategies. We propose that low IGFBP-2 levels in combination with increased levels of IGF-II would result in more free IGF-II and consequently greater stimulation of proliferation.
Excitonic transitions in highly efficient (GaIn)As/Ga(AsSb) type-II quantum-well structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gies, S.; Kruska, C.; Berger, C.
2015-11-02
The excitonic transitions of the type-II (GaIn)As/Ga(AsSb) gain medium of a “W”-laser structure are characterized experimentally by modulation spectroscopy and analyzed using microscopic quantum theory. On the basis of the very good agreement between the measured and calculated photoreflectivity, the type-I or type-II character of the observable excitonic transitions is identified. Whereas the energetically lowest three transitions exhibit type-II character, the subsequent energetically higher transitions possess type-I character with much stronger dipole moments. Despite the type-II character, the quantum-well structure exhibits a bright luminescence.
ERIC Educational Resources Information Center
Zigarmi, Drea; Roberts, Taylor Peyton
2017-01-01
Purpose: This study aims to test the following three assertions underlying the Situational Leadership® II (SLII) Model: all four leadership styles are received by followers; all four leadership styles are needed by followers; and if there is a fit between the leadership style a follower receives and needs, that follower will demonstrate favorable…
ERIC Educational Resources Information Center
Michigan Univ., Ann Arbor. School of Education.
The papers presented in this volume are the team research reports of the Joint Hampton-Michigan Program conducted in 1979-1980 for junior faculty members of the Hampton Institute (Virginia) and graduate students and faculty members of the University of Michigan. The titles of the papers are: (1) Social and Economic Implications of Teacher Training…
Flow Interpretation Implications for Poro-Elastic Modeling
2010-06-01
interpretation of acoustical inversions based on poro-elastic models . I. INTRODUCTION Poro-elastic models for acoustic propagation in sediments arose out of the...porous solid. ii. higher freqency range, J. Acoust . Soc. America, 28, 179– 191, 1956. [11] Bear, J., and Y. Bachmat (Eds.), Introduction to Modeling of...Flow interpretation implications for Poro-Elastic Modeling James K. Fulford Naval Research Laboratory Stennis Space Center Stennis Space Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Von Dreele, Robert
One of the goals in developing GSAS-II was to expand from the capabilities of the original General Structure Analysis System (GSAS) which largely encompassed just structure refinement and post refinement analysis. GSAS-II has been written almost entirely in Python loaded with graphics, GUI and mathematical packages (matplotlib, pyOpenGL, wxpython, numpy and scipy). Thus, GSAS-II has a fully developed modern GUI as well as extensive graphical display of data and results. However, the structure and operation of Python has required new approaches to many of the algorithms used in crystal structure analysis. The extensions beyond GSAS include image calibration/integration as wellmore » as peak fitting and unit cell indexing for powder data which are precursors for structure solution. Structure solution within GSAS-II begins with either Pawley or LeBail extracted structure factors from powder data or those measured in a single crystal experiment. Both charge flipping and Monte Carlo-Simulated Annealing techniques are available; the former can be applied to (3+1) incommensurate structures as well as conventional 3D structures.« less
Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity.
Ewald, Collin Y; Landis, Jess N; Porter Abate, Jess; Murphy, Coleen T; Blackwell, T Keith
2015-03-05
Interventions that delay ageing mobilize mechanisms that protect and repair cellular components, but it is unknown how these interventions might slow the functional decline of extracellular matrices, which are also damaged during ageing. Reduced insulin/IGF-1 signalling (rIIS) extends lifespan across the evolutionary spectrum, and in juvenile Caenorhabditis elegans also allows the transcription factor DAF-16/FOXO to induce development into dauer, a diapause that withstands harsh conditions. It has been suggested that rIIS delays C. elegans ageing through activation of dauer-related processes during adulthood, but some rIIS conditions confer robust lifespan extension unaccompanied by any dauer-like traits. Here we show that rIIS can promote C. elegans longevity through a program that is genetically distinct from the dauer pathway, and requires the Nrf (NF-E2-related factor) orthologue SKN-1 acting in parallel to DAF-16. SKN-1 is inhibited by IIS and has been broadly implicated in longevity, but is rendered dispensable for rIIS lifespan extension by even mild activity of dauer-related processes. When IIS is decreased under conditions that do not induce dauer traits, SKN-1 most prominently increases expression of collagens and other extracellular matrix genes. Diverse genetic, nutritional, and pharmacological pro-longevity interventions delay an age-related decline in collagen expression. These collagens mediate adulthood extracellular matrix remodelling, and are needed for ageing to be delayed by interventions that do not involve dauer traits. By genetically delineating a dauer-independent rIIS ageing pathway, our results show that IIS controls a broad set of protective mechanisms during C. elegans adulthood, and may facilitate elucidation of processes of general importance for longevity. The importance of collagen production in diverse anti-ageing interventions implies that extracellular matrix remodelling is a generally essential signature of longevity assurance, and that agents promoting extracellular matrix youthfulness may have systemic benefit.
Exotic Lifshitz transitions in topological materials
NASA Astrophysics Data System (ADS)
Volovik, G. E.
2018-01-01
Topological Lifshitz transitions involve many types of topological structures in momentum and frequency-momentum spaces, such as Fermi surfaces, Dirac lines, Dirac and Weyl points, etc., each of which has its own stability-supporting topological invariant ( N_1, N_2, N_3, {\\tilde N}_3, etc.). The topology of the shape of Fermi surfaces and Dirac lines and the interconnection of objects of different dimensionalities produce a variety of Lifshitz transition classes. Lifshitz transitions have important implications for many areas of physics. To give examples, transition-related singularities can increase the superconducting transition temperature; Lifshitz transitions are the possible origin of the small masses of elementary particles in our Universe, and a black hole horizon serves as the surface of the Lifshitz transition between vacua with type-I and type-II Weyl points.
Pescosolido, Matthew F; Yang, Unikora; Sabbagh, Mark; Morrow, Eric M
2012-09-01
In this review, we outline critical molecular processes that have been implicated by discovery of genetic mutations in autism. These mechanisms need to be mapped onto the neurodevelopment step(s) gone awry that may be associated with cause in autism. Molecular mechanisms include: (i) regulation of gene expression; (ii) pre-mRNA splicing; (iii) protein localization, translation, and turnover; (iv) synaptic transmission; (v) cell signaling; (vi) the functions of cytoskeletal and scaffolding proteins; and (vii) the function of neuronal cell adhesion molecules. While the molecular mechanisms appear broad, they may converge on only one of a few steps during neurodevelopment that perturbs the structure, function, and/or plasticity of neuronal circuitry. While there are many genetic mutations involved, novel treatments may need to target only one of few developmental mechanisms.
Posttraumatic idioms of distress among Darfur refugees: Hozun and Majnun.
Rasmussen, Andrew; Katoni, Basila; Keller, Allen S; Wilkinson, John
2011-09-01
Although psychosocial programming is seen as essential to the humanitarian response to the Darfur conflict, aid groups lack culturally-appropriate assessment instruments for monitoring and evaluation. The current study used an emic-etic integrated approach to: (i) create a culturally-appropriate measure of distress (Study 1), and (ii) test the measure in structured interviews of 848 Darfuris living in two refugee camps in Chad (Study 2). Traditional healers identified two trauma-related idioms, hozun and majnun, which shared features with but were not identical to posttraumatic stress disorder and depression. Measures of these constructs were reliable and correlated with trauma, loss, and functional impairment. Exploratory factor analysis resulted in empirical symptom clusters conceptually parallel to general Western psychiatric constructs. Findings are discussed in terms of their implications for psychosocial programming.
Regulation of AMPA receptors by phosphorylation.
Carvalho, A L; Duarte, C B; Carvalho, A P
2000-10-01
The AMPA receptors for glutamate are oligomeric structures that mediate fast excitatory responses in the central nervous system. Phosphorylation of AMPA receptors is an important mechanism for short-term modulation of their function, and is thought to play an important role in synaptic plasticity in different brain regions. Recent studies have shown that phosphorylation of AMPA receptors by cAMP-dependent protein kinase (PKA) and Ca2+- and calmodulin-dependent protein kinase II (CaMKII) potentiates their activity, but phosphorylation of the receptor subunits may also affect their interaction with intracellular proteins, and their expression at the plasma membrane. Phosphorylation of AMPA receptor subunits has also been investigated in relation to processes of synaptic plasticity. This review focuses on recent advances in understanding the molecular mechanisms of regulation of AMPA receptors, and their implications in synaptic plasticity.
Caspers, Kristin M; Yucuis, Rebecca; Troutman, Beth; Spinks, Ruth
2006-01-01
Background Attachment theory allows specific predictions about the role of attachment representations in organizing behavior. Insecure attachment is hypothesized to predict maladaptive emotional regulation whereas secure attachment is hypothesized to predict adaptive emotional regulation. In this paper, we test specific hypotheses about the role of attachment representations in substance abuse/dependence and treatment participation. Based on theory, we expect divergence between levels of maladaptive functioning and adaptive methods of regulating negative emotions. Methods Participants for this study consist of a sample of adoptees participating in an ongoing longitudinal adoption study (n = 208). The Semi-Structured Assessment of the Genetics of Alcohol-II [41] was used to determine lifetime substance abuse/dependence and treatment participation. Attachment representations were derived by the Adult Attachment Interview [AAI; [16
Crisis or self-correction: Rethinking media narratives about the well-being of science
Jamieson, Kathleen Hall
2018-01-01
After documenting the existence and exploring some implications of three alternative news narratives about science and its challenges, this essay outlines ways in which those who communicate science can more accurately convey its investigatory process, self-correcting norms, and remedial actions, without in the process legitimizing an unwarranted “science is broken/in crisis” narrative. The three storylines are: (i) quest discovery, which features scientists producing knowledge through an honorable journey; (ii) counterfeit quest discovery, which centers on an individual or group of scientists producing a spurious finding through a dishonorable one; and (iii) a systemic problem structure, which suggests that some of the practices that protect science are broken, or worse, that science is no longer self-correcting or in crisis. PMID:29531076
An examination of racial bias in the Beck Depression Inventory-II.
Sashidharan, Tracy; Pawlow, Laura A; Pettibone, Jonathan C
2012-04-01
Historically, many psychological measures were developed and standardized based on a primarily Caucasian population. These tests are subsequently applied to minorities and may be inappropriate and possibly even pathologizing. The widely used Beck Depression Inventory-II (BDI-II) was initially standardized on a sample of Caucasian university students and its use with minorities has only recently been investigated. This study examined the possibility of racial bias in the BDI-II by comparing Caucasian and African American Midwestern university students. A hierarchical multiple regression compared the scores of the BDI-II with a similar measure of depression that is standardized for use with African Americans. There was no evidence of racial bias discovered in the BDI-II in this sample. Implications and future directions of research are discussed. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Silva, Marcondes A B; Durand, Marina T; Prado, Cibele M; Oliveira, Eduardo B; Ribeiro, Mauricio S; Salgado, Helio C; Salgado, Maria Cristina O; Tostes, Rita C
2017-01-01
Background and Purpose Angiotensin II (Ang II), whose generation largely depends on angiotensin‐converting enzyme (ACE) activity, mediates most of the renin‐angiotensin‐system (RAS) effects. Elastase‐2 (ELA‐2), a chymotrypsin‐serine protease elastase family member 2A, alternatively generates Ang II in rat arteries. Myocardial infarction (MI) leads to intense RAS activation, but mechanisms involved in Ang II‐generation in resistance arteries are unknown. We hypothesized that ELA‐2 contributes to vascular Ang II generation and cardiac damage in mice subjected to MI. Experimental Approach Concentration‐effect curves to Ang I and Ang II were performed in mesenteric resistance arteries from male wild type (WT) and ELA‐2 knockout (ELA‐2KO) mice subjected to left anterior descending coronary artery ligation (MI). Key Results MI size was similar in WT and ELA‐2KO mice. Ejection fraction and fractional shortening after MI similarly decreased in both strains. However, MI decreased stroke volume and cardiac output in WT, but not in ELA‐2KO mice. Ang I‐induced contractions increased in WT mice subjected to MI (MI‐WT) compared with sham‐WT mice. No differences were observed in Ang I reactivity between arteries from ELA‐2KO and ELA‐2KO subjected to MI (MI‐ELA‐2KO). Ang I contractions increased in arteries from MI‐WT versus MI‐ELA‐2KO mice. Chymostatin attenuated Ang I‐induced vascular contractions in WT mice, but did not affect Ang I responses in ELA‐2KO arteries. Conclusions and Implications These results provide the first evidence that ELA‐2 contributes to increased Ang II formation in resistance arteries and modulates cardiac function after MI, implicating ELA‐2 as a key player in ACE‐independent dysregulation of the RAS. PMID:28222221
Jacobe, Heidi; Ahn, Chul; Arnett, Frank; Reveille, John D.
2014-01-01
Objective To determine human leukocyte antigen class I (HLA-class I) and II (HLA-class II) alleles associated with morphea (localized scleroderma) in the Morphea in Adults and Children (MAC) cohort by a nested case–control association study. Methods Morphea patients were included from MAC cohort and matched controls from the NIH/NIAMS Scleroderma Family Registry and DNA Repository and Division of Rheumatology at the University of Texas Health Science Center at Houston. HLA- Class II genotyping and SSCP typing was performed of HLA-A, -B, -C alleles. Associations between HLA-Class I and II alleles and morphea as well as its subphenotypes were determined. Results There were 211 cases available for HLA-class I typing with 726 matched controls and 158 cases available for HLA Class-II typing with 1108 matched controls. The strongest associations were found with DRB1*04:04 (OR 2.3, 95% CI 1.4–4.0 P=0.002) and HLA-B*37 conferred the highest OR among Class I alleles (3.3, 95% CI 1.6–6.9, P= 0.0016). Comparison with risk alleles in systemic sclerosis determined using the same methods and control population revealed one common allele (DRB*04:04). Conclusion Results of the present study demonstrate specific HLA Class I and II alleles are associated with morphea and likely generalized and linear subtypes. The associated morphea alleles are different than in scleroderma, implicating morphea is also immunogenetically distinct. Risk alleles in morphea are also associated with conditions such as rheumatoid arthritis (RA) and other autoimmune conditions. Population based studies indicate patients with RA have increased risk of morphea, implicating a common susceptibility allele. PMID:25223600
NASA Astrophysics Data System (ADS)
Fan, Haifeng; Wen, Hanjie; Hu, Ruizhong; Zhao, Hui
2011-12-01
To understand the impact of Selenium (Se) into the biogeochemical cycle and implications for palaeo-redox environment, a sequential extraction method was utilized for samples including black shales, cherts, a Ni-Mo-Se sulfide layer, K-bentonite and phosphorite from Lower Cambrian Se-enriched strata in southern China. Seven species (water-soluble, phosphate exchangeable, base-soluble, acetic acid-soluble, sulfide/selenide associated, residual Se) and different oxidation states (selenate Se(VI), selenite Se(IV), organic Se, Se (0) and mineral Se(-II)) were determinated in this study. We found that the Ni-Mo-Se sulfide layer contained a significantly greater amount of Se(-II) associated with sulfides/selenides than those in host black shales and cherts. Furthermore, a positive correlation between the degree of sulfidation of iron (DOS) and the percentage of the sulfide/selenide-associated Se(-II) was observed for samples, which suggests the proportion of sulfide/selenide-associated Se(-II) could serve as a proxy for palaeo-redox conditions. In addition, the higher percentage of Se(IV) in K-bentonite and phosphorite was found and possibly attributed to the adsorption of Se by clay minerals, iron hydroxide surfaces and organic particles. Based on the negative correlations between the percentage of Se(IV) and that of Se(-II) in samples, we propose that the K-bentonite has been altered under the acid oxic conditions, and the most of black shale (and cherts) and the Ni-Mo-Se sulfide layer formed under the anoxic and euxinic environments, respectively. Concerning Se accumulation in the Ni-Mo-Se sulfide layer, the major mechanism can be described by (1) biotic and abiotic adsorption and further dissimilatory reduction from oxidized Se(VI) and Se(IV) to Se(-II), through elemental Se, (2) contribution of hydrothermal fluid with mineral Se(-II).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardoso, Mateus B; Smolensky, Dmitriy; Heller, William T
2009-01-01
The structure of spinach light-harvesting complex II (LHC II), stabilized in a solution of the detergent n-octyl-{beta}-d-glucoside (BOG), was investigated by small-angle neutron scattering (SANS). Physicochemical characterization of the isolated complex indicated that it was pure (>95%) and also in its native trimeric state. SANS with contrast variation was used to investigate the properties of the protein-detergent complex at three different H{sub 2}O/D{sub 2}O contrast match points, enabling the scattering properties of the protein and detergent to be investigated independently. The topological shape of LHC II, determined using ab initio shape restoration methods from the SANS data at the contrastmore » match point of BOG, was consistent with the X-ray crystallographic structure of LHC II (Liu et al. Nature 2004 428, 287-292). The interactions of the protein and detergent were investigated at the contrast match point for the protein and also in 100% D{sub 2}O. The data suggested that BOG micelle structure was altered by its interaction with LHC II, but large aggregate structures were not formed. Indirect Fourier transform analysis of the LHC II/BOG scattering curves showed that the increase in the maximum dimension of the protein-detergent complex was consistent with the presence of a monolayer of detergent surrounding the protein. A model of the LHC II/BOG complex was generated to interpret the measurements made in 100% D{sub 2}O. This model adequately reproduced the overall size of the LHC II/BOG complex, but demonstrated that the detergent does not have a highly regular shape that surrounds the hydrophobic periphery of LHC II. In addition to demonstrating that natively structured LHC II can be produced for functional characterization and for use in artificial solar energy applications, the analysis and modeling approaches described here can be used for characterizing detergent-associated {alpha}-helical transmembrane proteins.« less
Structural Basis for Eukaryotic Transcription-Coupled DNA Repair Initiation
Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A.; Chong, Jenny; Hare, Alissa A.; Dervan, Peter B.; DiMaio, Frank; Leschziner, Andres E.; Wang, Dong
2017-01-01
Eukaryotic transcription-coupled repair (TCR), or transcription-coupled nucleotide excision repair (TC-NER), is an important and well-conserved sub-pathway of nucleotide excision repair (NER) that preferentially removes DNA lesions from the template strand blocking RNA polymerase II (Pol II) translocation1,2. Cockayne syndrome group B protein in humans (CSB, or ERCC6), or its yeast orthologs (Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe), is among the first proteins to be recruited to the lesion-arrested Pol II during initiation of eukaryotic TCR1,3–10. Mutations in CSB are associated with Cockayne syndrome, an autosomal-recessive neurologic disorder characterized by progeriod features, growth failure, and photosensitivity1. The molecular mechanism of eukaryotic TCR initiation remains elusive, with several long-standing questions unanswered: How do cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II? How does CSB interact with the arrested Pol II complex? What is the role of CSB in TCR initiation? The lack of structures of CSB or the Pol II-CSB complex have hindered our ability to answer those questions. Here we report the first structure of S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy (cryo-EM). The structure reveals that Rad26 binds to the DNA upstream of Pol II where it dramatically alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes forward movement of Pol II and elucidate key roles for Rad26/CSB in both TCR and transcription elongation. PMID:29168508
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jing-Yun, E-mail: jyunwu@ncnu.edu.tw; Tsai, Chi-Jou; Chang, Ching-Yun
A Zn(II)−salicylaldimine complex [Zn(L{sup salpyca})(H{sub 2}O)]{sub n} (1, where H{sub 2}L{sup salpyca}=4-hydroxy-3-(((pyridin-2-yl)methylimino)methyl)benzoic acid), with a one-dimensional (1D) chain structure, has been successfully converted to a discrete Ni(II)−salicylaldimine complex [Ni(L{sup salpyca})(H{sub 2}O){sub 3}] (2) and an infinite Cu(II)−salicylaldimine complex ([Cu(L{sup salpyca})]·3H{sub 2}O){sub n} (3) through a metal-ion exchange induced structural transformation process. However, such processes do not worked by Mn(II) and Co(II) ions. Solid-state structure analyses reveal that complexes 1–3 form comparable coordinative or supramolecular zigzag chains running along the crystallographic [201] direction. In addition, replacing Zn(II) ion by Ni(II) and Cu(II) ions caused changes in coordination environment and sphere ofmore » metal centers, from a 5-coordinate intermediate geometry of square pyramidal and trigonal bipyramidal in 1 to a 6-coordinate octahedral geometry in 2, and to a 4-coordiante square planar geometry in 3. This study shows that metal-ion exchange serves as a very efficient way of forming new coordination complexes that may not be obtained through direct synthesis. - Graphical abstract: A Zn(II)−salicylaldimine zigzag chain has been successfully converted to a Ni(II)−salicylaldimine supramolecular zigzag chain and a Cu(II)−salicylaldimine coordinative zigzag chain through metal-ion exchange induced structural transformations, which is not achieved by Mn(II) and Co(II) ions.« less
Structural and sequence features of two residue turns in beta-hairpins.
Madan, Bharat; Seo, Sung Yong; Lee, Sun-Gu
2014-09-01
Beta-turns in beta-hairpins have been implicated as important sites in protein folding. In particular, two residue β-turns, the most abundant connecting elements in beta-hairpins, have been a major target for engineering protein stability and folding. In this study, we attempted to investigate and update the structural and sequence properties of two residue turns in beta-hairpins with a large data set. For this, 3977 beta-turns were extracted from 2394 nonhomologous protein chains and analyzed. First, the distribution, dihedral angles and twists of two residue turn types were determined, and compared with previous data. The trend of turn type occurrence and most structural features of the turn types were similar to previous results, but for the first time Type II turns in beta-hairpins were identified. Second, sequence motifs for the turn types were devised based on amino acid positional potentials of two-residue turns, and their distributions were examined. From this study, we could identify code-like sequence motifs for the two residue beta-turn types. Finally, structural and sequence properties of beta-strands in the beta-hairpins were analyzed, which revealed that the beta-strands showed no specific sequence and structural patterns for turn types. The analytical results in this study are expected to be a reference in the engineering or design of beta-hairpin turn structures and sequences. © 2014 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Quilty, Lena C.; Zhang, K. Anne; Bagby, R. Michael
2010-01-01
The Beck Depression Inventory-II (BDI-II) is a self-report instrument frequently used in clinical and research settings to assess depression severity. Although investigators have examined the factor structure of the BDI-II, a clear consensus on the best fitting model has not yet emerged, resulting in different recommendations regarding how to best…
Tomasso, Maria E.; Tarver, Micheal J.; Devarajan, Deepa; Whitten, Steven T.
2016-01-01
The properties of disordered proteins are thought to depend on intrinsic conformational propensities for polyproline II (PP II) structure. While intrinsic PP II propensities have been measured for the common biological amino acids in short peptides, the ability of these experimentally determined propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs) has not been established. Presented here are results from molecular simulations of disordered proteins showing that the hydrodynamic radius (R h) can be predicted from experimental PP II propensities with good agreement, even when charge-based considerations are omitted. The simulations demonstrate that R h and chain propensity for PP II structure are linked via a simple power-law scaling relationship, which was tested using the experimental R h of 22 IDPs covering a wide range of peptide lengths, net charge, and sequence composition. Charge effects on R h were found to be generally weak when compared to PP II effects on R h. Results from this study indicate that the hydrodynamic dimensions of IDPs are evidence of considerable sequence-dependent backbone propensities for PP II structure that qualitatively, if not quantitatively, match conformational propensities measured in peptides. PMID:26727467
Structural Analysis of the Hg(II)-Regulatory Protein Tn501 MerR from Pseudomonas aeruginosa
NASA Astrophysics Data System (ADS)
Wang, Dan; Huang, Shanqing; Liu, Pingying; Liu, Xichun; He, Yafeng; Chen, Weizhong; Hu, Qingyuan; Wei, Tianbiao; Gan, Jianhua; Ma, Jing; Chen, Hao
2016-09-01
The metalloprotein MerR is a mercury(II)-dependent transcriptional repressor-activator that responds to mercury(II) with extraordinary sensitivity and selectivity. It’s widely distributed in both Gram-negative and Gram-positive bacteria but with barely detectable sequence identities between the two sources. To provide structural basis for the considerable biochemical and biophysical experiments previously performed on Tn501 and Tn21 MerR from Gram-negative bacteria, we analyzed the crystal structure of mercury(II)-bound Tn501 MerR. The structure in the metal-binding domain provides Tn501 MerR with a high affinity for mercury(II) and the ability to distinguish mercury(II) from other metals with its unique planar trigonal coordination geometry, which is adopted by both Gram-negative and Gram-positive bacteria. The mercury(II) coordination state in the C-terminal metal-binding domain is transmitted through the allosteric network across the dimer interface to the N-terminal DNA-binding domain. Together with the previous mutagenesis analyses, the present data indicate that the residues in the allosteric pathway have a central role in maintaining the functions of Tn501 MerR. In addition, the complex structure exhibits significant differences in tertiary and quaternary structural arrangements compared to those of Bacillus MerR from Gram-positive bacteria, which probably enable them to function with specific promoter DNA with different spacers between -35 and -10 elements.
NASA Astrophysics Data System (ADS)
Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia
2015-10-01
Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.
NASA Astrophysics Data System (ADS)
Dong, T.; Lin, J. F.; Gu, J. T.; Polito, P. J.; O'Connell, J.; Flemings, P. B.
2017-12-01
We used Raman spectroscopy to monitor methane hydrates transforming from structure II to structure I at the pore scale as a function of space and time. It is well documented that structure I hydrate is the thermodynamically stable phase for pure methane hydrate (<100 MPa, < 20 °C), but due to kinetic limitation, initial methane hydrate formation produces a mixture of structure I and structure II hydrates. We observed that the structure transformation originated around the porous medium grains and over time slowly migrated into the pore space. We synthesized methane hydrates in spherical glass beads (210-297 µm in diameter) in a pressure cell with a sapphire window to integrate optical observations with Raman measurements. We injected CH4 vapor into the cell and supplied only deionized water thereafter to maintain a constant pressure of 14.6 MPa at 3.5 °C, with 14.5 °C subcooling. We used Raman spectroscopy to map the methane hydrates in pore spaces at 5-25 µm resolution, in order to monitor the occupancy ratio of CH4 in large cages to CH4 in small cages, by their Raman peak intensity ratio, i.e., I( 2905 cm-1)/I( 2915 cm-1). We identified 3 stages of hydrate formation at the pore scale: (1) after the initial hydrate formation, Raman mapping revealed that the occupancy ratio ranged from 0.5 to 3, indicating a mixture of structure I and II hydrates; (2) within 1 week, we observed that all structure I hydrates occurred on the glass bead surfaces and structure II hydrates occupied the pore spaces; (3) over the following 2 weeks, structure II hydrates gradually recrystallized into structure I hydrates from glass bead surfaces towards the pore space. These results imply that (1) due to kinetics, the formation of methane hydrate in porous media is more complex than previously thought, and (2) the bulk physical and chemical properties of laboratory-synthesized methane hydrates in porous media may drift over time, as methane hydrates recrystallize from a metastable phase (structure II) to the thermodynamically stable phase (structure I).
