Science.gov

Sample records for ii thiosemicarbazone complexes

  1. Platinum(II) and palladium(II) complexes with 2-acetylpyridine thiosemicarbazone: cytogenetic and antineoplastic effects.

    PubMed

    Lakovidou, Z; Papageorgiou, A; Demertzis, M A; Mioglou, E; Mourelatos, D; Kotsis, A; Yadav, P N; Kovala-Demertzi, D

    2001-01-01

    The effect of three novel complexes of Pt(II) and three complexes of Pd(II) with 2-acetylpyridine thiosemicarbazone (HAcTsc) on sister chromatid exchange (SCE) rates and human lymphocyte proliferation kinetics on a molar basis was studied. Also, the effect of Pt(II) and Pd(II) complexes against leukemia P388 was investigated. Among these compounds, the most effective in inducing antitumor and cytogenetic effects were the complexes [Pt(AcTsc)2] x H2O and [Pd(AcTsc)2] while the rest, i.e. (HAcTsc), [Pt(AcTsc)Cl], [Pt(HAcTsc)2]Cl2 x 2H2O, [Pd(AcTsc)Cl] and [Pd(HAcTsc)2]Cl2, displayed marginal cytogenetic and antitumor effects.

  2. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand

    NASA Astrophysics Data System (ADS)

    El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.

    2018-04-01

    The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.

  3. Spectroscopic evaluation of Co(II), Ni(II) and Cu(II) complexes derived from thiosemicarbazone and semicarbazone

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Anil

    2007-12-01

    Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.

  4. Synthesis and spectroscopic studies of Ru(II) complexes of steroidal thiosemicarbazones by multi step reaction: As anti-bacterial agents.

    PubMed

    Khan, Salman A; Asiri, Abdullah M

    2017-08-01

    Ru(II) steroidal metal complexes were synthesized by the reaction of dichlorodicarbonyl ruthenium(II) [Ru(CO) 2 Cl 2 ] n with Steroidal thiosemicarbazones. Coordination via the thionic sulfur and the azomethine nitrogen atom of the thiosemicarbazone to the Ru(II) metal. Steroidal thiosemicarbazone derivatives were obtained by the thiosemicarbazide with steroidal ketones. Structures of the steroidal thiosemicarbazone and their metal complexes were confirmed by the FT-IR, 1 H NMR, 13 C NMR, Fab-Mass spectroscopy and elemental analysis. The antibacterial activity of these compounds were first tested in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria, and then the minimum inhibitory concentration (MIC) was determined. The results showed that steroidal Ru(II) complexes are better inhibit growth as compared to steroidal thiosemicarbazones of both types of the bacteria (gram-positive and gram-negative). Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Synthesis and Characterization of New Palladium(II) Thiosemicarbazone Complexes and Their Cytotoxic Activity against Various Human Tumor Cell Lines

    PubMed Central

    Hernández, Wilfredo; Paz, Juan; Carrasco, Fernando; Spodine, Evgenia; Manzur, Jorge; Sieler, Joachim; Blaurock, Steffen; Beyer, Lothar

    2013-01-01

    The palladium(II) bis-chelate complexes of the type [Pd(TSC1-5)2] (6–10), with their corresponding ligands 4-phenyl-1-(acetone)-thiosemicarbazone, HTSC1 (1), 4-phenyl-1-(2′-chloro-benzaldehyde)-thiosemicarbazone, HTSC2 (2), 4-phenyl-1-(3′-hydroxy-benzaldehyde)-thiosemicarbazone, HTSC3 (3), 4-phenyl-1-(2′-naphthaldehyde)-thiosemicarbazone, HTSC4 (4), and 4-phenyl-1-(1′-nitro-2′-naphthaldehyde)-thiosemicarbazone, HTSC5 (5), were synthesized and characterized by elemental analysis and spectroscopic techniques (IR and 1H- and 13C-NMR). The molecular structure of HTSC3, HTSC4, and [Pd(TSC1)2] (6) have been determined by single crystal X-ray crystallography. Complex 6 shows a square planar geometry with two deprotonated ligands coordinated to PdII through the azomethine nitrogen and thione sulfur atoms in a cis arrangement. The in vitro cytotoxic activity measurements indicate that the palladium(II) complexes (IC50 = 0.01–9.87 μM) exhibited higher antiproliferative activity than their free ligands (IC50 = 23.48–70.86 and >250 μM) against different types of human tumor cell lines. Among all the studied palladium(II) complexes, the [Pd(TSC3)2] (8) complex exhibited high antitumor activity on the DU145 prostate carcinoma and K562 chronic myelogenous leukemia cells, with low values of the inhibitory concentration (0.01 and 0.02 μM, resp.). PMID:24391528

  6. Synthesis, structural characterization, and pro-apoptotic activity of 1-indanone thiosemicarbazone platinum(II) and palladium(II) complexes: potential as antileukemic agents.

    PubMed

    Gómez, Natalia; Santos, Diego; Vázquez, Ramiro; Suescun, Leopoldo; Mombrú, Alvaro; Vermeulen, Monica; Finkielsztein, Liliana; Shayo, Carina; Moglioni, Albertina; Gambino, Dinorah; Davio, Carlos

    2011-08-01

    In the search for alternative chemotherapeutic strategies against leukemia, various 1-indanone thiosemicarbazones, as well as eight novel platinum(II) and palladium(II) complexes, with the formula [MCl₂(HL)] and [M(HL)(L)]Cl, derived from two 1-indanone thiosemicarbazones were synthesized and tested for antiproliferative activity against the human leukemia U937 cell line. The crystal structure of [Pt(HL1)(L1)]Cl·2MeOH, where L1=1-indanone thiosemicarbazone, was solved by X-ray diffraction. Free thiosemicarbazone ligands showed no antiproliferative effect, but the corresponding platinum(II) and palladium(II) complexes inhibited cell proliferation and induced apoptosis. Platinum(II) complexes also displayed selective apoptotic activity in U937 cells but not in peripheral blood monocytes or the human hepatocellular carcinoma HepG2 cell line used to screen for potential hepatotoxicity. Present findings show that, in U937 cells, 1-indanone thiosemicarbazones coordinated to palladium(II) were more cytotoxic than those complexed with platinum(II), although the latter were found to be more selective for leukemic cells suggesting that they are promising compounds with potential therapeutic application against hematological malignancies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Copper(II) Thiosemicarbazone Complexes and Their Proligands upon UVA Irradiation: An EPR and Spectrophotometric Steady-State Study.

    PubMed

    Hricovíni, Michal; Mazúr, Milan; Sîrbu, Angela; Palamarciuc, Oleg; Arion, Vladimir B; Brezová, Vlasta

    2018-03-21

    X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.

  8. Spectroscopic characterization, antioxidant and antitumour studies of novel bromo substituted thiosemicarbazone and its copper(II), nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Jagadeesh, M.; Lavanya, M.; Kalangi, Suresh K.; Sarala, Y.; Ramachandraiah, C.; Varada Reddy, A.

    2015-01-01

    A new, slightly distorted octahedral complex of copper(II), square planar complexes of nickel(II) and palladium(II) with 2,4‧-dibromoacetophenone thiosemicarbazone (DBAPTSC) are synthesized. The ligand and the complexes are characterized by FT-IR, FT-Raman, powder X-ray diffraction studies. The IR and Raman data are correlated for the presence of the functional groups which specifically helped in the confirmation of the compounds. In addition, the free ligand is unambiguously characterized by 1H and 13C NMR spectroscopy while the copper(II) complex is characterized by electron paramagnetic resonance spectroscopy (EPR). The g values for the same are found to be 2.246 (g1), 2.012 (g2) and 2.005 (g3) which suggested rhombic distortions. The HOMO-LUMO band gap calculations for these compounds are found to be in between 0.5 and 4.0 eV and these compounds are identified as semiconducting materials. The synthesized ligand and its copper(II), nickel(II) and palladium(II) complexes are subjected to antitumour activity against the HepG2 human hepatoblastoma cell lines. Among all the compounds, nickel(II) complex is found to exert better antitumour activity with 57.6% of cytotoxicity.

  9. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-09-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  10. Synthesis, Characterization, Electrochemical Studies, and In Vitro Antibacterial Activity of Novel Thiosemicarbazone and Its Cu(II), Ni(II), and Co(II) Complexes

    PubMed Central

    Khan, Salman A.; Asiri, Abdullah M.; Al-Amry, Khalid; Malik, Maqsood Ahmad

    2014-01-01

    Metal complexes were prepared by the reaction of thiosemicarbazone with CuCl2, NiCl2, CoCl2, Cu(OAc)2, Ni(OAc)2, and Co(OAc)2. The thiosemicarbazone coordinates to metal through the thionic sulfur and the azomethine nitrogen. The thiosemicarbazone was obtained by the thiosemicarbazide with 3-acetyl-2,5-dimethylthiophene. The identities of these compounds were elucidated by IR, 1H, 13C-NMR, and GC-MS spectroscopic methods and elemental analyses. The antibacterial activity of these compounds was first tested in vitro by the disc diffusion assay against two Gram-positive and two Gram-negative bacteria, and then the minimum inhibitory concentration (MIC) was determined by using chloramphenicol as reference drug. The results showed that compound 1.1 is better inhibitor of both types of tested bacteria as compared to chloramphenicol. PMID:24523641

  11. New heteroleptic Zn(II) complexes of thiosemicarbazone and diimine Co-Ligands: Structural analysis and their biological impacts

    NASA Astrophysics Data System (ADS)

    Mathan Kumar, Shanmugaiah; Kesavan, Mookkandi Palsamy; Vinoth Kumar, Gujuluva Gangatharan; Sankarganesh, Murugesan; Chakkaravarthi, Ganesan; Rajagopal, Gurusamy; Rajesh, Jegathalaprathaban

    2018-02-01

    A thiosemicarbazone ligand HL appended new Zn(II) complexes [Zn(L)(bpy)] (1) and [Zn(L)(phen)] (2) (where, HL = {2-(3-bromo-5-chloro-2-hydroxybenzylidene)-N-phenylhydrazinecarbothioamide}, bpy = 2, 2‧-bipyridine and phen = 1, 10-phenanthroline) have been synthesized and well characterized using conventional spectroscopic techniques viz.,1H NMR, FTIR and UV-Vis spectra. The crystal structures of complexes 1 and 2 have been determined by single crystal X-ray diffraction studies. Both the complex 1 (τ = 0.5) and 2 (τ = 0.37) possesses square based pyramidally distorted trigonal bipyramidal geometry. The ground state electronic structures of complexes 1 and 2 were investigated by DFT/B3LYP theoretical analysis using 6-311G (d,p) and LANL2DZ basis set level. The superior DNA binding ability of complex 2 has been evaluated using absorption and fluorescence spectral titration studies. Antimicrobial evaluation reveals that complex 2 endowed better screening than HL and complex 1 against both bacterial as well as fungal species. Consequently, complex 2 possesses highest antibacterial screening against Staphylococcus aureus (MIC = 3.0 ± 0.23 mM) and antifungal screening against Candida albicans (MIC = 6.0 ± 0.11 mM). Furthermore, the anticancer activity of the ligand HL, complexes 1 and 2 have been examined against the MCF-7 cell line (Human breast cancer cell line) using MTT assay. It is remarkable that complex 2 (12 ± 0.67 μM) show highest anticancer activity than HL (25.0 ± 0.91 μM) and complex 1 (15 ± 0.88 μM) due to the presence of phen ligand moiety.

  12. New potentiometric transducer based on a Mn(II) [2-formylquinoline thiosemicarbazone] complex for static and hydrodynamic assessment of azides.

    PubMed

    Kamel, Ayman H

    2015-11-01

    A new potentiometric transducer for selective recognition of azide is characterized and developed. The PVC plasticized based sensor incorporates Mn(II) [2-formylquinoline thiosemicarbazone] complex in the presence of tri dodecyl methyl ammonium chloride (TDMAC) as a lipophilic cationic additive. The sensor displayed a near-Nernstian response for azide over 1.0×10(-2)-1.0×10(-5) mol L(-1), with an anionic slope of -55.8±0.6 mV decade(-1) and lower limit of detection 0.34 µg mL(-1). The sensor was pH independent in the range 5.5-9 and presented good selectivity features towards several inorganic anions, and it is easily used in a flow injection system and compared with a tubular detector. The intrinsic characteristics of the detector in a low dispersion manifold were determined and compared with data obtained under a hydrodynamic mode of operation. This simple and inexpensive automation, with a good potentiometric detector, enabled the analysis of ~33 samples h(-1) without requiring pre-treatment procedures. The proposed method is also applied to the analysis of trace levels of azide in primer mixtures. Significantly improved accuracy, precision, response time, stability and selectivity were offered by these simple and cost-effective potentiometric sensor compared with other standard techniques. The method has the requisite accuracy, sensitivity and precision to determine azide ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Synthesis and spectral characterization of mono- and binuclear copper(II) complexes derived from 2-benzoylpyridine-N4-methyl-3-thiosemicarbazone: Crystal structure of a novel sulfur bridged copper(II) box-dimer

    NASA Astrophysics Data System (ADS)

    Jayakumar, K.; Sithambaresan, M.; Aiswarya, N.; Kurup, M. R. Prathapachandra

    2015-03-01

    Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N4-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ = 0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)sbnd I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g|| > g⊥ > 2.0023 and the g values in frozen DMF are consistent with the dx2-y2 ground state. The thermal stabilities of some of the complexes were also determined.

  14. Synthesis and spectral characterization of mono- and binuclear copper(II) complexes derived from 2-benzoylpyridine-N⁴-methyl-3-thiosemicarbazone: crystal structure of a novel sulfur bridged copper(II) box-dimer.

    PubMed

    Jayakumar, K; Sithambaresan, M; Aiswarya, N; Kurup, M R Prathapachandra

    2015-03-15

    Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N(4)-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ=0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g||>g⊥>2.0023 and the g values in frozen DMF are consistent with the d(x2-y2) ground state. The thermal stabilities of some of the complexes were also determined. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. p-halo N4-phenyl substituted thiosemicarbazones: Crystal structure, supramolecular architecture, characterization and bio-assay of their Co(III) and Ni(II) complexes

    NASA Astrophysics Data System (ADS)

    Kotian, Avinash; Kumara, Karthik; Kamat, Vinayak; Naik, Krishna; Kokare, Dhoolesh G.; Nevrekar, Anupama; Lokanath, Neratur Krishnappagowda; Revankar, Vidyanand K.

    2018-03-01

    In the present work, three potential metal ion chelating ligands, p-halo N4-phenyl substituted thiosemicarbazones are synthesized and characterized. The molecular structure of all (E)-4-(4-halophenyl)-1-(3-hydroxyiminobutan-2-ylidene) thiosemicarbazones (halo = F/Cl/Br) are determined by single crystal X-ray diffraction method. All the molecules have crystallized in monoclinic crystal system with P21/n space group. The ligands show Csbnd H⋯S and Nsbnd H⋯S intermolecular interactions, which are responsible to form the supramolecular self-assemblies through R22(8), R22(12) and R22(14) ring motifs. Hirshfeld surface analysis is carried out to explore the intermolecular interactions. A series of Co(III) and Ni(II) mononuclear transition metal complexes derived from these ligands have been synthesized and characterized by various spectro-analytical methods. The metal to ligand stoichiometry has been found to be 1:2 in all the complexes. The synthesized compounds have been investigated for their in vitro antimicrobial potencies. The compounds are found to be more active than the standard used, in the case of E. coli and A. niger. Additionally, they are also screened for their in vitro antitubercular activity.

  16. Nickel(II) Complex of Polyhydroxybenzaldehyde N4-Thiosemicarbazone Exhibits Anti-Inflammatory Activity by Inhibiting NF-κB Transactivation

    PubMed Central

    Loh, Sheng Wei; Looi, Chung Yeng; Hassandarvish, Pouya; Phan, Alicia Yi Ling; Wong, Won Fen; Wang, Hao; Paterson, Ian C.; Ea, Chee Kwee; Mustafa, Mohd Rais; Maah, Mohd Jamil

    2014-01-01

    Background The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity. Methodology/Principal Findings Four ligands (1–4) and their respective nickel-containing complexes (5–8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis. Conclusions/Significance Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects. PMID:24977407

  17. Halo-substituted thiosemicarbazones and their copper(II), nickel(II) complexes: Detailed spectroscopic characterization and study of antitumour activity against HepG2 human hepatoblastoma cells

    NASA Astrophysics Data System (ADS)

    Jagadeesh, M.; Kalangi, Suresh K.; Sivarama Krishna, L.; Reddy, A. Varada

    2014-01-01

    Copper(II) and nickel(II) complexes of two different halogen substituted thiosemicarbazone ligands were synthesized. The ligands 3,4-difluoroacetophenone thiosemicarbazone (1) and 2-bromo-4'-chloroacetophenone thiosemicarbazone (2) were characterized and confirmed spectroscopically by FT-IR, FT-Raman, UV-vis and fluorescence spectral analysis, while the respective copper(II) complexes [Cu(C9H9N3F2S)2Cl2] (1a), [Cu(C9H9N3ClBrS)2Cl2] (2a) and nickel(II) complexes [Ni(C9H9N3F2S)2] (1b), [Ni(C9H9N3ClBrS)2] (2b) were characterized by FT-IR, UV-vis and electron paramagnetic spectroscopy (EPR). The EPR spectra of the Cu(II) complexes provided the rhombic octahedral and axial symmetry of the complexes 1a and 2a respectively. For the complex 1a, the g values calculated as g1 = 2.1228, g2 = 2.0706 and g3 = 2.001 between 2900 and 3300 G. While for the complex 2a, a set of two resonance absorptions were observed. The synthesized compounds were tested for antitumor activity and showed that the ability to kill liver cancer cells significantly. Out of all the synthesized compounds, copper(II) complexes 1a and 2a showed high cytotoxic effect on liver cancer cells with 67.51% and 42.77% of cytotoxicity respectively at 100 μM.

  18. Synthesis, characterization, and anticancer activity of a series of ketone-N(4)-substituted thiosemicarbazones and their ruthenium(II) arene complexes.

    PubMed

    Su, Wei; Qian, Quanquan; Li, Peiyuan; Lei, Xiaolin; Xiao, Qi; Huang, Shan; Huang, Chusheng; Cui, Jianguo

    2013-11-04

    A series of ketone-N(4)-substituted thiosemicarbazone (TSC) compounds (L1-L9) and their corresponding [(η(6)-p-cymene)Ru(II)(TSC)Cl](+/0) complexes (1-9) were synthesized and characterized by NMR, IR, elemental analysis, and HR-ESI-mass spectrometry. The molecular structures of L4, L9, 1-6, and 9 were determined by single-crystal X-ray diffraction analysis. The compounds were further evaluated for their in vitro antiproliferative activities against the SGC-7901 human gastric cancer, BEL-7404 human liver cancer, and HEK-293T noncancerous cell lines. Furthermore, the interactions of the compounds with DNA were followed by electrophoretic mobility spectrometry studies.

  19. DNA binding, antioxidant, cytotoxicity (MTT, lactate dehydrogenase, NO), and cellular uptake studies of structurally different nickel(II) thiosemicarbazone complexes: synthesis, spectroscopy, electrochemistry, and X-ray crystallography.

    PubMed

    Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K

    2013-02-01

    Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion.

  20. Synthesis, structural, optical band gap and biological studies on iron (III), nickel (II), zinc (II) and mercury (II) complexes of benzyl α-monoxime pyridyl thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Bedier, R. A.; Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.

    2017-07-01

    New ligand, (E)-2-((E)-2-(hydroxyimino)-1,2-diphenylethylidene)-N-(pyridin-2 yl) hydrazinecarbothioamide (H2DPPT) and its complexes [Fe(DPPT)Cl(H2O)], [Ni(H2DPPT)2Cl2], [Zn(HDPPT)(OAc)] and [Hg(HDPPT)Cl](H2O)4 were isolated and characterized by various of physico-chemical techniques. IR spectra show that H2DPPT coordinates to the metal ions as neutral NN bidentate, mononegative NNS tridentate and binegative NNSN tetradentate, respectively. From the modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligands and their investigated complexes. The thermal studies showed the type of water molecules involved in metal complexes Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) has been calculated to elucidate the conductivity of the isolated complexes. The optical transition energy (Eg) is direct and equals 3.34 and 3.44 ev for Ni and Fe complexes, respectively. The ligand and their metal complexes were screened for antibacterial activity against the following bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results revealed that the metal complexes have more potent antibacterial compared with the ligand. Also, the degradation effect of the investigated compounds was tested showing that, Ni complex exhibited powerful and complete degradation effect on DNA.

  1. Synthesis and spectral studies of platinum metal complexes of benzoin thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Offiong, Offiong E.

    1994-11-01

    The platinum metal chelates of benzoin thiosemicarbazone obtained with Ru(III), Rh(III), Ir(III), Pd(II) and Pt(II) were prepared from their corresponding halide salts. The complexes were characterized by elemental analysis, conductance measurement, IR, Raman, 1H-NMR, 13C-NMR and UV-visible spectra studies. Various ligand field parameters and nephelauxetic parameters were also calculated. The mode of bonding and the geometry of the ligand environment around the metal ion have been discussed in the light of the available data obtained. Complexes of Ru(III), Rh(III) and Ir(III) are six-coordinate octahedral, while Pd(II) and Pt(II) halide complexes are four-coordinated with halides bridging.

  2. Antineoplastic and cytogenetic effects of complexes of Pd (II) with 4N-substituted derivatives of 2-acetyl-pyridine-thiosemicarbazone.

    PubMed

    Papageorgiou, A; Iakovidou, Z; Mourelatos, D; Mioglou, E; Boutis, L; Kotsis, A; Kovala-Demertzi, D; Domopoulou, A; West, D X; Dermetzis, M A

    1997-01-01

    The effect of novel Pd(II) complexes with derivatives of 2-acetyl-pyridinethisemicarbazone, N4-ethyl (HAc4Et) and 3-hexamethyleneiminylthiosemicarbazone (HAchexim), on Sister Chromatid Exchange (SCE) rates and human lymphocyte proliferation kinetics was studied. Also, the effect of Pd(II) complexes on DNA synthesis of P388 and L1210 cell cultures and against Leukemia P388 was investigated. Among these compounds, the compound Bis(3-hexamethyleneiminyl-2-acetylpyridine-thisemicarbazonato++ +) palladium (II) was found to be distinctly effective against Leukemia P388, in inhibiting incorporation of 3H-thymidine into DNA and in inducing SCEs and cell division delays.

  3. Synthesis and spectroscopic characterization of 3,4-difluoroacetophenone-thiosemicarbazone and its palladium(II) complex: Evaluation of antimicrobial and antitumour activity

    NASA Astrophysics Data System (ADS)

    Jagadeesh, M.; Rashmi, H. K.; Subba Rao, Y.; Sreenath Reddy, A.; Prathima, B.; Uma Maheswari Devi, P.; Reddy, A. Varada

    2013-11-01

    A new cis-palladium(II)diaqua(3,4-difluoroacetophenonethiosemicarbazone complex (Pd(II) complex) is synthesized using 3,4-difluoroacetophenonethiosemicarbazone(L). The L and its Pd(II) complex are characterized and confirmed by elemental analyses, electrochemical analyses, FT-IR, FT-Raman, UV-Vis, HRMS and LC-MS techniques. Ligand L is further characterized by 1H, 13C and 19F NMR spectroscopy. The crystal structure of L is unambiguously characterized by single X-ray crystallography. The ligand (L) belongs to monoclinic system with P2(1)/C space group and the unit cell parameters are a(Å) = 9.1144(7), b(Å) = 13.7928(7), c(Å) = 8.4174(5), α(°) = 90, β(°) = 100.715, γ(°) = 90 and volume V(A3) = 1039.73(11). The Raman bands observed for the L and its Pd(II) complex are in good agreement with the FT-IR spectral data. The Pd(II) complex is found to be highly efficient in inhibiting the growth of human pathogens like Salmonella typhimurium and Klebsiella pneumonia with MIC value 10.0 μg/mL whose inhibition zones are almost comparable with the standard antibiotic. The synthesized compounds have shown antiproliferative activity against the human breast cancer cell lines MDA-MB231 by intermitting the regular pathway of ribonucleotidereductase.

  4. Binuclear ruthenium(III) bis(thiosemicarbazone) complexes: Synthesis, spectral, electrochemical studies and catalytic oxidation of alcohol

    NASA Astrophysics Data System (ADS)

    Mohamed Subarkhan, M.; Ramesh, R.

    2015-03-01

    A new series of binuclear ruthenium(III) thiosemicarbazone complexes of general formula [(EPh3)2(X)2Ru-L-Ru(X)2(EPh3)2] (where E = P or As; X = Cl or Br; L = NS chelating bis(thiosemicarbazone ligands) has been synthesized and characterized by analytical and spectral (FT-IR, UV-Vis and EPR). IR spectra show that the thiosemicarbazones behave as monoanionic bidentate ligands coordinating through the azomethine nitrogen and thiolate sulphur. The electronic spectra of the complexes indicate that the presence of d-d and intense LMCT transitions in the visible region. The complexes are paramagnetic (low spin d5) in nature and all the complexes show rhombic distortion around the ruthenium ion with three different 'g' values (gx ≠ gy ≠ gz) at 77 K. All the complexes are redox active and exhibit an irreversible metal centered redox processes (RuIII-RuIII/RuIV-RuIV; RuIII-RuIII/RuII-RuII) within the potential range of 0.38-0.86 V and -0.39 to -0.66 V respectively, versus Ag/AgCl. Further, the catalytic efficiency of one of the complexes [Ru2Cl2(AsPh3)4(L1)] (4) has been investigated in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide(NMO) as co-oxidant. The formation of high valent RuVdbnd O species is proposed as catalytic intermediate for the catalytic cycle.

  5. Interaction of Triapine and related thiosemicarbazones with iron(III)/(II) and gallium(III): a comparative solution equilibrium study†

    PubMed Central

    Enyedy, Éva A.; Primik, Michael F.; Kowol, Christian R.; Arion, Vladimir B.; Kiss, Tamás; Keppler, Bernhard K.

    2012-01-01

    Stoichiometry and stability of GaIII, FeIII, FeII complexes of Triapine and five related α-N heterocyclic thiosemicarbazones with potential antitumor activity have been determined by pH-potentiometry, UV-vis spectrophotometry, 1H NMR spectroscopy, and spectrofluorimetry in aqueous solution (with 30% DMSO), together with the characterization of the proton dissociation processes. Additionally, the redox properties of the iron complexes were studied by cyclic voltammetry at various pH values. Formation of high stability bis-ligand complexes was found in all cases, which are predominant at physiological pH with FeIII/FeII, whilst only at the acidic pH range with GaIII. The results show that among the thiosemicarbazones with various substituents the N-terminal dimethylation does not exert a measurable effect on the redox potential, but has the highest impact on the stability of the complexes as well as the cytotoxicity, especially in the absence of a pyridine-NH2 group in the molecule. In addition the fluorescence properties of the ligands in aqueous solution and their changes caused by GaIII were studied. PMID:21523301

  6. Versatile chelating behavior of benzil bis(thiosemicarbazone) in zinc, cadmium, and nickel complexes.

    PubMed

    López-Torres, Elena; Mendiola, Ma Antonia; Pastor, César J; Pérez, Beatriz Souto

    2004-08-23

    Reactions of benzil bis(thiosemicarbazone), LH(6), with M(NO(3))(2).nH(2)O (M = Zn, Cd, and Ni), in the presence of LiOH.H(2)O, show the versatile behavior of this molecule. The structure of the ligand, with the thiosemicarbazone moieties on opposite sides of the carbon backbone, changes to form complexes by acting as a chelating molecule. Complexes of these metal ions with empirical formula [MLH(4)] were obtained, although they show different molecular structures depending on their coordinating preferences. The zinc complex is the first example of a crystalline coordination polymer in which a bis(thiosemicarbazone) acts as bridging ligand, through a nitrogen atom, giving a 1D polymeric structure. The coordination sphere is formed by the imine nitrogen and sulfur atoms, and the remaining position, in a square-based pyramid, is occupied by an amine group of another ligand. The cadmium derivative shows the same geometry around the metal ion but consists of a dinuclear structure with sulfur atoms acting as a bridge between the metal ions. However, in the nickel complex LH(6) acts as a N(2)S(2) ligand yielding a planar structure for the nickel atom. The ligand and its complexes have been characterized by X-ray crystallography, microanalysis, mass spectrometry, IR, (1)H, and (13)C NMR spectroscopies and for the cadmium complex by (113)Cd NMR in solution and in the solid state.

  7. Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): A combined experimental and theoretical study

    PubMed Central

    Popović-Bijelić, Ana; Kowol, Christian R.; Lind, Maria E.S.; Luo, Jinghui; Himo, Fahmi; Enyedy, Éva A.; Arion, Vladimir B.; Gräslund, Astrid

    2012-01-01

    Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is currently the most promising chemotherapeutic compound among the class of α-N-heterocyclic thiosemicarbazones. Here we report further insights into the mechanism(s) of anticancer drug activity and inhibition of mouse ribonucleotide reductase (RNR) by Triapine. In addition to the metal-free ligand, its iron(III), gallium(III), zinc(II) and copper (II) complexes were studied, aiming to correlate their cytotoxic activities with their effects on the diferric/tyrosyl radical center of the RNR enzyme in vitro. In this study we propose for the first time a potential specific binding pocket for Triapine on the surface of the mouse R2 RNR protein. In our mechanistic model, interaction with Triapine results in the labilization of the diferric center in the R2 protein. Subsequently the Triapine molecules act as iron chelators. In the absence of external reductants, and in presence of the mouse R2 RNR protein, catalytic amounts of the iron(III)–Triapine are reduced to the iron(II)–Triapine complex. In the presence of an external reductant (dithiothreitol), stoichiometric amounts of the potently reactive iron (II)–Triapine complex are formed. Formation of the iron(II)–Triapine complex, as the essential part of the reaction outcome, promotes further reactions with molecular oxygen, which give rise to reactive oxygen species (ROS) and thereby damage the RNR enzyme. Triapine affects the diferric center of the mouse R2 protein and, unlike hydroxyurea, is not a potent reductant, not likely to act directly on the tyrosyl radical. PMID:21955844

  8. Structural, spectral analysis and DNA studies of heterocyclic thiosemicarbazone ligand and its Cr(III), Fe(III), Co(II) Hg(II), and U(VI) complexes

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; El Morshedy, R. M.

    2013-08-01

    The paper presents a combined experimental and computational study of novel Cr(III), Fe(III), Co(II), Hg(II) and U(VI) complexes of (E)-2-((3-hydroxynaphthalen-2-yl)methylene)-N-(pyridin-2-yl)hydrazinecarbothioamide (H2L). The ligand and its complexes have been characterized by elemental analyses, spectral (IR, UV-vis, 1H NMR and 13C NMR), magnetic and thermal studies. IR spectra show that H2L is coordinated to the metal ions in a mononegative bi or tri manner. The structures are suggested to be octahedral for all complexes except Hg(II) complex is tetrahedral. Theoretical calculations have been performed to obtain IR spectra of ligand and its complexes using AM1, MM, Zindo/1, MM+ and PM3, methods. Satisfactory theoretical-experimental agreements were achieved by MM method for the ligand and PM3 for its complexes. DOS calculations carried out by MM (ADF) method for ligand Hg complex from which we concluded that the thiol form of the ligand is more active than thione form and this explains that the most complexation take place in that form. The calculated IR vibrations of the metal complexes, using the PM3 method was the nearest method for the experimental data, and it could be used for all complexes. Also, valuable information are obtained from calculation of molecular parameters for all compounds carried out by the previous methods of calculation (electronegativity of the coordination sites, net dipole moment of the metal complexes, values of heat of formation and binding energy) which approved that the complexes are more stable than ligand. The low value of ΔE could be expected to indicate H2L molecule has high inclination to bind with the metal ions. Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Finally, the biochemical studies showed that, complex 2, 4 have powerful and complete degradation effect on DNA. For the foremost majority of cases the

  9. Vanadium(IV/V) complexes of Triapine and related thiosemicarbazones: Synthesis, solution equilibrium and bioactivity.

    PubMed

    Kowol, Christian R; Nagy, Nóra V; Jakusch, Tamás; Roller, Alexander; Heffeter, Petra; Keppler, Bernhard K; Enyedy, Éva A

    2015-11-01

    The stoichiometry and thermodynamic stability of vanadium(IV/V) complexes of Triapine and two related α(N)-heterocyclic thiosemicarbazones (TSCs) with potential antitumor activity have been determined by pH-potentiometry, EPR and (51)V NMR spectroscopy in 30% (w/w) dimethyl sulfoxide/water solvent mixtures. In all cases, mono-ligand complexes in different protonation states were identified. Dimethylation of the terminal amino group resulted in the formation of vanadium(IV/V) complexes with considerably higher stability. Three of the most stable complexes were also synthesized in solid state and comprehensively characterized. The biological evaluation of the synthesized vanadium complexes in comparison to the metal-free ligands in different human cancer cell lines revealed only minimal influence of the metal ion. Thus, in addition the coordination ability of salicylaldehyde thiosemicarbazone (STSC) to vanadium(IV/V) ions was investigated. The exchange of the pyridine nitrogen of the α(N)-heterocyclic TSCs to a phenolate oxygen in STSC significantly increased the stability of the complexes in solution. Finally, this also resulted in increased cytotoxicity activity of a vanadium(V) complex of STSC compared to the metal-free ligand. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Mononuclear ruthenium(III) complexes containing chelating thiosemicarbazones: Synthesis, characterization and catalytic property

    NASA Astrophysics Data System (ADS)

    Raja, N.; Ramesh, R.

    2010-02-01

    Mononuclear ruthenium(III) complexes of the type [RuX(EPh 3) 2(L)] (E = P or As; X = Cl or Br; L = dibasic terdentate dehydroacetic acid thiosemicarbazones) have been synthesized from the reaction of thiosemicarbazone ligands with ruthenium(III) precursors, [RuX 3(EPh 3) 3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr 3(PPh 3) 2(CH 3OH)] in benzene. The compositions of the complexes have been established by elemental analysis, magnetic susceptibility measurement, FT-IR, UV-vis and EPR spectral data. These complexes are paramagnetic and show intense d-d and charge transfer transitions in dichloromethane. The complexes show rhombic EPR spectra at LNT which are typical of low-spin distorted octahedral ruthenium(III) species. All the complexes are redox active and display an irreversible metal centered redox processes. Complex [RuCl(PPh 3) 2(DHA-PTSC)] ( 5) was used as catalyst for transfer hydrogenation of ketones in the presence of isopropanol/KOH and was found to be the active species.

  11. Synthesis, characterization and binding affinities of rhenium(I) thiosemicarbazone complexes for the estrogen receptor (α/β).

    PubMed

    Núñez-Montenegro, Ara; Carballo, Rosa; Vázquez-López, Ezequiel M

    2014-11-01

    The binding affinities towards estrogen receptors (ERs) α and β of a set of thiosemicarbazone ligands (HL(n)) and their rhenium(I) carbonyl complexes [ReX(HL(n))(CO)3] (X=Cl, Br) were determined by a competitive standard radiometric assay with [(3)H]-estradiol. The ability of the coordinated thiosemicarbazone ligands to undergo deprotonation and the lability of the ReX bond were used as a synthetic strategy to obtain [Re(hpy)(L(n))(CO)3] (hpy=3- or 4-hydroxypyridine). The inclusion of the additional hpy ligand endows the new thiosemicarbazonate complexes with an improved affinity towards the estrogen receptors and, consequently, the values of the inhibition constant (Ki) could be determined for some of them. In general, the values of Ki for both ER subtypes suggest an appreciable selectivity towards ERα. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. 2,6-diacetylpyridine bis(thiosemicarbazones) zinc complexes: synthesis, structure, and biological activity.

    PubMed

    Rodriguez-Argüelles, M C; Belicchi Ferrari, M; Gasparri Fava, G; Pelizzi, C; Tarasconi, P; Albertini, R; Dall'Aglio, P P; Lunghi, P; Pinelli, S

    1995-05-15

    The reaction of zinc chloride, acetate, or perchlorate with two bis(thiosemicarbazones) of 2,6-diacetylpyridine [H2daptsc = 2,6-diacetylpyridine bis(thiosemicarbazone) and H2dapipt = 2,6-diacetylpyridine bis(hydrazinopyruvoylthiosemicarbazone)] leads to the formation of four novel complexes that have been characterized by spectroscopic studies (NMR, IR) and biological properties. The crystal structures of the two compounds--[Zn(daptsc)]2.2DMF (1) and [Zn(H2dapipt)(OH2)2](CIO4)2.3H2O (2)--also have been determined by x-ray methods from diffractometer data. Compound (1) is dimeric and the two zinc atoms have a distorted octahedral coordination. The ligand is deprotonated. In compound (2), the coordination geometry about zinc is pentagonal--bipyramidal and the ligand is in the neutral form. The molecular structure of (2) consists of cations [Zn(H2dapipt)(OH2)]2+, CIO4- disordered anions, and three water molecules of solvation. Biological studies have shown that the ligands and the complexes Zn(daptsc).1/2EtOH and Zn(H2daptsc)Cl2 have an effect in vitro on cell proliferation and differentiation (inhibition); both are concentration dependent. [Zn(daptsc)]2.2DMF (1) shows the effects at lower concentration values with respect to other compounds.

  13. Gold(III) complexes with ONS-Tridentate thiosemicarbazones: Toward selective trypanocidal drugs.

    PubMed

    Rettondin, Andressa R; Carneiro, Zumira A; Gonçalves, Ana C R; Ferreira, Vanessa F; Oliveira, Carolina G; Lima, Angélica N; Oliveira, Ronaldo J; de Albuquerque, Sérgio; Deflon, Victor M; Maia, Pedro I S

    2016-09-14

    Tridentate thiosemicarbazone ligands with an ONS donor set, H2L(R) (R = Me and Et) were prepared by reactions of 1-phenyl-1,3-butanedione with 4-R-3-thiosemicarbazides. H2L(R) reacts with Na[AuCl4]·2H2O in MeOH in a 1:1 M ratio under formation of green gold(III) complexes of composition [AuCl(L(R))]. These compounds represent the first examples of gold(III) complexes with ONS chelate-bonded thiosemicarbazones. The in vitro anti-Trypanosoma cruzi activity against both trypomastigote and amastigote forms (IC50try/ama) of CL Brener strains as well as the cytotoxicity against LLC-MK2 cells of the free ligands and complexes was evaluated. The complex [AuCl(L(Me))] was found to be more active and more selective than its precursor ligand and the standard drug benznidazole with a SItry/ama value higher than 200, being considered as a lead candidate for Chagas disease treatment. Moreover the in vitro activity against the replicative amastigote form (IC50ama) of T. cruzi was additionally investigated revealing that [AuCl(L(Me))] was also more potent than benznidazole still with a similar selectivity index. Finally, docking studies showed that free ligands and complexes interact with the same residues of the parasite protease cruzain but with different intensities, suggesting that this protease could be a possible target for the trypanocidal action of the obtained compounds. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Acenaphthenequinone thiosemicarbazone and its transition metal complexes: synthesis, structure, and biological activity.

    PubMed

    Rodriguez-Argüelles, M C; Belicchi Ferrari, M; Gasparri Fava, G; Pelizzi, C; Pelosi, G; Albertini, R; Bonati, A; Dall'Aglio, P P; Lunghi, P; Pinelli, S

    1997-04-01

    The reaction of iron, nickel, copper, and zinc chlorides or acetates with acenaphthenequinone thiosemicarbazone, Haqtsc leads to the formation of novel complexes that have been characterized by spectroscopic studies (NMR, IR) and biological properties. The crystal structures of the free ligand Haqtsc 1 and of the compound [Ni(aqtsc)2].DMF 2, have also been determined by X-ray methods from diffractometer data. In 1, the conformation of the two nonequivalent molecules is governed by intramolecular hydrogen bonds, while an intermolecular hydrogen bond is responsible for dimer-like groups formation. In 2, the coordination geometry about nickel is distorted octahedral, and the two ligand molecules are terdentate monodeprotonated. Biological studies have shown that, for the first time at least up the used doses, a free ligand is active both in the inhibition of cell proliferation and in the induced differentiation on Friend erythroleukemia cells (FLC).

  15. Preparation and Biodistribution Studies of a Radiogallium-Acetylacetonate Bis (Thiosemicarbazone) Complex in Tumor-Bearing Rodents

    PubMed Central

    Jalilian, Amir Reza; Yousefnia, Hassan; Shafaii, Kamaleddin; Novinrouz, Aytak; Rajamand, Amir Abbas

    2012-01-01

    Various radiometal complexes have been developed for tumor imaging, especially Ga-68 tracer. In the present study, the development of a radiogallium bis-thiosemicarbazone complex has been reported. [67Ga] acetylacetonate bis(thiosemicarbazone) complex ([67Ga] AATS) was prepared starting [67Ga]Gallium acetate and freshly prepared acetylacetonate bis (thiosemicarbazone) (AATS) in 30 min at 90°C. The partition co-efficient and the stability of the tracer were determined in final solution (25°C) and the presence of human serum (37°C) up to 24 h. The biodistribution of the labeled compound in wild-type and fibrosarcoma-bearing rodents were determined up to 72 h. The radiolabled Ga complex was prepared in high radiochemical purity (> 97%, HPLC) followed by initial biodistribution data with the significant tumor accumulation of the tracer in 2 h which is far higher than free Ga-67 cation while the compound wash-out is significantly faster. Above-mentioned pharmacokinetic properties suggest an interesting radiogallium complex while prepared by the PET Ga radioisotope, 68Ga, in accordance with the physical half life, for use in fibrosarcoma tumors, and possibly other malignancies. PMID:24250475

  16. Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia.

    PubMed

    Basha, Maram T; Rodríguez, Carlos; Richardson, Des R; Martínez, Manuel; Bernhardt, Paul V

    2014-03-01

    The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study.

  17. Copper complexes containing thiosemicarbazones derived from 6-nitropiperonal: Antimicrobial and biophysical properties

    NASA Astrophysics Data System (ADS)

    Beckford, Floyd A.; Webb, Kelsey R.

    2017-08-01

    A series of four thiosemicarbazones from 6-nitropiperonal along with the corresponding copper complexes were synthesized. The biophysical characteristics of the complexes were investigated by the binding to DNA and human serum albumin. The binding to DNA is moderate; the binding constants run from (0.49-7.50) × 104 M- 1. In relation to HSA, the complexes interact strongly with binding constants on the order of 105 M- 1. The complexes also display antioxidant behavior as determined by the ability to scavenge diphenylpicrylhydrazyl (dpph) and nitric oxide radicals. The antimicrobial profiles of the compounds, tested against a panel of microbes including five of the ESKAPE pathogens (Staphylococcus aureus, MRSA, Escherichia coli, Klebsiella pneumoniae, MDR, Acinetobacter baumannii, Pseudomonas aeruginosa) and two yeasts (Candida albicans and Cryptococcus neoformans var. grubii), are also described. The compounds contain a core moiety that is similar to oxolinic acid, a quinolone antibiotic that targets DNA gyrase and topoisomerase (IV). The binding interaction between the complexes and these important antibacterial targets were studied by computational methods, chiefly docking studies. The calculated dissociation constants for the interaction with DNA gyrase B (from Staphylococcus aureus) range from 4.32 to 24.65 μM; the binding was much stronger to topoisomerase IV, with dissociation constants ranging from 0.37 to 1.27 μM.

  18. Synthesis, antiproliferative activity and mechanism of gallium(III)-thiosemicarbazone complexes as potential anti-breast cancer agents.

    PubMed

    Qi, Jinxu; Yao, Qian; Qian, Kun; Tian, Liang; Cheng, Zhen; Yang, Dongmei; Wang, Yihong

    2018-05-14

    Five thiosemicarbazone ligands were synthesized and characterized by condensation with different aldehydes or ketones by 4-phenylthiosemicarbazone. The representative dichlorido[2-(Di-2-pyridinylmethylene)-Nphenylhydrazinecarbothioamide-N,N,S]-gallium(III) (Ga4) was characterized by X-ray single crystal diffraction, which was 1:1 ligand/Ga(III) complexes. The structure-activity relationship of these ligands and Ga (III) complexes have been investigated, and the results demonstrate that the formation of Ga (III) complexes have significant antiproliferative activity over the corresponding ligands. The anticancer mechanism of gallium (III) complexes has been studied in detail, which is typical agents that effect on the mitochondrial apoptotic pathway. The ability of gallium (III) complexes to inhibit the cell cycle does not enhanced with the increasing concentrations, whereas the ability to promote apoptosis is concentration-dependent. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Microwave gallium-68 radiochemistry for kinetically stable bis(thiosemicarbazone) complexes: structural investigations and cellular uptake under hypoxia.

    PubMed

    Alam, Israt S; Arrowsmith, Rory L; Cortezon-Tamarit, Fernando; Twyman, Frazer; Kociok-Köhn, Gabriele; Botchway, Stanley W; Dilworth, Jonathan R; Carroll, Laurence; Aboagye, Eric O; Pascu, Sofia I

    2016-01-07

    We report the microwave synthesis of several bis(thiosemicarbazones) and the rapid gallium-68 incorporation to give the corresponding metal complexes. These proved kinetically stable under 'cold' and 'hot' biological assays and were investigated using laser scanning confocal microscopy, flow cytometry and radioactive cell retention studies under normoxia and hypoxia. (68)Ga complex retention was found to be 34% higher in hypoxic cells than in normoxic cells over 30 min, further increasing to 53% at 120 min. Our data suggests that this class of gallium complexes show hypoxia selectivity suitable for imaging in living cells and in vivo tests by microPET in nude athymic mice showed that they are excreted within 1 h of their administration.

  20. Highly potent anti-proliferative effects of a gallium(III) complex with 7-chloroquinoline thiosemicarbazone as a ligand: synthesis, cytotoxic and antimalarial evaluation.

    PubMed

    Kumar, Kewal; Schniper, Sarah; González-Sarrías, Antonio; Holder, Alvin A; Sanders, Natalie; Sullivan, David; Jarrett, William L; Davis, Krystyn; Bai, Fengwei; Seeram, Navindra P; Kumar, Vipan

    2014-10-30

    A gallium(III) complex with 7-chloroquinoline thiosemicarbazone was synthesized and characterized. The complex proved to be thirty-one times more potent on colon cancer cell line, HCT-116, with considerably less cytotoxicity on non-cancerous colon fibroblast, CCD-18Co, when compared to etoposide. Its anti-malarial potential on 3D7 isolate of Plasmodium falciparum was better than lumefantrine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Structure-activity relationships of mononuclear metal-thiosemicarbazone complexes endowed with potent antiplasmodial and antiamoebic activities.

    PubMed

    Bahl, Deepa; Athar, Fareeda; Soares, Milena Botelho Pereira; de Sá, Matheus Santos; Moreira, Diogo Rodrigo Magalhães; Srivastava, Rajendra Mohan; Leite, Ana Cristina Lima; Azam, Amir

    2010-09-15

    A useful concept for the rational design of antiparasitic drug candidates is the complexation of bioactive ligands with transition metals. In view of this, an investigation was conducted into a new set of metal complexes as potential antiplasmodium and antiamoebic agents, in order to examine the importance of metallic atoms, as well as the kind of sphere of co-ordination, in these biological properties. Four functionalized furyl-thiosemicarbazones (NT1-4) treated with divalent metals (Cu, Co, Pt, and Pd) to form the mononuclear metallic complexes of formula [M(L)2Cl2] or [M(L)Cl2] were examined. The pharmacological characterization, including assays against Plasmodium falciparum and Entamoeba histolytica, cytotoxicity to mammalian cells, and interaction with pBR 322 plasmid DNA was performed. Structure-activity relationship data revealed that the metallic complexation plays an essential role in antiprotozoal activity, rather than the simple presence of the ligand or metal alone. Important steps towards identification of novel antiplasmodium (NT1Cu, IC50 of 4.6 microM) and antiamoebic (NT2Pd, IC50 of 0.6 microM) drug prototypes were achieved. Of particular relevance to this work, these prototypes were able to reduce the proliferation of these parasites at concentrations that are not cytotoxic to mammalian cells. Copyright (c) 2010. Published by Elsevier Ltd.

  2. Investigation into 64Cu-labeled Bis(selenosemicarbazone) and Bis(thiosemicarbazone) complexes as hypoxia imaging agents.

    PubMed

    McQuade, Paul; Martin, Katherine E; Castle, Thomas C; Went, Michael J; Blower, Philip J; Welch, Michael J; Lewis, Jason S

    2005-02-01

    Cu-diacetyl-bis(N4-methylthiosemicarbazone) [Cu-ATSM], although excellent for oncology applications, may not be suitable for delineating cardiovascular or neurological hypoxia. For this reason, new Cu hypoxia positron emission tomography (PET) imaging agents are being examined to search for a higher selectivity for hypoxic or ischemic tissue at higher oxygen concentrations found in these tissues. Two approaches are to increase alkylation or to replace the sulfur atoms with selenium, resulting in the formation of selenosemicarbazones. Three 64Cu-labeled selenosemicarbazone complexes were synthesized and one was screened for hypoxia selectivity in vitro using EMT-6 mouse mammary carcinoma cells. Rodent biodistribution and small animal PET images were obtained from BALB/c mice implanted with EMT-6 tumors. One alkylated thiosemicarbazone was synthesized and examined. Of the three bis(selenosemicarbazone) ligands synthesized and examined, only 64Cu-diacetyl-bis(selenosemicarbazone) [64Cu-ASSM] was isolated in high-enough radiochemical purity to undertake cell uptake experiments where uptake was shown to be independent of oxygen concentration. The bis(thiosemicarbazone) complex synthesized, 64Cu-diacetyl-bis(N4-ethylthiosemicarbazone) [64Cu-ATSE], showed hypoxia selectivity similar to 64Cu-ATSM although at a higher oxygen concentration. Biodistribution studies for 64Cu-ASSM and 64Cu-ATSE showed high tumor uptake at 20 min (64Cu-ASSM, 10.33+/-0.78% ID/g; 64Cu-ATSE, 7.71+/-0.46% ID/g). PET images of EMT-6 tumor-bearing mice visualized the tumor with 64Cu-ATSE and revealed hypoxia selectivity consistent with the in vitro data. Of the compounds synthesized, only 64Cu-ASSM and 64Cu-ATSE could be examined in vitro and in vivo. Although the stability of bis(selenosemicarbazone) complexes increased upon addition of methyl groups to the diimine backbone, the fully alkylated species, 64Cu-ASSM, demonstrated no hypoxia selectivity. However, the additional alkylation present in Cu

  3. Synthesis and Cytotoxic Evaluation of Steroidal Copper (Cu (II)) Complexes

    PubMed Central

    Huang, Yanmin; Kong, Erbin; Zhan, Junyan; Chen, Shuang; Gan, Chunfang; Liu, Zhiping; Pang, Liping

    2017-01-01

    Using estrone and pregnenolone as starting materials, some steroidal copper complexes were synthesized by the condensation of steroidal ketones with thiosemicarbazide or diazanyl pyridine and then complexation of steroidal thiosemicarbazones or steroidal diazanyl pyridines with Cu (II). The complexes were characterized by IR, NMR, and HRMS. The synthesized compounds were screened for their cytotoxicity against HeLa, Bel-7404, and 293T cell lines in vitro. The results show that all steroidal copper (II) complexes display obvious antiproliferative activity against the tested cancer cells. The IC50 values of complexes 5 and 12 against Bel-7404 (human liver carcinoma) are 5.0 and 7.0 μM. PMID:29180937

  4. Metal complexes of 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone: cytotoxic activity and investigation on the mode of action of the gold(III) complex.

    PubMed

    Sâmia, Luciana B P; Parrilha, Gabrieli L; Da Silva, Jeferson G; Ramos, Jonas P; Souza-Fagundes, Elaine M; Castelli, Silvia; Vutey, Venn; Desideri, Alessandro; Beraldo, Heloisa

    2016-06-01

    Complexes [Au(PyCT4BrPh)Cl]Cl (1), [Pt(PyCT4BrPh)Cl]0.5KCl (2), and [Pd(PyCT4BrPh)Cl]KCl (3) were obtained with 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCT4BrPh). Although complexes (2) and (3) did not exhibit potent cytotoxic activity, HPyCT4BrPh and its gold(III) complex (1) proved to be highly cytotoxic against HL-60 (human promyelocytic leukemia) and THP-1 (human monocytic leukemia) cells, and against MDA-MB 231 and MCF-7 (human breast adenocarcinoma) solid tumor cells. Except for HL-60 cells, upon coordination to gold(III) a 2- to 3-fold increase in the cytotoxic effect was observed. An investigation on the possible biological targets of the gold(III) complex was carried out. Complex (1) but not the free thiosemicarbazone inhibits the enzymatic activity of thioredoxin reductase (TrxR). The affinity of 1 for TrxR suggests metal binding to a selenol residue in the active site of the enzyme. While HPyCT4BrPh was inactive, 1 was able to inhibit topoisomerase IB (Topo IB) activity. Hence, inhibition of TrxR and Topo IB could contribute to the mechanism of cytotoxic action of complex (1).

  5. Neutral Ni(II), Pd(II) and Pt(II) ONS-pincer complexes of 5-acetylbarbituric-4N-dimethylthiosemicarbazone: synthesis, characterization and properties.

    PubMed

    Castiñeiras, Alfonso; Fernández-Hermida, Nuria; García-Santos, Isabel; Gómez-Rodríguez, Lourdes

    2012-11-21

    Octahedral 1:1 Ni(II) and square-planar 1:1 Pd(II) and Pt(II) complexes of formulae [Ni(HAcb4DM)(AcO)(H2O)2]·H2O (1), [Pd(HAcb4DM)Cl]·5H2O (2) and [Pt(HAcb4DM)Cl]·3H2O (3), where H2Acb4DM = 5-acetylbarbituric-4N-dimethylthiosemicarbazone (H2 denoting its two dissociable protons, one enolic and one thiolic), have been synthesized and characterized by elemental analysis and by 1H and 13C NMR, UV-vis, and IR spectroscopy. Crystallisation of compounds 1–3 from DMSO afforded complexes of formulae [Ni(HAcb4DM)2]·2H2O (1a), [Pd(Acb4DM)(DMSO)]·DMSO (2a) and [Pt(Acb4DM)(DMSO)]·DMSO (3a), the molecular and crystal structures of which were determined by X-ray diffractometry. The thiosemicarbazone in 1a coordinates to the metal ions in an ONS-tridentate manner in the O-enolate/S-thione form, but in complexes 2a and 3a the thiosemicarbazone binds Pd(II) or Pt(II) as an ONS-pincer ligand in the O-enolate/S-thiolate form. The 195Pt NMR spectrum of 3 shows a signal at −2950 ppm along with two new signals at −3348 and −2731 ppm, indicating the presence of solvolysis products. The catalytic activity of complex 2a has been explored in aryl–aryl Suzuki cross-coupling reactions. H2Acb4DM and complexes 2 and 3 were screened for in vitro cytotoxicity against a human tumour cell line (HeLa-229), with the clinically employed drug cisplatin as a reference.

  6. Copper(II)-bis(thiosemicarbazonato) complexes as anti-chlamydial agents.

    PubMed

    Marsh, James W; Djoko, Karrera Y; McEwan, Alastair G; Huston, Wilhelmina M

    2017-09-29

    Lipophilic copper (Cu)-containing complexes have shown promising antibacterial activity against a range of bacterial pathogens. To examine the susceptibility of the intracellular human pathogen Chlamydia trachomatis to copper complexes containing bis(thiosemicarbazone) ligands [Cu(btsc)], we tested the in vitro effect of CuII-diacetyl- and CuII-glyoxal-bis[N(4)-methylthiosemicarbazonato] (Cu(atsm) and Cu(gtsm), respectively) on C. trachomatis. Cu(atsm) and to a greater extent, Cu(gtsm), prevented the formation of infectious chlamydial progeny. Impacts on host cell viability and respiration were also observed in addition to the Chlamydia impacts. This work suggests that copper-based complexes may represent a new lead approach for future development of new therapeutics against chlamydial infections, although host cell impacts need to be fully explored. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Complexes of dichloro[2-(dimethylaminomethyl)phenyl-C1,N]gold(III), [Au(damp-C1,N)Cl2], with formylferrocene thiosemicarbazones: synthesis, structure and cytotoxicity.

    PubMed

    Casas, José S; Castaño, María V; Cifuentes, María C; García-Monteagudo, Juán C; Sánchez, Agustín; Sordo, José; Abram, Ulrich

    2004-06-01

    Dichloro[2-(dimethylaminomethyl)phenyl- phenyl-C1,N]gold(III), [Au(damp-C1,N)Cl2], reacts with the formylferrocene thiosemicarbazones derived from 4-methyl-, 4-phenyl-, 4-ethyl- and 4,4-dimethyl-3-thiosemicarbazides, HFcTSC, to give complexes of general formula [Au(Hdamp-1C)Cl(FcTSC)]Cl. These complexes were isolated and characterized by elemental analysis, mass spectrometry and IR, 1H NMR and (13)C NMR spectroscopy. In some cases, cyclic voltammetric studies were carried out and these showed that the complexation of gold affects the redox behaviour of the ferrocene unit. The in vitro antitumor activity against the HeLa cell line was also determined for the more soluble complexes. The IC(50) values were found to be higher than that of cisplatin but the maximum antiproliferative activity was similar.

  8. Algorithmic Complexity. Volume II.

    DTIC Science & Technology

    1982-06-01

    digital computers, this improvement will go unnoticed if only a few complex products are to be taken, however it can become increasingly important as...computed in the reverse order. If the products are formed moving from the top of the tree downward, and then the divisions are performed going from the...the reverse order, going up the tree. (r- a mod m means that r is the remainder when a is divided by M.) The overall running time of the algorithm is

  9. Ternary complexes of Zn(II) and Cu(II) with 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide in the presence of heterocyclic bases as auxiliary ligands: Synthesis, spectroscopic and structural characterization and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim

    2018-03-01

    The new ternary complexes, ZnLL‧ [L = 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide and L‧ = imidazole (1), 2, 2‧-bipyridine (2) and 2-methyimidazole (3)], Zn2L2L‧ [L‧ = 4, 4‧-bipy (4)] and CuLL‧ [L‧ = 2, 2‧-bipy (5)] have been synthesized by the reaction of a metal(II) acetate salt with the thiosemicarbazone and in presence of heterocyclic bases as auxiliary ligands. The synthesized compounds were investigated by elemental analysis and IR, 1H NMR, and 13C NMR spectroscopy and complex 5 was structurally characterized by X-ray crystallography. The results indicate the thiosemicarbazone doubly deprotonated and coordinates to metal through the thiolate sulfur, imine nitrogen and phenolic oxygen atoms. The nitrogen atom(s) of the auxiliary ligand complete the coordination sphere. Complex 4 is binuclear with 4, 4‧-bipy acting as a bridging ligand. The structure of 5 is a distorted square pyramid with one of the bipyridine nitrogen atoms in the apical position. This compound creates an inversion dimer in solid state by intermolecular hydrogen bonds of Nsbnd H⋯S type. The in vitro antibacterial activity of the synthesized compounds were evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and is compared to that of standard antibacterial drugs. All complexes exhibit good inhibitory effects and are significantly more effective than the parent ligand.

  10. Comparison of metabolic pathways of different α-N-heterocyclic thiosemicarbazones.

    PubMed

    Pelivan, Karla; Frensemeier, Lisa M; Karst, Uwe; Koellensperger, Gunda; Heffeter, Petra; Keppler, Bernhard K; Kowol, Christian R

    2018-03-01

    Clinical failure of novel drugs is often related to their rapid metabolism and excretion. This highlights the importance of elucidation of their pharmacokinetic profile already at the preclinical stage of drug development. Triapine, the most prominent representative of α-N-heterocyclic thiosemicarbazones, was investigated in more than 30 clinical phase I/II trials, but the results against solid tumors were disappointing. Recent investigations from our group suggested that this is, at least partially, based on the fast metabolism and excretion. In order to establish more detailed structure/activity/metabolism relationships, herein a panel of 10 different Triapine derivatives was investigated for their metabolic pathways. From the biological point of view, the panel consists of terminally dimethylated thiosemicarbazones with nanomolar IC 50 values, derivatives with micromolar cytotoxicities comparable to Triapine and a completely inactive representative. To study the oxidative metabolism, a purely instrumental approach based on electrochemistry/mass spectrometry was applied and the results were compared to the data obtained from microsomal incubations. Overall, the investigated thiosemicarbazones underwent the phase I metabolic reactions dehydrogenation, hydroxylation, oxidative desulfuration (to semicarbazone and amidrazone) and demethylation. Notably, dehydrogenation resulted in a ring-closure reaction with formation of thiadiazoles. Although strong differences between the metabolic pathways of the different thiosemicarbazones were observed, they could not be directly correlated to their cytotoxicities. Finally, the metabolic pathways for the most cytotoxic compound were elucidated also in tissues collected from drug-treated mice, confirming the data obtained by electrochemical oxidation and microsomes. In addition, the in vivo experiments revealed a very fast metabolism and excretion of the compound. Graphical abstract Structure

  11. Microwave gallium-68 radiochemistry for kinetically stable bis(thiosemicarbazone) complexes: structural investigations and cellular uptake under hypoxia† †Electronic supplementary information (ESI) available. CCDC 1001632–1001634. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5dt02537k Click here for additional data file. Click here for additional data file.

    PubMed Central

    Alam, Israt S.; Arrowsmith, Rory L.; Cortezon-Tamarit, Fernando; Twyman, Frazer; Kociok-Köhn, Gabriele; Botchway, Stanley W.; Dilworth, Jonathan R.

    2016-01-01

    We report the microwave synthesis of several bis(thiosemicarbazones) and the rapid gallium-68 incorporation to give the corresponding metal complexes. These proved kinetically stable under ‘cold’ and ‘hot’ biological assays and were investigated using laser scanning confocal microscopy, flow cytometry and radioactive cell retention studies under normoxia and hypoxia. 68Ga complex retention was found to be 34% higher in hypoxic cells than in normoxic cells over 30 min, further increasing to 53% at 120 min. Our data suggests that this class of gallium complexes show hypoxia selectivity suitable for imaging in living cells and in vivo tests by microPET in nude athymic mice showed that they are excreted within 1 h of their administration. PMID:26583314

  12. Structural and cytotoxic studies of cationic thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Sinniah, Saravana Kumar; Sim, Kae Shin; Ng, Seik Weng; Tan, Kong Wai

    2017-06-01

    Schiff bases from the thiosemicarbazones family with variable N4 substituents are known to show enhanced growth inhibitory properties. In view of these facts and as a part of our continuous interest in cationic Schiff bases, we have developed several Schiff base ligands from (3-formyl-4-hydroxyphenyl)methyltriphenylphosphonium (T) in present study. The compounds were characterized by various spectroscopic methods (infrared spectra, 1H NMR, 13C NMR, HRESIMS and X-ray crystallography). Three of the N4 substituents, namely P(tsc)T, FP(tsc)T and EP(tsc)T exerted strong growth inhibitory properties by inhibiting the highly metastasis prostate cancer growth (PC-3). The thiosemicarbazone with ethylphenyl (EP) moiety displayed most potent activity against all cell lines tested. The MTT data obtained from analysis establishes that phenyl substituent enhances the growth inhibitory properties of the compound. The result affirms that EP(tsc)T would serve as a lead scaffold for rational anticancer agent development.

  13. Gold(III) bis(thiosemicarbazonate) compounds in breast cancer cells: Cytotoxicity and thioredoxin reductase targeting.

    PubMed

    Rodríguez-Fanjul, Vanessa; López-Torres, Elena; Mendiola, M Antonia; Pizarro, Ana María

    2018-03-25

    Gold(III) compounds have received increasing attention in cancer research. Three gold complexes of general formula [Au III L]Cl, where L is benzil bis(thiosemicarbazonate), compound 1, benzil bis(4-methyl-3-thiosemicarbazonate), compound 2, or benzil bis(4-cyclohexyl-3-thiosemicarbazonate), compound 3, have been synthesized and fully characterized, including the X-ray crystal structure of compound 3, confirming square-planar geometry around the gold(III) centre. Compound 1 showed moderate cytotoxicity and accumulation in MCF7 breast cancer cells but did not inhibit thioredoxin reductase (TrxR) activity and did not induce reactive oxygen species (ROS) production. Compound 2, the least cytotoxic, was found to be capable of modestly inhibiting TrxR activity and produced low levels of ROS in the MCF7 cell line. The most cytotoxic compound, 3, had the highest cellular accumulation and its distribution pattern showed a clear preference for the cytosol and mitochondria of MCF7 cells. It readily hampered intracellular TrxR activity leading to a dramatic alteration of the cellular redox state and to the induction of cell death. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. New 1-indanone thiosemicarbazone derivatives active against BVDV.

    PubMed

    Finkielsztein, Liliana M; Castro, Eliana F; Fabián, Lucas E; Moltrasio, Graciela Y; Campos, Rodolfo H; Cavallaro, Lucía V; Moglioni, Albertina G

    2008-08-01

    Identification of new therapeutic agents for the treatment of viral diseases represents an area of active investigation. In an effort to develop new antiviral compounds, a series of 1-indanone thiosemicarbazone derivatives were synthesized. These derivatives were structurally characterized using several spectroscopic techniques and evaluated against bovine viral diarrhoea virus as a surrogate model for hepatitis C virus. Thiosemicarbazone 2m showed potent anti-bovine viral diarrhoea virus activity with a higher selectivity index (SI=80.29) than that of ribavirin (SI=11.64). This result determines the potentiality of these thiosemicarbazones as antiviral agents for the treatment of infections caused by other highly related members of Flaviviridae family, as hepatitis C virus.

  15. Substitutional impact on biological activity of new water soluble Ni(II) complexes: Preparation, spectral characterization, X-ray crystallography, DNA/protein binding, antibacterial activity and in vitro cytotoxicity.

    PubMed

    Umadevi, C; Kalaivani, P; Puschmann, H; Murugan, S; Mohan, P S; Prabhakaran, R

    2017-02-01

    A series of new water soluble nickel(II) complexes containing triphenylphosphine and 4-methoxysalicylaldehyde-4(N)-substituted thiosemicarbazones were synthesized and characterized. Crystallographic investigations confirmed the structure of the complexes (1-4) having the general structure [Ni(4-Msal-Rtsc)(PPh 3 )] (Where R=H (1); CH 3 (2); C 2 H 5 (3); C 6 H 5 (4)) which showed that thiosemicarbazone ligands coordinated to nickel(II) ion as ONS tridentate bibasic donor. DNA/BSA protein binding ability of the ligands and their new complexes were studied by taking calf-thymus DNA (CT-DNA) and Bovine serum albumin (BSA) through absorption and emission titrations. Ethidium bromide (EB) displacement study showed the intercalative binding trend of the complexes to DNA. From the albumin binding studies, the mechanism of quenching was found as static and the alterations in the secondary structure of BSA by the compounds were confirmed with synchronous spectral studies. The binding affinity of the complexes to CT-DNA and BSA has the order of [Ni(4-Msal-etsc)(PPh 3 )] (3) >[Ni(4-Msal-mtsc)(PPh 3 )] (2) >[Ni(4-Msal-tsc)(PPh 3 )] (1) >[Ni(4-Msal-ptsc)(PPh 3 )] (4). In vitro cytotoxicity of the complexes was tested on human lung cancer cells (A549), human cervical cancer cells (HeLa), human liver carcinoma cells (Hep G2). All the complexes exhibited significant activity against three cancer cells. Among them, complex 4 exhibited almost 2.5 fold activity than cisplatin in A549 and HepG2 cell lines. In HeLa cell line, the complexes exhibited significant activity which is less than cisplatin. While comparing the activity of the complexes in A549 and HepG2 cell lines it falls in the order 4>1>2>3>cisplatin. The results obtained from DNA, protein binding and cytotoxicity studies, it is concluded that the cytotoxicity of the complexes as determined by MTT assay were not unduly influenced by the complexes having different binding efficiency with DNA and protein. The complexes

  16. Structural Determination of a Transcribing RNA Polymerase II Complex

    DTIC Science & Technology

    2000-05-01

    A be extended and evaluated by the solution of pol II cocrystal structures, with the use of the pol II model for molecular replacement. Co- crystals...with TFIIB and TFIIE (78) should reveal the trajectory of DNA in the initial pol - II-promoter complex. Cocrystals containing pol II in the act of...transcription (79) will show the locations of nucleic acids in an elongation complex. Cocrystals with TFIIS (80) may indicate the proposed exit pathway

  17. Transglutaminase-mediated conjugation and nitride-technetium-99m labelling of a bis(thiosemicarbazone) bifunctional chelator.