NASA Astrophysics Data System (ADS)
Golbedaghi, Reza; Azimi, Saeid; Molaei, Atefeh; Hatami, Masoud; Notash, Behrouz
2017-10-01
A new Schiff base ligand HL, 1,3-bis(2-((Z)-(2-aminoethylimino)methyl)phenoxy)ethylene di amine, has been synthesized from the reaction of a new aldehyde and ethylenediamine. After preparation the Schiff base, a new dinuclear Cu(II) complex with two different geometry for each metal ion was synthesized. Single crystal X-ray structure analysis of the complex Cu(II) showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. The crystal structure studying shows, a perchlorate ion has been coordinated to the two Cu(II) metal centers as bridged and another perchlorate coordinated to the one of Cu(II) ion as terminal. However, two interesting structures square pyramidal and distorted octahedral Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, we had a theoretical study to have a comparison of experimental and theoretical results we determined the HOMO and LUMO orbitals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keates, Adam C.; Wang, Qianlong; Weller, Mark T., E-mail: m.t.weller@bath.ac.uk
2014-02-15
Single crystal and bulk polycrystalline forms of K{sub 2}MP{sub 2}O{sub 7} (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42{sub 1}m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP{sub 2}O{sub 7}]{sup 2−} with potassium cations situated between the layers. The MO{sub 4} tetrahedra share oxygen atoms with [P{sub 2}O{sub 7}]{sup 4−} diphosphate groups and the potassium ions have KO{sub 8} square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen,more » as a result of the Jahn–Teller (JT) effect for the high spin d{sup 6} Fe(II) and p-orbital mixing or a second order JT effect for d{sup 9} Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K{sub 2}MP{sub 2}O{sub 7}, M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP{sub 2}O{sub 7}]{sup 2−}, formed from linked pyrophosphate groups and MO{sub 4} tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of Jahn–Teller (JT) effects for high spin, d{sup 6} Fe(II) and p-orbital mixing and second-order JT effects for d{sup 9} Cu(II). Display Omitted - Highlights: • Tetrahedral copper and iron(II) coordinated by oxygen. • New layered phosphate structure. • Jahn–Teller and d{sup 10} distorted coordinations.« less
Crystal structure of the sweet-tasting protein thaumatin II at 1.27 A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masuda, Tetsuya, E-mail: t2masuda@kais.kyoto-u.ac.jp; Department Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Uji, Kyoto 611-0011; Ohta, Keisuke
2011-07-08
Highlights: {yields} X-ray crystallographic structure of sweet-tasting protein, thaumatin II, was determined at a resolution of 1.27 A. {yields} The overall structure of thaumatin II is similar to that of thaumatin I, but a slight shift of the C{alpha} atom of G96 in thaumatin II was observed. {yields} The side chain of two critical residues, 67 and 82, for sweetness was modeled in two alternative conformations. {yields} The flexibility and fluctuation of side chains at 67 and 82 seems to be suitable for interaction of thaumatin molecules with sweet receptors. -- Abstract: Thaumatin, an intensely sweet-tasting protein, elicits a sweetmore » taste sensation at 50 nM. Here the X-ray crystallographic structure of one of its variants, thaumatin II, was determined at a resolution of 1.27 A. Overall structure of thaumatin II is similar to thaumatin I, but a slight shift of the C{alpha} atom of G96 in thaumatin II was observed. Furthermore, the side chain of residue 67 in thaumatin II is highly disordered. Since residue 67 is one of two residues critical to the sweetness of thaumatin, the present results suggested that the critical positive charges at positions 67 and 82 are disordered and the flexibility and fluctuation of these side chains would be suitable for interaction of thaumatin molecules with sweet receptors.« less
Structural Determination of a Transcribing RNA Polymerase II Complex
2000-05-01
A be extended and evaluated by the solution of pol II cocrystal structures, with the use of the pol II model for molecular replacement. Co- crystals...with TFIIB and TFIIE (78) should reveal the trajectory of DNA in the initial pol - II-promoter complex. Cocrystals containing pol II in the act of...transcription (79) will show the locations of nucleic acids in an elongation complex. Cocrystals with TFIIS (80) may indicate the proposed exit pathway
Morphological Properties of Slender Ca II H Fibrils Observed by Sunrise II
NASA Astrophysics Data System (ADS)
Gafeira, R.; Lagg, A.; Solanki, S. K.; Jafarzadeh, S.; van Noort, M.; Barthol, P.; Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Knölker, M.; Orozco Suárez, D.; Riethmüller, T. L.; Schmidt, W.
2017-03-01
We use seeing-free high spatial resolution Ca II H data obtained by the Sunrise observatory to determine properties of slender fibrils in the lower solar chromosphere. In this work we use intensity images taken with the SuFI instrument in the Ca II H line during the second scientific flight of the Sunrise observatory to identify and track elongated bright structures. After identification, we analyze theses structures to extract their morphological properties. We identify 598 slender Ca II H fibrils (SCFs) with an average width of around 180 km, length between 500 and 4000 km, average lifetime of ≈400 s, and average curvature of 0.002 arcsec-1. The maximum lifetime of the SCFs within our time series of 57 minutes is ≈2000 s. We discuss similarities and differences of the SCFs with other small-scale, chromospheric structures such as spicules of type I and II, or Ca II K fibrils.
NASA Astrophysics Data System (ADS)
Drzewiecka-Antonik, Aleksandra; Ferenc, Wiesława; Wolska, Anna; Klepka, Marcin T.; Cristóvão, Beata; Sarzyński, Jan; Rejmak, Paweł; Osypiuk, Dariusz
2017-01-01
The Co(II), Ni(II) and Cu(II) complexes with herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) were synthesized and structurally characterized. The geometry of metal-ligand interaction was refined using XAFS and DFT studies. The Co(2,4-D)2·6H2O and Ni(2,4-D)2·4H2O complexes have octahedral geometry with two carboxylate groups of 2,4-D anions and four water molecules in the coordination sphere. The square planar geometry around metal cations formed by the carboxylate groups from two monodentate ligands and two water molecules, is observed for Cu(2,4-D)2·4H2O complex. In the recrystallized Ni(II) complex dinuclear 'Chinese lantern' structures with bridging carboxylate groups of 2,4-D were observed.
Schamborg, Sara; Tully, Ruth J; Browne, Kevin D
2016-08-01
The State-Trait Anger Expression Inventory-II (STAXI-II) is a psychometric assessment that measures the experience, expression, and control of anger in research and clinical settings. Although the STAXI-II is extensively used and its psychometric properties supported, no psychometric critique has yet specifically assessed its utility with forensic populations. The aim of this critique was to explore the validity and reliability of the STAXI-II when used with forensic samples. It was found that the psychometric properties of the STAXI-II, when used with forensic populations, are satisfactory. However, gaps in research and issues that need to be addressed in practice have been highlighted. Although STAXI-II provides a comprehensive measure of anger, it does not capture all aspects of the construct. In addition, the tool does not contain an inherent validity scale, indicating the need to control for social desirability responding when administering the STAXI-II. Practical implications, limitations, and future research will be discussed. © The Author(s) 2015.
McCranor, Bryan J.; Szmacinski, Henryk; Zeng, Hui Hui; Stoddard, A.K.; Hurst, Tamiika; Fierke, Carol A.; Lakowicz, J.R.
2014-01-01
Copper is a required trace element that plays key roles in a number of human enzymes, such that copper deficiency or genetic defects in copper transport lead to serious or fatal disease. Rae, et al., had famously predicted that free copper ion levels in the cell cytoplasm were extremely low, typically too low to be observable. We recently developed a variant of human apocarbonic anhydrase II for sensing metal ions that exhibits 25-fold better selectivity for Cu(II) over Zn(II) than the wild type protein, enabling us to accurately measure Cu(II) in the presence of ordinary cellular (picomolar) concentrations of free zinc. We inserted a fluorescent labeled Cu(II)-specific variant of human apocarbonic anhydrase into PC-12 cells and found that the levels are indeed extremely low (in the femtomolar range). We imaged the free Cu(II) levels in living cells by means of frequency-domain fluorescence lifetime microscopy. Implications of this finding are discussed. PMID:24671220
NASA Astrophysics Data System (ADS)
Yuan, Songhu; Liu, Xixiang; Liao, Wenjuan; Zhang, Peng; Wang, Xiaoming; Tong, Man
2018-02-01
Production of hydroxyl radicals (radOH) has been recently revealed upon oxygenation of sediments in redox-dynamic subsurface environments. In particular, Fe(II)-bearing clay minerals are the major sediment components contributing to radOH production upon oxygenation, and the produced radOH can oxidize contaminants and inactivate bacteria. Whereas, the mechanisms of radOH production from oxygenation of Fe(II)-bearing clay minerals remain elusive. The objectives of this study were to identify the structural variation of Fe(II) entities during the oxidation of Fe(II)-bearing clay minerals by O2, and to unravel the mechanisms of electron transfer within the mineral structure and from mineral to O2 for radOH production. Nontronite (NAu-2, 23% Fe) which was chemically reduced to 54.5% Fe(II) in total Fe was used as a model Fe(II)-bearing clay mineral. Production of radOH and oxidation of Fe(II) were measured during the oxidation of reduced NAu-2 by O2. A wide spectrum of spectroscopic techniques, including Fourier transform infrared spectroscopy (FTIR), Fe K-edge X-ray absorption spectroscopy (XAS), Mössbauer spectra, and X-ray photoelectron spectroscopy (XPS), were employed to explore the structural variation of Fe(II) entities in NAu-2 and the electron transfer within NAu-2 and from NAu-2 to O2. For 180 min oxidation of 1 g/L reduced NAu-2, a biphasic radOH production was observed, being quick within the initial 15 min and slow afterwards. Production of radOH correlates well with oxidation of Fe(II) in the reduced NAu-2. Within the initial 15 min, trioctahedral Fe(II)-Fe(II)-Fe(II) entities and edge Fe(II) in the reduced NAu-2 were preferentially and quickly oxidized, and electrons from the interior Fe(II)-Fe(II)-Fe(II) entities were most likely ejected from the basal siloxane plane to O2. Meanwhile, trioctahedral Fe(II)-Fe(II)-Fe(II) entities were mainly transformed to dioctahedral Fe(II)-Fe(II) entities. When the time of oxygenation was longer than 15 min, dioctahedral Al-Fe(II), Fe(II)-Fe(II) and Fe(II)-Fe(III) entities were slowly oxidized, and the interior electrons were transported through Fe(II)-O-Fe(III) linkages to edges and then ejected to O2. In the slow stage of oxidation, electrons from interior Fe(II) accumulated towards the near surface layers and fueled the regeneration of edge Fe(II) for radOH production. In both stages, one-electron transfer mechanism with the involvement of O2rad - and H2O2 applies for radOH production from the oxidation of structural Fe(II) by O2. The mechanisms unraveled in this study advance the understanding of reactive oxygen species (ROS) production and structural Fe variation when Fe(II)-bearing clay minerals are oxygenated in redox-dynamic systems.
NASA Astrophysics Data System (ADS)
Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Rudbari, Hadi Amiri
2014-08-01
Two new coordination compounds [Fe(bib)2(N3)2]n(1) and [Cu2(bpp)2(N3)4] (2) with azide and flexible ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp) were prepared and structurally characterized. In the 2D network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while in the dinuclear structure of 2, the copper(II) ion adopts an FeN5 distorted square pyramid geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to copper(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied.
Harrison, Xavier A; York, Jennifer E; Young, Andrew J
2014-12-01
Sex-biased dispersal is pervasive and has diverse evolutionary implications, but the fundamental drivers of dispersal sex biases remain unresolved. This is due in part to limited diversity within taxonomic groups in the direction of dispersal sex biases, which leaves hypothesis testing critically dependent upon identifying rare reversals of taxonomic norms. Here, we use a combination of observational and genetic data to demonstrate a rare reversal of the avian sex bias in dispersal in the cooperatively breeding white-browed sparrow weaver (Plocepasser mahali). Direct observations revealed that (i) natal philopatry was rare, with both sexes typically dispersing locally to breed, and (ii), unusually for birds, males bred at significantly greater distances from their natal group than females. Population genetic analyses confirmed these patterns, as (i) corrected Assignment index (AIc), FST tests and isolation-by-distance metrics were all indicative of longer dispersal distances among males than females, and (ii) spatial autocorrelation analysis indicated stronger within-group genetic structure among females than males. Examining the spatial scale of extra-group mating highlighted that the resulting 'sperm dispersal' could have acted in concert with individual dispersal to generate these genetic patterns, but gamete dispersal alone cannot account entirely for the sex differences in genetic structure observed. That leading hypotheses for the evolution of dispersal sex biases cannot readily account for these sex-reversed patterns of dispersal in white-browed sparrow weavers highlights the continued need for attention to alternative explanations for this enigmatic phenomenon. We highlight the potential importance of sex differences in the distances over which dispersal opportunities can be detected. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Isobe, H; Shoji, M; Yamanaka, S; Mino, H; Umena, Y; Kawakami, K; Kamiya, N; Shen, J-R; Yamaguchi, K
2014-06-28
Full geometry optimizations followed by the vibrational analysis were performed for eight spin configurations of the CaMn4O4X(H2O)3Y (X = O, OH; Y = H2O, OH) cluster in the S1 and S3 states of the oxygen evolution complex (OEC) of photosystem II (PSII). The energy gaps among these configurations obtained by vertical, adiabatic and adiabatic plus zero-point-energy (ZPE) correction procedures have been used for computation of the effective exchange integrals (J) in the spin Hamiltonian model. The J values are calculated by the (1) analytical method and the (2) generalized approximate spin projection (AP) method that eliminates the spin contamination errors of UB3LYP solutions. Using J values derived from these methods, exact diagonalization of the spin Hamiltonian matrix was carried out, yielding excitation energies and spin densities of the ground and lower-excited states of the cluster. The obtained results for the right (R)- and left (L)-opened structures in the S1 and S3 states are found to be consistent with available optical and magnetic experimental results. Implications of the computational results are discussed in relation to (a) the necessity of the exact diagonalization for computations of reliable energy levels, (b) magneto-structural correlations in the CaMn4O5 cluster of the OEC of PSII, (c) structural symmetry breaking in the S1 and S3 states, and (d) the right- and left-handed scenarios for the O-O bond formation for water oxidation.
Oppici, Elisa; Fodor, Krisztian; Paiardini, Alessandro; Williams, Chris; Voltattorni, Carla Borri; Wilmanns, Matthias; Cellini, Barbara
2013-01-01
The substitution of Ser187, a residue located far from the active site of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT), by Phe gives rise to a variant associated with primary hyperoxaluria type I. Unexpectedly, previous studies revealed that the recombinant form of S187F exhibits a remarkable loss of catalytic activity, an increased pyridoxal 5′-phosphate (PLP) binding affinity and a different coenzyme binding mode compared with normal AGT. To shed light on the structural elements responsible for these defects, we solved the crystal structure of the variant to a resolution of 2.9 Å. Although the overall conformation of the variant is similar to that of normal AGT, we noticed: (i) a displacement of the PLP-binding Lys209 and Val185, located on the re and si side of PLP, respectively, and (ii) slight conformational changes of other active site residues, in particular Trp108, the base stacking residue with the pyridine cofactor moiety. This active site perturbation results in a mispositioning of the AGT-pyridoxamine 5′-phosphate (PMP) complex and of the external aldimine, as predicted by molecular modeling studies. Taken together, both predicted and observed movements caused by the S187F mutation are consistent with the following functional properties of the variant: (i) a 300- to 500-fold decrease in both the rate constant of L-alanine half-transamination and the kcat of the overall transamination, (ii) a different PMP binding mode and affinity, and (iii) a different microenvironment of the external aldimine. Proposals for the treatment of patients bearing S187F mutation are discussed on the basis of these results. Proteins 2013; 81:1457–1465. © 2013 Wiley Periodicals, Inc. PMID:23589421
Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases*♦
Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Brieba, Luis G.; Grøtli, Morten
2016-01-01
Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor. PMID:27226617
Structural insights into the polyphyletic origins of glycyl tRNA synthetases
Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; ...
2016-05-23
Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α 2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α 2β 2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α 2β 2more » GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. Furthermore, a structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α 2β 2 GlyRS, convergent with α 2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor.« less
Peng, Dungeng; Satterlee, James D.; Ma, Li-Hua; Dallas, Jerry L.; Smith, Kevin M.; Zhang, Xuhong; Sato, Michihiko; La Mar, Gerd N.
2011-01-01
Heme oxygenase, HO, from the pathogenic bacterium N. meningitidis, NmHO, which secures host iron, shares many properties with mammalian HOs, but also exhibits some key differences. The crystal structure appears more compact and the crystal-undetected C-terminus interacts with substrate in solution. The unique nature of substrate-protein, specifically pyrrole-I/II-helix-2, peripheral interactions in NmHO are probed by 2D 1H NMR to reveal unique structural features controlling substrate orientation. The thermodynamics of substrate orientational isomerism are mapped for substrates with individual vinyl → methyl → hydrogen substitutions and with enzyme C-terminal deletions. NmHO exhibits significantly stronger orientational preference, reflecting much stronger and selective pyrrole-I/II interactions with the protein matrix, than in mammalian HOs. Thus, replacing bulky vinyls with hydrogens results in a 180° rotation of substrate about the α,γ-meso axis in the active site. A "collapse" of the substrate pocket as substrate size decreases is reflected in movement of helix-2 toward the substrate as indicated by significant and selective increased NOESY cross peak intensity, increase in steric Fe-CN tilt reflected in the orientation of the major magnetic axis, and decrease in steric constraints controlling the rate of aromatic ring reorientation. The active site of NmHO appears "stressed" for native protohemin and its "collapse" upon replacing vinyls by hydrogen leads to a factor ~102 increase in substrate affinity. Interaction of the C-terminus with the active site destabilizes the crystallographic protohemin orientation by ~0.7 kcal/mol, which is consistent with optimizing the His207-Asp27 H-bond. Implications of the active site "stress" for product release are discussed. PMID:21870860
The generic drug user fee amendments: an economic perspective
Berndt, Ernst R; Murphy, Stephen J
2018-01-01
Abstract Since the vast majority of prescription drugs consumed by Americans are off patent (‘generic’), their regulation and supply is of wide interest. We describe events leading up to the US Congress's 2012 passage of the Generic Drug User Fee Amendments (GDUFA I) as part of the Food and Drug Administration Safety and Innovation Act (FDASIA). Under GDUFA I, generic manufacturers agreed to pay approximately $300 million in fees each year of the five-year program. In exchange, the US Food and Drug Administration (FDA) committed to performance goals. We describe GDUFA I’s FDA commitments, provisions, goals, and annual fee structure and compare it to that entailed in the authorization and implementation of GDUFA II on October 1, 2017. We explain how user fees required under GDUFA I erected barriers to entry and created scale and scope economies for incumbent manufacturers. Congress changed user fees under GDUFA II in part to lessen these incentives. In order to initiate and sustain user fees under GDUFA legislation, FDA requires the submission of self-reported data on generic manufacturers including domestic and foreign facilities. These data are public and our examination of them provides an unprecedented window into the recent organization of generic drug manufacturers supplying the US market. Our results suggest that generic drug manufacturing is increasingly concentrated and foreign. We discuss the implications of this observed market structure for GDUFA II’s implementation among other outcomes. PMID:29707218
Hydroxyl Radical Modification of Collagen Type II Increases Its Arthritogenicity and Immunogenicity
Shahab, Uzma; Ahmad, Saheem; Moinuddin; Dixit, Kiran; Habib, Safia; Alam, Khursheed; Ali, Asif
2012-01-01
Background The oxidation of proteins by endogenously generated free radicals causes structural modifications in the molecules that lead to generation of neo-antigenic epitopes that have implications in various autoimmune disorders, including rheumatoid arthritis (RA). Collagen induced arthritis (CIA) in rodents (rats and mice) is an accepted experimental model for RA. Methodology/Principal Findings Hydroxyl radicals were generated by the Fenton reaction. Collagen type II (CII) was modified by •OH radical (CII-OH) and analysed by ultraviolet-visible (UV-VIS), fluorescence and circular dichroism (CD) spectroscopy. The immunogenicity of native and modified CII was checked in female Lewis rats and specificity of the induced antibodies was ascertained by enzyme linked immunosorbent assay (ELISA). The extent of CIA was evaluated by visual inspection. We also estimated the oxidative and inflammatory markers in the sera of immunized rats. A slight change in the triple helical structure of CII as well as fragmentation was observed after hydroxyl radical modification. The modified CII was found to be highly arthritogenic and immunogenic as compared to the native form. The CII-OH immunized rats exhibited increased oxidative stress and inflammation as compared to the CII immunized rats in the control group. Conclusions/Significance Neo-antigenic epitopes were generated on •OH modified CII which rendered it highly immunogenic and arthritogenic as compared to the unmodified form. Since the rodent CIA model shares many features with human RA, these results illuminate the role of free radicals in human RA. PMID:22319617
The structure of paranoia in the general population.
Bebbington, Paul E; McBride, Orla; Steel, Craig; Kuipers, Elizabeth; Radovanovic, Mirjana; Brugha, Traolach; Jenkins, Rachel; Meltzer, Howard I; Freeman, Daniel
2013-06-01
Psychotic phenomena appear to form a continuum with normal experience and beliefs, and may build on common emotional interpersonal concerns. We tested predictions that paranoid ideation is exponentially distributed and hierarchically arranged in the general population, and that persecutory ideas build on more common cognitions of mistrust, interpersonal sensitivity and ideas of reference. Items were chosen from the Structured Clinical Interview for DSM-IV Axis II Disorders (SCID-II) questionnaire and the Psychosis Screening Questionnaire in the second British National Survey of Psychiatric Morbidity (n = 8580), to test a putative hierarchy of paranoid development using confirmatory factor analysis, latent class analysis and factor mixture modelling analysis. Different types of paranoid ideation ranged in frequency from less than 2% to nearly 30%. Total scores on these items followed an almost perfect exponential distribution (r = 0.99). Our four a priori first-order factors were corroborated (interpersonal sensitivity; mistrust; ideas of reference; ideas of persecution). These mapped onto four classes of individual respondents: a rare, severe, persecutory class with high endorsement of all item factors, including persecutory ideation; a quasi-normal class with infrequent endorsement of interpersonal sensitivity, mistrust and ideas of reference, and no ideas of persecution; and two intermediate classes, characterised respectively by relatively high endorsement of items relating to mistrust and to ideas of reference. The paranoia continuum has implications for the aetiology, mechanisms and treatment of psychotic disorders, while confirming the lack of a clear distinction from normal experiences and processes.
Burr, D.M.; Bruno, B.C.; Lanagan, P.D.; Glaze, L.S.; Jaeger, W.L.; Soare, R.J.; Wan, Bun Tseung J.-M.; Skinner, J.A.; Baloga, S.M.
2009-01-01
Fields of mesoscale raised rim depressions (MRRDs) of various origins are found on Earth and Mars. Examples include rootless cones, mud volcanoes, collapsed pingos, rimmed kettle holes, and basaltic ring structures. Correct identification of MRRDs on Mars is valuable because different MRRD types have different geologic and/or climatic implications and are often associated with volcanism and/or water, which may provide locales for biotic or prebiotic activity. In order to facilitate correct identification of fields of MRRDs on Mars and their implications, this work provides a review of common terrestrial MRRD types that occur in fields. In this review, MRRDs by formation mechanism, including hydrovolcanic (phreatomagmatic cones, basaltic ring structures), sedimentological (mud volcanoes), and ice-related (pingos, volatile ice-block forms) mechanisms. For each broad mechanism, we present a comparative synopsis of (i) morphology and observations, (ii) physical formation processes, and (iii) published hypothesized locations on Mars. Because the morphology for MRRDs may be ambiguous, an additional tool is provided for distinguishing fields of MRRDs by origin on Mars, namely, spatial distribution analyses for MRRDs within fields on Earth. We find that MRRDs have both distinguishing and similar characteristics, and observation that applies both to their mesoscale morphology and to their spatial distribution statistics. Thus, this review provides tools for distinguishing between various MRRDs, while highlighting the utility of the multiple working hypotheses approach. ?? 2008 Elsevier Ltd.
Oddo, Perry C; Lee, Ben S; Garner, Gregory G; Srikrishnan, Vivek; Reed, Patrick M; Forest, Chris E; Keller, Klaus
2017-09-05
Sea levels are rising in many areas around the world, posing risks to coastal communities and infrastructures. Strategies for managing these flood risks present decision challenges that require a combination of geophysical, economic, and infrastructure models. Previous studies have broken important new ground on the considerable tensions between the costs of upgrading infrastructure and the damages that could result from extreme flood events. However, many risk-based adaptation strategies remain silent on certain potentially important uncertainties, as well as the tradeoffs between competing objectives. Here, we implement and improve on a classic decision-analytical model (Van Dantzig 1956) to: (i) capture tradeoffs across conflicting stakeholder objectives, (ii) demonstrate the consequences of structural uncertainties in the sea-level rise and storm surge models, and (iii) identify the parametric uncertainties that most strongly influence each objective using global sensitivity analysis. We find that the flood adaptation model produces potentially myopic solutions when formulated using traditional mean-centric decision theory. Moving from a single-objective problem formulation to one with multiobjective tradeoffs dramatically expands the decision space, and highlights the need for compromise solutions to address stakeholder preferences. We find deep structural uncertainties that have large effects on the model outcome, with the storm surge parameters accounting for the greatest impacts. Global sensitivity analysis effectively identifies important parameter interactions that local methods overlook, and that could have critical implications for flood adaptation strategies. © 2017 Society for Risk Analysis.
Probing RNA tertiary structure: interhelical crosslinking of the hammerhead ribozyme.
Sigurdsson, S T; Tuschl, T; Eckstein, F
1995-01-01
Distinct structural models for the hammerhead ribozyme derived from single-crystal X-ray diffraction and fluorescence resonance energy transfer (FRET) measurements have been compared. Both models predict the same overall geometry, a wishbone shape with helices II and III nearly colinear and helix I positioned close to helix II. However, the relative orientations of helices I and II are different. To establish whether one of the models represents a kinetically active structure, a new crosslinking procedure was developed in which helices I and II of hammerhead ribozymes were disulfide-crosslinked via the 2' positions of specific sugar residues. Crosslinking residues on helices I and II that are close according to the X-ray structure did not appreciably reduce the catalytic efficiency. In contrast, crosslinking residues closely situated according to the FRET model dramatically reduced the cleavage rate by at least three orders of magnitude. These correlations between catalytic efficiencies and spatial proximities are consistent with the X-ray structure. PMID:7489517
Implications of Organizational Planning for Crisis Relocation.
1982-12-01
AD-A 23 956 IMPLICATIONS OF ORGANIZATIDNAL PLANNING FOR CRISIS RELOCATION(U) NORTH CAROLINA DEPT OF CRIME CONTROL AND PUBLIC SAFETY RALEIG.. M A...policies of the Federal Emergency Management Agency. Division of Emergency Management North Carolina Department of Crime Control and Public Safety...North Carolina Department of Crime Control and Work Unit 0 4412 1 Public Safety, 116 W.Jones St. ,Raleigh, NC 27611 II. CONTROLLING OFFICE NAME AND
Stevanović, Nikola R; Perušković, Danica S; Gašić, Uroš M; Antunović, Vesna R; Lolić, Aleksandar Đ; Baošić, Rada M
2017-03-01
The objectives of this study were to gain insights into structure-retention relationships and to propose the model to estimating their retention. Chromatographic investigation of series of 36 Schiff bases and their copper(II) and nickel(II) complexes was performed under both normal- and reverse-phase conditions. Chemical structures of the compounds were characterized by molecular descriptors which are calculated from the structure and related to the chromatographic retention parameters by multiple linear regression analysis. Effects of chelation on retention parameters of investigated compounds, under normal- and reverse-phase chromatographic conditions, were analyzed by principal component analysis, quantitative structure-retention relationship and quantitative structure-activity relationship models were developed on the basis of theoretical molecular descriptors, calculated exclusively from molecular structure, and parameters of retention and lipophilicity. Copyright © 2016 John Wiley & Sons, Ltd.
Structural stability of methane hydrate at high pressures
Shu, J.; Chen, X.; Chou, I-Ming; Yang, W.; Hu, Jiawen; Hemley, R.J.; Mao, Ho-kwang
2011-01-01
The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P63/mmc, respectively. Upon compression, sI methane hydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH4)-host (H2O) interactions in the stabilization of the hydrate structures under pressure.
Surface Structures Formed by a Copper(II) Complex of Alkyl-Derivatized Indigo
Honda, Akinori; Noda, Keisuke; Tamaki, Yoshinori; Miyamura, Kazuo
2016-01-01
Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II) ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM) analysis revealed that the copper(II) complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed. PMID:28773957
Cranswick, Matthew A; Meier, Katlyn K; Shan, Xiaopeng; Stubna, Audria; Kaizer, Jószef; Mehn, Mark P; Münck, Eckard; Que, Lawrence
2012-10-01
Oxygenation of a diiron(II) complex, [Fe(II)(2)(μ-OH)(2)(BnBQA)(2)(NCMe)(2)](2+) [2, where BnBQA is N-benzyl-N,N-bis(2-quinolinylmethyl)amine], results in the formation of a metastable peroxodiferric intermediate, 3. The treatment of 3 with strong acid affords its conjugate acid, 4, in which the (μ-oxo)(μ-1,2-peroxo)diiron(III) core of 3 is protonated at the oxo bridge. The core structures of 3 and 4 are characterized in detail by UV-vis, Mössbauer, resonance Raman, and X-ray absorption spectroscopies. Complex 4 is shorter-lived than 3 and decays to generate in ~20% yield of a diiron(III/IV) species 5, which can be identified by electron paramagnetic resonance and Mössbauer spectroscopies. This reaction sequence demonstrates for the first time that protonation of the oxo bridge of a (μ-oxo)(μ-1,2-peroxo)diiron(III) complex leads to cleavage of the peroxo O-O bond and formation of a high-valent diiron complex, thereby mimicking the steps involved in the formation of intermediate X in the activation cycle of ribonucleotide reductase.
Borbulevych, Oleg Y; Do, Priscilla; Baker, Brian M
2010-09-01
Presentation of peptides by class I or class II major histocompatibility complex (MHC) molecules is required for the initiation and propagation of a T cell-mediated immune response. Peptides from the Wilms Tumor 1 transcription factor (WT1), upregulated in many hematopoetic and solid tumors, can be recognized by T cells and numerous efforts are underway to engineer WT1-based cancer vaccines. Here we determined the structures of the class I MHC molecule HLA-A*0201 bound to the native 126-134 epitope of the WT1 peptide and a recently described variant (R1Y) with improved MHC binding. The R1Y variant, a potential vaccine candidate, alters the positions of MHC charged side chains near the peptide N-terminus and significantly reduces the peptide/MHC electrostatic surface potential. These alterations indicate that the R1Y variant is an imperfect mimic of the native WT1 peptide, and suggest caution in its use as a therapeutic vaccine. Stability measurements revealed how the R1Y substitution enhances MHC binding affinity, and together with the structures suggest a strategy for engineering WT1 variants with improved MHC binding that retain the structural features of the native peptide/MHC complex. Copyright 2010 Elsevier Ltd. All rights reserved.
Cunningham, John A; Thomas, Ceri-Wyn; Bengtson, Stefan; Kearns, Stuart L; Xiao, Shuhai; Marone, Federica; Stampanoni, Marco; Donoghue, Philip C J
2012-06-22
The Ediacaran Doushantuo biota has yielded fossils that include the oldest widely accepted record of the animal evolutionary lineage, as well as specimens with alleged bilaterian affinity. However, these systematic interpretations are contingent on the presence of key biological structures that have been reinterpreted by some workers as artefacts of diagenetic mineralization. On the basis of chemistry and crystallographic fabric, we characterize and discriminate phases of mineralization that reflect: (i) replication of original biological structure, and (ii) void-filling diagenetic mineralization. The results indicate that all fossils from the Doushantuo assemblage preserve a complex mélange of mineral phases, even where subcellular anatomy appears to be preserved. The findings allow these phases to be distinguished in more controversial fossils, facilitating a critical re-evaluation of the Doushantuo fossil assemblage and its implications as an archive of Ediacaran animal diversity. We find that putative subcellular structures exhibit fabrics consistent with preservation of original morphology. Cells in later developmental stages are not in original configuration and are therefore uninformative concerning gastrulation. Key structures used to identify Doushantuo bilaterians can be dismissed as late diagenetic artefacts. Therefore, when diagenetic mineralization is considered, there is no convincing evidence for bilaterians in the Doushantuo assemblage.
Takahashi, Susumu; Nakamura, Yutaka; Nishijima, Tsuguo; Sakurai, Shigeru; Inoue, Hiroshi
2005-09-01
Hypoxia-induced endothelial cell dysfunction has been implicated in increased cardiovascular disease associated with obstructive sleep apnea syndrome (OSAS). OSAS mediates hypertension by stimulating angiotensin II (Ang II) production. Hypoxia and Ang II are the major stimuli of vascular endothelial growth factor (VEGF), which is a potent angiogenic cytokine and also contributes to the atherogenic process itself. We observed serum Ang II and VEGF levels and peripheral blood mononuclear cell (PBMC) and neutrophil VEGF expression. Compared to controls, subjects with OSAS had significantly increased levels of serum Ang II and VEGF and VEGF mRNA expression in their leukocytes. To examine whether Ang II stimulates VEGF expression in OSAS, we treated PBMCs obtained from control subjects with Ang II and with an Ang II receptor type 1 (AT(1)) blocker, olmesartan. We observed an increased expression of VEGF in the Ang II-stimulated PBMCs and decreased in VEGF mRNA and protein expression in the PBMCs treated with olmesartan. These findings suggest that the Ang II-AT(1) receptors pathway potentially are involved in OSAS and VEGF-induced vascularity and that endothelial dysfunction might be linked to this change in Ang II activity within leukocytes of OSAS patients.
Lu, J; Lin, C L; Tang, C; Ponder, J W; Kao, J L; Cistola, D P; Li, E
1999-03-05
The structure and dynamics of rat apo-cellular retinol binding protein II (apo-CRBP II) in solution has been determined by multidimensional NMR analysis of uniformly enriched recombinant rat 13C, 15N-apo-CRBP II and 15N-apo-CRBP II. The final ensemble of 24 NMR structures has been calculated from 3274 conformational restraints or 24.4 restraints/residue. The average root-mean-square deviation of the backbone atoms for the final 24 structures relative to their mean structure is 1.06 A. Although the average solution structure is very similar to the crystal structure, it differs at the putative entrance to the binding cavity, which is formed by the helix-turn-helix motif, the betaC-betaD turn and the betaE-betaF turn. The mean coordinates of the main-chain atoms of amino acid residues 28-38 are displaced in the solution structure relative to the crystal structure. The side-chain of F58, located on the betaC-betaD turn, is reoriented such that it interacts with L37 and no longer blocks entry into the ligand-binding pocket. Residues 28-35, which form the second helix of the helix-turn-helix motif in the crystal structure, do not exhibit a helical conformation in the solution structure. The solution structure of apo-CRBP II exhibits discrete regions of backbone disorder which are most pronounced at residues 28-32, 37-38 and 73-76 in the betaE-betaF turn as evaluated by the consensus chemical shift index, the root-mean-square deviation, amide 1H exchange rates and 15N relaxation studies. These studies indicate that fluctuations in protein conformation occur on the microseconds to ms time-scale in these regions of the protein. Some of these exchange processes can be directly observed in the three-dimensional 15N-resolved NOESY spectrum. These results suggest that in solution, apo-CRBP II undergoes conformational changes on the microseconds to ms time-scale which result in increased access to the binding cavity. Copyright 1999 Academic Press.
Induced-fit Mechanism for Prolyl Endopeptidase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Min; Chen, Changqing; Davies, David R.
2010-11-15
Prolyl peptidases cleave proteins at proline residues and are of importance for cancer, neurological function, and type II diabetes. Prolyl endopeptidase (PEP) cleaves neuropeptides and is a drug target for neuropsychiatric diseases such as post-traumatic stress disorder, depression, and schizophrenia. Previous structural analyses showing little differences between native and substrate-bound structures have suggested a lock-and-key catalytic mechanism. We now directly demonstrate from seven structures of Aeromonus punctata PEP that the mechanism is instead induced fit: the native enzyme exists in a conformationally flexible opened state with a large interdomain opening between the {beta}-propeller and {alpha}/{beta}-hydrolase domains; addition of substrate tomore » preformed native crystals induces a large scale conformational change into a closed state with induced-fit adjustments of the active site, and inhibition of this conformational change prevents substrate binding. Absolute sequence conservation among 28 orthologs of residues at the active site and critical residues at the interdomain interface indicates that this mechanism is conserved in all PEPs. This finding has immediate implications for the use of conformationally targeted drug design to improve specificity of inhibition against this family of proline-specific serine proteases.« less
Calcium-controlled conformational choreography in the N-terminal half of adseverin
NASA Astrophysics Data System (ADS)
Chumnarnsilpa, Sakesit; Robinson, Robert C.; Grimes, Jonathan M.; Leyrat, Cedric
2015-09-01
Adseverin is a member of the calcium-regulated gelsolin superfamily of actin-binding proteins. Here we report the crystal structure of the calcium-free N-terminal half of adseverin (iA1-A3) and the Ca2+-bound structure of A3, which reveal structural similarities and differences with gelsolin. Solution small-angle X-ray scattering combined with ensemble optimization revealed a dynamic Ca2+-dependent equilibrium between inactive, intermediate and active conformations. Increasing calcium concentrations progressively shift this equilibrium from a main population of inactive conformation to the active form. Molecular dynamics simulations of iA1-A3 provided insights into Ca2+-induced destabilization, implicating a critical role for the A2 type II calcium-binding site and the A2A3 linker in the activation process. Finally, mutations that disrupt the A1/A3 interface increase Ca2+-independent F-actin severing by A1-A3, albeit at a lower efficiency than observed for gelsolin domains G1-G3. Together, these data address the calcium dependency of A1-A3 activity in relation to the calcium-independent activity of G1-G3.
Structuralism: Its Implications for the Performance of Prose Fiction
ERIC Educational Resources Information Center
Hopkins, Mary Francis
1977-01-01
Discusses the implications of structuralism by examining "Introduction to The Structural Analysis of Narrative", a contemporary writing by Roland Barthes. Explains Barthes' terms and concepts by using Virginia Woolf's Mrs. Dalloway character for an example. (MH)
Park, Young Jun; Cook, Sarah A; Sickerman, Nathaniel S; Sano, Yohei; Ziller, Joseph W; Borovik, A S
2013-02-01
The effects of redox-inactive metal ions on dioxygen activation were explored using a new Fe II complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O 2 than its Mn II analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the Fe II and Mn II complexes, which followed the trend NMe 4 + < Ba II < Ca II = Sr II . These studies led to the isolation of heterobimetallic complexes containing Fe III -( μ -OH)-M II cores (M II = Ca, Sr, and Ba) and one with a [Sr II (OH)Mn III ] + motif. The analogous [Ca II (OH)Ga III ] + complex was also prepared and its solid state molecular structure is nearly identical to that of the [Ca II (OH)Fe III ] + system. Nuclear magnetic resonance studies indicated that the diamagnetic [Ca II (OH)Ga III ] + complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [Ca II (OH)Fe III ] + and [Sr II (OH)Fe III ] + complexes, which were more positive than the potential observed for [Ba II (OH)Fe III ] + . Similar results were obtained for the heterobimetallic Mn II complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II.
D’Agostino, DM; Silic-Benussi, M; Hiraragi, H; Lairmore, MD; Ciminale, V
2011-01-01
p13II of human T-cell leukemia virus type 1 (HTLV-1) is an 87-amino-acid protein that is targeted to the inner mitochondrial membrane. p13II alters mitochondrial membrane permeability, producing a rapid, membrane potential-dependent influx of K+. These changes result in increased mitochondrial matrix volume and fragmentation and may lead to depolarization and alterations in mitochondrial Ca2+ uptake/retention capacity. At the cellular level, p13II has been found to interfere with cell proliferation and transformation and to promote apoptosis induced by ceramide and Fas ligand. Assays carried out in T cells (the major targets of HTLV-1 infection in vivo) demonstrate that p13II-mediated sensitization to Fas ligand-induced apoptosis can be blocked by an inhibitor of Ras farnesylation, thus implicating Ras signaling as a downstream target of p13II function. PMID:15761473
Hänninen, Mikko M; Välivaara, Juha; Mota, Antonio J; Colacio, Enrique; Lloret, Francesc; Sillanpää, Reijo
2013-02-18
A series of six mixed-valence Mn(II)/Mn(III) dinuclear complexes were synthesized and characterized by X-ray diffraction. The reactivity of the complexes was surveyed, and structures of three additional trinuclear mixed-valence Mn(III)/Mn(II)/Mn(III) species were resolved. The magnetic properties of the complexes were studied in detail both experimentally and theoretically. All dinuclear complexes show ferromagnetic intramolecular interactions, which were justified on the basis of the electronic structures of the Mn(II) and Mn(III) ions. The large Mn(II)-O-Mn(III) bond angle and small distortion of the Mn(II) cation from the ideal square pyramidal geometry were shown to enhance the ferromagnetic interactions since these geometrical conditions seem to favor the orthogonal arrangement of the magnetic orbitals.
Poirier, Stéphanie; Lynn, Hudson; Reber, Christian; Tailleur, Elodie; Marchivie, Mathieu; Guionneau, Philippe; Probert, Michael R
2018-06-12
Luminescence spectra of isoelectronic square-planar d 8 complexes with 3d, 4d, and 5d metal centers show d-d luminescence with an energetic order different from that of the spectrochemical series, indicating that additional structural effects, such as different ligand-metal-ligand angles, are important factors. Variable-pressure luminescence spectra of square-planar nickel(II), palladium(II), and platinum(II) complexes with dimethyldithiocarbamate ({CH 3 } 2 DTC) ligands and their deuterated analogues show unexpected variations of the shifts of their maxima. High-resolution crystal structures and crystal structures at variable pressure for [Pt{(CH 3 ) 2 DTC} 2 ] indicate that intermolecular M···H-C interactions are at the origin of these different shifts.
Structure and evolution of fossil H II regions
NASA Technical Reports Server (NTRS)
Mccray, R.; Schwarz, J.
1971-01-01
The structure and evolution of a fossil H II region created by a burst of ionizing radiation from a supernova is considered. The cooling time scale for the shell is about 10 to the 6th power years. Superposition of million-year-old fossil H II regions may account for the temperature and ionization of the interstellar medium. Fossil H II regions are unstable to growth of thermal condensations. Highly ionized filamentary structures form and dissipate in about 10,000 years. Partially ionized clouds form and dissipate in about 10 to the 6th power years.
ESCRT-II's involvement in HIV-1 genomic RNA trafficking and assembly.
Ghoujal, Bashar; Milev, Miroslav P; Ajamian, Lara; Abel, Karen; Mouland, Andrew J
2012-12-01
Several host proteins play crucial roles in the HIV-1 replication cycle. The endosomal sorting complex required for transport (ESCRT) exemplifies a large, multi-component host machinery that is required by HIV-1 for viral budding. ESCRT promotes the inward budding of vesicles from the membranes of late endosomes to generate multi-vesicular bodies. However, HIV-1 co-opts the ESCRT to enable outwards budding of virus particles from the plasma membrane, a phenomenon that is topologically similar to multi-vesicular body biogenesis. A role for ESCRTII in mRNA trafficking has been established in Drosophila in which the ESCRT-II components, Vps22 and Vps36, promote the localisation of the bicoid mRNA in the fertilised egg. This is achieved via specific interactions with the Staufen protein. In this work, we investigated a possible implication of ESCRT-II in the HIV-1 replication cycle. Co-immunoprecipitation analyses and live cell tri-molecular fluorescence complementation assays revealed that interactions between EAP30 and Gag and another between EAP30 and Staufen1 occur in mammalian cells. We then depleted EAP30 (the orthologue for Vps22) by siRNA to target ESCRT-II in HIV-1 expressing cells. This treatment disrupted ESCRT-II function and leads to the degradation of the two other ESCRT-II complex proteins, EAP45 and EAP20, as well as the associated Rab7-interacting lysosomal protein. The depletion of EAP30 led to dramatically reduced viral structural protein Gag and virus production levels, without any effect on viral RNA levels. On the contrary, the overexpression of EAP30 led to a several-fold increase in virus production. Unexpec-tedly, siRNA-mediated depletion of EAP30 led to a block to HIV-1 genomic RNA trafficking and resulted in the accumulation of genomic RNA in the nucleus and juxtanuclear domains. Our data provide the first evidence that the Staufen1-ESCRT-II interaction is evolutionarily conserved from lower to higher eukaryotes and reveal a novel role for EAP30 in the control of HIV-1 RNA trafficking and gene expression. Copyright © 2012 Wiley-Liss, Inc.
Structure of catabolite activator protein with cobalt(II) and sulfate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Ramya R.; Lawson, Catherine L., E-mail: cathy.lawson@rutgers.edu
2014-04-15
The crystal structure of E. coli catabolite activator protein with bound cobalt(II) and sulfate ions at 1.97 Å resolution is reported. The crystal structure of cyclic AMP–catabolite activator protein (CAP) from Escherichia coli containing cobalt(II) chloride and ammonium sulfate is reported at 1.97 Å resolution. Each of the two CAP subunits in the asymmetric unit binds one cobalt(II) ion, in each case coordinated by N-terminal domain residues His19, His21 and Glu96 plus an additional acidic residue contributed via a crystal contact. The three identified N-terminal domain cobalt-binding residues are part of a region of CAP that is important for transcriptionmore » activation at class II CAP-dependent promoters. Sulfate anions mediate additional crystal lattice contacts and occupy sites corresponding to DNA backbone phosphate positions in CAP–DNA complex structures.« less
On the occurrence of polyproline II structure in elastin
NASA Astrophysics Data System (ADS)
Martino, M.; Bavoso, A.; Guantieri, V.; Coviello, A.; Tamburro, A. M.
2000-02-01
To shed light on the occurrence of the polyproline II (PP II) structure in the elastomeric protein elastin, the octapeptide sequence ALGGGALG of the N-terminal region of human elastin was studied in its monomeric and polymeric form, both in solution and in the solid state. Furthermore, the polymer poly(PG), chosen by us as an a priori reference compound for investigating the stability of PP II structure in presence of alternating proline and glycine residues along the polypeptide chain, was studied by circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. Its "monomeric" form Boc-PG-OH, was also analyzed by X-ray diffraction. It was shown that, in the solid state the presence of PG or GGG sequences in polypeptide chains and even in a short peptide as Boc-PG-OH induces the acquisition of the PP II structural motif. However, in solution this conformation appears to be much more unstable even in the case of long polypeptide chains. The finding that at room temperature the PP II structure is always in equilibrium with other conformers suggests that its dynamics could also contribute to the molecular mechanism of elastin elasticity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherer, Michelle
2016-08-31
During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations usingmore » a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.« less
Structural Analysis of the Hg(II)-Regulatory Protein Tn501 MerR from Pseudomonas aeruginosa
Wang, Dan; Huang, Shanqing; Liu, Pingying; Liu, Xichun; He, Yafeng; Chen, Weizhong; Hu, Qingyuan; Wei, Tianbiao; Gan, Jianhua; Ma, Jing; Chen, Hao
2016-01-01
The metalloprotein MerR is a mercury(II)-dependent transcriptional repressor-activator that responds to mercury(II) with extraordinary sensitivity and selectivity. It’s widely distributed in both Gram-negative and Gram-positive bacteria but with barely detectable sequence identities between the two sources. To provide structural basis for the considerable biochemical and biophysical experiments previously performed on Tn501 and Tn21 MerR from Gram-negative bacteria, we analyzed the crystal structure of mercury(II)-bound Tn501 MerR. The structure in the metal-binding domain provides Tn501 MerR with a high affinity for mercury(II) and the ability to distinguish mercury(II) from other metals with its unique planar trigonal coordination geometry, which is adopted by both Gram-negative and Gram-positive bacteria. The mercury(II) coordination state in the C-terminal metal-binding domain is transmitted through the allosteric network across the dimer interface to the N-terminal DNA-binding domain. Together with the previous mutagenesis analyses, the present data indicate that the residues in the allosteric pathway have a central role in maintaining the functions of Tn501 MerR. In addition, the complex structure exhibits significant differences in tertiary and quaternary structural arrangements compared to those of Bacillus MerR from Gram-positive bacteria, which probably enable them to function with specific promoter DNA with different spacers between −35 and −10 elements. PMID:27641146
Rapid X-ray Photoreduction of Dimetal-Oxygen Cofactors in Ribonucleotide Reductase
Sigfridsson, Kajsa G. V.; Chernev, Petko; Leidel, Nils; Popović-Bijelić, Ana; Gräslund, Astrid; Haumann, Michael
2013-01-01
Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques. PMID:23400774
Rapid X-ray photoreduction of dimetal-oxygen cofactors in ribonucleotide reductase.
Sigfridsson, Kajsa G V; Chernev, Petko; Leidel, Nils; Popovic-Bijelic, Ana; Gräslund, Astrid; Haumann, Michael
2013-04-05
Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.
Vyas, Vivek K; Ghate, Manjunath; Patel, Kinjal; Qureshi, Gulamnizami; Shah, Surmil
2015-08-01
Ang II-AT1 receptors play an important role in mediating virtually all of the physiological actions of Ang II. Several drugs (SARTANs) are available, which can block the AT1 receptor effectively and lower the blood pressure in the patients with hypertension. Currently, there is no experimental Ang II-AT1 structure available; therefore, in this study we modeled Ang II-AT1 receptor structure using homology modeling followed by identification and characterization of binding sites and thereby assessing druggability of the receptor. Homology models were constructed using MODELLER and I-TASSER server, refined and validated using PROCHECK in which 96.9% of 318 residues were present in the favoured regions of the Ramachandran plots. Various Ang II-AT1 receptor antagonist drugs are available in the market as antihypertensive drug, so we have performed docking study with the binding site prediction algorithms to predict different binding pockets on the modeled proteins. The identification of 3D structures and binding sites for various known drugs will guide us for the structure-based drug design of novel compounds as Ang II-AT1 receptor antagonists for the treatment of hypertension. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Gaber, Mohamed; El-Wakiel, Nadia A.; El-Ghamry, Hoda; Fathalla, Shaimaa K.
2014-11-01
Manganese(II), cobalt(II), nickel(II) and copper(II) complexes of [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol have been synthesized. The structure of complexes have been characterized by elemental analysis, molar conductance, magnetic moment measurements and spectral (IR, 1H NMR, EI-mass, UV-Vis and ESR), and thermal studies. The results showed that the chloro and nitrato Cu(II) complexes have octahedral geometry while Ni(II), Co(II) and Mn(II) complexes in addition to acetato Cu(II) complex have tetrahedral geometry. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program to confirm the proposed structures. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the TG curves. The binding modes of the complexes with DNA have been investigated by UV-Vis absorption titration. The results showed that the mode of binding of the complexes to DNA is intercalative or non-intercalative binding modes. Schiff base and its metal complexes have been screened for their in vitro antimicrobial activities against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pesudomonas aeruginosa), fungi (Asperigllus flavus and Mucer) and yeast (Candida albicans and Malassezia furfur).
Nguyen, Dat H; Colvin, Michael E; Yeh, Yin; Feeney, Robert E; Fink, William H
2002-01-01
Recent NMR studies of the solution structure of the 14-amino acid antifreeze glycoprotein AFGP-8 have concluded that the molecule lacks long-range order. The implication that an apparently unstructured molecule can still have a very precise function as a freezing inhibitor seems startling at first consideration. To gain insight into the nature of conformations and motions in AFGP-8, we have undertaken molecular dynamics simulations augmented with free energy calculations using a continuum solvation model. Starting from 10 different NMR structures, 20 ns of dynamics of AFGP were explored. The dynamics show that AFGP structure is composed of four segments, joined by very flexible pivots positioned at alanine 5, 8, and 11. The dynamics also show that the presence of prolines in this small AFGP structure facilitates the adoption of the poly-proline II structure as its overall conformation, although AFGP does adopt other conformations during the course of dynamics as well. The free energies calculated using a continuum solvation model show that the lowest free energy conformations, while being energetically equal, are drastically different in conformations. In other words, this AFGP molecule has many structurally distinct and energetically equal minima in its energy landscape. In addition, conformational, energetic, and hydrogen bond analyses suggest that the intramolecular hydrogen bonds between the N-acetyl group and the protein backbone are an important integral part of the overall stability of the AFGP molecule. The relevance of these findings to the mechanism of freezing inhibition is discussed. PMID:12023212
Nguyen, Dat H; Colvin, Michael E; Yeh, Yin; Feeney, Robert E; Fink, William H
2002-06-01
Recent NMR studies of the solution structure of the 14-amino acid antifreeze glycoprotein AFGP-8 have concluded that the molecule lacks long-range order. The implication that an apparently unstructured molecule can still have a very precise function as a freezing inhibitor seems startling at first consideration. To gain insight into the nature of conformations and motions in AFGP-8, we have undertaken molecular dynamics simulations augmented with free energy calculations using a continuum solvation model. Starting from 10 different NMR structures, 20 ns of dynamics of AFGP were explored. The dynamics show that AFGP structure is composed of four segments, joined by very flexible pivots positioned at alanine 5, 8, and 11. The dynamics also show that the presence of prolines in this small AFGP structure facilitates the adoption of the poly-proline II structure as its overall conformation, although AFGP does adopt other conformations during the course of dynamics as well. The free energies calculated using a continuum solvation model show that the lowest free energy conformations, while being energetically equal, are drastically different in conformations. In other words, this AFGP molecule has many structurally distinct and energetically equal minima in its energy landscape. In addition, conformational, energetic, and hydrogen bond analyses suggest that the intramolecular hydrogen bonds between the N-acetyl group and the protein backbone are an important integral part of the overall stability of the AFGP molecule. The relevance of these findings to the mechanism of freezing inhibition is discussed.
Effect of deformation on the structural state of piracetam
NASA Astrophysics Data System (ADS)
Kanunnikova, O. M.; Mikhailova, S. S.; Karban', O. V.; Mukhgalin, V. V.; Aksenova, V. V.; Sen'kovskii, B. V.; Pechina, E. A.; Lad'yanov, V. I.
2016-04-01
The effect of various deformation actions on the structure-phase transformations in piracetam of modifications I and II with a sodium acetate addition is studied. Mechanical activation and pressing are shown to cause the polymorphic transformation of modification I into modification II, and modification III forms predominantly during severe plastic deformation by torsion. The structural difference between the piracetam molecules of modifications I and II is found to be retained in aqueous solutions.
NASA Astrophysics Data System (ADS)
Manzano, Carlos M.; Bergamini, Fernando R. G.; Lustri, Wilton R.; Ruiz, Ana Lúcia T. G.; de Oliveira, Ellen C. S.; Ribeiro, Marcos A.; Formiga, André L. B.; Corbi, Pedro P.
2018-02-01
Palladium(II) and platinum(II) complexes with a hydrazide derivative of ibuprofen (named HIB) were synthesized and characterized by chemical and spectroscopic methods. Elemental and thermogravimetric analyses, as well as ESI-QTOF-MS studies for both complexes, confirmed a 1:2:2 metal/HIB/Cl- molar ratio. The crystal structure of the palladium(II) complex was solved by single crystal X-ray diffractometric analysis, which permitted identifying the coordination formula [PdCl2(HIB)2]. Crystallographic studies also indicate coordination of HIB to the metal by the NH2 group. Nuclear magnetic resonance and infrared spectroscopies reinforced the coordination observed in the crystal structure and suggested that the platinum(II) complex presents similar coordination modes and structure when compared with the Pd(II) complex. The complexes had their structures optimized with the aid of DFT methods. In vitro antiproliferative assays showed that the [PdCl2(HIB)2] complex is active over ovarian cancer cell line OVCAR-03, while biophysical studies indicated its capacity to interact with CT-DNA. The complexes were inactive over Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacterial strains.
Jong, Tony; Parry, David L
2004-07-01
The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.
Vijayakumar, Balakrishnan; Velmurugan, Devadasan
2012-01-01
Protein Kinase C β-II (PKC β-II) is an important enzyme in the development of diabetic complications like cardiomyopathy, retinopathy, neuropathy, nephropathy and angiopathy. PKC β-II is activated in vascular tissues during diabetic vascular abnormalities. Thus, PKC β-II is considered as a potent drug target and the crystal structure of the kinase domain of PKC β-II (PDB id: 2I0E) was used to design inhibitors using Structure-Based Drug Design (SBDD) approach. Sixty inhibitors structurally similar to Staurosporine were retrieved from PubChem Compound database and High Throughput Virtual screening (HTVs) was carried out with PKC β-II. Based on the HTVs results and the nature of active site residues of PKC β-II, Staurosporine inhibitors were designed using SBDD. Induced Fit Docking (IFD) studies were carried out between kinase domain of PKC β-II and the designed inhibitors. These IFD complexes showed favorable docking score, glide energy, glide emodel and hydrogen bond and hydrophobic interactions with the active site of PKC β-II. Binding free energy was calculated for IFD complexes using Prime MM-GBSA method. The conformational changes induced by the inhibitor at the active site of PKC β-II were observed for the back bone Cα atoms and side-chain chi angles. PASS prediction tool was used to analyze the biological activities for the designed inhibitors. The various physicochemical properties were calculated for the compounds. One of the designed inhibitors successively satisfied all the in silico parameters among the others and seems to be a potent inhibitor against PKC β-II. PMID:22829732
Structural analysis of an oxygen-regulated diguanylate cyclase.
Tarnawski, Miroslaw; Barends, Thomas R M; Schlichting, Ilme
2015-11-01
Cyclic di-GMP is a bacterial second messenger that is involved in switching between motile and sessile lifestyles. Given the medical importance of biofilm formation, there has been increasing interest in understanding the synthesis and degradation of cyclic di-GMPs and their regulation in various bacterial pathogens. Environmental cues are detected by sensing domains coupled to GGDEF and EAL or HD-GYP domains that have diguanylate cyclase and phosphodiesterase activities, respectively, producing and degrading cyclic di-GMP. The Escherichia coli protein DosC (also known as YddV) consists of an oxygen-sensing domain belonging to the class of globin sensors that is coupled to a C-terminal GGDEF domain via a previously uncharacterized middle domain. DosC is one of the most strongly expressed GGDEF proteins in E. coli, but to date structural information on this and related proteins is scarce. Here, the high-resolution structural characterization of the oxygen-sensing globin domain, the middle domain and the catalytic GGDEF domain in apo and substrate-bound forms is described. The structural changes between the iron(III) and iron(II) forms of the sensor globin domain suggest a mechanism for oxygen-dependent regulation. The structural information on the individual domains is combined into a model of the dimeric DosC holoprotein. These findings have direct implications for the oxygen-dependent regulation of the activity of the cyclase domain.
Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Iijima, Seiichiro; Halcrow, Malcolm A; Sunatsuki, Yukinari; Kojima, Masaaki
2011-12-07
Two Fe(II) complexes fac-[Fe(II)(HL(n-Pr))(3)]Cl·Y (Y = AsF(6) (1) and BF(4) (2)) were synthesized, where HL(n-Pr) is 2-methylimidazole-4-yl-methylideneamino-n-propyl. Each complex-cation has the same octahedral N(6) geometry coordinated by three bidentate ligands and assumes facial-isomerism, fac-[Fe(II)(HL(n-Pr))(3)](2+) with Δ- and Λ-enantiomorphs. Three imidazole groups per Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) are hydrogen-bonded to three Cl(-) ions or, from the viewpoint of the Cl(-) ion, one Cl(-) ion is hydrogen-bonded to three neighbouring fac-[Fe(II)(HL(n-Pr))(3)](2+) cations. The 3 : 3 NH···Cl(-) hydrogen bonds between Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) and Cl(-) generate two kinds of assembly structures. The directions of the 3 : 3 NH···Cl(-) hydrogen bonds and hence the resulting assembly structures are determined by the size of the anion Y, though Y is not involved into the network structure and just accommodated in the cavity. Compound 1 has a 1D ladder structure giving a larger cavity, in which the Δ- and Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) enantiomorphs are bridged by two NH···Cl(-) hydrogen bonds. Compound 2 has a 2D network structure with a net unit of a cyclic trimer of {fac-[Fe(II)(HL(n-Pr))(3)](2+)···Cl(-)}(3) giving a smaller cavity, in which Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) species with the same chirality are linked by NH···Cl(-) hydrogen bonds to give a homochiral 2D network structure. Magnetic susceptibility and Mössbauer spectral measurements demonstrated that compound 1 showed an abrupt one-step spin crossover with 4.0 K thermal hysteresis of T(c↓) = 125.5 K and T(c↑) = 129.5 K and compound 2 showed no spin transition and stayed in the high-spin state over the 5-300 K temperature range.
Transformations in methane hydrates
Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Shu, J.; Mao, Ho-kwang; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.
2000-01-01
Detailed study of pure methane hydrate in a diamond cell with in situ optical, Raman, and x-ray microprobe techniques reveals two previously unknown structures, structure II and structure H, at high pressures. The structure II methane hydrate at 250 MPa has a cubic unit cell of a = 17.158(2) A?? and volume V = 5051.3(13) A??3; structure H at 600 MPa has a hexagonal unit cell of a = 11.980(2) A??, c = 9.992(3) A??, and V = 1241.9(5) A??3. The compositions of these two investigated phases are still not known. With the effects of pressure and the presence of other gases in the structure, the structure II phase is likely to dominate over the known structure I methane hydrate within deep hydrate-bearing sediments underlying continental margins.
Badirou, Idinath; Pan, Jiajia; Legrand, Céline; Wang, Aibing; Lordier, Larissa; Boukour, Siham; Roy, Anita; Vainchenker, William
2014-01-01
Endomitosis is a unique megakaryocyte (MK) differentiation process that is the consequence of a late cytokinesis failure associated with a contractile ring defect. Evidence from in vitro studies has revealed the distinct roles of 2 nonmuscle myosin IIs (NMIIs) on MK endomitosis: only NMII-B (MYH10), but not NMII-A (MYH9), is localized in the MK contractile ring and implicated in mitosis/endomitosis transition. Here, we studied 2 transgenic mouse models in which nonmuscle myosin heavy chain (NMHC) II-A was genetically replaced either by II-B or by a chimeric NMHCII that combined the head domain of II-A with the rod and tail domains of II-B. This study provides in vivo evidence on the specific role of NMII-B on MK polyploidization. It demonstrates that the carboxyl-terminal domain of the heavy chains determines myosin II localization to the MK contractile ring and is responsible for the specific role of NMII-B in MK polyploidization. PMID:25185263
Badirou, Idinath; Pan, Jiajia; Legrand, Céline; Wang, Aibing; Lordier, Larissa; Boukour, Siham; Roy, Anita; Vainchenker, William; Chang, Yunhua
2014-10-16
Endomitosis is a unique megakaryocyte (MK) differentiation process that is the consequence of a late cytokinesis failure associated with a contractile ring defect. Evidence from in vitro studies has revealed the distinct roles of 2 nonmuscle myosin IIs (NMIIs) on MK endomitosis: only NMII-B (MYH10), but not NMII-A (MYH9), is localized in the MK contractile ring and implicated in mitosis/endomitosis transition. Here, we studied 2 transgenic mouse models in which nonmuscle myosin heavy chain (NMHC) II-A was genetically replaced either by II-B or by a chimeric NMHCII that combined the head domain of II-A with the rod and tail domains of II-B. This study provides in vivo evidence on the specific role of NMII-B on MK polyploidization. It demonstrates that the carboxyl-terminal domain of the heavy chains determines myosin II localization to the MK contractile ring and is responsible for the specific role of NMII-B in MK polyploidization.
Influenza Virus Mounts a Two-Pronged Attack on Host RNA Polymerase II Transcription.
Bauer, David L V; Tellier, Michael; Martínez-Alonso, Mónica; Nojima, Takayuki; Proudfoot, Nick J; Murphy, Shona; Fodor, Ervin
2018-05-15
Influenza virus intimately associates with host RNA polymerase II (Pol II) and mRNA processing machinery. Here, we use mammalian native elongating transcript sequencing (mNET-seq) to examine Pol II behavior during viral infection. We show that influenza virus executes a two-pronged attack on host transcription. First, viral infection causes decreased Pol II gene occupancy downstream of transcription start sites. Second, virus-induced cellular stress leads to a catastrophic failure of Pol II termination at poly(A) sites, with transcription often continuing for tens of kilobases. Defective Pol II termination occurs independently of the ability of the viral NS1 protein to interfere with host mRNA processing. Instead, this termination defect is a common effect of diverse cellular stresses and underlies the production of previously reported downstream-of-gene transcripts (DoGs). Our work has implications for understanding not only host-virus interactions but also fundamental aspects of mammalian transcription. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Nursing gaze of the Eastern Front in World War II: a feminist narrative analysis.
Georges, Jane M; Benedict, Susan
2008-01-01
Grounded in a feminist perspective, a narrative analysis of letters written by Martha Lohmann, a nurse who served with the German Army on the Eastern Front in World War II, is undertaken. Utilizing "gaze" as a focus, an exploration of the narrative and the multiple gazes embedded within it is performed. Implications for future analysis of nurses' textual accounts of violence, armed conflict, and war are presented.
ERIC Educational Resources Information Center
Gauld, Colin F.
2009-01-01
Books I and III of Newton's "Principia" develop Newton's dynamical theory and show how it explains a number of celestial phenomena. Book II has received little attention from historians or educators because it does not play a major role in Newton's argument. However, it is in Book II that we see most clearly Newton both as a theoretician and an…
X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, J.C.
In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal IImore » EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.« less
Structure and reactivity of a mononuclear gold(II) complex
NASA Astrophysics Data System (ADS)
Preiß, Sebastian; Förster, Christoph; Otto, Sven; Bauer, Matthias; Müller, Patrick; Hinderberger, Dariush; Hashemi Haeri, Haleh; Carella, Luca; Heinze, Katja
2017-12-01
Mononuclear gold(II) complexes are very rare labile species. Transient gold(II) species have been suggested in homogeneous catalysis and in medical applications, but their geometric and electronic structures have remained essentially unexplored: even fundamental data, such as the ionic radius of gold(II), are unknown. Now, an unprecedentedly stable neutral gold(II) complex of a porphyrin derivative has been isolated, and its structural and spectroscopic features determined. The gold atom adopts a 2+2 coordination mode in between those of gold(III) (four-coordinate square planar) and gold(I) (two-coordinate linear), owing to a second-order Jahn-Teller distortion enabled by the relativistically lowered 6s orbital of gold. The reactivity of this gold(II) complex towards dioxygen, nitrosobenzene and acids is discussed. This study provides insight on the ionic radius of gold(II), and allows it to be placed within the homologous series of nd9 Cu/Ag/Au divalent ions and the 5d8/9/10 Pt/Au/Hg 'relativistic' triad in the periodic table.
NASA Astrophysics Data System (ADS)
Bakale, Raghavendra P.; Naik, Ganesh N.; Machakanur, Shrinath S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.; Gudasi, Kalagouda B.
2018-02-01
A hydrazone ligand has been synthesized by the condensation of 2-nitrobenzaldehyde and hydralazine, and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been reported. Structural characterization of the ligand and its metal complexes has been performed by various spectroscopic [IR, NMR, UV-Vis, Mass], thermal and other physicochemical methods. The structure of the ligand and its Ni(II) complex has been characterized by single crystal X-ray diffraction studies. All the synthesized compounds have been screened for in vitro antimicrobial activity. The antibacterial activity is tested against Gram-positive strains Enterococcus faecalis, Streptococcus mutans and Staphylococcus aureus and Gram-negative strains Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae using ciprofloxacin as the reference standard. Antifungal activity is tested against Candida albicans, Aspergillus fumigatus and Aspergillus niger using ketoconazole as the reference standard. The minimum inhibitory concentration (MIC) was determined for test compounds as well as for reference standard. Ligand, Cu(II) and Zn(II) complexes have shown excellent activity against Candida albicans.
Reproduction (II): Human Control of Reproductive Processes
ERIC Educational Resources Information Center
Jost, Alfred
1970-01-01
Describes methods of intervening in reproduction of animals and humans (artificial insemination, contraception, ovular and blastodisc transplants, pre selection of sex, cloning) and discusses the social implications of their use with humans. (AL)
2015-01-01
Structural coverage of the human kinome has been steadily increasing over time. The structures provide valuable insights into the molecular basis of kinase function and also provide a foundation for understanding the mechanisms of kinase inhibitors. There are a large number of kinase structures in the PDB for which the Asp and Phe of the DFG motif on the activation loop swap positions, resulting in the formation of a new allosteric pocket. We refer to these structures as “classical DFG-out” conformations in order to distinguish them from conformations that have also been referred to as DFG-out in the literature but that do not have a fully formed allosteric pocket. We have completed a structural analysis of almost 200 small molecule inhibitors bound to classical DFG-out conformations; we find that they are recognized by both type I and type II inhibitors. In contrast, we find that nonclassical DFG-out conformations strongly select against type II inhibitors because these structures have not formed a large enough allosteric pocket to accommodate this type of binding mode. In the course of this study we discovered that the number of structurally validated type II inhibitors that can be found in the PDB and that are also represented in publicly available biochemical profiling studies of kinase inhibitors is very small. We have obtained new profiling results for several additional structurally validated type II inhibitors identified through our conformational analysis. Although the available profiling data for type II inhibitors is still much smaller than for type I inhibitors, a comparison of the two data sets supports the conclusion that type II inhibitors are more selective than type I. We comment on the possible contribution of the DFG-in to DFG-out conformational reorganization to the selectivity. PMID:25478866
Park, Young Jun; Cook, Sarah A.; Sickerman, Nathaniel S.; Sano, Yohei; Ziller, Joseph W.
2013-01-01
The effects of redox-inactive metal ions on dioxygen activation were explored using a new FeII complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O2 than its MnII analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the FeII and MnII complexes, which followed the trend NMe4+ < BaII < CaII = SrII. These studies led to the isolation of heterobimetallic complexes containing FeIII-(μ-OH)-MII cores (MII = Ca, Sr, and Ba) and one with a [SrII(OH)MnIII]+ motif. The analogous [CaII(OH)GaIII]+ complex was also prepared and its solid state molecular structure is nearly identical to that of the [CaII(OH)FeIII]+ system. Nuclear magnetic resonance studies indicated that the diamagnetic [CaII(OH)GaIII]+ complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [CaII(OH)FeIII]+ and [SrII(OH)FeIII]+ complexes, which were more positive than the potential observed for [BaII(OH)FeIII]+. Similar results were obtained for the heterobimetallic MnII complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II. PMID:24058726
Mohamed, Gehad G; El-Gamel, Nadia E A
2004-11-01
The ternary piroxicam (Pir; 4-hydroxy-2-methyl-N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA chelates were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; El-Gamel, Nadia E. A.
2004-11-01
The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.
2014-01-01
facilitates analysis of fibrin generation and its modulation by clotting factors : implications for hemostasis-enhancing therapies† Alexander Y...investigate the ability of fibrinogen and a recently proposed prothrombin complex concentrate composition, PCC-AT (a combination of the clotting factors II...kinetics. Moreover, the model qualitatively predicted the impact of tissue factor and tPA/tenecteplase level variations on the fibrin output. In the
Organizational Behavior in Disasters and Implications for Disaster Planning. Volume 1, Number 2
1986-07-01
the personal challenges presented by the disaster. There may be expectations of panic, but what almost always occurs is rational behavior . For many...Similarly, there may be expectations of disorder, but what appears is a great deal of prosocial instead of antisocial behavior . To inexperienced...FEMA 104/July 1986 (5-1 Organizational Behavior in Disasters and IMpliCations for Disaster Planning - ii;~1COPBy Enrico L. Quarante~l , Ph. D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starcher, Autumn N.; Li, Wei; Kukkadapu, Ravi K.
Fe(II)-Al(III)-LDH (layered double hydroxide) phases have been shown to form from reactions of aqueous Fe(II) with Fe-free Al-bearing minerals (phyllosilicate/clays and Al-oxides). To our knowledge, the effect of small amounts of structural Fe(III) impurities in “neutral” clays on such reactions, however, were not studied. In this study to understand the role of structural Fe(III) impurity in clays, laboratory batch studies with pyrophyllite (10 g/L), an Al-bearing phyllosilicate, containing small amounts of structural Fe(III) impurities and 0.8 mM and 3 mM Fe(II) (both natural and enriched in 57Fe) were carried out at pH 7.5 under anaerobic conditions (4% H2 – 96%more » N2 atmosphere). Samples were taken up to 4 weeks for analysis by Fe-X-ray absorption spectroscopy and 57Fe Mössbauer spectroscopy. In addition to the precipitation of Fe(II)-Al(III)-LDH phases as observed in earlier studies with pure minerals (no Fe(III) impurities in the minerals), the analyses indicated formation of small amounts of Fe(III) containing solid(s), most probably hybrid a Fe(II)-Al(III)/Fe(III)-LDH phase. The mechanism of Fe(II) oxidation was not apparent but most likely was due to interfacial electron transfer from the sorbed Fe(II) to the structural Fe(III) and/or surface-sorption-induced electron-transfer from the sorbed Fe(II) to the clay lattice. Increase in the Fe(II)/Al ratio of the LDH with reaction time further indicated the complex nature of the samples. This research provides evidence for the formation of both Fe(II)-Al(III)-LDH and Fe(II)-Fe(III)/Al(III)-LDH-like phases during reactions of Fe(II) in systems that mimic the natural environments. Better understanding Fe phase formation in complex laboratory studies will improve models of natural redox systems.« less
Varrot, A; Hastrup, S; Schülein, M; Davies, G J
1999-01-15
The three-dimensional structure of the catalytic core of the family 6 cellobiohydrolase II, Cel6A (CBH II), from Humicola insolens has been determined by X-ray crystallography at a resolution of 1.92 A. The structure was solved by molecular replacement using the homologous Trichoderma reesei CBH II as a search model. The H. insolens enzyme displays a high degree of structural similarity with its T. reesei equivalent. The structure features both O- (alpha-linked mannose) and N-linked glycosylation and a hexa-co-ordinate Mg2+ ion. The active-site residues are located within the enclosed tunnel that is typical for cellobiohydrolase enzymes and which may permit a processive hydrolysis of the cellulose substrate. The close structural similarity between the two enzymes implies that kinetics and chain-end specificity experiments performed on the H. insolens enzyme are likely to be applicable to the homologous T. reesei enzyme. These cast doubt on the description of cellobiohydrolases as exo-enzymes since they demonstrated that Cel6A (CBH II) shows no requirement for non-reducing chain-ends, as had been presumed. There is no crystallographic evidence in the present structure to support a mechanism involving loop opening, yet preliminary modelling experiments suggest that the active-site tunnel of Cel6A (CBH II) is too narrow to permit entry of a fluorescenyl-derivatized substrate, known to be a viable substrate for this enzyme.
Fernandes, Carlos A. H.; Gartuzo, Elaine C. G.; Pagotto, Ivan; Comparetti, Edson J.; Huancahuire-Vega, Salomón; Ponce-Soto, Luis Alberto; Costa, Tássia R.; Marangoni, Sergio; Soares, Andreimar M.; Fontes, Marcos R. M.
2012-01-01
Two myotoxic and noncatalytic Lys49-phospholipases A2 (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A2 (braziliantoxin-III) from the venom of the Amazonian snake Bothrops brazili were crystallized. The crystals diffracted to resolutions in the range 2.56–2.05 Å and belonged to space groups P3121 (braziliantoxin-II), P6522 (braziliantoxin-III) and P21 (MT-II). The structures were solved by molecular-replacement techniques. Both of the Lys49-phospholipases A2 (braziliantoxin-II and MT-II) contained a dimer in the asymmetric unit, while the Asp49-phospholipase A2 braziliantoxin-III contained a monomer in its asymmetric unit. Analysis of the quaternary assemblies of the braziliantoxin-II and MT-II structures using the PISA program indicated that both models have a dimeric conformation in solution. The same analysis of the braziliantoxin-III structure indicated that this protein does not dimerize in solution and probably acts as a monomer in vivo, similar to other snake-venom Asp49-phospholipases A2. PMID:22869126
NASA Astrophysics Data System (ADS)
Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.
2008-09-01
The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).
Najafpour, Mohammad Mahdi
2011-01-01
The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.
Scattone, Dorothy; Raggio, Donald J; May, Warren
2011-10-01
The Vineland Adaptive Behavior Scales, Second Edition (Vineland-II), and Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) were administered to 65 children between the ages of 12 and 42 months referred for developmental delays. Standard scores and age equivalents were compared across instruments. Analyses showed no statistical difference between Vineland-II ABC standard scores and cognitive levels obtained from the Bayley-III. However, Vineland-II Communication and Motor domain standard scores were significantly higher than corresponding scores on the Bayley-III. In addition, age equivalent scores were significantly higher on the Vineland-II for the fine motor subdomain. Implications for early intervention are discussed.
p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase.
Teodoro, Jose G; Parker, Albert E; Zhu, Xiaochun; Green, Michael R
2006-08-18
Recent evidence suggests that antiangiogenic therapy is sensitive to p53 status in tumors, implicating a role for p53 in the regulation of angiogenesis. Here we show that p53 transcriptionally activates the alpha(II) collagen prolyl-4-hydroxylase [alpha(II)PH] gene, resulting in the extracellular release of antiangiogenic fragments of collagen type 4 and 18. Conditioned media from cells ectopically expressing either p53 or alpha(II)PH selectively inhibited growth of primary human endothelial cells. When expressed intracellularly or exogenously delivered, alpha(II)PH significantly inhibited tumor growth in mice. Our results reveal a genetic and biochemical linkage between the p53 tumor suppressor pathway and the synthesis of antiangiogenic collagen fragments.
NASA Astrophysics Data System (ADS)
Chaudhuri, Dipankar; , Joseph Martin Bollinger, Jr.
2008-07-01
The kinetics of Fe(II) binding to Escherichia coli Ribonucleotide reductase (R2) has been studied using rapid kinetics techniques including chemical quenched flow (CQF) Mössbauer spectroscopy. Based on the stopped flow absorption (SF-Abs) and CQF Mössbauer spectroscopy results, the pre-steady kinetics of binding of Fe(II) to the two sites A and B on R2 have been established with attendant conformational changes. Fe (II) binds to Site B tighter and faster and these and other results provide important information towards the di-iron cofactor assembly mechanism in R2 and could have possible implications for the development of modified and new anticancer and antiviral drugs.
Nonmuscle Myosin II Regulates the Morphogenesis of Metanephric Mesenchyme–Derived Immature Nephrons
Recuenco, Mariam C.; Ohmori, Tomoko; Tanigawa, Shunsuke; Taguchi, Atsuhiro; Fujimura, Sayoko; Conti, Mary Anne; Wei, Qize; Kiyonari, Hiroshi; Abe, Takaya; Adelstein, Robert S.
2015-01-01
The kidney develops from reciprocal interactions between the metanephric mesenchyme and ureteric bud. The mesenchyme transforms into epithelia and forms complicated nephron structures, whereas the ureteric bud extends its pre-existing epithelial ducts. Although the roles are well established for extracellular stimuli, such as Wnt and Notch, it is unclear how the intracellular cytoskeleton regulates these morphogenetic processes. Myh9 and Myh10 encode nonmuscle myosin II heavy chains, and Myh9 mutations in humans are implicated in congenital kidney diseases and focal segmental glomerulosclerosis in adults. Here, we analyzed the roles of Myh9 and Myh10 in the developing kidney. Ureteric bud-specific depletion of Myh9 resulted in no apparent phenotypes, whereas mesenchyme-specific Myh9 deletion caused proximal tubule dilations and renal failure. Mesenchyme-specific Myh9/Myh10 mutant mice died shortly after birth and showed a severe defect in nephron formation. The nascent mutant nephrons failed to form a continuous lumen, which likely resulted from impaired apical constriction of the elongating tubules. In addition, nephron progenitors lacking Myh9/Myh10 or the possible interactor Kif26b were less condensed at midgestation and reduced at birth. Taken together, nonmuscle myosin II regulates the morphogenesis of immature nephrons derived from the metanephric mesenchyme and the maintenance of nephron progenitors. Our data also suggest that Myh9 deletion in mice results in failure to maintain renal tubules but not in glomerulosclerosis. PMID:25168025
Nakamura, H.; Wang, J. X.
2015-01-01
The termination step is an important source of structural diversity in polyketide biosynthesis. Most type I polyketide synthase (PKS) assembly lines are terminated by a thioesterase (TE) domain located at the C-terminus of the final module, while other PKS assembly lines lack a terminal TE domain and are instead terminated by a separate enzyme in trans. In cylindrocyclophane biosynthesis, the type I modular PKS assembly line is terminated by a freestanding type III PKS (CylI). Unexpectedly, the final module of the type I PKS (CylH) also possesses a C-terminal TE domain. Unlike typical type I PKSs, the CylH TE domain does not influence assembly line termination by CylI in vitro. Instead, this domain phylogenetically resembles a type II TE and possesses activity consistent with an editing function. This finding may shed light on the evolution of unusual PKS termination logic. In addition, the presence of related type II TE domains in many cryptic type I PKS and nonribosomal peptide synthetase (NRPS) assembly lines has implications for pathway annotation, product prediction, and engineering. PMID:29218151
Deciphering the biodiversity of Listeria monocytogenes lineage III strains by polyphasic approaches.
Zhao, Hanxin; Chen, Jianshun; Fang, Chun; Xia, Ye; Cheng, Changyong; Jiang, Lingli; Fang, Weihuan
2011-10-01
Listeria monocytogenes is a foodborne pathogen of humans and animals. The majority of human listeriosis cases are caused by strains of lineages I and II, while lineage III strains are rare and seldom implicated in human listeriosis. We revealed by 16S rRNA sequencing the special evolutionary status of L. monocytogenes lineage III, which falls between lineages I and II strains of L. monocytogenes and the non-pathogenic species L. innocua and L. marthii in the dendrogram. Thirteen lineage III strains were then characterized by polyphasic approaches. Biochemical reactions demonstrated 8 biotypes, internalin profiling identified 10 internal-in types clustered in 4 groups, and multilocus sequence typing differentiated 12 sequence types. These typing schemes show that lineage III strains represent the most diverse population of L. monocytogenes, and comprise at least four subpopulations IIIA-1, IIIA-2, HIB, and IIIC. The in vitro and in vivo virulence assessments showed that two lineage IIIA-2 strains had reduced pathogenicity, while the other lineage III strains had comparable virulence to lineages I and II. The HIB strains are phylogenetically distinct from other sub-populations, providing additional evidence that this sublineage represents a novel lineage. The two biochemical reactions L-rhamnose and L-lactate alkalinization, and 10 internalins were identified as potential markers for lineage III subpopulations. This study provides new insights into the biodiversity and population structure of lineage III strains, which are important for understanding the evolution of the L. mono-cytogenes-L. innocua clade.
Wang, Xiao-Ting; Zhu, Zhen-Yuan; Zhao, Liang; Sun, Hui-Qing; Meng, Meng; Zhang, Jin-Yu; Zhang, Yong-Min
2016-11-20
In the present study, the crude polysaccharide was extracted from Fagopyrum tartaricum and purified by Sephadex G-25 and G-75 column to produce a polysaccharide fraction termed TBP-II. Its average molecular weight was 26kDa. The structural characterization of TBP-II was investigated by gas chromatography, periodate oxidation-Smith degradation, Methylation and NMR. Congo red was applied to explore its advanced structures. The results revealed that chemical composition and structural characteristic of TBP-II was mainly consisted of galactose, arabinose, xylose and glucose with a molar ratio of 0.7:1:6.3:74.2. The backbone of TBP-II was composed of (1→4)-linked α-d-glucopyranosyl (Glcp), while the branches comprised of (1→3)-linked α-d-glucopyranosyl (Glcp), (1→6)-linked α-d-galactopyranosyl (Galp) and (1→2,4)-linked α-d-rhamnopyranosyl (Rhap). The structure of TBP-II was 1,3 and 1,6-branched-galactorhamnoglucan that had a linear backbone of (1→4)-linked α-d-glucopyranose (Glcp). Using Congo red assay showed that it was absent of triple helix structure. The α-d-glucosidase inhibitory activity of TBP-II was determined using acarbose as positive control. The result showed that the inhibition rate depended on the concentration of polysaccharides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Patel, S; Sprung, A U; Keller, B A; Heaton, V J; Fisher, L M
1997-10-01
Doxorubicin is a therapeutically useful anticancer drug that exerts multiple biological effects. Its antitumor and cardiotoxic properties have been ascribed to anthracycline-mediated free radical damage to DNA and membranes. Evidence for this idea comes in part from the selection by doxorubicin from stationary phase yeast cells of mutants (petites) deficient in mitochondrial respiration and therefore defective in free radical generation. However, doxorubicin also binds to DNA topoisomerase II, converting the enzyme into a DNA damaging agent through the trapping of a covalent enzyme-DNA complex termed the 'cleavable complex.' We have used yeast to determine whether stabilization of cleavable complexes plays a role in doxorubicin action and cytotoxicity. A plasmid-borne yeast TOP2 gene was mutagenized with hydroxylamine and used to transform drug-permeable yeast strain JN394t2-4, which carries a temperature-sensitive top2-4 mutation in its chromosomal TOP2 gene. Selection in growth medium at the nonpermissive temperature of 35 degrees in the presence of doxorubicin resulted in the isolation of plasmid-borne top2 mutants specifying functional doxorubicin-resistant DNA topoisomerase II. Single-point changes of Gly748 to Glu or Ala642 to Ser in yeast topoisomerase II, which lie in and adjacent to the CAP-like DNA binding domain, respectively, were identified as responsible for resistance to doxorubicin, implicating these regions in drug action. None of the mutants selected in JN394t2-4, which has a rad52 defect in double-strand DNA break repair, was respiration-deficient. We conclude that topoisomerase II is an intracellular target for doxorubicin and that the genetic background and/or cell proliferation status can determine the relative importance of topoisomerase II- versus free radical-killing.
MacKenzie, Scott B; Podsakoff, Philip M; Jarvis, Cheryl Burke
2005-07-01
The purpose of this study was to review the distinction between formative- and reflective-indicator measurement models, articulate a set of criteria for deciding whether measures are formative or reflective, illustrate some commonly researched constructs that have formative indicators, empirically test the effects of measurement model misspecification using a Monte Carlo simulation, and recommend new scale development procedures for latent constructs with formative indicators. Results of the Monte Carlo simulation indicated that measurement model misspecification can inflate unstandardized structural parameter estimates by as much as 400% or deflate them by as much as 80% and lead to Type I or Type II errors of inference, depending on whether the exogenous or the endogenous latent construct is misspecified. Implications of this research are discussed. Copyright 2005 APA, all rights reserved.
Making Christabel: sexual transgression and its implications in Coleridge's "Christabel".
Grossberg, B S
2001-01-01
Even among critics who recognize the role of lesbianism in "Christabel," none consider the implications of lesbianism for the characters. Many readers describe Geraldine as a kind of supernatural power, a demon. But Geraldine's identity is far from clear, and we don't need to explain away the lesbian sexuality as demonically-inspired in order to understand the dynamics of the text. The poem accounts for its characters' interactions on what is a more visceral and less fantastic level, the implications of a lesbian act in the world of "Christabel." In "Making Christabel," I consider the protagonist's social and psychological stresses in terms of an encounter with lesbian sexuality in order to understand the poem's ambiguities: Geraldine's guilt, Christabel's pleasure, the manipulation of gender roles, and the dynamics between Christabel, Geraldine, and Sir Leoline. To this end, I look at how the "unnatural" sexuality between Christabel and Geraldine is marked by a reversal of gender expectations. Sexual transgression is suggested not simply by two women heading off to share one bed, but by the manipulation of gender roles on their way to and within the bedroom. I also read the homosocial bond be tween Sir Leoline and Sir Roland in Part II as a foil. The knights offer the two women a concrete representation of their transgression from the existing power structure. They suggest not only the extent of the two women's deviance from the patriarchy, but a way to reassume an orthodox social role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheligovskaya, E. A., E-mail: lmm@phyche.ac.ru
Structural mechanisms are proposed for experimentally observed phase transitions between crystalline modifications of aqueous ice, Ih and II, as well as II and Ic. It is known that the Ih–II transition occurs with the conservation of large structural units (hexagonal channels) common for these ices. It is shown that the Ih → II transition may occur with the conservation of 5/6 of all hydrogen bonds in crystal, including all hydrogen bonds in the retained channels (3/4 of the total number of bonds in crystal) and 1/3 of the bonds between these channels (1/12 of the total number). The transformation ofmore » other hydrogen bonds between the retained channels leads to the occurrence of proton order in ice II. A structural mechanism is proposed to explain the transformation of single crystals of ice Ih either into single crystals of ice II or into crystalline twins of ice II with c axes rotated by 180° with respect to each other, which is often observed at the Ih → II transition. It is established that up to 7/12 of all hydrogen bonds are retained at the irreversible cooperative II → Ic transition.« less
Structural principles and thermoelectric properties of polytypic group 14 clathrate-II frameworks.