    PubMed

    Salvarese, Nicola; Spolaore, Barbara; Marangoni, Selena; Pasin, Anna; Galenda, Alessandro; Tamburini, Sergio; Cicoria, Gianfranco; Refosco, Fiorenzo; Bolzati, Cristina

    2018-06-01

    An assessment study involving the use of the transglutaminase (TGase) conjugation method and the nitride-technetium-99m labelling on a bis(thiosemicarbazone) (BTS) bifunctional chelating agent is presented. The previously described chelator diacetyl-2-(N 4 -methyl-3-thiosemicarbazone)-3-(N 4 -amino-3-thiosemicarbazone), H 2 ATSM/A, has been functionalized with 6-aminohexanoic acid (ε-Ahx) to generate the bifunctional chelating agent diacetyl-2-(N 4 -methyl-3-thiosemicarbazone)-3-[N 4 -(amino)-(6-aminohexanoic acid)-3-thiosemicarbazone], H 2 ATSM/A-ε-Ahx (1), suitable for conjugation to glutamine (Gln) residues of bioactive molecules via TGase. The feasibility of the TGase reaction in the synthesis of a bioconjugate derivative was investigated using Substance P (SP) as model peptide. Compounds 1 and H 2 ATSM/A-ε-Ahx-SP (2) were labelled with nitride-technetium-99m, obtaining the complexes [ 99m Tc][Tc(N)(ATSM/A-ε-Ahx)] ( 99m Tc1) and [ 99m Tc][Tc(N)(ATSM/A-ε-Ahx-SP)] ( 99m Tc2). The chemical identity of 99m Tc1 and 99m Tc2 was confirmed by radio/UV-RP-HPLC combined with ESI-MS analysis on the respective carrier-added products 99g/99m Tc1 and 99g/99m Tc2. The stability of the radiolabelled complexes after incubation in various environments was investigated. All the results were compared with those obtained for the corresponding 64 Cu-analogues, 64 Cu1 and 64 Cu2. The TGase reaction allows the conjugation of 1 with the peptide, but it is not highly efficient due to instability of the chelator in the required conditions. The SP-conjugated complexes are unstable in mouse and human sera. However, indeed the BTS system can be exploited as nitride-technetium-99m chelator for highly efficient technetium labelling, thus making compound 1 worthy of further investigations for new targeted technetium and copper radiopharmaceuticals encompassing Single Photon Emission Computed Tomography and Positron Emission Tomography imaging. Copyright © 2018 Elsevier Inc. All rights

  18. Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L

    PubMed Central

    Parker, Erica N.; Song, Jiangli; Kumar, G. D. Kishore; Odutola, Samuel O.; Chavarria, Gustavo E.; Charlton-Sevcik, Amanda K.; Strecker, Tracy E.; Barnes, Ashleigh L.; Sudhan, Dhivya R.; Wittenborn, Thomas R.; Siemann, Dietmar W.; Horsman, Michael R.; Chaplin, David J.; Trawick, Mary Lynn; Pinney, Kevin G.

    2016-01-01

    Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9 nM, 14.4 nM, and 8.1 nM, respectively. The benzoylbenzophenone thiosemicarbazone analogues evaluated were selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10 μM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5 μM. The most active cathepsin L inhibitors from this benzoylbenzophenone thiosemicarbazone series (1, 8, and 32) displayed low cytotoxicity toward normal primary cells [in this case human umbilical vein endothelial cells (HUVECs)]. In an initial in vivo study, 3-benzoylbenzophenone thiosemicarbazone (1) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L. Active members of this structurally diverse group of benzoylbenzophenone thiosemicarbazone cathepsin L inhibitors show promise as potential anti-metastatic, pre

  19. Crystal structure of mitochondrial respiratory membrane protein complex II.

    PubMed

    Sun, Fei; Huo, Xia; Zhai, Yujia; Wang, Aojin; Xu, Jianxing; Su, Dan; Bartlam, Mark; Rao, Zihe

    2005-07-01

    The mitochondrial respiratory Complex II or succinate:ubiquinone oxidoreductase (SQR) is an integral membrane protein complex in both the tricarboxylic acid cycle and aerobic respiration. Here we report the first crystal structure of Complex II from porcine heart at 2.4 A resolution and its complex structure with inhibitors 3-nitropropionate and 2-thenoyltrifluoroacetone (TTFA) at 3.5 A resolution. Complex II is comprised of two hydrophilic proteins, flavoprotein (Fp) and iron-sulfur protein (Ip), and two transmembrane proteins (CybL and CybS), as well as prosthetic groups required for electron transfer from succinate to ubiquinone. The structure correlates the protein environments around prosthetic groups with their unique midpoint redox potentials. Two ubiquinone binding sites are discussed and elucidated by TTFA binding. The Complex II structure provides a bona fide model for study of the mitochondrial respiratory system and human mitochondrial diseases related to mutations in this complex.

  20. Heteroleptic complexes of Zn(II) based on 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide: Synthesis, structural characterization, theoretical studies and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim

    2017-04-01

    Four new ternary complexes, [ZnL (2,2‧-bipy)] (1), Zn2L2(4,4‧-bipy)] (2), [ZnL(Imd)]·H2O (3) and [ZnL3(MeImd)] (4), have been synthesized from the reaction of Zn(II) acetate with 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide (H2L) in the presence of a heterocyclic base, 2,2‧-bipyridine, 4,4‧-bipyridine, imidazole or 2-methylimidazole, as an auxiliary ligand. The complexes have been investigated by elemental analysis and FT-IR, UV-Vis and 1HNMR spectroscopy. These data show that the thiosemicarbazone acts as a tridentate dianionic ligand and coordinates via the thiol group, imine nitrogen, and phenolic oxygen. The coordination sphere was completed by the nitrogen atom(s) of the secondary ligand. The structure of 1 was also confirmed by X-ray crystallography and shown to be a five coordinate complex with coordination geometry between the square-pyramidal and trigonal-bipyramidal. Density functional theory (DFT) calculations including geometry optimization, vibrational frequencies and electronic absorptions have been performed for 1 with the B3LYP functional at the TZP(6-311G*) basis set using the Gaussian 03 or ADF 2009 packages. The optimization calculation showed that the crystallographically determined geometry parameters can be reproduced with that basis set. Experimental IR frequencies and calculated vibration frequencies also support each other. The in vitro antibacterial activities of the ligand and complexes have been evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and compared with the standard antibacterial drugs. The results reveal that all of the complexes show much better activity in comparison to the individual thiosemoicarbazone ligand (H2L), against all bacterial strains used, with complex 3 showing the most promising results.

  1. Platinum(II) acetate complexes in hydrogenation of unsaturated compounds

    SciTech Connect

    Berenblyum, A.S.; Goranskaya, T.P.; Mund, S.L.

    1979-12-20

    In order to further elucidate the effect of the ligand environment in the complexes of group VIII metals on the activity of H/sub 2/, the catalytic properties of Pt(II) compounds with oxygen-containing acido ligands was studied. The platinum(II) acetate complexes with aniline and triphenylphosphine were synthesized. IR spectral studies indicated that platinum(II) acetate formed complexes with either of the other compounds singly or together. Dimethylformamide(DMF) solutions of platinum acetate and its complexes with aniline and/or triphenylphosphine all absorb H/sub 2/ in the temperature range of 20 to 90/sup 0/C and at a H/sub 2/ pressure of 1 atm. After themore » absorption of H/sub 2/, the DMF solutions of (aniline)(triphenylphosphine)platinum(II)diacetate complex were found to catalyze the hydrogenaton of O/sub 2/ and 1,3-pentadiene.« less

  2. Spectroscopic and mycological studies of Co(II), Ni(II) and Cu(II) complexes with 4-aminoantipyrine derivative

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-10-01

    Complexes of the type [M(L)X 2], where M = Co(II), Ni(II) and Cu(II), have been synthesized with novel NO-donor Schiff's base ligand, 1,4-diformylpiperazine bis(4-imino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) which is obtained by the acid catalyzed condensation of 1,4-diformylpiperazine with 4-aminoantipyrine. The elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV, NMR, mass and EPR studies of the compounds led to the conclusion that the ligand acts as tetradentate chelate. The Schiff's base ligand forms hexacoordinated complexes having octahedral geometry for Ni(II) and tetragonal geometry for Co(II) and Cu(II) complexes. The mycological studies of the compounds were examined against the several opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The Cu(II) complexes were found to have most fungicidal behavior.

  3. [Study of the effect of thiosemicarbazones against Toxoplasma gondii].

    PubMed

    Gomes, Marco Antônio G B; Carreira, Gabriela M; Souza, Daniela P V; Nogueira, Paulo Marcos R; de Melo, Edésio J T; Maria, Edmilson J

    2013-04-01

    Toxoplasmosis is a neglected disease, with an estimated occurrence of one-third of the population worldwide. Research in medicinal chemistry has for some years been pursuing the development of new drugs against toxoplasmosis, because current treatments cause serious side effects in the patient. The use of thiosemicarbazones as an alternative option for the treatment of various diseases has been published in recent years, due to their, among others, anticancer, antimalarial, antitrypanosomal, antibacterial, and antitoxoplasmosis activities, the latter being the subject of this study, which is based upon biological analyses and tests of the response of Toxoplasma gondii in the presence of thiosemicarbazones. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  4. Respiratory chain complex II as general sensor for apoptosis.

    PubMed

    Grimm, Stefan

    2013-05-01

    I review here the evidence that complex II of the respiratory chain (RC) constitutes a general sensor for apoptosis induction. This concept emerged from work on neurodegenerative diseases and from recent data on metabolic alterations in cancer cells affecting the RC and in particular on mutations of complex II subunits. It is also supported by experiments with many anticancer compounds that compared the apoptosis sensitivities of complex II-deficient versus WT cells. These results are explained by the mechanistic understanding of how complex II mediates the diverse range of apoptosis signals. This protein aggregate is specifically activated for apoptosis by pH change as a common and early feature of dying cells. This leads to the dissociation of its SDHA and SDHB subunits from the remaining membrane-anchored subunits and the consequent block of it enzymatic SQR activity, while its SDH activity, which is contained in the SDHA/SDHB subcomplex, remains intact. The uncontrolled SDH activity then generates excessive amounts of reactive oxygen species for the demise of the cell. Future studies on these mitochondrial processes will help refine this model, unravel the contribution of mutations in complex II subunits as the cause of degenerative neurological diseases and tumorigenesis, and aid in discovering novel interference options. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Differentials on graph complexes II: hairy graphs

    NASA Astrophysics Data System (ADS)

    Khoroshkin, Anton; Willwacher, Thomas; Živković, Marko

    2017-10-01

    We study the cohomology of the hairy graph complexes which compute the rational homotopy of embedding spaces, generalizing the Vassiliev invariants of knot theory. We provide spectral sequences converging to zero whose first pages contain the hairy graph cohomology. Our results yield a way to construct many nonzero hairy graph cohomology classes out of (known) non-hairy classes by studying the cancellations in those sequences. This provide a first glimpse at the tentative global structure of the hairy graph cohomology.

  6. Synthesis, Spectroscopic, and Antimicrobial Studies on Bivalent Nickel and Copper Complexes of Bis(thiosemicrbazone)

    PubMed Central

    Chandra, Sulekh; Raizada, Smriti; Tyagi, Monika; Gautam, Archana

    2007-01-01

    A series of metal complexes of Cu(II) and Ni(II) having the general composition [M(L)X2] with benzil bis(thiosemicarbazone) has been prepared and characterized by element chemical analysis, molar conductance, magnetic susceptibility measurements, and spectral (electronic, IR, EPR, mass) studies. The IR spectral data suggest the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes but a tetragonal geometry for Cu(II) complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties. PMID:18273385

  7. Rhenium(I) tricarbonyl compounds of bioactive thiosemicarbazones: Synthesis, characterization and activity against Trypanosoma cruzi.

    PubMed

    Rodríguez Arce, Esteban; Machado, Ignacio; Rodríguez, Belén; Lapier, Michel; Zúñiga, María Carolina; Maya, Juan Diego; Olea Azar, Claudio; Otero, Lucía; Gambino, Dinorah

    2017-05-01

    American Trypanosomiasis is a chronic infection discovered and described in 1909 by the Brazilian scientist Carlos Chagas. It is caused by the protozoan parasite Trypanosoma cruzi. Although it affects about 10million people in Latin America, the current chemotherapy is still inadequate. The discovery of new drugs is urgently needed. Our group is focused on the development of prospective metal-based drugs mainly based on bioactive ligands and pharmacologically interesting metal ions. In this work three new rhenium(I) tricarbonyl compounds fac-[Re I (CO) 3 Br(HL)] where HL=5-nitrofuryl containing thiosemicarbazones were synthesized and fully characterized in solution and in the solid state. The in vitro evaluation of the compounds on T. cruzi trypomastigotes (Dm28c strain) showed that the Re(I) compounds are 8 to 15 times more active than the reference drug Nifurtimox and show a 4 to 17 fold increase in activity in respect to the free (HL) ligands. Obtained compounds also show good selectivity indexes (IC 50 endothelial cells Ea.hy926 /IC 50 T. cruzi (Dm28c tripomastigotes) ). 1 H NMR and MS studies, performed with time, showed that the fac-[Re(CO) 3 Br(HL)] species convert into the dimers [Re 2 (CO) 6 (L) 2 ] in solution. Crystal structure of [Re I 2 (CO) 6 (L2) 2 ], the product of complexes' dimerization, was solved. Related to the mechanism of action, the studied compounds do not generate radical oxygen species in the parasite (as 5-nitrofuryl derived thiosemicarbazones do) probably due to the unfavorable nitro reduction potential of the generated dimeric species. On the contrary, the compounds produce a decrease of the oxygen consumption rate of the parasites, maybe inhibiting their mitochondrial respiration. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands.

    PubMed

    Sumathi, S; Tharmaraj, P; Sheela, C D; Anitha, C

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M=Cu(II), Ni(II), Co(II); L=3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, (1)H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate). Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands

    NASA Astrophysics Data System (ADS)

    Sumathi, S.; Tharmaraj, P.; Sheela, C. D.; Anitha, C.

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M = Cu(II), Ni(II), Co(II); L = 3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).

  10. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O`Neill, M.A.; Pellerin, P.J.M.; Warrenfeltz, D.; Vidal, S.; Darvill, A.G.; Albersheim, P.

    1999-03-02

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations. 15 figs.

  11. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O'Neill, Malcolm A.; Pellerin, Patrice J. M.; Warrenfeltz, Dennis; Vidal, Stephane; Darvill, Alan G.; Albersheim, Peter

    1999-01-01

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations.

  12. Structure and reactivity of a mononuclear gold(II) complex

    NASA Astrophysics Data System (ADS)

    Preiß, Sebastian; Förster, Christoph; Otto, Sven; Bauer, Matthias; Müller, Patrick; Hinderberger, Dariush; Hashemi Haeri, Haleh; Carella, Luca; Heinze, Katja

    2017-12-01

    Mononuclear gold(II) complexes are very rare labile species. Transient gold(II) species have been suggested in homogeneous catalysis and in medical applications, but their geometric and electronic structures have remained essentially unexplored: even fundamental data, such as the ionic radius of gold(II), are unknown. Now, an unprecedentedly stable neutral gold(II) complex of a porphyrin derivative has been isolated, and its structural and spectroscopic features determined. The gold atom adopts a 2+2 coordination mode in between those of gold(III) (four-coordinate square planar) and gold(I) (two-coordinate linear), owing to a second-order Jahn-Teller distortion enabled by the relativistically lowered 6s orbital of gold. The reactivity of this gold(II) complex towards dioxygen, nitrosobenzene and acids is discussed. This study provides insight on the ionic radius of gold(II), and allows it to be placed within the homologous series of nd9 Cu/Ag/Au divalent ions and the 5d8/9/10 Pt/Au/Hg 'relativistic' triad in the periodic table.

  13. Structure and magnetism of a Mn(III)-Mn(II)-Mn(II)-Mn(III) chain complex.

    PubMed

    Uhrecký, Róbert; Moncoľ, Ján; Koman, Marian; Titiš, Ján; Boča, Roman

    2013-07-14

    A novel tetranuclear manganese(II/III) complex with anions of pyridine-2,6-dicarboxylic acid (dipicolinic acid) has been synthesised and magneto-structurally characterised. The crystal structure of [Mn(II)2Mn(III)2(dipic)6(H2O)4]·2CH3OH·4H2O has been determined by single-crystal X-ray diffraction. The tetranuclear complex molecule [Mn(II)2Mn(III)2(dipic)6(H2O)4] is centrosymmetric and two manganese(II) and two manganese(III) atoms are bridged by four dipicolinate ligands. The complex molecules and uncoordinated water and methanol molecules are connected through hydrogen bonds and they form a 3D supramolecular hydrogen-bonding network.

  14. Design, syntheses, characterization, and cytotoxicity studies of novel heterobinuclear oxindolimine copper(II)-platinum(II) complexes.

    PubMed

    Aranda, Esther Escribano; Matias, Tiago Araújo; Araki, Koiti; Vieira, Adriana Pires; de Mattos, Elaine Andrade; Colepicolo, Pio; Luz, Carolina Portela; Marques, Fábio Luiz Navarro; da Costa Ferreira, Ana Maria

    2016-12-01

    Herein, the design and syntheses of two new mononuclear oxindolimine-copper(II) (1 and 2) and corresponding heterobinuclear oxindolimine Cu(II)Pt(II) complexes (3 and 4), are described. All the isolated complexes were characterized by spectroscopic techniques (UV/Vis, IR, EPR), in addition to elemental analysis and mass spectrometry. Cyclic voltammetry (CV) measurements showed that in all cases, one-electron quasi-reversible waves were observed, and ascribed to the formation of corresponding copper(I) complexes. Additionally, waves related to oxindolimine ligand reduction was verified, and confirmed using analogous oxindolimine-Zn(II) complexes. The Pt(IV/II) reduction, and corresponding oxidation, for complexes 3 and 4 occurred at very close values to those observed for cisplatin. By complementary fluorescence studies, it was shown that glutathione (GSH) cannot reduce any of these complexes, under the experimental conditions (room temperature, phosphate buffer 50mM, pH7.4), using an excess of 20-fold [GSH]. All these complexes showed characteristic EPR spectral profile, with parameters values g ǁ >g ⊥ suggesting an axially distorted environment around the copper(II) center. Interactions with calf thymus-DNA, monitored by circular dichroism (CD), indicated different effects modulated by the ligands. Finally, the cytotoxicity of each complex was tested toward different tumor cells, in comparison to cisplatin, and low values of IC 50 in the range 0.6 to 4.0μM were obtained, after 24 or 48h incubation at 37°C. The obtained results indicate that such complexes can be promising alternative antitumor agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Manganese(II), iron(II), cobalt(II), and copper(II) complexes of an extended inherently chiral tris-bipyridyl cage.

    PubMed

    Perkins, David F; Lindoy, Leonard F; McAuley, Alexander; Meehan, George V; Turner, Peter

    2006-01-17

    Manganese(II), iron(II), cobalt(II), and copper(II) derivatives of two inherently chiral, Tris(bipyridyl) cages (L and L') of type [ML]-(PF(6))(2)(solvent)(n) and [FeL'](ClO(4))(2) are reported, where L is the hexa-tertiary butyl-substituted derivative of L'. These products were obtained by using the free cage and metal template procedures; the latter involved the reductive amination of the respective Tris-dialdehyde precursor complexes of iron(II), cobalt(II), or nickel(II). Electrochemical, EPR, and NMR studies have been used to probe the nature of the individual complexes. X-ray structures of the manganese(II), iron(II), and copper(II) complexes of L and the iron(II) complex of L' are presented; these are compared with the previously reported structures of the corresponding nickel(II) complex and metal-free cage (L). In each complex the metal cation occupies the cage's central cavity and is coordinated to six nitrogens from the three bipyridyl groups. The cations [MnL](2+) and [FeL](2+) are isostructural but both exhibit a different arrangement of the bound cage to that observed in the corresponding nickel(II) and copper(II) complexes. The latter have an exo-exo arrangement of the bridgehead nitrogen lone pairs, with the metal inducing a triple helical twist that extends approximately 22 A along the axial length of each complex. In contrast, [MnL](2+) and [FeL](2+) have their terminal nitrogen lone pairs directed endo, causing a significant change in the configuration of the bound ligand. In [FeL'](2+), the cage has both bridgehead nitrogen lone pairs orientated exo. Semiempirical calculations indicate that the observed endo-endo and exo-exo arrangements are of comparable energy.

  16. Synthesis, characterization and anti-microbial evaluation of Cu(II), Ni(II), Pt(II) and Pd(II) sulfonylhydrazone complexes; 2D-QSAR analysis of Ni(II) complexes of sulfonylhydrazone derivatives

    NASA Astrophysics Data System (ADS)

    Özbek, Neslihan; Alyar, Saliha; Alyar, Hamit; Şahin, Ertan; Karacan, Nurcan

    2013-05-01

    Copper(II), nickel(II), platinum(II) and palladium(II) complexes with 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) derived from propanesulfonic acid-1-methylhydrazide (psmh) were synthesized, their structure were identified, and antimicrobial activity of the compounds was screened against three Gram-positive and three Gram-negative bacteria. The results of antimicrobial studies indicate that Pt(II) and Pd(II) complexes showed the most activity against all bacteria. The crystal structure of 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) was also investigated by X-ray analysis. A series of Ni(II) sulfonyl hydrazone complexes (1-33) was synthesized and tested in vitro against Escherichia coli and Staphylococcus aureus. Their antimicrobial activities were used in the QSAR analysis. Four-parameter QSAR models revealed that nucleophilic reaction index for Ni and O atoms, and HOMO-LUMO energy gap play key roles in the antimicrobial activity.

  17. Molecular Models of Ruthenium(II) Organometallic Complexes

    ERIC Educational Resources Information Center

    Coleman, William F.

    2007-01-01

    This article presents the featured molecules for the month of March, which appear in the paper by Ozerov, Fafard, and Hoffman, and which are related to the study of the reactions of a number of "piano stool" complexes of ruthenium(II). The synthesis of compound 2a offers students an alternative to the preparation of ferrocene if they are only…

  18. Cd(II) and Pb(II) complexes of the polyether ionophorous antibiotic salinomycin

    PubMed Central

    2011-01-01

    Background The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II) ions in in vivo experiments, despite so far no Pb(II)-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their in vitro complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II) and lead(II). Results New metal(II) complexes of the polyether ionophorous antibiotic salinomycin with Cd(II) and Pb(II) ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa) undergoes a reaction with heavy metal(II) ions to form [Cd(Sal)2(H2O)2] (1) and [Pb(Sal)(NO3)] (2), respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II) ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield 1. Two salinomycin anions occupy the equatorial plane of the Cd(II) center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II) cation. Complex 2 consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation. Conclusion The formation of the salinomycin heavy metal(II) complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock farming

  19. Synthesis, spectroscopic characterization, thermal analysis and electrical conductivity studies of Mg(II), Ca(II), Sr(II) and Ba(II) vitamin B2 complexes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Moussa, Mohamed A. A.; Mohamed, Soha F.

    2011-05-01

    Riboflavin (RF) complexes of Mg(II), Ca(II), Sr(II) and Ba(II) were successfully synthesized. Structures of metal complexes obtained were confirmed and characterized by elemental analysis, molar conductance, and infrared spectra. DC electrical conductivity measurements indicated that the alkaline earth metal (II) complexes of RF ligand are non-electrolytes. Elemental analysis of chelates suggest that the metal(II) ligand ratio is 1:2 with structure formula as [M(RF) 2( X) 2]· nH 2O. Infrared assignments clearly show that RF ligand coordinated as a bidentate feature through azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione. Thermal analyses of Mg(II), Ca(II), Sr(II) and Ba(II) complexes were investigated using (TG/DSC) under atmospheric nitrogen between 30 and 800 °C. The surface morphology of the complexes was studied by SEM. The electrical conductivities of RF and its metal complexes were also measured with DC electrical conductivity in the temperature range from room to 483 K.

  20. Nicotianamine forms complexes with Zn(II) in vivo.

    PubMed

    Trampczynska, Aleksandra; Küpper, Hendrik; Meyer-Klaucke, Wolfram; Schmidt, Holger; Clemens, Stephan

    2010-01-01

    The non-proteinogenic amino acid nicotianamine (NA) is a major player in plant metal homeostasis. It is known to form complexes with different transition metals in vitro. Available evidence associates NA with translocation of Fe, and possibly other micronutrients, to and between different plant cells and tissues. To date, however, it is still extremely challenging to detect metal-ligand complexes in vivo because tissue disruption immediately changes the chemical environment and thereby the availability of binding partners. In order to overcome this limitation we used various Schizosaccharomyces pombe strains expressing a plant NAS gene to study formation of metal-NA complexes in vivo. Tolerance, accumulation and competition data clearly indicated formation of Zn(ii)-NA but not of Cu(ii)-NA complexes. Zn(ii)-NA was then identified by X-ray absorption spectroscopy (XAS). About half of the cellular Zn was found to be bound by NA in NAS-expressing cells while no NA-like ligands were detected by XAS in control cells not expressing NAS. Given the high conservation of eukaryotic metal homeostasis components, these results strongly suggest the possible existence of Zn(ii)-NA complexes also in planta. Reported observations implicating NA in plant Zn homeostasis would then indeed be attributable to direct interaction of Zn(ii) with NA rather than only indirectly to perturbations in Fe metabolism. Re-evaluation of extended X-ray absorption fine structure (EXAFS) spectra for the Zn hyperaccumulator Thlaspi caerulescens showed that NA is as expected not a major storage ligand for Zn. Instead it is hypothesized to be involved in efficient translocation of Zn to above-ground tissues in hyperaccumulators.

  1. 9-Triptycenecarboxylate-Bridged Diiron(II) Complexes

    PubMed Central

    Friedle, Simone; Kodanko, Jeremy J.; Fornace, Kyrstin L.; Lippard, Stephen J.

    2008-01-01

    The synthesis and characterization of diiron(II) complexes supported by 9-triptycenecarboxylate ligands (-O2CTrp) is described. The interlocking nature of the triptycenecarboxylates facilitates formation of quadruply bridged diiron(II) complexes of the type [Fe2(μ-O2CTrp)4(L)2] (L = THF, pyridine or imidazole derivative) with a paddlewheel geometry. A systematic lengthening of the Fe-Fe distance occurs with the increase in steric bulk of the neutral donor L, resulting in values of up to 3 Å without disassembly of the paddlewheel structure. Reactions with an excess of water do not lead to decomposition of the diiron(II) core, indicating that these quadruply bridged complexes are of exceptional stability. The red-colored complexes [Fe2(μ-O2CTrp)4(4-AcPy)2] (10) and [Fe2(μ-O2CTrp)4(4-CNPy)2] (11) exhibit solvent-dependent thermochromism in coordinating solvents that was studied by variable temperature UV-vis spectroscopy. Reaction of [Fe2(μ-O2CTrp)4(THF)2] with N,N,N’,N’-tetramethylethylenediamine (TMEDA), tetra-n-butyl ammonium thiocyanate, or excess 2-methylimidazole resulted in the formation of mononuclear complexes [Fe(O2CTrp)2(TMEDA)] (13), (n-Bu4N)2[Fe(O2CTrp)2(SCN)2] (14), and [Fe(O2CTrp)2(2-MeIm)2] (15) having an O4/N2 coordination sphere composition. PMID:19915653

  2. Photochemistry of copper(II) complexes with macrocyclic amine ligands

    SciTech Connect

    Muralidharan, S.; Ferraudi, G.

    1981-07-01

    The photochemical properties of Cu(dl-Me/sub 6/(14)aneN/sub 4/)/sup 2 +/ and Cu(rac-Me/sub 6/(14)aneN/sub 4/)/sup 2 +/ in the presence and absence of axially coordinated ligands have been investigated by continuous and flash irradiations. Flash photolysis of the complexes in deaerated aqueous solutions revealed the presence of copper-ligand radical complexes with closed- and open-cycle ligands. Flash photolysis of methanolic solutions of the complexes, in the presence of halides and pseudohalides, shows Cu(III) macrocyclic intermediates. The experimental observations can be explained in terms of two primary photoprocesses with origins in distinctive charge transfer to metal states. These states have been assigned as aminomore » to copper(II) charge-transfer state and acido to copper(II) charge-transfer state.« less

  3. DNA Binding and Antitumor Activity of α-Diimineplatinum(II) and Palladium(II) Dithiocarbamate Complexes

    PubMed Central

    Mansouri-Torshizi, Hassan; Saeidifar, Maryam; Khosravi, Fatemeh; Divsalar, Adeleh; Saboury, Ali Akbar; Hassani, Fatemeh

    2011-01-01

    The two water-soluble designed platinum(II) complex, [Pt(Oct-dtc)(bpy)]NO3 (Oct-dtc = Octyldithiocarbamate and bpy = 2,2′ -bipyridine) and palladium(II) complex, [Pd(Oct-dtc)(bpy)]NO3, have been synthesized and characterized by elemental analyses, molar conductivity measurements, IR, 1H NMR, and electronic spectra studies. Studies of antitumor activity of these complexes against human cell tumor lines (K562) have been carried out. They show Ic50 values lower than that of cisplatin. The complexes have been investigated for their interaction with calf thymus DNA (CT-DNA) by utilizing the electronic absorption spectroscopy, fluorescence spectra, and ethidium bromide displacement and gel filtration techniques. Both of these water-soluble complexes bound cooperatively and intercalatively to the CT-DNA at very low concentrations. Several binding and thermodynamic parameters are also described. PMID:22110410

  4. Cationic dirhodium(II,II) complexes for the electrocatalytic reduction of CO 2 to HCOOH

    DOE PAGES

    Witt, Suzanne E.; White, Travis A.; Li, Zhanyong; ...

    2016-09-22

    Two formamidinate bridged dirhodium(II,II) complexes with chelating diimine ligands L, [Rh 2(μ-DTolF) 2(L) 2] 2+, were shown to electrocatalytically reduce CO 2 in the presence of H 2O. Analysis of the reaction mixture and headspace following bulk electrolysis revealed H 2 and HCOOH as the major products. Finally, the variation in relative product formation is discussed.

  5. Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules*

    PubMed Central

    Barroso, Margarida; Tucker, Heidi; Drake, Lisa; Nichol, Kathleen; Drake, James R.

    2015-01-01

    Antigen processing and MHC class II-restricted antigen presentation by antigen-presenting cells such as dendritic cells and B cells allows the activation of naïve CD4+ T cells and cognate interactions between B cells and effector CD4+ T cells, respectively. B cells are unique among class II-restricted antigen-presenting cells in that they have a clonally restricted antigen-specific receptor, the B cell receptor (BCR), which allows the cell to recognize and respond to trace amounts of foreign antigen present in a sea of self-antigens. Moreover, engagement of peptide-class II complexes formed via BCR-mediated processing of cognate antigen has been shown to result in a unique pattern of B cell activation. Using a combined biochemical and imaging/FRET approach, we establish that internalized antigen-BCR complexes associate with intracellular class II molecules. We demonstrate that the M1-paired MHC class II conformer, shown previously to be critical for CD4 T cell activation, is incorporated selectively into these complexes and loaded selectively with peptide derived from BCR-internalized cognate antigen. These results demonstrate that, in B cells, internalized antigen-BCR complexes associate with intracellular MHC class II molecules, potentially defining a site of class II peptide acquisition, and reveal a selective role for the M1-paired class II conformer in the presentation of cognate antigen. These findings provide key insights into the molecular mechanisms used by B cells to control the source of peptides charged onto class II molecules, allowing the immune system to mount an antibody response focused on BCR-reactive cognate antigen. PMID:26400081

  6. Development of Novel DNA Cleavage Systems Based on Copper Complexes. Synthesis and Characterisation of Cu(II) Complexes of Hydroxyflavones

    PubMed Central

    el Amrani, F. Ben-Allal; Perelló, L.; Torres, L.

    2000-01-01

    Copper(II) complexes of several hydroxyflavones were prepared and characterised through their physico-chemical properties. The nuclease activity of three synthesised complexes is reported. These copper(II) complexes present more nuclease activity than the ligands and the copper(II) ion. PMID:18475969

  7. High Molecular Weight Forms of Mammalian Respiratory Chain Complex II

    PubMed Central

    Nůsková, Hana; Holzerová, Eliška; Vrbacký, Marek; Pecina, Petr; Hejzlarová, Kateřina; Kľučková, Katarína; Rohlena, Jakub; Neuzil, Jiri; Houštěk, Josef

    2013-01-01

    Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 – over 1000 kDa) and cultured cells (400–670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase. PMID:23967256

  8. The Chameleonic Nature of Platinum(II) Imidazopyridine Complexes.

    PubMed

    Pinter, Piermaria; Pittkowski, Rebecca; Soellner, Johannes; Strassner, Thomas

    2017-10-12

    The synthesis and characterization of cyclometalated C^C* platinum(II) complexes with unique photophysical properties, aggregation induced enhancement of the quantum yields with a simultaneous decrease of phosphorescence lifetimes, is reported. Additionally, a change of emission color is induced by variation of the excitation wavelength. The aggregation behavior of these complexes is controlled by the steric demand of the substituents. The photophysical properties of these complexes are investigated through emission-excitation matrix analysis (EEM). The monomeric complexes are excellent room temperature phosphorescent blue emitters with emission maxima below 470 nm and quantum yields of up to 93 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Anionic Palladium(0) and Palladium(II) Ate Complexes.

    PubMed

    Kolter, Marlene; Böck, Katharina; Karaghiosoff, Konstantin; Koszinowski, Konrad

    2017-10-16

    Palladium ate complexes are frequently invoked as important intermediates in Heck and cross-coupling reactions, but so far have largely eluded characterization at the molecular level. Here, we use electrospray-ionization mass spectrometry, electrical conductivity measurements, and NMR spectroscopy to show that the electron-poor catalyst [L 3 Pd] (L=tris[3,5-bis(trifluoromethyl)phenyl]phosphine) readily reacts with Br - ions to afford the anionic, zero-valent ate complex [L 3 PdBr] - . In contrast, more-electron-rich Pd catalysts display lower tendencies toward the formation of ate complexes. Combining [L 3 Pd] with LiI and an aryl iodide substrate (ArI) results in the observation of the Pd II ate complex [L 2 Pd(Ar)I 2 ] - . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Antimicrobial effect of Cu(II) complexes containing oxime ligands.

    PubMed

    Donde, K J; Patil, V R; Malve, S P

    2004-01-01

    The antibacterial, antifungal and antitubercular activity of Cu(II) complexes was studied. All the complexes have been screened against Staphylococcus aureus, Salmonella typhi, Candida albican, Aspergillus niger, Saccharomyces cerevisiae and H37Rv and found to be more toxic than the parent ligand. The activity increased in the order Cu(5-methyl-2,3-hexanedione dioxime)2 < Cu(5-methyl-3-oximino-hexan-2-o-ne-hydrazone)2 < Cu(5-methyl-3-oximino-hexan-2-one-phenylhydrazone)2.

  11. Dinuclear complexes containing linear M-F-M [M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)] bridges: trends in structures, antiferromagnetic superexchange interactions, and spectroscopic properties.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2012-11-05

    The reaction of M(BF(4))(2)·xH(2)O, where M is Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), with the new ditopic ligand m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (L(m)*) leads to the formation of monofluoride-bridged dinuclear metallacycles of the formula [M(2)(μ-F)(μ-L(m)*)(2)](BF(4))(3). The analogous manganese(II) species, [Mn(2)(μ-F)(μ-L(m)*)(2)](ClO(4))(3), was isolated starting with Mn(ClO(4))(2)·6H(2)O using NaBF(4) as the source of the bridging fluoride. In all of these complexes, the geometry around the metal centers is trigonal bipyramidal, and the fluoride bridges are linear. The (1)H, (13)C, and (19)F NMR spectra of the zinc(II) and cadmium(II) compounds and the (113)Cd NMR of the cadmium(II) compound indicate that the metallacycles retain their structure in acetonitrile and acetone solution. The compounds with M = Mn(II), Fe(II), Co(II), Ni(II), and Cu(II) are antiferromagnetically coupled, although the magnitude of the coupling increases dramatically with the metal as one moves to the right across the periodic table: Mn(II) (-6.7 cm(-1)) < Fe(II) (-16.3 cm(-1)) < Co(II) (-24.1 cm(-1)) < Ni(II) (-39.0 cm(-1)) ≪ Cu(II) (-322 cm(-1)). High-field EPR spectra of the copper(II) complexes were interpreted using the coupled-spin Hamiltonian with g(x) = 2.150, g(y) = 2.329, g(z) = 2.010, D = 0.173 cm(-1), and E = 0.089 cm(-1). Interpretation of the EPR spectra of the iron(II) and manganese(II) complexes required the spin Hamiltonian using the noncoupled spin operators of two metal ions. The values g(x) = 2.26, g(y) = 2.29, g(z) = 1.99, J = -16.0 cm(-1), D(1) = -9.89 cm(-1), and D(12) = -0.065 cm(-1) were obtained for the iron(II) complex and g(x) = g(y) = g(z) = 2.00, D(1) = -0.3254 cm(-1), E(1) = -0.0153, J = -6.7 cm(-1), and D(12) = 0.0302 cm(-1) were found for the manganese(II) complex. Density functional theory (DFT) calculations of the exchange integrals and the zero-field splitting on manganese(II) and iron(II) ions were performed

  12. Synthesis, spectroscopic characterization, first order nonlinear optical properties and DFT calculations of novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,3-diphenyl-4-phenylazo-5-pyrazolone ligand

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, Samir A.; Mohamed, Adel A.

    2018-02-01

    Novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions with 1,3-diphenyl-4-phenylazo-5-pyrazolone (L) have been prepared and characterized using different analytical and spectroscopic techniques. 1:1 Complexes of Mn(II), Co(II) and Zn(II) are distorted octahedral whereas Ni(II) complex is square planar and Cu(II) is distorted trigonal bipyramid. 1:2 Complexes of Mn(II), Co(II), Cu(II) and Zn(II) are distorted trigonal bipyramid whereas Ni(II) complex is distorted tetrahedral. All complexes behave as non-ionic in dimethyl formamide (DMF). The electronic structure and nonlinear optical parameters (NLO) of the complexes were investigated theoretically at the B3LYP/GEN level of theory. Molecular stability and bond strengths have been investigated by applying natural bond orbital (NBO) analysis. The geometries of the studied complexes are non-planner. DFT calculations have been also carried out to calculate the global properties; hardness (η), global softness (S) and electronegativity (χ). The calculated small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within the complexes. The total static dipole moment (μtot), the mean polarizability (<α>), the anisotropy of the polarizability (Δα) and the mean first-order hyperpolarizability (<β>) were calculated and compared with urea as a reference material. The complexes show implying optical properties.

  13. Structural, spectroscopic and thermal characterization of 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester and its Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes.

    PubMed

    Mohamed, Gehad G; El-Gamel, Nadia E A

    2005-04-01

    Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.

  14. Structural characterization and antioxidant properties of Cu(II) and Ni(II) complexes derived from dicyandiamide

    NASA Astrophysics Data System (ADS)

    Kertmen, Seda Nur; Gonul, Ilyas; Kose, Muhammet

    2018-01-01

    New Cu(II) and Ni(II) complexes derived from dicyandiamide were synthesized and characterised by spectroscopic and analytical methods. Molecular structures of the complexes were determined by single crystal X-ray diffraction studies. In the complexes, the Cu(II) or Ni(II) ions are four-coordinate with a slight distorted square planar geometry. The ligands (L-nPen and L-iPen) derived from dicyandiamide formed via nucleophilic addition of alcohol solvent molecule in the presence Cu(II) or Ni(II) ions. Complexes were stabilised by intricate array of hydrogen bonding interactions. Antioxidant activity of the complexes was evaluated by DPPH radical scavenging and CUPRAC methods. The complexes exhibit antioxidant activity, however, their activities were much lower than standard antioxidants (Vitamin C and trolox).

  15. Electrochemical studies of DNA interaction and antimicrobial activities of MnII, FeIII, CoII and NiII Schiff base tetraazamacrocyclic complexes

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Vashistha, Vinod Kumar; Tevatia, Prashant; Singh, Randhir

    2017-04-01

    Tetraazamacrocyclic complexes of MnII, FeIII, CoII and NiII have been synthesized by template method. These tetraazamacrocycles have been analyzed with various techniques like molar conductance, IR, UV-vis, mass spectral and cyclic voltammetric studies. On the basis of all these studies, octahedral geometry has been assigned to these tetraazamacrocyclic complexes. The DNA binding properties of these macrocyclic complexes have been investigated by electronic absorption spectra, fluorescence spectra, cyclic voltammetric and differential pulse voltammetric studies. The cyclic voltammetric data showed that ipc and ipa were effectively decreased in the presence of calf thymus DNA, which is a strong evidence for the interaction of these macrocyclic complexes with the calf thymus DNA (ct-DNA). The heterogeneous electron transfer rate constant found in the order: KCoII > KNiII > KMnII which indicates that CoII macrocyclic complex has formed a strong intercalated intermediate. The Stern-Volmer quenching constant (KSV) and voltammetric binding constant were found in the order KSV(CoII) > KSV(NiII) > KSV(MnII) and K+(CoII) > K+(NiII) > K+(MnII) which shows that CoII macrocyclic complex exhibits the high interaction affinity towards ct-DNA by the intercalation binding. Biological studies of the macrocyclic complexes compared with the standard drug like Gentamycin, have shown antibacterial activities against E. coli, P. aeruginosa, B. cereus, S. aureus and antifungal activity against C. albicans.

  16. Homo- and Heterometallic Bis(Pentafluorobenzoyl)Methanide Complexes of Copper(II) and Cobalt(II)

    NASA Astrophysics Data System (ADS)

    Crowder, Janell M.

    beta-Diketones are well known to form metal complexes with practically every known metal and metalloid. Metal complexes of fluorinated beta-diketones generally exhibit increased volatility and thermal stability compared to the non-fluorinated analogues, and thus are used extensively in various chemical vapor deposition (CVD) processes for the deposition of metal, simple or mixed metal oxides, and fluorine-doped metal oxide thin films. Furthermore, the electron-withdrawing nature of the fluorinated ligand enhances the Lewis acidity of a coordinatively unsaturated metal center which facilitates additional coordination reactions. The physical and structural properties of fluorinated beta-diketonate complexes are discussed in Chapter 1 and a few key application examples are given. The focus of this work is the synthesis and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated metal complexes of bis(pentafluorobenzoyl)- methanide (L, C6F5COCHCOC 6F5-). In Chapter 2, we present the preparation and isolation of the unsolvated complex [Cu(L)2] in pure crystalline form for the first time. We subsequently investigated the reaction of unsolvated [Cu(L)2] with sodium hexafluoroacetylacetonate [Na(hfac)] in a solvent-free environment. This reaction allowed the isolation of the first heterometallic Na-Cu diketonate [Na2Cu2(L) 4(hfac)2] structurally characterized by single crystal X-ray crystallography. Thermal decomposition of [Na2Cu2(L) 4(hfac)2] was investigated for its potential application in MOCVD processes. In the final chapter, we present the first exploration of the anhydrous synthesis of Co(II) complexed with bis(pentafluorobenzoyl)methanide in order to produce a complex without ligated water. Single crystal X-ray crystallographic investigations revealed the isolation of the ethanol adduct, [Co2(L)4(C2H5OH)2], and following the removal of ethanol, a 1,4-dioxane adduct, [{Co 2(L)4}2(C4H8O2)]. In this work, we have provided the

  17. Phototoxicity of strained Ru(ii) complexes: is it the metal complex or the dissociating ligand?

    PubMed

    Azar, Daniel F; Audi, Hassib; Farhat, Stephanie; El-Sibai, Mirvat; Abi-Habib, Ralph J; Khnayzer, Rony S

    2017-09-12

    A photochemically dissociating ligand in Ru(bpy) 2 (dmphen)Cl 2 [bpy = 2,2'-bipyridine; dmphen = 2,9-dimethyl-1,10-phenanthroline] was found to be more cytotoxic on the ML-2 Acute Myeloid Leukemia cell line than Ru(bpy) 2 (H 2 O) 2 2+ and prototypical cisplatin. Our findings illustrate the potential potency of diimine ligands in photoactivatable Ru(ii) complexes.

  18. Complex I-complex II ratio strongly differs in various organs of Arabidopsis thaliana.

    PubMed

    Peters, Katrin; Niessen, Markus; Peterhänsel, Christoph; Späth, Bettina; Hölzle, Angela; Binder, Stefan; Marchfelder, Anita; Braun, Hans-Peter

    2012-06-01

    In most studies, amounts of protein complexes of the oxidative phosphorylation (OXPHOS) system in different organs or tissues are quantified on the basis of isolated mitochondrial fractions. However, yield of mitochondrial isolations might differ with respect to tissue type due to varying efficiencies of cell disruption during organelle isolation procedures or due to tissue-specific properties of organelles. Here we report an immunological investigation on the ratio of the OXPHOS complexes in different tissues of Arabidopsis thaliana which is based on total protein fractions isolated from five Arabidopsis organs (leaves, stems, flowers, roots and seeds) and from callus. Antibodies were generated against one surface exposed subunit of each of the five OXPHOS complexes and used for systematic immunoblotting experiments. Amounts of all complexes are highest in flowers (likewise with respect to organ fresh weight or total protein content of the flower fraction). Relative amounts of protein complexes in all other fractions were determined with respect to their amounts in flowers. Our investigation reveals high relative amounts of complex I in green organs (leaves and stems) but much lower amounts in non-green organs (roots, callus tissue). In contrast, complex II only is represented by low relative amounts in green organs but by significantly higher amounts in non-green organs, especially in seeds. In fact, the complex I-complex II ratio differs by factor 37 between callus and leaf, indicating drastic differences in electron entry into the respiratory chain in these two fractions. Variation in amounts concerning complexes III, IV and V was less pronounced in different Arabidopsis tissues (quantification of complex V in leaves was not meaningful due to a cross-reaction of the antibody with the chloroplast form of this enzyme). Analyses were complemented by in gel activity measurements for the protein complexes of the OXPHOS system and comparative 2D blue native/SDS PAGE

  19. Synthesis and in vitro antibacterial activity of new steroidal thiosemicarbazone derivatives.

    PubMed

    Khan, Salman Ahmad; Kumar, Praveen; Joshi, Rajkumar; Iqbal, Prince F; Saleem, Kishwar

    2008-09-01

    We investigated the antibacterial activity of some new steroidal thiosemicarbazone derivatives, prepared from the reaction of cholest-5-en-7-one with thiosemicarbazides, in ethanol in the presence of a few drops of HCl at 80 degrees C in high yield. All the compounds have been characterized by means of elemental analyses, IR, 1H NMR and mass spectroscopic data, to find an effective antibacterial agent. The antibacterial activity was first tested in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria, and then the minimum inhibitory concentration (MIC) of compounds was determined. The results showed that the steroidal thiosemicarbazones derivatives inhibit growth of both types of the bacteria (Gram-positive and Gram-negative). The acetoxy and chloro derivatives of cyclopentyl and cyclohexyl amine thiosemicarbazones were found to have more antibacterial activity than the other derivatives.

  20. Neuroprotective Effects and Mechanisms of Curcumin-Cu(II) and -Zn(II) Complexes Systems and Their Pharmacological Implications.

    PubMed

    Yan, Fa-Shun; Sun, Jian-Long; Xie, Wen-Hai; Shen, Liang; Ji, Hong-Fang

    2017-12-28

    Alzheimer's disease (AD) is the main form of dementia and has a steadily increasing prevalence. As both oxidative stress and metal homeostasis are involved in the pathogenesis of AD, it would be interesting to develop a dual function agent, targeting the two factors. Curcumin, a natural compound isolated from the rhizome of Curcuma longa , is an antioxidant and can also chelate metal ions. Whether the complexes of curcumin with metal ions possess neuroprotective effects has not been evaluated. Therefore, the present study was designed to investigate the protective effects of the complexes of curcumin with Cu(II) or Zn(II) on hydrogen peroxide (H₂O₂)-induced injury and the underlying molecular mechanisms. The use of rat pheochromocytoma (PC12) cells, a widely used neuronal cell model system, was adopted. It was revealed that curcumin-Cu(II) complexes systems possessed enhanced O₂ ·- -scavenging activities compared to unchelated curcumin. In comparison with unchelated curcumin, the protective effects of curcumin-Cu(II) complexes systems were stronger than curcumin-Zn(II) system. Curcumin-Cu(II) or -Zn(II) complexes systems significantly enhanced the superoxide dismutase, catalase, and glutathione peroxidase activities and attenuated the increase of malondialdehyde levels and caspase-3 and caspase-9 activities, in a dose-dependent manner. The curcumin-Cu(II) complex system with a 2:1 ratio exhibited the most significant effect. Further mechanistic study demonstrated that curcumin-Cu(II) or -Zn(II) complexes systems inhibited cell apoptosis via downregulating the nuclear factor κB (NF-κB) pathway and upregulating Bcl-2/Bax pathway. In summary, the present study found that curcumin-Cu(II) or -Zn(II) complexes systems, especially the former, possess significant neuroprotective effects, which indicates the potential advantage of curcumin as a promising agent against AD and deserves further study.

  1. Synthesis and characterization of new complexes of nickel (II), palladium (II) and platinum(II) with derived sulfonamide ligand: Structure, DFT study, antibacterial and cytotoxicity activities

    NASA Astrophysics Data System (ADS)

    Bouchoucha, Afaf; Zaater, Sihem; Bouacida, Sofiane; Merazig, Hocine; Djabbar, Safia

    2018-06-01

    The synthesis, characterization and biological study of new nickel (II), palladium (II), and platinum (II) complexes with sulfamethoxazole ligand used in pharmaceutical field, were reported. [MLCl2].nH2O is the general formula obtained for Pd(II) and Pt(II) complexes. These complexes have been prepared and characterized by elemental analysis, FTIR, 1HNMR spectral, magnetic measurements, UV-Visible spectra, and conductivity. The DFT calculation was applied to optimize the geometric structure of the Pd(II) and Pt(II) complexes. A new single-crystal X-ray structure of the Ni(II) complex has been determined. It crystallized in monoclinic system with P 21/c space group and Z = 8. The invitro antibacterial activity of ligand and complexes against Escherichia coli, P. aeruginosa, Klebsiella pneumoniae, S. aureus, Bacillus subtilis species has been carried out and compared using agar-diffusion method. The Pd(II) and Pt(II) complexes showed a remarkable inhibition against bacteria tested. The invitro cytotoxicity assay of the complexes against three cell lines chronic myelogenous leukaemia (K562), human colon adenocarcinoma (HT-29) and breast cancer (MCF-7) was also reported.

  2. Inhibition of Bovine Viral Diarrhea Virus RNA Synthesis by Thiosemicarbazone Derived from 5,6-Dimethoxy-1-Indanone▿

    PubMed Central

    Castro, Eliana F.; Fabian, Lucas E.; Caputto, María E.; Gagey, Dolores; Finkielsztein, Liliana M.; Moltrasio, Graciela Y.; Moglioni, Albertina G.; Campos, Rodolfo H.; Cavallaro, Lucía V.

    2011-01-01

    In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV). PMID:21430053

  3. Inhibition of bovine viral diarrhea virus RNA synthesis by thiosemicarbazone derived from 5,6-dimethoxy-1-indanone.

    PubMed

    Castro, Eliana F; Fabian, Lucas E; Caputto, María E; Gagey, Dolores; Finkielsztein, Liliana M; Moltrasio, Graciela Y; Moglioni, Albertina G; Campos, Rodolfo H; Cavallaro, Lucía V

    2011-06-01

    In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV).

  4. Studies on Some Biologically Cobalt(II), Copper(II) and Zinc(II) Complexes With ONO, NNO and SNO Donor Pyrazinoylhydrazine-Derived Ligands

    PubMed Central

    Praveen, Marapaka; Sherazi, Syed K. A.

    1998-01-01

    Biologically active complexes of Co(II), Ni(II), Cu(II) and Zn(II) with novel ONO, NNO and SNO donor pyrazinoylhydrazine-derived compounds have been prepared and characterized on the basis of analytical data and various physicochemical studies. Distorted octahedral structures for all the complexes have been proposed. The synthesized ligands and their complexes have been screened for their antibacterial activity against bacterial species Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumonae. The activity data show the metal complexes to be more active than the parent free ligands against one or more bacterial species. PMID:18475857

  5. Heptacopper(II) and dicopper(II)-adenine complexes: synthesis, structural characterization, and magnetic properties

    DOE PAGES

    Leite Ferreira, B. J. M.; Brandão, Paula; Dos Santos, A. M.; ...

    2015-07-13

    The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu 7(μ 2-OH 2) 6(μ 3-O) 6(adenine) 6(NO 3) 26H 2O (1) and [Cu 2(μ 2-H 2O) 2(adenine) 2(H 2O) 4](NO 3) 42H 2O (2) are reported. We composed the heptanuclear compound of a central octahedral CuO 6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn-Teller distorted octahedralmore » coordination characteristic of a d 9 center. Our study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-cluster interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.« less

  6. Theoretical Study of Free Energy in Docking Stability of Azurin(II)-Cytochrome c551(II) Complex System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsunori; Nishikawa, Keigo; Sugiyama, Ayumu; Purqon, Acep; Mizukami, Taku; Shimahara, Hideto; Nagao, Hidemi; Nishikawa, Kiyoshi

    2008-02-01

    The docking structure of the Azurin-Cytochrome C551 is presented. We investigate a complex system of Azurin(II)-Cytochrome C551(II) by using molecular dynamics simulation. We estimate some physical properties, such as root-mean-square deviation (RMSD), binding energy between Azurin and Cytochrome C551, distance between Azurin(II) and Cytochrome C551(II) through center of mass and each active site. We also discuss docking stability in relation to the configuration by free energy between Azurin(II)-Cytochrome C551(II) and Azurin(I)-Cytochrome C551(III).

  7. Anticancer, antibacterial and antifungal activity of new ni (ii) and cu (ii) complexes of imidazole-phenanthroline derivatives.

    PubMed

    Moghadam, Mahboube Eslami; Divsalar, Adeleh; Zare, Marziye Shahraki; Gholizadeh, Roghayeh; Mahalleh, Doran; Saghatforosh, Lotfali; Sanati, Soheila

    2017-11-02

    Two new nickel(II) and copper(II) complexes of 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1,10]Phenanthroline (FIP) and 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (TIP), imidazophen derivatives were synthesized. The structures of the compounds were determined by UV-visible and FT-IR spectroscopic methods and elemental analysis. The biological activities of Ni and Cu complexes, as anticancer agents, were tested against chronic myelogenous leukemia cell line, K562, at micromolar concentration. The MTT studies showed Cc 50 values are 21 and 160 µM for Cu and Ni(II) complexes, respectively; suggesting that Ni (II) complex has Cc 50 almost seven times of that obtained for cisplatin. Biological activity of the Ni(II) and Cu(II) complexes were also assayed against selective microorganisms by disc diffusion method. These results showed that the Cu(II) complex is antifungal agent but Ni(II) complex has antibacterial activity.

  8. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    NASA Astrophysics Data System (ADS)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  9. High-spin ribbons and antiferromagnetic ordering of a Mn(II)-biradical-Mn(II) complex.

    PubMed

    Fatila, Elisabeth M; Clérac, Rodolphe; Rouzières, Mathieu; Soldatov, Dmitriy V; Jennings, Michael; Preuss, Kathryn E

    2013-09-11

    A binuclear metal coordination complex of the first thiazyl-based biradical ligand 1 is reported (1 = 4,6-bis(1,2,3,5-dithiadiazolyl)pyrimidine; hfac =1,1,1,5,5,5,-hexafluoroacetylacetonato-). The Mn(hfac)2-biradical-Mn(hfac)2 complex 2 is a rare example of a discrete, molecular species employing a neutral bridging biradical ligand. It is soluble in common organic solvents and can be easily sublimed as a crystalline solid. Complex 2 has a spin ground state of S(T) = 4 resulting from antiferromagnetic coupling between the S(birad) = 1 biradical bridging ligand and two S(Mn) = 5/2 Mn(II) ions. Electrostatic contacts between atoms with large spin density promote a ferromagnetic arrangement of the moments of neighboring complexes in ribbon-like arrays. Weak antiferromagnetic coupling between these high-spin ribbons stabilizes an ordered antiferromagnetic ground state below 4.5 K. This is an unusual example of magnetic ordering in a molecular metal-radical complex, wherein the electrostatic contacts that direct the crystal packing are also responsible for providing an efficient exchange coupling pathway between molecules.

  10. Coordination of different ligands to copper(II) and cobalt(III) metal centers enhances Zika virus and dengue virus loads in both arthropod cells and human keratinocytes.

    PubMed

    Dutta, Shovan; Celestine, Michael J; Khanal, Supreet; Huddleston, Alexis; Simms, Colin; Arca, Jessa Faye; Mitra, Amlan; Heller, Loree; Kraj, Piotr J; Ledizet, Michel; Anderson, John F; Neelakanta, Girish; Holder, Alvin A; Sultana, Hameeda

    2018-01-01

    Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen) 2 ]Cl 2 , (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen) 3 ]Cl 3 , (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl 2 ·2H 2 O) or cobalt(II) chloride hexahydrate (CoCl 2 ·6H 2 O) alone had no effects as "free" cations

  11. Iron-Targeting Antitumor Activity of Gallium Compounds and Novel Insights Into Triapine®-Metal Complexes

    PubMed Central

    Antholine, William E.

    2013-01-01

    Abstract Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine® has demonstrated activity against other tumors. Critical Issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future Directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it. Antioxid. Redox Signal. 00, 000–000. PMID:22900955

  12. Iron-targeting antitumor activity of gallium compounds and novel insights into triapine(®)-metal complexes.

    PubMed

    Chitambar, Christopher R; Antholine, William E

    2013-03-10

    Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine(®) has demonstrated activity against other tumors. Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it.

  13. Diaryl-1,2,3-Triazolylidene Platinum(II) Complexes.

    PubMed

    Soellner, Johannes; Strassner, Thomas

    2018-04-11

    Control of the excited state geometry by rational ligand design leads to a new class of phosphorescent emitters with extraordinary photophysical properties. Extension of the π-system in the triplet state leading to a significant bathochromic shift of the emission was avoided by introduction of additional steric demand. We report the synthesis, characterization and photophysical properties of novel platinum(II) complexes bearing C^C* cyclometalated mesoionic carbene (MIC) with different β-diketonate ligands. The MIC ligand precursors were prepared from 1-phenyl-1,2,3-triazole using arylation protocols, introducing phenyl or mesityl functionalities. A solid state structure confirming the NMR assignments is presented. The emission properties were investigated in detail at room temperature and 77 K and are supported by DFT calculations and cyclic voltammetry. All complexes, with emission maxima between 502-534 nm, emit with quantum efficiencies ranging from 70-84 % in PMMA films. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A novel series of thiosemicarbazone drugs: From synthesis to structure

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S.; Alsalim, Tahseen A.; Ghali, Thaer S.; Bolandnazar, Zeinab

    2015-02-01

    A new series of thiosemicarbazones (TSCs) and their 1,3,4-thiadiazolines (TDZs) containing acetamide group have been synthesized from thiosemicarbazide compounds by the reaction of TSCs with cyclic ketones as well as aromatic aldehydes. The structures of newly synthesized 1,3,4-thiadiazole derivatives obtained by heterocyclization of the TSCs with acetic anhydride were experimentally characterized by spectral methods using IR, 1H NMR, 13C NMR and mass spectroscopic methods. Furthermore, the structural, thermodynamic, and electronic properties of the studied compounds were also studied theoretically by performing Density Functional Theory (DFT) to access reliable results to the experimental values. The molecular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and Mulliken atomic charges of the studied compounds have been calculated at the B3LYP method and standard 6-31+G(d,p) basis set starting from optimized geometry. The theoretical 13C chemical shift results were also calculated using the gauge independent atomic orbital (GIAO) approach and their respective linear correlations were obtained.

  15. Spectral simplicity of apparent complexity. II. Exact complexities and complexity spectra

    NASA Astrophysics Data System (ADS)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    The meromorphic functional calculus developed in Part I overcomes the nondiagonalizability of linear operators that arises often in the temporal evolution of complex systems and is generic to the metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive closed-form expressions for correlation functions, finite-length Shannon entropy-rate approximates, asymptotic entropy rate, excess entropy, transient information, transient and asymptotic state uncertainties, and synchronization information of stochastic processes generated by finite-state hidden Markov models. This introduces analytical tractability to investigating information processing in discrete-event stochastic processes, symbolic dynamics, and chaotic dynamical systems. Comparisons reveal mathematical similarities between complexity measures originally thought to capture distinct informational and computational properties. We also introduce a new kind of spectral analysis via coronal spectrograms and the frequency-dependent spectra of past-future mutual information. We analyze a number of examples to illustrate the methods, emphasizing processes with multivariate dependencies beyond pairwise correlation. This includes spectral decomposition calculations for one representative example in full detail.

  16. Composition, Characterization and Antibacterial activity of Mn(II), Co(II),Ni(II), Cu(II) Zn(II) and Cd(II) mixed ligand complexes Schiff base derived from Trimethoprim with 8-Hydroxy quinoline

    NASA Astrophysics Data System (ADS)

    Numan, Ahmed T.; Atiyah, Eman M.; Al-Shemary, Rehab K.; Ulrazzaq, Sahira S. Abd

    2018-05-01

    New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin-2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment measurements. These measurements indicate that the ligand [HL] coordinates with metal (II) ion in a tridentate manner through the oxygen and nitrogen atoms of the ligand, octahedral structures are suggested for these complexes. Antibacterial activity of the ligands [HL], [HQ] and their complexes are studied against (gram positive) and (gram negative) bacteria.

  17. Bipyrimidine ruthenium(II) arene complexes: structure, reactivity and cytotoxicity.

    PubMed

    Betanzos-Lara, Soledad; Novakova, Olga; Deeth, Robert J; Pizarro, Ana M; Clarkson, Guy J; Liskova, Barbora; Brabec, Viktor; Sadler, Peter J; Habtemariam, Abraha

    2012-10-01

    The synthesis and characterization of complexes [(η(6)-arene)Ru(N,N')X][PF(6)], where arene is para-cymene (p-cym), biphenyl (bip), ethyl benzoate (etb), hexamethylbenzene (hmb), indane (ind) or 1,2,3,4-tetrahydronaphthalene (thn), N,N' is 2,2'-bipyrimidine (bpm) and X is Cl, Br or I, are reported, including the X-ray crystal structures of [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)I][PF(6)] and [(η(6)-etb)Ru(bpm)Cl][PF(6)]. Complexes in which N,N' is 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione or 4,7-diphenyl-1,10-phenanthroline (bathophen) were studied for comparison. The Ru(II) arene complexes undergo ligand-exchange reactions in aqueous solution at 310 K; their half-lives for hydrolysis range from 14 to 715 min. Density functional theory calculations on [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-p-cym)Ru(bpm)Br][PF(6)], [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)Br][PF(6)] and [(η(6)-bip)Ru(bpm)I][PF(6)] suggest that aquation occurs via an associative pathway and that the reaction is thermodynamically favourable when the leaving ligand is I > Br ≈ Cl. pK (a)* values for the aqua adducts of the complexes range from 6.9 to 7.32. A binding preference for 9-ethylguanine (9-EtG) compared with 9-ethyladenine (9-EtA) was observed for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-hmb)Ru(bpm)Cl](+), [(η(6)-ind)Ru(bpm)Cl](+), [(η(6)-thn)Ru(bpm)Cl](+), [(η(6)-p-cym)Ru(phen)Cl](+) and [(η(6)-p-cym)Ru(bathophen)Cl](+) in aqueous solution at 310 K. The X-ray crystal structure of the guanine complex [(η(6)-p-cym)Ru(bpm)(9-EtG-N7)][PF(6)](2) shows multiple hydrogen bonding. Density functional theory calculations show that the 9-EtG adducts of all complexes are thermodynamically preferred compared with those of 9-EtA. However, the bmp complexes are inactive towards A2780 human ovarian cancer cells. Calf thymus DNA interactions for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)] and [(η(6)-p

  18. Synthesis, characterization, thermal and biological evaluation of Cu (II), Co (II) and Ni (II) complexes of azo dye ligand containing sulfamethaxazole moiety

    NASA Astrophysics Data System (ADS)

    Mallikarjuna, N. M.; Keshavayya, J.; Maliyappa, M. R.; Shoukat Ali, R. A.; Venkatesh, Talavara

    2018-08-01

    A novel bioactive Cu (II), Co (II) and Ni (II) complexes of the azo dye ligand (L) derived from sulfamethoxazole were synthesized. The structures of the newly synthesized compounds were characterized by elemental analysis, molar conductance, magnetic susceptibility, FTIR, UV-visible, 1H NMR, mass, thermal and powder XRD spectral techniques. Molar conductivity measurements in DMSO solution confirmed the non-electrolytic nature of the complexes. All the synthesized metal complexes were found to be monomeric and showed square planar geometry except the Co (II) complex which has six coordinate, octahedral environment. The metal complexes have exhibited potential growth inhibitory effect against tested bacterial strains as compared to the free ligand. The ligand and complexes have also shown significant antioxidant and Calf Thymus DNA cleavage activities. Further, the in silico molecular docking studies were performed to predict the possible binding sites of the ligand (L) and its metal complexes with target receptor Glu-6P.

  19. Synthesis, characterization and in vitro anticancer activity of 18-membered octaazamacrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II)

    NASA Astrophysics Data System (ADS)

    Kareem, Abdul; Zafar, Hina; Sherwani, Asif; Mohammad, Owais; Khan, Tahir Ali

    2014-10-01

    An effective series of 18 membered octaazamacrocyclic complexes of the type [MLX2], where X = Cl or NO3 have been synthesized by template condensation reaction of oxalyl dihydrazide with dibenzoylmethane and metal salt in 2:2:1 molar ratio. The formation of macrocyclic framework, stereochemistry and their overall geometry have been characterized by various physico-chemical studies viz., elemental analysis, electron spray ionization-mass spectrometry (ESI-MS), I.R, UV-Vis, 1H NMR, 13C NMR spectroscopy, X-ray diffraction (XRD) and TGA/DTA studies. These studies suggest formation of octahedral macrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II). The molar conductance values suggest nonelectrolytic nature for all the complexes. Thermogravimatric analysis shows that all the complexes are stable up to 600 °C. All these complexes have been tested against different human cancer cell lines i.e. human hepatocellular carcinoma (Hep3B), human cervical carcinoma (HeLa), human breast adenocarcinoma (MCF7) and normal cells (PBMC). The newly synthesized 18-membered octaazamacrocyclic complexes during in vitro anticancer evaluation, displayed moderate to good cytotoxicity on liver (Hep3B), cervical (HeLa) and breast (MCF7) cancer cell lines, respectively. The most effective anticancer cadmium complex (C34H28N10CdO10) was found to be active with IC50 values, 2.44 ± 1.500, 3.55 ± 1.600 and 4.82 ± 1.400 in micro-molar on liver, cervical and breast cancer cell lines, respectively.

  20. Design, synthesis, spectral characterization, DNA interaction and biological activity studies of copper(II), cobalt(II) and nickel(II) complexes of 6-amino benzothiazole derivatives

    NASA Astrophysics Data System (ADS)

    Daravath, Sreenu; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Ganji, Nirmala; Shivaraj

    2017-09-01

    Two novel Schiff bases, L1 = (2-benzo[d]thiazol-6-ylimino)methyl)-4,6-dichlorophenol), L2 = (1-benzo[d]thiazol-6-ylimino)methyl)-6-bromo-4-chlorophenol) and their bivalent transition metal complexes [M(L1)2] and [M(L2)2], where M = Cu(II), Co(II) and Ni(II) were synthesized and characterized by elemental analysis, NMR, IR, UV-visible, mass, magnetic moments, ESR, TGA, SEM, EDX and powder XRD. Based on the experimental data a square planar geometry around the metal ion is assigned to all the complexes (1a-2c). The interaction of synthesized metal complexes with calf thymus DNA was explored using UV-visible absorption spectra, fluorescence and viscosity measurements. The experimental evidence indicated that all the metal complexes strongly bound to CT-DNA through an intercalation mode. DNA cleavage experiments of metal(II) complexes with supercoiled pBR322 DNA have also been explored by gel electrophoresis in the presence of H2O2 as well as UV light, and it is found that the Cu(II) complexes cleaved DNA more effectively compared to Co(II), Ni(II) complexes. In addition, the ligands and their metal complexes were screened for antimicrobial activity and it is found that all the metal complexes were more potent than free ligands.

  1. Revisiting the thiosemicarbazonecopper(II) reaction with glutathione. Activity against colorectal carcinoma cell lines.

    PubMed

    García-Tojal, Javier; Gil-García, Rubén; Fouz, Víctor Ivo; Madariaga, Gotzon; Lezama, Luis; Galletero, María S; Borrás, Joaquín; Nollmann, Friederike I; García-Girón, Carlos; Alcaraz, Raquel; Cavia-Saiz, Mónica; Muñiz, Pilar; Palacios, Òscar; Samper, Katia G; Rojo, Teófilo

    2018-03-01

    Thiosemicarbazones (TSCs), and their copper derivatives, have been extensively studied mainly due to the potential applications as antitumor compounds. A part of the biological activity of the TSC-Cu II complexes rests on their reactivity against cell reductants, as glutathione (GSH). The present paper describes the structure of the [Cu(PTSC)(ONO 2 )] n compound (1) (HPTSC=pyridine-2-carbaldehyde thiosemicarbazone) and its spectroscopic and magnetic properties. ESI studies performed on the reaction of GSH with 1 and the analogous [{Cu(PTSC*)(ONO 2 )} 2 ] derivative (2, HPTSC*=pyridine-2-carbaldehyde 4N-methylthiosemicarbazone) show the absence of peaks related with TSC-Cu-GSH species. However GSH-Cu ones are detected, in good agreement with the release of Cu I ions after reduction in the experimental conditions. The reactivity of 1 and 2 with cytochrome c and myoglobin and their activities against HT-29 and SW-480 colon carcinoma cell lines are compared with those shown by the free HPTSC and HPTSC* ligands. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Mononuclear nickel (II) and copper (II) coordination complexes supported by bispicen ligand derivatives: Experimental and computational studies

    SciTech Connect

    Singh, Nirupama; Niklas, Jens; Poluektov, Oleg

    2017-01-01

    The synthesis, characterization and density functional theory calculations of mononuclear Ni and Cu complexes supported by the N,N’-Dimethyl-N,N’-bis-(pyridine-2-ylmethyl)-1,2-diaminoethane ligand and its derivatives are reported. The complexes were characterized by X-ray crystallography as well as by UV-visible absorption spectroscopy and EPR spectroscopy. The solid state structure of these coordination complexes revealed that the geometry of the complex depended on the identity of the metal center. Solution phase characterization data are in accord with the solid phase structure, indicating minimal structural changes in solution. Optical spectroscopy revealed that all of the complexes exhibit color owing to d-d transition bands in the visiblemore » region. Magnetic parameters obtained from EPR spectroscopy with other structural data suggest that the Ni(II) complexes are in pseudo-octahedral geometry and Cu(II) complexes are in a distorted square pyramidal geometry. In order to understand in detail how ligand sterics and electronics affect complex topology detailed computational studies were performed. The series of complexes reported in this article will add significant value in the field of coordination chemistry as Ni(II) and Cu(II) complexes supported by tetradentate pyridyl based ligands are rather scarce.« less

  3. Reactions of Pd(II) and Pt(II) Complexes With Tetraethylthiouram Disulfide

    PubMed Central

    Cervantes, G.; Molins, E.; Miravitlles, C.

    1997-01-01

    The reactions of tetraethylthiouram disulfide (DTS), an inhibitor of the nephrotoxicity of Pt(II) drugs, an efficient agent in the treatment of chronic alcoholism, in the treatment of HIV infections, AIDS and heavy metal toxicity, and a fungicide and herbicide, with K2[PtCl4], in ratio 1:1 and 1:2, gave the compounds [PtCl2DTS] and [Pt(S2CNEt2)2] respectively. The reaction of the complexes K2[PdCl4], Pd(AcO)2 and [PdCl2(PhCN)2], where PhCN = Benzonitrile, with tetraethylthiouram disulfide in ratio 1:1 or 1:2, yielded orange crystals identified as [Pd(S2CNEt2)2]. The crystals were suitable for study by X-ray diffraction. The -S-S- bridge in the tetraethylthiouram disulfude molecule was broken and the two molecules of the thiocarbamate derivative were bound to the Pd(II) by the equivalents sulfur atoms. All the compounds were characterized by IR, 1H and 13C NMR spectroscopies. PMID:18475812

  4. Physicochemical impact studies of gamma rays on "aspirin" analgesics drug and its metal complexes in solid form: Synthesis, spectroscopic and biological assessment of Ca(II), Mg(II), Sr(II) and Ba(II) aspirinate complexes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Sharshar, T.; Elsabawy, Khaled M.; Heiba, Zein K.

    2013-09-01

    Metal aspirinate complexes, M2(Asp)4, where M is Mg(II), Ca(II), Sr(II) or Ba(II) are formed by refluxed of aspirin (Asp) with divalent non-transition metal ions of group (II) and characterized by elemental analysis and spectroscopic measurements (infrared, electronic, 1H NMR, Raman, X-ray powder diffraction and scanning electron microscopy). Elemental analysis of the chelates suggests the stoichiometry is 1:2 (metal:ligand). Infrared spectra of the complexes agree with the coordination to the central metal atom through three donation sites of two oxygen atoms of bridge bidentate carboxylate group and oxygen atom of sbnd Cdbnd O of acetyl group. Infrared spectra coupled with the results of elemental analyzes suggested a distorted octahedral structure for the M(II) aspirinate complexes. Gamma irradiation was tested as a method for stabilization of aspirin as well as their complexes. The effect of gamma irradiation, with dose of 80 Gy, on the properties of aspirinate complexes was studied. The aspirinate chelates have been screened for their in vitro antibacterial activity against four bacteria, gram-positive (Bacillus subtilis and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two strains of fungus (Aspergillus flavus and Candida albicans). The metal chelates were shown to possess more antibacterial activity than the free aspirin chelate.

  5. Synthesis, spectroscopic characterization and biological activities of N4O2 Schiff base ligand and its metal complexes of Co(II), Ni(II), Cu(II) and Zn(II)

    NASA Astrophysics Data System (ADS)

    Al-Resayes, Saud I.; Shakir, Mohammad; Abbasi, Ambreen; Amin, Kr. Mohammad Yusuf; Lateef, Abdul

    The Schiff base ligand, bis(indoline-2-one)triethylenetetramine (L) obtained from condensation of triethylenetetramine and isatin was used to synthesize the complexes of type, [ML]Cl2 [M = Co(II), Ni(II), Cu(II) and Zn(II)]. L was characterized on the basis of the results of elemental analysis, FT-IR, 1H and 13C NMR, mass spectroscopic studies. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility values, molar conductance and various spectroscopic studies. EPR, UV-vis and magnetic moments revealed an octahedral geometry for complexes. L and its Cu(II) and Zn(II) complexes were screened for their antibacterial activity. Analgesic activity of Cu(II) and Zn(II) complexes was also tested in rats by tail flick method. Both complexes were found to possess good antibacterial and moderate analgesic activity.

  6. Metal (II) Complexes Derived from Naphthofuran-2-carbohydrazide and Diacetylmonoxime Schiff Base: Synthesis, Spectroscopic, Electrochemical, and Biological Investigation

    PubMed Central

    Sumathi, R. B.; Halli, M. B.

    2014-01-01

    A new Schiff base and a new series of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) complexes were synthesized by the condensation of naphthofuran-2-carbohydrazide and diacetylmonoxime. Metal complexes of the Schiff base were prepared from their chloride salts of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) in ethanol. The ligand along with its metal complexes have been characterized on the basis of analytical data, IR, electronic, mass, 1HNMR, ESR spectral data, thermal studies, magnetic susceptibility, and molar conductance measurements. The nonelectrolytic behaviour of the complexes was assessed from the measured low conductance data. The elemental analysis of the complexes confirm the stoichiometry of the type CuL2Cl2 and MLCl2 where M = Ni(II), Co(II), Cd(II), and Hg(II) and L = Schiff base. The redox property of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In the light of these results, Co(II), Ni(II), and Cu(II) complexes are assigned octahedral geometry, Cd(II), and Hg(II) complexes tetrahedral geometry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleaving capacity of all the complexes was analysed by agarose gel electrophoresis method. PMID:24592203

  7. Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction

    PubMed Central

    Hwang, M-S; Schwall, C T; Pazarentzos, E; Datler, C; Alder, N N; Grimm, S

    2014-01-01

    Massive Ca2+ influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca2+ influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca2+-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca2+ binding. Cardiolipin is known to associate with complex II and upon Ca2+ binding coalesces into separate homotypic clusters. When complex II is deprived of this lipid, it disintegrates for ROS formation and cell death. Our results reveal Ca2+ binding to cardiolipin for complex II disintegration as a pivotal step for oxidative stress and cell death induction. PMID:24948011

  8. Tripeptidyl peptidase II. An oligomeric protease complex from Arabidopsis.

    PubMed

    Book, Adam J; Yang, Peizhen; Scalf, Mark; Smith, Lloyd M; Vierstra, Richard D

    2005-06-01

    The breakdown of most nuclear and cytoplasmic proteins involves their partial cleavage by the 26S proteasome followed by further disassembly to free amino acids by the combined action of endo- and exopeptidases. In animals, one important intermediate exopeptidase is tripeptidyl peptidase (TPP)II, which digests peptide products of the 26S proteasome and other endopeptidases into tripeptides. Here, we describe the purification and characterization of TPPII from Arabidopsis (Arabidopsis thaliana). Like its animal counterparts, Arabidopsis TPPII exists as a soluble, approximately 5- to 9-MD complex. Two related species of 153 and 142 kD are present in the purified preparations that are derived from a single TPP2 gene. Sequencing by Edman degradation of the intact polypeptides and mass spectrometry of proteolytic fragments demonstrated that the 142-kD form mainly differs from the 153-kD form by a truncation at the C-terminal end. This serine protease is a member of the subtilisin superfamily and is sensitive to the inhibitors alanine-alanine-phenylalanine-chloromethylketone and butabindide, which are diagnostic for the TPPII subfamily. The Arabidopsis TPP2 gene is widely expressed in many tissue types with related genes evident in other plant genomes. Whereas the 26S proteasome is essential, TPPII appears not as important for plant physiology. An Arabidopsis T-DNA mutant defective in TPP2 expression displays no phenotypic abnormalities and is not hypersensitive to either amino acid analogs or the 26S proteasome inhibitor MG132. As a consequence, plants likely contain other intermediate exopeptidases that assist in amino acid recycling.

  9. Tripeptidyl Peptidase II. An Oligomeric Protease Complex from Arabidopsis1

    PubMed Central

    Book, Adam J.; Yang, Peizhen; Scalf, Mark; Smith, Lloyd M.; Vierstra, Richard D.

    2005-01-01

    The breakdown of most nuclear and cytoplasmic proteins involves their partial cleavage by the 26S proteasome followed by further disassembly to free amino acids by the combined action of endo- and exopeptidases. In animals, one important intermediate exopeptidase is tripeptidyl peptidase (TPP)II, which digests peptide products of the 26S proteasome and other endopeptidases into tripeptides. Here, we describe the purification and characterization of TPPII from Arabidopsis (Arabidopsis thaliana). Like its animal counterparts, Arabidopsis TPPII exists as a soluble, approximately 5- to 9-MD complex. Two related species of 153 and 142 kD are present in the purified preparations that are derived from a single TPP2 gene. Sequencing by Edman degradation of the intact polypeptides and mass spectrometry of proteolytic fragments demonstrated that the 142-kD form mainly differs from the 153-kD form by a truncation at the C-terminal end. This serine protease is a member of the subtilisin superfamily and is sensitive to the inhibitors alanine-alanine-phenylalanine-chloromethylketone and butabindide, which are diagnostic for the TPPII subfamily. The Arabidopsis TPP2 gene is widely expressed in many tissue types with related genes evident in other plant genomes. Whereas the 26S proteasome is essential, TPPII appears not as important for plant physiology. An Arabidopsis T-DNA mutant defective in TPP2 expression displays no phenotypic abnormalities and is not hypersensitive to either amino acid analogs or the 26S proteasome inhibitor MG132. As a consequence, plants likely contain other intermediate exopeptidases that assist in amino acid recycling. PMID:15908606

  10. Structural and Biological Behaviour of Co(II), Cu(II) and Ni(II) Metal Complexes of Some Amino Acid Derived Schiff-Bases

    PubMed Central

    Chohan, Zahid H.; Praveen, M.; Ghaffar, A.

    1997-01-01

    Biologically active tridentate amino acid (Alanine, Glycine & Tyrosine) derived Schiff-bases and their Co(II), Cu(II) & Ni(II) complexes have been synthesised and characterised on the basis of their conductance and magnetic measurements, elemental analysis and 13C-NMR, 1H-NMR, IR and electronic spectral data. These Schiff-bases and their complexes have been evaluated for their antibacterial activity against bacterial species such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumonae, Proteus vulgarus and Pseudomonas aeruginosa and this activity data show the metal complexes to be more antibacterial than the Schiff-bases against one or more bacterial species. PMID:18475798

  11. Zeolite-encapsulated Co(II), Mn(II), Cu(II) and Cr(III) salen complexes as catalysts for efficient selective oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.

    2018-01-01

    Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.

  12. Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.

    2012-11-01

    Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.

  13. Assembly and Properties of Heterobimetallic CoII/III/CaII Complexes with Aquo and Hydroxo Ligands

    PubMed Central

    Lacy, David C.; Park, Young Jun; Ziller, Joseph W.; Yano, Junko; Borovik, A. S.

    2012-01-01

    The use of water as a reagent in redox-driven reactions is advantageous because it is abundant and environmentally compatible. The conversion of water to dioxygen in photosynthesis illustrates one example, in which a redox-inactive CaII ion and four manganese ions are required for function. In this report we describe the stepwise formation of two new heterobimetallic complexes containing CoII/III and CaII ions, and either hydroxo or aquo ligands. The preparation of a 4-coordinate CoII synthon was achieved with the tripodal ligand, N,N′,N″-[2,2′,2″-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido, [MST]3−. Water binds to [CoIIMST]− to form the 5-coordinate [CoIIMST(OH2)]− complex that was used to prepare the CoII/CaII complex [CoIIMST(μ-OH2)CaII⊂15-crown-5(OH2)]+ ([CoII(μ-OH2)CaIIOH2]+). [CoII(μ-OH2)CaOH2]+ contained two aquo ligands, one bonded to the CaII ion and one bridging between the two metal ions and thus represents an unusual example of a heterobimetallic complex containing 2 aquo ligands spanning different metal ions. Both aquo ligands formed intramolecular hydrogen bonds with the [MST]3− ligand. [CoIIMST(OH2)]− was oxidized to form [CoIIIMST(OH2)] that was further converted to [CoIIIMST(μ-OH)CaII⊂15-crown-5]+ ([CoIII(μ-OH)CaII]+) in the presence of base and CaIIOTf2/15-crown-5. [CoIII(μ-OH)CaII]+ was also synthesized from the oxidation of [CoIIMST]− with PhIO in the presence of CaIIOTf2/15-crown-5. Allowing [CoIII(μ-OH)CaII]+ to react with diphenylhydrazine afforded [CoII(μ-OH2)CaIIOH2]+ and azobenzene. Additionally, the characterization of [CoIII(μ-OH)CaII]+ provides another formulation for the previously reported CoIV–oxo complex, [(TMG3tren)CoIV(μ-O)ScIII(OTf)3]2+ to one that instead could contain a CoIII–OH unit. PMID:22998407

  14. Synthesis, characterization, nucleic acid interactions and photoluminescent properties of methaniminium hydrazone Schiff base and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes

    NASA Astrophysics Data System (ADS)

    Sennappan, M.; Murali Krishna, P.; Hosamani, Amar A.; Hari Krishna, R.

    2018-07-01

    An environmental benign and efficient reaction was carried out via amine exchange and condensation reaction in water and methanol mixture (3:1) and absence of catalyst between 1-[3-(2-hydroxy benzylidene)amine)phenyl]ethanone and benzhydrazide yields methaniminium hydrazone Schiff base in high yield. The prepared ligand was structurally characterized by using single crystal XRD, elemental analysis and spectroscopy (UV-Vis, FT-IR, LC-MS and NMR) techniques. The crystal data indicates the ligand crystallizes in orthorhombic system with Pna21 space group. Further, the ligand was used in synthesis of mononuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes and were characterized by elemental analysis, magnetic moment and spectroscopy (UV-Vis, FT-IR and ESR) studies. The spectral data showed that ligand is coordinated to the metal ion through azomethine nitrogen and methaniminium nitrogen. The DNA binding absorption titrations reveals that, ligand, L and its metal complexes, 1-6 are avid binders to CT- DNA. The apparent binding constant values of compounds are in the order of 106 M-1. The nuclease activity of ligand, L and its metal complexes, 1-6 were investigated by gel electrophoresis method using pUC18 DNA. The photoluminescent properties of the methaniminium hydrazone ligand, L and its various metal complexes, 1-6 were investigated. The emission spectra of both ligand (L) and metal complexes (1-6) exhibits emission in the range of blue to red.

  15. Electrochemistry of mixed-metal bimetallic complexes containing the pentacyanoferrate(II) or pentaammineruthenium(II) metal center

    SciTech Connect

    Moore, K.J.; Lee, L.; Mabbott, G.A.

    1983-03-30

    The electrochemistry of a series of mixed-metal bimetallic complexes of the type B/sub 5/MLM'B'/sub 5/, where B/sub 5/M = (CNN)/sub 5/Fe/sup II/ or (NH/sub 3/)/sub 5/Ru/sup II/, L = pyrazine, 4,4'-bipyridine, or 4-cyanopyridine, M'B'/sub 5/ = Rh/sup III/(NH/sub 3/)/sub 5/ or Co/sup III/(CN)/sub 5/, is reported. The bimetallic complexes all have metal-to-ligand charge-transfer (MLCT) bands associated with the M-B unit (d/sub ..pi../M ..-->.. p/sub ..pi../*L). The effect of the remote metal center, M'B'/sub 5/, is to function as a Lewis acid, shifting the MLCT maximum to lower energy and shifting the M/sup III///sup II/ reduction potential more positive with respectmore » to free B/sub 5/ML. The remote metal influence is attenuated by longer bridging ligands and by reduced ..pi..-overlap. A comparison of the electrochemical data of the mixed-valence Fe(II)/Fe(III) and Ru(II)/Ru(III) complexes to the mixed-metal Fe(II)/Co(III) and Ru(II)/Rh(III) complexes has enabled a quantitative measure of the stabilization due to electron delocalization in the mixed-valence complexes. The results show that electron delocalization is greater for the ruthenium complexes than for the iron complexes, is a small contributor to the total stabilization of the mixed-valence state, and even in ruthenium drops off rapidly as the length of the bridge increases.« less

  16. Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex.

    PubMed

    del Mundo, Imee Marie A; Fountain, Matthew A; Morrow, Janet R

    2011-08-14

    A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge. This journal is © The Royal Society of Chemistry 2011

  17. The Co(II), Ni(II) and Cu(II) complexes with herbicide 2,4-dichlorophenoxyacetic acid - Synthesis and structural studies

    NASA Astrophysics Data System (ADS)

    Drzewiecka-Antonik, Aleksandra; Ferenc, Wiesława; Wolska, Anna; Klepka, Marcin T.; Cristóvão, Beata; Sarzyński, Jan; Rejmak, Paweł; Osypiuk, Dariusz

    2017-01-01

    The Co(II), Ni(II) and Cu(II) complexes with herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) were synthesized and structurally characterized. The geometry of metal-ligand interaction was refined using XAFS and DFT studies. The Co(2,4-D)2·6H2O and Ni(2,4-D)2·4H2O complexes have octahedral geometry with two carboxylate groups of 2,4-D anions and four water molecules in the coordination sphere. The square planar geometry around metal cations formed by the carboxylate groups from two monodentate ligands and two water molecules, is observed for Cu(2,4-D)2·4H2O complex. In the recrystallized Ni(II) complex dinuclear 'Chinese lantern' structures with bridging carboxylate groups of 2,4-D were observed.

  18. Characterization and biological studies on Co(II), Ni(II) and Cu(II) complexes of carbohydrazones ending by pyridyl ring.

    PubMed

    Abu El-Reash, G M; El-Gammal, O A; Ghazy, S E; Radwan, A H

    2013-03-01

    The chelating behavior of ligands based on carbohydrazone core modified with pyridine end towards Co(II), Ni(II) and Cu(II) ions have been examined. The ligands derived from the condensation of carbohydrazide with 2-acetylpyridine (H(2)APC) and 4-acetylpyridine (H(2)APEC). The (1)H NMR, IR data and the binding energy calculations of H(2)APC revealed the presence of two stereoisomers syn and anti in the solid state and in the solution. The (1)H NMR, IR data and the binding energy calculations confirmed the presence of H(2)APEC in one keto form only in the solid state and in the solution. The spectroscopic data confirmed that H(2)APC behaves as a monobasic pentadentate in Co(II) and Cu(II) complexes and as mononegative tetradentate in Ni(II) complex. On the other hand, H(2)APEC acts as a mononegative tridentate in Co(II) complex, neutral tridentate in Ni(II) complex and neutral bidentate in Cu(II) complex. The electronic spectra and the magnetic measurements of complexes as well as the ESR of the copper complexes suggested the octahedral geometry. The bond length and bond angles were evaluated by DFT method using material studio program. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The antioxidant (DDPH and ABTS methods), anti-hemolytic and in vitro Ehrlich ascites of the compounds have been screened. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Differential susceptibility of mitochondrial complex II to inhibition by oxaloacetate in brain and heart.

    PubMed

    Stepanova, Anna; Shurubor, Yevgeniya; Valsecchi, Federica; Manfredi, Giovanni; Galkin, Alexander

    2016-09-01

    Mitochondrial Complex II is a key mitochondrial enzyme connecting the tricarboxylic acid (TCA) cycle and the electron transport chain. Studies of complex II are clinically important since new roles for this enzyme have recently emerged in cell signalling, cancer biology, immune response and neurodegeneration. Oxaloacetate (OAA) is an intermediate of the TCA cycle and at the same time is an inhibitor of complex II with high affinity (Kd~10(-8)M). Whether or not OAA inhibition of complex II is a physiologically relevant process is a significant, but still controversial topic. We found that complex II from mouse heart and brain tissue has similar affinity to OAA and that only a fraction of the enzyme in isolated mitochondrial membranes (30.2±6.0% and 56.4±5.6% in the heart and brain, respectively) is in the free, active form. Since OAA could bind to complex II during isolation, we established a novel approach to deplete OAA in the homogenates at the early stages of isolation. In heart, this treatment significantly increased the fraction of free enzyme, indicating that OAA binds to complex II during isolation. In brain the OAA-depleting system did not significantly change the amount of free enzyme, indicating that a large fraction of complex II is already in the OAA-bound inactive form. Furthermore, short-term ischemia resulted in a dramatic decline of OAA in tissues, but it did not change the amount of free complex II. Our data show that in brain OAA is an endogenous effector of complex II, potentially capable of modulating the activity of the enzyme. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Syntheses, crystal structures and spectroscopic properties of copper(II)-tetracyanometallate(II) complexes with nicotinamide and isonicotinamide ligands

    NASA Astrophysics Data System (ADS)

    Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer

    2015-09-01

    Four new one dimensional (1D) cyanide complexes, namely {[Cu(NH3)4(μ-na)][M‧(CN)4]}n and {[Cu(NH3)2(ina)2M‧(μ-CN)2(CN)2]}n (M‧(II) = Pd (1 and 3) or Pt (2 and 4), na:nicotinamide and ina:isonicotinamide) have been synthesized and characterized by elemental, spectral (FT-IR and Raman), and thermal (TG, DTG and DTA) analyses. The crystal structures of complexes 1-3 have been determined by single crystal X-ray diffraction technique. In complexes 1 and 2, na ligand is coordinated to the adjacent Cu(II) ions as a bridging ligand, giving rise to 1D linear cationic chain and the [M‧(CN)4]2- anionic complex acts as a counter ion. Complexes 3 and 4 are also 1D linear chain in which two cyanide ligands bridged neighboring M‧(II) and Cu(II) ions, while ina ligand is coordinated Cu(II) ion through nitrogen atom of pyridine ring. In the complexes, the Cu(II) ions adopt distorted octahedral geometries, while M‧(II) ions are four coordinated with four carbon atoms from cyanide ligands in square-planar geometries. The adjacent chains are further stacked through intermolecular hydrogen bond, Nsbnd Hṡṡṡπ, Csbnd H⋯M‧ and M‧⋯π interactions to form 3D supramolecular networks. Vibration assignments are given for all the observed bands. In addition, thermal stabilities of the compounds are also discussed.

  1. Artificial synthetic Mn(IV)Ca-oxido complexes mimic the oxygen-evolving complex in photosystem II.

    PubMed

    Chen, Changhui; Zhang, Chunxi; Dong, Hongxing; Zhao, Jingquan

    2015-03-14

    A novel family of heteronuclear Mn(IV)Ca-oxido complexes containing Mn(IV)Ca-oxido cuboidal moieties and reactive water molecules on Ca(2+) have been synthesized and characterized to mimic the oxygen-evolving complex (OEC) of photosystem II (PSII) in nature.

  2. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity☆

    PubMed Central

    Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2013-01-01

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 13.8 μM, which was less potent than copper(II) chloride (IC50 5.3 μM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397

  3. Interaction of Pd(II) and Pt(II) Amino Acid Complexes With Dinucleotides

    PubMed Central

    Vicens, Margarita; Caubet, Amparo

    1997-01-01

    The interaction of the dinucleotides d(ApG) and d(ApA) with [Pd(aa)Cl2], where aa = L- or D-histidine or the methyl ester of L-histidine, and with [Pt(Met)Cl2], where Met = L-methionine was studied by 1H and 13C NMR and CD measurements. In the case of the L-histidine and L-histidineOMe, the reaction with d(ApG) appeared to give the bifunctional adducts Pd(L-Histidine)N1(1)N7(2) and Pd(L-HisOMe)N1(1)N7(2), but the behavior with D-histidine suggested the formation of the monofunctional adduct Pd(D-His)N7(2). The reaction of L-histidine with d(ApA) seemed to form the bimetallic adduct (L-His)PdN7(1)N7(2)Pd(L-His). The Pt(II)-L-methionine complex in both reactions with d(ApG) and d(ApA) seemed to yield mainly adducts Pt(L-Met)N7(1)N7(2) but the existence of adducts Pt(L-Met)N1(1)N7(2) cannot be ruled out. PMID:18475765

  4. Intercalation of a Zn(II) complex containing ciprofloxacin drug between DNA base pairs.

    PubMed

    Shahabadi, Nahid; Asadian, Ali Ashraf; Mahdavi, Mryam

    2017-11-02

    In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV-Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (K b = 1.4 × 10 4 M -1 ) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 -4.8 × 10 4 M -1 . CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH < 0 and ΔS < 0) indicated that hydrogen bond and Van der Waals play main roles in this binding prose. Competitive fluorimetric studies with methylene blue (MB) dye have shown that Zn(II) complex exhibits the ability of this complex to displace with DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.

  5. Physicochemical and biological properties of oxovanadium(IV), cobalt(II) and nickel(II) complexes with oxydiacetate anions.

    PubMed

    Wyrzykowski, Dariusz; Kloska, Anna; Pranczk, Joanna; Szczepańska, Aneta; Tesmar, Aleksandra; Jacewicz, Dagmara; Pilarski, Bogusław; Chmurzyński, Lech

    2015-03-01

    The potentiometric and conductometric titration methods have been used to characterize the stability of series of VO(IV)-, Co(II)- and Ni(II)-oxydiacetato complexes in DMSO-water solutions containing 0-50 % (v/v) DMSO. The influence of DMSO as a co-solvent on the stability of the complexes as well as the oxydiacetic acid was evaluated. Furthermore, the reactivity of the complexes towards superoxide free radicals was assessed by employing the nitro blue tetrazolium (NBT) assay. The biological properties of the complexes were investigated in relation to their cytoprotective activity against the oxidative damage generated exogenously by using hydrogen peroxide in the Human Dermal Fibroblasts adult (HDFa) cell line as well as to their antimicrobial activity against the bacteria (Bacillus subtilis, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis). The relationship between physicochemical and biological properties of the complexes was discussed.

  6. Synthesis, characterization and biological activities of semicarbazones and their copper complexes.

    PubMed

    Venkatachalam, Taracad K; Bernhardt, Paul V; Noble, Chris J; Fletcher, Nicholas; Pierens, Gregory K; Thurecht, Kris J; Reutens, David C

    2016-09-01

    Substituted semicarbazones/thiosemicarbazones and their copper complexes have been prepared and several single crystal structures examined. The copper complexes of these semicarbazone/thiosemicarbazones were prepared and several crystal structures examined. The single crystal X-ray structure of the pyridyl-substituted semicarbazone showed two types of copper complexes, a monomer and a dimer. We also found that the p-nitrophenyl semicarbazone formed a conventional 'magic lantern' acetate-bridged dimer. Electron Paramagnetic Resonance (EPR) of several of the copper complexes was consistent with the results of single crystal X-ray crystallography. The EPR spectra of the p-nitrophenyl semicarbazone copper complex in dimethylsulfoxide (DMSO) showed the presence of two species, confirming the structural information. Since thiosemicarbazones and semicarbazones have been reported to exhibit anticancer activity, we examined the anticancer activity of several of the derivatives reported in the present study and interestingly only the thiosemicarbazone showed activity while the semicarbazones were not active indicating that introduction of sulphur atom alters the biological profile of these thiosemicarbazones. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. C-H activation in Ir(III) and N-demethylation in Pt(II) complexes with mesoionic carbene ligands: examples of monometallic, homobimetallic and heterobimetallic complexes.

    PubMed

    Maity, Ramananda; Tichter, Tim; van der Meer, Margarethe; Sarkar, Biprajit

    2015-11-14

    Mononuclear Pt(II) and the first dinuclear Pt(II) complexes along with a cyclometalated heterobimetallic Ir(III)/Pd(II) complex bearing mesoionic carbene donor ligands are presented starting from the same bis-triazolium salt. The mononuclear Pt(II) complex possesses a free triazole moiety which is generated from the corresponding triazolium salt through an N-demethylation reaction, whereas the mononuclear Ir(III) complex features an unreacted triazolium unit.

  8. Synthesis of New Five Coordinated Copper(II) and Nickel(II) Complexes of L-Valine and Kinetic Study of Copper(II) with Calf Thymus DNA

    PubMed Central

    Tak, Aijaz Ahmad; Arjmand, Farukh

    2002-01-01

    Five coordinated novel complexes of Cu II and Ni II have been synthesized from benzil and 1,3- diaminopropane- Cu II / Ni II complex and characterized by elemental analysis, i.r., n.m.r., e.p.r, molar conductance and u.v-vis, spectroscopy. The complexes are ionic in nature and exhibit pentaeoordinated geometry around the metal ion. The reaction kinetics of C 25 H 36 N 5 O 2 CuCl with calf thymus DNA was studied by u.v-vis, spectroscopy in aqueous medium. The complex after interaction with calf thymus DNA shows shift in the absorption spectrum and hypochromicity indicating an intercalative binding mode. The K obs values have been calculated under pseudo-first order conditions. The redox behaviour of complex C 25 H 36 N 5 O 2 CuCl in the presence and in the absence of calf thymus DNA in the aqueous solution has been investigated by cyclic voltammetry. The cyclic voitammogram exhibits one quasi-reversible redox wave corresponding to Cu II / Cu I redox couple with E 1 / 2 values of -0.377 and -0.237 V respectively at a scan rate of 0.1V s - 1 .On interaction with calf thymus DNA, the complex C 25 H 36 N 5 O 2 CuCl exhibits shifts in both E p as well as in E 1 / 2 values, indicating strong binding of the complex to the calf thymus DNA. PMID:18475428

  9. Theoretical study of the magnetic behavior of hexanuclear Cu(II) and Ni(II) polysiloxanolato complexes.

    PubMed

    Ruiz, Eliseo; Cano, Joan; Alvarez, Santiago; Caneschi, Andrea; Gatteschi, Dante

    2003-06-04

    A theoretical density functional study of the exchange coupling in hexanuclear polysiloxanolato-bridged complexes of Cu(II) and Ni(II) is presented. By calculating the energies of three different spin configurations, we can obtain estimates of the first-, second-, and third-neighbor exchange coupling constants. The study has been carried out for the complete structures of the Cu pristine cluster and of the chloroenclathrated Ni complex as well as for the hypotethical pristine Ni compound and for magnetically dinuclear analogues M(2)Zn(4) (M = Cu, Ni).

  10. Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Sevgi, Fatih; Bagkesici, Ugur; Kursunlu, Ahmed Nuri; Guler, Ersin

    2018-02-01

    Zinc (II), copper (II), nickel (II), cobalt (II) and iron (III) complexes of Schiff bases (LG, LP) derived from 2-hydroxynaphthaldehyde with glycine and phenylalanine were reported and characterized by 1H NMR, 13C NMR, elemental analyses, melting point, FT-IR, magnetic susceptibility and thermal analyses (TGA). TGA data show that iron and cobalt include to the coordinated water and metal:ligand ratio is 1:2 while the complex stoichiometry for Ni (II), Cu (II) and Zn (II) complexes is 1:1. As expected, Ni (II) and Zn (II) complexes are diamagnetic; Cu (II), Co (II) and Fe (III) complexes are paramagnetic character due to a strong ligand of LG and LP. The LG, LP and their metal complexes were screened for their antimicrobial activities against five Gram-positive (Staphylococcus aureus, Methicillin resistant Staphylococcus aureus (MRSA), Bacillus cereus, Streptococcus mutans and Enterococcus faecalis) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and one fungi (Candida albicans) by using broth microdilution techniques. The activity data show that ligands and their metal complexes exhibited moderate to good activity against Gram-positive bacteria and fungi.

  11. Spectroscopic and DFT studies of flurbiprofen as dimer and its Cu(II) and Hg(II) complexes

    NASA Astrophysics Data System (ADS)

    Sagdinc, Seda; Pir, Hacer

    2009-07-01

    The vibrational study in the solid state of flurbiprofen and its Cu(II) and Hg(II) complexes was performed by IR and Raman spectroscopy. The changes observed between the IR and Raman spectra of the ligand and of the complexes allowed us to establish the coordination mode of the metal in both complexes. The comparative vibrational analysis of the free ligand and its complexes gave evidence that flurbiprofen binds metal (II) through the carboxylate oxygen. The fully optimized equilibrium structure of flurbiprofen and its metal complexes was obtained by density functional B3LYP method by using LanL2DZ and 6-31 G(d,p) basis sets. The harmonic vibrational frequencies, infrared intensities and Raman scattering activities of flurbiprofen were calculated by density functional B3LYP methods by using 6-31G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The electronic properties of the free molecule and its complexes were also performed at B3LYP/6-31G(d,p) level of theory. Detailed interpretations of the infrared and Raman spectra of flurbiprofen are reported. The UV-vis spectra of flurbiprofen and its metal complexes were also investigated in organic solvents.

  12. Complexation Effect on Redox Potential of Iron(III)-Iron(II) Couple: A Simple Potentiometric Experiment

    ERIC Educational Resources Information Center

    Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin

    2011-01-01

    A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…

  13. Synthesis, characterization and biological activity of Cu(II), Ni(II) and Zn(II) complexes of biopolymeric Schiff bases of salicylaldehydes and chitosan.

    PubMed

    de Araújo, Eliene Leandro; Barbosa, Hellen Franciane Gonçalves; Dockal, Edward Ralph; Cavalheiro, Éder Tadeu Gomes

    2017-02-01

    Schiff bases have been prepared from biopolymer chitosan and salicylaldehyde, 5-methoxysalicylaldehyde, and 5-nitrosalicylaldehyde. Ligands were synthesized in a 1:1.5mol ratio, and their Cu(II), Ni(II) and Zn(II) complexes in a 1:1mol ratio (ligand:metal). Ligands were characterized by 1 H NMR and FTIR, resulting in degrees of substitution from 43.7 to 78.7%. Complexes were characterized using FTIR, electronic spectra, XPRD. The compounds were confirmed by the presence of an imine bond stretching in the 1630-1640cm -1 and νMetal-N and νMetal-O at <600cm -1 . Electronic spectra revealed that both Cu(II) and Ni(II) complexes present a square plane geometry. The crystallinity values were investigated by X-ray powder diffraction. Thermal behavior of all compounds was evaluated by TGA/DTG and DTA curves with mass losses related to dehydration and decomposition, with characteristic events for ligand and complexes. Schiff base complexes presented lower thermal stability and crystallinity than the starting chitosan. Residues were the metallic oxides as confirmed by XPRD, whose amounts were used in the calculation of the percentage of complexed metal ions. Surface morphologies were analyzed with SEM-EDAX. Preliminary cytotoxicity tests were performed using MTT assay with HeLa cells. Despite the differences in solubility, the free bases presented relatively low toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Free metal ion depletion by "Good's" buffers. III. N-(2-acetamido)iminodiacetic acid, 2:1 complexes with zinc(II), cobalt(II), nickel(II), and copper(II); amide deprotonation by Zn(II), Co(II), and Cu(II).

    PubMed

    Lance, E A; Rhodes, C W; Nakon, R

    1983-09-01

    Potentiometric, visible, infrared, electron spin, and nuclear magnetic resonance studies of the complexation of N-(2-acetamido)iminodiacetic acid (H2ADA) by Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) are reported. Ca(II) and Mg(II) were found not to form 2:1 ADA2- to M(II) complexes, while Mn(II), Cu(II), Ni(II), Zn(II), and Co(II) did form 2:1 metal chelates at or below physiological pH values. Co(II) and Zn(II), but not Cu(II), were found to induce stepwise deprotonation of the amide groups to form [M(H-1ADA)4-(2)]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed on the basis of various spectral data.

  15. Structural study of Cu(II) complexes with benzo[b]furancarboxylic acids

    NASA Astrophysics Data System (ADS)

    Kalinowska, Diana; Klepka, Marcin T.; Wolska, Anna; Drzewiecka-Antonik, Aleksandra; Ostrowska, Kinga; Struga, Marta

    2017-11-01

    Four Cu(II) complexes with 2- and 3-benzo[b]furancarboxylic acids have been synthesized and characterized using combination of two spectroscopic techniques. These techniques were: (i) FTIR and (ii) XAFS. FTIR analysis confirmed that complexes were formed and gave insight into identification of possible coordinating groups to the metallic center. XANES analysis indicated that the oxidation state of Cu is +2. EXAFS analysis allowed to identify that the first coordination sphere is formed by 4-5 oxygen atoms with the Cu-O distances around 2 Å. Combining these techniques it was possible to structurally describe novel Cu(II) complexes with benzo[b]furancarboxylic acids.

  16. Synthesis, spectral characterization and catalytic activity of Co(II) complexes of drugs: crystal structure of Co(II)-trimethoprim complex.

    PubMed

    Madhupriya, Selvaraj; Elango, Kuppanagounder P

    2014-01-24

    New Co(II) complexes with drugs such as trimethoprim (TMP), cimetidine (CTD), niacinamide (NAM) and ofloxacin (OFL) as ligands were synthesized. The complexes were characterized by analytical analysis, various spectral techniques such as FT-IR, UV-Vis, magnetic measurements and molar conductivity. The magnetic susceptibility results coupled with the electronic spectra suggested a tetrahedral geometry for the complexes. The coordination mode of trimethoprim ligand and geometry of the complex were confirmed by single crystal X-ray studies. In this complex the metal ion possesses a tetrahedral geometry with two nitrogen atom from two TMP ligands and two chloride ions coordinated to it. The catalytic activity of the complexes in aryl-aryl coupling reaction was screened and the results indicated that among the four complexes [Co(OFL)Cl(H2O)] exhibited excellent catalytic activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; El-Wakiel, Nadia A.; El-Ghamry, Hoda; Fathalla, Shaimaa K.

    2014-11-01

    Manganese(II), cobalt(II), nickel(II) and copper(II) complexes of [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol have been synthesized. The structure of complexes have been characterized by elemental analysis, molar conductance, magnetic moment measurements and spectral (IR, 1H NMR, EI-mass, UV-Vis and ESR), and thermal studies. The results showed that the chloro and nitrato Cu(II) complexes have octahedral geometry while Ni(II), Co(II) and Mn(II) complexes in addition to acetato Cu(II) complex have tetrahedral geometry. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program to confirm the proposed structures. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the TG curves. The binding modes of the complexes with DNA have been investigated by UV-Vis absorption titration. The results showed that the mode of binding of the complexes to DNA is intercalative or non-intercalative binding modes. Schiff base and its metal complexes have been screened for their in vitro antimicrobial activities against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pesudomonas aeruginosa), fungi (Asperigllus flavus and Mucer) and yeast (Candida albicans and Malassezia furfur).

  18. ESI-MS measurements for the equilibrium constants of copper(II)-insulin complexes.

    PubMed

    Gülfen, Mustafa; Özdemir, Abdil; Lin, Jung-Lee; Chen, Chung-Hsuan

    2018-06-01

    Trace elements regulate many biological reactions in the body. Copper(II) is known as one of trace elements and capable of binding to proteins. Insulin is a blood glucose-lowering peptide hormone and it is secreted by the pancreatic β-cells. In this study, Cu(II)-insulin complexes were investigated by using ESI-MS method. Insulin molecule gives ESI-MS peaks at +4, +5, +6 and +7 charged states. Cu(II)-insulin complexes can be monitored and quantified on the ESI-MS spectra as the shifted peaks according to insulin peaks. The solutions of Cu(II)-insulin complexes at different pHs and mole ratios of Cu(II) ions to insulin molecule were measured on the ESI-MS. The highest complex formation ratio for Cu(II)-insulin were found at pH 7. The multiple bindings of Cu(II) ions to insulin molecule was observed. The formation equilibrium constants of Cu(II)-insulin complexes were calculated as Kf 1 : 3.34 × 10 4 , Kf 2 : 2.99 × 10 4 , Kf 3 : 7.00 × 10 3 and Kf 4 :2.86 × 10 3 . The specific binding property of Cu(II) ions was controlled by using different spray ion sources including electrospray and nano-electrospray. The binding property of Cu(II) also investigated by MS/MS fragmentation. It was concluded from the ESI-MS measurements that Cu(II) ion has a high affinity to insulin molecules to form stable complexes. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Evaluation of cytotoxicity of new trans-palladium(II) complex in human cells in vitro.

    PubMed

    Kontek, Renata; Matławska-Wasowska, Ksenia; Kalinowska-Lis, Urszula; Kontek, Bogdan; Ochocki, Justyn

    2011-01-01

    Studies of cytotoxicity allow to elucidate the mechanisms by which chemical compounds influence cells and tissues. On the basis of the structural analogy between platinum(II) and palladium(II) complexes, a variety of studies on palladium(II) compounds as potential anticancer drugs have been carried out (1, 2). The cytotoxicity was evaluated by MTT assay. Abilities of trans-palladium(II) complex containing diethyl (pyridin-2-ylmethyl)phosphates as non-leaving ligands (trans-[PdCl2(2-pmOpe 2)]) to induce apoptosis and necrosis in normal lymphocytes, A549 cells and HT29 cell lines were performed by use of fluorochrome staining. The obtained results revealed, that the new trans-palladium(II) complex was more cytotoxic against A549 and HT29 tumor cells than on the normal lymphocytes in vitro. The novel complex induces apoptosis in all tested cells, but in lymphocytes to a lesser degree. The compound tested also induced significant amounts of necrotic cells, which exceeded the level of apoptotic cell fractions. The results demonstrate that the trans-Pd(II) complex showed substantial cytotoxic activity against A549 and HT29 tumor cells and indicate that the new trans-palladium(II) complex effectively inhibited cancer cells growth.

  20. Zinc(II)-methimazole complexes: synthesis and reactivity.

    PubMed

    Isaia, Francesco; Aragoni, Maria Carla; Arca, Massimiliano; Bettoschi, Alexandre; Caltagirone, Claudia; Castellano, Carlo; Demartin, Francesco; Lippolis, Vito; Pivetta, Tiziana; Valletta, Elisa

    2015-06-07

    The tetrahedral S-coordinated complex [Zn(MeImHS)4](ClO4)2, synthesised from the reaction of [Zn(ClO4)2] with methimazole (1-methyl-3H-imidazole-2-thione, MeImHS), reacts with triethylamine to yield the homoleptic complex [Zn(MeImS)2] (MeImS = anion methimazole). ESI-MS and MAS (13)C-NMR experiments supported MeImS acting as a (N,S)-chelating ligand. The DFT-optimised structure of [Zn(MeImS)2] is also reported and the main bond lengths compared to those of related Zn-methimazole complexes. The complex [Zn(MeImS)2] reacts under mild conditions with methyl iodide and separates the novel complex [Zn(MeImSMe)2I2] (MeImSMe = S-methylmethimazole). X-ray diffraction analysis of the complex shows a ZnI2N2 core, with the methyl thioethers uncoordinated to zinc. Conversely, the reaction of [Zn(MeImS)2] with hydroiodic acid led to the formation of the complex [Zn(MeImHS)2I2] having a ZnI2S2 core with the neutral methimazole units S-coordinating the metal centre. The Zn-coordinated methimazole can markedly modify the coordination environment when changing from its thione to thionate form and vice versa. The study of the interaction of the drug methimazole with the complex [Zn(MeIm)4](2+) (MeIm = 1-methylimidazole) - as a model for Zn-enzymes containing a N4 donor set from histidine residues - shows that methimazole displaces only one of the coordinated MeIm molecules; the formation constant of the mixed complex [Zn(MeIm)3(MeImHS)](2+) was determined.

  1. Comparative study of copper(II)-curcumin complexes as superoxide dismutase mimics and free radical scavengers.

    PubMed

    Barik, Atanu; Mishra, Beena; Kunwar, Amit; Kadam, Ramakant M; Shen, Liang; Dutta, Sabari; Padhye, Subhash; Satpati, Ashis K; Zhang, Hong-Yu; Indira Priyadarsini, K

    2007-04-01

    Two stoichiometrically different copper(II) complexes of curcumin (stoichiometry, 1:1 and 1:2 for copper:curcumin), were examined for their superoxide dismutase (SOD) activity, free radical-scavenging ability and antioxidant potential. Both the complexes are soluble in lipids and DMSO. The formation constants of the complexes were determined by voltammetry. EPR spectra of the complexes in DMSO at 77K showed that the 1:2 Cu(II)-curcumin complex is square planar and the 1:1 Cu(II)-curcumin complex is distorted orthorhombic. Cu(II)-curcumin complex (1:1) with larger distortion from square planar structure shows higher SOD activity. These complexes inhibit gamma-radiation induced lipid peroxidation in liposomes and react with DPPH acting as free radical scavengers. One-electron oxidation of the two complexes by radiolytically generated azide radicals in Tx-100 micellar solutions produced phenoxyl radicals, indicating that the phenolic moiety of curcumin in the complexes participates in free radical reactions. Depending on the structure, these two complexes possess different SOD activities, free radical neutralizing abilities and antioxidant potentials. In addition, quantum chemical calculations with density functional theory have been performed to support the experimental observations.

  2. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: Synthesis and spectral approach

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Prabhakara, Chetan T.; Halasangi, Bhimashankar M.; Toragalmath, Shivakumar S.; Badami, Prema S.

    2015-02-01

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, 1H NMR, 13C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.

  3. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: synthesis and spectral approach.

    PubMed

    Patil, Sangamesh A; Prabhakara, Chetan T; Halasangi, Bhimashankar M; Toragalmath, Shivakumar S; Badami, Prema S

    2015-02-25

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, (1)H NMR, (13)C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase)

    PubMed Central

    Miyadera, Hiroko; Shiomi, Kazuro; Ui, Hideaki; Yamaguchi, Yuichi; Masuma, Rokuro; Tomoda, Hiroshi; Miyoshi, Hideto; Osanai, Arihiro; Kita, Kiyoshi; Ōmura, Satoshi

    2003-01-01

    Enzymes in the mitochondrial respiratory chain are involved in various physiological events in addition to their essential role in the production of ATP by oxidative phosphorylation. The use of specific and potent inhibitors of complex I (NADH-ubiquinone reductase) and complex III (ubiquinol-cytochrome c reductase), such as rotenone and antimycin, respectively, has allowed determination of the role of these enzymes in physiological processes. However, unlike complexes I, III, and IV (cytochrome c oxidase), there are few potent and specific inhibitors of complex II (succinate-ubiquinone reductase) that have been described. In this article, we report that atpenins potently and specifically inhibit the succinate-ubiquinone reductase activity of mitochondrial complex II. Therefore, atpenins may be useful tools for clarifying the biochemical and structural properties of complex II, as well as for determining its physiological roles in mammalian tissues. PMID:12515859

  5. Synthesis, Characterization, and Handling of Eu(II)-Containing Complexes for Molecular Imaging Applications

    NASA Astrophysics Data System (ADS)

    Basal, Lina A.; Allen, Matthew J.

    2018-03-01

    Considerable research effort has focused on the in vivo use of responsive imaging probes that change imaging properties upon reacting with oxygen because hypoxia is relevant to diagnosing, treating, and monitoring diseases. One promising class of compounds for oxygen-responsive imaging is Eu(II)-containing complexes because the Eu(II/III) redox couple enables imaging with multiple modalities including magnetic resonance and photoacoustic imaging. The use of Eu(II) requires care in handling to avoid unintended oxidation during synthesis and characterization. This review describes recent advances in the field of imaging agents based on discrete Eu(II)-containing complexes with specific focus on the synthesis, characterization, and handling of aqueous Eu(II)-containing complexes.

  6. Living supramolecular polymerization achieved by collaborative assembly of platinum(II) complexes and block copolymers

    PubMed Central

    Zhang, Kaka; Yeung, Margaret Ching-Lam; Leung, Sammual Yu-Lut; Yam, Vivian Wing-Wah

    2017-01-01

    An important feature of biological systems to achieve complexity and precision is the involvement of multiple components where each component plays its own role and collaborates with other components. Mimicking this, we report living supramolecular polymerization achieved by collaborative assembly of two structurally dissimilar components, that is, platinum(II) complexes and poly(ethylene glycol)-b-poly(acrylic acid) (PEG-b-PAA). The PAA blocks neutralize the charges of the platinum(II) complexes, with the noncovalent metal–metal and π–π interactions directing the longitudinal growth of the platinum(II) complexes into 1D crystalline nanostructures, and the PEG blocks inhibiting the transverse growth of the platinum(II) complexes and providing the whole system with excellent solubility. The ends of the 1D crystalline nanostructures have been found to be active during the assembly and remain active after the assembly. One-dimensional segmented nanostructures with heterojunctions have been produced by sequential growth of two types of platinum(II) complexes. The PAA blocks act as adapters at the heterojunctions for lattice matching between chemically and crystallographically different platinum(II) complexes, achieving heterojunctions with a lattice mismatch as large as 21%. PMID:29078381

  7. [Study on the interaction of hemoglobin and Cu(II)-ARS complex].

    PubMed

    Wu, Xiao-Hua; Miao, Ji-Gen; Miao, Yu-Qing; Chen, Jian-Rong

    2007-06-01

    The reaction of hemoglobin (Hb) with copper(II)-Alizarin red S (ARS) complex was studied in H3PO4-KH2PO4 buffer solution (pH 4. 2) by ultraviolet-visible spectrophotometry. The results show that the interaction of Hb and Cu(II)-ARS complex produces red ionic association complex with its maximum absorption peak at 537 nm. At the maximum absorption, the composition of the complex was determined to be n(Hb) : n(Cu(II)) : n(ARS) =1 : 4 : 8, and the apparent molar absorptivity was 1.52 x 10(5) L x mol(-1) x cm(-1). The concentration of Hb is linear with the absorbency in the range of 1.0 x 10(-7)-2.0 x 10(-6) mol x L(-1) and the regression equation was established as A = 0.026 9 + 151 675c (mol x L(-1)) with the coefficient r = 0.997 2. The effects of solution acidity, reagent amount, reaction time, temperature, ionic strength and the added surfactant were examined on the formation of the Hb-Cu(II)-ARS complex. A preliminary investigation was carried out to elucidate the reaction mechanism, and it could be concluded that the Hb and Cu(II)-ARS complex are combined mainly by electrostatic attraction. Further investigation was also undertaken to find out the effects of common amino acids and metallic ions on the formation of Hb-Cu(II)-ARS complex.

  8. Induction of Early Autophagic Process on Leishmania amazonensis by Synergistic Effect of Miltefosine and Innovative Semi-synthetic Thiosemicarbazone

    PubMed Central

    Scariot, Débora B.; Britta, Elizandra A.; Moreira, Amanda L.; Falzirolli, Hugo; Silva, Cleuza C.; Ueda-Nakamura, Tânia; Dias-Filho, Benedito P.; Nakamura, Celso V.

    2017-01-01

    Drug combination therapy is a current trend to treat complex diseases. Many benefits are expected from this strategy, such as cytotoxicity decrease, retardation of resistant strains development, and activity increment. This study evaluated in vitro combination between an innovative thiosemicarbazone molecule – BZTS with miltefosine, a drug already consolidated in the leishmaniasis treatment, against Leishmania amazonensis. Cytotoxicity effects were also evaluated on macrophages and erythrocytes. Synergistic antileishmania effect and antagonist cytotoxicity were revealed from this combination therapy. Mechanisms of action assays were performed in order to investigate the main cell pathways induced by this treatment. Mitochondrial dysfunction generated a significant increase of reactive oxygen and nitrogen species production, causing severe cell injuries and promoting intense autophagy process and consequent apoptosis cell death. However, this phenomenon was not strong enough to promote dead in mammalian cell, providing the potential selective effect of the tested combination for the protozoa. Thus, the results confirmed that drugs involved in distinct metabolic routes are promising agents for drug combination therapy, promoting a synergistic effect. PMID:28270805

  9. Mitochondrial reactive oxygen species and complex II levels are associated with the outcome of hepatocellular carcinoma

    PubMed Central

    WU, JIANHUA; ZHAO, FEI; ZHAO, YUFEI; GUO, ZHANJUN

    2015-01-01

    In the present study, two oxidative stress parameters, reactive oxygen species (ROS) and mitochondrial respiratory complex II, were evaluated in the mitochondria of hepatocellular carcinoma (HCC) cells to determine the association between these parameters and the carcinogenesis and clinical outcome of HCC. High levels of ROS and low levels of complex II were found to be associated with reduced post-operative survival in HCC patients using the log-rank test. Furthermore, multivariate analysis confirmed that the levels of ROS [relative risk (RR)=2.867; 95% confidence interval (CI), 1.062–7.737; P=0.038] and complex II (RR=5.422; 95% CI, 1.273–23.088; P=0.022) were independent predictors for the survival of patients with HCC. Therefore, the analysis of ROS and complex II levels may provide a useful research and therapeutic tool for the prediction of HCC prognosis and treatment. PMID:26622849

  10. Photoisomerization of ruthenium(ii) aquo complexes: mechanistic insights and application development.

    PubMed

    Hirahara, Masanari; Yagi, Masayuki

    2017-03-21

    Ruthenium(ii) complexes with polypyridyl ligands have been extensively studied as promising functional molecules due to their unique photochemical and photophysical properties as well as redox properties. In this context, we report the photoisomerization of distal-[Ru(tpy)(pynp)OH 2 ] 2+ (d-1) (tpy = 2,2';6',2''-terpyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) to proximal-[Ru(tpy)(pynp)OH 2 ] 2+ (p-1), which has not been previously characterized for polypyridyl ruthenium(ii) aquo complexes. Herein, we review recent progress made by our group on the mechanistic insights and application developments related to the photoisomerization of polypyridyl ruthenium(ii) aquo complexes. We report a new strategic synthesis of dinuclear ruthenium(ii) complexes that can act as an active water oxidation catalyst, as well as the development of unique visible-light-responsive giant vesicles, both of which were achieved based on photoisomerization.

  11. Complexation facilitated reduction of aromatic N-oxides by aqueous Fe(II)-tiron complex: reaction kinetics and mechanisms.

    PubMed

    Chen, Yiling; Zhang, Huichun

    2013-10-01

    Rapid reduction of carbadox (CDX), olaquindox and several other aromatic N-oxides were investigated in aqueous solution containing Fe(II) and tiron. Consistent with previous work, the 1:2 Fe(II)-tiron complex, FeL2(6-), is the dominant reactive species as its concentration linearly correlates with the observed rate constant kobs under various conditions. The N-oxides without any side chains were much less reactive, suggesting direct reduction of the N-oxides is slow. UV-vis spectra suggest FeL2(6-) likely forms 5- or 7-membered rings with CDX and olaquindox through the N and O atoms on the side chain. The formed inner-sphere complexes significantly facilitated electron transfer from FeL2(6-) to the N-oxides. Reduction products of the N-oxides were identified by HPLC/QToF-MS to be the deoxygenated analogs. QSAR analysis indicated neither the first electron transfer nor N-O bond cleavage is the rate-limiting step. Calculations of the atomic spin densities of the anionic N-oxides confirmed the extensive delocalization between the aromatic ring and the side chain, suggesting complex formation can significantly affect the reduction kinetics. Our results suggest the complexation facilitated N-oxide reduction by Fe(II)-tiron involves a free radical mechanism, and the subsequent deoxygenation might also benefit from the weak complexation of Fe(II) with the N-oxide O atom.

  12. Synthesis, characterization, DFT calculations and molecular docking studies of metal (II) complexes

    NASA Astrophysics Data System (ADS)

    Ekennia, Anthony C.; Osowole, Aderoju A.; Olasunkanmi, Lukman O.; Onwudiwe, Damian C.; Olubiyi, Olujide O.; Ebenso, Eno E.

    2017-12-01

    Two novel ligands, 2-methyl-6-[(5-methyl benzothiazol-2-ylimino)-methyl]-2-methoxycyclohexa-1,5-dienol (HL1) and 2-methyl-6-[(5-floro-benzothiazol-2-ylimino)-methyl]-2-methoxycyclohexa-1,5-dienol (HL2) were synthesized from the condensation reaction of 2-hydroxy-3-methoxybenzaldehyde with 2-amino-6-methylbenzothiazole and 2-amino-6-florobenzothiazole respectively. Mononuclear Cu(II), Ni(II) and Co(II) complexes of the ligands were synthesized and characterized using elemental analysis, magnetic susceptibility, thermogravimetric, conductance, infrared and UV-visible spectroscopic measurements. The 1H NMR, 13C NMR, Dept-90 NMR spectroscopy of the ligands was also recorded to establish the formation of the Schiff bases. The analytical data of the complexes showed that the metal to ligand ratio was 1:1 for Cu(II), Ni(II) and Co(II) complexes of HL1 and Cu(II) complexes of HL2, while Ni(II) and Co(II) complexes of HL2 was 1:2. The infrared spectral data showed that the chelation behaviour of the ligands towards transition metal ions was through phenolic oxygen and azomethine nitrogen atoms. Molar conductivity revealed the non-electrolytic nature of all chelates in DMSO solution. The geometry of the complexes was deduced from thermal, magnetic susceptibility and UV-visible spectroscopic results and was further confirmed with DFT calculations. The compounds were subjected to in-vitro antibacterial screening using agar well diffusion method on some clinically isolated Gram positive and Gram negative bacteria strains. The compounds showed varied antibacterial activities. Molecular docking studies were carried out to study the molecular interaction between the compounds and different enzymes of the bacterial strains. The antioxidant potentials of the compounds were studied using ferrous ion chelating assay and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. However, the complexes had better antioxidant potentials compared to the ligands.

  13. Synthesis, characterization and biological activity of complexes of 2-hydroxy-3,5-dimethylacetophenoneoxime (HDMAOX) with copper(II), cobalt(II), nickel(II) and palladium(II)

    NASA Astrophysics Data System (ADS)

    Singh, Bibhesh K.; Jetley, Umesh K.; Sharma, Rakesh K.; Garg, Bhagwan S.

    2007-09-01

    A new series of complexes of 2-hydroxy-3,5-dimethyl acetophenone oxime (HDMAOX) with Cu(II), Co(II), Ni(II) and Pd(II) have been prepared and characterized by different physical techniques. Infrared spectra of the complexes indicate deprotonation and coordination of the phenolic OH. It also confirms that nitrogen atom of the oximino group contributes to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Cu(II), Ni(II) and Pd(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the ML 2 composition of complexes. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using Coats and Redfern method. The geometry of the metal complexes has been optimized with the help of molecular modeling. The free ligand (HDMAOX) and its metal complexes have been tested in vitro against Alternarie alternate, Aspergillus flavus, Aspergillus nidulans and Aspergillus niger fungi and Streptococcus, Staph, Staphylococcus and Escherchia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.

  14. Synthesis, characterization and biological activity of complexes of 2-hydroxy-3,5-dimethylacetophenoneoxime (HDMAOX) with copper(II), cobalt(II), nickel(II) and palladium(II).

    PubMed

    Singh, Bibhesh K; Jetley, Umesh K; Sharma, Rakesh K; Garg, Bhagwan S

    2007-09-01

    A new series of complexes of 2-hydroxy-3,5-dimethyl acetophenone oxime (HDMAOX) with Cu(II), Co(II), Ni(II) and Pd(II) have been prepared and characterized by different physical techniques. Infrared spectra of the complexes indicate deprotonation and coordination of the phenolic OH. It also confirms that nitrogen atom of the oximino group contributes to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Cu(II), Ni(II) and Pd(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the ML(2) composition of complexes. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using Coats and Redfern method. The geometry of the metal complexes has been optimized with the help of molecular modeling. The free ligand (HDMAOX) and its metal complexes have been tested in vitro against Alternarie alternate, Aspergillus flavus, Aspergillus nidulans and Aspergillus niger fungi and Streptococcus, Staph, Staphylococcus and Escherchia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.

  15. Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex.

    PubMed

    Yang, Li; Tan, Jun; Wang, Bo-Chu; Zhu, Lian-Cai

    2014-12-01

    To synthesize and characterize a novel metal complex of Mn (II) with emodin, and evaluate its anti-cancer activity. The elemental analyses, IR, UV-vis, atomic absorption spectroscopy, TG-DSC, (1)H NMR, and (13)C NMR data were used to characterize the structure of the complex. The cytotoxicity of the complex against the human cancer cell lines HepG2, HeLa, MCF-7, B16, and MDA-MB-231 was tested by the MTT assay and flow cytometry. Emodin was coordinated with Mn(II) through the 9-C=O and 1-OH, and the general formula of the complex was Mn(II) (emodin)2·2H2O. In studies of the cytotoxicity, the complex exhibited significant activity, and the IC50 values of the complex against five cancer cell lines improved approximately three-fold compared with those of emodin. The complex could induce cell morphological changes, decrease the percentage of viability, and induce G0/G1 phase arrest and apoptosis in cancer cells. The coordination of emodin with Mn(II) can improve its anticancer activity, and the complex Mn(II) (emodin)2·2H2O could be studied further as a promising anticancer drug. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  16. Computational complexity of the landscape II-Cosmological considerations

    NASA Astrophysics Data System (ADS)

    Denef, Frederik; Douglas, Michael R.; Greene, Brian; Zukowski, Claire

    2018-05-01

    We propose a new approach for multiverse analysis based on computational complexity, which leads to a new family of "computational" measure factors. By defining a cosmology as a space-time containing a vacuum with specified properties (for example small cosmological constant) together with rules for how time evolution will produce the vacuum, we can associate global time in a multiverse with clock time on a supercomputer which simulates it. We argue for a principle of "limited computational complexity" governing early universe dynamics as simulated by this supercomputer, which translates to a global measure for regulating the infinities of eternal inflation. The rules for time evolution can be thought of as a search algorithm, whose details should be constrained by a stronger principle of "minimal computational complexity". Unlike previously studied global measures, ours avoids standard equilibrium considerations and the well-known problems of Boltzmann Brains and the youngness paradox. We also give various definitions of the computational complexity of a cosmology, and argue that there are only a few natural complexity classes.

  17. Oxidative demetalation of cyclohexadienyl ruthenium(II) complexes: a net Ru-mediated dearomatization.

    PubMed

    Pigge, F Christopher; Coniglio, John J; Rath, Nigam P

    2003-05-29

    [reaction: see text] An experimentally simple method for the demetalation of spirocyclic cyclohexadienylruthenium(II) complexes has been developed. Treatment of an alkoxy-substituted cyclohexadienyl complex with CuCl(2) affords either azaspiro[4.5]decane derivatives or heavily functionalized tetrahydroisoquinolines. The former reaction manifold completes a net Ru-mediated dearomatization as the organometallic starting materials are prepared from (eta(6)-arene)Ru(II) precursors. Both of these heterocyclic products are well suited for further synthetic elaboration.

  18. Synthesis, characterization and in vitro antimicrobial studies of Co(II), Ni(II) and Cu(II) complexes derived from macrocyclic compartmental ligand

    NASA Astrophysics Data System (ADS)

    El-Gammal, O. A.; Bekheit, M. M.; El-Brashy, S. A.

    2015-02-01

    New Co(II), Ni(II) and Cu(II) complexes derived from tetradentate macrocyclic nitrogen ligand, (1E,4E,8E,12E)-5,8,13,16-tetramethyl-1,4,9,12-tetrazacyclohexadeca-4,8,12,16-tetraene (EDHDH) have been synthesized. The complexes have been characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR and ESR (for Cu(II) complex)) mass, and magnetic as well as thermal analysis measurements. The complexes afforded the formulae: [Cu(EDHDH)Cl2]·2EtOH and [M(EDHDH)X2]·nH2O where M = Co(II) and Ni(II), X = Cl- or OH-, n = 1,0, respectively. The data revealed an octahedral arrangement with N4 tetradentate donor sites in addition to two Cl atoms occupying the other two sites. ESR spectrum of Cu2+ complex confirmed the suggested geometry with values of a α2and β2 indicating that the in-plane σ-bonding and in-plane π-bonding are appreciably covalent, and are consistent with very strong σ-in-plane bonding in the complexes. The molecular modeling is drawn and showed the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all the title compounds using DFT method. Also, the thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. Moreover, the in vitro antibacterial studies of all compounds screened against pathogenic bacteria (two Gram +ve and two Gram -ve) to assess their inhibiting potential. The assay indicated that the inhibition potential is metal ion dependent. The ligand, EDHDH, Co(II) and Cu(II) complexes exhibited a remarkable antibacterial activity against Streptococcus Pyogenes as Gram +ve and Proteus vulgaris as Gram -ve bacterial strains. On the other hand, Ni(II) complex revealed a moderate antibacterial activity against both Gram +ve organisms and no activity against Gram -ve bacterial strain.

  19. Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; Ismail, Nabawia M.; Ismael, Mohamed; Abu-Dief, Ahmed M.; Ahmed, Ebtehal Abdel-Hameed

    2017-04-01

    This study highlights synthesis and characterization of a tetradentate ONNO Schiff base ligand namely (1, 1‧- (pyridine-2, 3-dimethyliminomethyl) naphthalene-2, 2‧-diol) and hereafter denotes as "HNDAP″ and selected metal complexes including Mn(II), Fe(II), Co(II) and Cd(II) as a central metal. HNDAP was synthesized from 1:2 M ratio condensation of 2, 3-diaminopyridine and 2- hydroxy-1-naphthaldhyde, respectively. The stoichiometric ratios of the prepared complexes were estimated using complementary techniques such as; elemental analyses (-C, H, N), FT-IR, magnetic measurements and molar conductivity. Furthermore, their physicochemical studies were carried out using thermal TGA, DTA and kinetic-thermodynamic studies along with DFT calculations. The results of elemental analyses showed that these complexes are present in a 1:1 metal-to- ligand molar ratio. Moreover, the magnetic susceptibilities values at room temperature revealed that Mn(II), Fe(II) and Co(II) complexes are paramagnetic in nature and have an octahedral (Oh) geometry. In contrast, Cd(II) is diamagnetic and stabilizes in square planar sites. The molar conductivity measurements indicated that all complexes are nonelectrolytes in dimethyl formamide. Spectral data suggested that the ligand is as tetradentate and coordinated with Co(II) ion through two phenolic OH and two azomethine nitrogen. However, for Mn(II), Fe(II) and Cd(II) complexes, the coordination occurred through two phenolic oxygen and two azomethine nitrogen with deprotonation of OH groups. The proposed chemical structures have been validated by quantum mechanics calculations. Antimicrobial activities of both the HNDAP Schiff base ligand and its metal complexes were tested against strains of Gram (-ve) E. coli and Gram (+ve) B. subtilis and S. aureus bacteria and C. albicans, A. flavus and T. rubrum fungi. All the prepared compounds showed good results of inhibition against the selected pathogenic microorganisms. The investigated

  20. Synthesis of thin film containing 4-amino-1,2,4-triazole iron(II) complexes

    SciTech Connect

    Onggo, Djulia, E-mail: djulia@Chem.itb.ac.id

    The Iron(II) complex with 4-amino-1,2,4 triazole (NH{sub 2}-trz) ligand has potential applications as smart material since the compounds show a distinct color change from lilac at low temperature to colorless at high temperature. The lilac color of the complex represent the diamagnetic low spin state while the colorless correspond to the paramagnetic high spin state of iron(II). The transition between the two states could be tuned by changing the anionic group. Generally, the complex was synthesized directly from aqueous solution of iron(II) salt with considerable amounts of NH{sub 2}-trz solution produced solid powder compound. For application as an electronic molecularmore » device, the complex should be obtained as a thin film. The transparent [Fe(NH{sub 2}trz){sub 3}]-Nafion film has been successfully obtained, however, no anion variation can be produced since the nafion is an anionic resin. In this work, the [Fe(NH{sub 2}trz){sub 3}]-complexes with several anions have been synthesized inside nata de coco membrane that commonly used as a medium for deposition metal nano-particles. After drying the membrane containing the complex became a thin film. At room temperature, the film containing iron(II) complexes of sulphate and nitrate salts show lilac color, similar to that of the original complexes in the powder form. On heating, the color of the complex film changed to colorless and this color change was observed reversibly. In contrast, the films containing perchlorate and tetrafluoroborate iron(II) complexes are colorless at room temperature and changed to lilac on cooling. The significant color changing of the iron(II)complexes in the nata de coco film can be used for demonstration thermo chromic effect of smart materials with relatively small amount of the compounds.« less

  1. Synthesis, characterization and anti-microbial activity of a novel macrocyclic ligand derived from the reaction of 2,6-pyridinedicarboxylic acid with homopiperazine and its Co(II), Ni(II), Cu(II), and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Soleimani, Esmaiel

    2011-05-01

    The preparation of a novel macrocyclic ligand ( 1), N,N'-diethylhomopiperazinyl,2,6-pyridinedicarboxylate and its Co(II), Ni(II), Cu(II), and Zn(II) complexes are described. The ligand was prepared in EtOH from the reaction of dipotassium salt of 2,6-pyridinedicarboxylic acid with 1,2-dibromoethane in the presence of homopiperazine. Reaction of macrocyclic ligand ( 1) in EtOH with CoCl 2.6H 2O, NiCl 2.6H 2O, CuCl 2.2H 2O, and ZnCl 2·2H 2O yielded the complexes with the general formula [M(L)Cl 2] {where M = Co(II) ( 2), Ni(II) ( 3), Cu(II) ( 4), Zn ( 5), respectively}. The analysis of IR, 1H and 13C NMR spectral data of macrocyclic ligand ( 1) and its Zn(II) complex ( 5) together with their molar conductivity values, and the magnetic moments of the complexes suggest that the macrocyclic ligand ( 1) is bonded to metal(II) ions through two oxygen atoms of ester moiety and the two nitrogen atoms of homopiperazine ring. The electronic spectral data of these complexes in DMSO are in good agreement with the octahedral coordination of M(II) ions. The ligand field parameters for these complexes, i.e. splitting energy and Racah parameter were calculated to be 14,945 and 673 cm -1 for the Co(II) ( 2), 16,260 and 774 cm -1 for the Ni(II) ( 3) complexes respectively. The spliting energy of 17,262 cm -1 was obtained for the Cu(II) complex ( 4).