Karttunen, Antti J; Fässler, Thomas F
2013-06-24
We have investigated the structural principles and thermoelectric properties of polytypic group 14 clathrate-II frameworks using quantum chemical methods. The experimentally known cubic 3C polytype was found to be the energetically most favorable framework, but the studied hexagonal polytypes (2 H, 4 H, 6 H, 8 H, 10 H) lie energetically close to it. In the case of germanium, the energy difference between the 3C and 6H clathrate-II polytypes is ten times smaller than the difference between the experimentally known 3C-Ge (α-Ge) and 4H-Ge polytypes. The thermoelectric properties of guest-occupied clathrate-II structures were investigated for compositions Na-Rb-Ga-Ge and Ge-As-I. The clathrate-II structures show promising thermoelectric properties and the highest Seebeck coefficients and thermoelectric power factors were predicted for the 3C polytype. The structural anisotropy of the largest studied hexagonal polytypes affects their thermoelectric power factors by over a factor of two. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Özbek, Neslihan; Alyar, Saliha; Alyar, Hamit; Şahin, Ertan; Karacan, Nurcan
2013-05-01
Copper(II), nickel(II), platinum(II) and palladium(II) complexes with 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) derived from propanesulfonic acid-1-methylhydrazide (psmh) were synthesized, their structure were identified, and antimicrobial activity of the compounds was screened against three Gram-positive and three Gram-negative bacteria. The results of antimicrobial studies indicate that Pt(II) and Pd(II) complexes showed the most activity against all bacteria. The crystal structure of 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) was also investigated by X-ray analysis. A series of Ni(II) sulfonyl hydrazone complexes (1-33) was synthesized and tested in vitro against Escherichia coli and Staphylococcus aureus. Their antimicrobial activities were used in the QSAR analysis. Four-parameter QSAR models revealed that nucleophilic reaction index for Ni and O atoms, and HOMO-LUMO energy gap play key roles in the antimicrobial activity.
NASA Astrophysics Data System (ADS)
Kertmen, Seda Nur; Gonul, Ilyas; Kose, Muhammet
2018-01-01
New Cu(II) and Ni(II) complexes derived from dicyandiamide were synthesized and characterised by spectroscopic and analytical methods. Molecular structures of the complexes were determined by single crystal X-ray diffraction studies. In the complexes, the Cu(II) or Ni(II) ions are four-coordinate with a slight distorted square planar geometry. The ligands (L-nPen and L-iPen) derived from dicyandiamide formed via nucleophilic addition of alcohol solvent molecule in the presence Cu(II) or Ni(II) ions. Complexes were stabilised by intricate array of hydrogen bonding interactions. Antioxidant activity of the complexes was evaluated by DPPH radical scavenging and CUPRAC methods. The complexes exhibit antioxidant activity, however, their activities were much lower than standard antioxidants (Vitamin C and trolox).
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neill, Malcolm
Our goal was to gain insight into the genes and proteins involved in the biosynthesis of rhamnogalacturonan II (RG-II), a borate cross-linked and structurally conserved pectic polysaccharide present in the primary cell walls of all vascular plants. The research conducted during the funding period established that (i) Avascular plants have the ability to synthesize UDP-apiose but lack the glycosyltransferase machinery required to synthesize RG-II or other apiose-containing cell wall glycans. (ii) RG-II structure is highly conserved in the Lemnaceae (duckweeds and relatives). However, the structures of other wall pectins and hemicellulose have changed substantial during the diversification of the Lemnaceae.more » This supports the notion that a precise structure of RG-II must be maintained to allow borate cross-linking to occur in a controlled manner. (iii) Enzymes involved in the conversion of UDP-GlcA to UDP-Api, UDP-Xyl, and UDP-Ara may have an important role in controlling the composition of duckweed cell walls. (iv) RG-II exists as the borate ester cross-linked dimer in the cell walls of soybean root hairs and roots. Thus, RG-II is present in the walls of plants cells that grow by tip or by expansive growth. (v) A reduction in RG-II cross-linking in the maize tls1 mutant, which lacks a borate channel protein, suggests that the growth defects observed in the mutant are, at least in part, due to defects in the cell wall.« less
NASA Astrophysics Data System (ADS)
Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Hökelek, Tuncer
2017-02-01
Three new cadmium(II)-metal(II) cyanide complexes, [Cd(4aepy)2(H2O)2][Ni(CN)4] (1), [Cd(4aepy)2(H2O)2][Pd(CN)4] (2) and [Cd(4aepy)2(H2O)2][Pt(CN)4] (3) [4aepy = 4-(2-aminoethyl)pyridine], have been synthesized and characterized by elemental, thermal, FT-IR and Raman spectral analyses. The crystal structures of 1 and 2 have been determined by single crystal X-ray diffraction technique, in which they crystallize in the monoclinic system and C2/c space group. The M(II) [M(II) = Ni(II), Pd(II) and Pt(II)] ions are coordinated with the carbon atoms of the four cyanide groups in the square planar geometries and the [M(CN)4]2- ions act as counter ions. The Cd(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. 3D supramolecular structures of 1 and 2 were occurred by M⋯π and hydrogen bonding (Nsbnd H⋯N and Osbnd H⋯N) interactions. Vibrational assignments of all the observed bands were given and the spectral properties were also supported the crystal structures of the complexes. A possible decompositions of the complexes were investigated in the temperature range 30-800 °C in the static atmosphere.
Weinstein, Julia A; Tierney, Mark T; Davies, E Stephen; Base, Karel; Robeiro, Anthony A; Grinstaff, Mark W
2006-05-29
A general route for synthesis of six structurally similar Pt(II) diimine thiolate/phenolates chromophores possessing bulky phenolate or thiolate ligands is reported. The Pt chromophores were characterized using an array of techniques including 1H, 13C, and 195Pt NMR, absorption, emission, (spectro)electrochemistry, and EPR spectroscopy. Systematic variation of the electronic structure of the Pt(II) chromophores studied was achieved by (i) changing solvent polarity; (ii) substituting oxygen for sulfur in the donor ligand; (iii) alternating donor ligands from bis- to di-coordination; and (iv) changing the electron donating/withdrawing properties of the ligand(s). The lowest excited state in these new chromophores was assigned to a [charge-transfer-to-diimine] transition from the HOMO of mixed Pt/S (or Pt/O) character on the basis of absorption and emission spectroscopy, UV/vis (spectro)electrochemistry, and EPR spectroscopy. One of the chromophores, Pt(dpphen)(3,5-di-tert-butyl-catecholate) represents an example of a Pt(II) diimine phenolate chromophore that possesses a reversible oxidation centered predominantly on the donor ligand. Results from EPR spectroscopy indicate participation of the Pt(II) orbitals in the HOMO. There is a dramatic difference in the photophysical properties of carborane complexes compared to other mixed-ligand Pt(II) compounds, which includes room-temperature emission and photostability. The charge-transfer character of the lowest excited state in this series of chromophores is maintained throughout. Moreover, the absorption and emission energies and the redox properties of the excited state can be significantly tuned.
Pombert, Jean-François; Otis, Christian; Turmel, Monique; Lemieux, Claude
2013-01-01
Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF) occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the possible implications of this interesting observation for trans-splicing of group I introns. PMID:24386369
NASA Astrophysics Data System (ADS)
Calatayud, M. Luisa; Castro, Isabel; Julve, Miguel; Sletten, Jorunn
2008-03-01
Four new complexes of copper(II) and/or copper(I) with 1,2-dtsq as a ligand have been synthesized and characterized by single crystal X-ray diffraction methods, [Cu II(terpy)(1,2-dtsq)] ( 1), [Cu II(dmen)(1,2-dtsq)] n ( 2), {[Cu II(dmen) 2][Cu I(1,2-dtsq)] 2} n·2nH 2O( 3) and {[Cu II(men) 2][Cu I (1,2-dtsq)] 2} n·nH 2O ( 4) (1,2-dtsq = 1,2-dithiosquarate, dianion of 3,4-dimercapto-1-cyclobutene-1,2-dione; dmen = N, N-dimethylethylenediamine; men = N-methylethylenediamine, terpy = 2,2':6,2″-terpyridine). Compound 1 consists of neutral [Cu II(terpy)(1,2-dtsq)] mononuclear units which are held together by O⋯H-C and van der Waals interactions. Compound 2 is built of neutral [Cu II(dmen)(1,2-dtsq)] entities which are connected through weak Cu-S (pairs) and Cu-O (single) interactions into a layer structure. The structures of 3 and 4 feature polynuclear [Cu(1,2-dtsq)]nn- chains, in which dtsq groups are linking copper(I) ions in the μ-1,1, μ-1,1,1 and μ-1,2 bridging modes. The dtsq groups in these chains connect to the copper(II) ions of the [Cu IIL 2] 2+ cations [L being the bidentate dmen ( 3) and men ( 4) ligands], but in different manners in the two structures. The connections in compound 3 are unsymmetrical, so that columns of {[Cu II(dmen) 2][Cu I(1,2-dtsq)] 2} n where the copper(II) ions bind to 1,2-dtsq oxygen atoms with relatively strong axial bonds may be identified. These columns are further connected to each other through weak axial Cu II⋯S interactions, creating a three-dimensional (3D) network with channels containing the solvent water. In compound 4, on the other hand, the two crystallographically independent cations each forms a symmetrical link between the anionic chains through, respectively, O-Cu II-O and S-Cu II-S axial bonds, again creating a 3D structure with channels running parallel to the chain axis. The reduction of copper(II) to copper(I) by 1,2-dtsq is precluded when the coordination sphere of the copper(II) ion is partially blocked with the tridentate terpy ligand whereas this process occurs when the blocking ligands are the bidentate dmen and men groups.
Crystal Structure of a Novel N-Substituted L-Amino Acid Dioxygenase from Burkholderia ambifaria AMMD
Qin, Hui-Min; Miyakawa, Takuya; Jia, Min Ze; Nakamura, Akira; Ohtsuka, Jun; Xue, You-Lin; Kawashima, Takashi; Kasahara, Takuya; Hibi, Makoto; Ogawa, Jun; Tanokura, Masaru
2013-01-01
A novel dioxygenase from Burkholderia ambifaria AMMD (SadA) stereoselectively catalyzes the C3-hydroxylation of N-substituted branched-chain or aromatic L-amino acids, especially N-succinyl-L-leucine, coupled with the conversion of α-ketoglutarate to succinate and CO2. To elucidate the structural basis of the substrate specificity and stereoselective hydroxylation, we determined the crystal structures of the SadA.Zn(II) and SadA.Zn(II).α-KG complexes at 1.77 Å and 1.98 Å resolutions, respectively. SadA adopted a double-stranded β-helix fold at the core of the structure. In addition, an HXD/EXnH motif in the active site coordinated a Zn(II) as a substitute for Fe(II). The α-KG molecule also coordinated Zn(II) in a bidentate manner via its 1-carboxylate and 2-oxo groups. Based on the SadA.Zn(II).α-KG structure and mutation analyses, we constructed substrate-binding models with N-succinyl-L-leucine and N-succinyl-L-phenylalanine, which provided new insight into the substrate specificity. The results will be useful for the rational design of SadA variants aimed at the recognition of various N-succinyl L-amino acids. PMID:23724013
Costas, Miquel; Ribas, Xavi; Poater, Albert; López Valbuena, Josep Maria; Xifra, Raül; Company, Anna; Duran, Miquel; Solà, Miquel; Llobet, Antoni; Corbella, Montserrat; Usón, Miguel Angel; Mahía, José; Solans, Xavier; Shan, Xiaopeng; Benet-Buchholz, Jordi
2006-05-01
Density functional theory (DFT) calculations have been carried out for a series of Cu(I) complexes bearing N-hexadentate macrocyclic dinucleating ligands and for their corresponding peroxo species (1c-8c) generated by their interaction with molecular O2. For complexes 1c-7c, it has been found that the side-on peroxodicopper(II) is the favored structure with regard to the bis(mu-oxo)dicopper(III). For those complexes, the singlet state has also been shown to be more stable than the triplet state. In the case of 8c, the most favored structure is the trans-1,2-peroxodicopper(II) because of the para substitution and the steric encumbrance produced by the methylation of the N atoms. Cu(II) complexes 4e, 5e, and 8e have been obtained by O2 oxidation of their corresponding Cu(I) complexes and structurally and magnetically characterized. X-ray single-crystal structures for those complexes have been solved, and they show three completely different types of Cu(II)2 structures: (a) For 4e, the Cu(II) centers are bridged by a phenolate group and an external hydroxide ligand. The phenolate group is generated from the evolution of 4c via intramolecular arene hydroxylation. (b) For 5e, the two Cu(II) centers are bridged by two hydroxide ligands. (c) For the 8e case, the Cu(II) centers are ligated to terminally bound hydroxide ligands, rare because of its tendency to bridge. The evolution of complexes 1c-8c toward their oxidized species has also been rationalized by DFT calculations based mainly on their structure and electrophilicity. The structural diversity of the oxidized species is also responsible for a variety of magnetic behavior: (a) strong antiferromagnetic (AF) coupling with J = -482.0 cm(-1) (g = 2.30; rho = 0.032; R = 5.6 x 10(-3)) for 4e; (b) AF coupling with J = -286.3 cm(-1) (g = 2.07; rho = 0.064; R = 2.6 x 10(-3)) for 5e; (c) an uncoupled Cu(II)2 complex for 8e.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, Christopher D.; Tu, Chingkuang; McKenna, Robert, E-mail: rmckenna@ufl.edu
The structure of human carbonic anhydrase II in complex with cholate has been determined to 1.54 Å resolution. Elucidation of the novel inhibition mechanism of cholate will aid in the development of a nonsulfur-containing, isoform-specific therapeutic agent. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO{sub 2} into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes tomore » mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis.« less
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Moussa, Mohamed A. A.; Mohamed, Soha F.
2011-05-01
Riboflavin (RF) complexes of Mg(II), Ca(II), Sr(II) and Ba(II) were successfully synthesized. Structures of metal complexes obtained were confirmed and characterized by elemental analysis, molar conductance, and infrared spectra. DC electrical conductivity measurements indicated that the alkaline earth metal (II) complexes of RF ligand are non-electrolytes. Elemental analysis of chelates suggest that the metal(II) ligand ratio is 1:2 with structure formula as [M(RF) 2( X) 2]· nH 2O. Infrared assignments clearly show that RF ligand coordinated as a bidentate feature through azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione. Thermal analyses of Mg(II), Ca(II), Sr(II) and Ba(II) complexes were investigated using (TG/DSC) under atmospheric nitrogen between 30 and 800 °C. The surface morphology of the complexes was studied by SEM. The electrical conductivities of RF and its metal complexes were also measured with DC electrical conductivity in the temperature range from room to 483 K.
NASA Astrophysics Data System (ADS)
Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.
2018-03-01
Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.
77 FR 15681 - Amendments to the HUD Acquisition Regulation (HUDAR)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-16
... final rule published on January 13, 2006 (71 FR 2432). II. This Proposed Rule This proposed rule would... publishing any rule that has federalism implications if the rule imposes substantial direct compliance costs...
Introduction Part II: Formal Dynamics.
ERIC Educational Resources Information Center
Stephens, Suzanne
1979-01-01
In the current period of questioning of architectural values and directions, the implications of energy use on form must be confronted sooner or later. Efforts by various practitioners at combining art and technology are shown. (Author/MLF)
NASA Astrophysics Data System (ADS)
Athanassoula, E.
Various aspects of the internal kinematics and dynamics of galaxies are considered. The kinematics of the gas and the underlying mass distribution are discussed, including the systematics of H II rotation curves, H I velocity fields and rotation curves, the distribution of molecular clouds in spiral galaxies, gas at large radii, the implications for galactic mass models of vertical motion and the thickness of H I disks, and mass distribution and dark halos. The theory of spiral structure is addressed, along with conflicts and directions in spiral structure studies. Theories of warps are covered. Barred galaxies are treated, including their morphology, stellar kinematics, and dynamics, the stability of their disks, theoretical studies of their gas flows, and the formation of rings and lenses. Spheroidal systems are considered, including dynamics of early type galaxies, models of ellipticals and bulges, and interstellar matter in elliptical galaxies. Simulations and observational evidence for mergers are addressed, and the formation of galaxies and dynamics of globular cluster systems are examined. For individual items see A83-49202 to A83-49267
Zeng, Ke; He, Yan-Ni; Yang, Di; Cao, Jia-Qing; Xia, Xi-Chun; Zhang, Shi-Jun; Bi, Xiu-Li; Zhao, Yu-Qing
2014-06-23
Four new cucurbitane-type triterpene sapogenins, compounds 1-4, together with other eight known compounds were isolated from the acid-hydrolyzed fruits extract of Momordica charantia L. Their chemical structures were established by NMR, mass spectrometry and X-ray crystallography. Compounds 1-7 and 9-12 were evaluated for their inhibitory activities toward protein tyrosine phosphatase 1B (PTP1B), a tyrosine phosphatase that has been implicated as a key target for therapy against type II diabetes. Compounds 1, 2, 4, 7 and 9 were shown inhibitory activities of 77%, 62%, 62% 60% and 68% against PTP1B, respectively. All of these tested compounds were exhibited higher PTP1B inhibition activities than that of the Na3VO4, a known PTP1B inhibitor used as positive control in present study. Structure activity relationship (SAR) analysis indicated that the inhibition activity of PTP1B was associated with the presence and number of -OH groups. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Taking the plunge: chemical reaction dynamics in liquids.
Orr-Ewing, Andrew J
2017-12-11
The dynamics of chemical reactions in liquid solutions are now amenable to direct study using ultrafast laser spectroscopy techniques and advances in computer simulation methods. The surrounding solvent affects the chemical reaction dynamics in numerous ways, which include: (i) formation of complexes between reactants and solvent molecules; (ii) modifications to transition state energies and structures relative to the reactants and products; (iii) coupling between the motions of the reacting molecules and the solvent modes, and exchange of energy; (iv) solvent caging of reactants and products; and (v) structural changes to the solvation shells in response to the changing chemical identity of the solutes, on timescales which may be slower than the reactive events. This article reviews progress in the study of bimolecular chemical reaction dynamics in solution, concentrating on reactions which occur on ground electronic states. It illustrates this progress with reference to recent experimental and computational studies, and considers how the various ways in which a solvent affects the chemical reaction dynamics can be unravelled. Implications are considered for research in fields such as mechanistic synthetic chemistry.
Nara, Hiroshi; Sato, Kenjiro; Naito, Takako; Mototani, Hideyuki; Oki, Hideyuki; Yamamoto, Yoshio; Kuno, Haruhiko; Santou, Takashi; Kanzaki, Naoyuki; Terauchi, Jun; Uchikawa, Osamu; Kori, Masakuni
2014-11-13
Matrix metalloproteinase-13 (MMP-13) has been implicated to play a key role in the pathology of osteoarthritis. On the basis of X-ray crystallography, we designed a series of potent MMP-13 selective inhibitors optimized to occupy the distinct deep S1' pocket including an adjacent branch. Among them, carboxylic acid inhibitor 21k exhibited excellent potency and selectivity for MMP-13 over other MMPs. An effort to convert compound 21k to the mono sodium salt 38 was promising in all animal species studied. Moreover, no overt toxicity was observed in a preliminary repeat dose oral toxicity study of compound 21k in rats. A single oral dose of compound 38 significantly reduced degradation products (CTX-II) released from articular cartilage into the joint cavity in a rat MIA model in vivo. In this article, we report the discovery of highly potent, selective, and orally bioavailable MMP-13 inhibitors as well as their detailed structure-activity data.
Srivastava, Samanvaya; Reddy, P Dinesh Sankar; Wang, Cindy; Bandyopadhyay, Dipankar; Sharma, Ashutosh
2010-05-07
We study by nonlinear simulations the electric field induced pattern formation in a thin viscous film resting on a topographically or chemically patterned substrate. The thin film microstructures can be aligned to the substrate patterns within a window of parameters where the spinodal length scale of the field induced instability is close to the substrate periodicity. We investigate systematically the change in the film morphology and order when (i) the substrate pattern periodicity is varied at a constant film thickness and (ii) the film thickness is varied at a constant substrate periodicity. Simulations show two distinct pathway of evolution when the substrate-topography changes from protrusions to cavities. The isolated substrate defects generate locally ordered ripplelike structures distinct from the structures on a periodically patterned substrate. In the latter case, film morphology is governed by a competition between the pattern periodicity and the length scale of instability. Relating the thin film morphologies to the underlying substrate pattern has implications for field induced patterning and robustness of inter-interface pattern transfer, e.g., coding-decoding of information printed on a substrate.
GLASS: detailed structure of high redshift galaxies from HST grism spectroscopy
NASA Astrophysics Data System (ADS)
Jones, Tucker; Treu, Tommaso; Schmidt, Kasper B.; Wang, Xin; Brammer, Gabriel; Glass
2015-01-01
The Grism Lens-Amplified Survey from Space (GLASS) is obtaining slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. The GLASS survey will have gathered more than ten thousand spectra upon completion in early 2015. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and Hα at z=1-3 as well as Lyα at z>6. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity (~1e-18 erg/s/cm2 RMS) with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. This enables precise measurements of metallicity gradients, the distribution of star formation, and other details of the physical structure of high redshift galaxies with masses as low as ~107 M⊙ at z=2. I will discuss measurements of these physical properties and implications for galaxy evolution based on the largest sample available to date with such high resolution at z>1.
PATRAM '80. Proceedings. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huebner, H.W.
1980-01-01
Volume 2 contains papers from the following sessions: Safeguards-Related Problems; Neutronics and Criticality; Operations and Systems Experience II; Plutonium Systems; Intermediate Storage in Casks; Operations and Systems Planning; Institutional Issues; Structural and Thermal Evaluation I; Poster Session B; Extended Testing I; Structural and Thermal Evaluation II; Extended Testing II; and Emergency Preparedness and Response. Individual papers were processed. (LM)
Developmental and transcriptional consequences of mutations in Drosophila TAF(II)60.
Aoyagi, N; Wassarman, D A
2001-10-01
In vitro, the TAF(II)60 component of the TFIID complex contributes to RNA polymerase II transcription initiation by serving as a coactivator that interacts with specific activator proteins and possibly as a promoter selectivity factor that interacts with the downstream promoter element. In vivo roles for TAF(II)60 in metazoan transcription are not as clear. Here we have investigated the developmental and transcriptional requirements for TAF(II)60 by analyzing four independent Drosophila melanogaster TAF(II)60 mutants. Loss-of-function mutations in Drosophila TAF(II)60 result in lethality, indicating that TAF(II)60 provides a nonredundant function in vivo. Molecular analysis of TAF(II)60 alleles revealed that essential TAF(II)60 functions are provided by two evolutionarily conserved regions located in the N-terminal half of the protein. TAF(II)60 is required at all stages of Drosophila development, in both germ cells and somatic cells. Expression of TAF(II)60 from a transgene rescued the lethality of TAF(II)60 mutants and exposed requirements for TAF(II)60 during imaginal development, spermatogenesis, and oogenesis. Phenotypes of rescued TAF(II)60 mutant flies implicate TAF(II)60 in transcriptional mechanisms that regulate cell growth and cell fate specification and suggest that TAF(II)60 is a limiting component of the machinery that regulates the transcription of dosage-sensitive genes. Finally, TAF(II)60 plays roles in developmental regulation of gene expression that are distinct from those of other TAF(II) proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, R.P.; Kincaid, R.H.; Short, S.A.
This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. Task I of the study, which is presented in NUREG/CR-3805, Vol. 1, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in four parts: (1) effects of ground motion characteristics onmore » structural response of a typical PWR reactor building with localized nonlinearities and soil-structure interaction effects; (2) empirical data on spatial variations of earthquake ground motion; (3) soil-structure interaction effects on structural response; and (4) summary of conclusions and recommendations based on Tasks I and II studies. This report presents the results of the first part of Task II. The results of the other parts will be presented in NUREG/CR-3805, Vols. 3 to 5.« less
NASA Astrophysics Data System (ADS)
Tabti, Salima; Djedouani, Amel; Aggoun, Djouhra; Warad, Ismail; Rahmouni, Samra; Romdhane, Samir; Fouzi, Hosni
2018-03-01
The reaction of nickel(II), copper(II) and cobalt(II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) leads to a series of new complexes: Ni(L)2(NH3), Cu(L)2(DMF)2 and Co(L)2(H2O). The crystal structure of the Cu(L)2(DMF)2 complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexes were investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH3CN solutions, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couples. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces. HOMO/LUMO energy level and the global reactivity descriptors quantum parameters are also calculated. The electrophilic and nucleophilic potions in the complex surface are theoretically evaluated by molecular electrostatic potential and Mulliken atomic charges analysis.
Piertney, Stuart B; Lambin, Xavier; Maccoll, Andrew D C; Lock, Kerry; Bacon, Philip J; Dallas, John F; Leckie, Fiona; Mougeot, Francois; Racey, Paul A; Redpath, Steve; Moss, Robert
2008-05-01
Populations of red grouse (Lagopus lagopus scoticus) undergo regular multiannual cycles in abundance. The 'kinship hypothesis' posits that such cycles are caused by changes in kin structure among territorial males producing delayed density-dependent changes in aggressiveness, which in turn influence recruitment and regulate density. The kinship hypothesis makes several specific predictions about the levels of kinship, aggressiveness and recruitment through a population cycle: (i) kin structure will build up during the increase phase of a cycle, but break down prior to peak density; (ii) kin structure influences aggressiveness, such that there will be a negative relationship between kinship and aggressiveness over the years; (iii) as aggressiveness regulates recruitment and density, there will be a negative relationship between aggressiveness in one year and both recruitment and density in the next; (iv) as kin structure influences recruitment via an affect on aggressiveness, there will be a positive relationship between kinship in one year and recruitment the next. Here we test these predictions through the course of an 8-year cycle in a natural population of red grouse in northeast Scotland, using microsatellite DNA markers to resolve changing patterns of kin structure, and supra-orbital comb height of grouse as an index of aggressiveness. Both kin structure and aggressiveness were dynamic through the course of the cycle, and changing patterns were entirely consistent with the expectations of the kinship hypothesis. Results are discussed in relation to potential drivers of population regulation and implications of dynamic kin structure for population genetics.
2007-05-01
Burkitts lymphoma associated with Epstein - Barr virus (47); hepatocellular carcinoma associated with hepatitis B and C viruses (48, 49) and cervical...response to Epstein - Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med, 176: 157-168, 1992. 48. Rehermann, B...strategy for the treatment of cancer. To exploit this potential, we have developed cell-based cancer vaccines consisting of tumor cells expressing
1990-06-01
MAK:NG Decision making reers to skills you need to maKoe .-•l:es anc so..I*e problems. Your goal is to make high-quality decisions your soldiers accae ...II. "Auftragstaktik: Tn Its Proper Perspective." Military Review, Vol. LXVI, No. 10, October 1986. Koontz, LTC Ronald D. and Kaplan , Ira T
Oller, Jorge; Alfranca, Arántzazu; Méndez-Barbero, Nerea; Villahoz, Silvia; Lozano-Vidal, Noelia; Martín-Alonso, Mara; Arroyo, Alicia G.; Escolano, Amelia; Armesilla, Angel Luis
2015-01-01
Emerging evidence indicates that the metalloproteinase Adamts-1 plays a significant role in the pathophysiology of vessel remodeling, but little is known about the signaling pathways that control Adamts-1 expression. We show that vascular endothelial growth factor (VEGF), angiotensin-II, interleukin-1β, and tumor necrosis factor α, stimuli implicated in pathological vascular remodeling, increase Adamts-1 expression in endothelial and vascular smooth muscle cells. Analysis of the intracellular signaling pathways implicated in this process revealed that VEGF and angiotensin-II upregulate Adamts-1 expression via activation of differential signaling pathways that ultimately promote functional binding of the NFAT or C/EBPβ transcription factors, respectively, to the Adamts-1 promoter. Infusion of mice with angiotensin-II triggered phosphorylation and nuclear translocation of C/EBPβ proteins in aortic cells concomitantly with an increase in the expression of Adamts-1, further underscoring the importance of C/EBPβ signaling in angiotensin-II-induced upregulation of Adamts-1. Similarly, VEGF promoted NFAT activation and subsequent Adamts-1 induction in aortic wall in a calcineurin-dependent manner. Our results demonstrate that Adamts-1 upregulation by inducers of pathological vascular remodeling is mediated by specific signal transduction pathways involving NFAT or C/EBPβ transcription factors. Targeting of these pathways may prove useful in the treatment of vascular disease. PMID:26217013
Overman, Michael J; Morris, Van; Moinova, Helen; Manyam, Ganiraju; Ensor, Joe; Lee, Michael S; Eng, Cathy; Kee, Bryan; Fogelman, David; Shroff, Rachna T; LaFramboise, Thomas; Mazard, Thibault; Feng, Tian; Hamilton, Stanley; Broom, Bradley; Lutterbaugh, James; Issa, Jean-Pierre; Markowitz, Sanford D; Kopetz, Scott
2016-10-11
Hypermethylation of promoter CpG islands (CIMP) has been strongly implicated in chemotherapy resistance and is implicated in the pathogenesis of a subset of colorectal cancers (CRCs) termed CIMP-high. This phase I/II study in CRC (phase II portion restricted to CIMP-high CRC), treated fluoropyrimidine/oxaliplatin refractory patients with azacitidine (75 mg/m2/day subcutaneously D1-5) and CAPOX (capecitibine and oxaliplatin) every three weeks. Twenty-six patients (pts) were enrolled in this study: 15 pts (12 treated at MTD) in phase I and 11 pts in phase II. No dose limiting toxicities were observed. A total of 14 pts were CIMP-high. No responses were seen. CIMP-high status did not correlate with efficacy endpoints [stable disease (SD) or progression-free survival (PFS)] or baseline vimentin methylation level. Changes in vimentin methylation over time did not correlate with efficacy outcomes. Baseline methylated vimentin correlated with tumor volume (P<0.001) and higher levels of baseline methylation correlated with the obtainment of stable disease (P=0.04). Azacitidine and CAPOX were well tolerated with high rates of stable disease in CIMP-high pts, but no objective responses. Serum methylated vimentin may be associated with benefit from a regimen including a hypomethylation agent, although this study is not able to separate a potential prognostic or predictive role for the biomarker.