  2. Synthetic bioactive novel ether based Schiff bases and their copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Shabbir, Muhammad; Akhter, Zareen; Ismail, Hammad; Mirza, Bushra

    2017-10-01

    Novel ether based Schiff bases (HL1- HL4) were synthesized from 5-chloro-2-hydroxy benzaldehyde and primary amines (1-amino-4-phenoxybenzene, 4-(4-aminophenyloxy) biphenyl, 1-(4-aminophenoxy) naphthalene and 2-(4-aminophenoxy) naphthalene). From these Schiff bases copper(II) complexes (Cu(L1)2-Cu(L4)2)) were synthesized and characterized by elemental analysis and spectroscopic (FTIR, NMR) techniques. The synthesized Schiff bases and copper(II) complexes were further assessed for various biological studies. In brine shrimp assay the copper(II) complexes revealed 4-fold higher activity (LD50 3.8 μg/ml) as compared with simple ligands (LD50 12.4 μg/ml). Similar findings were observed in potato disc antitumor assay with higher activities for copper(II) complexes (IC50 range 20.4-24.1 μg/ml) than ligands (IC50 range 40.5-48.3 μg/ml). DPPH assay was performed to determine the antioxidant potential of the compounds. Significant antioxidant activity was shown by the copper(II) complexes whereas simple ligands have shown no activity. In DNA protection assay significant protection behavior was exhibited by simple ligand molecules while copper(II) complexes showed neutral behavior (neither protective nor damaging).

  3. Architecture of the Yeast RNA Polymerase II Open Complex and Regulation of Activity by TFIIF

    PubMed Central

    Fishburn, James

    2012-01-01

    To investigate the function and architecture of the open complex state of RNA polymerase II (Pol II), Saccharomyces cerevisiae minimal open complexes were assembled by using a series of heteroduplex HIS4 promoters, TATA binding protein (TBP), TFIIB, and Pol II. The yeast system demonstrates great flexibility in the position of active open complexes, spanning 30 to 80 bp downstream from TATA, consistent with the transcription start site scanning behavior of yeast Pol II. TFIIF unexpectedly modulates the activity of the open complexes, either repressing or stimulating initiation. The response to TFIIF was dependent on the sequence of the template strand within the single-stranded bubble. Mutations in the TFIIB reader and linker region, which were inactive on duplex DNA, were suppressed by the heteroduplex templates, showing that a major function of the TFIIB reader and linker is in the initiation or stabilization of single-stranded DNA. Probing of the architecture of the minimal open complexes with TFIIB-FeBABE [TFIIB–p-bromoacetamidobenzyl–EDTA-iron(III)] derivatives showed that the TFIIB core domain is surprisingly positioned away from Pol II, and the addition of TFIIF repositions the TFIIB core domain to the Pol II wall domain. Together, our results show an unexpected architecture of minimal open complexes and the regulation of activity by TFIIF and the TFIIB core domain. PMID:22025674

  4. Design, synthesis and characterization of macrocyclic ligand based transition metal complexes of Ni(II), Cu(II) and Co(II) with their antimicrobial and antioxidant evaluation

    NASA Astrophysics Data System (ADS)

    Gull, Parveez; Malik, Manzoor Ahmad; Dar, Ovas Ahmad; Hashmi, Athar Adil

    2017-04-01

    Three new complexes Ni(II), Cu(II) and Co(II) were synthesized of macrocyclic ligand derived from 1, 4-dicarbonyl-phenyl-dihydrazide and O-phthalaldehyde in the ratio of 2:2. The synthesized compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., Mass and 1H NMR spectral studies. The electronic spectra of the metal complexes indicate a six coordinate octahedral geometry of the central metal ion. These metal complexes and the ligand were evaluated for antimicrobial activity against bacteria (E. coli, B. subtilis, S. aureus) and fungi (A. niger, A. flavus, C. albicans) and compared against standard drugs chloramphenicol and nystatin respectively. In addition, the antioxidant activity of the compounds was also investigated through scavenging effect on DPPH radicals.

  5. Synthesis, magnetic, spectral, and antimicrobial studies of Cu(II), Ni(II) Co(II), Fe(III), and UO 2(II) complexes of a new Schiff base hydrazone derived from 7-chloro-4-hydrazinoquinoline

    NASA Astrophysics Data System (ADS)

    El-Behery, Mostafa; El-Twigry, Haifaa

    2007-01-01

    A new hydrazone ligand, HL, was prepared by the reaction of 7-chloro-4-hydrazinoquinoline with o-hydroxybenzaldehyde. The ligand behaves as monoprotic bidentate. This was accounted for as the ligand contains a phenolic group and its hydrogen atom is reluctant to be replaced by a metal ion. The ligand reacted with Cu(II), Ni(II), Co(II), Fe(III), and UO 2(II) ions to yield mononuclear complexes. In the case of Fe(III) ion two complexes, mono- and binuclear complexes, were obtained in the absence and presence of LiOH, respectively. Also, mixed ligand complexes were obtained from the reaction of the metal cations Cu(II), Ni(II) and Fe(III) with the ligand (HL) and 8-hydroxyquinoline (8-OHqu) in the presence of LiOH, in the molar ratio 1:1:1:1. It is clear that 8-OHqu behaves as monoprotic bidentate ligand in such mixed ligand complexes. The ligand, HL, and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass, and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square-planar geometry, while Ni(II) mixed complex has also formed a tetrahedral configuration and UO 2(II) complex which formed a favorable pentagonal biprymidial geometry. Magnetic moment of the binuclear Fe(III) complex is quite low compared to calculated value for two iron ions complex and thus shows antiferromagnetic interactions between the two adjacent ferric ions. The HL and metal complexes were tested against one stain Gram positive bacteria ( Staphylococcus aureus), Gram negative bacteria ( Escherichia coli), and fungi ( Candida albicans). The tested compounds exhibited higher antibacterial acivities.

  6. Plane Transformations in a Complex Setting II: Isometries

    ERIC Educational Resources Information Center

    Dana-Picard, Thierry

    2007-01-01

    This paper is the second part of a study of plane transformations using a complex setting. The first part was devoted to homotheties and translations, now attention is turned towards plane isometries. The group theoretic properties of plane isometries are easy to derive and images of classical geometrical objects by these transformations are…

  7. Cu(II), Co(II) and Ni(II) complexes of new Schiff base ligand: Synthesis, thermal and spectroscopic characterizations

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Sayed, Mohamed Y.; Adam, Abdel Majid A.

    2013-04-01

    Cu(II), Co(II), and Ni(II) complexes were synthesized from 2-[(5-o-chlorophenylazo-2-hydroxybenzylidin)amino]-phenol Schiff base (H2L). Metal ions coordinate in a tetradentate or hexadentate features with these O2N donor ligand, which are characterized by elemental analyses, magnetic moments, infrared, Raman laser, electronic, and 1H NMR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Reactions with Cu(II), Co(II) and Ni(II), resulted [Cu(H2L)(H2O)2(Cl)]Cl, [Co(H2L)(H2O)3]Cl2ṡ3H2O and [Ni(H2L)(H2O)2]Cl2ṡ6H2O. The thermal decomposition behavior of H2L complexes has been investigated by thermogravimetric analysis (TG/DTG) at a heating rate of 10 °C min-1 under nitrogen atmosphere. The brightness side in this study is to take advantage for the preparation and characterizations of single phases of CuO, CoO and NiO nanoparticles using H2L complexes as precursors via a solid-state decomposition procedure. The crystalline structures of products using X-ray diffractometer (XRD), morphology of particles by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) were investigated.

  8. Antimicrobial and mutagenic activity of some carbono- and thiocarbonohydrazone ligands and their copper(II), iron(II) and zinc(II) complexes.

    PubMed

    Bacchi, A; Carcelli, M; Pelagatti, P; Pelizzi, C; Pelizzi, G; Zani, F

    1999-06-15

    Several mono- and bis- carbono- and thiocarbonohydrazone ligands have been synthesised and characterised; the X-ray diffraction analysis of bis(phenyl 2-pyridyl ketone) thiocarbonohydrazone is reported. The coordinating properties of the ligands have been studied towards Cu(II), Fe(II), and Zn(II) salts. The ligands and the metal complexes were tested in vitro against Gram positive and Gram negative bacteria, yeasts and moulds. In general, the bisthiocarbonohydrazones possess the best antimicrobial properties and Gram positive bacteria are the most sensitive microorganisms. Bis(ethyl 2-pyridyl ketone) thiocarbonohydrazone, bis(butyl 2-pyridyl ketone)thiocarbonohydrazone and Cu(H2nft)Cl2 (H2nft, bis(5-nitrofuraldehyde)thiocarbonohydrazone) reveal a strong activity with minimum inhibitory concentrations of 0.7 microgram ml-1 against Bacillus subtilis and of 3 micrograms ml-1 against Staphylococcus aureus. Cu(II) complexes are more effective than Fe(II) and Zn(II) ones. All bisthiocarbono- and carbonohydrazones are devoid of mutagenic properties, with the exception of the compounds derived from 5-nitrofuraldehyde. On the contrary a weak mutagenicity, that disappears in the copper complexes, is exhibited by monosubstituted thiocarbonohydrazones.

  9. BSA binding and antimicrobial studies of branched polyethyleneimine-copper(II)bipyridine/phenanthroline complexes

    NASA Astrophysics Data System (ADS)

    Vignesh, Gopalaswamy; Arunachalam, Sankaralingam; Vignesh, Sivanandham; James, Rathinam Arthur

    2012-10-01

    The interaction of two water soluble branched polyethyleneimine-copper(II) complexes containing bipyridine/phenanthroline with bovine serum albumin (BSA) was studied by, UV-Visible absorption, fluorescence, lifetime measurements and circular dichroism spectroscopic techniques. The polymer-copper(II) complexes strongly quench the intrinsic fluorescence of BSA is the static quenching mechanism through hydrogen bonds and van der Waal's attraction. The distance r, between the BSA and the complexes seems to be less than 2 nm indicating that the energy transfer between the donor and acceptor occurs with high probability. Synchronous fluorescence studies indicate the binding of polymer-copper(II) complexes with BSA mostly changes the polarity around tryptophan residues rather than tyrosine residues. The circular dichroism studies indicate that the binding has induced considerable amount of conformational changes in the protein. The complexes also show some antibacterial and antifungal properties.

  10. Liquid-crystalline dendrimer Cu(II) complexes and Cu(0) nanoclusters based on the Cu(II) complexes: An electron paramagnetic resonance investigation

    NASA Astrophysics Data System (ADS)

    Domracheva, N. E.; Mirea, A.; Schwoerer, M.; Torre-Lorente, L.; Lattermann, G.

    2007-07-01

    New nanostructured materials, namely, the liquid-crystalline copper(II) complexes that contain poly(propylene imine) dendrimer ligands of the first (ligand 1) and second (ligand 2) generations and which have a columnar mesophase and different copper contents (x = Cu/L), are investigated by EPR spectroscopy. The influence of water molecules and nitrate counterions on the magnetic properties of complex 2 (x = 7.3) is studied. It is demonstrated that water molecules can extract some of the copper ions from dendrimer complexes and form hexaaqua copper complexes with free ions. The dimer spectra of fully hydrated complex 2 (x = 7.3) are observed at temperatures T < 10 K. For this complex, the structure is identified and the distance between the copper ions is determined. It is shown that the nitrate counterion plays the role of a bridge between the hexaaqua copper(II) complex and the dendrimer copper(II) complex. The temperature-induced valence tautomerism attended by electron transport is revealed for the first time in blue dendrimer complexes 1 (x = 1.9) with a dimer structure. The activation energy for electron transport is estimated to be 0.35 meV. The coordination of the copper ion site (NO4) and the structural arrangement of green complexes 1 (x = 1.9) in the columnar mesophase are determined. Complexes of this type form linear chains in which nitrate counterions serve as bridges between copper centers. It is revealed that green complexes 1 (x = 1.9) dissolved in isotropic inert solvents can be oriented in the magnetic field (B 0 = 8000 G). The degree of orientation of these complexes is rather high (S z = 0.76) and close to that of systems with a complete ordering (S z = 1) in the magnetic field. Copper(0) nanoclusters prepared by reduction of complex 2 (x = 7.3) in two reducing agents (NaBH4, N2H4 · H2O) are examined. A model is proposed for a possible location of Cu(0) nanoclusters in a dendrimer matrix.

  11. Syntheses, structures, and properties of trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)], constructed with the complexed bridging ligand [M(bpca)(2)] [M, M' = Ni(II), Mn(II); Cu(II), Mn(II); Fe(II), Mn(II); Ni(II), Fe(II); and Fe(II), Fe(II); Hbpca = Bis(2-pyridylcarbonyl)amine, Hhfac = Hexafluoroacetylacetone].

    PubMed

    Kamiyama, Asako; Noguchi, Tomoko; Kajiwara, Takashi; Ito, Tasuku

    2002-02-11

    Five trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)] (where MM'(2) = NiMn(2), CuMn(2), FeMn(2), NiFe(2), and FeFe(2); Hbpca = bis(2-pyridylcarbonyl)amine; and Hhfac = hexafluoroacetylacetone) were synthesized almost quantitatively by the reaction of [M(bpca)(2)] and [M'(hfac)(2)] in 1:2 molar ratio, and their structures and magnetic properties were investigated. Three complexes, with M' = Mn, crystallize in the same space group, Pna2(1), whereas two complexes, with M' = Fe, crystallize in P4(1), and complexes within each set are isostructural to one another. In all complexes, [M(bpca)(2)] acts as a bis-bidentate bridging ligand to form a linear trinuclear complex in which three metal ions are arranged in the manner M'-M-M'. The central metal ion is in a strong ligand field created by the N(6) donor set, and hence the Fe(II) in the [Fe(bpca)(2)] moiety is in a low-spin state. The terminal metal ions (M') are surrounded by O(6) donor sets with a moderate ligand field, which leads to the high-spin configuration of Fe(II). Three metal ions in all complexes are almost collinear, and metal-metal distances are ca. 5.5 A. The magnetic behavior of NiMn(2) and NiFe(2) shows a weak ferromagnetic interaction between the central Ni(II) ion and the terminal Mn(II) or Fe(II) ions. In these complexes, sigma-spin orbitals of the central Ni(II) ion and those of terminal metal ions have different symmetry about a 2-fold rotation axis through the Ni-N(amide)-M'(terminal) atoms, and this results in orthogonality between the neighboring sigma-spin orbitals and thus ferromagnetic interactions.

  12. A series of tetraazalene radical-bridged M2 (M = CrIII, MnII, FeII, CoII) complexes with strong magnetic exchange coupling.

    PubMed

    DeGayner, Jordan A; Jeon, Ie-Rang; Harris, T David

    2015-11-13

    The ability of tetraazalene radical bridging ligands to mediate exceptionally strong magnetic exchange coupling across a range of transition metal complexes is demonstrated. The redox-active bridging ligand N , N ', N '', N '''-tetra(2-methylphenyl)-2,5-diamino-1,4-diiminobenzoquinone ( NMePh LH 2 ) was metalated to give the series of dinuclear complexes [(TPyA) 2 M 2 ( NMePh L 2- )] 2+ (TPyA = tris(2-pyridylmethyl)amine, M = Mn II , Fe II , Co II ). Variable-temperature dc magnetic susceptibility data for these complexes reveal the presence of weak superexchange interactions between metal centers, and fits to the data provide coupling constants of J = -1.64(1) and -2.16(2) cm -1 for M = Mn II and Fe II , respectively. One-electron reduction of the complexes affords the reduced analogues [(TPyA) 2 M 2 ( NMePh L 3- ˙)] + . Following a slightly different synthetic procedure, the related complex [(TPyA) 2 CrIII2( NMePh L 3- ˙)] 3+ was obtained. X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy indicate the presence of radical NMePh L 3- ˙ bridging ligands in these complexes. Variable-temperature dc magnetic susceptibility data of the radical-bridged species reveal the presence of strong magnetic interactions between metal centers and ligand radicals, with simulations to data providing exchange constants of J = -626(7), -157(7), -307(9), and -396(16) cm -1 for M = Cr III , Mn II , Fe II , and Co II , respectively. Moreover, the strength of magnetic exchange in the radical-bridged complexes increases linearly with decreasing M-L bond distance in the oxidized analogues. Finally, ac magnetic susceptibility measurements reveal that [(TPyA) 2 Fe 2 ( NMePh L 3- ˙)] + behaves as a single-molecule magnet with a relaxation barrier of U eff = 52(1) cm -1 . These results highlight the ability of redox-active tetraazalene bridging ligands to enable dramatic enhancement of magnetic exchange coupling upon redox chemistry and provide a rare opportunity to examine

  13. DNA Binding, Cleavage and Antibacterial Activity of Mononuclear Cu(II), Ni(II) and Co(II) Complexes Derived from Novel Benzothiazole Schiff Bases.

    PubMed

    Vamsikrishna, Narendrula; Kumar, Marri Pradeep; Tejaswi, Somapangu; Rambabu, Aveli; Shivaraj

    2016-07-01

    A series of novel bivalent metal complexes M(L1)2 and M(L2)2 where M = Cu(II), Ni(II), Co(II) and L1 = 2-((benzo [d] thiazol-6-ylimino)methyl)-4-bromophenol [BTEMBP], L2 = 1-((benzo [d] thiazol-6-ylimino)methyl) naphthalen-2-ol [BTEMNAPP] were synthesized. All the compounds have been characterized by elemental analysis, SEM, Mass, (1)H NMR, (13)C NMR, UV-Vis, IR, ESR, spectral data and magnetic susceptibility measurements. Based on the analytical and spectral data four-coordinated square planar geometry is assigned to all the complexes. DNA binding properties of these complexes have been investigated by electronic absorption spectroscopy, fluorescence and viscosity measurements. It is observed that these binary complexes strongly bind to calf thymus DNA by an intercalation mode. DNA cleavage efficacy of these complexes was tested in presence of H2O2 and UV light by gel electrophoresis and found that all the complexes showed better nuclease activity. Finally the compounds were screened for antibacterial activity against few pathogens and found that the complexes have potent biocidal activity than their free ligands.

  14. Magnetic Properties of Mononuclear Co(II) Complexes with Carborane Ligands.

    PubMed

    Alcoba, Diego R; Oña, Ofelia B; Massaccesi, Gustavo E; Torre, Alicia; Lain, Luis; Melo, Juan I; Peralta, Juan E; Oliva-Enrich, Josep M

    2018-06-12

    We analyze the magnetic properties of three mononuclear Co(II) coordination complexes using quantum chemical complete active space self-consistent field and N-electron valence perturbation theory approaches. The complexes are characterized by a distorted tetrahedral geometry in which the central ion is doubly chelated by the icosahedral ligands derived from 1,2-(HS) 2 -1,2-C 2 B 10 H 10 (complex I), from 1,2-(HS) 2 -1,2-C 2 B 10 H 10 and 9,12-(HS) 2 -1,2-C 2 B 10 H 10 (complex II), and from 9,12-(HS) 2 -1,2-C 2 B 10 H 10 (complex III), which are two positional isomers of dithiolated 1,2-dicarba- closo-dodecaborane (complex I). Complex I was realized experimentally recently (Tu, D.; Shao, D.; Yan, H.; Lu, C. Chem. Commun. 2016, 52, 14326) and served to validate the computational protocol employed in this work, while the remaining two proposed complexes can be considered positional isomers of I. Our calculations show that these complexes present different axial and rhombic zero-field splitting anisotropy parameters and different values of the most significant components of the g tensor. The predicted axial anisotropy D = -147.2 cm -1 for complex II is twice that observed experimentally for complex I, D = -72.8 cm -1 , suggesting that this complex may be of interest for practical applications. We also analyze the temperature dependence of the magnetic susceptibility and molar magnetization for these complexes when subject to an external magnetic field. Overall, our results suggest that o-carborane-incorporated Co(II) complexes are worthwhile candidates for experimental exploration as single-ion molecular magnets.

  15. Isolation of Plant Photosystem II Complexes by Fractional Solubilization

    PubMed Central

    Haniewicz, Patrycja; Floris, Davide; Farci, Domenica; Kirkpatrick, Joanna; Loi, Maria C.; Büchel, Claudia; Bochtler, Matthias; Piano, Dario

    2015-01-01

    Photosystem II (PSII) occurs in different forms and supercomplexes in thylakoid membranes. Using a transplastomic strain of Nicotiana tabacum histidine tagged on the subunit PsbE, we have previously shown that a mild extraction protocol with β-dodecylmaltoside enriches PSII characteristic of lamellae and grana margins. Here, we characterize residual granal PSII that is not extracted by this first solubilization step. Using affinity purification, we demonstrate that this PSII fraction consists of PSII-LHCII mega- and supercomplexes, PSII dimers, and PSII monomers, which were separated by gel filtration and functionally characterized. Our findings represent an alternative demonstration of different PSII populations in thylakoid membranes, and they make it possible to prepare PSII-LHCII supercomplexes in high yield. PMID:26697050

  16. New Cu (II), Co(II) and Ni(II) complexes of chalcone derivatives: Synthesis, X-ray crystal structure, electrochemical properties and DFT computational studies

    NASA Astrophysics Data System (ADS)

    Tabti, Salima; Djedouani, Amel; Aggoun, Djouhra; Warad, Ismail; Rahmouni, Samra; Romdhane, Samir; Fouzi, Hosni

    2018-03-01

    The reaction of nickel(II), copper(II) and cobalt(II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) leads to a series of new complexes: Ni(L)2(NH3), Cu(L)2(DMF)2 and Co(L)2(H2O). The crystal structure of the Cu(L)2(DMF)2 complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexes were investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH3CN solutions, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couples. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces. HOMO/LUMO energy level and the global reactivity descriptors quantum parameters are also calculated. The electrophilic and nucleophilic potions in the complex surface are theoretically evaluated by molecular electrostatic potential and Mulliken atomic charges analysis.

  17. Fluconazole and its interaction with metal (II) complexes: SEM, Spectroscopic and antifungal studies.

    PubMed

    Ali, Mohsin; Ahmed, Mansoor; Ahmed, Shakil; Ali, Syed Imran; Perveen, Samina; Mumtaz, Majid; Haider, Syed Moazzam; Nazim, Urooj

    2017-01-01

    The human digestive tract contains some 100 trillion cells and thousands of species of micro-organisms may be present as normal flora of this tract as well as other mucocutaneous junctions of the body. Candida specie is the most common organism residing in these areas and can easily invade the internal tissues in cases of loss of host defenses. Modifications of previously existing antifungal agents may provide new options to fight against these species. Inorganic compounds of different antifungals are under investigations. Present study report six complexes of fluconazole with Cu (II)), Fe(II), Cd(II), Co(II), Ni(II) and Mn(II) have been synthesized and characterized by elemental analysis, IR, UV and H-NMR. The elemental analysis and spectroscopic data were found in agreement with the expected values as the metal to ligand value was 1:2 ratios with two chlorides in coordination sphere. The morphology of each complex was studied using scanning electron microscope and compared with fluconazole molecule the flaky-slab rock like particles of pure fluconazole was also observed as reported earlier. However, the complexes of fluconazole were showed different morphology in their micrograph. Fluconazole and its complex derivatives have also been screened in vitro for their antifungal activity against Candida albican and Aspergillus niger by MIC method. The complexes showed varied activity ranging from 2-20%.

  18. Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), thermogravimetric and antimicrobial studies of Ca(II), Mn(II), Cu(II), Zn(II) and Cd(II) complexes of ferulic acid

    NASA Astrophysics Data System (ADS)

    Kalinowska, M.; Piekut, J.; Bruss, A.; Follet, C.; Sienkiewicz-Gromiuk, J.; Świsłocka, R.; Rzączyńska, Z.; Lewandowski, W.

    2014-03-01

    The molecular structure of Mn(II), Cu(II), Zn(II), Cd(II) and Ca(II) ferulates (4-hydroxy-3-methoxycinnamates) was studied. The selected metal ferulates were synthesized. Their composition was established by means of elementary and thermogravimetric analysis. The following spectroscopic methods were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance (13C, 1H NMR) and ultraviolet-visible (UV/VIS). On the basis of obtained results the electronic charge distribution in studied metal complexes in comparison with ferulic acid molecule was discussed. The microbiological study of ferulic acid and ferulates toward Escherichia coli, Bacillus subtilis, Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris was done.

  19. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  20. Nickel(II) and palladium(II) triphenylphosphine complexes incorporating tridentate Schiff base ligands: Synthesis, characterization and biocidal activities

    NASA Astrophysics Data System (ADS)

    Shabbir, Muhammad; Akhter, Zareen; Ashraf, Ahmad Raza; Ismail, Hammad; Habib, Anum; Mirza, Bushra

    2017-12-01

    Nickel(II) and palladium(II) triphenylphosphine complexes incorporating tridentate Schiff bases have been prepared and characterized by elemental analysis as well as by spectroscopic techniques (FTIR & NMR). The synthesized compounds were assessed to check their potential biocidal activity by using different biological assays (brine shrimp cytotoxicity, antimicrobial, antioxidant, antitumor and drug-DNA interaction). Results of brine shrimp cytotoxicity assay showed that ligand molecules are more bioactive than metal complexes with LD50 as low as 12.4 μg/mL. The prominent antitumor activity was shown by nickel complexes while the palladium complexes exhibited moderate activity. The synthesized compounds have shown high propensity for DNA binding either through intercalation or groove binding which represents the mechanism of antitumor effect of these compounds. Additionally, ligand molecules and nickel metal complexes showed significant antioxidant activity with IC50 values as low as 3.1 μg/mL and 18.9 μg/mL respectively while palladium complexes exhibited moderate activity. Moreover, in antimicrobial assays H2L1, Ni(L1)PPh3 and H2L3 showed dual inhibition against bacterial and fungal strains while for the rest of the compounds varying degree of activity was recorded against different strains. Overall comparison of results suggests that the synthesized compounds can be promising candidate for drug formulation and development.

  1. Synthesis, spectroscopic, molecular structure, antioxidant, antimicrobial and antitumor behavior of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of O2N type tridentate chromone-2-carboxaldehyde Schiff's base ligand

    NASA Astrophysics Data System (ADS)

    Ammar, Reda A.; Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Al-Bedair, Lamia A.

    2017-08-01

    Tridentate Schiff's base (HL) ligand was synthesized via condensation of salicylaldehyde and 3-hydroxypyridin-2-yliminomethyl-4H-chromen-4-one and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR), magnetic moment, EPR, and thermal measurements. The IR spectra showed that HL was coordinated to the metal ions in tridentate manner with O2N donor sites of the azomethine N, deprotonated phenolic-OH and carbonyl-O. The activation of thermodynamic parameters are calculated using Coast-Redfern and Horowitz-Metzger (HM). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations, UV-Vis and magnetic moment measurements, ESR and ligand field parameters. Antioxidant activities have also been performed for all the compounds. The investigated ligand and metal complexes were screened for their in-vitro antimicrobial activities against different types of fungal and bacterial strains. The resulting data assert on the inspected compounds as a highly promising bactericides and fungicides. The antitumor activities of all inspected compounds were evaluated towards human liver Carcinoma (HepG2) cell line.

  2. DNA incision evaluation, binding investigation and biocidal screening of Cu(II), Ni(II) and Co(II) complexes with isoxazole Schiff bases.

    PubMed

    Ganji, Nirmala; Chityala, Vijay Kumar; Marri, Pradeep Kumar; Aveli, Rambabu; Narendrula, Vamsikrishna; Daravath, Sreenu; Shivaraj

    2017-10-01

    Two new series of binary metal complexes [M(L 1 ) 2 ] and [M(L 2 ) 2 ] where, M=Cu(II), Ni(II) & Co(II) and L 1 =4-((3,4-dimethylisoxazol-5-ylimino)methyl)benzene-1,3-diol; L 2 =2-((3,4-dimethylisoxazol-5-ylimino)methyl)-5-methoxyphenol were synthesized and characterized by elemental analysis, 1 H NMR, 13 C NMR, FT-IR, ESI mass, UV-Visible, magnetic moment, ESR, SEM and powder XRD studies. Based on these results, a square planar geometry is assigned for all the metal complexes where the Schiff base acts as uninegatively charged bidentate chelating agent via the hydroxyl oxygen and azomethine nitrogen atoms. DNA binding studies of all the complexes with calf thymus DNA have been comprehensively investigated using electronic absorption spectroscopy, fluorescence quenching and viscosity studies. The oxidative and photo cleavage affinity of metal complexes towards supercoiled pBR322 DNA has been ascertained by agarose gel electrophoresis assay. From the results, it is observed that all the metal complexes bind effectively to CT-DNA via an intercalative mode of binding and also cleave pBR322 DNA in a promising manner. Further the Cu(II) complexes have shown better binding and cleavage properties towards DNA. The antimicrobial activities of the Schiff bases and their metal complexes were studied on bacterial and fungal strains and the results denoted that the complexes are more potent than their Schiff base ligands. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. DNA/RNA binding and anticancer/antimicrobial activities of polymer-copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Riyasdeen, Anvarbatcha; Dhivya, Rajakumar; Vignesh, Sivanandham; Akbarsha, Mohammad Abdulkader; James, Rathinam Arthur

    2013-05-01

    Water soluble polymer-copper(II) complexes with various degrees of coordination in the polymer chain were synthesized and characterized by elemental analysis, IR, UV-visible and EPR spectra. The DNA/RNA binding behavior of these polymer-copper(II) complexes was examined by UV-visible absorption, emission and circular dichroism spectroscopic methods, and cyclic voltammetry techniques. The binding of the polymer-copper(II) complexes with DNA/RNA was mainly through intercalation but some amount of electrostatic interaction was also observed. This binding capacity increased with the degree of coordination of the complexes. The polymer-copper(II) complex having the highest degree of coordination was subjected to analysis of cytotoxic and antimicrobial properties. The cytotoxicity study indicated that the polymer-copper(II) complexes affected the viability of MCF-7 mammary carcinoma cells, and the cells responded to the treatment with mostly through apoptosis although a few cells succumbed to necrosis. The antimicrobial screening showed activity against some human pathogens.

  4. Synthesis, structural and biochemical activity studies of a new hexadentate Schiff base ligand and its Cu(II), Ni(II), and Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Ekmekcioglu, Pinar; Karabocek, Nevin; Karabocek, Serdar; Emirik, Mustafa

    2015-11-01

    A new Schiff base ligand (H2L) and its metal complexes have been prepared and characterized by elemental analysis, magnetic moment and spectral studies. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics activity under the standard control of different concentrations revealed that the metal complexes (6-8) showed enhanced antimicrobial activities in general as compared to free ligand. As an exception, the free ligand showed better activity against Trichoderma. The antifungal activity experiments were performed in triplicate. The order of biochemical activity for metal complexes were observed as in the following. CuL > CoL > NiL, which is exactly same as the order of stability constants of these complexes. Additionally, we performed DFT and TD-DFT calculation for free ligand and Cu(II) complex to support the experimental data. The geometries of the Cu(II) complex have been optimized using the B3LYP level of theory. The theoretical calculations confirm that the copper (II) center exhibits a distorted square pyramidal geometry which is favored by experimental results.

  5. Nanomolar pyrophosphate detection and nucleus staining in living cells with simple terpyridine-Zn(II) complexes.

    PubMed

    Chao, Duobin; Ni, Shitan

    2016-05-20

    Great efforts have been made to develop fluorescent probes for pyrophosphate (PPi) detection. Nucleus staining with fluorescence microscopy has been also widely investigated. But fluorescent probes for PPi detection with high sensitivity in water medium and nucleus staining with low-cost non-precious metal complexes in living cells are still challenging. Herein, we report simple terpyridine-Zn(II) complexes for selective nanomolar PPi detection over ATP and ADP in water based on aggregation induced emission (AIE) and intramolecular charge transfer (ICT). In addition, these terpyridine-Zn(II) complexes were successfully employed for nucleus staining in living cells. These results demonstrated simply obtained terpyridine-Zn(II) complexes are powerful tool for PPi detection and the development of PPi-related studies.

  6. Heavy ligand atom induced large magnetic anisotropy in Mn(ii) complexes.

    PubMed

    Chowdhury, Sabyasachi Roy; Mishra, Sabyashachi

    2017-06-28

    In the search for single molecule magnets, metal ions are considered pivotal towards achieving large magnetic anisotropy barriers. In this context, the influence of ligands with heavy elements, showing large spin-orbit coupling, on magnetic anisotropy barriers was investigated using a series of Mn(ii)-based complexes, in which the metal ion did not have any orbital contribution. The mixing of metal and ligand orbitals was achieved by explicitly correlating the metal and ligand valence electrons with CASSCF calculations. The CASSCF wave functions were further used for evaluating spin-orbit coupling and zero-field splitting parameters for these complexes. For Mn(ii) complexes with heavy ligand atoms, such as Br and I, several interesting inter-state mixings occur via the spin-orbit operator, which results in large magnetic anisotropy in these Mn(ii) complexes.

  7. Cyclometalated ruthenium(II) complexes with a bis-carbene CCC-pincer ligand.

    PubMed

    Zhang, You-Ming; Shao, Jiang-Yang; Yao, Chang-Jiang; Zhong, Yu-Wu

    2012-08-21

    The first series of cyclometalated ruthenium complexes with a CCC-pincer bis-carbene ligand have been obtained as bench-stable compounds. Single-crystal X-ray analysis of one of these complexes with 4'-di-p-anisylamino-2,2':6',2''-terpyridine is presented. The Ru(II/III) redox potentials and MLCT absorptions of these complexes can be varied by attaching an electron-donating or -withdrawing group on the noncyclometalating ligand.

  8. Synthesis, crystallographic and spectral studies of homochiral cobalt(II) and nickel(II) complexes of a new terpyridylaminoacid ligand

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Gao, Chang-Qing; Gao, Zhi-Yang; Wu, Ben-Lai; Niu, Yun-Yin

    2018-04-01

    Based on a chiral terpyridylaminoacid ligand, a series of homochiral Co(II) and Ni(II) complexes, namely, [Co(H2L)(HL)]·Cl·(PF6)2·2H2O (1), [Ni(H2L)(HL)]·Cl·(PF6)2 (2), [Co2(L)2(CH3OH)(H2O)]·(PF6)2·CH3OH (3), [Ni2(L)2(CH3OH)2]·(PF6)2·2CH3OH (4), [Co2(L)2(N3)2]·3H2O (5), and [Ni2(L)2(SCN)2]·4H2O (6) have been successfully synthesized and characterized by elemental analysis, TGA, spectroscopic methods (IR, CD and electronic absorption spectra) and single-crystal X-ray diffraction structural analysis (HL = (S)-2-((4-([2,2':6‧,2″-terpyridin]-4‧-yl)benzyl)amino)-4-methylpentanoic acid). In the acidic reaction conditions, one protonated (H2L)+ and one zwitterionic HL only used their terpyridyl groups to chelate one metal ion Co(II) or Ni(II), forming chiral mononuclear cationic complexes 1 or 2. But in the basic and hydro(solvo)thermal reaction conditions, deprotonated ligands (L)‒ acting as bridges used their terpyridyl and amino acid groups to link with two Co(II) or Ni(II) ions, fabricating chiral dinuclear metallocyclic complexes 3-6. Those chiral mononuclear and dinuclear complexes whose chirality originates in the homochiral ligand HL further self-assemble into higher-dimensional homochiral supramolecular frameworks through intermolecular hydrogen-bonding and π···π interactions. Notably, the coordination mode, hydrogen-bonding site, and existence form of HL ligand can be controlled by the protonation of its amino group, and the architectural diversity of those supramolecular frameworks is adjusted by pH and counter anions. Very interestingly, the 3D porous supramolecular frameworks built up from the huge chiral mononuclear cationic complexes 1 and 2 have novel helical layers only formed through every right-handed helical chain intertwining with two adjacent same helical chains, and the 2D supramolecular helicate 5 consists of two types of left-handed helical chains.

  9. Spectroscopic, cyclic voltammetric and biological studies of transition metal complexes with mixed nitrogen-sulphur (NS) donor macrocyclic ligand derived from thiosemicarbazide

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar; Sangeetika

    2005-11-01

    The complexation of new mixed thia-aza-oxa macrocycle viz., 2,12-dithio-5,9,14,18-tetraoxo-7,16-dithia-1,3,4,10,11,13-hexaazacyclooctadecane containing thiosemicarba-zone unit with a series of transition metals Co(II), Ni(II) and Cu(II) has been investigated, by different spectroscopic techniques. The structural features of the ligand have been studied by EI-mass, 1H NMR and IR spectral techniques. Elemental analyses, magnetic moment susceptibility, molar conductance, IR, electronic, and EPR spectral studies characterized the complexes. Electronic absorption and IR spectra of the complexes indicate octahedral geometry for chloro, nitrato, thiocyanato or acetato complexes. The dimeric and neutral nature of the sulphato complexes are confirmed from magnetic susceptibility and low conductance values. Electronic spectra suggests square-planar geometry for all sulphato complexes. The redox behaviour was studied by cyclic voltammetry, show metal-centered reduction processes for all complexes. The complexes of copper show both oxidation and reduction process. The redox potentials depend on the conformation of central atom in the macrocyclic complexes. Newly synthesized macrocyclic ligand and its transition metal complexes show markedly growth inhibitory activity against pathogenic bacterias and plant pathogenic fungi under study. Most of the complexes have higher activity than that of the metal free ligand.

  10. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Hanif, Muhammad; Chohan, Zahid H.

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  11. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine.

    PubMed

    Mohamed, Gehad G; El-Gamel, Nadia E A

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl-N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA chelates were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  12. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  13. Highly preorganized pyrazolate-bridged palladium(II) and nickel(II) complexes in bimetallic norbornene polymerization.

    PubMed

    Sachse, Anna; Demeshko, Serhiy; Dechert, Sebastian; Daebel, Venita; Lange, Adam; Meyer, Franc

    2010-04-28

    New derivatives of pyrazolate-based binucleating ligands HL with appended imine functions have been synthesized to provide a versatile set of ligand systems with different backbone substituents both at the pyrazole-C(4) and the imine-C (H, Me, Ph). These scaffolds have two adjacent coordination compartments akin to the alpha-diimine type. A series of binuclear palladium(II) complexes [LPd(2)Cl(3)] (1-4) and tetranuclear nickel(II) complexes [L(2)Ni(4)Br(6)(solvent)(4)] (5, 6) of the various ligands have been prepared and characterized, including X-ray structural analyses for two representative Pd and the two Ni complexes. Complexes 5 and 6 were found to contain an unusual central mu(4)-bromide. Mononuclear nickel(II) complexes [L(2)Ni] were detected as intermediates in the formation of the tetranuclear complexes and have been characterized by X-ray analyses in two cases (7, 8). The interconversion between 5' and 7 has been investigated by UV/Vis spectroscopy and ESI mass spectrometry, and magnetic coupling in the [L(2)Ni(4)Br(6)(solvent)(4)] complexes has been studied (SQUID). Trans-coupling via the central mu(4)-bromide is suggested to mediate significant antiferromagnetic interaction. The reactivity of such types of Pd and Ni complexes has been tested for the vinyl/addition polymerization of norbornene. In the presence of an excess of cocatalyst methylaluminoxane (MAO) the palladium complexes show high activity up to 5.9 x 10(6) g(PNB) mol(Pd)(-1) h(-1) at 20 degrees C, while activities of the nickel systems are much lower, but strongly solvent dependent. Detailed studies on the dependence of activity on polymerization conditions such as molar ratios of catalyst and cocatalyst, temperature, reaction time and solvent were carried out. All obtained polynorbornenes (PNB) were noncrystalline and insoluble, but have high glass transition temperatures (T(g)). Microstructures were analyzed by IR spectroscopy and solid state (CP/MAS) (13)C NMR, revealing distinct

  14. Syntheses, structures, and properties of imidazolate-bridged Cu(II)-Cu(II) and Cu(II)-Zn(II) dinuclear complexes of a single macrocyclic ligand with two hydroxyethyl pendants.

    PubMed

    Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia

    2003-09-22

    The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.

  15. Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Mousavi, S. Sedighe; Afshari, Sadegh

    2016-11-01

    New dimer complexes of zinc(II), copper(II) and nickel(II) were synthesized using the Schiff base ligand which was formed by the condensation of 2-aminothiophenol and 2-hydroxy-5-methyl benzaldehyde. This tridentate Schiff base ligand was coordinated to the metal ions through the NSO donor atoms. In order to prevent the oxidation of the thiole group during the formation of Schiff base and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structure of the Schiff base ligand showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff base as a new double Schiff base ligand. The molar conductivity values of the complexes in dichloromethane implied the presence of non-electrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were also studied in dichloromethane. The products were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of the double Schiff base was determined by single crystal X-ray diffraction. Furthermore, the density functional theory (DFT) calculations were performed at the B3LYP/6-31G(d,p) level of theory for the determination of the optimized structures of Schiff base complexes.

  16. Parametrization of a force field for metals complexed to biomacromolecules: applications to Fe(II), Cu(II) and Pb(II)

    NASA Astrophysics Data System (ADS)

    David, Laurent; Amara, Patricia; Field, Martin J.; Major, François

    2002-08-01

    Although techniques for the simulation of biomolecules, such as proteins and RNAs, have greatly advanced in the last decade, modeling complexes of biomolecules with metal ions remains problematic. Precise calculations can be done with quantum mechanical methods but these are prohibitive for systems the size of macromolecules. More qualitative modeling can be done with molecular mechanical potentials but the parametrization of force fields for metals is often difficult, particularly if the bonding between the metal and the groups in its coordination shell has significant covalent character. In this paper we present a method for deriving bond and bond-angle parameters for metal complexes from experimental bond and bond-angle distributions obtained from the Cambridge Structural Database. In conjunction with this method, we also introduce a non-standard energy term of gaussian form that allows us to obtain a stable description of the coordination about a metal center during a simulation. The method was evaluated on Fe(II)-porphyrin complexes, on simple Cu(II) ion complexes and a number of complexes of the Pb(II) ion.

  17. Coordination behavior of ligand based on NNS and NNO donors with ruthenium(III) complexes and their catalytic and DNA interaction studies

    NASA Astrophysics Data System (ADS)

    Manikandan, R.; Viswnathamurthi, P.

    2012-11-01

    Reactions of 2-acetylpyridine-thiosemicarbazone HL1, 2-acetylpyridine-4-methyl-thiosemicarbazone HL2, 2-acetylpyridine-4-phenyl-thiosemicarbazone HL3 and 2-acetylpyridine-semicarbazone HL4 with ruthenium(III) precursor complexes were studied and the products were characterized by analytical and spectral (FT-IR, electronic, EPR and EI-MS) methods. The ligands coordinated with the ruthenium(III) ion via pyridine nitrogen, azomethine nitrogen and thiolate sulfur/enolate oxygen. An octahedral geometry has been proposed for all the complexes based on the studies. All the complexes are redox active and display an irreversible and quasireversible metal centered redox processes. Further, the catalytic activity of the new complexes has been investigated for the transfer hydrogenation of ketones in the presence of isopropanol/KOH and the Kumada-Corriu coupling of aryl halides with aryl Grignard reagents. The DNA cleavage efficiency of new complexes has also been tested.

  18. Hydroxy double salts intercalated with Mn(II) complexes as potential contrast agents

    NASA Astrophysics Data System (ADS)

    Jin, Miao; Li, Wanjing; Spillane, Dominic E. M.; Geraldes, Carlos F. G. C.; Williams, Gareth R.; Bligh, S. W. Annie

    2016-03-01

    A series of Mn(II) aminophosphonate complexes were successfully synthesized and intercalated into the hydroxy double salt [Zn5(OH)8]Cl2·yH2O. Complex incorporation led to an increase in the interlayer spacing from 7.8 to 10-12 Å. Infrared spectroscopy showed the presence of the characteristic vibration peaks of the Mn(II) complexes in the intercalates' spectra, indicating successful incorporation. The complex-loaded composites had somewhat lower proton relaxivities than the pure complexes. Nevertheless, these intercalates may have use as MRI contrast agents for patients with poor kidney function, where traditional Gd(III)-based contrast agents cause severe renal failure.

  19. Copper (II) and zinc (II) complexes with flavanone derivatives: Identification of potential cholinesterase inhibitors by on-flow assays.

    PubMed

    Sarria, André Lucio Franceschini; Vilela, Adriana Ferreira Lopes; Frugeri, Bárbara Mammana; Fernandes, João Batista; Carlos, Rose Maria; da Silva, Maria Fátima das Graças Fernandes; Cass, Quezia Bezerra; Cardoso, Carmen Lúcia

    2016-11-01

    Metal chelates strongly influence the nature and magnitude of pharmacological activities in flavonoids. In recent years, studies have shown that a promising class of flavanone-metal ion complexes can act as selective cholinesterase inhibitors (ChEIs), which has led our group to synthesize a new series of flavanone derivatives (hesperidin, hesperetin, naringin, and naringenin) complexed to either copper (II) or zinc (II) and to evaluate their potential use as selective ChEIs. Most of the synthesized complexes exhibited greater inhibitory activity against acetylcholinesterase (AChE) than against butyrylcholinesterase (BChE). Nine of these complexes constituted potent, reversible, and selective ChEIs with inhibitory potency (IC 50 ) and inhibitory constant (K i ) ranging from 0.02 to 4.5μM. Copper complexes with flavanone-bipyridine derivatives afforded the best inhibitory activity against AChE and BChE. The complex Cu(naringin)(2,2'-bipyridine) (11) gave IC 50 and K i values of 0.012±0.002 and 0.07±0.01μM for huAChE, respectively, which were lower than the inhibitory values obtained for standard galanthamine (IC 50 =206±30.0 and K i =126±18.0μM). Evaluation of the inhibitory activity of this complex against butyrylcholinesterase from human serum (huBChE) gave IC 50 and K i values of 8.0±1.4 and 2.0±0.1μM, respectively. A Liquid Chromatography-Immobilized Capillary Enzyme Reactor by UV detection (LC-ICER-UV) assay allowed us to determine the IC 50 and K i values and the type of mechanism for the best inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Functional Analyses of the Plant Photosystem I–Light-Harvesting Complex II Supercomplex Reveal That Light-Harvesting Complex II Loosely Bound to Photosystem II Is a Very Efficient Antenna for Photosystem I in State II[W

    PubMed Central

    Galka, Pierre; Santabarbara, Stefano; Khuong, Thi Thu Huong; Degand, Hervé; Morsomme, Pierre; Jennings, Robert C.; Boekema, Egbert J.; Caffarri, Stefano

    2012-01-01

    State transitions are an important photosynthetic short-term response that allows energy distribution balancing between photosystems I (PSI) and II (PSII). In plants when PSII is preferentially excited compared with PSI (State II), part of the major light-harvesting complex LHCII migrates to PSI to form a PSI-LHCII supercomplex. So far, little is known about this complex, mainly due to purification problems. Here, a stable PSI-LHCII supercomplex is purified from Arabidopsis thaliana and maize (Zea mays) plants. It is demonstrated that LHCIIs loosely bound to PSII in State I are the trimers mainly involved in state transitions and become strongly bound to PSI in State II. Specific Lhcb1-3 isoforms are differently represented in the mobile LHCII compared with S and M trimers. Fluorescence analyses indicate that excitation energy migration from mobile LHCII to PSI is rapid and efficient, and the quantum yield of photochemical conversion of PSI-LHCII is substantially unaffected with respect to PSI, despite a sizable increase of the antenna size. An updated PSI-LHCII structural model suggests that the low-energy chlorophylls 611 and 612 in LHCII interact with the chlorophyll 11145 at the interface of PSI. In contrast with the common opinion, we suggest that the mobile pool of LHCII may be considered an intimate part of the PSI antenna system that is displaced to PSII in State I. PMID:22822202

  1. Synthesis, characterization, DNA-binding and cleavage studies of polypyridyl copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Gubendran, Ammavasi; Rajesh, Jegathalaprathaban; Anitha, Kandasamy; Athappan, Periyakaruppan

    2014-10-01

    Six new mixed-ligand copper(II) complexes were synthesized namely [Cu(phen)2OAc]ClO4ṡH2O(1), [Cu(bpy)2OAc]ClO4ṡH2O(2), [Cu(o-ampacac)(phen)]ClO4(3), [Cu(o-ampbzac)(phen)]ClO4(4), [Cu(o-ampacac)(bpy)]ClO4(5), and [Cu(o-ampbzac)(bpy)]ClO4(6) (phen = 1,10-phenanthroline, bpy = 2, 2‧-bipyridine, o-ampacac = (Z)-4-(2-hydroxylamino)pent-3-ene-2-one,o-ampbzac = (Z)-4-(2-hydroxylamino)-4-phenylbut-3-ene-2-one)and characterized by UV-Vis, IR, EPR and cyclic voltammetry. Ligands were characterized by NMR spectra. Single crystal X-ray studies of the complex 1 shows Cu(II) ions are located in a highly distorted octahedral environment. Absorption spectral studies reveal that the complexes 1-6 exhibit hypochromicity during the interaction with DNA and binding constant values derived from spectral and electrochemical studies indicate that complexes 1, 2 and 3 bind strongly with DNA possibly by an intercalative mode. Electrochemical studies reveal that the complexes 1-4 prefer to bind with DNA in Cu(I) rather than Cu(II) form. The shift in the formal potentials E1/2 and CD spectral studies suggest groove or electrostatic binding mode for the complexes 4-6. Complex 1 can cleave supercoiled (SC) pUC18 DNA efficiently into nicked form II under photolytic conditions and into an open circular form (form II) and linear form (form III) in the presence of H2O2 at pH 8.0 and 37 °C, while the complex 2 does not cleave DNA under similar conditions.

  2. Spectroscopic, structural, electrochemical and computational studies of some new 2-thienyl-containing β-diketonate complexes of cobalt(II), nickel(II) and copper(II)

    NASA Astrophysics Data System (ADS)

    Ahumada, Guillermo; Fuentealba, Mauricio; Roisnel, Thierry; Kahlal, Samia; Córdova, Ricardo; Carrillo, David; Saillard, Jean-Yves; Hamon, Jean-René; Manzur, Carolina

    2017-12-01

    In this work, we present the synthesis of the unsymmetrical β-diketone 1-(2-thienyl)-3-(4-fluorophenyl)-propane-1,3-dione (HL) and its corresponding Co(II), Ni(II) and Cu(II) bis(β-diketonato) complexes 1-3, respectively. The four new compounds were isolated in good yields (65-70%), and characterized by mass spectrometry, elemental analysis, FT-IR and UV-Vis spectroscopy and, in the case of HL, by 1H, 13C and 19F NMR spectroscopy. In addition, the molecular identities and the geometries of the β-diketone HL and complex 3 were confirmed by X-ray diffraction analysis. The dicarbonyl derivative HL does exist as the diketo tautomeric form in DMSO solution and as its keto-enol tautomer in the solid-state with the sbnd OH group adjacent to the 4-fluorophenyl unit. The keto-enol isomer was computed to be more stable by 8.2 kcal/mol in free energy at room temperature. In 3, the Cu(II) center adopts a perfect square-planar geometry. Two reduction processes were observed in the cyclovoltammogram of 3 at -1.30 and -1.80 V vs. Fc/Fc+, with copper deposit on the surface of the electrode. DFT and TD-DFT calculations on HL and complex 3 allow rationalizing their stability, bonding and properties.

  3. Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands.

    PubMed

    Rîmbu, Cristina; Danac, Ramona; Pui, Aurel

    2014-01-01

    Palladium(II) complexes with Schiff bases ligands derived from salicylaldehyde and amino acids (Ala, Gly, Met, Ser, Val) have been synthesized and characterized by Fourier transform (FT)-IR, UV-Vis and (1)H-NMR spectroscopy. The electrospray mass spectrometry (ES-MS) spectrometry confirms the formation of palladium(II) complexes in 1/2 (M/L) molar ratio. All the Pd(II) complexes 1, [Pd(SalAla)2]Cl2; 2, [Pd(SalGly)2]Cl2; 3, [Pd(SalMet)2]Cl2; 4, [Pd(SalSer)2]Cl2; 5, [Pd(SalVal)2]Cl2; have shown antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli.

  4. Mössbauer study of novel iron(II) complexes synthesized with Schiff bases

    NASA Astrophysics Data System (ADS)

    Várhelyi, Cs.; Lengyel, A.; Homonnay, Z.; Szalay, R.; Pokol, Gy.; Szilágyi, I.-M.; Huszthy, P.; Papp, J.; Goga, F.; Golban, L.-M.; Várhelyi, M.; Tomoaia-Cotisel, M.; Szőke, Á.; Kuzmann, E.

    2017-11-01

    Novel [Fe(4-benzyl-2-hydroxyphenyl-propylidene)2ethylene-diamine], and [Fe (2,4,6-trihydroxy-benzyl-4-metoxiphenyl-methylidene)2ethylene-diamine] complexes were synthesized by reacting FeII salt with the indicated Schiff-base ligands. The compounds were characterized by57Fe Mössbauer spectroscopy, FTIR, UV-VIS, TG-DTA-DTG, MS, AFM, XRD, cyclic voltammetry and biological activity measurements. 295 K and 78 K Mössbauer spectra revealed that iron is dominantly in high spin FeII state in both complexes while simultaneously a minor low spin FeII was also present in both complexes, furthermore a minor high spin FeIII was observed in [Fe(2,4,6-trihydroxy-benzyl-4-metoxiphenyl- methylidene) 2ethylene-diamine], too.

  5. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite

    NASA Astrophysics Data System (ADS)

    Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-12-01

    Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.

  6. Activity of phosphino palladium(II) and platinum(II) complexes against HIV-1 and Mycobacterium tuberculosis.

    PubMed

    Gama, Ntombenhle H; Elkhadir, Afag Y F; Gordhan, Bhavna G; Kana, Bavesh D; Darkwa, James; Meyer, Debra

    2016-08-01

    Treatment of human immunodeficiency virus (HIV) is currently complicated by increased prevalence of co-infection with Mycobacterium tuberculosis. The development of drug candidates that offer the simultaneous management of HIV and tuberculosis (TB) would be of great benefit in the holistic treatment of HIV/AIDS, especially in sub-Saharan Africa which has the highest global prevalence of HIV-TB coinfection. Bis(diphenylphosphino)-2-pyridylpalladium(II) chloride (1), bis(diphenylphosphino)-2-pyridylplatinum(II) chloride (2), bis(diphenylphosphino)-2-ethylpyridylpalladium(II) chloride (3) and bis(diphenylphosphino)-2-ethylpyridylplatinum(II) (4) were investigated for the inhibition of HIV-1 through interactions with the viral protease. The complexes were subsequently assessed for biological potency against Mycobacterium tuberculosis H37Rv by determining the minimal inhibitory concentration (MIC) using broth microdilution. Complex (3) showed the most significant and competitive inhibition of HIV-1 protease (p = 0.014 at 100 µM). Further studies on its in vitro effects on whole virus showed reduced viral infectivity by over 80 % at 63 µM (p < 0.05). In addition, the complex inhibited the growth of Mycobacterium tuberculosis at an MIC of 5 µM and was non-toxic to host cells at all active concentrations (assessed by tetrazolium dye and real time cell electronic sensing). In vitro evidence is provided here for the possibility of utilizing a single metal-based compound for the treatment of HIV/AIDS and TB.

  7. Interaction with biomacromolecules and antiproliferative activities of Mn(II), Ni(II), Zn(II) complexes of demethylcantharate and 2,2'-bipyridine

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Lin, Qiu-Yue; Hu, Wan-Li; Song, Wen-Ji; Shen, Shu-Ting; Gui, Pan

    2013-06-01

    Three new transition metal complexes [Mn2(DCA)2(bipy)2]·5H2O (1), [M2(DCA)2(bipy)2(H2O)]·10H2O(M = Ni(II)(2);Zn(II)(3)), (DCA = demethylcantharate, 7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylate, C8H8O5) were synthesized and characterized by elemental analysis, molar conductance, infrared spectra and X-ray diffraction techniques. Each metal ion was six-coordinated in complexes. Complex 1 has a Mn2O2 center. Complexes 2 and 3 have asymmetric binuclear structure. Great amount of intermolecular hydrogen-bonding and π-π* stacking interactions were formed in these complex structures. The DNA-binding properties of complexes were investigated by electronic absorption spectra and viscosity measurements. The DNA binding constants Kb/(L mol-1) were 1.71 × 104 (1), 2.62 × 104 (2) and 1.59 × 104 (3) at 298 K. The complexes could quench the intrinsic fluorescence of bovine serum albumin (BSA) strongly through static quenching. The protein binding constants Ka/(L mol-1) were 7.27 × 104 (1), 4.55 × 104 (2) and 7.87 × 104 L mol-1 (3) and binding site was one. The complexes bind more tightly with DNA and BSA than with ligands. Complexes 1 and 3 had stronger inhibition ratios than Na2(DCA) against human hepatoma cells (SMMC-7721) lines and human gastric cancer cells (MGC80-3) lines in vitro. Complex 3 showed the strongest antiproliferative activity against SMMC-7721 (IC50 = 29.46 ± 2.12 μmol L-1) and MGC80-3 (IC50 = 27.02 ± 2.38 μmol L-1), which shows potential in anti-cancer drug development.

  8. Crystal structure of a transcribing RNA Polymerase II complex reveals a complete transcription bubble

    PubMed Central

    Barnes, Christopher O.; Calero, Monica; Malik, Indranil; Graham, Brian W.; Spahr, Henrik; Lin, Guowu; Cohen, Aina; Brown, Ian S.; Zhang, Qiangmin; Pullara, Filippo; Trakselis, Michael A.; Kaplan, Craig D.; Calero, Guillermo

    2015-01-01

    Summary Notwithstanding numerous published structures of RNA Polymerase II (Pol II), structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. Here, we report the structures of TFIIF stabilized transcribing Pol II complexes, revealing the upstream duplex and full transcription bubble. The upstream duplex lies over a wedge-shaped loop from Rpb2 that engages its minor groove, providing part of the structural framework for DNA tracking during elongation. At the upstream transcription bubble fork, rudder and fork loop-1 residues spatially coordinate strand annealing and the nascent RNA transcript. At the downstream fork, a network of Pol II interactions with the non-template strand forms a rigid domain with the Trigger Loop (TL), allowing visualization of its open state. Overall, our observations suggest that “open/closed” conformational transitions of the TL may be linked to interactions with the non-template strand, possibly in a synchronized ratcheting manner conducive to polymerase translocation. PMID:26186291

  9. New copper(II) complexes with dopamine hydrochloride and vanillymandelic acid: Spectroscopic and thermal characterization

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Nour El-Dien, F. A.; El-Nahas, R. G.

    2011-10-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. The Cu(II) chelates with coupled products of dopamine hydrochloride (DO.HCl) and vanillymandelic acid (VMA) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical techniques namely IR, magnetic and UV-vis spectra are used to investigate the structure of these chelates. Cu(II) forms 1:1 (Cu:DO) and 1:2 (Cu:VMA) chelates. DO behave as a uninegative tridentate ligand in binding to the Cu(II) ion while VMA behaves as a uninegative bidentate ligand. IR spectra show that the DO is coordinated to the Cu(II) ion in a tridentate manner with ONO donor sites of the phenolic- OH, -NH and carbonyl- O, while VMA is coordinated with OO donor sites of the phenolic- OH and -NH. Magnetic moment measurements reveal the presence of Cu(II) chelates in octahedral and square planar geometries with DO and VMA, respectively. The thermal decomposition of Cu(II) complexes is studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  10. Insight into the Structure of Light Harvesting Complex II and its Stabilization in Detergent Solution

    SciTech Connect

    Cardoso, Mateus B; Smolensky, Dmitriy; Heller, William T

    2009-01-01

    The structure of spinach light-harvesting complex II (LHC II), stabilized in a solution of the detergent n-octyl-{beta}-d-glucoside (BOG), was investigated by small-angle neutron scattering (SANS). Physicochemical characterization of the isolated complex indicated that it was pure (>95%) and also in its native trimeric state. SANS with contrast variation was used to investigate the properties of the protein-detergent complex at three different H{sub 2}O/D{sub 2}O contrast match points, enabling the scattering properties of the protein and detergent to be investigated independently. The topological shape of LHC II, determined using ab initio shape restoration methods from the SANS data at the contrastmore » match point of BOG, was consistent with the X-ray crystallographic structure of LHC II (Liu et al. Nature 2004 428, 287-292). The interactions of the protein and detergent were investigated at the contrast match point for the protein and also in 100% D{sub 2}O. The data suggested that BOG micelle structure was altered by its interaction with LHC II, but large aggregate structures were not formed. Indirect Fourier transform analysis of the LHC II/BOG scattering curves showed that the increase in the maximum dimension of the protein-detergent complex was consistent with the presence of a monolayer of detergent surrounding the protein. A model of the LHC II/BOG complex was generated to interpret the measurements made in 100% D{sub 2}O. This model adequately reproduced the overall size of the LHC II/BOG complex, but demonstrated that the detergent does not have a highly regular shape that surrounds the hydrophobic periphery of LHC II. In addition to demonstrating that natively structured LHC II can be produced for functional characterization and for use in artificial solar energy applications, the analysis and modeling approaches described here can be used for characterizing detergent-associated {alpha}-helical transmembrane proteins.« less

  11. Formation of Hg(II) tetrathiolate complexes with cysteine at neutral pH

    DOE PAGES

    Warner, Thomas; Jalilehvand, Farideh

    2016-01-04

    Mercury(II) ions precipitate from aqueous cysteine (H 2Cys) solutions containing H 2Cys/Hg(II) mole ratio ≥ 2.0 as Hg( S-HCys) 2. In absence of additional cysteine, the precipitate dissolves at pH ~12 with the [Hg( S, N-Cys) 2] 2- complex dominating. With excess cysteine (H 2Cys/Hg(II) mole ratio ≥ 4.0), higher complexes form and the precipitate dissolves at lower pH values. Previously, we found that tetrathiolate [Hg( S-Cys) 4] 6- complexes form at pH = 11.0; in this work we extend the investigation to pH values of physiological interest. We examined two series of Hg(II)-cysteine solutions in which C Hg(II) variedmore » between 8 – 9 mM and 80 – 100 mM, respectively, with H 2Cys/Hg(II) mole ratios from 4 to ~20. The solutions were prepared in the pH range 7.1 – 8.8, at the pH at which the initial Hg( S-HCys) 2 precipitate dissolved. The variations in the Hg(II) speciation were followed by 199Hg NMR, X-ray absorption and Raman spectroscopic techniques. Our results show that in the dilute solutions (C Hg(II) = 8 – 9 mM), mixtures of di-, tri- (major) and tetrathiolate complexes exist at moderate cysteine excess (C H2Cys ~ 0.16 M) at pH 7.1. In the more concentrated solutions (C Hg(II) = 80 – 100 mM) with high cysteine excess (C H2Cys > 0.9 M), tetrathiolate [Hg( S-cysteinate) 4] m-6 ( m = 0 – 4) complexes dominate in the pH range 7.3 – 7.8, with lower charge than for the [Hg( S-Cys) 4] 6- complex due to protonation of some ( m) of the amino groups of the coordinated cysteine ligands. In conclusion, the results of this investigation could provide a key to the mechanism of biosorption and accumulation of Hg(II) ions in biological / environmental systems.« less

  12. Anti-Leishmania activity of new ruthenium(II) complexes: Effect on parasite-host interaction.

    PubMed

    Costa, Mônica S; Gonçalves, Yasmim G; Nunes, Débora C O; Napolitano, Danielle R; Maia, Pedro I S; Rodrigues, Renata S; Rodrigues, Veridiana M; Von Poelhsitz, Gustavo; Yoneyama, Kelly A G

    2017-10-01

    Leishmaniasis is a parasitic disease caused by protozoa of the genus Leishmania. The many complications presented by the current treatment - including high toxicity, high cost and parasite resistance - make the development of new therapeutic agents indispensable. The present study aims to evaluate the anti-Leishmania potential of new ruthenium(II) complexes, cis‑[Ru II (η 2 -O 2 CR)(dppm) 2 ]PF 6 , with dppm=bis(diphenylphosphino)methane and R=4-butylbenzoate (bbato) 1, 4-(methylthio)benzoate (mtbato) 2 and 3-hydroxy-4-methoxybenzoate (hmxbato) 3, in promastigote cytotoxicity and their effect on parasite-host interaction. The cytotoxicity of complexes was analyzed by MTT assay against Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Leishmania) infantum promastigotes and the murine macrophage (RAW 264.7). The effect of complexes on parasite-host interaction was evaluated by in vitro infectivity assay performed in the presence of two different concentrations of each complex: the promastigote IC 50 value and the concentration nontoxic to 90% of RAW 264.7 macrophages. Complexes 1-3 exhibited potent cytotoxic activity against all Leishmania species assayed. The IC 50 values ranged from 7.52-12.59μM (complex 1); 0.70-3.28μM (complex 2) and 0.52-1.75μM (complex 3). All complexes significantly inhibited the infectivity index at both tested concentrations. The infectivity inhibitions ranged from 37 to 85%. Interestingly, the infectivity inhibitions due to complex action did not differ significantly at either of the tested concentrations, except for the complex 1 against Leishmania (Leishmania) infantum. The infectivity inhibitions resulted from reductions in both percentage of infected macrophages and number of parasites per macrophage. Taken together the results suggest remarkable leishmanicidal activity in vitro by these new ruthenium(II) complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Synthesis and Characterization of A Coordination Complex of Tetrakis(diphenylamine)copper(II) Sulfate Hexahydrate

    NASA Astrophysics Data System (ADS)

    Syaima, H.; Rahardjo, S. B.; Suciningrum, E.

    2018-03-01

    CuSO4·5H2O with diphenylamine formed a complex compound in 1:4 mole ratio of metal to the ligand in methanol. The forming of the complex was indicated by shifting of UV-Vis spectra of CuSO4·5H2O and the complex from 819 nm to 593 nm. The result of analysis Cu(II) in the complex showed the copper content in the complex was 6.43 % therefore the empirical formula of the complex was Cu(diphenylamine)4SO4(H2O)6. The electrical conductivity of complex showed the charge ratio of cation and anion = 1:1. Therefore, the proposed formula of the complex was [Cu(diphenylamine)4]SO4·6H2O. Based on infrared spectra, it was determined that the functional group of N-H of diphenylamine was coordinated to the center ion Cu2+. The electronic spectral study of the complex showed a transition peak on λ = 593 nm (υ = 16863 cm-1) corresponding to the 2B1g → 2A1g transition. The complex was paramagnetic with effective magnetic moment 1.72 B.M. It was indicated square planar geometry around Cu(II).

  14. Surface Structures Formed by a Copper(II) Complex of Alkyl-Derivatized Indigo

    PubMed Central

    Honda, Akinori; Noda, Keisuke; Tamaki, Yoshinori; Miyamura, Kazuo

    2016-01-01

    Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II) ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM) analysis revealed that the copper(II) complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed. PMID:28773957

  15. Synthesis of N₄ donor macrocyclic Schiff base ligands and their Ru (II), Pd (II), Pt (II) metal complexes for biological studies and catalytic oxidation of didanosine in pharmaceuticals.