ERIC Educational Resources Information Center
Creps, Earl
A three-part study of the forms of rhetorical criticism is offered. Part one reviews the nature of genre criticism, enumerates several concepts of form and the types of genre criticism they produce, and discusses the implications of this relationship between form and genre. Part two is an essay on the methodological implications of form-grounded…
Formation and Decay of the Arrestin·Rhodopsin Complex in Native Disc Membranes*
Beyrière, Florent; Sommer, Martha E.; Szczepek, Michal; Bartl, Franz J.; Hofmann, Klaus Peter; Heck, Martin; Ritter, Eglof
2015-01-01
In the G protein-coupled receptor rhodopsin, light-induced cis/trans isomerization of the retinal ligand triggers a series of distinct receptor states culminating in the active Metarhodopsin II (Meta II) state, which binds and activates the G protein transducin (Gt). Long before Meta II decays into the aporeceptor opsin and free all-trans-retinal, its signaling is quenched by receptor phosphorylation and binding of the protein arrestin-1, which blocks further access of Gt to Meta II. Although recent crystal structures of arrestin indicate how it might look in a precomplex with the phosphorylated receptor, the transition into the high affinity complex is not understood. Here we applied Fourier transform infrared spectroscopy to monitor the interaction of arrestin-1 and phosphorylated rhodopsin in native disc membranes. By isolating the unique infrared signature of arrestin binding, we directly observed the structural alterations in both reaction partners. In the high affinity complex, rhodopsin adopts a structure similar to Gt-bound Meta II. In arrestin, a modest loss of β-sheet structure indicates an increase in flexibility but is inconsistent with a large scale structural change. During Meta II decay, the arrestin-rhodopsin stoichiometry shifts from 1:1 to 1:2. Arrestin stabilizes half of the receptor population in a specific Meta II protein conformation, whereas the other half decays to inactive opsin. Altogether these results illustrate the distinct binding modes used by arrestin to interact with different functional forms of the receptor. PMID:25847250
First Structural Steel Erected at NSLS-II
None
2017-12-09
Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudolf, Jeffrey D.; Dong, Liao-Bin; Cao, Hongnan
Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three alpha-helical domains (alpha beta gamma), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (alpha) and type II TSs (beta gamma). Type II DTSs of bacterialmore » origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtnaT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 angstrom, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.« less
2016-01-01
Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs. PMID:27490479
Rudolf, Jeffrey D; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben
2016-08-31
Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg(2+)-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.
Malinowski, Przemysław J; Kurzydłowski, Dominik; Grochala, Wojciech
2015-12-07
The reaction of AgF2 with P2O3F4 yields a mixed valence Ag(I)/Ag(II) difluorophosphate salt with AgAg(PO2F2)14 stoichiometry - the first Ag(ii)-PO2F2 system known. This highly moisture sensitive brown solid is thermally stable up to 120 °C, which points at further feasible extension of the chemistry of Ag(ii)-PO2F2 systems. The crystal structure shows a very complex bonding pattern, comprising of polymeric Ag(PO2F2)14(4-) anions and two types of Ag(I) cations. One particular Ag(II) site present in the crystal structure of Ag9(PO2F2)14 is the first known example of square pyramidal penta-coordinated Ag(ii) in an oxo-ligand environment. Ag(i)PO2F2 - the product of the thermal decomposition of Ag9(PO2F2)14 - has also been characterized by thermal analysis, IR spectroscopy and X-ray powder diffraction. It has a complicated crystal structure as well, which consists of infinite 1D [Ag(I)O4/2] chains which are linked to more complex 3D structures via OPO bridges. The PO2F2(-) anions bind to cations in both compounds as bidentate oxo-ligands. The terminal F atoms tend to point inside the van der Waals cavities in the crystal structure of both compounds. All important structural details of both title compounds were corroborated by DFT calculations.
Ashfaq, Muhammad; Hebert, Paul D N; Mirza, M Sajjad; Khan, Arif M; Mansoor, Shahid; Shah, Ghulam S; Zafar, Yusuf
2014-01-01
Although whiteflies (Bemisia tabaci complex) are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan. Sequence diversity in the DNA barcode region (mtCOI-5') was examined in 593 whiteflies from Pakistan to determine the number of whitefly species and their distributions in the cotton-growing areas of Punjab and Sindh provinces. These new records were integrated with another 173 barcode sequences for B. tabaci, most from India, to better understand regional whitefly diversity. The Barcode Index Number (BIN) System assigned the 766 sequences to 15 BINs, including nine from Pakistan. Representative specimens of each Pakistan BIN were analyzed for mtCOI-3' to allow their assignment to one of the putative species in the B. tabaci complex recognized on the basis of sequence variation in this gene region. This analysis revealed the presence of Asia II 1, Middle East-Asia Minor 1, Asia 1, Asia II 5, Asia II 7, and a new lineage "Pakistan". The first two taxa were found in both Punjab and Sindh, but Asia 1 was only detected in Sindh, while Asia II 5, Asia II 7 and "Pakistan" were only present in Punjab. The haplotype networks showed that most haplotypes of Asia II 1, a species implicated in transmission of the cotton leaf curl virus, occurred in both India and Pakistan. DNA barcodes successfully discriminated cryptic species in B. tabaci complex. The dominant haplotypes in the B. tabaci complex were shared by India and Pakistan. Asia II 1 was previously restricted to Punjab, but is now the dominant lineage in southern Sindh; its southward spread may have serious implications for cotton plantations in this region.
A caspase-2-RFXANK interaction and its implication for MHC class II expression.
Forsberg, Jeremy; Li, Xinge; Akpinar, Birce; Salvatori, Roger; Ott, Martin; Zhivotovsky, Boris; Olsson, Magnus
2018-01-23
Despite recent achievements implicating caspase-2 in tumor suppression, the enzyme stands out from the apoptotic caspase family as a factor whose function requires further clarification. To specify enzyme characteristics through the definition of interacting proteins in apoptotic or non-apoptotic settings, a yeast 2-hybrid (Y2H) screen was performed using the full-length protein as bait. The current report describes the analysis of a captured prey and putative novel caspase-2 interacting factor, the regulatory factor X-associated ankyrin-containing protein (RFXANK), previously associated with CIITA, the transactivator regulating cell-type specificity and inducibility of MHC class II gene expression. The interaction between caspase-2 and RFXANK was verified by co-immunoprecipitations using both exogenous and endogenous proteins, where the latter approach suggested that binding of the components occurs in the cytoplasm. Cellular co-localization was confirmed by transfection of fluorescently conjugated proteins. Enhanced caspase-2 processing in RFXANK-overexpressing HEK293T cells treated with chemotherapeutic agents further supported Y2H data. Yet, no distinct differences with respect to MHC class II expression were observed in plasma membranes of antigen-presenting cells derived from wild type and caspase-2 -/- mice. In contrast, increased levels of the total MHC class II protein was evident in protein lysates from caspase-2 RNAi-silenced leukemia cell lines and B-cells isolated from gene-targeted mice. Together, these data identify a novel caspase-2-interacting factor, RFXANK, and indicate a potential non-apoptotic role for the enzyme in the control of MHC class II gene regulation.
Dong, Lanjun; Huang, Rudan; Wei, Yongge; Chu, Wei
2009-08-17
The eight-nickel-capped polyoxoazonickelate, [Ni(20)(OH)(24)(MMT)(12)(SO(4))](NO(3))(2).6H(2)O (1; MMT = 2-mercapto-5-methyl-1,3,4-thiadiazole), has been synthesized, which has an alpha-Keggin structure with eight nickel caps. In this structure, the polyatom is the late transition metal Ni(II); the central heteroatom is S, and the organic terminal ligand becomes the primary part of the Keggin structure. This is a Keplerate-type cluster, which shows a central Ni(II)(12) cuboctahedron formed by the 12 Ni(II) centers of the classical alpha-Keggin core and a Ni(II)(8) hexahedron formed by the eight nickel caps.
NASA Astrophysics Data System (ADS)
Panicker, Lata
2018-05-01
Polycrystalline samples of 4-hydroxybenzaldehyde (4-HOBAL) were investigated using differential scanning calorimeter (DSC), Raman spectroscopy and X-ray powder diffraction. The DSC data indicated that 4-HOBAL on heating undergoes a polymorphic transformation from polymorph I to polymorph II. The polymorph II formed remains metastable at ambient condition and transforms to polymorph I when annealed at ambient temperature for more than seven days. The structural information of polymorphs I and II obtained using its X-ray powder diffraction patterns indicated that 4-HOBAL undergoes an isostructural phase transition from polymorph I (monoclinic, P21/c) to polymorph II (monoclinic, P21/c). Raman data suggest that this structural change is associated with some change in its molecular interactions. Thus, in 4-HOBAL the polymorphic phase transformation (II to I) even though energetically favoured is kinetically hindered.
Wilbe, M; Andersson, G
2012-01-01
Major histocompatibility complex (MHC) class II genes are important genetic risk factors for development of immune-mediated diseases in mammals. Recently, the dog (Canis lupus familiaris) has emerged as a useful model organism to identify critical MHC class II genotypes that contribute to development of these diseases. Therefore, a study aimed to evaluate a potential genetic association between the dog leukocyte antigen (DLA) class II region and an immune-mediated disease complex in dogs of the Nova Scotia duck tolling retriever breed was performed. We show that DLA is one of several genetic risk factors for this disease complex and that homozygosity of the risk haplotype is disadvantageous. Importantly, the disease is complex and has many genetic risk factors and therefore we cannot provide recommendations for breeders exclusively on the basis of genetic testing for DLA class II genotype. © 2012 Blackwell Verlag GmbH.
Abriata, Luciano Andres
2013-04-01
Protein X-ray structures with non-corrin cobalt(II)-containing sites, either natural or substituting another native ion, were downloaded from the Protein Data Bank and explored to (i) describe which amino acids are involved in their first ligand shells and (ii) analyze cobalt(II)-donor bond lengths in comparison with previously reported target distances, CSD data and EXAFS data. The set of amino acids involved in Co(II) binding is similar to that observed for catalytic Zn(II) sites, i.e. with a large fraction of carboxylate O atoms from aspartate and glutamate and aromatic N atoms from histidine. The computed Co(II)-donor bond lengths were found to depend strongly on structure resolution, an artifact previously detected for other metal-donor distances. Small corrections are suggested for the target bond lengths to the aromatic N atoms of histidines and the O atoms of water and hydroxide. The available target distance for cysteine (Scys) is confirmed; those for backbone O and other donors remain uncertain and should be handled with caution in refinement and modeling protocols. Finally, a relationship between both Co(II)-O bond lengths in bidentate carboxylates is quantified.
Kennedy, S H; Katz, R; Rockert, W; Mendlowitz, S; Ralevski, E; Clewes, J
1995-06-01
Interest in assessing Personality Disorders (PDs) in association with anorexia nervosa (AN) and bulimia nervosa (BN) has been accompanied by the development of several structured interview and self-report measures. In an attempt to see how the self-report Millon Clinical Multiaxial Inventory (MCMI-II) compared with the Structured Clinical Interview for DSM-III-R (SCID-II) in the assessment of PDs, we gave both instruments to 43 inpatients with a diagnosis of AN or BN. Correlation coefficient values for both categorical and dimensional comparisons were generally less than .4. Although comparable rates of positive PDs occurred for each of the three clusters (A: 30.2% vs. 34.9%, B: 25.6% vs. 18.6%, and C: 62.8% vs. 81.4% for SCID-II vs. MCMI-II), agreement for individual diagnosis and individual subjects was poor. In conclusion, the MCMI-II did not prove to be a reliable instrument for assessing axis II PDs in patients with AN and BN when compared with the SCID-II.
NASA Astrophysics Data System (ADS)
Golbedaghi, Reza; Alavipour, Ehsan
2015-11-01
Three new binuclear Cu(II), Mn(II), Co(II) complexes [Cu2(L) (ClO4)](ClO4)2 (1), [Mn2(L) (ClO4)](ClO4)2 (2), and [Co2(L) (ClO4)](ClO4)2 (3), {L = 1,3-bis(2-((Z)-(2-aminopropylimino)methyl)phenoxy)propan-2-ol} have been synthesized. Single crystal X-ray structure analysis of complex 1 showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. In addition, the crystal structure studying shows, a perchlorate ion has been bridged to the Cu(II) metal centers. However, two distorted square pyramidal Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, the conductometry behaviors of all complexes were studied in acetonitrile solution.
The S201 far-ultraviolet imaging survey - A summary of results and implications for future surveys
NASA Technical Reports Server (NTRS)
Carruthers, G. R.; Page, T.
1984-01-01
The results from all-sky surveys with the S201 FUV camera/spectrograph from the moon during the Apollo 16 mission are summarized with respect to implications for future UV all-sky surveys. The scans provided imagery of 10 fields, each 20 deg in diameter, in the wavelength ranges 1050-1600 A and 1250-1600 A. Best detection thresholds were obtained with 10 and 30 min exposures at 1400 A. Only 7 percent sky coverage was recorded, and then only down to 11th mag. A Mark II camera may be flown on the Shuttle on the Spartan 3 mission, as may be an all-reflector Schmidt telescope. An additional 20 percent of the sky will be mapped and microchannel intensification will increase the diffuse source sensitivity by two orders of magnitude. Several objects sighted with the S201 will be reviewed with the Mark II.
Sharma, Alok; Pohlentz, Gottfried; Bobbili, Kishore Babu; Jeyaprakash, A Arockia; Chandran, Thyageshwar; Mormann, Michael; Swamy, Musti J; Vijayan, M
2013-08-01
The sequence and structure of snake gourd seed lectin (SGSL), a nontoxic homologue of type II ribosome-inactivating proteins (RIPs), have been determined by mass spectrometry and X-ray crystallography, respectively. As in type II RIPs, the molecule consists of a lectin chain made up of two β-trefoil domains. The catalytic chain, which is connected through a disulfide bridge to the lectin chain in type II RIPs, is cleaved into two in SGSL. However, the integrity of the three-dimensional structure of the catalytic component of the molecule is preserved. This is the first time that a three-chain RIP or RIP homologue has been observed. A thorough examination of the sequence and structure of the protein and of its interactions with the bound methyl-α-galactose indicate that the nontoxicity of SGSL results from a combination of changes in the catalytic and the carbohydrate-binding sites. Detailed analyses of the sequences of type II RIPs of known structure and their homologues with unknown structure provide valuable insights into the evolution of this class of proteins. They also indicate some variability in carbohydrate-binding sites, which appears to contribute to the different levels of toxicity exhibited by lectins from various sources.
Structural variation in transition-metal bispidine compounds.
Comba, Peter; Kerscher, Marion; Merz, Michael; Müller, Vera; Pritzkow, Hans; Remenyi, Rainer; Schiek, Wolfgang; Xiong, Yun
2002-12-16
The experimentally determined molecular structures of 40 transition metal complexes with the tetradentate bispyridine-substituted bispidone ligand, 2,4-bis(2-pyridine)-3,7-diazabicyclo[3.3.1]nonane-9-one [M(bisp)XYZ]n+; M = CrIII, MnII, FeII, CoII, CuII, CuI, ZnII; X, Y, Z = mono- or bidentate co-ligands; penta-, hexa- or heptacoordinate complexes) are characterized in detail, supported by force-field and DFT calculations. While the bispidine ligand is very rigid (N3...N7 distance = 2.933 +/- 0.025 A), it tolerates a large range of metal-donor bond lengths (2.07 A < sigma(M-N)/4 < 2.35 A). Of particular interest is the ratio of the bond lengths between the metal center and the two tertiary amine donors (0.84 A < M-N3/M-N7 < 1.05 A) and the fact that, in terms of this ratio there seem to be two clusters with M-N3 < M-N7 and M-N3 > or = M-N7. Calculations indicate that the two structural types are close to degenerate, and the structural form therefore depends on the metal ion, the number and type of co-ligands, as well as structural variations of the bispidine ligand backbone. Tuning of the structures is of importance since the structurally differing complexes have very different stabilities and reactivities.
ERIC Educational Resources Information Center
Edwards, Ron; Crosling, Glenda; Lim, Ngat-Chin
2014-01-01
One significant form of transnational higher education is the International Branch Campus (IBC), in effect an "outpost" of the parent institution located in another country. Its organizational structure is alignable with offshore subsidiaries of multinational corporations (MNCs). The implications of organizational structure for academic…
Barats-Damatov, Delina; Shimon, Linda J W; Weiner, Lev; Schreiber, Roy E; Jiménez-Lozano, Pablo; Poblet, Josep M; de Graaf, Coen; Neumann, Ronny
2014-02-03
High-valent oxo compounds of transition metals are often implicated as active species in oxygenation of hydrocarbons through carbon-hydrogen bond activation or oxygen transfer and also in water oxidation. Recently, several examples of cobalt-catalyzed water oxidation have been reported, and cobalt(IV) species have been suggested as active intermediates. A reactive species, formally a dicobalt(IV)-μ-oxo polyoxometalate compound [(α2-P2W17O61Co)2O](14-), [(POMCo)2O], has now been isolated and characterized by the oxidation of a monomeric [α2-P2W17O61Co(II)(H2O)](8-), [POMCo(II)H2O], with ozone in water. The crystal structure shows a nearly linear Co-O-Co moiety with a Co-O bond length of ∼1.77 Å. In aqueous solution [(POMCo)2O] was identified by (31)P NMR, Raman, and UV-vis spectroscopy. Reactivity studies showed that [(POMCo)2O]2O] is an active compound for the oxidation of H2O to O2, direct oxygen transfer to water-soluble sulfoxides and phosphines, indirect epoxidation of alkenes via a Mn porphyrin, and the selective oxidation of alcohols by carbon-hydrogen bond activation. The latter appears to occur via a hydrogen atom transfer mechanism. Density functional and CASSCF calculations strongly indicate that the electronic structure of [(POMCo)2O]2O] is best defined as a compound having two cobalt(III) atoms with two oxidized oxygen atoms.
Horsthemke, Markus; Bachg, Anne C.; Groll, Katharina; Moyzio, Sven; Müther, Barbara; Hemkemeyer, Sandra A.; Wedlich-Söldner, Roland; Sixt, Michael; Tacke, Sebastian; Bähler, Martin; Hanley, Peter J.
2017-01-01
Macrophage filopodia, finger-like membrane protrusions, were first implicated in phagocytosis more than 100 years ago, but little is still known about the involvement of these actin-dependent structures in particle clearance. Using spinning disk confocal microscopy to image filopodial dynamics in mouse resident Lifeact-EGFP macrophages, we show that filopodia, or filopodia-like structures, support pathogen clearance by multiple means. Filopodia supported the phagocytic uptake of bacterial (Escherichia coli) particles by (i) capturing along the filopodial shaft and surfing toward the cell body, the most common mode of capture; (ii) capturing via the tip followed by retraction; (iii) combinations of surfing and retraction; or (iv) sweeping actions. In addition, filopodia supported the uptake of zymosan (Saccharomyces cerevisiae) particles by (i) providing fixation, (ii) capturing at the tip and filopodia-guided actin anterograde flow with phagocytic cup formation, and (iii) the rapid growth of new protrusions. To explore the role of filopodia-inducing Cdc42, we generated myeloid-restricted Cdc42 knock-out mice. Cdc42-deficient macrophages exhibited rapid phagocytic cup kinetics, but reduced particle clearance, which could be explained by the marked rounded-up morphology of these cells. Macrophages lacking Myo10, thought to act downstream of Cdc42, had normal morphology, motility, and phagocytic cup formation, but displayed markedly reduced filopodia formation. In conclusion, live-cell imaging revealed multiple mechanisms involving macrophage filopodia in particle capture and engulfment. Cdc42 is not critical for filopodia or phagocytic cup formation, but plays a key role in driving macrophage lamellipodial spreading. PMID:28289096
Lobular patterns of cerebellar resting-state connectivity in adults with Autism Spectrum Disorder.
Olivito, Giusy; Lupo, Michela; Laghi, Fiorenzo; Clausi, Silvia; Baiocco, Roberto; Cercignani, Mara; Bozzali, Marco; Leggio, Maria
2018-03-01
Autism spectrum disorder is a neurodevelopmental disorder characterized by core deficits in social functioning. Core autistics traits refer to poor social and imagination skills, poor attention-switching/strong focus of attention, exceptional attention to detail, as expressed by the autism-spectrum quotient. Over the years, the importance of the cerebellum in the aetiology of autism spectrum disorder has been acknowledged. Neuroimaging studies have provided a strong support to this view, showing both structural and functional connectivity alterations to affect the cerebellum in autism spectrum disorder. According to the underconnectivity theory, disrupted connectivity within cerebello-cerebral networks has been specifically implicated in the aetiology of autism spectrum disorder. However, inconsistent results have been generated across studies. In this study, an integrated approach has been used in a selected population of adults with autism spectrum disorder to analyse both cerebellar morphometry and functional connectivity. In individuals with autism spectrum disorder, a decreased cerebellar grey matter volume affected the right Crus II, a region showing extensive connections with cerebral areas related to social functions. This grey matter reduction correlates with the degree of autistic traits as measured by autism-spectrum quotient. Interestingly, altered functional connectivity was found between the reduced cerebellar Crus II and contralateral cerebral regions, such as frontal and temporal areas. Overall, the present data suggest that adults with autism spectrum disorder present with specific cerebellar structural alterations that may affect functional connectivity within cerebello-cerebral modules relevant to social processing and account for core autistics traits. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Hou, Ming-Hon; Lu, Wen-Je; Huang, Chun-Yu; Fan, Ruey-Jane; Yuann, Jeu-Ming P
2009-06-09
Few studies have examined the effects of polyamines on the action of DNA-binding anticancer drugs. Here, a Co(II)-mediated dimeric mithramycin (Mith) complex, (Mith)(2)-Co(II), was shown to be resistant to polyamine competition toward the divalent metal ion when compared to the Fe(II)-mediated drug complexes. Surface plasmon resonance experiments demonstrated that polyamines interfered with the binding capacity and association rates of (Mith)(2)-Co(II) binding to DNA duplexes, while the dissociation rates were not affected. Although (Mith)(2)-Co(II) exhibited the highest oxidative activity under physiological conditions (pH 7.3 and 37 degrees C), polyamines (spermine in particular) inhibited the DNA cleavage activity of the (Mith)(2)-Co(II) in a concentration-dependent manner. Depletion of intracellular polyamines by methylglyoxal bis(guanylhydrazone) (MGBG) enhanced the sensitivity of A549 lung cancer cells to (Mith)(2)-Co(II), most likely due to the decreased intracellular effect of polyamines on the action of (Mith)(2)-Co(II). Our study suggests a novel method for enhancing the anticancer activity of DNA-binding metalloantibiotics through polyamine depletion.
NASA Astrophysics Data System (ADS)
Inb-Elhaj, M.; Guillon, D.; Skoulios, A.; Maldivi, P.; Giroud-Godquin, A. M.; Marchon, J.-C.
1992-12-01
EXAFS was used to investigate the local structure of the polar spines of rhodium (II) soaps in the columnar liquid crystalline state. It was also used to ascertain the degree of blending of the cores in binary mixtures of rhodium (II) and copper (II) soaps. For the pure rhodium soaps, the columns are shown to result from the stacking of binuclear metal-metal bonded dirhodium tetracarboxylate units bonded to one another by apical ligation of the metal atom of each complex with one of the oxygen atoms of the adjacent molecule. Mixtures of rhodium (II) and copper (II) soaps give a hexagonal columnar mesophase in which pure rhodium and pure copper columns are randomly distributed.
Microporous Materials of Metal Carboxylates
NASA Astrophysics Data System (ADS)
Mori, Wasuke; Takamizawa, Satoshi
2000-06-01
Copper(II) terephthalate absorbs a large amount of gases such as N2, Ar, O2, and Xe. The maximum amounts of absorption of gases were 1.8, 1.9, 2.2, and 0.9 mole per mole of the copper(II) salt for N2, Ar, O2, and Xe, respectively, indicating that the gases were not adsorbed on the surface but occluded within the solid. Other microporous copper(II) dicarboxylates are also reviewed. The porous structure of copper(II) terephthalate, in which the gas is occluded, is deduced from the temperature dependence of magnetic susceptibilities and the linear structure of terephthalate. Microporous molybdenum(II) and ruthenium(II, III) dicarboxylates are discussed. We describe that rhodium(II) monocarboxylate bridged by pyrazine form stable micropores by self-assembly of infinite linear chain complexes.
NASA Astrophysics Data System (ADS)
Refat, M. S.; Sharshara, T.
2015-11-01
The [Pb(Pin)2] · 3H2O, [M(Pin)(H2O)2(Cl)] · nH2O (M = SrII, CaII or BaII; n = 0-1), and [Fe(Pin)2(Cl)(H2O)] · H2O penicillin G potassium (Pin) complexes were synthesized and characterized using elemental analyses, molar conductivity, thermal analysis and electronic spectroscopy techniques. The positron annihilation lifetime (PAL) and Doppler broadening (DB) techniques have been employed to probe the defects and structural changes of Pin ligand and its complexes. The PAL and DB line-shape parameters were discussed in terms of the structure, molecular weight, ligand-metal molar ratio, and other properties of the Pin complexes.
Positions of type II fundamental and harmonic sources in the 30-100 MHZ range
NASA Technical Reports Server (NTRS)
Sawant, H. S.; Gergely, T. E.; Kundu, M. R.
1982-01-01
An excellent example of a type III-V burst followed by a type II burst with fundamental and harmonic bands was observed on June 18, 1979 at the Clark Lake Radio Observatory. The observations are described in detail and their implications are discussed with regard to the problem of directionality with respect to the magnetic field lines of the collisionless MHD shock wave generated at the start of the flash phase. It is found that the positions of type III and type II (F) bursts at a number of frequencies are essentially the same, which implies that the shock responsible for the type II radiation follows the path of the type III exciter, that is, the shock propagates along the open field lines.