    PubMed

    Ravi Krishna, E; Muralidhar Reddy, P; Sarangapani, M; Hanmanthu, G; Geeta, B; Shoba Rani, K; Ravinder, V

    2012-11-01

    A series of tetraaza (N(4) donor) macrocyclic ligands (L(1)-L(4)) were derived from the condensation of o-phthalaldehyde (OPA) with some substituted aromatic amines/azide, and subsequently used to synthesize the metal complexes of Ru(II), Pd(II) and Pt(II). The structures of macrocyclic ligands and their metal complexes were characterized by elemental analyses, IR, (1)H &(13)C NMR, mass and electronic spectroscopy, thermal, magnetic and conductance measurements. Both the ligands and their complexes were screened for their antibacterial activities against Gram positive and Gram negative bacteria by MIC method. Besides, these macrocyclic complexes were investigated as catalysts in the oxidation of pharmaceutical drug didanosine. The oxidized products were further treated with sulphanilic acid to develop the colored products to determine by spectrophotometrically. The current oxidation method is an environmentally friendly, simple to set-up, requires short reaction time, produces high yields and does not require co-oxidant. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Investigation on biomolecular interactions of nickel(II) complexes with monoanionic bidentate ligands

    NASA Astrophysics Data System (ADS)

    Jayamani, Arumugam; Sethupathi, Murugan; Ojwach, Stephen O.; Sengottuvelan, Nallathambi

    2018-01-01

    Reactions of monoanionic bidentate ligands 5-methylsalicylaldehyde (5-msal), 5-bromosalicylaldehyde (5-brsal), 5-nitrosalicylaldehyde (5-nsal) and 2-hydroxy-1-naphthaldehyde (2-hnap) with nickel perchlorate hexahydrate produced nickel(II) complexes 1-4, respectively. Single crystal X-ray analyses of complexes 1 and 2 confirmed bidentate mode of the ligands with O˄O coordination to give square planar geometry around nickel atoms. Complexes 1-4 showed one quasi-reversible redox peak at cathodic region (-0.67 to -0.80 V) and one redox peak at anodic region (+1.08 to +1.44 V) assignable to the Ni(II)/Ni(I) and Ni(II)/Ni(III) redox couples, respectively. The complexes exhibited good bovine serum albumin (BSA) binding abilities with a maximum binding constant of 1.96 × 105 M-1. The binding of complexes with calf thymus DNA (ctDNA) showed that the binding affinity is consistent with an increase in steric bulk of the ligands. The nuclease activity of the complexes showed efficient oxidative cleavage in the presence of hydrogen peroxide as an oxidizing agent. The complexes showed higher zone of inhibition when screened for antimicrobial activity against bacteria and human pathogenic fungi.

  17. Synthesis, characterization, antimicrobial activity and carbonic anhydrase enzyme inhibitor effects of salicilaldehyde-N-methyl p-toluenesulfonylhydrazone and its Palladium(II), Cobalt(II) complexes

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Adem, Şevki

    2014-10-01

    We report the synthesis of the ligand, salicilaldehyde-N-methyl p-toluenesulfonylhydrazone (salptsmh) derived from p-toluenesulfonicacid-1-methylhydrazide (ptsmh) and its Pd(II) and Co(II) metal complexes were synthesized for the first time. The structure of the ligand and their complexes were investigated using elemental analysis, magnetic susceptibility, molar conductance and spectral (IR, NMR and LC-MS) measurements. Salptsmh has also been characterized by single crystal X-ray diffraction. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The complexes were found to have general composition [ML2]. The results of elemental analysis showed 1:2 (metal/ligand) stoichiometry for all the complex. Magnetic and spectral data indicate a square planar geometry for Pd(II) complex and a distorted tetrahedral geometry for Co(II) complexes. The ligand and its metal chelates have been screened for their antimicrobial activities using the disk diffusion method against the selected Gram positive bacteria: Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis, Gram negative bacteria: Eschericha coli, Pseudomonas aeruginosa, Klebsiella pneumonia. The inhibition activities of these compounds on carbonic anhydrase II (CA II) and carbonic anhydrase I (CA I) have been investigated by comparing IC50 and Ki values and it has been found that Pd(II) complex have more enzyme inhibition efficiency than salptsmh and Co(II) complex.

  18. Effective cleavage of phosphodiester promoted by the zinc(II) and copper(II) inclusion complexes of β-cyclodextrin.

    PubMed

    Zhou, Ying-Hua; Chen, Li-Qing; Tao, Jun; Shen, Jun-Li; Gong, Dao-Yu; Yun, Rui-Rui; Cheng, Yong

    2016-10-01

    To construct the model of metallohydrolase, two inclusion complexes [MLCl 2 (β-CD)] (1, M=Zn(II); 2, M=Cu(II); L=N,N'-bis(2-pyridylmethyl)amantadine; β-CD=β-cyclodextrin) were synthesized by mixing β-CDs with the pre-synthesized complexes G1, [ZnLCl 2 ] and G2, [CuLCl 2 ]. Structures of G1, G2, 1 and 2 were characterized by X-ray crystallography, respectively. In solution, two chloride anions of G1 and G2 underwent ligand exchange with solvent molecules according to ESI-MS analysis. The chemical equilibrium constants were determined by potentiometric pH titration. The kinetics of bis(4-nitrophenyl) phosphate (BNPP) hydrolysis catalyzed by G1, G2, 1 and 2 were examined at pHs ranging from 7.50 to 10.50 at 308±0.1K. The pH profile of rate constant of BNPP hydrolysis catalyzed by 1 exhibited an exponential increase with the second-order rate constant of 2.68×10 -3 M -1 s -1 assigned to the di-hydroxo species, which was approximately an order of magnitude higher than those of reported mono-Zn(II)-hydroxo species. The high reactivity was presumably hydroxyl-rich microenvironment provided by β-CDs, which might effect in stabilizing either the labile zinc-hydroxo species or the catalytic transition state. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. 2-Deoxyglucose conjugated platinum (II) complexes for targeted therapy: design, synthesis, and antitumor activity.

    PubMed

    Mi, Qian; Ma, Yuru; Gao, Xiangqian; Liu, Ran; Liu, Pengxing; Mi, Yi; Fu, Xuegang; Gao, Qingzhi

    2016-11-01

    Malignant neoplasms exhibit an elevated rate of glycolysis over normal cells. To target the Warburg effect, we designed a new series of 2-deoxyglucose (2-DG) conjugated platinum (II) complexes for glucose transporter 1 (GLUT1)-mediated anticancer drug delivery. The potential GLUT1 transportability of the complexes was investigated through a comparative molecular docking analysis utilizing the latest GLUT1 protein crystal structure. The key binding site for 2-DG as GLUT1's substrate was identified with molecular dynamics simulation, and the docking study demonstrated that the 2-DG conjugated platinum (II) complexes can be recognized by the same binding site as potential GLUT1 substrate. The conjugates were synthesized and evaluated for in vitro cytotoxicity study with seven human cancer cell lines. The results of this study revealed that 2-DG conjugated platinum (II) complexes are GLUT1 transportable substrates and exhibit improved cytotoxicities in cancer cell lines that over express GLUT1 when compared to the clinical drug, Oxaliplatin. The correlation between GLUT1 expression and antitumor effects are also confirmed. The study provides fundamental information supporting the potential of the 2-DG conjugated platinum (II) complexes as lead compounds for further pharmaceutical R&D.

  20. Photochemical redox reactions of copper(II)-alanine complexes in aqueous solutions.

    PubMed

    Lin, Chen-Jui; Hsu, Chao-Sheng; Wang, Po-Yen; Lin, Yi-Liang; Lo, Yu-Shiu; Wu, Chien-Hou

    2014-05-19

    The photochemical redox reactions of Cu(II)/alanine complexes have been studied in deaerated solutions over an extensive range of pH, Cu(II) concentration, and alanine concentration. Under irradiation, the ligand-to-metal charge transfer results in the reduction of Cu(II) to Cu(I) and the concomitant oxidation of alanine, which produces ammonia and acetaldehyde. Molar absorptivities and quantum yields of photoproducts for Cu(II)/alanine complexes at 313 nm are characterized mainly with the equilibrium Cu(II) speciation where the presence of simultaneously existing Cu(II) species is taken into account. By applying regression analysis, individual Cu(I) quantum yields are determined to be 0.094 ± 0.014 for the 1:1 complex (CuL) and 0.064 ± 0.012 for the 1:2 complex (CuL2). Individual quantum yields of ammonia are 0.055 ± 0.007 for CuL and 0.036 ± 0.005 for CuL2. Individual quantum yields of acetaldehyde are 0.030 ± 0.007 for CuL and 0.024 ± 0.007 for CuL2. CuL always has larger quantum yields than CuL2, which can be attributed to the Cu(II) stabilizing effect of the second ligand. For both CuL and CuL2, the individual quantum yields of Cu(I), ammonia, and acetaldehyde are in the ratio of 1.8:1:0.7. A reaction mechanism for the formation of the observed photoproducts is proposed.

  1. Synthesis and antitumor activity of seleno- and thio-purines complexed with cis-diamminoplatinum (II).

    PubMed

    Maeda, M; Abiko, N; Sasaki, T

    1982-02-01

    cis-Diamminoplatinum (II) complexes with selenoguanine, thioguanine, 6-thioxanthine, or 6-mercaptopurine were synthesized by the reaction of stoichiometric amounts of selenopurine or thiopurine with aquated cis-dichlorodimmineplatinum (II) in slightly acidic medium, and their antitumor activity was studied against L1210 cells in mice. These compounds exhibited a medium antitumor activity with very low toxicity. The antitumor activity was dependent on the nature of the purine ligand. These complexes were very stable in various aqueous solvents at 37 degrees C for 10 d but not in the presence of mouse serum. The mechanism of the action effected by the complex is not clear. However, the slow release of an antitumor active purine from the complex, SeG-Pt (NH3)2, was observed.

  2. From Synthesis to Biological Impact of Pd (II) Complexes: Synthesis, Characterization, and Antimicrobial and Scavenging Activity

    PubMed Central

    Sharma, Nitin Kumar; Ameta, Rakesh Kumar; Singh, Man

    2016-01-01

    The Pd (II) complexes with a series of halosubstituted benzylamine ligands (BLs) have been synthesized and characterized with different spectroscopic technique such as FTIR, UV/Vis, LCMS, 1H, and 13C NMR. Their molecular sustainability in different solvents such as DMSO, DMSO : H2O, and DMSO : PBS at physiological condition (pH 7.2) was determined by UV/Vis spectrophotometer. The in vitro antibacterial and antifungal activities of the complexes were investigated against Gram-positive and Gram-negative microbes and two different fungi indicated their significant biological potential. Additionally, their antioxidant activity has been analyzed with DPPH• free radical through spectrophotometric method and the result inferred them as an antioxidant. The stronger antibacterial and antioxidant activities of the synthesized complexes suggested them as a stronger antimicrobial agent. Our study advances the biological importance of palladium (II) amine complexes in the field of antimicrobial and antioxidant activities. PMID:27119023

  3. Differential Transmembrane Domain GXXXG Motif Pairing Impacts Major Histocompatibility Complex (MHC) Class II Structure*

    PubMed Central

    Dixon, Ann M.; Drake, Lisa; Hughes, Kelly T.; Sargent, Elizabeth; Hunt, Danielle; Harton, Jonathan A.; Drake, James R.

    2014-01-01

    Major histocompatibility complex (MHC) class II molecules exhibit conformational heterogeneity, which influences their ability to stimulate CD4 T cells and drive immune responses. Previous studies suggest a role for the transmembrane domain of the class II αβ heterodimer in determining molecular structure and function. Our previous studies identified an MHC class II conformer that is marked by the Ia.2 epitope. These Ia.2+ class II conformers are lipid raft-associated and able to drive both tyrosine kinase signaling and efficient antigen presentation to CD4 T cells. Here, we establish that the Ia.2+ I-Ak conformer is formed early in the class II biosynthetic pathway and that differential pairing of highly conserved transmembrane domain GXXXG dimerization motifs is responsible for formation of Ia.2+ versus Ia.2− I-Ak class II conformers and controlling lipid raft partitioning. These findings provide a molecular explanation for the formation of two distinct MHC class II conformers that differ in their inherent ability to signal and drive robust T cell activation, providing new insight into the role of MHC class II in regulating antigen-presenting cell-T cell interactions critical to the initiation and control of multiple aspects of the immune response. PMID:24619409

  4. Cobalt(II) complexes with bis(N-imidazolyl/benzimidazolyl) pyridazine: Structures, photoluminescent and photocatalytic properties

    SciTech Connect

    Li, Jin-Ping; Fan, Jian-Zhong; Wang, Duo-Zhi, E-mail: wangdz@xju.edu.cn

    2016-07-15

    Six new Co{sup II} complexes [Co(L{sup 1}){sub 4}(OH){sub 2}] (1), {[Co(L"1)(H_2O)_4]·2ClO_4}{sub ∞} (2), {[Co(L"1)(H_2O)_4]·SiF_6}{sub ∞} (3), {[Co(L"1)_3]·2ClO_4}{sub ∞} (4), [Co(L{sup 2})Cl{sub 2}]{sub ∞} (5) and {[Co(L"2)_2]·SiF_6}{sub ∞} (6) [L{sup 1}=3,6-bis(N-imidazolyl) pyridazine, L{sup 2}=3,6-bis (N-benzimidazolyl) pyridazine] have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 has a mononuclear structure, while complexes 2 and 3 have 1-D chain structures. Considering the Co{sup II} centers were linked by the L{sup 1} ligands, the 3-D framework of complex 4 can be rationalized to be a {4^12.6^3} 6-c topological net with the stoichiometry uninodal net. 5 revealsmore » a coordination 1-D zigzag chain structure consisting of a neutral chain [Co(L{sup 2})Cl{sub 2}]{sub n} with the Co{sup II} centers. Complex 6 has a rhombohedral grid with a (4, 4) topology. The TGA property, fluorescent property and photocatalytic activity of complexes 1–6 have been investigated and discussed. - Graphical abstract: Six Co{sup II} complexes of bis(N-imidazolyl/benzimidazolyl)pyridazine were synthesized and structurally characterized. The fluorescence properties and photocatalytic activity for dye degradation under UV light of all complexes have been investigated and discussed. Display Omitted - Highlights: • Six new Co{sup II} complexes with bis(N-imidazolyl/benzimidazolyl) pyridazine. • Structural analysis of all complexes. • Fluorescent property of all complexes. • Photocatalytic activity for dye degradation under UV light of all complexes.« less

  5. Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys

    NASA Astrophysics Data System (ADS)

    Zadesenets, A. V.; Asanova, T. I.; Vikulova, E. S.; Filatov, E. Yu.; Plyusnin, P. E.; Baidina, I. A.; Asanov, I. P.; Korenev, S. V.

    2013-03-01

    A solid solution of platinum (II) and palladium (II) oxalato-complex salt, (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O, has been synthesized and studied as a precursor for preparing bimetallic PtPd nanoparticles through its thermal decomposition. The smallest homogenous bimetallic PtPd nanoparticles were found to form in hydrogen and helium atmospheres. The annealing temperature and time have low effect on the bimetallic particles size. Comparative analysis of structural and thermal properties of the solid solution and individual Pt, Pd oxalato-complex salts was performed to investigate a mechanism of thermal decomposition of (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O. Based on in situ X-ray photoemission spectroscopy investigation it was proposed a mechanism of formation of bimetallic PtPd nanoparticles from the solid-solution oxalato-complex salt during thermal decomposition.

  6. Benchmarks and Reliable DFT Results for Spin Gaps of Small Ligand Fe(II) Complexes

    SciTech Connect

    Song, Suhwan; Kim, Min-Cheol; Sim, Eunji

    2017-05-01

    All-electron fixed-node diffusion Monte Carlo provides benchmark spin gaps for four Fe(II) octahedral complexes. Standard quantum chemical methods (semilocal DFT and CCSD(T)) fail badly for the energy difference between their high- and low-spin states. Density-corrected DFT is both significantly more accurate and reliable and yields a consistent prediction for the Fe-Porphyrin complex

  7. Analytical methods to determine the comparative DNA binding studies of curcumin-Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Rajesh, Jegathalaprathaban; Rajasekaran, Marichamy; Rajagopal, Gurusamy; Athappan, Periakaruppan

    2012-11-01

    DNA interaction studies of two mononuclear [1:1(1); 1:2(2)] copper(II) complexes of curcumin have been studied. The interaction of these complexes with CT-DNA has been explored by physical methods to propose modes of DNA binding of the complexes. Absorption spectral titrations of complex 1 with CT-DNA shows a red-shift of 3 nm with the DNA binding affinity of Kb, 5.21 × 104 M-1 that are higher than that obtained for 2 (red-shift, 2 nm; Kb, 1.73 × 104 M-1) reveal that the binding occurs in grooves as a result of the interaction is via exterior phosphates. The CD spectra of these Cu(II) complexes show a red shift of 3-10 nm in the positive band with increase in intensities. This spectral change of induced CD due to the hydrophobic interaction of copper complexes with DNA is the characteristic of B to A conformational change. The EB displacement assay also reveals the same trend as observed in UV-Vis spectral titration. The addition of complexes 1 and 2 to the DNA bound ethidium bromide (EB) solutions causes an obvious reduction in emission intensities indicating that these complexes competitively bind to DNA with EB. The positive shift of both the Epc and E0' accompanied by reduction of peak currents in differential pulse voltammogram (DPV), upon adding different concentrations of DNA to the metal complexes, are obviously in favor of strong binding to DNA. The super coiled plasmid pUC18 DNA cleavage ability of Cu(II) complexes in the presence of reducing agent reveals the single strand DNA cleavage (ssDNA) is observed. The hydroxyl radical (HOrad ) and the singlet oxygen are believed to be the reactive species responsible for the cleavage.

  8. Halide/pseudohalide complexes of cadmium(II) with benzimidazole: Synthesis, crystal structures and fluorescence properties

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Yan; Yang, Fu-Li; Li, Na; Wang, Xiao-Jing

    2017-11-01

    Two new dinuclear Cd(II) complexes, [CdL1Cl2]2·H2O (1) and [CdL1(N3)2]2·CH3OH (2) and one dicyanamide bridged one-dimensional polynuclear network [CdL1(μ1,5-dca)dca]n (3) of the potentially tridentate NNN-donor Schiff base 2-((1H-benzimidazol-2-yl-ethylimino)-methyl)pyridine (L1) and another dinucler Cd(II) complex [CdL2Cl(dca)]2 (4) of a similar NNN-donor Schiff base ligand 2-((1H-benzimidazol-2-yl-propylimino)-methyl)pyridine (L2), have been synthesized and characterized by elemental analyses, IR and single crystal X-ray crystallography. The ligands L1 and L2 are [1 + 1] condensation products of pyridine-2-carbaldehyde with 2-aminoethyl-1H-benzimidazole and 2-aminopropyl-1H-benzimidazole, respectively. In the complexes 1 and 4 the two Cd(II) centers are held together by the bridged chloride ligands, while in 2 the two Cd(II) centers are bridged by μ1,1-azide ions. Complex 3 has a one-dimensional infinite chain structure in which Cd(II) ions are bridged by single dicyanamide groups in end-to-end fashion. All the metal centers have a distorted octahedral geometry and H-bonding or π⋯π interactions are operative to bind the complex units in the solid state. Furthermore, these complexes have been investigated by thermogravimetric analyses and fluorescence spectra.

  9. Comparative studies on P-vanillin and O-vanillin of 2-hydrazinyl-2-oxo-N-phenylacetamide and their Mn(II) and Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; El-Reash, G. M. Abu; El-Tabai, M. N.

    2018-05-01

    Synthesis of complexes derived from hydrazones derived from both P-vanillin (H2L1) and its isomer O-vanillin (H2L2) of 2-hydrazinyl-2-oxo-N-phenylacetamide that coordinated with high magnetic metal ions of both Mn(II) and Co(II) were performed and characterized by different physicochemical methods, elemental analysis, (1H NMR, IR, and UV-visible spectra), also thermal analysis (TG and DTG) techniques and magnetic measurements. The molecular structures of the ligands and their Mn(II) and Co(II) complexes were optimized theoretically and the quantum chemical parameters were calculated. IR spectra suggest that the H2L1 behaved in a mononegative bidentate manner with both but H2L2 coordinated as mononegative tridentate with both Mn(II) and Co(II). The electronic spectra of the complexes as well as their magnetic moments suggested octahedral geometries for all the isolated complexes. The calculated values of binding energies indicated the stability of complexes is higher than that of ligand. The kinetic and thermodynamic parameters for the different decomposition steps in complexes were calculated using Coats-Redfern and Horowitz-Metzger equations. Moreover, the prepared ligands and their Mn(II) and Co(II) complexes were individually tested against a panel of gram positive Bacillus Subtilis and negative Escherichia coli microscopic organisms. Additionally cytotoxicity assay of two human tumor cell lines namely; hepatocellular carcinoma (liver) HePG-2, and mammary gland (breast) MCF-7 were tested.

  10. Crystallization of Mitochondrial Respiratory Complex II from Chicken Heart: a Membrane Protein Complex Diffracting to 2.0 Å.

    PubMed Central

    Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward

    2006-01-01

    Synopsis A multi-subunit mitochondrial membrane protein complex involved in the Krebs Cycle and respiratory chain has been crystallized in a form suitable for near-atomic resolution structure determination. A procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Å with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites. PMID:15805592

  11. Studies on the synthesis, spectra, catalytic and antibacterial activities of binuclear ruthenium(II) complexes.

    PubMed

    Krishnamoorthy, P; Sathyadevi, P; Deepa, K; Dharmaraj, N

    2010-09-15

    A new series of stable binuclear ruthenium(II) carbonyl complexes of the general formula [{RuX(CO)(EPh(3))(2)}(2)L] (where X=H or Cl; E=P or As and L=dibasic tetradentate diacetyl resorcinol (H(2)-DAR)) have been synthesised by reacting ruthenium(II) starting complexes [RuHX(CO)(EPh(3))(3)] (where X=H or Cl; E=P or As) and 4,6-diacetylresorcinol (H(2)-DAR) ligand in benzene medium. The structure of the new binuclear ruthenium(II) carbonyl complexes was established using elemental analysis, spectra (FT-IR, UV-vis and (1)H NMR), electrochemical and thermal studies. In these reactions, the 4,6-diacetylresorcinol (H(2)-DAR) ligand behaves as a binegative tetradentate chelating ligand coordinating through O,O atoms of both the carbonyl and phenolic C-O groups by replacing a molecule of PPh(3)/AsPh(3) and a hydride ion from the starting complexes. Further, all these complexes were also employed as new catalysts for the oxidation of primary and secondary alcohols in the presence of N-methylmorpholine-N-oxide (NMO) as a more viable co-oxidant. The free ligand and their metal complexes have also been screened for their antibacterial activity against the growth of gram +ve and gram -ve bacterial cultures. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Architecture of the RNA polymerase II-Mediator core initiation complex.

    PubMed

    Plaschka, C; Larivière, L; Wenzeck, L; Seizl, M; Hemann, M; Tegunov, D; Petrotchenko, E V; Borchers, C H; Baumeister, W; Herzog, F; Villa, E; Cramer, P

    2015-02-19

    The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 Å resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.

  13. Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Binuclear Activation Mechanism.

    PubMed

    Soldatova, Alexandra V; Tao, Lizhi; Romano, Christine A; Stich, Troy A; Casey, William H; Britt, R David; Tebo, Bradley M; Spiro, Thomas G

    2017-08-23

    The bacterial protein complex Mnx contains a multicopper oxidase (MCO) MnxG that, unusually, catalyzes the two-electron oxidation of Mn(II) to MnO 2 biomineral, via a Mn(III) intermediate. Although Mn(III)/Mn(II) and Mn(IV)/Mn(III) reduction potentials are expected to be high, we find a low reduction potential, 0.38 V (vs Normal Hydrogen Electrode, pH 7.8), for the MnxG type 1 Cu 2+ , the electron acceptor. Indeed the type 1 Cu 2+ is not reduced by Mn(II) in the absence of molecular oxygen, indicating that substrate oxidation requires an activation step. We have investigated the enzyme mechanism via electronic absorption spectroscopy, using chemometric analysis to separate enzyme-catalyzed MnO 2 formation from MnO 2 nanoparticle aging. The nanoparticle aging time course is characteristic of nucleation and particle growth; rates for these processes followed expected dependencies on Mn(II) concentration and temperature, but exhibited different pH optima. The enzymatic time course is sigmoidal, signaling an activation step, prior to turnover. The Mn(II) concentration and pH dependence of a preceding lag phase indicates weak Mn(II) binding. The activation step is enabled by a pK a > 8.6 deprotonation, which is assigned to Mn(II)-bound H 2 O; it induces a conformation change (consistent with a high activation energy, 106 kJ/mol) that increases Mn(II) affinity. Mnx activation is proposed to decrease the Mn(III/II) reduction potential below that of type 1 Cu(II/I) by formation of a hydroxide-bridged binuclear complex, Mn(II)(μ-OH)Mn(II), at the substrate site. Turnover is found to depend cooperatively on two Mn(II) and is enabled by a pK a 7.6 double deprotonation. It is proposed that turnover produces a Mn(III)(μ-OH) 2 Mn(III) intermediate that proceeds to the enzyme product, likely Mn(IV)(μ-O) 2 Mn(IV) or an oligomer, which subsequently nucleates MnO 2 nanoparticles. We conclude that Mnx exploits manganese polynuclear chemistry in order to facilitate an otherwise

  14. Application of calcium peroxide activated with Fe(II)-EDDS complex in trichloroethylene degradation.

    PubMed

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

    2016-10-01

    This study was conducted to assess the application of calcium peroxide (CP) activated with Fe(II) chelated by (S,S)-ethylenediamine-N,N'-disuccinic acid (EDDS) to enhance trichloroethylene (TCE) degradation in aqueous solution. It was indicated that EDDS prevented soluble iron from precipitation, and the optimum molar ratio of Fe(II)/EDDS to accelerate TCE degradation was 1/1. The influences of initial TCE, CP and Fe(II)-EDDS concentration were also investigated. The combination of CP and Fe(II)-EDDS complex rendered the efficient degradation of TCE at near neutral pH range. Chemical probe and scavenger tests identified that TCE degradation mainly owed to the oxidation of HO while O2(-) promoted HO generation. Cl(-), HCO3(-) and humic acid were found to inhibit CP/Fe(II)-EDDS performance on different levels. In conclusion, the application of CP activated with Fe(II)-EDDS complex is a promising technology in chemical remediation of groundwater, while further research in practical implementation is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Spectrophotometric Study of the Complex Formation of Anionic Chelates of Cobalt(II) with Monotetrazolium Cations

    NASA Astrophysics Data System (ADS)

    Divarova, V. V.; Stojnova, K. T.; Racheva, P. V.; Lekova, V. D.

    2017-05-01

    The complex formation and extraction of anionic chelates of Co(II)-4-(2-thiazolylazo)resorcinol (TAR) with cations of monotetrazolium salts (TS) — (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and 3-(2-naphthyl)-2,5-diphenyl-2H-tetrazolium chloride (TV) — in the liquid-liquid extraction system Co(II)-TAR-TS-H2O-CHCl3 were studied by spectrophotometric methods. The optimum conditions for the extraction of Co(II) were found. The molar ratio of the components and the form of the anionic chelates of Co(II) in the extracted compounds were determined by independent methods. The association process in the aqueous phase and the extraction process were investigated and quantitatively characterized. The following key constants were calculated: association constant, distribution constant, extraction constant, and recovery factor. The validity of the Beer's law was checked, and some analytical characteristics were calculated. Based on the obtained results and the lower price of the monotetrazolium salt MTT compared with that of TV, the ion-associated complex of Co(II)-TAR-MTT can be implemented for determination of cobalt(II) traces in alloys and biological, medical, and pharmaceutical samples.

  16. Supramolecular complexes of Co(II), Ni(II) and Zn(II) p-hydroxybenzoates with caffeine: Synthesis, spectral characterization and crystal structure

    NASA Astrophysics Data System (ADS)

    Taşdemir, Erdal; Özbek, Füreya Elif; Sertçelik, Mustafa; Hökelek, Tuncer; Çelik, Raziye Çatak; Necefoğlu, Hacali

    2016-09-01

    Three novel complexes Co(II), Ni(II) and Zn(II) containing p-hydroxybenzoates and caffeine ligands were synthesized and characterized by elemental analysis, FT-IR and UV-vis Spectroscopy, molar conductivity and single crystal X-ray diffraction methods. The thermal properties of the synthesized complexes were investigated by TGA/DTA. The general formula of the complexes is [M(HOC6H4COO)2(H2O)4]·2(C8H10N4O2)·8H2O (where: M: Co, Ni and Zn). The IR studies showed that carboxylate groups of p-hydroxybenzoate ligands have monodentate coordination mode. The M2+ ions are octahedrally coordinated by two p-hydroxybenzoate ligands, four water molecules leading to an overall MO6 coordination environment. The medium-strength hydrogen bondings involving the uncoordinated caffeine ligands and water molecules, coordinated and uncoordinated water molecules and p-hydroxybenzoate ligands lead to three-dimensional supramolecular networks in the crystal structures.

  17. Synthesis and characterization of Cu(II), Co(II) and Ni(II) complexes of a number of sulfadrug azodyes and their application for wastewater treatment

    NASA Astrophysics Data System (ADS)

    El-Baradie, K.; El-Sharkawy, R.; El-Ghamry, H.; Sakai, K.

    2014-03-01

    The azodye ligand (HL1) was synthesized from the coupling of sulfaguanidine diazonium salt with 2,4-dihydroxy-benzaldehyde while the two ligands, HL2 and HL3, were prepared by the coupling of sulfadiazine diazonium salt with salicylaldehyde (HL2) and 2,4-dihydroxy-benzaldehyde (HL3). The prepared ligands were characterized by elemental analysis, IR, 1H NMR and mass spectra. Cu(II), Co(II) and Ni(II) complexes of the prepared ligands have been synthesized and characterized by various spectroscopic techniques like IR, UV-Visible as well as magnetic and thermal (TG and DTA) measurements. It was found that all the ligands behave as a monobasic bidentate which coordinated to the metal center through the azo nitrogen and α-hydroxy oxygen atoms in the case of HL1 and HL3. HL2 coordinated to the metal center through sulfonamide oxygen and pyrimidine nitrogen. The applications of the prepared complexes in the oxidative degradation of indigo carmine dye exhibited good catalytic activity in the presence of H2O2 as an oxidant. The reactions followed first-order kinetics and the rate constants were determined. The degradation reaction involved the catalytic action of the azo-dye complexes toward H2O2 decomposition, which can lead to the generation of HOrad radicals as a highly efficient oxidant attacking the target dye. The detailed kinetic studies and the mechanism of these catalytic reactions are under consideration in our group.

  18. Antimalarial, antimicrobial, cytotoxic, DNA interaction and SOD like activities of tetrahedral copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.

    2015-02-01

    The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.

  19. Synthesis, biological evaluation and molecular docking of N-phenyl thiosemicarbazones as urease inhibitors.

    PubMed

    Hameed, Abdul; Khan, Khalid Mohammed; Zehra, Syeda Tazeen; Ahmed, Ramasa; Shafiq, Zahid; Bakht, Syeda Mahwish; Yaqub, Muhammad; Hussain, Mazhar; de la Vega de León, Antonio; Furtmann, Norbert; Bajorath, Jürgen; Shad, Hazoor Ahmad; Tahir, Muhammad Nawaz; Iqbal, Jamshed

    2015-08-01

    Urease is an important enzyme which breaks urea into ammonia and carbon dioxide during metabolic processes. However, an elevated activity of urease causes various complications of clinical importance. The inhibition of urease activity with small molecules as inhibitors is an effective strategy for therapeutic intervention. Herein, we have synthesized a series of 19 benzofurane linked N-phenyl semithiocarbazones (3a-3s). All the compounds were screened for enzyme inhibitor activity against Jack bean urease. The synthesized N-phenyl thiosemicarbazones had varying activity levels with IC50 values between 0.077 ± 0.001 and 24.04 ± 0.14 μM compared to standard inhibitor, thiourea (IC50 = 21 ± 0.11 μM). The activities of these compounds may be due to their close resemblance of thiourea. A docking study with Jack bean urease (PDB ID: 4H9M) revealed possible binding modes of N-phenyl thiosemicarbazones. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving Complex

    ERIC Educational Resources Information Center

    Howard, Derrick L.; Tinoco, Arthur D.; Brudvig, Gary W.; Vrettos, John S.; Allen, Bertha Connie

    2005-01-01

    Bioinorganic models of the manganese Mn4 cluster are important not only as aids in understanding the structure and function of the oxygen-evolving complex (OEC), but also in developing artificial water-oxidation catalysts. The mechanism of water oxidation by photosystem II (PSII) is thought to involve the formation of a high-valent terminal Mn-oxo…

  1. A saponification-triggered gelation of ester-based Zn(II) complex through conformational transformations.

    PubMed

    Kumar, Ashish; Dubey, Mrigendra; Kumar, Amit; Pandey, Daya Shankar

    2014-09-11

    Novel saponification-triggered gelation in an ester-based bis-salen Zn(II) complex (1) is described. Strategic structural modifications induced by NaOH in 1 tune the dipolar-/π-interactions leading to J-aggregation and the creation of an inorganic gel material (IGM), which has been established by photophysical, DFT and rheological studies.

  2. Tested Demonstrations. Color, Solubility, and Complex Ion Equilibria of Nickel (II) Species in Aqueous Solution.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.; And Others

    1980-01-01

    Presents three different procedures in which reagents are added in a specified order to a large beaker containing an aqueous solution of nickel sulfate. Complex ions of nickel (II) are prepared by using aqueous solutions of ammonia, ethylenediamine, dimethylglyoxime, and cyanide ion. (CS)

  3. Studying the Effect of Light Quality on the Size of the Photosystem II Light Harvesting Complex

    ERIC Educational Resources Information Center

    Muhoz, Romualdo; Quiles, Maria J.

    2003-01-01

    In this article the effect of light quality on the size of the photosystem II (PSII) light harvesting complex (LHCII) is studied by measuring the chlorophyll fluorescence emitted by leaf sections of oat ("Avena sativa," var. Prevision) plants previously treated with either white light or with light filtered through blue, green, red or farred…

  4. C60 Recognition from Extended Tetrathiafulvalene Bis-acetylide Platinum(II) Complexes.

    PubMed

    Bastien, Guillaume; Dron, Paul I; Vincent, Manon; Canevet, David; Allain, Magali; Goeb, Sébastien; Sallé, Marc

    2016-11-18

    The favorable spatial organization imposed by the square planar 4,4'-di(tert-butyl)-2,2'-bipyridine (dbbpy) platinum(II) complex associated with the electronic and shape complementarity of π-extended tetrathiafulvalene derivatives (exTTF) toward fullerenes is usefully exploited to construct molecular tweezers, which display good affinities for C 60 .

  5. Robust Structure and Reactivity of Aqueous Arsenous Acid-Platinum(II) Anticancer Complexes**

    PubMed Central

    Miodragović, Ðenana U.; Quentzel, Jeremy A.; Kurutz, Josh W.; Stern, Charlotte L.; Ahn, Richard W.; Kandela, Irawati; Mazar, Andrew; O’Halloran, Thomas V.

    2014-01-01

    The first molecular adducts of platinum and arsenic based anticancer drugs - arsenoplatins - show unanticipated structure, substitution chemistry, and cellular cytotoxicity. The PtII-AsIII bonds in these complexes are stable in aqueous solution and strongly influence the lability of the trans ligand. PMID:24038962

  6. Effects of ancillary ligands on selectivity of protein labeling with platinum(II) chloro complexes

    SciTech Connect

    Zhou, Xia-Ying.

    1990-02-01

    Potassium (2,6-pyridinedicarboxylato)chloroplatinate(II) was synthesized. The molecular structure of the complex in (n-Bu){sub 4}N(Pt(dipic)Cl){center dot}0.5H{sub 2}O was determined by x-ray crystallography. The (Pt(dipic)Cl){sup {minus}} is essentially planar and contains a Pt(II) atom, a tridentate dipicolinate dianion ligand, and a unidentate Cl{sup {minus}} ligand. The bis(bidentate) complex trans-(Pt(dipic){sub 2}){sup 2{minus}} was also observed by {sup 1}H NMR. A red gel-like substance was observed when the yellow aqueous solution of K(Pt(dipic)Cl) was cooled or concentrated. The K(Pt(dipic)Cl) molecules form stacks in the solid state and gel-like substance but remain monomeric over a wide range of concentrations and temperatures. The reactivity and selectivity of(Pt(dipic)Cl){supmore » {minus}} toward cytochromes c from horse and tuna were studied. The new transition-metal reagent is specific for methionine residues. Di(2-pyridyl-{beta}-ethyl)sulfidochloroplatinum(II) chloride dihydrate was also synthesized. This complex labels histidine and methionine residues in cytochrome c. The ancillary ligands in these platinum(II) complexes clearly determine the selectivity of protein labeling. 106 refs., 10 figs., 11 tabs.« less

  7. OXIDATION OF CYCLOHEXANE WITH AIR CATALYZED BY A STERICALLY HINDERED IRON (II) COMPLEX

    EPA Science Inventory

    Oxidation of Cyclohexane with Air Catalyzed by a Sterically Hindered Iron(II) Complex.


    Thomas M. Becker, Michael A. Gonzalez*

    United States Environmental Protection Agency; National Risk Management Research Laboratory; Sustainable Technology Division; Clean Pr...

  8. Spectrophotometric Determination of Metoprolol Tartrate in Pharmaceutical Dosage Forms on Complex Formation with Cu(II)

    PubMed Central

    Cesme, Mustafa; Tarinc, Derya; Golcu, Aysegul

    2011-01-01

    A new, simple, sensitive and accurate spectrophotometric method has been developed for the assay of metoprolol tartrate (MPT), which is based on the complexation of drug with copper(II) [Cu(II)] at pH 6.0, using Britton-Robinson buffer solution, to produce a blue adduct. The latter has a maximum absorbance at 675 nm and obeys Beer's law within the concentration range 8.5-70 μg/mL. Regression analysis of the calibration data showed a good correlation coefficient (r = 0.998) with a limit of detection of 5.56 μg/mL. The proposed procedure has been successfully applied to the determination of this drug in its tablets. In addition, the spectral data and stability constant for the binuclear copper(II) complex of MPT (Cu2MPT2Cl2) have been reported.

  9. Three-dimensional structure of photosystem II from Thermosynechococcus elongates in complex with terbutryn

    SciTech Connect

    Gabdulkhakov, A. G., E-mail: azat@vega.protes.ru; Dontsova, M. V.; Saenger, W.

    Photosystem II is a key component of the photosynthetic pathway producing oxygen at the thylakoid membrane of cyanobacteria, green algae, and plants. The three-dimensional structure of photosystem II from the cyanobacterium Thermosynechococcus elongates in a complex with herbicide terbutryn (a photosynthesis inhibitor) was determined for the first time by X-ray diffraction and refined at 3.2 Angstrom-Sign resolution (R{sub factor} = 26.9%, R{sub free} = 29.9%, rmsd for bond lengths is 0.013 Angstrom-Sign , and rmsd for bond angles is 2.2 Degree-Sign ). The terbutryn molecule was located in the binding pocket of the mobile plastoquinone. The atomic coordinates of themore » refined structure of photosystem II in a complex with terbutryn were deposited in the Protein Data Bank.« less

  10. Tuning of the ionization potential of paddlewheel diruthenium(II, II) complexes with fluorine atoms on the benzoate ligands.

    PubMed

    Miyasaka, Hitoshi; Motokawa, Natsuko; Atsuumi, Ryo; Kamo, Hiromichi; Asai, Yuichiro; Yamashita, Masahiro

    2011-01-21

    A series of paddlewheel diruthenium(ii, ii) complexes with various fluorine-substituted benzoate ligands were isolated as THF adducts and structurally characterized: [Ru(2)(F(x)PhCO(2))(4)(THF)(2)] (F(x)PhCO(2)(-) = o-fluorobenzoate, o-F; m-fluorobenzoate, m-F; p-fluorobenzoate, p-F; 2,6-difluorobenzoate, 2,6-F(2); 3,4-difluorobenzoate, 3,4-F(2); 3,5-difluorobenzoate, 3,5-F(2); 2,3,4-trifluorobenzoate, 2,3,4-F(3); 2,3,6-trifluorobenzoate, 2,3,6-F(3); 2,4,5-trifluorobenzoate, 2,4,5-F(3); 2,4,6-trifluorobenzoate, 2,4,6-F(3); 3,4,5-trifluorobenzoate, 3,4,5-F(3); 2,3,4,5-tetrafluorobenzoate, 2,3,4,5-F(4); 2,3,5,6-tetrafluorobenzoate, 2,3,5,6-F(4); pentafluorobenzoate, F(5)). By adding fluorine atoms on the benzoate ligands, it was possible to tune the redox potential (E(1/2)) for [Ru(2)(II,II)]/[Ru(2)(II,III)](+) over a wide range of potentials from -40 mV to 350 mV (vs. Ag/Ag(+) in THF). 2,3,6-F(3), 2,3,4,5-F(4), 2,3,5,6-F(4) and F(5) were relatively air-stable compounds even though they are [Ru(2)(II,II)] species. The redox potential in THF was dependent on an electronic effect rather than on a structural (steric) effect of the o-F atoms, although more than one substituent in the m- and p-positions shifted E(1/2) to higher potentials in relation to the general Hammett equation. A quasi-Hammett parameter for an o-F atom (σ(o)) was estimated to be ∼0.2, and a plot of E(1/2)vs. a sum of Hammett parameters including σ(o) was linear. In addition, the HOMO energy levels, which was calculated based on atomic coordinates of solid-state structures, as well as the redox potential were affected by adding F atoms. Nevertheless, a steric contribution stabilizing their static structures in the solid state was present in addition to the electronic effect. On the basis of the electronic effect, the redox potential of these complexes is correlated to the HOMO energy level, and the electronic effect of F atoms is the main factor controlling the ionization potential of the

  11. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases.

    PubMed

    Hanif, Muhammad; Chohan, Zahid H

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L(1)-L(3) have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Expression of major histocompatibility complex class II and costimulatory molecules in oral carcinomas in vitro.

    PubMed

    Villarroel-Dorrego, Mariana; Speight, Paul M; Barrett, A William

    2005-01-01

    Recognition in the 1980 s that keratinocytes can express class II molecules of the Major Histocompatibility Complex (MHC) first raised the possibility that these cells might have an immunological function, and may even act as antigen presenting cells (APC). For effective T lymphocyte activation, APC require, in addition to MHC II, appropriate costimulatory signals. The aim of this study was to determine the expression of MHC class II and the co-stimulatory molecules CD40, CD80 and CD86 in keratinocytes derived from healthy oral mucosa and oral carcinomas. Using flow cytometry, it was confirmed that oral keratinocytes, switch on, expression of MHC class II molecules after stimulation with IFNgamma in vitro. All keratinocyte lines expressed CD40 constitutively; by contrast, CD80 and CD86 were universally absent. Loss of CD80 and CD86 may be one means whereby tumours escape immunological surveillance.

  13. Charge transfer complexes of adenosine-5‧-monophosphate and cytidine-5‧-monophosphate with water-soluble cobalt(II) Schiff base complexes in aqueous solution

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2006-01-01

    Water-soluble cobalt(II) tetradentate Schiff base complexes have been shown to form charge transfer (CT) complexes with a series of nucleoside monophosphates including adenosine-5‧-monophosphate (AMP) and cytidine-5‧-monophosphate (CMP). The investigated water-soluble cobalt(II) Schiff base complexes are (i) disodium[{bis(5-sulfo-salicylaldehyde)-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-salophen)] (1); (ii) disodium[{bis(5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-sal-4,5-dmophen)] (2) and (iii) disodium[{bis(4-methoxy-5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-4-meosal-4,5-dmophen)] (3). The formation constant and thermodynamic parameters for charge transfer complex formation of water-soluble cobalt(II) Schiff base complexes with nucleoside monophosphates were determined spectrophotometrically in aqueous solution at constant ionic strength (I = 0.2 mol dm-3 KNO3) under physiological condition (pH 7.0) and at various temperatures between 288 and 308 K. The stoichiometry has been found to be 1:1 (water-soluble cobalt(II) Schiff base complex: nucleoside monophosphate) in each case. Our spectroscopic and thermodynamic results show that the interaction of water-soluble cobalt(II) Schiff base complexes with the investigated nucleoside monophosphates occurs mainly through the phosphate group. The trend of the interaction according to the cobalt(II) Schiff base complexes due to electronic and steric factors is as follows: Na2[Co(SO3-salophen)] > Na2[Co(SO3-sal-4,5-dmophen)] > Na2[Co(SO3-4-meosal-4,5-dmophen)]. Also the trend of the interaction of a given cobalt(II) Schiff base complex according to the nucleoside monophosphate is as follows: CMP > AMP.

  14. New bioactive silver(I) complexes: Synthesis, characterization, anticancer, antibacterial and anticarbonic anhydrase II activities

    NASA Astrophysics Data System (ADS)

    Ozdemir, Ummuhan O.; Ozbek, Neslihan; Genc, Zuhal Karagoz; İlbiz, Firdevs; Gündüzalp, Ayla Balaban

    2017-06-01

    Silver(I) complexes of alkyl sulfonic acide hydrazides were newly synthesized as homologous series. Methanesulfonic acide hydrazide (L1), ethanesulfonic acide hydrazide (L2), propanesulfonic acide hydrazide (L3) and butanesulfonic acide hydrazide (L4) were used for complexation with Ag(I) ions. The silver complexes obtained in the mol ratio of 1:2 have the structural formula as Ag(L1)2NO3 (I), Ag(L2)2NO3 (II), Ag(L3)2NO3(III), (Ag(L4)2NO3 (IV). The Ag(I) complexes exhibit distorted linear two-fold coordination in [AgL2]+ cations with uncoordinated nitrates. Ligands are chelated with silver(I) ions through unsubstituted primary nitrogen in hydrazide group. Ag(I) complexes were characterized by using elemental analysis, spectroscopic methods (FT-IR, LC-MS), magnetic susceptibility and conductivity measurements. Silver(I) complexes were optimized using PBEPBE/LanL2DZ/DEF2SV basic set performed by DFT method with the Gaussian 09 program package. The geometrical parameters, frontier molecular orbitals (HOMOs and LUMOs) and molecular electrostatic potential (MEP) mapped surfaces of the optimized geometries were also determined by this quantum set. The anticancer activities of silver(I) complexes on MCF-7 human breast cancer cell line were investigated by comparing IC50 values. The antibacterial activities of complexes were studied against Gram positive bacteria; S. aureus ATCC 6538, B. subtilis ATCC 6633, B. cereus NRRL-B-3711, E. faecalis ATCC 29212 and Gram negative bacteria; E. coli ATCC 11230, P. aeruginosa ATCC 15442, K. pneumonia ATCC 70063 by using disc diffusion method. The inhibition activities of Ag(I) complexes on carbonic anhydrase II enzyme (hCA II) were also investigated by comparing IC50 and Ki values. The biological activity screening shows that Ag(I) complex of butanesulfonicacidehydrazide (IV) has the highest activity against tested breast cancer cell lines MCF-7, Gram positive/Gram negative bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  15. Nickel-quinolones interaction. Part 4. Structure and biological evaluation of nickel(II)-enrofloxacin complexes compared to zinc(II) analogues.

    PubMed

    Skyrianou, Kalliopi C; Psycharis, Vassilis; Raptopoulou, Catherine P; Kessissoglou, Dimitris P; Psomas, George

    2011-01-01

    The nickel(II) complexes with the second-generation quinolone antibacterial agent enrofloxacin in the presence or absence of the nitrogen-donor heterocyclic ligands 1,10-phenanthroline, 2,2'-bipyridine or pyridine have been synthesized and characterized. Enrofloxacin acts as bidentate ligand coordinated to Ni(II) ion through the ketone oxygen and a carboxylato oxygen. The crystal structure of (1,10-phenanthroline)bis(enrofloxacinato)nickel(II) has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA and bis(pyridine)bis(enrofloxacinato)nickel(II) exhibits the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the complexes have been evaluated in comparison to the corresponding Zn(II) enrofloxacinato complexes as well as Ni(II) complexes with the first-generation quinolone oxolinic acid. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Efficient plasmid DNA cleavage by a mononuclear copper(II) complex.

    PubMed

    Sissi, Claudia; Mancin, Fabrizio; Gatos, Maddalena; Palumbo, Manlio; Tecilla, Paolo; Tonellato, Umberto

    2005-04-04

    The Cu(II) complex of the ligand all-cis-2,4,6-triamino-1,3,5-trihydroxycyclohexane (TACI) is a very efficient catalyst of the cleavage of plasmid DNA in the absence of any added cofactor. The maximum rate of degradation of the supercoiled plasmid DNA form, obtained at pH 8.1 and 37 degrees C, in the presence of 48 microM TACI.Cu(II), is 2.3 x 10(-3) s(-1), corresponding to a half-life time of only 5 min for the cleavage of form I (supercoiled) to form II (relaxed circular). The dependence of the rate of plasmid DNA cleavage from the TACI.Cu(II) complex concentration follows an unusual and very narrow bell-like profile, which suggests an high DNA affinity of the complexes but also a great tendency to form unreactive dimers. The reactivity of the TACI.Cu(II) complexes is not affected by the presence of several scavengers for reactive oxygen species or when measured under anaerobic conditions. Moreover, no degradation of the radical reporter Rhodamine B is observed in the presence of such complexes. These results are consistent with the operation of a prevailing hydrolytic pathway under the normal conditions used, although the failure to obtain enzymatic religation of the linearized DNA does not allow one to rule out the occurrence of a nonhydrolytic oxygen-independent cleavage. A concurrent oxidative mechanism becomes competitive upon addition of reductants or in the presence of high levels of molecular oxygen: under such conditions, in fact, a remarkable increase in the rate of DNA cleavage is observed.

  17. Synthesis, Characterization and Antibacterial Activity of 1,4-di[ aminomethylene carboxyl] phenylene (H2L) and its Complexes Co(II), Cu (II), Zn(II) and Cd (II)

    NASA Astrophysics Data System (ADS)

    Sultan, J. S.; Fezea, S. M.; Mousa, F. H.

    2018-05-01

    A binucleating tetradentate Schiff base ligand, 1,4- di[amino methylene carboxylic] phenylene (H2L) and its forth new binuclear complexes [Co(II), Cu(II), Zn(II) and Cd(II)] were prepared via reaction metal (II) chloride with ligand (H2L) using 2:1 (M:L) in ethanol solvent. The new ligand (H2L) and its complexes were characterized by elemental microanalysis (C.H.N), atomic absorption, chloride content, molar conductance’s magnetic susceptibility, FTIR UV- Vis spectral and, 1H, 13 C- NMR (for H2L). The antibacterial activity with bacteria activity with bacteria, Staphylococcus aureus, Bacillus and Esccherichia Coli were studied.

  18. Isolation and Purification of Complex II from Proteus Mirabilis Strain ATCC 29245

    PubMed Central

    Shabbiri, Khadija; Ahmad, Waqar; Syed, Quratulain; Adnan, Ahmad

    2010-01-01

    A respiratory complex was isolated from plasma membrane of pathogenic Proteus mirabilis strain ATCC 29245. It was identified as complex II consisting of succinate:quinone oxidoreductase (EC 1.3.5.1) containing single heme b. The complex II was purified by ion-exchange chromatography and gel filtration. The molecular weight of purified complex was 116.5 kDa and it was composed of three subunits with molecular weights of 19 kDa, 29 kDa and 68.5 kDa. The complex II contained 9.5 nmoles of cytochrome b per mg protein. Heme staining indicated that the 19 kDa subunit was cytochrome b. Its reduced form showed absorptions peaks at 557.0, 524.8 and 424.4 nm. The α-band was shifted from 557.0 nm to 556.8 nm in pyridine ferrohemochrome spectrum. The succinate: quinone oxidoreductase activity was found to be high in this microorganism. PMID:24031557

  19. Spectroscopic, thermal, catalytic and biological studies of Cu(II) azo dye complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Shoair, A. F.; Hussein, M. A.; El-Boz, R. A.

    2017-08-01

    New complexes of copper(II) with azo compounds of 5-amino-2-(aryl diazenyl)phenol (HLn) are prepared and investigated by elemental analyses, molar conductance, IR, 1H NMR, UV-Visible, mass, ESR spectra, magnetic susceptibility measurements and thermal analyses. The complexes have a square planar structure and general formula [Cu(Ln)(OAc)]H2O. Study the catalytic activities of Cu(II) complexes toward oxidation of benzyl alcohol derivatives to carbonyl compounds were tested using H2O2 as the oxidant. The intrinsic binding constants (Kb) of the ligands (HLn) and Cu(II) complexes (1-4) with CT-DNA are determined. The formed compounds have been tested for biological activity of antioxidants, antibacterial against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and yeast Candida albicans. Antibiotic (Ampicillin) and antifungal against (Colitrimazole) and cytotoxic compounds HL1, HL2, HL3 and complex (1) showed moderate to good activity against S. aureus, E. coli and Candida albicans, and also to be moderate on antioxidants and toxic substances. Molecular docking is used to predict the binding between the ligands with the receptor of breast cancer (2a91).

  20. Spectrophotometric complexation of cephalosporins with palladium (II) chloride in aqueous and non-aqueous solvents

    NASA Astrophysics Data System (ADS)

    Bagheri Gh., A.; Yosefi rad, A.; Rezvani, M.; Roshanzamir, S.

    2012-04-01

    The complexation reaction of cephalosporins namely cefotaxime (CTX), cefuroxime (CRX), and cefazolin (CEFAZ) with palladium (II) ions have been studied in water and DMF in 25 °C by the spectrophotometric methods. The method is based on the formation of yellow to yellowish brown complex between palladium (II) chloride and the investigated cephalosporins in the presence of sodium lauryl sulfate (SLS) as surfactant. The complexation process was optimized in terms of pH, temperature and contact time. The stoichiometry of all the complexes was found to be 2:1 (metal ion/ligand) for CTX, CRX, and 1:2 for CEFAZ. The stoichiometry of palladium (II)-cephalosporins was estimated by mole ratio and continuous variation methods and emphasized by the KINFIT program. These drugs could be determined by measuring the absorbance of each complex at its specific λmax. The results obtained are in good agreement with those obtained using the official methods. The proposed method was successfully applied for the determination of these compounds in their dosage forms.

  1. Structural, spectral, DFT and biological studies on macrocyclic mononuclear ruthenium (II) complexes

    NASA Astrophysics Data System (ADS)

    Muthukkumar, M.; Kamal, C.; Venkatesh, G.; Kaya, C.; Kaya, S.; Enoch, Israel V. M. V.; Vennila, P.; Rajavel, R.

    2017-11-01

    Macrocyclic mononuclear ruthenium (II) complexes have been synthesized by condensation method [Ru (L1, L2, L3) Cl2] L1 = (C36 H31 N9), L2= (C42H36N8), L3= (C32H32 N8)]. These ruthenium complexes have been established by elemental analyses and spectroscopic techniques (Fourier transform infrared spectroscopy (FT-IR), 1H- nuclear magnetic resonance (NMR), 13C- NMR and Electrospray ionization mass spectrometry (ESI-MS)). The coordination mode of the ligand has been confirmed and the octahedral geometry around the ruthenium ion has been revealed. Binding affinity and binding mode of ruthenium (II) complexes with Bovine serum Albumin (BSA) have been characterized by Emission spectra analysis. UV-Visible and fluorescence spectroscopic techniques have also been utilized to examine the interaction between ligand and its complexes L1, L2, & L3 with BSA. Chemical parameters and molecular structure of Ru (II) complexes L1H, L2H, & L3H have been determined by DFT coupled with B3LYP/6-311G** functional in both the gaseous and aqueous phases.

  2. The electric and thermoelectric properties of Cu(II)-Schiff base nano-complexes

    NASA Astrophysics Data System (ADS)

    Ibrahim, E. M. M.; Abdel-Rahman, Laila H.; Abu-Dief, Ahmed M.; Elshafaie, A.; Hamdan, Samar Kamel; Ahmed, A. M.

    2018-05-01

    The physical properties, such as electric and optical properties, of metal-Schiff base complexes have been widely investigated. However, their thermoelectric (TE) properties remain unreported. This work presents Cu(II)-Schiff base complexes as promising materials for TE power generation. Therefore, three Cu(II)-Schiff base complexes (namely, [Cu(C32H22N4O2)].3/2H2O, [Cu(C23H17N4O7Br)], and [Cu(C27H22N4O8)].H2O) have been synthesized in nanosized scale. The electric and TE properties have been studied and comprehensive discussions have been presented to promote the nano-complexes (NCs) practical applications in the field of TE power generation. The electrical measurements confirm that the NCs are semiconductors and the electrical conduction process is governed by intermolecular and intramolecular transfer of the charge carriers. The TE measurements reveal that the Cu(II)-Schiff base NCs are nondegenerate P-type semiconductors. The measured Seebeck coefficient values were higher compared to the values reported in previous works for other organic materials indicating that the complexes under study are promising candidates for theremoelectric applications if the electrical conductivity could be enhanced.

  3. On the positronium spin conversion reactions caused by some macrocyclic Co II complexes

    NASA Astrophysics Data System (ADS)

    Fantola-Lazzarini, Anna L.; Lazzarini, Ennio

    2002-08-01

    The rate constants, kCR, of ortho- into para-positronium ( o-Ps→ p-Ps) spin conversion reactions, CR, caused by the high-spin [Co IIsep] 2+, [Co IIdinosar] 2+ and [Co IIdiamsar] 2+ macrocyclic complexes and also by high-spin [Co II sen] 2+ tripod complex were measured at several temperatures. The delocalizations, β, of Co II unpaired electrons, promoted by the mentioned ligands, were determined by using the previously established correlations between kCR and the electron delocalization β of unpaired metal electrons. β is given by the ratio between the Racah inter-electronic repulsion parameters of complexes, B, and that of the free ions, B0. The β values are compared with those of the Co II complexes with en (1,2-ethanediamine), pn (1,2 propanediamine) and dien (2,2' diamino diethylamine) ligands. The kCR rate constants are also compared with those of the Ps oxidation reactions, OR, promoted by the corresponding Co III complexes. It is concluded that, unlike OR's, the CR's do not occur by formation of hepta-coordinate adducts with Ps atoms.

  4. Chitosan-Copper (II) complex as antibacterial agent: synthesis, characterization and coordinating bond- activity correlation study

    NASA Astrophysics Data System (ADS)

    Mekahlia, S.; Bouzid, B.

    2009-11-01

    The antimicrobial activity of chitosan is unstable and sensitive to many factors such as molecular weight. Recent investigations showed that low molecular weight chitosan exhibited strong bactericidal activities compared to chitosan with high molecular weight. Since chitosan degradation can be caused by the coordinating bond, we attempt to synthesize and characterize the chitosan-Cu (II) complex, and thereafter study the coordinating bond effect on its antibacterial activity against Salmonella enteritidis. Seven chitosan-copper complexes with different copper contents were prepared and characterized by FT-IR, UV-vis, XRD and atomic absorption spectrophotometry (AAS). Results indicated that for chitosan-Cu (II) complexes with molar ratio close to 1:1, the inhibition rate reached 100%.

  5. Synthesis, characterization and antibacterial activity of new sulfonyl hydrazone derivatives and their nickel(II) complexes

    NASA Astrophysics Data System (ADS)

    Özmen, Ümmühan Özdemir; Olgun, Gülçin

    2008-08-01

    Prophane sulfonic acid hydrazide (psh: CH 3CH 2CH 2SO 2NHNH 2) derivatives as salicylaldehydeprophanesulfonylhydrazone (salpsh), 5-methylsalicylaldehydeprophanesulfonylhydrazone (5-msalpsh), 2-hydroxyacetophenoneprophanesulfonylhydrazone (afpsh), 5-methyl-2-hydroxyacetophenoneprophanesulfonylhydrazone (5-mafpsh) and their Ni(II) complexes have been synthesized. The structure of these compounds has been investigated by using elemental analysis, FTIR, 1H NMR, LC/MS, UV-vis spectrophotometric method, magnetic susceptibility and conductivity measurements. The complexes were found to have general compositions [NiL2]. Square-planer structures are proposed for the Ni(II) complexes on the basis of magnetic evidence, electronic spectra and TGA data. Bacterial activities of sulfonyl hydrazone compounds were studied against gram-positive bacteria: Staphylococcus aureus, Bacillus subtilis, Bacillus magaterium and gram-negative bacteria: Salmonella enteritidis, Escherichia coli by using minimum inhibitory concentrations (MICs) method.

  6. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes

    PubMed Central

    Li, Hui; Yue, Fan; Wen, Hongmei

    2016-01-01

    This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers. PMID:27648004

  7. Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes.

    PubMed

    Saffert, Paul; Enenkel, Cordula; Wendler, Petra

    2017-01-01

    Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80-150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.

  8. Synthesis, spectroscopic and thermal studies of Mg(II), Ca(II), Sr(II) and Ba(II) diclofenac sodium complexes as anti-inflammatory drug and their protective effects on renal functions impairment and oxidative stress

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The main task of our present study is the preparation of newly complexes of Mg(II), Ca(II), Sr(II) and Ba(II) with diclofenac which succeeded to great extent in alleviating the side effects of diclofenac alone and ameliorating the kidney function parameters and antioxidant capacities with respect to diclofenac treated group alone. The Mg(II), Ca(II), Sr(II) and Ba(II) with diclofenac have been synthesized and characterized using infrared, electronic and 1H NMR spectral, thermogravimetric and conductivity measurements. The diclofenac ligand has been found to act as bidentate chelating agent. Diclofenac complexes coordinate through the oxygen's of the carboxyl group. The molar ratio chelation is 1:2 (M2+-dic) with general formula [M(dic)2(H2O)2]ṡnH2O. Antibacterial screening of the alkaline earth metal complexes against Escherichia coli (Gram - ve), Bacillus subtilis (Gram + ve) and anti-fungal (Asperagillus oryzae, Asperagillus niger, Asperagillus flavus) were investigated. The kidney functions in male albino rats were ameliorated upon treatment with metal complexes of dic, which are represented by decreasing the levels of urea and uric acid to be located within normal values. The other looks bright spot in this article is the assessment of antioxidant defense system including SOD, CAT and MDA with the help of Sr2+, Mg2+ and Ca2+-dic complexes. The hormones related to kidney functions and stresses have been greatly ameliorated in groups treated with dic complexes in comparable with dic treated group.

  9. Preparation and properties of a calcium(II)-based molecular chain decorated with manganese(II) butterfly-like complexes.

    PubMed

    Benniston, A C; Melnic, S; Turta, C; Arauzo, A B; Bartolomé, J; Bartolomé, E; Harrington, R W; Probert, M R

    2014-09-21

    The room temperature reaction of [Mn2O2(bipy)4](ClO4)3 (bipy = 2,2'-bipyridine) with Ca(CHCl2COO)2 in methanol produced a yellow crystalline material. The X-ray determined structure comprises of a multiple calcium(II) carboxylate bridged chain-like structure which is decorated with [Mn(bipy)2(OH2)](2+) subunits. The redox behaviour for the complex in H2O and MeCN is reported. In the latter solvent the oxidation of the manganese ions appears to be facilitated by the presence of the calcium ions. Magnetic susceptibility and low temperature magnetization measurements show that the Mn moment is isotropic, with g = 1.99(1) and S = 5/2, confirming it is in the 2+ oxidation state. A very weak antiferromagnetic interaction is also detected. Frequency-dependent ac measurements evidence slow magnetic relaxation of the Mn(bipy)2 units. Two relaxation mechanisms are identified: a very slow direct process and a faster one caused by the Resonant Phonon Trapping mechanism. This is the first example of field-induced single ion magnet (SIM) behavior in a mononuclear Mn(II) complex.

  10. 1H and 17O NMR relaxometric and computational study on macrocyclic Mn(II) complexes.

    PubMed

    Rolla, Gabriele A; Platas-Iglesias, Carlos; Botta, Mauro; Tei, Lorenzo; Helm, Lothar

    2013-03-18

    Herein we report a detailed 1H and 17O relaxometric investigation of Mn(II) complexes with cyclen-based ligands such as 2-(1,4,7,10-tetraazacyclododecan-1-yl)acetic acid (DO1A), 2,2'-(1,4,7,10-tetraazacyclododecane-1,4-diyl)diacetic acid (1,4-DO2A), 2,2'-(1,4,7,10-tetraazacyclododecane-1,7-diyl)diacetic acid (1,7-DO2A), and 2,2',2"-(1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (DO3A). The Mn(II) complex with the heptadentate ligand DO3A does not have inner sphere water molecules (q = 0), and therefore, the metal ion is most likely seven-coordinate. The hexadentate DO2A ligand has two isomeric forms: 1,7-DO2A and 1,4-DO2A. The Mn(II) complex with 1,7-DO2A is predominantly six-coordinate (q = 0). In aqueous solutions of [Mn(1,4-DO2A)], a species with one coordinated water molecule (q = 1) prevails largely, whereas a q = 0 form represents only about 10% of the overall population. The Mn(II) complex of the pentadentate ligand DO1A also contains a coordinated water molecule. DFT calculations (B3LYP model) are used to obtain information about the structure of this family of closely related complexes in solution, as well as to determine theoretically the 17O and 1H hyperfine coupling constants responsible for the scalar contribution to 17O and 1H NMR relaxation rates and 17O NMR chemical shifts. These calculations provide 17O A/ħ values of ca. 40 × 10(6) rad s(-1), in good agreement with experimental data. The [Mn(1,4-DO2A)(H2O)] complex is endowed with a relatively fast water exchange rate (k(ex)298 = 11.3 × 10(8) s(-1)) in comparison to the [Mn(EDTA)(H2O)]2- analogue (k(ex)298 = 4.7 × 10(8) s(-1)), but about 5 times lower than that of the [Mn(DO1A)(H2O)]+ complex (k(ex)298 = 60 × 10(8) s(-1)). The water exchange rate measured for the latter complex represents the highest water exchange rate ever measured for a Mn(II) complex.

  11. Synthesis, characterization, DFT calculations and antibacterial activity of palladium(II) cyanide complexes with thioamides

    NASA Astrophysics Data System (ADS)

    Ahmad, Saeed; Nadeem, Shafqat; Anwar, Aneela; Hameed, Abdul; Tirmizi, Syed Ahmed; Zierkiewicz, Wiktor; Abbas, Azhar; Isab, Anvarhusein A.; Alotaibi, Mshari A.

    2017-08-01

    Palladium(II) cyanide complexes of thioamides (or thiones) having the general formula PdL2(CN)2, where L = Thiourea (Tu), Methylthiourea (Metu), N,N‧-Dimethylthiourea (Dmtu), Tetramethylthiourea (Tmtu), 2-Mercaptopyridine (Mpy) and 2-Mercaptopyrimidine (Mpm) were prepared by reacting K2[PdCl4] with potassium cyanide and thioamides in the molar ratio of 1:2:2. The complexes were characterized by elemental analysis, thermal and spectroscopic methods (IR, 1H and 13C NMR). The structures of three of the complexes were predicted by DFT calculations. The appearance of a band around 2100 cm-1 in IR and resonances around 120-130 ppm in the 13C NMR spectra indicated the coordination of cyanide to palladium(II). More than one resonances were observed for CN- carbon atoms in 13C NMR indicating the existence of equilibrium between different species in solution. DFT calculations revealed that in the case of the palladium(II) complex of Tmtu, the ionic dinuclear [Pd(Tmtu)4][Pd(CN)4] form was more stable than the dimer of mononuclear complex [Pd(Tmtu)2(CN)2] by 0.91 kcal mol-1, while for the complexes of Tu or Mpy ligands, the nonionic [Pd(L)2(CN)2] forms were more stable than the corresponding [Pd(L)4][Pd(CN)4] complexes by 1.26 and 6.49 kcal mol-1 for L = Tu and Mpy, respectively. The complexes were screened for antibacterial effects and some of them showed significant activities against both gram positive as well as gram negative bacteria.

  12. Synthesis, X-ray structure and cytotoxic effect of nickel(II) complexes with pyrazole ligands.

    PubMed

    Sobiesiak, Marta; Lorenz, Ingo-Peter; Mayer, Peter; Woźniczka, Magdalena; Kufelnicki, Aleksander; Krajewska, Urszula; Rozalski, Marek; Budzisz, Elzbieta

    2011-12-01

    Here we present the synthesis of the new Ni(II) complexes with chelating ligands 1-benzothiazol-2-yl-3,5-dimethyl-1H-pyrazole (a), 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-carboxylic acid methyl ester (b) and 1-benzothiazol-2-yl-5-(2-hydroxyphenyl)-3-methyl-1H-pyrazole-4-carboxylic acid methyl ester (c). These ligands a-c create solid complexes with Ni(II). The crystal and molecular structures of two complexes were determined by X-ray diffraction method. Thermal stability of two complexes with ligand c by TG/DTG and DSC methods were also shown. Cytotoxic activity of all the complexes against three tumour cell lines and to normal endothelial cells (HUVEC) was also estimated. Complexes with ligand c exhibited relatively high cytotoxic activity towards HL-60 and NALM-6 leukaemia cells and WM-115 melanoma cells. Cytotoxic effectiveness of one of these complexes against melanoma WM-115 cells was two times higher than that of cisplatin. The protonation constant log K=9.63 of ligand b corresponding to the phenol 2-hydroxy group has been determined in 10% (v/v) DMSO/water solution (25°C). The coordination modes (formation of two monomeric species: NiL and NiL(2)) in the complexes with Ni(II) are discussed for b on the basis of the potentiometric and UV/Vis data. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  13. Synthesis, characterization, antimicrobial activity and DFT studies of 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione and its Mn(II), Co(II), Ni(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Chioma, Festus; Ekennia, Anthony C.; Ibeji, Collins U.; Okafor, Sunday N.; Onwudiwe, Damian C.; Osowole, Aderoju A.; Ujam, Oguejiofo T.

    2018-07-01

    A pyrimidine-based ligand, 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione (L), has been synthesized by the reaction of 2-aminopyrimidine with 2-hydroxy-1,4-napthoquinone. Reaction of the ligand with Ni(II), Co(II), Mn(II) and Zn(II) acetate gave the corresponding metal complexes which were characterized by spectroscopic techniques, (infrared, electronic), elemental analysis, room-temperature magnetometry, conductance measurements and thermogravimetry-differential scanning calorimetry (TG-DSC) analyses. The room-temperature magnetic data and electronic spectral measurements of the complexes gave evidence of 4-coordinate square planar/tetrahedral geometry. The thermal analyses values obtained indicated the monohydrate complexes. The antimicrobial screening of the compounds showed mild to very good results. The Mn(II) complex showed the best result within in the range of 11.5-29 mm. The electronic, structural and spectroscopic properties of the complexes were further discussed using density functional theory. Molecular docking studies showed significant binding affinity with the drug targets and the metal complexes have potentials to be used as drugs.

  14. Optimizing the Electronic Properties of Photoactive Anticancer Oxypyridine-Bridged Dirhodium(II,II) Complexes

    DOE PAGES

    Li, Zhanyong; David, Amanda; Albani, Bryan A.; ...

    2014-12-01

    A series of partial paddlewheel dirhodium compounds of general formula cis-[Rh 2(xhp) 2(CH 3CN) n][BF 4] 2 (n = 5 or 6) were synthesized {xhp = 6-R-2-oxypyridine ligands, R = -CH 3 (mhp), -F (fhp), -Cl (chp)}. X-ray crystallographic studies indicate the aforementioned compounds contain two cis-oriented bridging xhp ligands, with the remaining sites being coordinated by CH 3CN ligands. The lability of the equatorial (eq) CH 3CN groups in these complexes in solution is in the order -CH 3 > -Cl > -F, in accord with the more electron rich bridging ligands exerting a stronger trans effect. In themore » case of cis-[Rh 2(chp) 2(CH 3CN) 6][BF 4] 2 (5), light irradiation enhances the production of the aqua adducts in which eq CH 3CN is replaced by H 2O molecules, whereas the formation of the aqua species for cis-[Rh 2(fhp) 2(CH 3CN) 6][BF 4] 2 (7) is only slightly increased by irradiation. The potential of both compounds to act as photochemotherapy agents was evaluated. A 16.4-fold increase in cytotoxicity against the HeLa cell line was observed for 5 upon 30 min irradiation (λ > 400 nm), in contrast to the nontoxic compound 7, which is in accord with the results from the photochemistry. Furthermore, the cell death mechanism induced by 5 was determined to be apoptosis. In conclusion, these results clearly demonstrate the importance of tuning the ligand field around the dimetal center to maximize the photoreactivity and achieve the best photodynamic action.« less

  15. Synthesis, characterization, spectroscopic and antioxidation studies of Cu(II)-morin complex

    NASA Astrophysics Data System (ADS)

    Panhwar, Qadeer Khan; Memon, Shahabuddin; Bhanger, M. I.

    2010-04-01

    Complex formation between copper (II) sulfate and morin (3,5,7,2',4'-pentahydroxyflavone) have been studied in methanol. Structure of the complex was determined through various analytical techniques including UV-vis, IR, 1H NMR, thermal, gravimetric and elemental analyses. The stoichiometric ratio for the reaction between the flavonoid and the metal ion in methanol has been determined by Job's method and elemental analysis for metal content of complex by titration with EDTA, which confirm that morin forms a 1:1 metal:ligand complex. 1H NMR study reveals that, 3OH and 4CO groups of morin take part in complexation with a copper ion. Individual stress was given to the site of central ion and composition of the complex. Antioxidant activity of the complex was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, which showed that the antioxidant activity of complexed morin has higher value as compared to the free morin. Moreover, it was observed that the metal complex is sufficiently stable as well as the data indicates the spontaneous formation of complex (-Δ G) that is exothermic in nature (-Δ H) and entropically unfavourable (-Δ S).

  16. Bioactive ruthenium(II)-arene complexes containing modified 18β-glycyrrhetinic acid ligands.

    PubMed

    Kong, Yaqiong; Chen, Feng; Su, Zhi; Qian, Yong; Wang, Fang-Xin; Wang, Xiuxiu; Zhao, Jing; Mao, Zong-Wan; Liu, Hong-Ke

    2018-05-01

    Metal-arene complexes containing bioactive natural-product derived ligands can have new and unusual properties. We report the synthesis, characterization and antiproliferative activity of two new Ru(II) arene complexes with imidazole (dichlorido complex 1) or bipyridyl (chlorido complex 2) ligands conjugated to 18β-glycyrrhetinic acid, an active triterpenoid metabolite of Glycyrrhiza glabra. In general, the conjugated ligands and complexes showed only moderate activity against HeLa (cervical), MCF-7 (breast) and A2780 (ovarian) cancer cells, although the activity of complex 2 in the former two cell lines approached that of the drug cisplatin. Complex 2 (in contrast to complex 1) also exhibited significant activity towards both Gram-positive S. aureus and Gram-negative E. coil bacteria. Complex 2 can induce condensation of DNA and enhances the generation of intracellular reactive oxygen species (ROS). The conjugation of natural products to ligands in organometallic half-sandwich complexes provides a strategy to enhance their biological activities. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Structural basis for bifunctional zinc(II) macrocyclic complex recognition of thymine bulges in DNA.

    PubMed

    del Mundo, Imee Marie A; Siters, Kevin E; Fountain, Matthew A; Morrow, Janet R

    2012-05-07

    The zinc(II) complex of 1-(4-quinoylyl)methyl-1,4,7,10-tetraazacyclododecane (cy4q) binds selectively to thymine bulges in DNA and to a uracil bulge in RNA. Binding constants are in the low-micromolar range for thymine bulges in the stems of hairpins, for a thymine bulge in a DNA duplex, and for a uracil bulge in an RNA hairpin. Binding studies of Zn(cy4q) to a series of hairpins containing thymine bulges with different flanking bases showed that the complex had a moderate selectivity for thymine bulges with neighboring purines. The dissociation constants of the most strongly bound Zn(cy4q)-DNA thymine bulge adducts were 100-fold tighter than similar sequences with fully complementary stems or than bulges containing cytosine, guanine, or adenine. In order to probe the role of the pendent group, three additional zinc(II) complexes containing 1,4,7,10-tetraazacyclododecane (cyclen) with aromatic pendent groups were studied for binding to DNA including 1-(2-quinolyl)methyl-1,4,7,10-tetraazacyclododecane (cy2q), 1-(4-biphenyl)methyl-1,4,7,10-tetraazacyclododecane (cybp), and 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine (dsc). The Zn(cybp) complex binds with moderate affinity but little selectivity to DNA hairpins with thymine bulges and to DNA lacking bulges. Similarly, Zn(dsc) binds weakly both to thymine bulges and hairpins with fully complementary stems. The zinc(II) complex of cy2q has the 2-quinolyl moiety bound to the Zn(II) center, as shown by (1)H NMR spectroscopy and pH-potentiometric titrations. As a consequence, only weak (500 μM) binding is observed to DNA with no appreciable selectivity. An NMR structure of a thymine-bulge-containing hairpin shows that the thymine is extrahelical but rotated toward the major groove. NMR data for Zn(cy4q) bound to DNA containing a thymine bulge is consistent with binding of the zinc(II) complex to the thymine N3(-) and stacking of the quinoline on top of the thymine. The thymine-bulge bound

  18. Synthesis, characterization and electrochemical studies of heterometallic manganese(IV)-zinc(II) and manganese(IV)-copper(II) complexes derived from bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone

    NASA Astrophysics Data System (ADS)

    Koch, Angira; Phukan, Arnab; Chanu, Oinam B.; Kumar, A.; Lal, R. A.

    2014-02-01

    Five manganese(IV) complexes [Mn(L)(bpy)] (1) and heterobimetallic complexes [MMn(L)Cl2(H2O)4]·1.5H2O (M = ZnII(2), CuII(3)) and [MnM(L)(bpy)Cl2] (M = ZnII(4), CuII(5)] have been synthesized from bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone (H4L) in methanol medium. The composition of the complexes have been established based on the data obtained from analytical, thermoanalytical and mass spectral studies. The structures of the complexes have been discussed in the light of molar conductance, magnetic moment, electronic, EPR, IR, FT-IR spectroscopic studies and transmission electron microscopies. The molar conductance values of these complexes in DMSO suggest their non-electrolytic nature. The μeff value for the complexes (1), (2) and (4) fall in the range 3.82-4.12 BM characteristic of the presence of the manganese(IV) in them. The complex (3) has μeff value of 3.70 BM at RT indicating considerable antiferromagnetic interaction between Mn(IV) and Cu(II). The μeff value of 4.72 BM for complex (5) is slightly lower than 4.90 BM for S = 2 ground state. In the complex (1) to (3), the ligand is coordinated to the metal centres as tetradentate ligand while in the complexes (4) and (5) as hexadentate ligand. Manganese(IV) has distorted octahedral stereochemistry in all complexes. Copper(II) has distorted octahedral and square planar stereochemistry in complexes (3) and (5) while zinc has distorted octahedral and tetrahedral stereochemistry, respectively. EPR studies of the complexes are also reported. The electron transfer reactions of the complexes have also been investigated by cyclic voltammetry.

  19. Reversible mechanochromic luminescence at room temperature in cationic platinum(II) terpyridyl complexes.

    PubMed

    Han, Ali; Du, Pingwu; Sun, Zijun; Wu, Haotian; Jia, Hongxing; Zhang, Rui; Liang, Zhenning; Cao, Rui; Eisenberg, Richard

    2014-04-07

    Reversible mechanochromic luminescence in cationic platinum(II) terpyridyl complexes is described. The complexes [Pt(Nttpy)Cl]X2 (Nttpy = 4'-(p-nicotinamide-N-methylphenyl)-2,2':6',2″-terpyridine, X = PF6 (1), SbF6 (2), Cl (3), ClO4 (4), OTf (5), BF4 (6)) exhibit different colors under ambient light in the solid state, going from red to orange to yellow. All of these complexes are brightly luminescent at both room temperature and 77 K. Upon gentle grinding, the yellow complexes (4-6) turn orange and exhibit bright red luminescence. The red luminescence can be changed back to yellow by the addition of a few drops of acetonitrile to the sample. Crystallographic studies of the yellow and red forms of complex 5 suggest that the mechanochromic response is likely the result of a change in intermolecular Pt···Pt distances upon grinding.

  20. Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes.

    PubMed

    Kumar, Anil; Bora, Utpal

    2014-12-01

    DNA topoisomerase I (topo I) and II (topo II) are essential enzymes that solve the topological problems of DNA by allowing DNA strands or double helices to pass through each other during cellular processes such as replication, transcription, recombination, and chromatin remodeling. Their critical roles make topoisomerases an attractive drug target against cancer. The present molecular docking study provides insights into the inhibition of topo I and II by curcumin natural derivatives. The binding modes suggested that curcumin natural derivatives docked at the site of DNA cleavage parallel to the axis of DNA base pairing. Cyclocurcumin and curcumin sulphate were predicted to be the most potent inhibitors amongst all the curcumin natural derivatives docked. The binding modes of cyclocurcumin and curcumin sulphate were similar to known inhibitors of topo I and II. Residues like Arg364, Asn722 and base A113 (when docked to topo I-DNA complex) and residues Asp479, Gln778 and base T9 (when docked to topo II-DNA complex) seem to play important role in the binding of curcumin natural derivatives at the site of DNA cleavage.

  1. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    PubMed Central

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo; Ma, Zhuoran; Zhang, Zhe; Zhu, Shoujun; Wang, Joy; Lozano, Alexander X.; Fan, Quli; Chew, Leila; Zhu, Mark; Cheng, Kai; Hong, Xuechuan; Dai, Hongjie; Cheng, Zhen

    2017-01-01

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ∼50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body. PMID:28524850

  2. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    SciTech Connect

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less

  3. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    DOE PAGES

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo; ...

    2017-05-19

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less

  4. Theoretical investigation, biological evaluation and VEGFR2 kinase studies of metal(II) complexes derived from hydrotris(methimazolyl)borate.

    PubMed

    Jayakumar, S; Mahendiran, D; Srinivasan, T; Mohanraj, G; Kalilur Rahiman, A

    2016-02-01

    The reaction of soft tripodal scorpionate ligand, sodium hydrotris(methimazolyl)borate with M(ClO4)2·6H2O [MMn(II), Ni(II), Cu(II) or Zn(II)] in methanol leads to the cleavage of B-N bond followed by the formation of complexes of the type [M(MeimzH)4](ClO4)2·H2O (1-4), where MeimzH=methimazole. All the complexes were fully characterized by spectro-analytical techniques. The molecular structure of the zinc(II) complex (4) was determined by X-ray crystallography, which supports the observed deboronation reaction in the scorpionate ligand with tetrahedral geometry around zinc(II) ion. The electronic spectra of complexes suggested tetrahedral geometry for manganese(II) and nickel(II) complexes, and square-planar geometry for copper(II) complex. Frontier molecular orbital analysis (HOMO-LUMO) was carried out by B3LYP/6-31G(d) to understand the charge transfer occurring in the molecules. All the complexes exhibit significant antimicrobial activity against Gram (-ve) and Gram (+ve) bacterial as well as fungal strains, which are quite comparable to standard drugs streptomycin and clotrimazole. The copper(II) complex (3) showed excellent free radical scavenging activity against DPPH in all concentration with IC50 value of 30μg/mL, when compared to the other complexes. In the molecular docking studies, all the complexes showed hydrophobic, π-π and hydrogen bonding interactions with BSA. The cytotoxic activity of the complexes against human hepatocellular liver carcinoma (HepG2) cells was assessed by MTT assay, which showed exponential responses toward increasing concentration of complexes. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A long-lived mesoscale convective complex. II - Evolution and structure of the mature complex

    NASA Technical Reports Server (NTRS)

    Wetzel, P. J.; Cotton, W. R.; Mcanelly, R. L.

    1983-01-01

    The present investigation is concerned with an eight-day episode, during which a series of mesoscale convective complexes (MCC) developed and moved across the country, producing heavy rain and some flooding over an extensive region. An overview of the considered period from August 3 to August 10, 1977 is presented, and the evolution of the August 4 storm is examined. The structure of the mature MCC is discussed, taking into account the August 4-5 storm, a comparative case involving the August 3-4 storm, and an evaluation of the observed phenomena. It is concluded that MCCs are basically tropical in nature and that their dynamics are dominated by buoyant accelerations. It was found that the MCCs developed a warm-core, divergent anticyclonic flow pattern in the upper troposphere which was not present prior to the development of convection. A similar structure is observed in tropical cloud clusters.

  6. Spectral studies, thermal investigation and biological activity of some metal complexes derived from (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide

    NASA Astrophysics Data System (ADS)

    El-Samanody, El-Sayed A.; Polis, Magdy W.; Emara, Esam M.

    2017-09-01

    A new series of biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes derived from the novel thiosemicarbazone ligand; (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide (HL) were synthesized. The mode of bonding of the ligand and the geometrical structures of its metal complexes were achieved by different analytical and spectral methods. The ligand coordinated with metal ions in a neutral bidentate fashion through the thione sulfur and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry, except Cu(II) complexes (3, 6, 7) which have a square planar structure. The general thermal decomposition pathways of the ligand along with its metal complexes were explained. The thermal stability of the complexes is controlled by the number of outer and inner sphere water molecules, ionic radii and the steric hindrance. The activation thermodynamic parameters; (activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*)) along with order of reaction (n) were estimated from DTG curves. The ESR spectra of Cu(II) complexes indicated that (dx2-y2)1 is the ground state with covalence character of metal-ligand bonds. The molluscicidal and biochemical effects of the ligand and its Ni(II); Cu(II) complexes (2; 3, 5, 7) along with their combinations with metaldehyde were screened in vitro on the mucous gland of Eobania vermiculata. The tested compounds exhibited a significant toxicity against the tested animals and have almost the same toxic effect of metaldehyde which increases the mucous secretion of the snails and leads to death.

  7. Ferromagnetic dinuclear mixed-valence Mn(II)/Mn(III) complexes: building blocks for the higher nuclearity complexes. structure, magnetic properties, and density functional theory calculations.

    PubMed

    Hänninen, Mikko M; Välivaara, Juha; Mota, Antonio J; Colacio, Enrique; Lloret, Francesc; Sillanpää, Reijo

    2013-02-18

    A series of six mixed-valence Mn(II)/Mn(III) dinuclear complexes were synthesized and characterized by X-ray diffraction. The reactivity of the complexes was surveyed, and structures of three additional trinuclear mixed-valence Mn(III)/Mn(II)/Mn(III) species were resolved. The magnetic properties of the complexes were studied in detail both experimentally and theoretically. All dinuclear complexes show ferromagnetic intramolecular interactions, which were justified on the basis of the electronic structures of the Mn(II) and Mn(III) ions. The large Mn(II)-O-Mn(III) bond angle and small distortion of the Mn(II) cation from the ideal square pyramidal geometry were shown to enhance the ferromagnetic interactions since these geometrical conditions seem to favor the orthogonal arrangement of the magnetic orbitals.

  8. Asymmetric synthesis of diacceptor cyclopropylphosphonates catalyzed by chiral Ru(II)-Pheox complexes

    NASA Astrophysics Data System (ADS)

    Chi, Le Thi Loan; Chanthamath, Soda; Shibatomi, Kazutaka; Iwasa, Seiji

    2018-04-01

    The first Ru(II)-catalyzed asymmetric cyclopropanation of diacceptor diazophosphonates with olefins is reported. The Ru(II)-Pheox complex 7e was found to be an efficient catalyst for the asymmetric cyclopropanation of α-cyano diazophosp honate with styrene under mild conditions to give the corresponding chiral diacceptor cyclopropylphosphonate products in high yields (up to 99%) with excellent diastereoselectivities (up to 99/1 dr). However, the enantioselectivity was difficult to control by the C1-symmetric catalyst (up to 68% ee).

  9. Theoretical, biological and in silico studies of pendant-armed heteroleptic copper(II) phenolate complexes

    NASA Astrophysics Data System (ADS)

    Arthi, P.; Mahendiran, D.; Shobana, S.; Srinivasan, P.; Rahiman, A. Kalilur

    2018-06-01

    A new series of pendant-armed heteroleptic copper(II) phenolate complexes of the type [CuL1-3(diimine)] (1-6) have been synthesized by the reaction of pendant-armed ligands 2,2'-(benzoyliminodiethylene)bissalicylidene (H2L1), 2,2'-(4-nitrobenzoyliminodiethylene)bissalicylidene (H2L2) or 2,2'-(3,5-dinitrobenzoyliminodiethylene)bissalicylidene (H2L3) with coligands (diimine; 2,2‧-bipyridyl (bpy) or 1,10-phenanthroline (phen)) in the presence of copper(II) chloride, and characterized by spectroscopic techniques. The seven coordinated pentagonal-bipyramidal geometry around the copper(II) center was inferred from the electronic spectra of the complexes. The bond length, bond angle and HOMO-LUMO energy gap calculations were carried out by DFT studies, using Gaussian 03 program. Electrochemical studies of the mononuclear complexes evidenced one-electron irreversible reduction wave in the cathodic region (Epc = -0.61 to -0.65 V). Experimental and in silico molecular docking studies support groove mode of binding with DNA. Further, the molecular docking studies of complexes with B-DNA indicate the binding of the guanine-cytosine residues in the minor groove of the DNA. Molecular docking studies also revealed the interaction of complexes with protein ERK2 kinase and significant topoisomerase (Topo-I) inhibitory activity. All the complexes display pronounced cleavage activity against supercoiled pBR322 DNA in the presence of H2O2. In vitro cytotoxicity of the complexes was tested against liver cancer cell line (HepG2) by MTT reduction assay.

  10. Tuning Magnetic Anisotropy Through Ligand Substitution in Five-Coordinate Co(II) Complexes.

    PubMed

    Schweinfurth, David; Krzystek, J; Atanasov, Mihail; Klein, Johannes; Hohloch, Stephan; Telser, Joshua; Demeshko, Serhiy; Meyer, Franc; Neese, Frank; Sarkar, Biprajit

    2017-05-01

    Understanding the origin of magnetic anisotropy and having the ability to tune it are essential needs of the rapidly developing field of molecular magnetism. Such attempts at determining the origin of magnetic anisotropy and its tuning are still relatively infrequent. One candidate for such attempts are mononuclear Co(II) complexes, some of which have recently been shown to possess slow relaxation of their magnetization. In this contribution we present four different five-coordinated Co(II) complexes, 1-4, that contain two different "click" derived tetradentate tripodal ligands and either Cl - or NCS - as an additional, axial ligand. The geometric structures of all four complexes are very similar. Despite this, major differences are observed in their electronic structures and hence in their magnetic properties as well. A combination of temperature dependent susceptibility measurements and high-frequency and -field EPR (HFEPR) spectroscopy was used to accurately determine the magnetic properties of these complexes, expressed through the spin Hamiltonian parameters: g-values and zero-field splitting (ZFS) parameters D and E. A combination of optical d-d absorption spectra together with ligand field theory was used to determine the B and Dq values of the complexes. Additionally, state of the art quantum chemical calculations were applied to obtain bonding parameters and to determine the origin of magnetic anisotropy in 1-4. This combined approach showed that the D values in these complexes are in the range from -9 to +9 cm -1 . Correlations have been drawn between the bonding nature of the ligands and the magnitude and sign of D. These results will thus have consequences for generating novel Co(II) complexes with tunable magnetic anisotropy and hence contribute to the field of molecular magnetism.

  11. Electrocatalytic Hydrogen Production by a Nickel(II) Complex with a Phosphinopyridyl Ligand.

    PubMed

    Tatematsu, Ryo; Inomata, Tomohiko; Ozawa, Tomohiro; Masuda, Hideki

    2016-04-18

    A novel nickel(II) complex [Ni(L)2 Cl]Cl with a bidentate phosphinopyridyl ligand 6-((diphenylphosphino)methyl)pyridin-2-amine (L) was synthesized as a metal-complex catalyst for hydrogen production from protons. The ligand can stabilize a low Ni oxidation state and has an amine base as a proton transfer site. The X-ray structure analysis revealed a distorted square-pyramidal Ni(II)  complex with two bidentate L ligands in a trans arrangement in the equatorial plane and a chloride anion at the apex. Electrochemical measurements with the Ni(II) complex in MeCN indicate a higher rate of hydrogen production under weak acid conditions using acetic acid as the proton source. The catalytic current increases with the stepwise addition of protons, and the turnover frequency is 8400 s(-1) in 0.1 m [NBu4 ][ClO4 ]/MeCN in the presence of acetic acid (290 equiv) at an overpotential of circa 590 mV. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Preparation, characterisation and study of in vitro biologically active azamacrocyclic Cu(II) dicarboxylate complexes

    NASA Astrophysics Data System (ADS)

    Antonijević-Nikolić, Mirjana; Antić-Stanković, Jelena; Tanasković, Sladjana B.; Korabik, Maria J.; Gojgić-Cvijović, Gordana; Vučković, Gordana

    2013-12-01

    New cationic Cu(II) complexes with N, N‧, N″, N″‧-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc) and aliphatic dicarboxylic acids: pentanedioic (glutaric acid = glutH2), hexanedioic acid (adipic acid = adipH2) and decanedioic acid (sebacic acid = sebH2) of general formula [Cu4(L)(tpmc)2](ClO4)6·xH2O, L = glut, x = 2; L = adip, x = 7; L = seb, x = 6 were isolated. Their composition and charges are proposed based on elemental analyses and molar conductivity measurements. By the comparison of their UV-Vis, reflectance, FTIR and EPR spectral data, CV and SQUID magnetic measurements, with those for the complex with butanedioic acid (succinic acid = succH2) of known molecular structure and analysis of LC/MS spectra, geometry with two [Cu2tpmc]4+ units bridged by dicarboxylate dianion engaging all oxygens is proposed. Within units, Cu(II) ions are also bridged with N portion of cyclam ring. All four complexes were screened to in vitro antimicrobial and cytotoxic activity along with free primary and secondary ligands, Cu(II) salt and solvent controls. Detected antibacterial and cytotoxic activity for the complexes was enhanced in most cases than the corresponding controls.

  13. Synthesis, structure, and characterization of two Zn(II) complex containing two-dimensional bilayer structure

    NASA Astrophysics Data System (ADS)

    Zhang, Meili; Ren, Yixia; Chen, Xiaoli

    2014-10-01

    Two new Zn(II) complexes, [Zn2(L)(H2O)3]ṡH2O (1) and [Zn3(HL)2(bpp)2(Hbpp)2]ṡ10H2Oṡ2ClO4 (2) (H4L = cis,cis,cis,cis-1,2,3,4-cyclopentanetracarboxylic acid, bpp = 1,3-bis(4-pyridyl)propane), have been synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction techniques. The structure indicates that the complex 1 crystallizes in triclinic, space group Pī, in which, the four carboxylate groups of L ligand adopt μ2-η1:η0, μ2-η1:η1, μ1-η1:η1 coordination modes, respectively, bridging Zn(II) atoms to generate a (4,6)-connected 2D bilayer network. The structure indicates that the complex 2 crystallizes in monoclinic, space group C2/c, in which, three deprotonated carboxylate groups of L ligand adopt uniform μ1-η1:η0 coordination mode linking Zn(II) atoms to form a 1D polymeric ribbon, the bpp ligands further extend such ribbon giving rised to a (3,4)-connected 2D bilayer network. The most striking feature of 1 and 2 is that both of bilayer networks contain 1D solvent channel, where water molecules are located. In additional, luminescent properties of two complexes have also been studied.

  14. Synthesis, characterization and biological assay of Salicylaldehyde Schiff base Cu(II) complexes and their precursors

    NASA Astrophysics Data System (ADS)

    Iftikhar, Bushra; Javed, Kanwal; Khan, Muhammad Saif Ullah; Akhter, Zareen; Mirza, Bushra; Mckee, Vickie

    2018-03-01

    Three new Schiff base ligands were synthesized by the reaction of Salicylaldehyde with semi-aromatic diamines, prepared by the reduction of corresponding dinitro-compounds, and were further used for the formation of complexes with Cu(II) metal ion. The structural features of the synthesized compounds were confirmed by their physical properties and infrared, electronic and NMR spectroscopic techniques. The studies revealed that the synthesized Schiff bases existed as tetradentate ligands and bonded to the metal ion through the phenolic oxygen and azomethine nitrogen. One of the dinitro precursors was also analyzed by single crystal X-ray crystallography, which showed that it crystallizes in monoclinic system with space group P2/n. The thermal behavior of the Cu(II) complexes was determined by thermogravimetric analysis (TGA) and kinetic parameters were evaluated from the data. Schiff base ligands, their precursors and metal complexes were also screened for antibacterial, antifungal, antitumor, Brine shrimp lethality, DPPH free radical scavenging and DNA damage assays. The results of these analyses indicated the substantial potential of the synthesized Schiff bases, their precursors and Cu(II) complexes in biological field as future drugs.

  15. Riboflavin transporter deficiency mimicking mitochondrial myopathy caused by complex II deficiency.

    PubMed

    Nimmo, Graeme A M; Ejaz, Resham; Cordeiro, Dawn; Kannu, Peter; Mercimek-Andrews, Saadet

    2018-02-01

    Biallelic likely pathogenic variants in SLC52A2 and SLC52A3 cause riboflavin transporter deficiency. It is characterized by muscle weakness, ataxia, progressive ponto-bulbar palsy, amyotrophy, and sensorineural hearing loss. Oral riboflavin halts disease progression and may reverse symptoms. We report two new patients whose clinical and biochemical features were mimicking mitochondrial myopathy. Patient 1 is an 8-year-old male with global developmental delay, axial and appendicular hypotonia, ataxia, and sensorineural hearing loss. His muscle biopsy showed complex II deficiency and ragged red fibers consistent with mitochondrial myopathy. Whole exome sequencing revealed a homozygous likely pathogenic variant in SLC52A2 (c.917G>A; p.Gly306Glu). Patient 2 is a 14-month-old boy with global developmental delay, respiratory insufficiency requiring ventilator support within the first year of life. His muscle biopsy revealed combined complex II + III deficiency and ragged red fibers consistent with mitochondrial myopathy. Whole exome sequencing identified a homozygous likely pathogenic variant in SCL52A3 (c.1223G>A; p.Gly408Asp). We report two new patients with riboflavin transporter deficiency, caused by mutations in two different riboflavin transporter genes. Both patients presented with complex II deficiency. This treatable neurometabolic disorder can mimic mitochondrial myopathy. In patients with complex II deficiency, riboflavin transporter deficiency should be included in the differential diagnosis to allow early treatment and improve neurodevelopmental outcome. © 2017 Wiley Periodicals, Inc.

  16. Laser initiation of Fe(II) complexes of 4-nitro-pyrazolyl substituted tetrazine ligands

    DOE PAGES

    Myers, Thomas Winfield; Brown, Kathryn Elizabeth; Chavez, David E.; ...

    2017-02-01

    Here, the synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substituted ligands did coordinate Fe(II) metal centers in a 2:1 ratio of ligand to metal. The thermal stability and mechanical sensitivity characteristics of the complexes are similar to the conventional explosive pentaerythritol tetranitrate. The complexes had strong absorption in the visible region of the spectrum that extended into the near-infrared. In spite of having improved oxygen balances, increased mechanical sensitivity, and similar absorption of NIRmore » light to recently reported Fe(II) tetrazine complexes, these newly synthesized explosives were more difficult to initiate with Nd:YAG pulsed laser light. More specifically, the complexes required lower densities (0.9 g/cm 3) to initiate at the same threshold utilized to initiate previous materials at higher densities (1.05 g/cm 3).« less

  17. Surface complexation model for multisite adsorption of copper(II) onto kaolinite

    NASA Astrophysics Data System (ADS)

    Peacock, Caroline L.; Sherman, David M.

    2005-08-01

    We measured the adsorption of Cu(II) onto kaolinite from pH 3-7 at constant ionic strength. EXAFS spectra show that Cu(II) adsorbs as (CuO 4H n) n-6 and binuclear (Cu 2O 6H n) n-8 inner-sphere complexes on variable-charge ≡AlOH sites and as Cu 2+ on ion exchangeable ≡X-H + sites. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed at least up to pH 6.5. Inner-sphere complexes are bound to the kaolinite surface by corner-sharing with two or three edge-sharing Al(O,OH) 6 polyhedra. Our interpretation of the EXAFS data are supported by ab initio (density functional theory) geometries of analog clusters simulating Cu complexes on the {110} and {010} crystal edges and at the ditrigonal cavity sites on the {001}. Having identified the bidentate (≡AlOH) 2Cu(OH) 20, tridentate (≡Al 3O(OH) 2)Cu 2(OH) 30 and ≡X-Cu 2+ surface complexes, the experimental copper(II) adsorption data can be fit to the reactions

  18. DNA interaction, antioxidant activity, and bioactivity studies of two ruthenium(II) complexes

    NASA Astrophysics Data System (ADS)

    Han, Bing-Jie; Jiang, Guang-Bin; Yao, Jun-Hua; Li, Wei; Wang, Ji; Huang, Hong-Liang; Liu, Yun-Jun

    2015-01-01

    Two new ruthenium(II) polypyridyl complexes [Ru(dmb)2(dcdppz)](ClO4)2 (1) and [Ru(bpy)2(dcdppz)](ClO4)2 (2) were prepared and characterized. The crystal structure of the complex 2 was solved by single crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group P21/n with a = 12.9622(14) Å, b = 17.1619(19) Å, c = 22.7210(3) Å, β = 100.930(2)°, R = 0.0536, Rω = 0.1111. The DNA-binding constants for complexes 1 and 2 were determined to be 1.92 × 105 (s = 1.72) and 2.24 × 105 (s = 1.86) M-1, respectively. The DNA-binding behaviors showed that complexes 1 and 2 interact with DNA by intercalative mode. The antioxidant activities of the ligand and the complexes were performed. Ligand, dcdppz, has no cytotoxicity against the selected cell lines. Complex 1 shows higher cytotoxicity than complex 2, but lower than cisplatin toward selected cell lines. The apoptosis and cell cycle arrest were investigated, and the apoptotic mechanism of BEL-7402 cells was studied by reactive oxygen species (ROS), mitochondrial membrane potential and western blot analysis. Complex 1 induces apoptosis in BEL-7402 cells through ROS-mediated mitochondrial dysfunction pathway and by regulating the expression of Bcl-2 family proteins.

  19. Mononuclear, trinuclear, and hetero-trinuclear supramolecular complexes containing a new tri-sulfonate ligand and cobalt(II)/copper(II)-(1,10-phenanthroline) 2 building blocks

    NASA Astrophysics Data System (ADS)

    Yu, Yunfang; Wei, Yongqin; Broer, Ria; Sa, Rongjian; Wu, Kechen

    2008-03-01

    Novel mononuclear, trinuclear, and hetero-trinuclear supermolecular complexes, [Co(phen) 2(H 2O)(HTST)]·2H 2O ( 1), [Co 3(phen) 6(H 2O) 2(TST) 2]·7H 2O ( 2), and [Co 2Cu(phen) 6(H 2O) 2(TST) 2]·10H 2O ( 3), have been synthesized by the reactions of a new tri-sulfonate ligand (2,4,6-tris(4-sulfophenylamino)-1,3,5-triazine, H 3TST) with the M2+ ( M=Co, Cu) and the second ligand 1,10-phenanthroline (phen). Complex 1 contains a cis-Co(II)(phen) 2 building block and an HTST as monodentate ligand; complex 2 consists of two TST as bidentate ligands connecting one trans- and two cis-Co(II)(phen) 2 building blocks; complex 3 is formed by replacing the trans-Co(II)(phen) 2 in 2 with a trans-Cu(II)(phen) 2, which is the first reported hetero-trinuclear supramolecular complex containing both the Co(II)(phen) 2 and Cu(II)(phen) 2 as building blocks. The study shows the flexible multifunctional self-assembly capability of the H 3TST ligands presenting in these supramolecular complexes through coordinative, H-bonding and even π- π stacking interactions. The photoluminescent optical properties of these complexes are also investigated and discussed as well as the second-order nonlinear optical properties of 1.

  20. Electron paramagnetic resonance and density-functional theory studies of Cu(II)-bis(oxamato) complexes.

    PubMed

    Bräuer, Björn; Weigend, Florian; Fittipaldi, Maria; Gatteschi, Dante; Reijerse, Edward J; Guerri, Annalisa; Ciattini, Samuele; Salvan, Georgeta; Rüffer, Tobias

    2008-08-04

    In this work we present the investigation of the influence of electronic and structural variations induced by varying the N,N'-bridge on the magnetic properties of Cu(II)- bis(oxamato) complexes. For this study the complexes [Cu(opba)] (2-) ( 1, opba = o-phenylene- bis(oxamato)), [Cu(nabo)] (2-) ( 2, nabo = 2,3-naphthalene- bis(oxamato)), [Cu(acbo)] (2-) ( 3, acbo = 2,3-anthrachinone- bis(oxamato)), [Cu(pba)] (2-) ( 4, pba = propylene- bis(oxamato)), [Cu(obbo)] (2-) ( 5, obbo = o-benzyl- bis(oxamato)), and [Cu(npbo)] (2-) ( 6, npbo = 1,8-naphthalene- bis(oxamato)), and the respective structurally isomorphic Ni(II) complexes ( 8- 13) have been prepared as ( (n)Bu 4N) (+) salts. The new complex ( (n)Bu 4N) 2[Cu(R-bnbo)].2H 2O ( 7, R-bnbo = (R)-1,1'-binaphthalene-2,2'- bis(oxamato)) was synthesized and is the first chiral complex in the series of Cu(II)-bis(oxamato) complexes. The molecular structure of 7 has been determined by single crystal X-ray analysis. The Cu(II) ions of the complexes 1- 7 are eta (4)(kappa (2) N, kappa (2) O) coordinated with a more or less distorted square planar geometry for 1- 6 and a distorted tetrahedral geometry for 7. Using pulsed Electron Nuclear Double Resonance on complex 6, detailed information about the relative orientation of the hyperfine ( A) and nuclear quadrupole tensors ( Q) of the coordinating nitrogens with respect to the g tensor were obtained. Electron Paramagnetic Resonance studies in the X, Q, and W-band at variable temperatures were carried out to extract g and A values of N ligands and Cu ion for 1- 7. The hyperfine values were interpreted in terms of spin population on the corresponding atoms. The obtained trends of the spin population for the monomeric building blocks were shown to correlate to the trends obtained in the dependence of the exchange interaction of the corresponding trinuclear complexes on their geometry.

  1. pH-Dependent Assembly and Conversions of Six Cadmium(II)-Based Coordination Complexes

    SciTech Connect

    Fang, Hua-Cai; Zhu, Ji-Qin; Zhou, Li-Jiang

    2010-07-07

    Six cadmium(II) complexes containing N2O2 donor tetradentate asymmetrical Schiff base ligand 2-{[2-(dimethylamino)ethylimino]methyl}-6-methoxyphenol (HL5), namely, [(Cd3L52Cl4)2]•CH3OH•H2O (1), [Cd(L5)Cl]2•CH3OH (2), [Cd2(HL5)Cl4]n (3), {[Cd3(H2L5)2Cl8]•2H2O}n (4), [(H2L5)2]2+•[CdCl4]2-•H2O (5), and [(H2L5)2]2+•[CdCl4]2- (6), have been synthesized using cadmium(II) chloride and asymmetrical Schiff base ligand HL5 under different pH conditions at room temperature. The diverse structures show the marked sensitivity of the structural chemistry of the tetradentate asymmetrical Schiff base ligand HL5. Complex 1 formed at pH = 10 exhibits a rare zero- dimensional structure of trinuclear cadmium (II). At pH = 8-9, a dinuclear cadmium (II) complex 2 is formed. The reaction at pH = 5-7more » leads to two one-dimensional structures of 3 and 4. A further decrease of the pH to 3-5 results in a zero-dimensional structure 5. Owing to the departure of lattice water molecules in the crystal, complex 5 at room temperature can gradually undergo single-crystal-to-single-crystal transformation to result complex 6. The results further show that conversions of complex 1 to 5 can also be achieved by adjusting the pH value of the reaction solution, 1→2pH=8→5pH=3 and 3→4pH=5. Comparing these experimental results, it is clear that the pH plays a crucial role in the formation of the resulting structures, which simultaneously provide very effective strategies for constructing the CdII compounds with N2O2 donor tetradentate asymmetrical Schiff base ligand. The strong fluorescent emissions of the six compounds (1-6) make them potentially useful photoactive materials. Furthermore, six Schiff base cadmium complexes (1–6), with DPPH (2,2-dipheny1-1-picrylhydrazy1) as a co-oxidant exhibited the stronger scavenging activity.« less

  2. N-benzoylated 1,4,8,11-tetraazacyclotetradecane and their copper(II) and nickel(II) complexes: Spectral, magnetic, electrochemical, crystal structure, catalytic and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Nirmala, G.; Rahiman, A. Kalilur; Sreedaran, S.; Jegadeesh, R.; Raaman, N.; Narayanan, V.

    2010-09-01

    A series of N-benzoylated cyclam ligands incorporating three different benzoyl groups 1,4,8,11-tetra-(benzoyl)-1,4,8,11-tetraazacyclotetradecane (L 1), 1,4,8,11-tetra-(2-nitrobenzoyl)-1,4,8,11-tetraazacyclotetradecane (L 2) and 1,4,8,11-tetra-(4-nitrobenzoyl)-1,4,8,11-tetraazacyclotetradecane (L 3) and their nickel(II) and copper(II) complexes are described. Crystal structure of L 1 is also reported. The ligands and complexes were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectral studies. N-benzoylation causes red shift in the λmax values of the complexes. The cyclic voltammogram of the complexes of ligand L 1 show one-electron, quasi-reversible reduction wave in the region -1.00 to -1.04 V, whereas that of L 2 and L 3 show two quasi-reversible reduction peaks. Nickel complexes show one-electron quasi-reversible oxidation wave at a positive potential in the range +1.05 to +1.15 V. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment values μeff 1.70-1.73 BM which is close to the spin-only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalysts were carried out. All the ligands and their complexes were also screened for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi.

  3. Synthesis, structure, and magnetic properties of two 1-D helical coordination polymeric Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Bian, He-Dong; Yang, Xiao-E.; Yu, Qing; Chen, Zi-Lu; Liang, Hong; Yan, Shi-Ping; Liao, Dai-Zheng

    2008-01-01

    Two helical coordination polymeric copper(II) complexes bearing amino acid Schiff bases HL or HL', which are condensed from 2-hydroxy-1-naphthaldehyde with 2-aminobenzoic acid or L-valine, respectively, have been prepared and characterised by X-ray crystallography. In [CuL] n ( 1) the copper(II) atoms are bridged by syn- anti carboxylate groups giving infinite 1-D right-handed helical chains which are further connected by weak C-H⋯Cu interactions to build a 2-D network. While in [CuL'] n ( 2) the carboxylate group acts as a rare monatomic bridge to connect the adjacent copper(II) atoms leading to the formation of a left-handed helical chain. Magnetic susceptibility measurements indicate that 1 exhibits weak ferromagnetic interactions whereas an antiferromagnetic coupling is established for 2. The magnetic behavior can be satisfactorily explained on the basis of the structural data.

  4. Lead(II) Complex Formation with L-cysteine in Aqueous Solution

    PubMed Central

    Jalilehvand, Farideh; Sisombath, Natalie S.; Schell, Adam C.; Facey, Glenn A.

    2015-01-01

    The lead(II) complexes formed with the multidentate chelator L-cysteine (H2Cys) in alkaline aqueous solution were studied using 207Pb, 13C and 1H NMR, Pb LIII-edge X-ray absorption and UV-vis. spectroscopic techniques, complemented by electro-spray ion mass spectrometry (ESI-MS). The H2Cys/Pb(II) mole ratios were varied from 2.1 to 10.0 for two sets of solutions with CPb(II) = 0.01 and 0.1 M, respectively, prepared at pH values (9.1 – 10.4) for which precipitates of Pb(II)-cysteine dissolved. At low H2Cys/Pb(II) mole ratios (2.1 – 3.0) a mixture of the dithiolate [Pb(S,N-Cys)2]2− and [Pb(S,N,O-Cys)(S-HCys)]− complexes with the average Pb-(N/O) and Pb-S distances 2.42 ± 0.04 Å and 2.64 ± 0.04 Å, respectively, was found to dominate. At high concentration of free cysteinate (> 0.7 M) a significant amount converts to the trithiolate [Pb(S,N-Cys)(S-HCys)2]2−, including a minor amount of a PbS3 coordinated [Pb(S-HCys)3]− complex. The coordination mode was evaluated by fitting linear combinations of EXAFS oscillations to the experimental spectra, and by the 207Pb NMR signals in the chemical shift range δPb = 2006 – 2507 ppm, which became increasingly deshielded with increasing free cysteinate concentration. One-pulse magic angle spinning (MAS) 207Pb NMR spectra of crystalline Pb(aet)2 (Haet = 2-aminoethanethiol or cysteamine) with PbS2N2 coordination were measured for comparison (δiso = 2105 ppm). The UV-vis. spectra displayed absorption maxima at 298 – 300 nm (S− → PbII charge transfer) for the dithiolate PbS2N(N/O) species; with increasing ligand excess a shoulder appeared at ∼ 330 nm for the trithiolate PbS3N and PbS3 (minor) complexes. The results provide spectroscopic fingerprints for structural models for Pb(II) coordination modes to proteins and enzymes. PMID:25695880

  5. Lead(II) complex formation with l-cysteine in aqueous solution

    DOE PAGES

    Jalilehvand, Farideh; Sisombath, Natalie S.; Schell, Adam C.; ...

    2015-02-19

    The lead(II) complexes formed with the multidentate chelator l-cysteine (H 2Cys) in an alkaline aqueous solution were studied using 207Pb, 13C, and 1H NMR, Pb L III-edge X-ray absorption, and UV–vis spectroscopic techniques, complemented by electrospray ion mass spectrometry (ESI-MS). The H 2Cys/Pb II mole ratios were varied from 2.1 to 10.0 for two sets of solutions with C PbII = 0.01 and 0.1 M, respectively, prepared at pH values (9.1–10.4) for which precipitates of lead(II) cysteine dissolved. At low H 2Cys/Pb II mole ratios (2.1–3.0), a mixture of the dithiolate [Pb(S,N-Cys) 2] 2– and [Pb(S,N,O-Cys)(S-HCys)] – complexes with averagemore » Pb–(N/O) and Pb–S distances of 2.42 ± 0.04 and 2.64 ± 0.04 Å, respectively, was found to dominate. At high concentration of free cysteinate (>0.7 M), a significant amount converts to the trithiolate [Pb(S,N-Cys)(S-HCys) 2] 2–, including a minor amount of a PbS 3-coordinated [Pb(S-HCys) 3] – complex. The coordination mode was evaluated by fitting linear combinations of EXAFS oscillations to the experimental spectra and by examining the 207Pb NMR signals in the chemical shift range δ Pb = 2006–2507 ppm, which became increasingly deshielded with increasing free cysteinate concentration. One-pulse magic-angle-spinning (MAS) 207Pb NMR spectra of crystalline Pb(aet) 2 (Haet = 2-aminoethanethiol or cysteamine) with PbS 2N 2 coordination were measured for comparison (δ iso = 2105 ppm). The UV–vis spectra displayed absorption maxima at 298–300 nm (S – → Pb II charge transfer) for the dithiolate PbS 2N(N/O) species; with increasing ligand excess, a shoulder appeared at ~330 nm for the trithiolate PbS 3N and PbS 3 (minor) complexes. Finally, the results provide spectroscopic fingerprints for structural models for lead(II) coordination modes to proteins and enzymes.« less

  6. Structure and spectroscopic investigations of a bi-dentate N‧-[(4-ethylphenyl)methylidene]-4-hydroxybenzohydrazide and its Co(II), Ni(II), Cu(II) and Cd(II) complexes: Insights relevant to biological properties

    NASA Astrophysics Data System (ADS)

    Gopal Reddy, N. B.; Krishna, P. Murali; Shantha Kumar, S. S.; Patil, Yogesh P.; Nethaji, Munirathinam

    2017-06-01

    The present paper describes the synthesis of novel ligand, N‧-[(4-ethylphenyl)methylidene]-4-hydroxy benzohydrazide (HL) and its Co(II), Ni(II), Cu(II) and Cd(II) complexes. The ligand (HL) crystallizes in orthorhombic lattice in P212121 space group with a = 7.9941 (7) Å, b = 11.6154 (10) Å, c = 15.2278 (13) Å, α = β = γ = 90°. Spectroscopic data gives the strong evidence that ligand is coordinated through azomethine nitrogen and enolic oxygen with metal ion. The DNA binding studies revealed that the complexes bind to CT-DNA via intercalation/electrostatic interaction. All the targeted compounds showed more pronounced DNA cleavage activity in the presence of H2O2 and also inhibit the growth of in vitro antibacterial activity against Gram-positive and Gram-negative bacteria.

  7. Crystal and electronic structures of magnesium(II), copper(II), and mixed magnesium(II)-copper(II) complexes of the quinoline half of styrylquinoline-type HIV-1 integrase inhibitors.

    PubMed

    Courcot, B; Firley, D; Fraisse, B; Becker, P; Gillet, J-M; Pattison, P; Chernyshov, D; Sghaier, M; Zouhiri, F; Desmaële, D; d'Angelo, J; Bonhomme, F; Geiger, S; Ghermani, N E

    2007-05-31

    A new target in AIDS therapy development is HIV-1 integrase (IN). It was proven that HIV-1 IN required divalent metal cations to achieve phosphodiester bond cleavage of DNA. Accordingly, all newly investigated potent IN inhibitors contain chemical fragments possessing a high ability to chelate metal cations. One of the promising leads in the polyhydroxylated styrylquinolines (SQLs) series is (E)-8-hydroxy-2-[2-(4,5-dihydroxy-3-methoxyphenyl)-ethenyl]-7-quinoline carboxylic acid (1). The present study focuses on the quinoline-based progenitor (2), which is actually the most probable chelating part of SQLs. Conventional and synchrotron low-temperature X-ray crystallographic studies were used to investigate the chelating power of progenitor 2. Mg2+ and Cu2+ cations were selected for this purpose, and three types of metal complexes of 2 were obtained: Mg(II) complex (4), Cu(II) complex (5) and mixed Mg(II)-Cu(II) complexes (6 and 7). The analysis of the crystal structure of complex 4 indicates that two tridentate ligands coordinate two Mg2+ cations, both in octahedral geometry. The Mg-Mg distance was found equal to 3.221(1) A, in agreement with the metal-metal distance of 3.9 A encountered in the crystal structure of Escherichia coli DNA polymerase I. In 5, the complex is formed by two bidentate ligands coordinating one copper ion in tetrahedral geometry. Both mixed Mg(II)-Cu(II) complexes, 6 and 7 exhibit an original arrangement of four ligands linked to a central heterometallic cluster consisting of three octahedrally coordinated magnesium ions and one tetrahedrally coordinated copper ion. Quantum mechanics calculations were also carried out in order to display the electrostatic potential generated by the dianionic ligand 2 and complex 4 and to quantify the binding energy (BE) during the formation of the magnesium complex of progenitor 2. A comparison of the binding energies of two hypothetical monometallic Mg(II) complexes with that found in the bimetallic magnesium

  8. The ligand effect on the hydrolytic reactivity of Zn(II) complexes toward phosphate diesters.

    PubMed

    Bonfá, Lodovico; Gatos, Maddalena; Mancin, Fabrizio; Tecilla, Paolo; Tonellato, Umberto

    2003-06-16

    The catalytic effects of the Zn(II) complexes of a series of poliaminic ligands in the hydrolysis of the activated phosphodiesters bis-p-nitrophenyl phosphate (BNP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) have been investigated. The reactions show first-order rate dependency on both substrate and metal ion complex and a pH dependence which is diagnostic of the acid dissociation of the reactive species. The mechanism of the metal catalyzed transesterification of HPNP has been assessed by solvent isotopic kinetic effect studies and involves the intramolecular nucleophilic attack of the substrate alcoholic group, activated by metal ion coordination. The intrinsic reactivity of the different complexes is controlled by the nature and structure of the ligand: complexes of tridentate ligands, particularly if characterized by a facial coordination mode, are more reactive than those of tetradentate ligands which can hardly allow binding sites for the substrate. In the case of tridentate ligands that form complexes with a facial coordination mode, a linear Brønsted correlation between the reaction rate (log k) and the pK(a) of the active nucleophile is obtained. The beta(nuc) values are 0.75 for the HPNP transesterification and 0.20 for the BNP hydrolysis. These values are indicated as the result of the combination of two opposite Lewis acid effects of the Zn(II) ion: the activation of the substrate and the efficiency of the metal coordinated nucleophile. The latter factor apparently prevails in determining the intrinsic reactivity of the Zn(II) complexes.

  9. Synthesis, characterization and reactivity of trinuclear Cu(II) complexes derived from disalicylaldehyde malonoyldihydrazone

    NASA Astrophysics Data System (ADS)

    Koch, Angira; Kumar, Arvind; De, Arjun K.; Phukan, Arnab; Lal, Ram A.

    2014-08-01

    Three new homotrinuclear copper(II) complexes [Cu3(slmh)(μ-Cl)2(CH3OH)3]ṡ0.5CH3OH (1), [Cu3(slmh)(NO3)2(CH3OH)5]ṡ1.5CH3OH (2) and [Cu3(slmh)(μ-ClO4)2(CH3OH)3]ṡ2CH3OH (3) from disalicylaldehyde malonoyldihydrazone have been synthesized and characterized. The composition of the complexes has been established on the basis of data obtained from analytical and thermoanalytical data. The structure of the complexes has been discussed in the light of molar conductance, electronic, FT-IR and far-IR spectral data, magnetic moment and EPR spectral studies. The molar conductance values for the complexes in DMSO solution indicate that all of them are non-electrolyte. The magnetic moment values for the complexes suggest considerable metal-metal intramolecular interaction between metal ions in the structural unit of the complexes. The EPR spectral features reveal that at RT, the ground state for the complexes is a mixture of the quartet state (S = 3/2) and doublet state (S = ½). At lower temperature, the ground state for the complexes is dx2-y2 with considerable contribution from dz2 orbital. Dihydrazone ligand is present in enol form in all of the complexes. The complexes have distorted square pyramidal stereochemistry. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry. Hydrogen peroxide mediated oxidation of benzyl alcohol catalyzed by complex 1 has been studied.

  10. The synthesis, lipophilicity and cytotoxic effects of new ruthenium(II) arene complexes with chromone derivatives.

    PubMed

    Pastuszko, Adam; Majchrzak, Kinga; Czyz, Malgorzata; Kupcewicz, Bogumiła; Budzisz, Elzbieta

    2016-06-01

    A series of arene ruthenium(II) complexes with the general formula [(η(6)-arene)Ru(L)X2] (where arene=p-cymene, benzene, hexamethylbenzene or mesitylene, L=aminoflavone or aminochromone derivatives and X=Cl, I) were synthesized and characterized by elemental analysis, MS, IR and (1)H NMR spectroscopy. The stability of the selected complexes was assessed by UV-Vis spectroscopy in 24-hour period. The lipophilicity of the synthesized complexes was determined by the shake-flask method, and their cytotoxicity evaluated in vitro on patient-derived melanoma populations. The most active complexes against melanoma cells contain 7-aminoflavone and 6-aminoflavone as a ligand. The relationship between the cytotoxicity of all the obtained compounds and their logP values was determined and briefly analyzed with two different patterns observed. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The facile synthesis of a chitosan Cu(II) complex by solution plasma process and evaluation of their antioxidant activities.

    PubMed

    Ma, Fengming; Li, Pu; Zhang, Baiqing; Wang, Zhenyu

    2017-10-01

    Synthesis of chitosan-Cu(II) complex by solution plasma process (SPP) irradiation was investigated. The effects of the distance between the electrodes, initial Cu(II) concentration, and initial pH on the Cu(II) adsorption capacity were evaluated. The results showed that narrower distance between the electrodes, higher initial Cu(II) concentration and higher initial pH (at pH<6) were favourable for the adsorption capacity of Cu(II). Characterization of the chitosan-Cu(II) complex by ultraviolet-visible (UV-vis), fourier transform infrared (FT-IR) and electron spin resonance (ESR) spectroscopy revealed that the main structure of chitosan was not changed after irradiation. Thermogravimetry (TG) analysis indicated that Cu(II) ions were well incorporated into the chitosan. The antioxidant activity of the chitosan-Cu(II) complex was evaluated by DPPH, ABTS, and reducing power assays. The chitosan-Cu(II) complex exhibited greater antioxidant activity than the original chitosan. Thus, SPP could be used for preparation of chitosan-Cu(II) complexes. Copyright © 2017. Published by Elsevier B.V.

  12. Glutathione Complex Formation With Mercury(Ii) in Aqueous Solution at Physiological Ph

    SciTech Connect

    Mah, V.; Jalilehvand, F.; /SLAC

    2012-08-23

    The mercury(II) complexes formed in neutral aqueous solution with glutathione (GSH, here denoted AH{sub 3} in its triprotonated form) were studied using Hg L{sub III}-edge extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy, complemented with electrospray ionization mass spectrometric (ESI-MS) analyses. The [Hg(AH){sub 2}]{sup 2-} complex, with the Hg-S bond distances at 2.325 {+-} 0.01 {angstrom} in linear S-Hg-S coordination, and the {sup 199}Hg NMR chemical shift at -984 ppm, dominates except at high excess of glutathione. In a series of solutions with C{sub Hg(II)} {approx} 17 mM and GSH/Hg(II) mole ratios rising from 2.4 to 11.8,more » the gradually increasing mean Hg-S bond distance corresponds to an increasing amount of the [Hg(AH){sub 3}]{sup 4-} complex. ESI-MS peaks appear at -m/z values of 1208 and 1230 corresponding to the [Na{sub 4}Hg(AH){sub 2}(A)]{sup -} and [Na{sub 5}Hg(AH)(A){sub 2}]{sup -} species, respectively. In another series of solutions at pH 7.0 with CHg(II) 50 mM and GSH/Hg(II) ratios from 2.0 to 10.0, the Hg L{sub III}-edge EXAFS and {sup 199}Hg NMR spectra show that at high excess of glutathione (0.35 M) about 70% of the total mercury(II) concentration is present as the [Hg(AH){sub 3}]4- complex, with the average Hg-S bond distance 2.42 {+-} 0.02 {angstrom} in trigonal HgS{sub 3} coordination. The proportions of HgSn species, n = 2, 3, and 4, quantified by fitting linear combinations of model EXAFS oscillations to the experimental EXAFS data in our present and previous studies were used to obtain stability constants for the [Hg(AH){sub 3}]{sup 4-} complex and also for the [Hg(A){sub 4}]{sup 10-} complex that is present at high pH. For Hg(II) in low concentration at physiological conditions (pH 7.4, C{sub GSH} = 2.2 mM), the relative amounts of the HgS{sub 2} species [Hg(AH){sub 2}]{sup 2-}, [Hg(AH)(A)]{sup 3-}, and the HgS{sub 3} complex [Hg(AH){sub 3}]{sup 4-} were calculated to be 95:2:3. Our results are

  13. Polymers containing nickel(II) complexes of Goedken's macrocycle: optimized synthesis and electrochemical characterization.

    PubMed

    Paquette, Joseph A; Sauvé, Ethan R; Gilroy, Joe B

    2015-04-01

    The synthesis and characterization of a new class of nickel-containing polymers is described. The optimized copolymerization of alkyne-bearing nickel(II) complexes of Goedken's macrocycle (4,11-dihydro-5,7,12,14-tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecine) and brominated 9,9-dihexylfluorene produced polymers with potential application as functional redox-active materials. The title polymers exhibit electrochemically reversible, ligand-centered oxidation events at 0.24 and 0.73 V versus the ferrocene/ferrocenium redox couple. They also display exceptional thermal stability and interesting absorption properties due to the presence of the macrocyclic nickel(II) complexes and π-conjugated units incorporated in their backbones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structure of a group II intron in complex with its reverse transcriptase.

    PubMed

    Qu, Guosheng; Kaushal, Prem Singh; Wang, Jia; Shigematsu, Hideki; Piazza, Carol Lyn; Agrawal, Rajendra Kumar; Belfort, Marlene; Wang, Hong-Wei

    2016-06-01

    Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8-Å resolution and in its protein-depleted form at 4.5-Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship between the reverse transcriptase catalytic domain and telomerase, whereas the active splicing center resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility.

  15. Pt(II) and Pd(II) complexes with ibuprofen hydrazide: Characterization, theoretical calculations, antibacterial and antitumor assays and studies of interaction with CT-DNA

    NASA Astrophysics Data System (ADS)

    Manzano, Carlos M.; Bergamini, Fernando R. G.; Lustri, Wilton R.; Ruiz, Ana Lúcia T. G.; de Oliveira, Ellen C. S.; Ribeiro, Marcos A.; Formiga, André L. B.; Corbi, Pedro P.

    2018-02-01

    Palladium(II) and platinum(II) complexes with a hydrazide derivative of ibuprofen (named HIB) were synthesized and characterized by chemical and spectroscopic methods. Elemental and thermogravimetric analyses, as well as ESI-QTOF-MS studies for both complexes, confirmed a 1:2:2 metal/HIB/Cl- molar ratio. The crystal structure of the palladium(II) complex was solved by single crystal X-ray diffractometric analysis, which permitted identifying the coordination formula [PdCl2(HIB)2]. Crystallographic studies also indicate coordination of HIB to the metal by the NH2 group. Nuclear magnetic resonance and infrared spectroscopies reinforced the coordination observed in the crystal structure and suggested that the platinum(II) complex presents similar coordination modes and structure when compared with the Pd(II) complex. The complexes had their structures optimized with the aid of DFT methods. In vitro antiproliferative assays showed that the [PdCl2(HIB)2] complex is active over ovarian cancer cell line OVCAR-03, while biophysical studies indicated its capacity to interact with CT-DNA. The complexes were inactive over Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacterial strains.

  16. Synthesis, characterization and biological studies of copper(II) complexes with 2-aminobenzimidazole derivatives

    NASA Astrophysics Data System (ADS)

    Joseph, J.; Suman, A.; Nagashri, K.; Joseyphus, R. Selwin; Balakrishnan, Nisha

    2017-06-01

    Novel series of four copper(II) complexes with 2-aminobenzimidazole derivatives (obtained from the Knoevenagel condensate of acetylacetone (obtained from acetylacetone and halogen substituted benzaldehydes) and 2-aminobenzimidazole) were synthesized. They were structurally characterized using elemental analysis, molar conductance, FAB mass, FT- IR, 1H &13C-NMR, UV-Vis., and EPR techniques. On the basis of analytical and spectral studies, the distorted square planar geometry was assigned for all the complexes. The antibacterial screening of the ligands and their copper complexes indicated that all the complexes showed higher anti microbial activities than the free ligands. Superoxide dismutase and antioxidant activities of the copper complexes have also been performed. In the electrochemical technique, the shift in ΔEp, E1/2 and Ipc values were explored for the interaction of the complexes with CT-DNA. During the electrolysis process, the present ligand system stabilizes unusual oxidation state of copper in the complexes. It is believed that the copper complexes with curcumin analogs may enhance chemotherapeutic behavior.

  17. Diamines as auxiliary ligands for tuning photophysical and electrochemical properties of Ruthenium(II) polypyridyl complexes

    NASA Astrophysics Data System (ADS)

    Al-Rashdi, Kamelah S.; Babgi, Bandar A.; Sahin, Cigdem; Eltayeb, Naser E.; Moxey, Graeme J.; Humphrey, Mark G.; Basaleh, Amal S.

    2018-04-01

    The complex with the formula [Ru(bpy)2(2,3-diaminonaphthalene)][PF6] (5) was synthesized and characterized by 1H NMR spectroscopy, mass spectrometry and elemental analysis. A set of previously reported complexes with the formula [Ru(bpy)2(diamine)][PF6]{diamine = 1,2-diaminoethane (2), o-phenylenediamine (3), 1,2-diaminocyclohexane (4) } was synthesized and crystal structures were obtained for complexes 3 and 4. UV-vis absorption spectra of the complexes 2-5 were collected and compared to that of [Ru(bpy)3][PF6]2 (1), showing that the MLCT band is red-shifted upon introducing the diamine ligands in place of bipyridine. Emission spectra, excited-state lifetimes and emission quantum yields were collected at room temperature for the complexes 1-5, showing considerable changes in the photophysical characteristics upon the introductions of the diamine. The emission spectrum of 5 exhibits an intense emission in the far red-NIR region when excited at 510 nm. The cyclic voltammograms of the complexes 1-5 show one oxidation peak between 0.98 V and 1.15 V which is attributed to the Ru(II)/Ru(III) oxidation couple. Calculated HOMO and LUMO energy levels from both electrochemical data and theoretical calculations suggest a lower HOMO energy level for complex 1 than the diamino-containing complexes, presumably due to the stronger ligand field of the bipyridine.

  18. Azobenzene Pd(II) complexes with N^N- and N^O-type ligands

    NASA Astrophysics Data System (ADS)

    Nikolaeva, M. V.; Puzyk, An. M.; Puzyk, M. V.

    2017-05-01

    Methods of synthesis of cyclometalated azobenzene palladium(II) complexes of [Pd(N^N)Azb]ClO4 and [Pd(N^O)Azb]ClO4 types (where Azb- is the deprotonated form of azobenzene; N^N is 2NH3, ethylenediamine, or 2,2'-bipyridine; and (N^O)- is the deprotonated form of amino acid (glycine, α-alanine, β-alanine, tyrosine, or tryptophan)) are developed. The electronic absorption and the electrochemical properties of these complexes are studied.

  19. Trinuclear Mn(II) complex with paramagnetic bridging 1,2,3-dithiazolyl ligands.

    PubMed

    Sullivan, David J; Clérac, Rodolphe; Jennings, Michael; Lough, Alan J; Preuss, Kathryn E

    2012-11-18

    The first metal coordination complex of a radical ligand based on the 1,2,3-dithiazolyl heterocycle is reported. 6,7-Dimethyl-1,4-dioxo-naphtho[2,3-d][1,2,3]dithiazolyl acts as a bridging ligand in the volatile trinuclear Mn(hfac)(2)-Rad-Mn(hfac)(2)-Rad-Mn(hfac)(2) complex (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-). The Mn(II) and radical ligand spins are coupled anti-ferromagnetically (AF) resulting in an S(T) = 13/2 spin ground state.

  20. Chapter 3: Isolation of Photosystem II Reaction Center Complexes from Plants

    SciTech Connect

    Seibert, M.; Picorel, R.

    2011-01-01

    Methods to isolate and purify 6- and 5-Chl D1/D2/Cyt b559 photosystem II (PSII) reaction center (RC) complexes from plants are presented, and the advantages and disadvantages of each procedure are discussed. One of the simpler 6-Chl procedures and a procedure for isolating 5-Chl complexes are described in detail. Furthermore, a rapid procedure that produces relatively large amounts of less pure 6-Chl material (i.e., more nonpigmented protein) is also described. Criteria to assess the purity of PSII RC preparations are presented, and problems associated with each of the isolation procedures are discussed.

  1. Structure of a Complete Mediator-RNA Polymerase II Pre-Initiation Complex.

    PubMed

    Robinson, Philip J; Trnka, Michael J; Bushnell, David A; Davis, Ralph E; Mattei, Pierre-Jean; Burlingame, Alma L; Kornberg, Roger D

    2016-09-08

    A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Ruthenium(II) polypyridyl complexes as dual inhibitors of telomerase and topoisomerase.

    PubMed

    Liao, Guoliang; Chen, Xiang; Wu, Jingheng; Qian, Chen; Wang, Yi; Ji, Liangnian; Chao, Hui

    2015-09-14

    One novel ruthenium polypyridyl complex, [Ru(bpy)2(icip)](2+) (1), and two previously reported ruthenium polypyridyl complexes, [Ru(bpy)2(pdppz)](2+) ()2 and [Ru(bpy)2(tactp)](2+) (3) (bpy = 2,2'-bipyridine, icip = 2-(indeno[2,1-b]chromen-6-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, pdppz = phenanthro[4,5-abc]dipyrido[3,2-h:2',3'-j]phenazine, tactp = 4,5,9,18-tetraazachryseno[9,10-b]-triphenylene), have been synthesised. As expected, these complexes show inhibition towards telomerase by inducing and stabilising the G-quadruplex structure, and behave as topoisomerase I/II poisons at the same time. Additionally, the acute and chronic cytotoxicities of the complexes are considered. Furthermore, cell apoptosis experiments are used to briefly study the mechanism. Because studies involving multi-target inhibition towards topoisomerase and telomerase of Ru(II) complexes have not been reported previously, the present research may help to develop innovative chemical strategies and therapies.

  3. Derivatization of bichromic cyclometalated Ru(II) complexes with hydrophobic substituents.

    PubMed

    Robson, Kiyoshi C D; Koivisto, Bryan D; Berlinguette, Curtis P

    2012-02-06

    The syntheses and physical properties of cyclometalated Ru(II) complexes containing a triphenylamine (TPA) unit bearing aliphatic groups are reported. Each member of the series consists of an octahedral Ru(II) center coordinated by a tridentate polypyridyl ligand and a tridentate cyclometalating ligand. One of the chelating ligands contains electron-deficient methyl ester groups, while a TPA unit is attached to the central ring of the adjacent chelating ligand through a thiophene bridge. This study builds on our previous work (Inorg. Chem. 2011, 50, 6019-6028; Inorg. Chem. 2011, 50, 5494-5508) by (i) outlining a synthetic protocol for installing aliphatic groups on the TPA substituents, (ii) examining the role that terminal -O-hexyl and -S-hexyl groups situated on the TPA have on the electrochemical properties, and (iii) demonstrating the potential benefit of installing the TPA on the neutral chelating ligand rather than the anionic chelating ligand. The results reported herein provide important synthetic advances for our broader goal of developing bis-tridentate cyclometalated Ru(II) complexes for light-harvesting applications.