Silva, Claudia; Vinuesa, Pablo; Eguiarte, Luis E.; Martínez-Romero, Esperanza; Souza, Valeria
2003-01-01
The stability of the genetic structure of rhizobial populations nodulating Phaseolus vulgaris cultivated in a traditionally managed milpa plot in Mexico was studied over three consecutive years. The set of molecular markers analyzed (including partial rrs, glnII, nifH, and nodB sequences), along with host range experiments, placed the isolates examined in Rhizobium etli bv. phaseoli and Rhizobium gallicum bv. gallicum. Cluster analysis of multilocus enzyme electrophoresis and plasmid profile data separated the two species and identified numerically dominant clones within each of them. Population genetic analyses showed that there was high genetic differentiation between the two species and that there was low intrapopulation differentiation of the species over the 3 years. The results of linkage disequilibrium analyses are consistent with an epidemic genetic structure for both species, with frequent genetic exchange taking place within conspecific populations but not between the R. etli and R. gallicum populations. A subsample of isolates was selected and used for 16S ribosomal DNA PCR-restriction fragment length polymorphism analysis, nifH copy number determination, and host range experiments. Plasmid profiles and nifH hybridization patterns also revealed the occurrence of lateral plasmid transfer among distinct multilocus genotypes within species but not between species. Both species were recovered from nodules of the same plants, indicating that mechanisms other than host, spatial, or temporal isolation may account for the genetic barrier between the species. The biogeographic implications of finding an R. gallicum bv. gallicum population nodulating common bean in America are discussed. PMID:12571008
Li, Yuwei; Ahrens, Molly J; Wu, Amy; Liu, Jennifer; Dudley, Andrew T
2011-01-01
For tissues that develop throughout embryogenesis and into postnatal life, the generation of differentiated cells to promote tissue growth is at odds with the requirement to maintain the stem cell/progenitor cell population to preserve future growth potential. In the growth plate cartilage, this balance is achieved in part by establishing a proliferative phase that amplifies the number of progenitor cells prior to terminal differentiation into hypertrophic chondrocytes. Here, we show that endogenous calcium/calmodulin-dependent protein kinase II (CamkII, also known as Camk2) activity is upregulated prior to hypertrophy and that loss of CamkII function substantially blocks the transition from proliferation to hypertrophy. Wnt signaling and Pthrp-induced phosphatase activity negatively regulate CamkII activity. Release of this repression results in activation of multiple effector pathways, including Runx2- and β-catenin-dependent pathways. We present an integrated model for the regulation of proliferation potential by CamkII activity that has important implications for studies of growth control and adult progenitor/stem cell populations.
High-sensitivity determination of Zn(II) and Cu(II) in vitro by fluorescence polarization
NASA Astrophysics Data System (ADS)
Thompson, Richard B.; Maliwal, Badri P.; Feliccia, Vincent; Fierke, Carol A.
1998-04-01
Recent work has suggested that free Cu(II) may play a role in syndromes such as Crohn's and Wilson's diseases, as well as being a pollutant toxic at low levels to shellfish and sheep. Similarly, Zn(II) has been implicated in some neural damage in the brain resulting from epilepsy and ischemia. Several high sensitivity methods exist for determining these ions in solution, including GFAAS, ICP-MS, ICP-ES, and electrochemical techniques. However, these techniques are generally slow and costly, require pretreatment of the sample, require complex instruments and skilled personnel, and are incapable of imaging at the cellular and subcellular level. To address these shortcomings we developed fluorescence polarization (anisotropy) biosensing methods for these ions which are very sensitivity, highly selective, require simple instrumentation and little pretreatment, and are inexpensive. Thus free Cu(II) or Zn(II) can be determined at picomolar levels by changes in fluorescence polarization, lifetime, or wavelength ratio using these methods; these techniques may be adapted to microscopy.
Structuralism and Its Heuristic Implications.
ERIC Educational Resources Information Center
Greene, Ruth M.
1984-01-01
The author defines structuralism (a method for modeling and analyzing event systems in a space-time framework), traces its origins to the work of J. Piaget and M. Fourcault, and discusses its implications for learning. (CL)
M(II)-dipyridylamide-based coordination frameworks (M=Mn, Co, Ni): Structural transformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzeng, Biing-Chiau; Selvam, TamilSelvi; Tsai, Miao-Hsin
2016-11-15
A series of 1-D double-zigzag (([M(papx){sub 2}(H{sub 2}O){sub 2}](ClO{sub 4}){sub 2}){sub n}; M=Mn, x=s (1), x=o (3); M=Co, x=s (4), x=o (5); M=Ni, x=s (6), x=o (7)) and 2-D polyrotaxane ([Mn(paps){sub 2}(ClO{sub 4}){sub 2}]{sub n} (2)) frameworks were synthesized by reactions of M(ClO{sub 4}){sub 2} (M=Mn, Co, and Ni) with papx (paps, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenylthioether; papo, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenyl ether), which have been isolated and structurally characterized by X-ray diffraction. Based on powder X-ray diffraction (PXRD) experiments, heating the double-zigzag frameworks underwent structural transformation to give the respective polyrotaxane ones. Moreover, grinding the solid samples of the respective polyrotaxanes in the presence of moisturemore » also resulted in the total conversion to the original double-zigzag frameworks. In this study, we have successfully extended studies to Mn{sup II}, Co{sup II}, and Ni{sup II} frameworks from the previous Zn{sup II}, Cd{sup II}, and Cu{sup II} ones, and interestingly such structural transformation is able to be proven experimentally by powder and single-crystal X-ray diffraction studies as well. - Graphical abstract: 1-D double-zigzag and 2-D polyrotaxane frameworks of M(II)-papx (x=s, o; M=Mn, Co, Ni) frameworks can be interconverted by heating and grinding in the presence of moiture, and such structural transformation has be proven experimentally by powder and single-crystal X-ray diffraction studies.« less
NMR investigation of the isolated second voltage-sensing domain of human Nav1.4 channel.
Paramonov, A S; Lyukmanova, E N; Myshkin, M Yu; Shulepko, M A; Kulbatskii, D S; Petrosian, N S; Chugunov, A O; Dolgikh, D A; Kirpichnikov, M P; Arseniev, A S; Shenkarev, Z O
2017-03-01
Voltage-gated Na + channels are essential for the functioning of cardiovascular, muscular, and nervous systems. The α-subunit of eukaryotic Na + channel consists of ~2000 amino acid residues and encloses 24 transmembrane (TM) helices, which form five membrane domains: four voltage-sensing (VSD) and one pore domain. The structural complexity significantly impedes recombinant production and structural studies of full-sized Na + channels. Modular organization of voltage-gated channels gives an idea for studying of the isolated second VSD of human skeletal muscle Nav1.4 channel (VSD-II). Several variants of VSD-II (~150a.a., four TM helices) with different N- and C-termini were produced by cell-free expression. Screening of membrane mimetics revealed low stability of VSD-II samples in media containing phospholipids (bicelles, nanodiscs) associated with the aggregation of electrically neutral domain molecules. The almost complete resonance assignment of 13 C, 15 N-labeled VSD-II was obtained in LPPG micelles. The secondary structure of VSD-II showed similarity with the structures of bacterial Na + channels. The fragment of S4 TM helix between the first and second conserved Arg residues probably adopts 3 10 -helical conformation. Water accessibility of S3 helix, observed by the Mn 2+ titration, pointed to the formation of water-filled crevices in the micelle embedded VSD-II. 15 N relaxation data revealed characteristic pattern of μs-ms time scale motions in the VSD-II regions sharing expected interhelical contacts. VSD-II demonstrated enhanced mobility at ps-ns time scale as compared to isolated VSDs of K + channels. These results validate structural studies of isolated VSDs of Na + channels and show possible pitfalls in application of this 'divide and conquer' approach. Copyright © 2017 Elsevier B.V. All rights reserved.
Martin, G; Baumann, H; Grieger, F
1976-01-01
Using the average evoked potential technique, angiotensin-II depot effects (1 mg implantate = 3--4 mg/kg body weight angiotensin-II) were studied neuroelectrophysiologically in reticular, hippocampal and neocrotical structures of albino rats. A multivariate variance and discriminance analysis program revealed differentiated changes of the bioelectrical processing data of the CNS. Evidence was obtained for a varying structural sensitivity of central-nervous substructures under depot administration of angiotensin-II. In later phases of angiotensin-II action, the hippocampus was characterized by an electrographic synchronization phenomenon with high-amplitude average evoked potentials. The reticular formation, and to a lesser extent the visual cortex, showed an angiotensin-induced diminution of bioelectrical excitation. However, the intensity of the change in functional CNS patterns did not always correlate with maximal blood pressure rises. The described changes of afference processing to standardized sensory stimuli, especially in hippocampal and reticular structures of the CNS foll owing angiotensin depot action, point to a central-nervous action mechanism of angiotensin-II.
NASA Astrophysics Data System (ADS)
Inskeep, William P.; Macur, Richard E.; Harrison, Gregory; Bostick, Benjamin C.; Fendorf, Scott
2004-08-01
Acid-sulfate-chloride (pH˜3) geothermal springs in Yellowstone National Park (YNP) often contain Fe(II), As(III), and S(-II) at discharge, providing several electron donors for chemolithotrophic metabolism. The microbial populations inhabiting these environments are inextricably linked with geochemical processes controlling the behavior of As and Fe. Consequently, the objectives of the current study were to (i) characterize Fe-rich microbial mats of an ASC thermal spring, (ii) evaluate the composition and structure of As-rich hydrous ferric oxides (HFO) associated with these mats, and (iii) identify microorganisms that are potentially responsible for mat formation via the oxidation of Fe(II) and or As(III). Aqueous and solid phase mat samples obtained from a spring in Norris Basin, YNP (YNP Thermal Inventory NHSP35) were analyzed using a complement of chemical, microscopic and spectroscopic techniques. In addition, molecular analysis (16S rDNA) was used to identify potentially dominant microbial populations within different mat locations. The biomineralization of As-rich HFO occurs in the presence of nearly equimolar aqueous As(III) and As(V) (˜12 μM), and ˜ 48 μM Fe(II), forming sheaths external to microbial cell walls. These solid phases were found to be poorly ordered nanocrystalline HFO containing mole ratios of As(V):Fe(III) of 0.62 ± 0.02. The bonding environment of As(V) and Fe(III) is consistent with adsorption of arsenate on edge and corner positions of Fe(III)-OH octahedra. Numerous archaeal and bacterial sequences were identified (with no closely related cultured relatives), along with several 16S sequences that are closely related to Acidimicrobium, Thiomonas, Metallosphaera and Marinithermus isolates. Several of these cultured relatives have been implicated in Fe(II) and or As(III) oxidation in other low pH, high Fe, and high As environments (e.g. acid-mine drainage). The unique composition and morphologies of the biomineralized phases may be useful as modern-day analogs for identifying microbial life in past Fe-As rich environments.
Juvenile porcine temporomandibular joint: Three different cartilaginous structures?
Tabeian, Hessam; Bakker, Astrid D; de Vries, Teun J; Zandieh-Doulabi, Behrouz; Lobbezoo, Frank; Everts, Vincent
2016-12-01
The temporomandibular joint (TMJ) consists of three cartilaginous structures: the fossa, disc, and condyle. In juvenile idiopathic arthritis (JIA), inflammation of the TMJ leads to destruction of the condyle, but not of the fossa or the disc. Such a different effect of inflammation might be related to differences in matrix composition of the cartilaginous structures. The matrix composition of the three TMJ structures was analyzed in juvenile porcine samples and in an in vitro system of cells isolated from each anatomical structure embedded in 3% agarose gels. The matrix of all three anatomical structures of the TMJ contained collagen type I and its gene expression was maintained after isolation. The condyle and the fossa stained positive for collagen type II and proteoglycans, but the condyle contained considerably more collagen type II and proteoglycans than the fossa. The disc contained neither collagen type II protein nor expression of its gene, and the disc did not stain positive for proteoglycans. Aggrecan gene expression was lower in the disc compared to condyle and fossa cell-isolates. In general, the cell-isolates in vitro closely mimicked the characteristic features found in the tissue. The collagen type II content of the condyle clearly distinguished this cartilaginous structure from the disc and fossa. Since autoimmunity against collagen type II is associated with JIA, the relatively abundant presence of this type of collagen in the condyle might provide an explanation why primarily this cartilaginous structure of the TMJ is affected in JIA patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Probing the hammerhead ribozyme structure with ribonucleases.
Hodgson, R A; Shirley, N J; Symons, R H
1994-01-01
Susceptibility to RNase digestion has been used to probe the conformation of the hammerhead ribozyme structure prepared from chemically synthesised RNAs. Less than about 1.5% of the total sample was digested to obtain a profile of RNase digestion sites. The observed digestion profiles confirmed the predicted base-paired secondary structure for the hammerhead. Digestion profiles of both cis and trans hammerhead structures were nearly identical which indicated that the structural interactions leading to self-cleavage were similar for both systems. Furthermore, the presence or absence of Mg2+ did not affect the RNase digestion profiles, thus indicating that Mg2+ did not modify the hammerhead structure significantly to induce self-cleavage. The base-paired stems I and II in the hammerhead structure were stable whereas stem III, which was susceptible to digestion, appeared to be an unstable region. The single strand domains separating the stems were susceptible to digestion with the exception of sites adjacent to guanosines; GL2.1 in the stem II loop and G12 in the conserved GAAAC sequence, which separates stems II and III. The absence of digestion at GL2.1 in the stem II hairpin loop of the hammerhead complex was maintained in uncomplexed ribozyme and in short oligonucleotides containing only the stem II hairpin region. In contrast, the G12 site became susceptible when the ribozyme was not complexed with its substrate. Overall the results are consistent with the role of Mg2+ in the hammerhead self-cleavage reaction being catalytic and not structural. Images PMID:8202361
NASA Astrophysics Data System (ADS)
Abdel-Monem, Yasser K.; Abouel-Enein, Saeyda A.; El-Seady, Safa M.
2018-01-01
Multidentate Schiff base (H2L) ligand results from condensation of 5-aminouracil and 2-benzoyl pyridine and its metal chloride (Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Fe(III), Cr(III), Ru(III), Zr(IV) and Hf(IV)) complexes were prepared. The structural features of the ligand and its metal complexes were confirmed by elemental analyses, spectroscopic methods (IR, UV-Vis, 1H NMR, mass), magnetic moment measurements and thermal studies. The data refer to the ligand coordinates with metal ions in a neutral form and shows different modes of chelation toward the metal atom. All complexes have octahedral skeleton structure, tetrahedrally Mn(II), Ni(II), trigonalbipyramidal Co(II) and square planner Pd(II). Thermal decomposition of complexes as well as the interaction of different types of solvent of crystallization are assigned by thermogravimetric analysis. Molecular modeling of prepared complexes were investigated to study the expected anticancer activities of the prepared complexes. All metal complexes have no interaction except the complexes of Pd(II), Fe(III) and Mn(II).
Ion Conduction Path and Low-Temperature Form:. Argyrodite-Type Superionic Conductors
NASA Astrophysics Data System (ADS)
Onoda, M.; Wada, H.; Sato, A.; Ishii, M.
2007-01-01
The structures of the orthorhombic room-temperature phase of Cu8GeS6 (phase II) and the monoclinic low-temperature phase of Ag7TaS6 (phase II) have been successfully refined based on X-ray diffraction data from 12-fold twinned (Cu8GeS6 II) and 24-fold twinned (Ag7TaS6 II) crystals. Respectively among 6 major and 6 minor twin domains of Cu8GeS6 II, or among 12 major and 12 minor twin domains of Ag7TaS6 II, the argyrodite-type frameworks, GeS6 or TaS6, can be superposed to each other in principle, and only Cu-Cu or Ag-Ag network directions differ. At higher temperature, the crystals were considered to be 2-fold twinned crystals of superionic-conductor phase I with a space group F 43m. On cooling, each domain transforms into 6 domains of orthorhombic Cu8GeS6 II or 12 domains of monoclinic Ag7TaS6 II. Superposed projections along 6 directions of the structure of Cu8GeS6 II and along 12 directions of the structure of Ag7TaS6 II seem to show approximate expressions for Cu-ion and Ag-ion conduction paths in superionic-conductor phases, Cu8GeS6 I and Ag7TaS6I.
Menéndez, M; Gasset, M; Laynez, J; López-Zumel, C; Usobiaga, P; Töpfer-Petersen, E; Calvete, J J
1995-12-15
The CUB domain is a widespread 110-amino-acid module found in functionally diverse, often developmentally regulated proteins, for which an antiparallel beta-barrel topology similar to that in immunoglobulin V domains has been predicted. Spermadhesins have been proposed as a subgroup of this protein family built up by a single CUB domain architecture. To test the proposed structural model, we have analyzed the structural organization of two members of the spermadhesin protein family, porcine seminal plasma proteins I/II (PSP-I/PSP-II) heterodimer and bovine acidic seminal fluid protein (aSFP) homodimer, using differential scanning calorimetry, far-ultraviolet circular dichroism and Fourier-transform infrared spectroscopy. Thermal unfolding of PSP-I/PSP-II and aSFP were irreversible and followed a one-step process with transition temperatures (Tm) of 60.5 degrees C and 78.6 degrees C, respectively. The calorimetric enthalpy changes (delta Hcat) of thermal denaturation were 439 kJ/mol for PSP-I/PSP-II and 660 kJ/mol for aSFP dimer. Analysis of the calorimetric curves of PSP-I/PSP-II showed that the entire dimer constituted the cooperative unfolding unit. Fourier-transform infrared spectroscopy and deconvolution of circular dichroic spectra using a convex constraint analysis indicated that beta-structure and turns are the major structural element of both PSP-I/PSP-II (53% of beta-sheet, 21% of turns) and aSFP (44% of beta-sheet, 36% of turns), and that the porcine and the bovine proteins contain little, if any, alpha-helical structure. Taken together, our results indicate that the porcine and the bovine spermadhesin molecules are probably all-beta-structure proteins, and would support a beta-barrel topology like that predicted for the CUB domain. Other beta-structure folds, such as the Greek-key pattern characteristic of many carbohydrate-binding protein domains cannot be eliminated. Finally, the same combination of biophysical techniques was used to characterize the residual secondary structure of thermally denatured forms of PSP-I/PSP-II and aSFP, and to emphasize the aggregation tendency of these forms.
Prucek, Robert; Tuček, Jiří; Kolařík, Jan; Hušková, Ivana; Filip, Jan; Varma, Rajender S; Sharma, Virender K; Zbořil, Radek
2015-02-17
The removal efficiency of heavy metal ions (cadmium(II), Cd(II); cobalt(II), Co(II); nickel(II), Ni(II); copper(II), Cu(II)) by potassium ferrate(VI) (K2FeO4, Fe(VI)) was studied as a function of added amount of Fe(VI) (or Fe) and varying pH. At pH = 6.6, the effective removal of Co(II), Ni(II), and Cu(II) from water was observed at a low Fe-to-heavy metal ion ratio (Fe/M(II) = 2:1) while a removal efficiency of 70% was seen for Cd(II) ions at a high Fe/Cd(II) weight ratio of 15:1. The role of ionic radius and metal valence state was explored by conducting similar removal experiments using Al(III) ions. The unique combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), in-field Mössbauer spectroscopy, and magnetization measurements enabled the delineation of several distinct mechanisms for the Fe(VI)-prompted removal of metal ions. Under a Fe/M weight ratio of 5:1, Co(II), Ni(II), and Cu(II) were removed by the formation of MFe2O4 spinel phase and partially through their structural incorporation into octahedral positions of γ-Fe2O3 (maghemite) nanoparticles. In comparison, smaller sized Al(III) ions got incorporated easily into the tetrahedral positions of γ-Fe2O3 nanoparticles. In contrast, Cd(II) ions either did not form the spinel ferrite structure or were not incorporated into the lattic of iron(III) oxide phase due to the distinct electronic structure and ionic radius. Environmentally friendly removal of heavy metal ions at a much smaller dosage of Fe than those of commonly applied iron-containing coagulants and the formation of ferrimagnetic species preventing metal ions leaching back into the environment and allowing their magnetic separation are highlighted.
Suchetan, P A; Naveen, S; Lokanath, N K; Lakshmikantha, H N; Srivishnu, K S; Supriya, G M
2016-04-01
The crystal structures of two N-(aryl-sulfon-yl)aryl-amides, namely N-(3-fluoro-benzo-yl)benzene-sulfonamide, C13H10FNO3S, (I), and N-(3-fluoro-benzo-yl)-4-methyl-benzene-sulfonamide, C14H12FNO3S, (II), are described and compared with related structures. The dihedral angle between the benzene rings is 82.73 (10)° in (I) compared to 72.60 (12)° in (II). In the crystal of (I), the mol-ecules are linked by C-H⋯O and C-H⋯π inter-actions, resulting in a three-dimensional grid-like architecture, while C-H⋯O inter-actions lead to one-dimensional ribbons in (II). The crystals of both (I) and (II) feature strong but non-structure-directing N-H⋯O hydrogen bonds with R 2 (2)(8) ring motifs. The structure of (I) also features π-π stacking inter-actions.
1981-01-09
subcellular distribution of carnitine and coenzyme A (CoA). Compared to fasted control ILJ rats, fasted-infected rats have a decreased ketogenic capacity...decreased ketogenic capacity that is associated with an accumulation of total hepatic carnitine and a decrease in total hepatic coenzyme A. The...cholesterol. IiA .Ii INTRODUCTION Rats infected with Streptococcus pneumoniae have a decreased hep-tic ketogenic capacity which is associated with an
India-Japan Strategic Cooperation and Implications for U.S. Strategy in the Indo-Asia-Pacific Region
2017-03-01
Pradesh, Maharashtra, and West Bengal. In a 2015 ex post facto evaluation of Japan’s ODA Rural Electrification Project, project evaluator Keishi...rights are observed and extended. Implicit in the rebalance was a hedge against a China acting to challenge the existing post –World War II rules-based...during the last 45 years of the 20th century. In the immediate post –World War II era, India provided urgent supplies of food and other equipment to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hungerford, D.S.; Lennox, D.W.
1985-10-01
Early diagnosis of osteonecrosis by radiograph, bone scan, CT scan, magnetic resonance imaging (MRI), intraosseous pressure measurement, or intraosseous venogram can lead to early successful treatment. For early (Ficat stages I and II) osteonecrosis of the hip, core decompression can provide diagnostic confirmation and pain relief and may prevent progression of disease. For more advanced disease (Ficat stages II and IV), osteotomy, endoprosthetic or bipolar prosthetic replacement, total hip arthroplasty, and arthrodesis are surgical options.86 references.
Real-Time Gaze Holding in Binocular Robot Vision
1992-06-01
could have strong implications for visual perception for locomotion. Some results [Bandopadhay, 1986; Aloimonos et al., 1988; Raviv and Herman, 1991...34 In SPIE v. 119, Applications of Digital Image Processing, pages 197-205, San Diego, 1977. [ Raviv and Herman, 1991] Daniel Raviv and Martin Herman...ohlps ft~eshv dqaehg rqec cw te, utte erodcý- d s ii.vc t fle iach ,. oth rio tal van eric lIN (b)IsOw am Imgoaflr pidcalm JOwfile Ths mag iI otlr
A symmetric, triply interlaced 3-D anionic MOF that exhibits both magnetic order and SMM behaviour.
Campo, J; Falvello, L R; Forcén-Vázquez, E; Sáenz de Pipaón, C; Palacio, F; Tomás, M
2016-11-14
A newly prepared 3-D polymer of cobalt citrate cubanes bridged by high-spin Co(ii) centres displays both single-molecule magnet (SMM) behaviour and magnetic ordering. Triple interpenetration of the 3-D diamondoid polymers yields a crystalline solid with channels that host cations and free water molecules, with the SMM behaviour of the Co 4 O 4 cores preserved. The octahedrally coordinated Co(ii) bridges are implicated in the onset of magnetic order at an experimentally accessible temperature.
Structural Basis of Cyclic Nucleotide Selectivity in cGMP-dependent Protein Kinase II
Campbell, James C.; Kim, Jeong Joo; Li, Kevin Y.; ...
2016-01-14
Membrane-bound cGMP-dependent protein kinase (PKG) II is an important regulator of bone growth, renin secretion, and memory formation. Despite its crucial physiological roles, little is known about its cyclic nucleotide selectivity mechanism due to a lack of structural information. Here, we find that the C-terminal cyclic nucleotide binding (CNB-B) domain of PKGII binds cGMP with higher affinity and selectivity when compared with its N-terminal CNB (CNB-A) domain. To understand the structural basis of cGMP selectivity, we solved co-crystal structures of the CNB domains with cyclic nucleotides. Our structures combined with mutagenesis demonstrate that the guanine-specific contacts at Asp-412 and Arg-415more » of the αC-helix of CNB-B are crucial for cGMP selectivity and activation of PKG II. Structural comparison with the cGMP selective CNB domains of human PKG I and Plasmodium falciparum PKG (PfPKG) shows different contacts with the guanine moiety, revealing a unique cGMP selectivity mechanism for PKG II.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamburger, J.; Hoertz, A; Lee, A
2009-01-01
The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with production of the bacterial cell wall; it indirectly inhibits the transglycosylases responsible for peptidoglycan biosynthesis by sequestering their Lipid II substrate. Lipid II recognition and sequestration occur at the interface between the extracellular environment and the bacterial membrane. Therefore, we determined the structure of ramoplanin A2 in an amphipathic environment, using detergents as membrane mimetics, to provide the most physiologicallymore » relevant structural context for mechanistic and pharmacological studies. We report here the X-ray crystal structure of ramoplanin A2 at a resolution of 1.4 {angstrom}. This structure reveals that ramoplanin A2 forms an intimate and highly amphipathic dimer and illustrates the potential means by which it interacts with bacterial target membranes. The structure also suggests a mechanism by which ramoplanin A2 recognizes its Lipid II ligand.« less
NASA Astrophysics Data System (ADS)
Solomatova, N. V.; Asimow, P. D.
2014-12-01
Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze. The fate of these carbonates in subduction zones is not well understood. End-member CaMg(CO3)2 dolomite typically breaks down into two carbonates at 2-7 GPa, which may further decompose to oxides and CO2-bearing fluid. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize dolomite I to high pressures, allowing the transformation to dolomite II at 17 GPa and subsequently to dolomite III at 35 GPa [1][2]. Such phases may be a principal host for deeply subducted carbon. The structure and equation of state of these high-pressure phases is debated and the effect of varying concentrations of iron is unknown, creating a need for theoretical calculations. Here we compare calculated dolomite structures to experimentally observed phases. Using the Vienna ab-initio simulation package (VASP) interfaced with a genetic algorithm that predicts crystal structures (USPEX), a monoclinic phase with space group 5 ("dolomite sg5") was found for pure end-member dolomite. Dolomite sg5 has a lower energy than reported dolomite structures and an equation of state that resembles that of dolomite III. It is possible that dolomite sg5 is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. Due to the complex energy landscape for candidate high-pressure dolomite structures, it is likely that several competing polymorphs exist. Determining the behavior of high-pressure Ca-Mg-Fe(-Mn) dolomite phases in subduction environments is critical for our understanding of the Earth's deep carbon cycle and supercell calculations with Fe substitution are in progress. [1] Mao, Z., Armentrout, M., Rainey, E., Manning, C. E., Dera, P., Prakapenka, V. B., and Kavner, A. (2011). Dolomite III: A new candidate lower mantle carbonate. Geophy. Res. Lett., 38(22). [2] Merlini, M., Crichton, W. A., Hanfland, M., Gemmi, M., Müller, H., Kupenko, I., and Dubrovinsky, L. (2012). Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proc. Nat. Acad. Sci., 109(34), 13509-13514.
The U.S.-Moroccan Agreement and Its Implications for U.S. Rapid Deployment Forces
1983-03-01
DATE MAR 1983 2 . REPORT TYPE 3. DATES COVERED 00-00-1983 to 00-00-1983 4. TITLE AND SUBTITLE The U.S.-Moroccan Agreement and Its Implications for...SUMMARY iv PART I. THE 1982 AGREEMENT BETWEEN MOROCCO AND THE UNITED STATES 2 Historical Background on U.S.-Morocco Relations 2 The 1982 Agreement 3 PART II...of Moroccan air bases may . iave some limitations. Scenarios under which the United States would be denied use of Spanish or Portuguese bases—which
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Zachary C.; Cardenas, Allan Jay P.; Corbey, Jordan F.
2016-01-01
Glutardiamidoxime, a structural motif on sorbents used in uranium extraction from seawater, was discovered to cyclize in situ at room temperature to 2,6-diimino-piperidin-1-ol in the presence of uranyl nitrate. The new diimino motif was also generated when exposed to competing transition metals Cu(II) and Ni(II). Multinuclear μ-O bridged U(VI), Cu(II), and Ni(II) complexes featuring bound diimino ligands were isolated. A Cu(II) complex with the historically relevant cyclic imide dioxime motif is also reported for structural comparison to the reported diimino complexes.
NASA Astrophysics Data System (ADS)
Prokešová, Roberta; Kardoš, Miroslav; Tábořík, Petr; Medveďová, Alžbeta; Stacke, Václav; Chudý, František
2014-11-01
Large earthflow-type landslides are destructive mass movement phenomena with highly unpredictable behaviour. Knowledge of earthflow kinematics is essential for understanding the mechanisms that control its movements. The present paper characterises the kinematic behaviour of a large earthflow near the village of Ľubietová in Central Slovakia over a period of 35 years following its most recent reactivation in 1977. For this purpose, multi-temporal spatial data acquired by point-based in-situ monitoring and optical remote sensing methods have been used. Quantitative data analyses including strain modelling and DEM differencing techniques have enabled us to: (i) calculate the annual landslide movement rates; (ii) detect the trend of surface displacements; (iii) characterise spatial variability of movement rates; (iv) measure changes in the surface topography on a decadal scale; and (v) define areas with distinct kinematic behaviour. The results also integrate the qualitative characteristics of surface topography, in particular the distribution of surface structures as defined by a high-resolution DEM, and the landslide subsurface structure, as revealed by 2D resistivity imaging. Then, the ground surface kinematics of the landslide is evaluated with respect to the specific conditions encountered in the study area including slope morphology, landslide subsurface structure, and local geological and hydrometeorological conditions. Finally, the broader implications of the presented research are discussed with particular focus on the role that strain-related structures play in landslide kinematic behaviour.
Structural analysis of nucleosomal barrier to transcription.
Gaykalova, Daria A; Kulaeva, Olga I; Volokh, Olesya; Shaytan, Alexey K; Hsieh, Fu-Kai; Kirpichnikov, Mikhail P; Sokolova, Olga S; Studitsky, Vasily M
2015-10-27
Thousands of human and Drosophila genes are regulated at the level of transcript elongation and nucleosomes are likely targets for this regulation. However, the molecular mechanisms of formation of the nucleosomal barrier to transcribing RNA polymerase II (Pol II) and nucleosome survival during/after transcription remain unknown. Here we show that both DNA-histone interactions and Pol II backtracking contribute to formation of the barrier and that nucleosome survival during transcription likely occurs through allosterically stabilized histone-histone interactions. Structural analysis indicates that after Pol II encounters the barrier, the enzyme backtracks and nucleosomal DNA recoils on the octamer, locking Pol II in the arrested state. DNA is displaced from one of the H2A/H2B dimers that remains associated with the octamer. The data reveal the importance of intranucleosomal DNA-protein and protein-protein interactions during conformational changes in the nucleosome structure on transcription. Mechanisms of nucleosomal barrier formation and nucleosome survival during transcription are proposed.
Freire-Picos, M A; Landeira-Ameijeiras, V; Mayán, María D
2013-07-01
The correct distribution of nuclear domains is critical for the maintenance of normal cellular processes such as transcription and replication, which are regulated depending on their location and surroundings. The most well-characterized nuclear domain, the nucleolus, is essential for cell survival and metabolism. Alterations in nucleolar structure affect nuclear dynamics; however, how the nucleolus and the rest of the nuclear domains are interconnected is largely unknown. In this report, we demonstrate that RNAP-II is vital for the maintenance of the typical crescent-shaped structure of the nucleolar rDNA repeats and rRNA transcription. When stalled RNAP-II molecules are not bound to the chromatin, the nucleolus loses its typical crescent-shaped structure. However, the RNAP-II interaction with Seh1p, or cryptic transcription by RNAP-II, is not critical for morphological changes. Copyright © 2013 John Wiley & Sons, Ltd.
Itoh, Sumitaka; Kishikawa, Nobuyuki; Suzuki, Takayoshi; Takagi, Hideo D
2005-03-21
[Cu(2,9-dimethyl-1,10-phenanthroline)(2)](2+) and [Cu(6,6'-dimethyl-2,2'-bipyridine)(2)](2+/+) complexes with no coordinated solvent molecule were synthesized and the crystal structures were analyzed: the coordination geometry around the Cu(i) center was in the D(2d) symmetry while a D(2) structure was observed for the four-coordinate Cu(ii) complexes. Coordination of a water or an acetonitrile molecule was found in the trigonal plane of the five-coordinate Cu(ii) complex in the Tbp(trigonal bipyramidal) structure. Spectrophotometric analyses revealed that the D(2) structure of the Cu(ii) complex was retained in nitromethane, although a five-coordinate Tbp species (green in color), was readily formed upon dissolution of the solid (reddish brown) in acetonitrile. The electron self-exchange reaction between D(2d)-Cu(I) and D(2)-Cu(II), observed by the NMR method, was very rapid with k(ex)=(1.1 +/- 0.2) x 10(5) kg mol(-1) s(-1) at 25 degrees C (DeltaH*= 15.6 +/- 1.3 kJ mol(-1) and DeltaS*=-96 +/- 4 J mol(-1) K(-1)), which was more than 10 times larger than that reported for the self-exchange reaction between D(2d)-Cu(I) and Tbp-Cu(II) in acetonitrile. The cross reduction reactions of D(2)-Cu(ii) by ferrocene and decamethylferrocene in nitromethane exhibited a completely gated behavior, while the oxidation reaction of D(2d)-Cu(i) by [Ni(1,4,7-triazacyclononane)(2)](3+) in nitromethane estimated an identically large self-exchange rate constant to that directly obtained by the NMR method. The electron self-exchange rate constant estimated from the oxidation cross reaction in 50% v/v acetonitrile-nitromethane mixture was 10 times smaller than that observed in pure nitromethane. On the basis of the Principle of the Least Motion (PLM) and the Symmetry Rules, it was concluded that gated behaviors observed for the reduction reactions of the five-coordinate Cu(ii)-polypyridine complexes are related to the high-energy C(2v)--> D(2d) conformational change around Cu(ii), and that the electron self-exchange reactions of the Cu(ii)/(i) couples are always adiabatic through the C(2v) structures for both Cu(ii) and Cu(i) since the conformational changes between D(2d), D(2) and C(2v) structures for Cu(i) as well as the conformational change between Tbp and C(2v) structures for Cu(ii) are symmetry-allowed. The completely gated behavior observed for the reduction reactions of D(2)-Cu(ii) species in nitromethane was attributed to the very slow conformational change from the ground-state D(2) to the entatic D(2d) structure that is symmetry-forbidden for d(9) metal complexes: the very slow back reaction, the forbidden conformational change from entatic D(2d) to the ground-state D(2) structure, ensures that the rate of the reduction reaction is independent of the concentration of the reducing reagent.
Formation and decay of the arrestin·rhodopsin complex in native disc membranes.
Beyrière, Florent; Sommer, Martha E; Szczepek, Michal; Bartl, Franz J; Hofmann, Klaus Peter; Heck, Martin; Ritter, Eglof
2015-05-15
In the G protein-coupled receptor rhodopsin, light-induced cis/trans isomerization of the retinal ligand triggers a series of distinct receptor states culminating in the active Metarhodopsin II (Meta II) state, which binds and activates the G protein transducin (Gt). Long before Meta II decays into the aporeceptor opsin and free all-trans-retinal, its signaling is quenched by receptor phosphorylation and binding of the protein arrestin-1, which blocks further access of Gt to Meta II. Although recent crystal structures of arrestin indicate how it might look in a precomplex with the phosphorylated receptor, the transition into the high affinity complex is not understood. Here we applied Fourier transform infrared spectroscopy to monitor the interaction of arrestin-1 and phosphorylated rhodopsin in native disc membranes. By isolating the unique infrared signature of arrestin binding, we directly observed the structural alterations in both reaction partners. In the high affinity complex, rhodopsin adopts a structure similar to Gt-bound Meta II. In arrestin, a modest loss of β-sheet structure indicates an increase in flexibility but is inconsistent with a large scale structural change. During Meta II decay, the arrestin-rhodopsin stoichiometry shifts from 1:1 to 1:2. Arrestin stabilizes half of the receptor population in a specific Meta II protein conformation, whereas the other half decays to inactive opsin. Altogether these results illustrate the distinct binding modes used by arrestin to interact with different functional forms of the receptor. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Pladzyk, Agnieszka; Ponikiewski, Łukasz; Stanulewicz, Natalia; Hnatejko, Zbigniew
2013-12-01
Three new zinc(II) and cadmium(II) silanethiolate complexes [Zn{SSi(OtBu)3}2(μ-bpea)ṡCH3CN]n1, [Cd{SSi(OtBu)3}2(μ-bpea)ṡ2CHCl3]n2 and [Cd{SSi(OtBu)3}2(μ-bpey)ṡC7H8]n3 with two bypiridine derivatives, [bpea = 1,2-bis(4-pyridyl)ethane and bpey = 1,2-bis(4-pyridyl)ethylene] have been synthesized and structurally characterized by X-ray crystallography. Their structures and properties have also been established with elemental analysis, IR, TGA and photoluminescent studies. Complexes 1-3 exhibit one-dimensional (1D) chain structures in which [M{SSi(OtBu)3}2] (M = Zn, Cd) units are held together by bpea or bpey bridges, respectively. Complexes are stable up to 300 °C and display blue emissions.
The group II intron maturase: a reverse transcriptase and splicing factor go hand in hand.
Zhao, Chen; Pyle, Anna Marie
2017-12-01
The splicing of group II introns in vivo requires the assistance of a multifunctional intron encoded protein (IEP, or maturase). Each IEP is also a reverse-transcriptase enzyme that enables group II introns to behave as mobile genetic elements. During splicing or retro-transposition, each group II intron forms a tight, specific complex with its own encoded IEP, resulting in a highly reactive holoenzyme. This review focuses on the structural basis for IEP function, as revealed by recent crystal structures of an IEP reverse transcriptase domain and cryo-EM structures of an IEP-intron complex. These structures explain how the same IEP scaffold is utilized for intron recognition, splicing and reverse transcription, while providing a physical basis for understanding the evolutionary transformation of the IEP into the eukaryotic splicing factor Prp8. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Q.; Hu, X; Wang, X
Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the coremore » surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, D., E-mail: iamzd@hpu.edu.cn; Zhang, R. H.; Li, F. F.
2016-12-15
A new Pb{sup II}−edta{sup 4–} coordination polymer, Pb{sub 2}(edta)(H{sub 2}O){sub 0.76} (edta{sup 4–} = ethylenediaminetetraacetate) was synthesized under hydrothermal condition. Single crystal X-ray analysis reveals that it represents a novel two-dimensional (2D) Pb{sup 2+}–edta{sup 4–} layer structure with a (4,8{sup 2})-topology. Each edta{sup 4–} ligand employs its four carboxylate O and two N atoms to chelate one Pb{sup II} atom (hexa-coordinated) and connects five Pb{sup II} atoms (ennea-coordinated) via its four carboxylate groups to form 2D layer framework. Adjacent layers are packed into the overall structure through vander Waals interactions.
New stable ternary alkaline-earth metal Pb(II) oxides: Ca / Sr / BaPb 2 O 3 and BaPbO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuwei; Zhang, Lijun; Singh, David J.
The different but related chemical behaviors of Pb(II) oxides compared to Sn(II) oxides, and the existence of known alkali/alkali-earth metal Sn(II) ternary phases, suggest that there should be additional ternary Pb(II) oxide phases. Here, we report structure searches on the ternary alkaline-earth metal Pb(II) oxides leading to four new phases. These are two ternary Pb(II) oxides, SrPb 2O 3 and BaPb 2O 3, which have larger chemical potential stability ranges compared with the corresponding Sn(II) oxides, and additionally two other ternary Pb(II) oxides, CaPb 2O 3 and BaPbO 2, for which there are no corresponding Sn(II) oxides. Those Pb(II) oxidesmore » are stabilized by Pb-rich conditions. These structures follow the Zintl behavior and consist of basic structural motifs of (PbO 3) 4- anionic units separated and stabilized by the alkaline-earth metal ions. They show wide band gaps ranging from 2.86 to 3.12 eV, and two compounds (CaPb 2O 3 and SrPb 2O 3) show rather light hole effective masses (around 2m 0). The valence band maxima of these compounds have a Pb-6s/O-2p antibonding character, which may lead to p-type defect (or doping) tolerant behavior. This then suggests alkaline-earth metal Pb(II) oxides may be potential p-type transparent conducting oxides.« less
New stable ternary alkaline-earth metal Pb(II) oxides: Ca / Sr / BaPb 2 O 3 and BaPbO 2
Li, Yuwei; Zhang, Lijun; Singh, David J.
2017-10-16
The different but related chemical behaviors of Pb(II) oxides compared to Sn(II) oxides, and the existence of known alkali/alkali-earth metal Sn(II) ternary phases, suggest that there should be additional ternary Pb(II) oxide phases. Here, we report structure searches on the ternary alkaline-earth metal Pb(II) oxides leading to four new phases. These are two ternary Pb(II) oxides, SrPb 2O 3 and BaPb 2O 3, which have larger chemical potential stability ranges compared with the corresponding Sn(II) oxides, and additionally two other ternary Pb(II) oxides, CaPb 2O 3 and BaPbO 2, for which there are no corresponding Sn(II) oxides. Those Pb(II) oxidesmore » are stabilized by Pb-rich conditions. These structures follow the Zintl behavior and consist of basic structural motifs of (PbO 3) 4- anionic units separated and stabilized by the alkaline-earth metal ions. They show wide band gaps ranging from 2.86 to 3.12 eV, and two compounds (CaPb 2O 3 and SrPb 2O 3) show rather light hole effective masses (around 2m 0). The valence band maxima of these compounds have a Pb-6s/O-2p antibonding character, which may lead to p-type defect (or doping) tolerant behavior. This then suggests alkaline-earth metal Pb(II) oxides may be potential p-type transparent conducting oxides.« less
A SNAPshot of the FUV (1320 - 1460 A) Spectrum of Lambda Vel (K4Ib-II)
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.
2010-01-01
The FUV spectrum (l330-1460A) of the K4Ib-II supergiant Lambda Vel was observed with the Cosmic Origins Spectrograph (COS) on HST, as part of the Ayres and Redfield Cycle 17 SNAP program "SNAPing Coronal Iron". This spectrum covers a region not previously seen in Lambda Vel at high resolution and reveals a rich emission-line spectrum superposed on a bright continuum, with contributions from a variety of atomic and molecular sources. Evidence of the stellar wind is seen in the P Cygni profiles of selected lines and the results of fluorescence processes are visible throughout the region. The spectrum has remarkable similarities to that of Alpha Boo (K1.5 III), but significant differences as well, including substantial FUV continuum emission, reminiscent of the M2 lab supergiant Alpha Ori, but minus the CO fundamental absorption bands seen in the latter star. However, fluoresced CO emission is present and strong, as in the K-giant stars Alpha Boo and Alpha Tau (K5 III). We present the details of this spectrum, in comparison to stars of similar temperature or luminosity and discuss the implications for the structure of and the radiative processes active in, the outer atmospheres of these stars.
Entrapment of Carbon Dioxide in the Active Site of Carbonic Anhydrase II*♦
Domsic, John F.; Avvaru, Balendu Sankara; Kim, Chae Un; Gruner, Sol M.; Agbandje-McKenna, Mavis; Silverman, David N.; McKenna, Robert
2008-01-01
The visualization at near atomic resolution of transient substrates in the active site of enzymes is fundamental to fully understanding their mechanism of action. Here we show the application of using CO2-pressurized, cryo-cooled crystals to capture the first step of CO2 hydration catalyzed by the zinc-metalloenzyme human carbonic anhydrase II, the binding of substrate CO2, for both the holo and the apo (without zinc) enzyme to 1.1Å resolution. Until now, the feasibility of such a study was thought to be technically too challenging because of the low solubility of CO2 and the fast turnover to bicarbonate by the enzyme (Liang, J. Y., and Lipscomb, W. N. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 3675–3679). These structures provide insight into the long hypothesized binding of CO2 in a hydrophobic pocket at the active site and demonstrate that the zinc does not play a critical role in the binding or orientation of CO2. This method may also have a much broader implication for the study of other enzymes for which CO2 is a substrate or product and for the capturing of transient substrates and revealing hydrophobic pockets in proteins. PMID:18768466
Samarakkody, Ann; Abbas, Ata; Scheidegger, Adam; Warns, Jessica; Nnoli, Oscar; Jokinen, Bradley; Zarns, Kris; Kubat, Brooke; Dhasarathy, Archana; Nechaev, Sergei
2015-01-01
Promoter-proximal RNA polymerase II (Pol II) pausing is implicated in the regulation of gene transcription. However, the mechanisms of pausing including its dynamics during transcriptional responses remain to be fully understood. We performed global analysis of short capped RNAs and Pol II Chromatin Immunoprecipitation sequencing in MCF-7 breast cancer cells to map Pol II pausing across the genome, and used permanganate footprinting to specifically follow pausing during transcriptional activation of several genes involved in the epithelial to mesenchymal transition (EMT). We find that the gene for EMT master regulator Snail (SNAI1), but not Slug (SNAI2), shows evidence of Pol II pausing before activation. Transcriptional activation of the paused SNAI1 gene is accompanied by a further increase in Pol II pausing signal, whereas activation of non-paused SNAI2 gene results in the acquisition of a typical pausing signature. The increase in pausing signal reflects increased transcription initiation without changes in Pol II pausing. Activation of the heat shock HSP70 gene involves pausing release that speeds up Pol II turnover, but does not change pausing location. We suggest that Pol II pausing is retained during transcriptional activation and can further undergo regulated release in a signal-specific manner. PMID:25820424
NASA Astrophysics Data System (ADS)
Tan, Jun; Wei, Xiaoyan; Chen, Jie; Sun, Ping; Ouyang, Yuxia; Fan, Juhong; Liu, Rui
2014-12-01
The present paper constructed and discussed core-shell structured nanospheres grafted with rhodamine based probe for Hg(II) sensing and removal. Electron microscopy images, XRD curves, thermogravimetric analysis and N2 adsorption/desorption isotherms were used to identify the core-shell structure. The inner core consisted of superparamagnetic Fe3O4 nanoparticles, which made the nanocomposite magnetically removable. The outer shell was constructed with silica molecular sieve which provided large surface area and ordered tunnels for the sensing probe, accelerating analyte adsorption and transportation. The rhodamine based sensing probe emission increased with the increasing Hg(II) concentration, showing emission "Off-On" effect, which could be explained by the structural transformation from a non-emissive one to a highly emissive one. The influence from various metal ions and pH values was also investigated, which suggested this structural transformation could only be triggered by Hg(II), showing high selectivity and linear response. The Hg(II) sensing nanocomposite could be regenerated after usage. The response time was slightly compromised and could be further improved.
Anxiety, Depression and Hopelessness in Adolescents: A Structural Equation Model
Cunningham, Shaylyn; Gunn, Thelma; Alladin, Assen; Cawthorpe, David
2008-01-01
Objective This study tested a structural model, examining the relationship between a latent variable termed demoralization and measured variables (anxiety, depression and hopelessness) in a community sample of Canadian youth. Methods The combined sample consisted of data collected from four independent studies from 2001 to 2005. Nine hundred and seventy one (n=971) participants were high school students (grades 10–12) from three geographic locations: Calgary, Saskatchewan and Lethbridge. Participants completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory-Revised (BDI-II), Beck Hopelessness Scale (BHS), and demographic survey. Structural equation modeling was used for statistical analysis. Results The analysis revealed that the final model, including depression, anxiety and hopelessness and one latent variable demoralization, fit the data (chi-square value, X2 (2) = 7.25, p< .001, goodness of fit indices (CFI=0.99, NFI=0.98) and standardized error (0.05). Overall, the findings suggest that close relationships exist among depression, anxiety, hopelessness and demoralization that is stable across demographic variables. Further, the model explains the relationship between sub-clinical anxiety, depression and hopelessness. Conclusion These findings contribute to a theoretical framework, which has implications for educational and clinical intervention. The present findings will help guide further preventative research on examining demoralization as a precursor to sub-clinical anxiety and depression. PMID:18769644
Ordaz, S J; Lenroot, R K; Wallace, G L; Clasen, L S; Blumenthal, J D; Schmitt, J E; Giedd, J N
2010-04-01
Twins provide a unique capacity to explore relative genetic and environmental contributions to brain development, but results are applicable to non-twin populations only to the extent that twin and singleton brains are alike. A reason to suspect differences is that as a group twins are more likely than singletons to experience adverse prenatal and perinatal events that may affect brain development. We sought to assess whether this increased risk leads to differences in child or adolescent brain anatomy in twins who do not experience behavioral or neurological sequelae during the perinatal period. Brain MRI scans of 185 healthy pediatric twins (mean age = 11.0, SD = 3.6) were compared to scans of 167 age- and sex-matched unrelated singletons on brain structures measured, which included gray and white matter lobar volumes, ventricular volume, and area of the corpus callosum. There were no significant differences between groups for any structure, despite sufficient power for low type II (i.e. false negative) error. The implications of these results are twofold: (1) within this age range and for these measures, it is appropriate to include healthy twins in studies of typical brain development, and (2) findings regarding heritability of brain structures obtained from twin studies can be generalized to non-twin populations.
Production cost structure in US outpatient physical therapy health care.
Lubiani, Gregory G; Okunade, Albert A
2013-02-01
This paper investigates the technology cost structure in US physical therapy care. We exploit formal economic theories and a rich national data of providers to tease out implications for operational cost efficiencies. The 2008-2009 dataset comprising over 19 000 bi-weekly, site-specific physical therapy center observations across 28 US states and Occupational Employment Statistics data (Bureau of Labor Statistics) includes measures of output, three labor types (clinical, support, and administrative), and facilities (capital). We discuss findings from the iterative seemingly unrelated regression estimation system model. The generalized translog cost estimates indicate a well-behaved underlying technology structure. We also find the following: (i) factor demands are downwardly sloped; (ii) pair-wise factor relationships largely reflect substitutions; (iii) factor demand for physical therapists is more inelastic compared with that for administrative staff; and (iv) diminishing scale economies exist at the 25%, 50%, and 75% output (patient visits) levels. Our findings advance the timely economic understanding of operations in an increasingly important segment of the medical care sector that has, up-to-now (because of data paucity), been missing from healthcare efficiency analysis. Our work further provides baseline estimates for comparing operational efficiencies in physical therapy care after implementations of the 2010 US healthcare reforms. Copyright © 2012 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jie; Lancaster, Laura; Trakhanov, Sergei
2012-03-26
The class II release factor RF3 is a GTPase related to elongation factor EF-G, which catalyzes release of class I release factors RF1 and RF2 from the ribosome after termination of protein synthesis. The 3.3 {angstrom} crystal structure of the RF3 {center_dot} GDPNP {center_dot} ribosome complex provides a high-resolution description of interactions and structural rearrangements that occur when binding of this translational GTPase induces large-scale rotational movements in the ribosome. RF3 induces a 7{sup o} rotation of the body and 14{sup o} rotation of the head of the 30S ribosomal subunit, and itself undergoes inter- and intradomain conformational rearrangements. Wemore » suggest that ordering of critical elements of switch loop I and the P loop, which help to form the GTPase catalytic site, are caused by interactions between the G domain of RF3 and the sarcin-ricin loop of 23S rRNA. The rotational movements in the ribosome induced by RF3, and its distinctly different binding orientation to the sarcin-ricin loop of 23S rRNA, raise interesting implications for the mechanism of action of EF-G in translocation.« less
Turbulent flame-wall interaction: a DNS study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jackie; Hawkes, Evatt R; Sankaran, Ramanan
2010-01-01
A turbulent flame-wall interaction (FWI) configuration is studied using three-dimensional direct numerical simulation (DNS) and detailed chemical kinetics. The simulations are used to investigate the effects of the wall turbulent boundary layer (i) on the structure of a hydrogen-air premixed flame, (ii) on its near-wall propagation characteristics and (iii) on the spatial and temporal patterns of the convective wall heat flux. Results show that the local flame thickness and propagation speed vary between the core flow and the boundary layer, resulting in a regime change from flamelet near the channel centreline to a thickened flame at the wall. This findingmore » has strong implications for the modelling of turbulent combustion using Reynolds-averaged Navier-Stokes or large-eddy simulation techniques. Moreover, the DNS results suggest that the near-wall coherent turbulent structures play an important role on the convective wall heat transfer by pushing the hot reactive zone towards the cold solid surface. At the wall, exothermic radical recombination reactions become important, and are responsible for approximately 70% of the overall heat release rate at the wall. Spectral analysis of the convective wall heat flux provides an unambiguous picture of its spatial and temporal patterns, previously unobserved, that is directly related to the spatial and temporal characteristic scalings of the coherent near-wall turbulent structures.« less
Mitosis in Barbulanympha. I. Spindle structure, formation, and kinetochore engagement
1978-01-01
Successful culture of the obligatorily anaerobic symbionts residing in the hindgut of the wood-eating cockroach Cryptocercus punctulatus now permits continuous observation of mitosis in individual Barbulanympha cells. In Part I of this two-part paper, we report methods for culture of the protozoa, preparation of microscope slide cultures in which Barbulanympha survived and divided for up to 3 days, and an optical arrangement which permits observation and through-focus photographic recording of dividing cells, sequentially in differential interference contrast and rectified polarized light microscopy. We describe the following prophase events and structures: development of the astral rays and large extranuclear central spindle from the tips of the elongate-centrioles; the fine structure of spindle fibers and astral rays which were deduced in vivo from polarized light microscopy and seen as a particular array of microtubules in thin-section electron micrographs; formation of chromosomal spindle fibers by dynamic engagement of astral rays to the kinetochores embedded in the persistent nuclear envelope; and repetitive shortening of chromosomal spindle fibers which appear to hoist the nucleus to the spindle surface, cyclically jostle the kinetochores within the nuclear envelope, and churn the prophase chromosomes. The observations described here and in Part II have implications both for the evolution of mitosis and for understanding the mitotic process generally. PMID:681451
Llamas-Saiz, Antonio L; Grotenbreg, Gijsbert M; Overhand, Mark; van Raaij, Mark J
2007-03-01
Gramicidin S is a nonribosomally synthesized cyclic decapeptide antibiotic with twofold symmetry (Val-Orn-Leu-D-Phe-Pro)(2); a natural source is Bacillus brevis. Gramicidin S is active against Gram-positive and some Gram-negative bacteria. However, its haemolytic toxicity in humans limits its use as an antibiotic to certain topical applications. Synthetically obtained gramicidin S was crystallized from a solution containing water, methanol, trifluoroacetic acid and hydrochloric acid. The structure was solved and refined at 0.95 A resolution. The asymmetric unit contains 1.5 molecules of gramicidin S, two trifluoroacetic acid molecules and ten water molecules located and refined in 14 positions. One gramicidin S molecule has an exact twofold-symmetrical conformation; the other deviates from the molecular twofold symmetry. The cyclic peptide adopts an antiparallel beta-sheet secondary structure with two type II' beta-turns. These turns have the residues D-Phe and Pro at positions i + 1 and i + 2, respectively. In the crystals, the gramicidin S molecules line up into double-stranded helical channels that differ from those observed previously. The implications of the supramolecular structure for several models of gramicidin S conformation and assembly in the membrane are discussed.
NASA Astrophysics Data System (ADS)
Wang, Fangfang; Zhou, Bo
2018-04-01
Protein tyrosine phosphatase 1B (PTP1B) is an intracellular non-receptor phosphatase that is implicated in signal transduction of insulin and leptin pathways, thus PTP1B is considered as potential target for treating type II diabetes and obesity. The present article is an attempt to formulate the three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling of a series of compounds possessing PTP1B inhibitory activities using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. The optimum template ligand-based models are statistically significant with great CoMFA (R2cv = 0.600, R2pred = 0.6760) and CoMSIA (R2cv = 0.624, R2pred = 0.8068) values. Molecular docking was employed to elucidate the inhibitory mechanisms of this series of compounds against PTP1B. In addition, the CoMFA and CoMSIA field contour maps agree well with the structural characteristics of the binding pocket of PTP1B active site. The knowledge of structure-activity relationship and ligand-receptor interactions from 3D-QSAR model and molecular docking will be useful for better understanding the mechanism of ligand-receptor interaction and facilitating development of novel compounds as potent PTP1B inhibitors.
Auditory Mechanics of the Tectorial Membrane and the Cochlear Spiral
Gavara, Núria; Manoussaki, Daphne; Chadwick, Richard S.
2012-01-01
Purpose of review This review is timely and relevant since new experimental and theoretical findings suggest that cochlear mechanics from the nanoscale to the macroscale are affected by mechanical properties of the tectorial membrane and the spiral shape. Recent findings Main tectorial membrane themes covered are i) composition and morphology, ii) nanoscale mechanical interactions with the outer hair cell bundle, iii) macroscale longitudinal coupling, iv) fluid interaction with inner hair cell bundles, v) macroscale dynamics and waves. Main cochlear spiral themes are macroscale low-frequency energy focusing and microscale organ of Corti shear gain. Implications Findings from new experimental and theoretical models reveal exquisite sensitivity of cochlear mechanical performance to tectorial membrane structural organization, mechanics, and its positioning with respect to hair bundles. The cochlear spiral geometry is a major determinant of low frequency hearing. Suggestions are made for future research directions. PMID:21785353
NASA Astrophysics Data System (ADS)
Brom, Krzysztof Roman; Szopa, Krzysztof
2016-12-01
Environmental adaptation of molluscs during evolution has led to form biomineral exoskeleton - shell. The main compound of their shells is calcium carbonate, which is represented by calcite and/or aragonite. The mineral part, together with the biopolymer matrix, forms many types of microstructures, which are differ in texture. Different types of internal shell microstructures are characteristic for some bivalve groups. Studied bivalve species (freshwater species - duck mussel (Anodonta anatina Linnaeus, 1758) and marine species - common cockle (Cerastoderma edule Linnaeus, 1758), lyrate Asiatic hard clam (Meretrix lyrata Sowerby II, 1851) and blue mussel (Mytilus edulis Linnaeus, 1758)) from different locations and environmental conditions, show that the internal shell microstructure with the shell morphology and thickness have critical impact to the ability to survive in changing environment and also to the probability of surviving predator attack. Moreover, more detailed studies on molluscan structures might be responsible for create mechanically resistant nanomaterials.