  4. XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries

    NASA Astrophysics Data System (ADS)

    Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2016-08-01

    X-ray absorption fine structure of six Cu(II) complexes, Cu2(Clna)4 2H2O (1), Cu2(ac)4 2H2O (2), Cu2(phac)4 (pyz) (3), Cu2(bpy)2(na)2 H2O (ClO4) (4), Cu2(teen)4(OH)2(ClO4)2 (5) and Cu2(tmen)4(OH)2(ClO4)2 (6) (where ac, phac, pyz, bpy, na, teen, tmen = acetate, phenyl acetate, pyrazole, bipyridine, nicotinic acid, tetraethyethylenediamine, tetramethylethylenediamine, respectively), which were supposed to have square pyramidal and square planar coordination geometries have been investigated. The differences observed in the X-ray absorption near edge structure (XANES) features of the standard compounds having four, five and six coordination geometry points towards presence of square planar and square pyramidal geometry around Cu centre in the studied complexes. The presence of intense pre-edge feature in the spectra of four complexes, 1-4, indicates square pyramidal coordination. Another important XANES feature, present in complexes 5 and 6, is prominent shoulder in the rising part of edge whose intensity decreases in the presence of axial ligands and thus indicates four coordination in these complexes. Ab initio calculations were carried out for square planar and square pyramidal Cu centres to observe the variation of 4p density of states in the presence and absence of axial ligands. To determine the number and distance of scattering atoms around Cu centre in the complexes, EXAFS analysis has been done using the paths obtained from Cu(II) oxide model and an axial Cu-O path from model of a square pyramidal complex. The results obtained from EXAFS analysis have been reported which confirmed the inference drawn from XANES features. Thus, it has been shown that these paths from model of a standard compound can be used to determine the structural parameters for complexes having unknown structure.

  5. Spectroscopic, Elemental and Thermal Analysis, and Positron Annihilation Studies on Ca(II), Sr(II), Ba(II), Pb(II), and Fe(III) Penicillin G Potassium Complexes

    NASA Astrophysics Data System (ADS)

    Refat, M. S.; Sharshara, T.

    2015-11-01

    The [Pb(Pin)2] · 3H2O, [M(Pin)(H2O)2(Cl)] · nH2O (M = SrII, CaII or BaII; n = 0-1), and [Fe(Pin)2(Cl)(H2O)] · H2O penicillin G potassium (Pin) complexes were synthesized and characterized using elemental analyses, molar conductivity, thermal analysis and electronic spectroscopy techniques. The positron annihilation lifetime (PAL) and Doppler broadening (DB) techniques have been employed to probe the defects and structural changes of Pin ligand and its complexes. The PAL and DB line-shape parameters were discussed in terms of the structure, molecular weight, ligand-metal molar ratio, and other properties of the Pin complexes.

  6. Homoleptic nickel(II) complexes of redox-tunable pincer-type ligands.

    PubMed

    Hewage, Jeewantha S; Wanniarachchi, Sarath; Morin, Tyler J; Liddle, Brendan J; Banaszynski, Megan; Lindeman, Sergey V; Bennett, Brian; Gardinier, James R

    2014-10-06

    Different synthetic methods have been developed to prepare eight new redox-active pincer-type ligands, H(X,Y), that have pyrazol-1-yl flanking donors attached to an ortho-position of each ring of a diarylamine anchor and that have different groups, X and Y, at the para-aryl positions. Together with four previously known H(X,Y) ligands, a series of 12 Ni(X,Y)2 complexes were prepared in high yields by a simple one-pot reaction. Six of the 12 derivatives were characterized by single-crystal X-ray diffraction, which showed tetragonally distorted hexacoordinate nickel(II) centers. The nickel(II) complexes exhibit two quasi-reversible one-electron oxidation waves in their cyclic voltammograms, with half-wave potentials that varied over a remarkable 700 mV range with the average of the Hammett σ(p) parameters of the para-aryl X, Y groups. The one- and two-electron oxidized derivatives [Ni(Me,Me)2](BF4)n (n = 1, 2) were prepared synthetically, were characterized by X-band EPR, electronic spectroscopy, and single-crystal X-ray diffraction (for n = 2), and were studied computationally by DFT methods. The dioxidized complex, [Ni(Me,Me)2](BF4)2, is an S = 2 species, with nickel(II) bound to two ligand radicals. The mono-oxidized complex [Ni(Me,Me)2](BF4), prepared by comproportionation, is best described as nickel(II) with one ligand centered radical. Neither the mono- nor the dioxidized derivative shows any substantial electronic coupling between the metal and their bound ligand radicals because of the orthogonal nature of their magnetic orbitals. On the other hand, weak electronic communication occurs between ligands in the mono-oxidized complex as evident from the intervalence charge transfer (IVCT) transition found in the near-IR absorption spectrum. Band shape analysis of the IVCT transition allowed comparisons of the strength of the electronic interaction with that in the related, previously known, Robin-Day class II mixed valence complex, [Ga(Me,Me)2](2+).

  7. Simultaneous spectrophotometric determination of copper, cobalt, nickel and iron in foodstuffs and vegetables with a new bis thiosemicarbazone ligand using chemometric approaches.

    PubMed

    Rohani Moghadam, Masoud; Poorakbarian Jahromi, Sayedeh Maria; Darehkordi, Ali

    2016-02-01

    A newly synthesized bis thiosemicarbazone ligand, (2Z,2'Z)-2,2'-((4S,5R)-4,5,6-trihydroxyhexane-1,2-diylidene)bis(N-phenylhydrazinecarbothioamide), was used to make a complex with Cu(2+), Ni(2+), Co(2+) and Fe(3+) for their simultaneous spectrophotometric determination using chemometric methods. By Job's method, the ratio of metal to ligand in Ni(2+) was found to be 1:2, whereas it was 1:4 for the others. The effect of pH on the sensitivity and selectivity of the formed complexes was studied according to the net analyte signal (NAS). Under optimum conditions, the calibration graphs were linear in the ranges of 0.10-3.83, 0.20-3.83, 0.23-5.23 and 0.32-8.12 mg L(-1) with the detection limits of 2, 3, 4 and 10 μg L(-1) for Cu(2+), Co(2+), Ni(2+) and Fe(3+) respectively. The OSC-PLS1 for Cu(2+) and Ni(2+), the PLS1 for Co(2+) and the PC-FFANN for Fe(3+) were selected as the best models. The selected models were successfully applied for the simultaneous determination of elements in some foodstuffs and vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) complexes.

    PubMed

    Remichkova, Mimi; Mukova, Luchia; Nikolaeva-Glomb, Lubomira; Nikolova, Nadya; Doumanova, Lubka; Mantareva, Vanya; Angelov, Ivan; Kussovski, Veselin; Galabov, Angel S

    2017-03-01

    Various metal phthalocyanines have been studied for their capacity for photodynamic effects on viruses. Two newly synthesized water-soluble phthalocyanine Zn(II) complexes with different charges, cationic methylpyridyloxy-substituted Zn(II)- phthalocyanine (ZnPcMe) and anionic sulfophenoxy-substituted Zn(II)-phthalocyanine (ZnPcS), were used for photoinactivation of two DNA-containing enveloped viruses (herpes simplex virus type 1 and vaccinia virus), two RNA-containing enveloped viruses (bovine viral diarrhea virus and Newcastle disease virus) and two nude viruses (the enterovirus Coxsackie B1, a RNA-containing virus, and human adenovirus 5, a DNA virus). These two differently charged phthalocyanine complexes showed an identical marked virucidal effect against herpes simplex virus type 1, which was one and the same at an irradiation lasting 5 or 20 min (Δlog=3.0 and 4.0, respectively). Towards vaccinia virus this effect was lower, Δlog=1.8 under the effect of ZnPcMe and 2.0 for ZnPcS. Bovine viral diarrhea virus manifested a moderate sensitivity to ZnPcMe (Δlog=1.8) and a pronounced one to ZnPcS at 5- and 20-min irradiation (Δlog=5.8 and 5.3, respectively). The complexes were unable to inactivate Newcastle disease virus, Coxsackievirus B1 and human adenovirus type 5.

  9. Photooxidation of Diimine Dithiolate Platinium(II) Complexes Induced by Charge Transfer to Diimine Excitation.

    PubMed

    Zhang, Yin; Ley, Kevin D.; Schanze, Kirk S.

    1996-11-20

    A photochemical and photophysical investigation was carried out on (tbubpy)Pt(II)(dpdt) and (tbubpy)Pt(II)(edt) (1 and 2, respectively, where tbubpy = 4,4'-di-tert-butyl-2,2'-bipyridine, dpdt = meso-1,2-diphenyl-1,2-ethanedithiolate and edt = 1,2-ethanedithiolate). Luminescence and transient absorption studies reveal that these complexes feature a lowest excited state with Pt(S)(2) --> tbubpy charge transfer to diimine character. Both complexes are photostable in deoxygenated solution; however, photolysis into the visible charge transfer band in air-saturated solution induces moderately efficient photooxidation. Photooxidation of 1 produces the dehydrogenation product (tbubpy)Pt(II)(1,2-diphenyl-1,2-ethenedithiolate) (4). By contrast, photooxidation of 2 produces S-oxygenated complexes in which one or both thiolate ligands are converted to sulfinate (-SO(2)R) ligands. Mechanistic photochemical studies and transient absorption spectroscopy reveal that photooxidation occurs by (1) energy transfer from the charge transfer to diimine excited state of 1 to (3)O(2) to produce (1)O(2) and (2) reaction between (1)O(2) and the ground state 1. Kinetic data indicates that excited state 1 produces (1)O(2) efficiently and that reaction between ground state 1 and (1)O(2) occurs with k approximately 3 x 10(8) M(-)(1) s(-)(1).

  10. Synthesis, spectroscopic, fluorescence properties and biological evaluation of novel Pd(II) and Cd(II) complexes of NOON tetradentate Schiff bases.

    PubMed

    Ali, Omyma A M

    2014-01-01

    The solid complexes of Pd(II) and Cd(II) with N,N/bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L(1)), and N,N/bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L(2)) have been synthesized and characterized by several techniques using elemental analysis (CHN), FT-IR, (1)H NMR, UV-Vis spectra and thermal analysis. Elemental analysis data proved 1:1 stoichiometry for the reported complexes while spectroscopic data indicated square planar and octahedral geometries for Pd(II) and Cd(II) complexes, respectively. The prepared ligands, Pd(II) and Cd(II) complexes exhibited intraligand (π-π(∗)) fluorescence and can potentially serve as photoactive materials. Thermal behavior of the complexes was studied and kinetic parameters were determined by Coats-Redfern method. Both the ligands and their complexes have been screened for antimicrobial activities. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Syntheses, crystallographic, mass-spectroscopic determination and antioxidant studies of Co(II), Ni(II) and Cu(II) complexes of a new imidazol based Schiff base.

    PubMed

    Demir, Serkan; Güder, Aytaç; Yazıcılar, Turan K; Çağlar, Sema; Büyükgüngör, Orhan

    2015-01-01

    A new imidazole-based Schiff base, 2-((1H-imidazol-4-yl)methyleneamino)benzylalcohol (HL) and corresponding analogous bis(2-((1H-imidazol-4-yl)methyleneimino)benzylalcohol)metal(II) perchlorates (M: Co(1), Ni(2), Cu(3)) have prepared and characterized by elemental analyses, ESI-MS, IR, UV-Vis spectroscopies and conductivity measurements. X-ray single crystal structures of 1 and 2 have been also determined. Elemental analyses, spectroscopic and conductance data of 3 demonstrated similar structural features with these of crystallographically characterized complexes and based upon this relevances, HL ligands are neutrally coordinated to metal(II) ions in tridentate mode and all complexes are isostructural, dicathionic, contain perchlorate anions as complementary ions and, are in octahedral geometry with the formulae of [M(HL)2](ClO4)2 (for 3) and [M(HL)2](ClO4)2·H2O (for 1 and 2). Radical scavenging activities of the complexes have been evaluated by using DPPH, DMPD(+), and ABTS(+) assays. SC50 values (μg/mL) of the complexes and standards on DPPH, DMPD(+), ABTS(+) follow the sequences, BHA (9.06±0.33)>CMPD3 (15.62±0.52)>CMPD2 (17.43±0.29)>Rutin (21.65±0.60)>CMPD1 (25.67±0.51)>Trolox (28.57±0.37), Rutin>BHA>CMPD3>CMPD2>Trolox>CMPD1, and Trolox>BHA>CMPD3>CMPD2>Rutin>CMPD1 respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Gas phase reactions of doubly charged alkaline earth and transition metal(II)-ligand complexes generated by electrospray ionization

    NASA Astrophysics Data System (ADS)

    Kohler, Martin; Leary, Julie A.

    1997-03-01

    Doubly charged metal(II)-complexes of [alpha] 1-3, [alpha] 1-6 mannotriose and the conserved trimannosyl core pentasaccharide as well as doubly charged complexes of Co(II), Mn(II), Ca(II) and Sr(II) with acetonitrile generated by electrospray ionization were studied by low energy collision induced dissociation (CID). Two main fragmentation pathways were observed for the metal(II)-oligosaccharide complexes. Regardless of the coordinating metal, loss of a neutral dehydrohexose residue (162 Da) from the doubly charged precursor ion is observed, forming a doubly charged product ion. However, if the oligosaccharide is coordinated to Co(II) or Mn(II), loss of a dehydroxyhexose cation is also observed. Investigation of the low mass region of the mass spectra of the metal coordinated oligosaccharides revealed intense signals corresponding to [metal(II) + (CH3CN)n2+ (where n = 1-6) species which were being formed by the metal(II) ions and the acetonitrile present in the sample. Analysis of these metal(II)-acetonitrile complexes provided further insight into the processes occurring upon low energy CID of doubly charged metal complexes. The metal(II)-acetonitrile system showed neutral loss and ligand cleavage as observed with the oligosaccharide complexes, as well as a series of six different dissociation mechanisms, most notable among them reduction from [metal(II) + (CH3CN)n2+ to the bare [metal(I)]+ species by electron transfer. Depending on the metal and collision gas chosen, one observes electron transfer from the ligand to the metal, electron transfer from the collision gas to the metal, proton transfer between ligands, heterolytic cleavage of the ligands, reactive collisions and loss of neutral ligands.

  13. CO Column Density and Extinction in the Chamaeleon II--III Dark-Cloud Complex

    NASA Astrophysics Data System (ADS)

    Hayakawa, Takahiro; Cambrésy, Laurent; Onishi, Toshikazu; Mizuno, Akira; Fukui, Yasuo

    2001-12-01

    We carried out 13CO (J = 1 -- 0) and C18O (J = 1 -- 0) observations of the Chamaeleon II--III dark-cloud complex with the NANTEN radio telescope. The column densities of both molecular isotopes were derived assuming LTE. The AV values were obtained by scaling the AV values that were derived using an adaptive-grid star-count method applied to the DENIS J-band data. We established the AV--CO isotope column-density relations in Cha II and III, and compared them with those in Cha I. The slopes of the AV--13CO relations for Cha II and III are steeper than that for Cha I. Those of the AV -- C18O relations are similar among the three clouds. The total column density ratio, N(13O) / N(C18O, in Cha I tends to be small compared with those in Cha II or Cha III; the ratios range from ~ 5 to ~ 25 at low extinction in Cha II and III, but at most ~ 10 in Cha I. We suggest that the increase of N(13CO) due to the 13CO formation process causes cloud-to-cloud variations in the AV -- N(13CO) correlation.

  14. Synthesis, Characterization and Cytotoxicity Studies of Palladium(II)-Proflavine Complexes

    PubMed Central

    Polyanskaya, Tatyana V.; Kazhdan, Irene; Motley, D. Michelle; Walmsley, Judith A.

    2010-01-01

    An investigation of the reaction of Pd(II) complexes with proflavine (3,6-diaminoacridine) resulted in the isolation of the compounds [Pd(terpy)(proflavine)](NO3)(HSO4)·3H2O, 1, (terpy = 2,2’:6’,2”-terpyridine), [Pd(en)(proflavineH))](NO3)(SO4), 2, (en = ethylenediamine), and [Pd(proflavineH)Cl2](SO4)0.5 ·H2O, 3. They have been isolated and characterized by NMR, IR, and electrospray ionization mass spectrometry techniques and by elemental analyses. The proflavine was bonded to the Pd(II) through the endocyclic nitrogen in 1, but through the proflavine NH2 in 2. Compound 3 appeared to be polymeric in the solid state with a 1:1 mole ratio of Pd(II):proflavine. Upon solution of 3 in DMSO, two unique species were formed. In one species the Pd(II) was bonded to Two proflavines through the endocyclic nitrogen (1:2 mole ratio) and in the other species, a Pd(II) was bonded to each NH2 group of a single proflavine (2:1 mole ratio). Molecular modeling of the equilibrium geometry by Spartan 8 produced structures which were consistent with the experimental data on the solutions of the three compounds. In vitro cytotoxicity testing against two breast cancer cell lines and one ovarian cancer cell line showed that compounds 1 and 3 had significant activity. PMID:20709409

  15. Synthesis, characterization and cytotoxicity studies of palladium(II)-proflavine complexes.

    PubMed

    Polyanskaya, Tatyana V; Kazhdan, Irene; Motley, D Michelle; Walmsley, Judith A

    2010-11-01

    An investigation of the reaction of Pd(II) complexes with proflavine (3,6-diaminoacridine) resulted in the isolation of the compounds [Pd(terpy)(proflavine)](NO(3))(HSO(4))*3H(2)O, 1, (terpy = 2,2':6',2″-terpyridine), [Pd(en)(proflavineH))](NO(3))(SO(4)), 2, (en = ethylenediamine), and [Pd(proflavineH)Cl(2)](SO(4))(0.5)*H(2)O, 3. They have been isolated and characterized by NMR, IR, and electro-spray ionization mass spectrometry techniques and by elemental analyses. The proflavine was bonded to the Pd(II) through the endocyclic nitrogen in 1, but through the proflavine NH(2) in 2. Compound 3 appeared to be polymeric in the solid state with a 1:1 mole ratio of Pd(II):proflavine. Upon solution of 3 in DMSO, two unique species were formed. In one species the Pd(II) was bonded to two proflavines through the endocyclic nitrogen (1:2 mole ratio) and in the other species, a Pd(II) was bonded to each NH(2) group of a single proflavine (2:1 mole ratio). Molecular modeling of the equilibrium geometry by Spartan 8 produced structures which were consistent with the experimental data on the solutions of the three compounds. In vitro cytotoxicity testing against two breast cancer cell lines and one ovarian cancer cell line showed that compounds 1 and 3 had significant activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Modeling alternative binding registers of a minimal immunogenic peptide on two class II major histocompatibility complex (MHC II) molecules predicts polarized T-cell receptor (TCR) contact positions.

    PubMed

    Murray, J S; Fois, S D S; Schountz, T; Ford, S R; Tawde, M D; Brown, J C; Siahaan, T J

    2002-03-01

    Several major histocompatibility complex class II (MHC II) complexes with known minimal immunogenic peptides have now been solved by X-ray crystallography. Specificity pockets within the MHC II binding groove provide distinct peptide contacts that influence peptide conformation and define the binding register within different allelic MHC II molecules. Altering peptide ligands with respect to the residues that contact the T-cell receptor (TCR) can drastically change the nature of the ensuing immune response. Here, we provide an example of how MHC II (I-A) molecules may indirectly effect TCR contacts with a peptide and drive functionally distinct immune responses. We modeled the same immunogenic 12-amino acid peptide into the binding grooves of two allelic MHC II molecules linked to distinct cytokine responses against the peptide. Surprisingly, the favored conformation of the peptide in each molecule was distinct with respect to the exposure of the N- or C-terminus of the peptide above the MHC II binding groove. T-cell clones derived from each allelic MHC II genotype were found to be allele-restricted with respect to the recognition of these N- vs. C-terminal residues on the bound peptide. Taken together, these data suggest that MHC II alleles may influence T-cell functions by restricting TCR access to specific residues of the I-A-bound peptide. Thus, these data are of significance to diseases that display genetic linkage to specific MHC II alleles, e.g. type 1 diabetes and rheumatoid arthritis.

  17. Star Formation and Young Population of the H II Complex Sh2-294

    NASA Astrophysics Data System (ADS)

    Samal, M. R.; Pandey, A. K.; Ojha, D. K.; Chauhan, N.; Jose, J.; Pandey, B.

    2012-08-01

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 μm observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H2 (2.12 μm) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H2 emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass (<4 M ⊙) YSOs; however, we also detected a massive YSO (~9 M ⊙) of Class I nature, embedded in a cloud of visual extinction of ~24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age ~ 4.5 × 106 yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a ~4 × 106 yr B0 main-sequence star.

  18. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  19. Synthesis, physicochemical and optical properties of bis-thiosemicarbazone functionalized graphene oxide

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Wani, Mohmmad Y.; Arranja, Claudia T.; Castro, Ricardo A. E.; Paixão, José A.; Sobral, Abilio J. F. N.

    2018-01-01

    Fluorescent materials are important for low-cost opto-electronic and biomedical sensor devices. In this study we present the synthesis and characterization of graphene modified with bis-thiosemicarbazone (BTS). This new material was characterized using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) and Raman spectroscopy techniques. Further evaluation by X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and atomic-force microscopy (AFM) allowed us to fully characterize the morphology of the fabricated material. The average height of the BTSGO sheet is around 10 nm. Optical properties of BTSGO evaluated by photoluminescence (PL) spectroscopy showed red shift at different excitation wavelength compared to graphene oxide or bisthiosemicarbazide alone. These results strongly suggest that BTSGO material could find potential applications in graphene based optoelectronic devices.

  20. Synthesis and Biochemical Evaluation of Thiochromanone Thiosemicarbazone Analogues as Inhibitors of Cathepsin L

    PubMed Central

    2012-01-01

    A series of 36 thiosemicarbazone analogues containing the thiochromanone molecular scaffold functionalized primarily at the C-6 position were prepared by chemical synthesis and evaluated as inhibitors of cathepsins L and B. The most promising inhibitors from this group are selective for cathepsin L and demonstrate IC50 values in the low nanomolar range. In nearly all cases, the thiochromanone sulfide analogues show superior inhibition of cathepsin L as compared to their corresponding thiochromanone sulfone derivatives. Without exception, the compounds evaluated were inactive (IC50 > 10000 nM) against cathepsin B. The most potent inhibitor (IC50 = 46 nM) of cathepsin L proved to be the 6,7-difluoro analogue 4. This small library of compounds significantly expands the structure–activity relationship known for small molecule, nonpeptidic inhibitors of cathepsin L. PMID:24900494

  1. Bifunctional Platinum(II) Complexes with Bisphosphonates Substituted Diamine Derivatives: Synthesis and In vitro Cytotoxicity.

    PubMed

    Sun, Yanyan; Zhao, Jian; Ji, Zhongling

    2017-12-01

    A series of N,N'-dibisphosphonate-containing 1,3-propanediamine derivatives (L1 - L6) and their corresponding dichloridoplatinum(II) complexes (1 - 6) have been synthesized and characterized by elemental analysis, 1 H-NMR, 13 C-NMR, 31 P-NMR and HR-MS spectra. The in vitro antitumor activities of compounds L1 - L6 and 1 - 6 were tested by WST-8 assay with Cell Counting Kit-8, indicating that platinum-based complexes 1 - 6 showed higher cytotoxicity than corresponding ligands L1 - L6 against A549 and MG-63, especially complex 2 which displayed comparable cytotoxicity to those of cisplatin and zoledronate after 48 h incubation. In addition, complexes 1 - 6 were more active in vitro on osteosarcoma cell line MG-63 than normal osteoblast cell line hFOB 1.19. The structure-activity relationship has been summarized based on the in vitro cytotoxicity of three series of platinum complexes from this and our previous studies. The in vitro bone affinity of platinum complexes was also tested by hydroxyapatite (HAP) chromatography in terms of capacity factor K'. Besides, in this paper, representative complex 2, which has been proved to be a promising antitumor agent with high cytotoxicity and bone HAP binding property, was investigated for its mechanism of action producing cell death against MG-63. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  2. Thermal Degradation of Complexes Derived from Cu (II) Groundnut (Arachis hypogaea) and Sesame (Sesamum indicum) Soaps

    NASA Astrophysics Data System (ADS)

    Joram, Anju; Sharma, Rashmi; Sharma, Arun kumar

    2018-05-01

    The complexes have been synthesized from Cu (II) soaps of groundnut (Arachis hypogaea) and sesame (Sesamum indicum) oils, with ligand containing nitrogen and sulfur atoms like 2-amino-6-methyl benzothiazole. The complexes were greenish brown in color. In order to study TGA, first characterized them by elemental analysis, and spectroscopic technique such as IR, NMR and ESR. From the analytical data, the stoichiometry's of the complexes have been observed to be 1:1 (metal:ligand). These complexes have been thermally analyzed using TGA techniques to determine their energy of activation. These complexes show three step thermal degradation corresponding to fatty acid components of the edible oils and each complex has three decomposition steps in the range of 439-738 K. Various equations like Coats-Redfern (CR), Horowitz-Metzger (HM) and Broido equations (BE) were applied to evaluate the energy of activation. The values of energy of activation are observed to be in the following order for both copper groundnut benzothiazole (CGB) and copper sesame benzothiazole (CSeB) complexes: CGB > CSeB. CGB is observed to be more stable than CSeB due to its higher activation energy. The above studies would provide significant information regarding the applications of synthesized agrochemicals and their safe removal through parameters obtained in degradation curves and its relation with energy.

  3. Spectroscopic studies on Solvatochromism of mixed-chelate copper(II) complexes using MLR technique

    NASA Astrophysics Data System (ADS)

    Golchoubian, Hamid; Moayyedi, Golasa; Fazilati, Hakimeh

    2012-01-01

    Mixed-chelate copper(II) complexes with a general formula [Cu(acac)(diamine)]X where acac = acetylacetonate ion, diamine = N,N-dimethyl,N'-benzyl-1,2-diaminoethane and X = BPh 4-, PF 6-, ClO 4- and BF 4- have been prepared. The complexes were characterized on the basis of elemental analysis, molar conductance, UV-vis and IR spectroscopies. The complexes are solvatochromic and their solvatochromism were investigated by visible spectroscopy. All complexes demonstrated the positive solvatochromism and among the complexes [Cu(acac)(diamine)]BPh 4·H 2O showed the highest Δ νmax value. To explore the mechanism of interaction between solvent molecules and the complexes, different solvent parameters such as DN, AN, α and β using multiple linear regression (MLR) method were employed. The statistical results suggested that the DN parameter of the solvent plays a dominate contribution to the shift of the d-d absorption band of the complexes.

  4. Synthesis, spectroscopic and DNA binding ability of CoII, NiII, CuII and ZnII complexes of Schiff base ligand (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol. X-ray crystal structure determination of cobalt (II) complex.

    PubMed

    Yarkandi, Naeema H; El-Ghamry, Hoda A; Gaber, Mohamed

    2017-06-01

    A novel Schiff base ligand, (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol (HL), has been designed and synthesized in addition to its metal chelates [Co(L) 2 ]·l2H 2 O, [Ni(L)Cl·(H 2 O) 2 ].5H 2 O, [Cu(L)Cl] and [Zn(L)(CH 3 COO)]. The structures of the isolated compounds have been confirmed and identified by means of different spectral and physicochemical techniques including CHN analysis, 1 H & 13 C NMR, mass spectral analysis, molar conductivity measurement, UV-Vis, infrared, magnetic moment in addition to TGA technique. The infrared spectral results ascertained that the ligand acts as monobasic tridentate binding to the metal centers via deprotonated hydroxyl oxygen, azomethine and imidazole nitrogen atoms. The UV-Vis, magnetic susceptibility and molar conductivity data implied octahedral geometry for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) complex and square planar for Cu(II) complex. X-ray structural analysis of Co(II) complex 1 has been reported and discussed. Moreover, the type of interaction between the ligand & its complexes towards salmon sperm DNA (SS-DNA) has been examined by the measurement of absorption spectra and viscosity which confirmed that the ligand and its complexes interact with DNA via intercalation interaction as concluded from the values of binding constants (K b ). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Anti-Plasmodial Activity of Aroylhydrazone and Thiosemicarbazone Iron Chelators: Effect on Erythrocyte Membrane Integrity, Parasite Development and the Intracellular Labile Iron Pool

    PubMed Central

    Walcourt, Asikiya; Kurantsin-Mills, Joseph; Kwagyan, John; Adenuga, Babafemi B.; Kalinowski, Danuta S.; Lovejoy, David B.; Lane, Darius J. R.; Richardson, Des R.

    2013-01-01

    Iron chelators inhibit the growth of the malaria parasite, Plasmodium falciparum, in culture and in animal and human studies. We previously reported the anti-plasmodial activity of the chelators, 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311), 2-hydroxy-1-naphthylaldehyde 4-methyl-3-thiosemicarbazone (N4mT), and 2-hydroxy-1-naphthylaldehyde 4-phenyl-3-thiosemicarbazone (N4pT). In fact, these ligands showed greater growth inhibition of chloroquine-sensitive (3D7) and chloroquine-resistant (7G8) strains of P. falciparum in culture compared to desferrioxamine (DFO). The present study examined the effects of 311, N4mT and N4pT on erythrocyte membrane integrity and asexual parasite development. While the characteristic biconcave disk shape of the erythrocytes was unaffected, the chelators caused very slight hemolysis at IC50 values that inhibited parasite growth. The chelators 311, N4mT and N4pT affected all stages of the intra-erythrocytic development cycle (IDC) of P. falciparum in culture. However, while these ligands primarily affected the ring-stage, DFO inhibited primarily trophozoite and schizont-stages. Ring, trophozoite and schizont-stages of the IDC were inhibited by significantly lower concentrations of 311, N4mT, and N4pT (IC50 = 4.45 ± 1.70, 10.30 ± 4.40, and 3.64 ± 2.00 μM, respectively) than DFO (IC50 = 23.43 ± 3.40 μM). Complexation of 311, N4mT and N4pT with iron reduced their anti-plasmodial activity. Estimation of the intracellular labile iron pool (LIP) in erythrocytes showed that the chelation efficacy of 311, N4mT and N4pT corresponded to their anti-plasmodial activity, suggesting that the LIP may be a potential source of non-heme iron for parasite metabolism within the erythrocyte. This study has implications for malaria chemotherapy that specifically disrupts parasite iron utilization. PMID:24028863

  6. Synthesis, spectroscopy, and binding constants of ketocatechol-containing iminodiacetic acid and its Fe(III), Cu(II), and Zn(II) complexes and reaction of Cu(II) complex with H₂O₂ in aqueous solution.

    PubMed

    Gao, Jiaojiao; Xing, Feifei; Bai, Yueling; Zhu, Shourong

    2014-06-07

    A new neuromelanin-like ketocatechol-containing iminodiacetic acid ligand, (N-(3,4-dihydroxyl)phenacylimino)diacetic acid (H4L), which is also quite similar to compounds found in insect cuticle, has been synthesized and characterized. The X-ray crystal structure of H4L has been successfully determined. Proton binding and coordination with Fe(III), Cu(II), and Zn(II) have been studied by potentiometric titrations and UV-vis spectrophotometry in aqueous solution. UV spectra of H4L in the absence and presence of different metal ions indicate complexes formed with the catechol moiety of H4L in aqueous solution. Visible spectra and NMR reveal that H4L with Fe(III), Cu(II), and Zn(II) can all give stable mono-(ML) and dinuclear complexes [M(ML)]. Fe(III) can also form {Fe(FeL)2} and {Fe(FeL)3} species with sufficient base. The process is accompanied by a drastic color change from light blue to deep-blue to wine-red. The Fe(III)-Cu(II) heteronuclear complex also exists in aqueous solution whose spectra are similar to the homonuclear Fe(III) complex. However, the spectra of {Fe(CuL)} shifted to a longer wavelength and {Fe(CuL)2} and {Fe(CuL)3} shifted to a shorter wavelength. Keto-enol tautomerism was observed in weak basic aqueous solution as indicated by (1)H NMR spectra. The reaction products of Cu(II) complex with H2O2 depend on the H2O2 concentration and pH value. Low concentrations of H2O2 oxidize H4L to a series of semiquinone and quinone compounds with absorption maxima at 314-400 nm, while a high concentration of H2O2 oxidizes H4L to colorless muconic acid derivatives. NaIO4 gives different oxidase products, but no 2,4,5-trihydroxyphenylalanine quinone (TPQ)-like hydroxyquinone can be found.

  7. Synthesis, structure and catalytic properties of CNN pincer palladium(II) and ruthenium(II) complexes with N-substituted-2-aminomethyl-6-phenylpyridines.

    PubMed

    Wang, Tao; Hao, Xin-Qi; Zhang, Xiao-Xue; Gong, Jun-Fang; Song, Mao-Ping

    2011-09-21

    N-substituted-2-aminomethyl-6-phenylpyridines 2a-c have been easily prepared from commercially available 6-bromo-2-picolinaldehyde in two steps. Reaction of 2a-c with PdCl(2) in toluene in the presence of triethylamine gave the CNN pincer Pd(II) complexes 3a-c in 18-28% yields. The CNN pincer Ru(II) complex 5 containing a Ru-NHR functionality could be obtained in a 71% yield by treatment of 2c with a Ru(II) precursor instead of PdCl(2). Additionally, the related CNN pincer Ru(II) complex 7 containing a Ru-NH(2) functionality has been synthesized by the reaction of 2-aminomethyl-6-phenylpyridine with the same Ru(II) precursor in a 68% yield. All the new compounds were characterized by elemental analysis (MS for ligands), (1)H, (13)C NMR, (31)P{(1)H} NMR (for Ru complexes) and IR spectra. Molecular structures of Pd complex 3c as well as Ru complexes 5 and 7 have been determined by X-ray single-crystal diffraction. The obtained Pd complexes 3a-c were effective catalysts for the allylation of aldehydes as well as for three-component allylation of aldehydes, arylamines and allyltributyltin and their activity was found to be much higher than a related NCN Pd(II) pincer in the allylation of aldehyde. On the other hand, the two new CNN pincer Ru(II) complexes 5 and 7 displayed excellent catalytic activity in the transfer hydrogenation of ketones in refluxing 2-propanol with the latter being much more active. The final TOF values were up to 4510 h(-1) with 0.01 mol% of 5 and 220,800 h(-1) with 0.005 mol% of 7, respectively. This journal is © The Royal Society of Chemistry 2011

  8. Synthesis and characterization of tin(II) complexes of fluorinated Schiff bases derived from amino acids.

    PubMed

    Singh, Har Lal

    2010-07-01

    New tin(II) complexes of general formula Sn(L)(2) (L=monoanion of 3-methyl-4-fluoro-acetophenone phenylalanine L(1)H, 3-methyl-4-fluoro-acetophenone alanine L(2)H, 3-methyl-4-fluoro acetophenone tryptophan L(3)H, 3-methyl-4-fluoro-acetophenone valine L(4)H, 3-methyl-4-fluoro-acetophenone isoleucine L(5)H and 3-methyl-4-fluoro-acetophenone glycine L(6)H) have been prepared. It is characterized by elemental analyses, molar conductance measurements and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance ((1)H, (13)C, (19)F and (119)Sn NMR) spectral studies. The ligands act as bidentate towards metal ions, via the azomethine nitrogen and deprotonated oxygen of the respective amino acid. Elemental analyses and NMR spectral data of the ligands with their tin(II) complexes agree with their proposed square pyramidal structures. A few representative ligands and their tin complexes have been screened for their antibacterial activities and found to be quite active in this respect. Copyright 2010 Elsevier B.V. All rights reserved.

  9. The major histocompatibility complex of tassel-eared squirrels. II. Genetic diversity associated with Abert squirrels.

    PubMed

    Wettstein, P J; States, J S

    1986-01-01

    The extent of polymorphism and the rate of divergence of class I and class II sequences mapping to the mammalian major histocompatibility complex (MHC) have been the subject of experimentation and speculation. To provide further insight into the evolution of the MHC we have initiated the analysis of two geographically isolated subspecies of tassel-eared squirrels. In the preceding communication we described the number and polymorphism of TSLA class I and class II sequences in Kaibab squirrels (S. aberti kaibabensis), which live north of the Grand Canyon. In this report we present a parallel analysis of Abert squirrels (S. aberti aberti), which live south of the Grand Canyon in northern Arizona. Genomic DNA from 12 Abert squirrels was digested with restriction enzymes, electrophoresed, blotted, and hybridized with DR alpha, DR beta, DQ alpha, DQ beta, and HLA-B7 probes. The results of these hybridizations were remarkably similar to those obtained in Kaibab squirrels. The majority of class I and class II bands were identical in size and number, suggesting that Abert and Kaibab squirrels have not significantly diverged in the TSLA complex despite their geographical separation. Relative polymorphism of class II sequences was similar to that observed with Kaibab squirrels: beta sequences exhibited higher polymorphism than alpha sequences. As in Kaibab squirrels, a number of alpha and beta sequences were apparently carried on the same fragments. In comparison to class II beta sequences, there was limited polymorphism in class I sequences, although a diverse number of class I genotypes were observed. Attempts to identify segregating TSLA haplotypes were futile in that the only families of sequences with concordant distributions were DQ alpha and DQ beta. These observations and those obtained with Kaibab squirrels suggest that the present-day TSLA haplotypes of both subspecies are derived from a limited number of common, progenitor haplotypes through repeated intra

  10. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes.

    PubMed

    Zaborowska, Justyna; Taylor, Alice; Roeder, Robert G; Murphy, Shona

    2012-01-01

    Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.

  11. Spectroscopic evidence for ternary surface complexes in the lead(II)-malonic acid-hematite system

    USGS Publications Warehouse

    Lenhart, J.J.; Bargar, J.R.; Davis, J.A.

    2001-01-01

    Using extended X-ray absorption fine structure (EXAFS) and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements, we examined the sorption of Pb(II) to hematite in the presence of malonic acid. Pb LIII-edge EXAFS measurements performed in the presence of malonate indicate the presence of both Fe and C neighbors, suggesting that a major fraction of surface-bound malonate is bonded to adsorbed Pb(II). In the absence of Pb(II), ATR-FTIR measurements of sorbed malonate suggest the formation of more than one malonate surface complex. The dissimilarity of the IR spectrum of malonate sorbed on hematite to those for aqueous malonate suggest at least one of the sorbed malonate species is directly coordinated to surface Fe atoms in an inner-sphere mode. In the presence of Pb, little change is seen in the IR spectrum for sorbed malonate, indicating that geometry of malonate as it coordinates to sorbed Pb(II) adions is similar to the geometry of malonate as it coordinates to Fe in the hematite surface. Fits of the raw EXAFS spectra collected from pH 4 to pH 8 result in average Pb-C distances of 2.98 to 3.14 A??, suggesting the presence of both four- and six-membered Pb-malonate rings. The IR results are consistent with this interpretation. Thus, our results suggest that malonate binds to sorbed Pb(II) adions, forming ternary metal-bridging surface complexes. ?? 2001 Academic Press.

  12. Synthesis and Ligand Non-Innocence of Thiolate-Ligated (N4S) Iron(II) and Nickel(II) Bis(imino)pyridine Complexes

    PubMed Central

    Widger, Leland R.; Jiang, Yunbo; Siegler, Maxime; Kumar, Devesh; Latifi, Reza; de Visser, Sam P.; Jameson, Guy N.L.; Goldberg, David P.

    2013-01-01

    The known iron(II) complex [FeII(LN3S)(OTf)] (1) was used as starting material to prepare the new biomimetic (N4S(thiolate)) iron(II) complexes [FeII(LN3S)(py)](OTf) (2) and [FeII(LN3S)(DMAP)](OTf) (3), where LN3S is a tetradentate bis(imino)pyridine (BIP) derivative with a covalently tethered phenylthiolate donor. These complexes were characterized by X-ray crystallography, UV-vis, 1H NMR, and Mössbauer spectroscopy, as well as electrochemistry. A nickel(II) analogue, [NiII(LN3S)](BF4) (5), was also synthesized and characterized by structural and spectroscopic methods. Cyclic voltammetric studies showed 1 – 3 and 5 undergo a single reduction process with E1/2 between −0.9 to −1.2 V versus Fc+/Fc. Treatment of 3 with 0.5% Na/Hg amalgam gave the mono-reduced complex [Fe(LN3S)(DMAP)]0 (4), which was characterized by X-ray crystallography, UV-vis, EPR (g = [2.155, 2.057, 2.038]) and Mössbauer (δ = 0.33 mm s−1; ΔEQ = 2.04 mm s−1) spectroscopies. Computational methods (DFT) were employed to model complexes 3 – 5. The combined experimental and computational studies show that 1 – 3 are 5-coordinate, high-spin (S = 2) FeII complexes, whereas 4 is best described as a 5-coordinate, intermediate-spin (S = 1) FeII complex antiferromagnetically coupled to a ligand radical. This unique electronic configuration leads to an overall doublet spin (Stotal = ½) ground state. Complexes 2 and 3 are shown to react with O2 to give S-oxygenated products, as previously reported for 1. In contrast, the mono-reduced 4 appears to react with O2 to give a mixture of S- and Fe-oxygenates. The nickel(II) complex 5 does not react with O2, and even when the mono-reduced nickel complex is produced, it appears to undergo only outer-sphere oxidation with O2. PMID:23992096

  13. Synthesis, characterization and properties of some divalent metal(II) complexes: Their electrochemical, catalytic, thermal and antimicrobial activity studies

    NASA Astrophysics Data System (ADS)

    Tümer, Mehmet; Ekinci, Duygu; Tümer, Ferhan; Bulut, Akif

    2007-07-01

    In this study, we synthesized the amine compound 2-(2-aminoethyliminomethyl)phenol (H 3A) as the starting material, and then we prepared the polydentate Schiff base ligands from the reactions of the amine compound (H 3A) with phtaldialdehyde (H 2L), 4-methyl-2,6-di-formlyphenol (H 3L 1) and 4- t-butyl-2,6-di-formylphenol (H 3L 2) in the ethanol solution. Moreover, the complexes Cd(II), Cu(II), Co(II), Ni(II), Zn(II) and Sn(II) of the ligands H 2L, H 3L 1 and H 3L 2 have been prepared. All compounds have been characterized by the analytical and spectroscopic methods. In addition, the magnetic susceptibility and molar conductance measurements have been made. The catalytic properties of the mono- and binuclear Co(II) and Cu(II) complexes have been studied on the 3,5-di- tert-butylcatechol (3,5-DTBC) and ascorbic acid (aa) as a substrate. The oxidative C-C coupling properties of the Co(II) and Cu(II) complexes have been investigated on the sterically hindered 2,6-di- tert-butylphenol (dtbp). The antimicrobial activity properties of the ligands and their mono- and binuclear complexes have been studied against the bacteria and fungi. The results have been compared to the antibacterial and fungi drugs. The TGA curves show that the decomposition takes place in three steps for all complexes. Electrochemical properties of the complexes Cu(II) and Ni(II) have been investigated for the first time in acetonitrile by cyclic voltammetry.

  14. Pt-Mechanistic Study of the β-Hydrogen Elimination from Organoplatinum(II) Enolate Complexes

    PubMed Central

    Alexanian, Erik J.; Hartwig, John F.

    2010-01-01

    A detailed mechanistic investigation of the thermal reactions of a series of bisphosphine alkylplatinum(II) enolate complexes is reported. The reactions of methylplatinum enolate complexes in the presence of added phosphine form methane and either free or coordinated enone, depending on the steric properties of the enone. Kinetic studies were conducted to determine the relationship between the rates and mechanism of β-hydrogen elimination from enolate complexes and the rates and mechanism of β-hydrogen elimination from alkyl complexes. The rates of reactions of the enolates were inversely dependent on the concentration of added phosphine, indicating that β-hydrogen elimination from the enolate complexes occurs after reversible dissociation of a phosphine. A normal, primary kinetic isotope effect was measured, and this effect was consistent with rate-limiting β-hydrogen elimination or C-H bond-forming reductive elimination to form methane. Reactions of substituted enolate complexes were also studied to determine the effect of the steric and electronic properties of the enolate complexes on the rates of β-hydrogen elimination. These studies showed that reactions of the alkylplatinum enolate complexes were retarded by electron-withdrawing substituents on the enolate and that reactions of enolate complexes possessing alkyl substituents at the β-position occurred at rates that were similar to those of complexes lacking alkyl substituents at this position. Despite the trend in electronic effects on the rates of reactions of enolate complexes and the substantial electronic differences between an enolate and an alkyl ligand, the rates of decomposition of the enolate complexes were similar to those of the analogous alkyl complexes. To the extent that the rates of reaction of the two types of complex are different, those involving β-hydrogen elimination from the enolate ligand were faster. A difference between the identity of the rate-determining step for

  15. Novel heterocyclic thiosemicarbazones derivatives as colorimetric and "turn on" fluorescent sensors for fluoride anion sensing employing hydrogen bonding.

    PubMed

    Ashok Kumar, S L; Saravana Kumar, M; Sreeja, P B; Sreekanth, A

    2013-09-01

    Two novel heterocyclic thiosemicarbazone derivatives have been synthesized, and characterized, by means of spectroscopic and single crystal X-ray diffraction methods. Their chromophoric-fluorogenic response towards anions in competing solvent dimethyl sulfoxide (DMSO) was studied. The receptor shows selective recognition towards fluoride anion. The binding affinity of the receptors with fluoride anion was calculated using UV-visible and fluorescence spectroscopic techniques. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. [Synthesis and biological activity of 1,4-benzoquinone-guanylhydrazone-thiosemicarbazone analogs. 1. Substitution at the S atom].

    PubMed

    Schulze, W; Gutsche, W; Wohlrabe, K; Fleck, W; Tresselt, D

    1985-08-01

    The synthesis of S-substituted derivatives of 1,4-benzoquinone-guanylhydrazone-thiosemicarbazone is described. The obtained 1,4-benzoquinone-guanylhydrazone-S-alkyl (resp. aralkyl)-isothiosemicarbazones, in comparison with the unsubstituted standard compound, showed a significantly decreased biological activity against the murine leukemias L 1210 and P 388 as well as against the growth of several kinds of bacteria. Therefore the S-substitution seems not to be useful for reaching a maximum activity.

  17. Syntheses and characterizations of secondary Pb-O bonding supported Pb(II)-sulfonate complexes

    NASA Astrophysics Data System (ADS)

    Huang, Guo-Zhen; Zou, Xin; Zhu, Zhi-Biao; Deng, Zhao-Peng; Huo, Li-Hua; Gao, Shan

    2018-06-01

    The reaction of Pb(II) salts and mono- or disulfonates leads to the formation of eight new Pb(II)-mono/disulfonate complexes, [Pb(L1)(H2O)]2 (1), [Pb4(L2)2(AcO)2]n·5nH2O (2), [Pb(L3)(H2O)]2 (3), [Pb(HL4)(H2O)2]n·nH2O (4), [Pb(HL5)(H2O)2]n·2nH2O (5), [Pb(H2L6)(H2O)]n·nDMF·2nH2O (6), [Pb2(H3L7)4(H2O)6]·2H2O (7) and [Pb(H2L7)(H2O)]n·nH2O (8) (H2L1= 2-hydroxy-5-methyl-benzenesulfonic acid, H3L2= 2-hydroxyl-5-methyl- 1,3-benzenedisulfonic acid, H2L3= 2-hydroxy-5-nitro-benzenesulfonic acid, H3L4= 2-hydroxyl-5-bromo-1,3- benzenedisulfonic acid, H3L5= 2-hydroxyl-5-carboxyl-benzenesulfonic acid, H4L6= 2,5-dihydroxyl-3-carboxyl- benzenesulfonic acid, H4L7= 2,4-dihydroxyl-5-carboxyl-benzenesulfonic acid, DMF = N,N'-dimethyl-formamide, AcO- = acetate), which have been characterized by elemental analysis, IR, TG, PL, powder and single-crystal X-ray diffraction. In view of the primary Pb-O bonds, these eight complexes exhibit diverse dinuclear (1, 3 and 7), helical chain (4), wave-like chain (5), linear chain (6), zigzag chain (8) and layer structure (2), in which the Pb(II) cations present different hemi-directed geometries. Taking the secondary Pb-O bonds into account, chain structure for complex 7, layer motifs for complexes 1 and 3-6, as well as 3-D framework for complex 8 are observed with Pb(II) cations showing more intricate holo-directed geometries. The various coordination modes of these seven different mono/disulfonate anions are responsible for the formation of these multiple structures. Furthermore, the introduction of hydroxyl and carboxyl groups increases the coordination ability of sulfonate to the p-block metal cation. Luminescent analyses indicate that complex 7 presents purple emission at 395 nm at room temperature.

  18. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  19. Synthesis, spectroscopic, anticancer, antibacterial and antifungal studies of Ni(II) and Cu(II) complexes with hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Vandana; Kumar, Suresh

    2015-01-01

    Schiff's base ligand(L) hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene] and its metal complexes have been synthesized and characterized by elemental analysis, molar conductance, various spectroscopic techniques such as electronic, IR, 1H NMR, mass, EPR. Molar conductance of complexes in DMF solution corresponds to non-electrolyte. Complexes have general composition [M(L)2X2], where M = Ni(II) and Cu(II), X = Cl-, NO3-, CH3COO- and ½SO42-. On the basis of above spectral studies, an octahedral geometry has been assigned for Ni(II) complexes and tetragonal geometry for Cu(II) complexes except [Cu(L)2SO4] which possesses five coordinated trigonal bipyramidal geometry. These metal complexes were also tested for their anticancer, antibacterial and antifungal activities to assess their inhibition potential. Anticancer activity of ligand and its metal complexes were evaluated using SRB fluorometric assay and Adriamycin (ADR) was applied as positive control. Schiff's base ligand and its metal complexes were screened for their antibacterial and antifungal activity against Escherichia coli, Bacillus cereus and Aspergillus niger, Aspergillus flavus, respectively. Kirby-Bauer single disk susceptibility test was used for antibacterial activity and well diffusion method for antifungal activity of the compounds on the used fungi.

  20. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Neelakantan, M. A.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M.

    2008-12-01

    Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) L-alanine (ala), L-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N 2O 2 donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, 1H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300 K and in frozen DMSO (77 K) indicate the presence of the unpaired electron in the d orbital. The evaluated metal-ligand bonding parameters showed strong in-plane σ- and π-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.

  1. Synthesis, activity and pharmacophore development for isatin-β-thiosemicarbazones with selective activity towards multidrug resistant cellsa

    PubMed Central

    Hall, Matthew D.; Salam, Noeris K.; Hellawell, Jennifer L.; Fales, Henry M.; Kensler, Caroline B.; Ludwig, Joseph A.; Szakacs, Gergely; Hibbs, David E.; Gottesman, Michael M.

    2009-01-01

    We have recently identified a new class of compounds that selectively kill cells that express P-glycoprotein (P-gp, MDR1), the ATPase efflux pump that confers multidrug resistance on cancer cells. Several isatin-β-thiosemicarbazones from our initial study have been validated, and a range of analogs synthesized and tested. A number demonstrated improved MDR1-selective activity over the lead, NSC73306 (1). Pharmacophores for cytotoxicity and MDR1-selectivity were generated to delineate the structural features required for activity. The MDR1-selective pharmacophore highlights the importance of aromatic/hydrophobic features at the N4 position of the thiosemicarbazone, and the reliance on the isatin moiety as key bioisosteric contributors. Additionally, a quantitative structure-activity relationship (QSAR) model that yielded a cross-validated correlation coefficient of 0.85 effectively predicts the cytotoxicty of untested thiosemicarbazones. Together, the models serve as effective approaches for predicting structures with MDR1-selective activity, and aid in directing the search for the mechanism of action of 1. PMID:19397322

  2. New strategies for the synthesis of naphthoquinones employing Cu(II) complexes: Crystal structures and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Azeredo, Nathália F. B.; Souza, Fabrícia P.; Demidoff, Felipe C.; Netto, Chaquip D.; Resende, Jackson A. L. C.; Franco, Roberto W. A.; Colepicolo, Pio; Ferreira, Ana M. C.; Fernandes, Christiane

    2018-01-01

    The syntheses, physico-chemical characterization and cytotoxicity toward three human cell lines (standard and resistant sarcoma cells, and fibroblast) of a new copper(II) complex [Cu(HBPA)(L1)Cl]·3H2O 2 are reported. Complex 2 was obtained through the reaction between the ligand stilbene-quinone (HL1) and Cu[HBPA]Cl21, where HBPA = 2-hydroxybenzyl-2pyridylmethylamine. The synthesis of HL1 was performed in high yield through Heck reaction on PEG-400. X-ray diffraction and solution studies (UV-Vis, EPR, ESI(+)-MS and ESI(+)-MS/MS) were performed for complex 2, in which the copper(II) center is coordinated to the quinone in its deprotonated form, to the ligand HBPA and to a chloro ligand. Similar reaction employing CuCl2·2H2O, instead of Cu[HBPA]Cl21 and HL1, has resulted in the obtainment of a furano-o-naphtoquinone (L2) with 99% selectivity, suggesting a new methodology to cyclize the ligand HL1. In order to obtain the analogous para-isomer (L3), and to evaluate the isomerism influence on cytotoxicity activity, a cyclization reaction of HL1 with NBS (N-bromosuccinimide) was also performed, which resulted in the obtainment of L2 (8%) and L3 (13%). X-ray diffraction studies were performed for L2 and complex 2, and the description of their structure elucidated. Results from MTT assay revealed that complex 2 is more active against sarcoma cell lines (MES-SA/Dx5 and MES-SA) than both the free ligand HL1 and complex 1, reducing cell viability to less than 50 μmol L-1. L2 was the most active in the series, presenting cytotoxicity against resistant MES-SA/Dx5 and its standard MES-SA cell line, respectively, three and ten times higher than the current drug doxorubicin.

  3. Monoclonal antibodies to the light-harvesting chlorophyll a/b protein complex of photosystem II

    PubMed Central

    1986-01-01

    A collection of 17 monoclonal antibodies elicited against the light- harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC- II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b. PMID:3528171

  4. Protein surface roughness accounts for binding free energy of Plasmepsin II-ligand complexes.

    PubMed

    Valdés-Tresanco, Mario E; Valdés-Tresanco, Mario S; Valiente, Pedro A; Cocho, Germinal; Mansilla, Ricardo; Nieto-Villar, J M

    2018-01-01

    The calculation of absolute binding affinities for protein-inhibitor complexes remains as one of the main challenges in computational structure-based ligand design. The present work explored the calculations of surface fractal dimension (as a measure of surface roughness) and the relationship with experimental binding free energies of Plasmepsin II complexes. Plasmepsin II is an attractive target for novel therapeutic compounds to treat malaria. However, the structural flexibility of this enzyme is a drawback when searching for specific inhibitors. Concerning that, we performed separate explicitly solvated molecular dynamics simulations using the available high-resolution crystal structures of different Plasmepsin II complexes. Molecular dynamics simulations allowed a better approximation to systems dynamics and, therefore, a more reliable estimation of surface roughness. This constitutes a novel approximation in order to obtain more realistic values of fractal dimension, because previous works considered only x-ray structures. Binding site fractal dimension was calculated considering the ensemble of structures generated at different simulation times. A linear relationship between binding site fractal dimension and experimental binding free energies of the complexes was observed within 20 ns. Previous studies of the subject did not uncover this relationship. Regression model, coined FD model, was built to estimate binding free energies from binding site fractal dimension values. Leave-one-out cross-validation showed that our model reproduced accurately the absolute binding free energies for our training set (R 2  = 0.76; <|error|> =0.55 kcal/mol; SD error  = 0.19 kcal/mol). The fact that such a simple model may be applied raises some questions that are addressed in the article. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Identification of different coordination geometries by XAFS in copper(II) complexes with trimesic acid

    NASA Astrophysics Data System (ADS)

    Gaur, A.; Klysubun, W.; Soni, Balram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2016-10-01

    X-ray absorption spectroscopy (XAS) is very useful in revealing the information about geometric and electronic structure of a transition-metal absorber and thus commonly used for determination of metal-ligand coordination. But XAFS analysis becomes difficult if differently coordinated metal centers are present in a system. In the present investigation, existence of distinct coordination geometries around metal centres have been studied by XAFS in a series of trimesic acid Cu(II) complexes. The complexes studied are: Cu3(tma)2(im)6 8H2O (1), Cu3(tma)2(mim)6 17H2O (2), Cu3(tma)2(tmen)3 8.5H2O (3), Cu3(tma) (pmd)3 6H2O (ClO4)3 (4) and Cu3(tma)2 3H2O (5). These complexes have not only Cu metal centres with different coordination but in complexes 1-3, there are multiple coordination geometries present around Cu centres. Using XANES spectra, different coordination geometries present in these complexes have been identified. The variation observed in the pre-edge features and edge features have been correlated with the distortion of the specific coordination environment around Cu centres in the complexes. XANES spectra have been calculated for the distinct metal centres present in the complexes by employing ab-initio calculations. These individual spectra have been used to resolve the spectral contribution of the Cu centres to the particular XANES features exhibited by the experimental spectra of the multinuclear complexes. Also, the variation in the 4p density of states have been calculated for the different Cu centres and then correlated with the features originated from corresponding coordination of Cu. Thus, these spectral features have been successfully utilized to detect the presence of the discrete metal centres in a system. The inferences about the coordination geometry have been supported by EXAFS analysis which has been used to determine the structural parameters for these complexes.

  6. Novel FeII and CoII Complexes of Natural Product Tryptanthrin: Synthesis and Binding with G-Quadruplex DNA

    PubMed Central

    Zhong, Yi-ning; Zhang, Yan; Gu, Yun-qiong; Wu, Shi-yun; Shen, Wen-ying

    2016-01-01

    Tryptanthrin is one of the most important members of indoloquinoline alkaloids. We obtained this alkaloid from Isatis. Two novel FeII and CoII complexes of tryptanthrin were first synthesized. Single-crystal X-ray diffraction analyses show that these complexes display distorted four-coordinated tetrahedron geometry via two heterocyclic nitrogen and oxygen atoms from tryptanthrin ligand. Binding with G-quadruplex DNA properties revealed that both complexes were found to exhibit significant interaction with G-quadruplex DNA. This study may potentially serve as the basis of future rational design of metal-based drugs from natural products that target the G-quadruplex DNA. PMID:27698647

  7. A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet

    PubMed Central

    Sakamoto, Ryota; Hoshiko, Ken; Liu, Qian; Yagi, Toshiki; Nagayama, Tatsuhiro; Kusaka, Shinpei; Tsuchiya, Mizuho; Kitagawa, Yasutaka; Wong, Wai-Yeung; Nishihara, Hiroshi

    2015-01-01

    Two-dimensional polymeric nanosheets have recently gained much attention, particularly top-down nanosheets such as graphene and metal chalcogenides originating from bulk-layered mother materials. Although molecule-based bottom-up nanosheets manufactured directly from molecular components can exhibit greater structural diversity than top-down nanosheets, the bottom-up nanosheets reported thus far lack useful functionalities. Here we show the design and synthesis of a bottom-up nanosheet featuring a photoactive bis(dipyrrinato)zinc(II) complex motif. A liquid/liquid interfacial synthesis between a three-way dipyrrin ligand and zinc(II) ions results in a multi-layer nanosheet, whereas an air/liquid interfacial reaction produces a single-layer or few-layer nanosheet with domain sizes of >10 μm on one side. The bis(dipyrrinato)zinc(II) metal complex nanosheet is easy to deposit on various substrates using the Langmuir–Schäfer process. The nanosheet deposited on a transparent SnO2 electrode functions as a photoanode in a photoelectric conversion system, and is thus the first photofunctional bottom-up nanosheet. PMID:25831973

  8. Chiral Nickel(II) Complex Catalyzed Enantioselective Doyle-Kirmse Reaction of α-Diazo Pyrazoleamides.

    PubMed

    Lin, Xiaobin; Tang, Yu; Yang, Wei; Tan, Fei; Lin, Lili; Liu, Xiaohua; Feng, Xiaoming

    2018-03-07

    Although high enantioselectivity of [2,3]-sigmatropic rearrangement of sulfonium ylides (Doyle-Kirmse reaction) has proven surprisingly elusive using classic chiral Rh(II) and Cu(I) catalysts, in principle it is due to the difficulty in fine discrimination of the heterotopic lone pairs of sulfur and chirality inversion at sulfur of sulfonium ylides. Here, we show that the synergistic merger of new α-diazo pyrazoleamides and a chiral N, N'-dioxide-nickel(II) complex catalyst enables a highly enantioselective Doyle-Kirmse reaction. The pyrazoleamide substituent serves as both an activating and a directing group for the ready formation of a metal-carbene- and Lewis-acid-bonded ylide intermediate in the assistance of a dual-tasking nickel(II) complex. An alternative chiral Lewis-acid-bonded ylide pathway greatly improves the product enantiopurity even for the reaction of a symmetric diallylsulfane. The majority of transformations over a series of aryl- or vinyl-substituted α-diazo pyrazoleamindes and sulfides proceed rapidly (within 5-20 min in most cases) with excellent results (up to 99% yield and 96% ee), providing a breakthrough in enantioselective Doyle-Kirmse reaction.

  9. Long term results of diode laser cycloablation in complex glaucoma using the Zeiss Visulas II system

    PubMed Central

    Ataullah, S; Biswas, S; Artes, P H; O'Donoghue, E; Ridgway, A E A; Spencer, A F

    2002-01-01

    Aim: To investigate the safety and efficacy of the Zeiss Visulas II diode laser system in the reduction of intraocular pressure (IOP) in patients with complex glaucoma. Methods: The authors analysed the medical records of patients who underwent trans-scleral diode laser cycloablation (TDC) at the Manchester Royal Eye Hospital during a 34 month period. 55 eyes of 53 patients with complex glaucoma were followed up for a period of 12–52 months (mean 23.1 months) after initial treatment with the Zeiss Visulas II diode laser system. Results: Mean pretreatment IOP was 35.8 mm Hg (range 22–64 mm Hg). At the last examination, mean IOP was 17.3 mm Hg (range 0–40 mm Hg). After treatment, 45 eyes (82%) had an IOP between 5 and 22 mm Hg; in 46 eyes (84%) the preoperative IOP had been reduced by 30% or more. The mean number of treatment sessions was 1.7 (range 1–6). At the last follow up appointment, the mean number of glaucoma medications was reduced from 2.1 to 1.6 (p<0.05). In 10 eyes (18%), post-treatment visual acuity (VA) was worse than pretreatment VA by 2 or more lines. Conclusions: Treatment with the Zeiss Visulas II diode laser system can be safely repeated in order to achieve the target IOP. Treatment outcomes in this study were similar to those from previously published work using the Iris Medical Oculight SLx laser. PMID:11801501

  10. Polydisulfide Manganese(II) Complexes as Non-Gadolinium Biodegradable Macromolecular MRI Contrast Agents

    PubMed Central

    Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Tan, Mingqian; Yin, Shouyu; Lu, Zheng-Rong

    2011-01-01

    Purpose To develop safe and effective manganese(II) based biodegradable macromolecular MRI contrast agents. Materials and Methods In this study, we synthesized and characterized two polydisulfide manganese(II) complexes, Mn-DTPA cystamine copolymers and Mn-EDTA cystamine copolymers, as new biodegradable macromolecular MRI contrast agents. The contrast enhancement of the two manganese based contrast agents were evaluated in mice bearing MDA-MB-231 human breast carcinoma xenografts, in comparison with MnCl2. Results The T1 and T2 relaxivities were 4.74 and 10.38 mM−1s−1 per manganese at 3T for Mn-DTPA cystamine copolymers (Mn=30.50 kDa) and 6.41 and 9.72 mM−1s−1 for Mn-EDTA cystamine copolymers (Mn= 61.80 kDa). Both polydisulfide Mn(II) complexes showed significant liver, myocardium and tumor enhancement. Conclusion The manganese based polydisulfide contrast agents have a potential to be developed as alternative non-gadolinium contrast agents for MR cancer and myocardium imaging. PMID:22031457

  11. A Trinuclear Ni(II) Enediolate Complex: Synthesis, Characterization, and O2 Reactivity

    PubMed Central

    Arif, Atta M.; Berreau, Lisa M.

    2009-01-01

    Using a new N4-donor chelate ligand having a mixture of hydrophobic phenyl and hydrogen bond donor appendages, a trinuclear Ni(II) complex of the doubly deprotonated form of 2-hydroxy-1,3-diphenylpropane-1,3-dione was isolated, characterized (X-ray crystallography, elemental analysis, UV-vis, 1H NMR, FTIR, magnetic moment measurement), and evaluated for O2 reactivity. This complex, [(6-NA-6-Ph2TPANi)2(μ-PhC(O)C(O)C(O)Ph)2Ni](ClO4)2 (4), has two terminal pseudo octahedral Ni(II) centers supported by the tetradentate chelate ligand, and a central square planar Ni(II) ion ligated by oxygen atoms of two bridging enediolate ligands. In CH3CN, 4 exhibits a deep orange/brown color and λmax = 463 nm (ε = 16,000 M-1cm-1). The room temperature magnetic moment of 4, determined by Evans method, is μeff = 5.3(2) μB. This is consistent with the presence of two non-interacting high-spin Ni(II) centers, a diamagnetic central Ni(II) ion, and an overall quintet ground state. Exposure of a CH3CN solution of 4 to O2 results in the rapid loss of the orange/brown color to give a green solution. The products identified from this reaction are [(κ3-6-NA-6-Ph2TPA)Ni(O2Ph)(H2O)]ClO4 (5), benzil (PhC(O)C(O)Ph), and CO. Identification of 5 was achieved via its independent synthesis and comparison of its 1H NMR and mass spectral features with those of the 6-NA-6-Ph2TPA-containing product generated upon reaction of 4 with O2. The independently prepared sample of 5 was characterized by X-ray crystallography, elemental analysis, UV-vis, mass spectrometry, and FTIR. The O2 reactivity of 4 has relevance to the active site chemistry of Ni(II)-containing acireductone dioxygenase (Ni(II)-ARD). PMID:18959363

  12. Structure and Stability of Carboxylate Complexes. 20. Diaqua Bis(methoxyacetato) Complexes of Nickel(II), Copper(II), and Zinc(II): A Structural Study of the Dynamic Pseudo-Jahn-Teller Effect.

    PubMed

    Prout, Keith; Edwards, Alison; Mtetwa, Victor; Murray, Jon; Saunders, John F.; Rossotti, Francis J. C.

    1997-06-18

    The crystal structure of trans-diaquabis(methoxyacetato)copper(II), C(6)H(14)O(8)Cu, has been determined by neutron diffraction at 4.2 K (monoclinic, P2(1)/n, a = 6.88(1), b = 7.19(1), c = 9.77(2) Å, gamma = 95.7(1) degrees, (Z = 2)) and by X-ray diffraction at 125, 165, 205, 240, 265, 295, and 325 K. These measurements show that there is no phase change in the temperature range 4.2-325 K. The copper(II) coordination at 4.2 K is a tetragonally distorted elongated rhombic octahedron (Cu-OOC 1.955(1), Cu-OMe 2.209(1), and Cu-OH(2) 2.031(2) Å). As the temperature increases to 325 K, the Cu-OOC bonds shorten slightly to 1.934(5) Å, the Cu-OMe bonds shorten more markedly to 2.137(4) Å, and Cu-OH(2) lengthens to 2.155(6) Å to give a tetragonally distorted compressed rhombic octahedron. For comparison the structure of the isomorphous nickel(II) complex (monoclinic, P2(1)/n, a = 6.633(1), b = 7.192(1), c = 10.016(2) Å, gamma = 98.30(2) degrees, (Z = 2)) has been redetermined at 295 K and the structure of the analogous zinc(II) complex (orthorhombic, F2dd, a = 7.530(1), b = 13.212(1), c = 21.876(2) Å (Z = 8)) has also been determined. The nickel(II) complex has an almost regular trans (centrosymmetric) octahedral coordination (Ni-OOC 2.022(1), Ni-OMe 2.043(1), and Ni-OH(2) 2.077(2) Å). However, zinc(II) has a very distorted octahedral coordination with the zinc atom on a 2-fold axis with the water molecules and the methoxy ligators cis and the carboxylate ligators trans (Zn-OOC 1.985(1), Zn-OMe 2.304(2), and Zn-OH(2) 2.038(2) Å). The variation in the dimensions of the copper(II) coordination sphere is discussed in terms of static (low temperature) and planar dynamic (high temperature) pseudo-Jahn-Teller effects.

  13. Synthesis, characterization, photoluminescence, and electrochemical studies of novel mononuclear Cu(II) and Zn(II) complexes with the 1-benzylimidazolium ligand

    NASA Astrophysics Data System (ADS)

    Bibi, Sherino; Mohammad, Sharifah; Manan, Ninie Suhana Abdul; Ahmad, Jimmy; Kamboh, Muhammad Afzal; Khor, Sook Mei; Yamin, Bohari M.; Abdul Halim, Siti Nadiah

    2017-08-01

    Two new mononuclear coordination complexes [Cu(bim)4Cl2]ṡ2H2O (1) and [Zn(bim)2Cl2] (2) containing the 1-benzylimidazole (bim) ligand were successfully synthesized. Both complexes were characterized by IR, UV-vis, and fluorescence spectroscopies, single crystal and powder X-ray diffraction measurements, and thermogravimetric analysis. Self-assembly during the recrystallization process resulted in the formation of octahedral and tetrahedral Cu(II) and Zn(II) complexes, respectively. The single crystals obtained are representative of the bulk material, as shown by the powder X-ray diffraction patterns. Cyclic voltammetry measurements showed that complex 1 undergoes a quasi-reversible redox reaction, while complex 2 undergoes reduction alone, and no oxidation peak was observed; this is due to the stability of the reduced form of complex 2.

  14. A Method for Selective Depletion of Zn(II) Ions from Complex Biological Media and Evaluation of Cellular Consequences of Zn(II) Deficiency

    PubMed Central

    Richardson, Christopher E. R.; Cunden, Lisa S.; Butty, Vincent L.; Nolan, Elizabeth M.; Lippard, Stephen J.; Shoulders, Matthew D.

    2018-01-01

    We describe the preparation, evaluation, and application of an S100A12 protein-conjugated solid support, hereafter the “A12-resin,” that can remove 99% of Zn(II) from complex biological solutions without significantly perturbing the concentrations of other metal ions. The A12-resin can be applied to selectively deplete Zn(II) from diverse tissue culture media and from other biological fluids, including human serum. To further demonstrate the utility of this approach, we investigated metabolic, transcriptomic, and metallomic responses of HEK293 cells cultured in medium depleted of Zn(II) using S100A12. The resulting data provide insight into how cells respond to acute Zn(II) deficiency. We expect that the A12-resin will facilitate interrogation of disrupted Zn(II) homeostasis in biological settings, uncovering novel roles for Zn(II) in biology. PMID:29334734

  15. Binding and activation of major histocompatibility complex class II-deficient macrophages by staphylococcal exotoxins

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Macrophages from C2D transgenic mice deficient in the expression of major histocompatibility complex (MHC) class II proteins were used to identify binding sites for superantigens distinct from the MHC class II molecule. Iodinated staphylococcal enterotoxins A and B (SEA and SEB) and exfoliative toxins A and B (ETA and ETB) bound to C2D macrophages in a concentration-dependent and competitive manner. All four toxins increased F-actin concentration within 30 s of their addition to C2D macrophages, indicating that signal transduction occurred in response to toxin in the absence of class II MHC. Furthermore, ETA, ETB, SEA, and, to a lesser extent, SEB induced C2D macrophages to produce interleukin 6. Several molecular species on C2D macrophages with molecular masses of 140, 97, 61, 52, 43, and 37 kDa bound SEA in immunoprecipitation experiments. These data indicate the presence of novel, functionally active toxin binding sites on murine macrophages distinct from MHC class II molecules.

  16. Model for fluorescence quenching in light harvesting complex II in different aggregation states.

    PubMed

    Andreeva, Atanaska; Abarova, Silvia; Stoitchkova, Katerina; Busheva, Mira

    2009-02-01

    Low-temperature (77 K) steady-state fluorescence emission spectroscopy and dynamic light scattering were applied to the main chlorophyll a/b protein light harvesting complex of photosystem II (LHC II) in different aggregation states to elucidate the mechanism of fluorescence quenching within LHC II oligomers. Evidences presented that LHC II oligomers are heterogeneous and consist of large and small particles with different fluorescence yield. At intermediate detergent concentrations the mean size of the small particles is similar to that of trimers, while the size of large particles is comparable to that of aggregated trimers without added detergent. It is suggested that in small particles and trimers the emitter is monomeric chlorophyll, whereas in large aggregates there is also another emitter, which is a poorly fluorescing chlorophyll associate. A model, describing populations of antenna chlorophyll molecules in small and large aggregates in their ground and first singlet excited states, is considered. The model enables us to obtain the ratio of the singlet excited-state lifetimes in small and large particles, the relative amount of chlorophyll molecules in large particles, and the amount of quenchers as a function of the degree of aggregation. These dependencies reveal that the quenching of the chl a fluorescence upon aggregation is due to the formation of large aggregates and the increasing of the amount of chlorophyll molecules forming these aggregates. As a consequence, the amount of quenchers, located in large aggregates, is increased, and their singlet excited-state lifetimes steeply decrease.

  17. Multifrequency Pulsed EPR Studies of Biologically Relevant Manganese(II) Complexes

    PubMed Central

    Stich, T. A.; Lahiri, S.; Yeagle, G.; Dicus, M.; Brynda, M.; Gunn, A.; Aznar, C.; DeRose, V. J.; Britt, R. D.

    2011-01-01

    Electron paramagnetic resonance studies at multiple frequencies (MF EPR) can provide detailed electronic structure descriptions of unpaired electrons in organic radicals, inorganic complexes, and metalloenzymes. Analysis of these properties aids in the assignment of the chemical environment surrounding the paramagnet and provides mechanistic insight into the chemical reactions in which these systems take part. Herein, we present results from pulsed EPR studies performed at three different frequencies (9, 31, and 130 GHz) on [Mn(II)(H2O)6]2+, Mn(II) adducts with the nucleotides ATP and GMP, and the Mn(II)-bound form of the hammerhead ribozyme (MnHH). Through line shape analysis and interpretation of the zero-field splitting values derived from successful simulations of the corresponding continuous-wave and field-swept echo-detected spectra, these data are used to exemplify the ability of the MF EPR approach in distinguishing the nature of the first ligand sphere. A survey of recent results from pulsed EPR, as well as pulsed electron-nuclear double resonance and electron spin echo envelope modulation spectroscopic studies applied to Mn(II)-dependent systems, is also presented. PMID:22190766

  18. [New aspects of complex chronic tinnitus. II: The lost silence: effects and psychotherapeutic possibilities in complex chronic tinnitus].

    PubMed

    Goebel, G; Keeser, W; Fichter, M; Rief, W

    1991-01-01

    "Complex tinnitus" is a diagnostic term denoting a disturbance pattern where the patient hears highly annoying and painful noises or sounds that do not originate from a recognisable external source and can be described only by the patient himself. It seems that the suffering mainly depends upon the extent to which the tinnitus is experienced as a phenomenon that is beyond control. Part I reports on an examination of the treatment success achieved with 28 consecutive patients who had been treated according to an integrative multimodal behavioural medicine concept. This resulted--despite continual loudness--in a decrease in the degree of unpleasantness of the tinnitus, by 17% (p less than 0.01) with corresponding normalisation of decisive symptom factors in Hopkins-Symptom-Check-List (SCL-90-R) and Freiburg Personality-Inventary (FPI-R). On the whole, 19 out of the total of 28 patients showed essential to marked improvement of the disturbance pattern. Part II presents a multidimensional tinnitus model and the essential psychotherapeutic focal points of a multimodal psychotherapy concept in complex chronic tinnitus, as well as the parallel phenomena in the chronic pain syndrome.

  19. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships.

    PubMed

    Serda, Maciej; Kalinowski, Danuta S; Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Małecki, Jan G; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Simůnek, Tomáš; Richardson, Des R; Polanski, Jaroslaw

    2014-01-01

    Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized "soft" donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.

  20. Synthesis, spectral, antitumor, antioxidant and antimicrobial studies on Cu(II), Ni(II) and Co(II) complexes of 4-[(1H-Benzoimidazol-2-ylimino)-methyl]-benzene-1,3-diol.

    PubMed

    El-wakiel, Nadia; El-keiy, Mai; Gaber, Mohamed

    2015-08-05

    A new Schiff base of 2-aminobenzimidazole with 2,4-dihydroybezaldehyde (H₃L), and its Cu(II), Ni(II) and Co(II) complexes have been synthesized and characterized by elemental analyses, molar conductance, thermal analysis (TGA), inductive coupled plasma (ICP), magnetic moment measurements, IR, EI-mass, UV-Vis. and ESR spectral studies. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as dibasic tridentate ligand coordinating via deprotonated OH, NH and azomethine nitrogen atom. The results showed that Co(II) and Ni(II) complexes have tetrahedral structure while Cu(II) complexes has octahedral geometry. The kinetic and thermodynamic parameters of the thermal decomposition stages have been evaluated. The studied complexes were tested for their in vitro antimicrobial activities against some bacterial strains. The anticancer activity of the ligand and its metal complexes is evaluated against human liver Carcinoma (HEPG2) cell. These compounds exhibited a moderate and weak activity against the tested HEPG2 cell lines with IC₅₀ of 9.08, 18.2 and 19.7 μg/ml for ligand, Cu(II) and Ni(II) complexes, respectively. In vitro antioxidant activity of the newly synthesized compounds has also been evaluated. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Curcumin-Zn(II) complex for enhanced solubility and stability: an approach for improved delivery and pharmacodynamic effects.

    PubMed

    Sareen, Rashmi; Jain, Nitin; Dhar, K L

    2016-08-01

    The aim of present investigation was to prepare Curcumin-Zn(II) complex in a view to enhance solubility, stability and pharmacodynamic effect in experimentally induced ulcerative colitis. Curcumin-Zn(II) complex was prepared by stirring curcumin with anhydrous zinc chloride at a molar ratio of 1:1. The prepared curcumin metallocomplex was characterized by TLC, FTIR, UV spectroscopy and (1)H NMR. In vitro kinetic degradation and solubility of Curcumin and Curcumin-Zn(II) complex was analyzed spectrophotometrically. Pharmacodynamic evaluation of curcumin and its metal complex was assessed in ulcerative colitis in mice. Curcumin showed chelation with zinc ion as confirmed by the TLC, FTIR, UV spectroscopy and (1)H NMR. The results of TLC [Rf value], IR Spectroscopy [shifting of stretching vibrations of υ(C=C) and υ(C=O)], UV spectra [deconvoluted with absorption band at 432-466.4 nm] of Curcumin-Zn(II) complex compared to curcumin confirmed the formation of metallocomplex. (1)HNMR spectra of Curcumin-Zn(II) showed the upfield shift of Ha and Hb. Kinetic stability studies showed metallocomplex with zinc exhibited good stability. In vivo study revealed significant reduction in severity and extent of colonic damage with Curcumin-Zn(II) which were further confirmed by histopathological study. This study recognizes higher solubility and stability of Curcumin-Zn(II) complex and suggested better pharmacodynamic effects.

  2. Terminal NiII-OH/-OH2 complexes in trigonal bipyramidal geometries derived from H2O.

    PubMed

    Lau, Nathanael; Sano, Yohei; Ziller, Joseph W; Borovik, A S

    2017-03-29

    The preparation and characterization of two Ni II complexes are described, a terminal Ni II -OH complex with the tripodal ligand tris[(N)-tertbutylureaylato)-N-ethyl)]aminato ([H 3 buea] 3- ) and a terminal Ni II -OH 2 complex with the tripodal ligand N , N ', N ″-[2,2',2″-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido) ([MST] 3- ). For both complexes, the source of the -OH and -OH 2 ligand is water. The salts K 2 [Ni II H 3 buea(OH)] and NMe 4 [Ni II MST(OH 2 )] were characterized using perpendicular-mode X-band electronic paramagnetic resonance, Fourier transform infrared, UV-visible spectroscopies, and its electrochemical properties were evaluated using cyclic voltammetry. The solid state structures of these complexes determined by X-ray diffraction methods reveal that they adopt a distorted trigonal bipyramidal geometry, an unusual structure for 5-coordinate Ni II complexes. Moreover, the Ni II -OH and Ni II -OH 2 units form intramolecular hydrogen bonding networks with the [H 3 buea] 3- and [MST] 3- ligands. The oxidation chemistry of these complexes was explored by treating the high-spin Ni II compounds with one-electron oxidants. Species were formed with S = 1/2 spin ground states that are consistent with formation of monomeric Ni III species. While the formation of Ni III -OH complexes cannot be ruled out, the lack of observable O-H vibrations from the putative Ni-OH units suggest the possibility that other high valent Ni species are formed.

  3. Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex

    PubMed Central

    Song, Na; Concepcion, Javier J.; Binstead, Robert A.; Rudd, Jennifer A.; Vannucci, Aaron K.; Dares, Christopher J.; Coggins, Michael K.; Meyer, Thomas J.

    2015-01-01

    In aqueous solution above pH 2.4 with 4% (vol/vol) CH3CN, the complex [RuII(bda)(isoq)2] (bda is 2,2′-bipyridine-6,6′-dicarboxylate; isoq is isoquinoline) exists as the open-arm chelate, [RuII(CO2-bpy-CO2−)(isoq)2(NCCH3)], as shown by 1H and 13C-NMR, X-ray crystallography, and pH titrations. Rates of water oxidation with the open-arm chelate are remarkably enhanced by added proton acceptor bases, as measured by cyclic voltammetry (CV). In 1.0 M PO43–, the calculated half-time for water oxidation is ∼7 μs. The key to the rate accelerations with added bases is direct involvement of the buffer base in either atom–proton transfer (APT) or concerted electron–proton transfer (EPT) pathways. PMID:25848035

  4. Isolation and characterization of major histocompatibility complex class II B genes in cranes.

    PubMed

    Kohyama, Tetsuo I; Akiyama, Takuya; Nishida, Chizuko; Takami, Kazutoshi; Onuma, Manabu; Momose, Kunikazu; Masuda, Ryuichi

    2015-11-01

    In this study, we isolated and characterized the major histocompatibility complex (MHC) class II B genes in cranes. Genomic sequences spanning exons 1 to 4 were amplified and determined in 13 crane species and three other species closely related to cranes. In all, 55 unique sequences were identified, and at least two polymorphic MHC class II B loci were found in most species. An analysis of sequence polymorphisms showed the signature of positive selection and recombination. A phylogenetic reconstruction based on exon 2 sequences indicated that trans-species polymorphism has persisted for at least 10 million years, whereas phylogenetic analyses of the sequences flanking exon 2 revealed a pattern of concerted evolution. These results suggest that both balancing selection and recombination play important roles in the crane MHC evolution.

  5. Phosphorylation-regulated Binding of RNA Polymerase II to Fibrous Polymers of Low Complexity Domains

    PubMed Central

    Xiang, Siheng; Wu, Leeju; Theodoropoulos, Pano; Mirzaei, Hamid; Han, Tina; Xie, Shanhai; Corden, Jeffry L.; McKnight, Steven L.

    2014-01-01

    SUMMARY The low complexity (LC) domains of the products of the fused in sarcoma (FUS), Ewings sarcoma (EWS) and TAF15 genes are translocated onto a variety of different DNA-binding domains and thereby assist in driving the formation of cancerous cells. In the context of the translocated fusion proteins, these LC sequences function as transcriptional activation domains. Here we show that polymeric fibers formed from these LC domains directly bind the C-terminal domain (CTD) of RNA polymerase II in a manner reversible by phosphorylation of the iterated, heptad repeats of the CTD. Mutational analysis indicates that the degree of binding between the CTD and the LC domain polymers correlates with the strength of transcriptional activation. These studies offer a simple means of conceptualizing how RNA polymerase II is recruited to active genes in its unphosphorylated state, and released for elongation following phosphorylation of the CTD. PMID:24267890

  6. Interaction of the iron(II) cage complexes with proteins: protein fluorescence quenching study.

    PubMed

    Losytskyy, Mykhaylo Y; Kovalska, Vladyslava B; Varzatskii, Oleg A; Sergeev, Alexander M; Yarmoluk, Sergiy M; Voloshin, Yan Z

    2013-09-01

    Interaction of the iron(II) mono- and bis-clathrochelates with bovine serum albumin (BSA), β-lactoglobulin, lysozyme and insulin was studied by the steady-state and time-resolved fluorescent spectroscopies. These cage complexes do not make significant impact on fluorescent properties of β-lactoglobulin, lysozyme and insulin. At the same time, the monoclathrochelates strongly quench a fluorescence intensity of BSA and substantially decrease its excited state lifetime due to their binding to this protein. This occurs due to the excitation energy transfer from a tryptophan residue to a cage molecule or/and to the change of the tryptophan nearest environment caused by either clathrochelate binding or an alteration of the BSA conformation. The effect of the iron(II) bis-clathrochelate on BSA fluorescence is much weaker as compared to its monomacrobicyclic analogs as a result of an increase in its size.

  7. Mononuclear thiocyanate containing nickel(II) and binuclear azido bridged nickel(II) complexes of N4-coordinate pyrazole based ligand: Syntheses, structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Solanki, Ankita; Monfort, Montserrat; Kumar, Sujit Baran

    2013-10-01

    Two mononuclear nickel(II) complexes [NiL1(NCS)2] (1) and [NiL2(NCS)2] (2) and two azido bridged binuclear nickel(II) complexes [Ni(()2()2] (3) and [Ni(()2()2] (4), where L1, L2, L1‧ and L2‧ are N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1), N,N-bis((1H-pyrazol-1-yl)methyl)-N‧,N‧-diethylethane-1,2-diamine (L2), N,N-diethyl-N‧-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1‧) and N-((1H-pyrazol-1-yl)methyl)-N‧,N‧-diethylethane-1,2-diamine (L2‧) have been synthesized and characterized by microanalyses and physico-chemical methods. Single crystal X-ray diffraction analyses revealed that complexes 1 and 2 are mononuclear NCS- containing Ni(II) complex with octahedral geometry and complexes 3 and 4 are end-on (μ-1,1) azido bridged binuclear Ni(II) complexes with distorted octahedral geometry. Variable temperature magnetic studies of the complexes 3 and 4 display ferromagnetic interaction with J values 19 and 32 cm-1, respectively.

  8. Synthesis and characterization of homoleptic group 10 dithiocarbamate complexes and heteroleptic Ni(II) complexes, and the use of the homoleptic Ni(II) for the preparation of nickel sulphide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bobinihi, Felicia F.; Onwudiwe, Damian C.; Hosten, Eric C.

    2018-07-01

    A series of new dithiocarbamate complexes of Ni(II), Pd(II) and Pt(II) of the form [NiL2], [PdL2] and [PtL2] (where L = N-ethyl-N-ethanoldithiocarbamate) have been synthesized and characterized by elemental analysis, FTIR, and 1H and 13C NMR spectroscopy. The nickel complex was utilized to prepare heteroleptic complexes bearing triphenylphosphino (PPh3) and isothiocyanate (sbnd NCS) or isocyanide (sbnd NC) molecules. Furthermore, the structures of the palladium complex and the heteroleptic nickel with PPh3 and NC molecules have been confirmed by X-ray diffraction. The Pd(II) complex indicated a trans arrangement with a distorted square planar geometry around the Pd atom, while the Ni(II) complex revealed a highly distorted geometry with another molecule of triphenylphosphine moiety, held by hydrogen bonding, within the crystal structure. The thermal stability studies of all the complexes conducted by using thermogravimetric analyser (TGA) showed they all have good stability above 200 °C. The nanoparticles synthesized using the homoleptic nickel complex yielded platelets of pure Heazlewoodite phase of Ni3S2 with average size of 7.60 nm. The optical properties of the nanoparticles studied by using UV-vis spectroscopy showed band gap energy of 4.0 eV (355 nm), which was a blue shift of 1.90 eV compared to the bulk and a consequence of quantum confinement effect.

  9. Synthesis, thermogravimetric, spectroscopic and theoretical characterization of copper(II) complex with 4-chloro-2-nitrobenzenosulfonamide

    NASA Astrophysics Data System (ADS)

    Camí, G.; Chacón Villalba, E.; Di Santi, Y.; Colinas, P.; Estiu, G.; Soria, D. B.

    2011-05-01

    4-Chloro-2-nitrobenzenesulfonamide (ClNbsa) was purified and characterized. A new copper(II) complex, [Cu(ClNbsa) 2(NH 3) 2], has been prepared using the sulfonamide as ligand. The thermal behavior of both, the ligand and the Cu(II) complex, was investigated by thermogravimetric analyses (TG) and differential thermal analysis (DT), and the electronic characteristics analyzed by UV-VIS, FTIR, Raman and 1H NMR spectroscopies. The experimental IR, Raman and UV-VIS spectra have been assigned on the basis of DFT calculations at the B3LYP level of theory using the standard (6-31 + G ∗∗) basis set. The geometries have been fully optimized in vacuum and in modeled dimethylsulfoxide (DMSO) solvent, using for the latter a continuum solvation model that reproduced the experimental conditions of the UV-VIS spectroscopy. The theoretical results converged to stable conformations for the free sulfonamide and for the complex, suggesting for the latter a distorted square planar geometry in both environments.

  10. Heat-induced reorganization of the structure of photosystem II membranes: role of oxygen evolving complex.

    PubMed

    Busheva, Mira; Tzonova, Iren; Stoitchkova, Katerina; Andreeva, Atanaska

    2012-12-05

    The sensitivity of the green plants' photosystem II (PSII) to high temperatures is investigated in PSII enriched membranes and in membranes, from which the oxygen evolving complex is removed. Using steady-state 77 K fluorescence and resonance Raman spectroscopy we analyze the interdependency between the temperature-driven changes in structure and energy distribution in the PSII supercomplex. The results show that the heat treatment induces different reduction of the 77 K fluorescence emission in both types of investigated membranes: (i) an additional considerable decrease of the overall fluorescence emission in Tris-washed membranes as compared to the native membranes; (ii) a transition point at 42°C(,) observed only in native membranes; (iii) a sharp reduction of the PSII core fluorescence in Tris-washed membranes at temperatures higher than 50°C; (iv) a 3 nm red-shift of F700 band's maximum in Tris-washed membranes already at 20°C and its further shift by 1 nm at temperature increase. Both treatments intensified their action by increasing the aggregation and dissociation of the peripheral light harvesting complexes. The oxygen-evolving complex, in addition to its main function to produce O(2), increases the thermal stability of PSII core by strengthening the connection between the core and the peripheral antenna proteins and by keeping their structural integrity. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. O2 Activation and Double C-H Oxidation by a Mononuclear Manganese(II) Complex.

    PubMed

    Deville, Claire; Padamati, Sandeep K; Sundberg, Jonas; McKee, Vickie; Browne, Wesley R; McKenzie, Christine J

    2016-01-11

    A Mn(II) complex, [Mn(dpeo)2](2+) (dpeo=1,2-di(pyridin-2-yl)ethanone oxime), activates O2, with ensuing stepwise oxidation of the methylene group in the ligands providing an alkoxide and ultimately a ketone group. X-ray crystal-structure analysis of an intermediate homoleptic alkoxide Mn(III) complex shows tridentate binding of the ligand via the two pyridyl groups and the newly installed alkoxide moiety, with the oxime group no longer coordinated. The structure of a Mn(II) complex of the final ketone ligand, cis-[MnBr2(hidpe)2] (hidpe=2-(hydroxyimino)-1,2-di(pyridine-2-yl)ethanone) shows that bidentate oxime/pyridine coordination has been resumed. H2(18)O and (18)O2 labeling experiments suggest that the inserted O atoms originate from two different O2 molecules. The progress of the oxygenation was monitored through changes in the resonance-enhanced Raman bands of the oxime unit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis, spectroscopic characterization, DFT optimization and biological activities of Schiff bases and their metal (II) complexes

    NASA Astrophysics Data System (ADS)

    Rauf, Abdur; Shah, Afzal; Munawar, Khurram Shahzad; Khan, Abdul Aziz; Abbasi, Rashda; Yameen, Muhammad Arfat; Khan, Asad Muhammad; Khan, Abdur Rahman; Qureshi, Irfan Zia; Kraatz, Heinz-Bernhard; Zia-ur-Rehman

    2017-10-01

    A Novel Schiff base, 3-(((4-chlorophenyl)imino)methyl)benzene-1,2-diol (HL1) was successfully synthesized along with a structurally similar Schiff base 3-(((4-bromophenyl)imino)methyl)benzene-1,2-diol (HL2). Both the Schiff bases were used to synthesize their zinc (II) and cobalt (II) complexes. These compounds were characterized by FTIR, 1H NMR, 13C NMR and elemental analysis. Metal complexes were confirmed by TGA. Crystals of Schiff bases were also characterized by X-ray analysis and experimental parameters were found in line with the theoretical parameters. Quantum mechanical approach was also used to fine useful structural parameters and to ensure the geometry of metal complexes. The photometric behaviors of all the synthesized compounds were investigated in a wide pH range using BR buffers. The appearance of isosbestic points indicated the existence of Schiff bases in more than one isomeric form. Moreover, these compounds were screened for enzyme inhibition; antibacterial, cytotoxic and in vivo antidiabetic activities and compounds were found active against one or other activity. Results indicate that ZnL22 is a good inhibitor of alkaline phosphatase enzyme and possess highest potential against diabetes, blood cholesterol level and cancer cells. This effort just provides preliminary data for some biological properties. Further investigations are required to precisely determine mechanistic pathways of their use towards drug development.

  13. Coligand-regulated assembly, fluorescence, and magnetic properties of Co(II) and Cd(II) complexes with a non-coplanar dicarboxylate

    SciTech Connect

    Xin, Ling-Yun; Liu, Guang-Zhen, E-mail: gzliuly@126.com; Ma, Lu-Fang

    A non-coplanar dicarboxylate ndca (H{sub 2}ndca=5-norbornene-2,3-dicarboxylic acid), combining with various dipyridyl-typed tectons, constructs six Cd(II)/Co(II) coordination polymers under hydrothermal conditions, namely [Co(ndca)(H{sub 2}O)]{sub n} (1), ([Co(ndca)(bpe)(H{sub 2}O)]·H{sub 2}O){sub n} (2), [Co(ndca)(bpa){sub 0.5}(H{sub 2}O)]{sub n} (3), [Cd(ndca)(bpe)(H{sub 2}O)]{sub n} (4), ([Cd(ndca)(bpa)(H{sub 2}O)]·0.5H{sub 2}O){sub n} (5), and ([Cd(ndca)(bpp) (H{sub 2}O)]·H{sub 2}O){sub n} (6) (bpe=1,2-di(4-pyridyl)ethylene, bpa=1,2-bi(4-pyridyl)ethane, and bpp=1,3-bis(4-pyridyl)propane). All these compounds contain various metal(II)–carboxylate motifs, including carboxylate binuclear (2, 4, 5), carboxylate chain (1, 6) and carboxylate layer (3), which are further extended by dipyridyl-typed coligands to afford a vast diversity of the structures with 2D pyknotic layers (1, 6), 2D open layermore » (5), 2D→3D interpenetrated networks (2,4), and 3D pillared-layer framework (3), respectively. In addition, fluorescent spectra of Cd(II) complexes and magnetic properties of Co(II) complexes are also given. - Graphical abstract: Six various cadmium(II)/cobalt(II)–organic frameworks were constructed by 5-norbornene-2,3-dicarboxylic acid and different bis(pyridine) rod-like tectons, and Cd (II) complexes exhibit blue–violet emissions, whereas Co (II) complexes show antiferromagnetic behaviours. Display Omitted.« less

  14. Ground state atoms confined in a real Rydberg and complex Rydberg-Scarf II potential

    NASA Astrophysics Data System (ADS)

    Mansoori Kermani, Maryam

    2017-12-01

    In this work, a system of two ground state atoms confined in a one-dimensional real Rydberg potential was modeled. The atom-atom interaction was considered as a nonlocal separable potential (NLSP) of rank one. This potential was assumed because it leads to an analytical solution of the Lippmann-Schwinger equation. The NLSPs are useful in the few body problems that the many-body potential at each point is replaced by a projective two-body nonlocal potential operator. Analytical expressions for the confined particle resolvent were calculated as a key function in this study. The contributions of the bound and virtual states in the complex energy plane were obtained via the derived transition matrix. Since the low energy quantum scattering problems scattering length is an important quantity, the behavior of this parameter was described versus the reduced energy considering various values of potential parameters. In a one-dimensional model, the total cross section in units of the area is not a meaningful property; however, the reflectance coefficient has a similar role. Therefore the reflectance probability and its behavior were investigated. Then a new confined potential via combining the complex absorbing Scarf II potential with the real Rydberg potential, called the Rydberg-Scarf II potential, was introduced to construct a non-Hermitian Hamiltonian. In order to investigate the effect of the complex potential, the scattering length and reflectance coefficient were calculated. It was concluded that in addition to the competition between the repulsive and attractive parts of both potentials, the imaginary part of the complex potential has an important effect on the properties of the system. The complex potential also reduces the reflectance probability via increasing the absorption probability. For all numerical computations, the parameters of a system including argon gas confined in graphite were considered.

  15. New RuII pincer complexes: synthesis, characterization and biological evaluation for photodynamic therapy.

    PubMed

    Tabrizi, Leila; Chiniforoshan, Hossein

    2016-11-15

    Three new ruthenium(ii) complexes of NCN pincer and phenylcyanamide derivative ligands of the formula [Ru(L)(Ph 2 phen)(3,5-(NO 2 ) 2 pcyd)], 1, [Ru(L)(Me 2 phen)(3,5-(NO 2 ) 2 pcyd)], 2, and [Ru(L)(Cl 2 phen)(3,5-(NO 2 ) 2 pcyd)], 3 (HL: 5-methoxy-1,3-bis(1-methyl-1H-benzo[d]imidazol-2-yl)benzene, 3,5-(NO 2 ) 2 pcyd: 3,5-(NO 2 ) 2 pcyd, Ph 2 phen: 4,7-diphenyl-1,10-phenanthroline, Me 2 phen: 4,7-dimethyl-1,10-phenanthroline, Cl 2 phen: 4,7-dichloro-1,10-phenanthroline) have been synthesized and studied as potential photosensitizers (PSs) in photodynamic therapy (PDT). The complexes exhibited promising 1 O 2 production quantum yields comparable with PSs available on the market. The DNA-binding interactions of the complexes with calf thymus DNA have been studied by absorption, emission, and viscosity measurements. All complexes cleave SC-DNA efficiently on photoactivation at 350 nm with the formation of singlet oxygen ( 1 O 2 ) and hydroxyl radicals (˙OH) in type-II and photoredox pathways. Complexes 1-3 showed very good uptake in cervical cancer cells (HeLa). The compounds studied were found to exhibit low toxicity against HeLa cells (IC 50 > 300 μM) and, remarkably, on non-cancerous MRC-5 cells (IC 50 > 100 μM) in the dark. However, 1 showed very promising behavior with an increment of about 90 times, in its cytotoxicity upon light illumination at 420 nm in addition to very good human plasma stability.

  16. Semi- and thiosemicarbazide Mn(II) complexes: Characterization, DFT and biological studies

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Alduaij, O. K.; Ahmed, Sara F.; Abu El-Reash, G. M.; El-Gammal, O. A.

    2016-09-01

    One NO and two NOS donor ligands have been prepared by addition ethanolic suspension of 2-hydrazino-2-oxo-N-phenyl-acetamide to phenyl isocyanate (H2PAPS), phenyl isothiocyanate (H2PAPT) and benzoyl isothiocyanate (H2PABT). The Mn (II) complexes were prepared from the chloride salt and characterized by conventional techniques. The isolated complexes were assigned the formulaes, [Mn(HPAPS)2], [Mn(HPAPT)Cl] and [Mn(HPABT)Cl(H2O)2], respectively. The IR study of ligands and their complexes shows that H2PAPS behaves as a mononegative tridentate via both CO of hydrazide moiety in keto and deprotonated enol form and CN (azomethine) due to enolization of CO cyanate moiety without deprotonation. H2PAPT behaves as mononegative tridentate via CO of hydrazide moiety, deprotonated thiol CS and NH group. Finally H2PABT behaves as mononegative tridentate via deprotonated enolized CO of hydrazide moiety, CO of benzoyl moiety and NH group. The IR spectra of ligands from DFT calculations are compared with those obtained experimentally. Also, HOMO, LUMO, the bond lengths, bond angles, and dipole moments have been calculated. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. The binding energy values display the high stability of complexes. The kinetic and thermodynamic parameters were determined by Coats-Redfern and Horowitz-Metzger methods. The antibacterial activities were also tested against Bacillus subtilis and Escherichia coli bacteria. Finally, the antitumor activities of the Ligands and their Mn(II) complexes have been evaluated against liver (HePG2) and breast (MCF-7) cancer cells.

  17. Understanding patient safety performance and educational needs using the 'Safety-II' approach for complex systems.

    PubMed

    McNab, Duncan; Bowie, Paul; Morrison, Jill; Ross, Alastair

    2016-11-01

    Participation in projects to improve patient safety is a key component of general practice (GP) specialty training, appraisal and revalidation. Patient safety training priorities for GPs at all career stages are described in the Royal College of General Practitioners' curriculum. Current methods that are taught and employed to improve safety often use a 'find-and-fix' approach to identify components of a system (including humans) where performance could be improved. However, the complex interactions and inter-dependence between components in healthcare systems mean that cause and effect are not always linked in a predictable manner. The Safety-II approach has been proposed as a new way to understand how safety is achieved in complex systems that may improve quality and safety initiatives and enhance GP and trainee curriculum coverage. Safety-II aims to maximise the number of events with a successful outcome by exploring everyday work. Work-as-done often differs from work-as-imagined in protocols and guidelines and various ways to achieve success, dependent on work conditions, may be possible. Traditional approaches to improve the quality and safety of care often aim to constrain variability but understanding and managing variability may be a more beneficial approach. The application of a Safety-II approach to incident investigation, quality improvement projects, prospective analysis of risk in systems and performance indicators may offer improved insight into system performance leading to more effective change. The way forward may be to combine the Safety-II approach with 'traditional' methods to enhance patient safety training, outcomes and curriculum coverage.

  18. Influence of detergent concentration on aggregation and spectroscopic properties of light-harvesting complex II.

    PubMed

    Voigt, Bernd; Krikunova, Maria; Lokstein, Heiko

    2008-01-01

    Aggregation of photosynthetic light-harvesting complexes strongly influences their spectroscopic properties. Fluorescence yield and excited state lifetimes of the main light-harvesting complex (LHC II) of higher plants strongly depend on its aggregation state. Detergents are commonly used to solubilize membrane proteins and/or to circumvent their aggregation in aqueous environments. Nonlinear polarization spectroscopy in the frequency domain (NLPF) was performed with LHC II over a wide concentration range of the mild detergent n-dodecyl beta-D: -maltoside (beta-DM). Additionally, conventional absorption-, fluorescence- and circular dichroism-spectra were measured.The results indicate that: (i) conventional spectroscopic techniques are not well suited to investigate aggregation effects. NLPF provides a novel approach to overcome this problem: NLPF spectra display dramatic alterations upon even minor beta-DM concentration changes. (ii) Commonly used detergent concentrations (around or slightly above the critical micellar concentration) apparently do not lead to complete trimerization of LHC II. A long-wavelength species in the NLPF spectra (peaking at about 685 nm), indicative of residual aggregation, persists up to DM-concentrations of 0.06%. (iii) High-resolution NLPF spectra indicate the existence of a species with a considerably shortened excited state lifetime. (iv) No indication of denaturation was found even at the highest beta-DM concentrations used. (v) A specific change in interaction between certain chlorophyll(s) b and a xanthophyll molecule, probably neoxanthin, was detected upon aggregation as well as at higher beta-DM concentrations. The results are discussed with respect to the still elusive mechanism of nonradiative dissipation of excess excitation energy in the antenna system.

  19. DNA binding and biological studies of some novel water-soluble polymer-copper(II)-phenanthroline complexes.

    PubMed

    Kumar, Rajendran Senthil; Arunachalam, Sankaralingam; Periasamy, Vaiyapuri Subbarayan; Preethy, Christo Paul; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkader

    2008-10-01

    Some novel water-soluble polymer-copper(II)-phenanthroline complex samples, [Cu(phen)2(BPEI)]Cl(2).4H2O (phen=1,10-phenanthroline, BPEI=branched polyethyleneimine), with different degrees of copper complex content in the polymer chain have been prepared by ligand substitution method in water-ethanol medium and characterized by infrared, UV-visible, EPR spectral and elemental analysis methods. The binding of these complex samples with DNA has been investigated by electronic absorption spectroscopy, emission spectroscopy and gel retardation assay. Electrostatic interactions between DNA molecule and polymer-copper(II) complex molecule containing many high positive charges have been observed. Besides these ionic interactions, van der Waals interactions, hydrogen bonding and other partial intercalation binding modes may also exist in this system. The polymer-copper(II) complex with higher degree of copper complex content was screened for its antimicrobial activity and antitumor activity.

  20. DNA as a Target for Anticancer Phen-Imidazole Pd(II) Complexes.

    PubMed

    Heydari, Maryam; Moghadam, Mahboube Eslami; Tarlani, AliAkbar; Farhangian, Hossein

    2017-05-01

    Imidazole ring is a known structure in many natural or synthetic drug molecules and its metal complexes can interact with DNA and do the cleavage. Hence, to study the influence of the structure and size of the ligand on biological behavior of metal complexes, two water-soluble Pd(II) complexes of phen and FIP ligands (where phen is 1,10-phenanthroline and FIP is 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1, 10]phenanthroline) with the formula of [Pd(phen)(FIP)](NO 3 ) 2 and [Pd(FIP) 2 ]Cl 2 , that were activated against chronic myelogenous leukemia cell line, K562, were selected. Also, the interaction of these anticancer Pd(II) complexes with highly polymerized calf thymus DNA was extensively studied by means of electronic absorption, fluorescence, and circular dichroism in Tris-buffer. The results showed that the binding was positive cooperation and [Pd(phen)(FIP)](NO 3 ) 2 (K f  = 127 M -1 G = 1.2) exhibited higher binding constant and number of binding sites than [Pd(FIP) 2 ]Cl 2 (K f  = 13 M -1 G = 1.03) upon binding to DNA. The fluorescence data indicates that quenching effect for [Pd(phen)(FIP)](NO 3 ) 2 (K SV  = 58 mM -1 ) was higher than [Pd(FIP) 2 ]Cl 2 (K SV  = 12 mM -1 ). Also, [Pd(FIP) 2 ]Cl 2 interacts with ethidium bromide-DNA, as non-competitive inhibition, and can bind to DNA via groove binding and [Pd(phen)(FIP)](NO 3 ) 2 can intercalate in DNA. These results were confirmed by circular dichroism spectra. Docking data revealed that longer complexes have higher interaction energy and bind to DNA via groove binding. Graphical Abstract Two anticancer Pd(II) complexes of imidazole derivative have been synthesized and interacted with calf thymus DNA. Modes of binding have been studied by electronic absorption, fluorescence, and CD measurements. [Pd(FIP) 2 ]Cl 2 can bind to DNA via groove binding while intercalation mode of binding is observed for [Pd(phen)(FIP)](NO 3 ) 2 .

  1. Platinum(II) 1,10-phenanthroline complexes of acetylides containing redox-active groups.

    PubMed

    Siemeling, Ulrich; Bausch, Kirstin; Fink, Heinrich; Bruhn, Clemens; Baldus, Marc; Angerstein, Brigitta; Plessow, Regina; Brockhinke, Andreas

    2005-07-21

    The new diimine ligand 3,8-di-n-pentyl-4,7-di(phenylethynyl)-1,10-phenanthroline (1) was used for the synthesis of a range of Pt(II) complexes, viz.[Pt(1)Cl2], [Pt(1)(C triple bond C-Ph)2], [Pt(1)(C triple bond C-Fc)2] and [Pt(1)(C triple bond C-p-C6H4-C triple bond C-Fc)2](Fc = ferrocenyl). Crystal structure analyses were performed for [Pt(1)Cl2] and [Pt(1)(C triple bond C-Ph)2] and revealed that the di(acetylide)pi-tweezer of the latter binds a molecule of chloroform through C-H...pi hydrogen bonds. The redox and optical properties of 1 and its complexes were investigated by (spectro-)electrochemistry, UV-Vis and luminescence spectroscopy, and an energy level diagram was derived for [Pt(1)(C triple bond C-Fc)2] and related compounds on the basis of the data collected. The ferrocenyl-substituted Pt(II) complexes are donor-sensitiser assemblies. Intramolecular quenching of the photoexcited Pt(II) diimine unit leads to very short luminescence lifetimes for [Pt(1)(C triple bond C-p-C(6)H(4)-C triple bond C-Fc)2](2 ns) and [Pt(1)(C triple bond C-Fc)2](0.3 ns), as opposed to [Pt(1)(C triple bond C-Ph)2](0.7 micros). Excimer formation has been observed for [Pt(1)(C triple bond C-Ph)(2)] at room temperature in dichloromethane and at low temperatures in frozen glassy dichloromethane and 2-methyltetrahydrofuran solution, but not in the solid state.

  2. Reversible five-coordinate ⇄ six-coordinate transformation in cobalt(II) complexes

    NASA Astrophysics Data System (ADS)

    Xiao, Linda; Bhadbhade, Mohan; Baker, Anthony T.

    2018-04-01

    The heterocyclic ligands 2,6-bis(pyrazol-1-yl)pyridine (L1) and 2,6-bis(benzimidazol-2-yl)pyridine (L2) and their cobalt(II) complexes were synthesized. The blue five-coordinate complex [Co(L1)Cl2] isolated initially from the reaction mixture rapidly absorbed water vapour from the atmosphere to yield the pink six-coordinate complex [Co(L1)(H2O)3]Cl2. This change is reversible upon desiccation or transferring [Co(L1)(H2O)3]Cl2 into acetonitrile. The five coordinate complex [Co(L2)Cl2], however, remains stable under similar conditions. The structures of the complexes [Co(L1)Cl2], [Co(L1)(H2O)3]Cl2 and [Co(L2)Cl2] have been determined by x-ray crystallography. The magnetic susceptibilities and the electronic spectra for [Co(L1)Cl2], [Co(L2)Cl2] and [Co(L1)(H2O)3]Cl2 are presented.

  3. Photodynamic killing of cancer cells by a Platinum(II) complex with cyclometallating ligand

    NASA Astrophysics Data System (ADS)

    Doherty, Rachel E.; Sazanovich, Igor V.; McKenzie, Luke K.; Stasheuski, Alexander S.; Coyle, Rachel; Baggaley, Elizabeth; Bottomley, Sarah; Weinstein, Julia A.; Bryant, Helen E.

    2016-03-01

    Photodynamic therapy that uses photosensitizers which only become toxic upon light-irradiation provides a strong alternative to conventional cancer treatment due to its ability to selectively target tumour material without affecting healthy tissue. Transition metal complexes are highly promising PDT agents due to intense visible light absorption, yet the majority are toxic even without light. This study introduces a small, photostable, charge-neutral platinum-based compound, Pt(II) 2,6-dipyrido-4-methyl-benzenechloride, complex 1, as a photosensitizer, which works under visible light. Activation of the new photosensitizer at low concentrations (0.1-1 μM) by comparatively low dose of 405 nm light (3.6 J cm-2) causes significant cell death of cervical, colorectal and bladder cancer cell lines, and, importantly, a cisplatin resistant cell line EJ-R. The photo-index of the complex is 8. We demonstrate that complex 1 induces irreversible DNA single strand breaks following irradiation, and that oxygen is essential for the photoinduced action. Neither light, nor compound alone led to cell death. The key advantages of the new drug include a remarkably fast accumulation time (diffusion-controlled, minutes), and photostability. This study demonstrates a highly promising new agent for photodynamic therapy, and attracts attention to photostable metal complexes as viable alternatives to conventional chemotherapeutics, such as cisplatin.

  4. Platinum(II)-gadolinium(III) complexes as potential single-molecular theranostic agents for cancer treatment.

    PubMed

    Zhu, Zhenzhu; Wang, Xiaoyong; Li, Tuanjie; Aime, Silvio; Sadler, Peter J; Guo, Zijian

    2014-11-24

    Theranostic agents are emerging multifunctional molecules capable of simultaneous therapy and diagnosis of diseases. We found that platinum(II)-gadolinium(III) complexes with the formula [{Pt(NH3)2Cl}2GdL](NO3)2 possess such properties. The Gd center is stable in solution and the cytoplasm, whereas the Pt centers undergo ligand substitution in cancer cells. The Pt units interact with DNA and significantly promote the cellular uptake of Gd complexes. The cytotoxicity of the Pt-Gd complexes is comparable to that of cisplatin at high concentrations (≥0.1 mM), and their proton relaxivity is higher than that of the commercial magnetic resonance imaging (MRI) contrast agent Gd-DTPA. T1-weighted MRI on B6 mice demonstrated that these complexes can reveal the accumulation of platinum drugs in vivo. Their cytotoxicity and imaging capabilities make the Pt-Gd complexes promising theranostic agents for cancer treatment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The overlooked "nonclassical" functions of major histocompatibility complex (MHC) class II antigens in immune and nonimmune cells.

    PubMed

    Altomonte, M; Pucillo, C; Maio, M

    1999-06-01

    Besides their "classical" antigenic peptide-presenting activity, major histocompatibility complex (MHC) class II antigens can activate different cellular functions in immune and nonimmune cells. However, this "nonclassical" role and its functional consequences are still substantially overlooked. In this review, we will focus on these alternative functional properties of MHC class II antigens, to reawaken attention to their present and foreseeable immunobiologic and pathogenetic implications. The main issues that will be addressed concern 1) the role of MHC class II molecules as basic components of exchangeable oligomeric protein complexes with intracellular signaling ability; 2) the nonclassical functions of MHC class II antigens in immune cells; 3) the pathogenetic role of MHC class II antigens in inflammatory/autoimmune and infectious disease; and 4) the functional role of MHC class II antigens in solid malignancies.

  6. Mercury(II) Complex Formation With Glutathione in Alkaline Aqueous Solution

    SciTech Connect

    Mah, V.; Jalilehvand, F.

    2009-05-19

    The structure and speciation of the complexes formed between mercury(II) ions and glutathione (GSH = L-glutamyl-L-cysteinyl-glycine) have been studied for a series of alkaline aqueous solutions (C{sub Hg{sup 2+}} {approx} 18 mmol dm{sup -3} and C{sub GSH} = 40-200 mmol dm{sup -3} at pH {approx} 10.5) by means of extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy at ambient temperature. The dominant complexes are [Hg(GS){sub 2}]{sup 4-} and [Hg(GS){sub 3}]{sup 7-}, with mean Hg-S bond distances of 2.32(1) and 2.42(2) {angstrom} observed in digonal and trigonal Hg-S coordination, respectively. The proportions of the Hg{sup 2+}-glutathione complexes weremore » evaluated by fitting linear combinations of model EXAFS oscillations representing each species to the experimental EXAFS spectra. The [Hg(GS){sub 4}]{sup 10-} complex, with four sulfur atoms coordinated at a mean Hg-S bond distance of 2.52(2) {angstrom}, is present in minor amounts (<30%) in solutions containing a large excess of glutathione (C{sub GSH} {ge} 160 mmol dm{sup -3}). Comparable alkaline mercury(II) cysteine (H{sub 2}Cys) solutions were also investigated and a reduced tendency to form higher complexes was observed, because the deprotonated amino group of Cys{sup 2-} allows the stable [Hg(S,N-Cys){sub 2}]{sup 2-} chelate to form. The effect of temperature on the distribution of the Hg{sup 2+}-glutathione complexes was studied by comparing the EXAFS spectra at ambient temperature and at 25 K of a series of glycerol/water (33/67, v/v) frozen glasses with and C{sub Hg{sup 2+}} {approx} 7 mmol dm{sup -3} and C{sub GSH} = 16-81 mmol dm{sup -3}. Complexes with high Hg-S coordination numbers, [Hg(GS){sub 3}]{sup 7-} and [Hg(GS){sub 4}]{sup 10-}, became strongly favored when just a moderate excess of glutathione (C{sub GSH} {ge} 28 mmol dm{sup -3}) was used in the glassy samples, as expected for a stepwise exothermic bond formation. Addition of glycerol had no effect on the Hg(II

  7. Exchange interactions in a dinuclear manganese (II) complex with cyanopyridine-N-oxide bridging ligands

    NASA Astrophysics Data System (ADS)

    Markosyan, A. S.; Gaidukova, I. Yu.; Ruchkin, A. V.; Anokhin, A. O.; Irkhin, V. Yu.; Ryazanov, M. V.; Kuz'mina, N. P.; Nikiforov, V. N.

    2014-01-01

    The magnetic properties of dinuclear manganese(II) complex [Mn(hfa)2cpo]2 (where hfa is hexafluoroacetylacetonate anion and cpo is 4-cyanopyridine-N-oxide) are presented. The non-monotonous dependence of magnetic susceptibility is explained in terms of the hierarchy of exchange parameters by using exact diagonalization. The thermodynamic behavior of pure cpo and [Mn(hfa)2(cpo)]2 is simulated numerically by an extrapolation to spin S=5/2. The Mn-Mn exchange integral is evaluated.

  8. Photo-induced living radical polymerization of acrylates utilizing a discrete copper(II)-formate complex.

    PubMed

    Anastasaki, Athina; Nikolaou, Vasiliki; Brandford-Adams, Francesca; Nurumbetov, Gabit; Zhang, Qiang; Clarkson, Guy J; Fox, David J; Wilson, Paul; Kempe, Kristian; Haddleton, David M

    2015-04-04

    A photo-polymerization protocol, utilizing a pre-formed and well-characterized Cu(II) formate complex, [Cu(Me6-Tren)(O2CH)](ClO4), mediated by UV light is described. In the absence of additional reducing agents and/or photosensitizers, ppm concentrations of the oxidatively stable [Cu(Me6-Tren)(O2CH)](ClO4), furnish near-quantitative conversions within 2 h, yielding poly(acrylates) with low dispersities (∼1.10) and exceptional end-group fidelity, capable of undergoing in situ chain extension and block copolymerization.

  9. Synthesis, characterization of Ag(I), Pd(II) and Pt(II) complexes of a triazine-3-thione and their interactions with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuying; Li, Shuyan; Yang, Lin; Fan, Changqing

    2007-11-01

    Ag(I), Pd(II) and Pt(II) complexes of 5-methoxy-5,6-diphenyl-4,5-dihydro-2H-[1,2,4]triazine-3-thione (LH 2OCH 3) have been synthesized and characterized by elemental analysis, molar conductance, 1H NMR, IR spectra, UV spectra and thermal analysis (TG-DTA). The components of the three complexes are [Ag(C 15H 10N 3S)] 6, Pd(C 15H 10N 3S) 2 and Pt(C 15H 10N 3S) 2·C 3H 6O·2H 2O, respectively. All the complexes are nonelectrolyte and have high thermodynamic stability. The ligand may act as bidentate NS donor for Pd(II) and Pt(II) complexes, while it seems to be bidentate NS bridging via sulphur atom for Ag(I) complex. A planar quadrangular structure is proposed for Pd(II) and Pt(II) complexes and Ag(I) complex may be a hexanuclear cluster. Their interactions with bovine serum albumin (BSA) are investigated using steady state fluorescence technology. It is observed that all of them can quench the intrinsic fluorescence of BSA through static quenching procedure. The binding constants ( KA) at different temperatures, thermodynamic parameters enthalpy changes (Δ H) and entropy changes (Δ S) between BSA and the compounds are calculated. Based on the values of Δ H and Δ S, it is judged that the main acting force of PtL 2·C 3H 6O·2H 2O with BSA may be electrostatic interaction, and for the LH 2OCH 3, Ag 6L 6 and PdL 2, hydrophobic and electrostatic interactions may be involved in their binding processes.

  10. Stereochemical control over Mn(II)-Thio versus Mn(II)-Oxy coordination in adenosine 5 prime -O-(1-thiodiphosphate) complexes at the active site of creatine kinase

    SciTech Connect

    Smithers, G.W.; Sammons, R.D.; Goodhart, P.J.

    1989-02-21

    The stereochemical configurations of the Mn(II) complexes with the resolved epimers of adenosine 5{prime}-O-(1-thiodiphosphate) (ADP{alpha}S), bound at the active site of creatine kinase, have been determined in order to assess the relative strengths of enzymic stereoselectivity versus Lewis acid/base preferences in metal-ligand binding. Electron paramagnetic resonance (EPR) data have been obtained for Mn(II) in anion-stabilized, dead-end (transition-state analogue) complexes, in ternary enzyme-Mn{sup II}ADP{alpha}S complexes, and in the central complexes of the equilibrium mixture. The modes of coordination of Mn(II) at P{sub alpha} in the nitrate-stabilized, dead-end complexes with each epimer of ADP{alpha}S were ascertained by EPR measurements with (R{sub p})-({alpha}-{supmore » 17}O)ADP{alpha}S and (S{sub p})-({alpha}-{sup 17}O)ADP{alpha}S. A reduction in the magnitude of the {sup 55}Mn hyperfine coupling constant in the spectrum for the complex containing (S{sub p})-ADP{alpha}S is indicative of Mn(II)-thio coordination at P{sub alpha}. The results indicate that a strict discrimination for a unique configuration of the metal-nucleotide substrate is expressed upon binding of all of the substrates to form the active complex (or an analogue thereof). This enzymic stereoselectivity provides sufficient binding energy to overcome an intrinsic preference for the hard Lewis acid Mn(II) to coordinate to the hard Lewis base oxygen.« less

  11. Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2‧-hydroxynaphyhaline

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; El-Ghamry, Hoda; Atlam, Faten; Fathalla, Shaimaa

    2015-02-01

    Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2‧-hydroxynaphthaline have been isolated and characterized by elemental analysis, IR, 1H NMR, EI-mass, UV-vis, molar conductance, magnetic moment measurements and thermogravimetric analysis. The molar conductance values indicated that the complexes are non-electrolytes. The magnetic moment values of the complexes displayed diamagnetic behavior for Pd(II) and Pt(II) complexes and tetrahedral geometrical structure for Ni(II) complex. From the bioinorganic applications point of view, the interaction of the ligand and its metal complexes with CT-DNA was investigated using absorption and viscosity titration techniques. The Schiff-base ligand and its metal complexes have also been screened for their antimicrobial and antitumor activities. Also, theoretical investigation of molecular and electronic structures of the studied ligand and its metal complexes has been carried out. Molecular orbital calculations were performed using DFT (density functional theory) at B3LYP level with standard 6-31G(d,p) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations were performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), Mulliken atomic charges, reactivity index (ΔE), dipole moment (D), global hardness (η), softness (σ), electrophilicity index (ω), chemical potential and Mulliken electronegativity (χ).

  12. Sequential double second-order nonlinear optical switch by an acido-triggered photochromic cyclometallated platinum(II) complex.

    PubMed

    Boixel, Julien; Guerchais, Véronique; Le Bozec, Hubert; Chantzis, Agisilaos; Jacquemin, Denis; Colombo, Alessia; Dragonetti, Claudia; Marinotto, Daniele; Roberto, Dominique

    2015-05-07

    An unprecedented DTE-based Pt(II) complex, 2(o), which stands as the first example of a sequential double nonlinear optical switch, induced first by protonation and next upon irradiation with UV light is presented.

  13. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties

    NASA Astrophysics Data System (ADS)

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-01

    In this study, diacetylmonoximebenzoylhydrazone (L1H2) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L2H2) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L1H2 ligand, and 1:1 for L2H2 ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, 1H- and 13C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L1H2 ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N4O2 donor environment, while the L2H2 ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N2O2 donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L1H)2], and binuclear polymeric metal (II) complexes [{M2(L2)}n]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co2+, Ni2+, Cu2+, Zn2+ and Pb2+] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L1H2) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L2H2) ligand shows strong binding ability toward nickel(II) and zinc(II) ions.

  14. Zn(II), Ni(II), Cu(II) and Pb(II) complexes of tridentate asymmetrical Schiff base ligands: Synthesis, characterization, properties and biological activity

    NASA Astrophysics Data System (ADS)

    Şahin, Mustafa; Koçak, Nuriye; Erdenay, Damla; Arslan, Uğur

    2013-02-01

    New asymmetrical tridentate Schiff base ligands were synthesized using 1,2-phenylenediamine, 4-methyl-1,2-phenylenediamine, 2-hydroxy-1-napthaldehyde, 9-anthracenecarboxaldehyde. Schiff base ligands and their metal complexes were synthesised and characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, XRD, ESR, elemental analysis and fluorescence studies. The antimicrobial activity of the ligands and their metal complexes were studied against Staphylococcus aureus ATCC 29213, S. aureus ATCC 25923, Streptococcus mutans RSHM 676, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853. The determination of the antibacterial activity was done using the broth microdilution methods. In general, it has been determined that the studied compounds have MIC values similar to Gram-positive and Gram-negative bacteria. It has been found that Ni, Pb, Zn derivatives of HL1A and ZnL2A has lower MIC values than ampicillin for P. aeruginosa ATCC 27853 strain.

  15. Polymeric material prepared from Schiff base based on O-carboxymethyl chitosan and its Cu(II) and Pd(II) complexes

    NASA Astrophysics Data System (ADS)

    Baran, Talat; Menteş, Ayfer

    2016-07-01

    In this study, a new eco-friendly Schiff base based on O-carboxymethyl chitosan ([OCMCS-7a]) and its copper(II) and palladium(II) complexes were synthesized. Characterizations of [OCMCS-7a] and its metal complexes were conducted using FTIR, 1H NMR, 13C NMR, TG/DTG, XRD, SEM-EDAX, ICP, UV-VIS, GC-MS, elemental analysis, magnetic moment and molar conductivity measurements. The degree of substitution (DS) of [OCMCS-7a] was determined by elemental analysis to be 0.44. It was shown by the solubility test that [OCMCS-7a] was completely soluble in water. Surface images of chitosan, [OCMCS-7a] and its Cu(II) and Pd(II) complexes were investigated using the SEM-EDAX technique. Their thermal behaviors and crystallinities of the synthesized complexes were determined by TG/DTG and X-ray powder diffraction techniques, respectively. The metal contents of the obtained complexes were determined using an ICP-OES instrument. From the analyses, it was noted that the thermal stabilities and crystallinities of [OCMCS-7a] and its complexes decreased compared to chitosan. As a consequence of surface screening, it was also noted that the surface structure of the chitosan was smoother than that of the obtained compounds.

  16. STAR FORMATION AND YOUNG POPULATION OF THE H II COMPLEX Sh2-294

    SciTech Connect

    Samal, M. R.; Pandey, A. K.; Chauhan, N.

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 {mu}m observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H{sub 2} (2.12 {mu}m) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Classmore » I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H{sub 2} emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass (<4 M{sub Sun }) YSOs; however, we also detected a massive YSO ({approx}9 M{sub Sun }) of Class I nature, embedded in a cloud of visual extinction of {approx}24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age {approx} 4.5 Multiplication-Sign 10{sup 6} yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a {approx}4 Multiplication-Sign 10{sup 6} yr B0 main-sequence star.« less

  17. Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints.

    PubMed

    Bezawork-Geleta, Ayenachew; Wen, He; Dong, LanFeng; Yan, Bing; Vider, Jelena; Boukalova, Stepana; Krobova, Linda; Vanova, Katerina; Zobalova, Renata; Sobol, Margarita; Hozak, Pavel; Novais, Silvia Magalhaes; Caisova, Veronika; Abaffy, Pavel; Naraine, Ravindra; Pang, Ying; Zaw, Thiri; Zhang, Ping; Sindelka, Radek; Kubista, Mikael; Zuryn, Steven; Molloy, Mark P; Berridge, Michael V; Pacak, Karel; Rohlena, Jakub; Park, Sunghyouk; Neuzil, Jiri

    2018-06-07

    Cell growth and survival depend on a delicate balance between energy production and synthesis of metabolites. Here, we provide evidence that an alternative mitochondrial complex II (CII) assembly, designated as CII low , serves as a checkpoint for metabolite biosynthesis under bioenergetic stress, with cells suppressing their energy utilization by modulating DNA synthesis and cell cycle progression. Depletion of CII low leads to an imbalance in energy utilization and metabolite synthesis, as evidenced by recovery of the de novo pyrimidine pathway and unlocking cell cycle arrest from the S-phase. In vitro experiments are further corroborated by analysis of paraganglioma tissues from patients with sporadic, SDHA and SDHB mutations. These findings suggest that CII low is a core complex inside mitochondria that provides homeostatic control of cellular metabolism depending on the availability of energy.

  18. Vibronic Coupling Investigation to Compute Phosphorescence Spectra of Pt(II) Complexes.

    PubMed

    Vazart, Fanny; Latouche, Camille; Bloino, Julien; Barone, Vincenzo

    2015-06-01

    The present paper reports a comprehensive quantum mechanical investigation on the luminescence properties of several mono- and dinuclear platinum(II) complexes. The electronic structures and geometric parameters are briefly analyzed together with the absorption bands of all complexes. In all cases agreement with experiment is remarkable. Next, emission (phosphorescence) spectra from the first triplet states have been investigated by comparing different computational approaches and taking into account also vibronic effects. Once again, agreement with experiment is good, especially using unrestricted electronic computations coupled to vibronic contributions. Together with the intrinsic interest of the results, the robustness and generality of the approach open the opportunity for computationally oriented chemists to provide accurate results for the screening of large targets which could be of interest in molecular materials design.

  19. Magnetic exchange couplings from noncollinear perturbation theory: dinuclear CuII complexes.

    PubMed

    Phillips, Jordan J; Peralta, Juan E

    2014-08-07

    To benchmark the performance of a new method based on noncollinear coupled-perturbed density functional theory [J. Chem. Phys. 138, 174115 (2013)], we calculate the magnetic exchange couplings in a series of triply bridged ferromagnetic dinuclear Cu(II) complexes that have been recently synthesized [Phys. Chem. Chem. Phys. 15, 1966 (2013)]. We find that for any basis-set the couplings from our noncollinear coupled-perturbed methodology are practically identical to those of spin-projected energy-differences when a hybrid density functional approximation is employed. This demonstrates that our methodology properly recovers a Heisenberg description for these systems, and is robust in its predictive power of magnetic couplings. Furthermore, this indicates that the failure of density functional theory to capture the subtle variation of the exchange couplings in these complexes is not simply an artifact of broken-symmetry methods, but rather a fundamental weakness of current approximate density functionals for the description of magnetic couplings.

  20. Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex

    PubMed Central

    Van Eerden, Floris J.; Melo, Manuel N.; Frederix, Pim W. J. M.; Periole, Xavier; Marrink, Siewert J.

    2017-01-01

    Plastoquinone (PLQ) acts as an electron carrier between photosystem II (PSII) and the cytochrome b6f complex. To understand how PLQ enters and leaves PSII, here we show results of coarse grained molecular dynamics simulations of PSII embedded in the thylakoid membrane, covering a total simulation time of more than 0.5 ms. The long time scale allows the observation of many spontaneous entries of PLQ into PSII, and the unbinding of plastoquinol (PLQol) from the complex. In addition to the two known channels, we observe a third channel for PLQ/PLQol diffusion between the thylakoid membrane and the PLQ binding sites. Our simulations point to a promiscuous diffusion mechanism in which all three channels function as entry and exit channels. The exchange cavity serves as a PLQ reservoir. Our simulations provide a direct view on the exchange of electron carriers, a key step of the photosynthesis machinery. PMID:28489071

  1. Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.

    PubMed

    Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela

    2010-02-19

    The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition. Copyright 2009. Published by Elsevier B.V.

  2. Young stellar population and ongoing star formation in the H II complex Sh2-252

    NASA Astrophysics Data System (ADS)

    Jose, Jessy; Pandey, A. K.; Samal, M. R.; Ojha, D. K.; Ogura, K.; Kim, J. S.; Kobayashi, N.; Goyal, A.; Chauhan, N.; Eswaraiah, C.

    2013-07-01

    In this paper, an extensive survey of the star-forming complex Sh2-252 has been undertaken with an aim to explore its hidden young stellar population as well as to understand the structure and star formation history for the first time. This complex is composed of five prominent embedded clusters associated with the subregions A, C, E, NGC 2175s and Teu 136. We used Two Micron All Sky Survey-near-infrared and Spitzer-Infrared Array Camera, Multiband Imaging Photometer for Spitzer photometry to identify and classify the young stellar objects (YSOs) by their infrared (IR) excess emission. Using the IR colour-colour criteria, we identified 577 YSOs, of which, 163 are Class I, 400 are Class II and 14 are transition disc YSOs, suggesting a moderately rich number of YSOs in this complex. Spatial distribution of the candidate YSOs shows that they are mostly clustered around the subregions in the western half of the complex, suggesting enhanced star formation activity towards its west. Using the spectral energy distribution and optical colour-magnitude diagram-based age analyses, we derived probable evolutionary status of the subregions of Sh2-252. Our analysis shows that the region A is the youngest (˜0.5 Myr), the regions B, C and E are of similar evolutionary stage (˜1-2 Myr) and the clusters NGC 2175s and Teu 136 are slightly evolved (˜2-3 Myr). Morphology of the region in the 1.1 mm map shows a semicircular shaped molecular shell composed of several clumps and YSOs bordering the western ionization front of Sh2-252. Our analyses suggest that next generation star formation is currently under way along this border and that possibly fragmentation of the matter collected during the expansion of the H II region as one of the major processes is responsible for such stars. We observed the densest concentration of YSOs (mostly Class I, ˜0.5 Myr) at the western outskirts of the complex, within a molecular clump associated with water and methanol masers and we suggest that it

  3. Copper(II) complexes with uridine, uridine 5'-monophosphate, spermidine, or spermine in aqueous solution.

    PubMed

    Lomozik, Lechoslaw; Jastrzab, Renata

    2003-01-15

    Molecular complexes of the types (Urd)H(x)(PA) and (UMP)H(x)(PA) are formed in the uridine (Urd) or uridine 5'-monophosphate (UMP) plus spermidine or spermine systems, as shown by the results of equilibrium and spectral studies. Overall stability constants of the adducts and equilibrium constants of their formation have been determined. An increase in the efficiency of the reaction between the bioligands is observed with increasing length of the polyamine. The pH range of adduct formation is found to coincide with that in which the polyamine is protonated while uridine or its monophosphate is deprotonated. The -NH(x)(+) groups from PA and the N(3) atom of the purine base as well as phosphate groups from the nucleotides have been identified as the significant centres of non-covalent interactions. Compared to cytidine, the pH range of Urd adduct formation is shifted significantly higher due to differences in the protonation constants of the endocyclic N(3) donor atoms of particular nucleosides. Overall stability constants of the Cu(II) complexes with uridine and uridine 5'-monophosphate in ternary systems with spermidine or spermine have been determined. It has been found from spectral data that in the Cu(II) ternary complexes with nucleosides and polyamines the reaction of metallation involves mainly N(3) atoms from the pyrimidine bases, as well as the amine groups of PA. This unexpected type of interaction has been evidenced in the coordination mode of the complexes forming in the Cu-UMP systems including spermidine or spermine. Results of spectral and equilibrium studies indicate that the phosphate groups taking part in metallation are at the same time involved in non-covalent interaction with the protonated polyamine.

  4. Persistent Ehrlichia chaffeensis infection occurs in the absence of functional major histocompatibility complex class II genes

    NASA Technical Reports Server (NTRS)

    Ganta, Roman Reddy; Wilkerson, Melinda J.; Cheng, Chuanmin; Rokey, Aaron M.; Chapes, Stephen K.

    2002-01-01

    Human monocytic ehrlichiosis is an emerging tick-borne disease caused by the rickettsia Ehrlichia chaffeensis. We investigated the impact of two genes that control macrophage and T-cell function on murine resistance to E. chaffeensis. Congenic pairs of wild-type and toll-like receptor 4 (tlr4)- or major histocompatibility complex class II (MHC-II)-deficient mice were used for these studies. Wild-type mice cleared the infection within 2 weeks, and the response included macrophage activation and the synthesis of E. chaffeensis-specific Th1-type immunoglobulin G response. The absence of a functional tlr4 gene depressed nitric oxide and interleukin 6 secretion by macrophages and resulted in short-term persistent infections for > or =30 days. In the absence of MHC-II alleles, E. chaffeensis infections persisted throughout the entire 3-month evaluation period. Together, these data suggest that macrophage activation and cell-mediated immunity, orchestrated by CD4(+) T cells, are critical for conferring resistance to E. chaffeensis.

  5. Synthesis, Electrochemistry, and Excited-State Properties of Three Ru(II) Quaterpyridine Complexes

    DOE PAGES

    Rudd, Jennifer A.; Brennaman, M. Kyle; Michaux, Katherine E.; ...

    2016-03-09

    The complexes [Ru(qpy)LL']2+ (qpy = 2,2':6',2'':6'',2''-quaterpyridine), with 1: L = acetonitrile, L'= chloride; 2: L = L'= acetonitrile; and 3: L = L'= vinylpyridine, have been prepared from [Ru(qpy) (Cl)2]. Their absorption spectra in CH3CN exhibit broad metal-to-ligand charge transfer (MLCT) absorptions arising from overlapping 1A1 → 1MLCT transitions. Photoluminescence is not observed at room temperature, but all three are weakly emissive in 4:1 ethanol/methanol glasses at 77 K with broad, featureless emissions observed between 600 and 1000 nm consistent with MLCT phosphorescence. Cyclic voltammograms in CH3CN reveal the expected RuIII/II redox couples. In 0.1 M trifluoroacetic acid (TFA), 1more » and 2 undergo aquation to give [RuII(qpy)(OH2)2]2+, as evidenced by the appearance of waves for the couples [RuIII(qpy)(OH2)2]3+/[RuII(qpy)(OH2)2]2+, [RuIV(qpy)(O)(OH2)]2+/[RuIII(qpy)(OH2)2]3+, and [RuVI(qpy)(O)2]2+/[RuIV(qpy)(O)(OH2)]2+ in cyclic voltammograms.« less

  6. Crystal structures of botulinum neurotoxin DC in complex with its protein receptors synaptotagmin I and II.

    PubMed

    Berntsson, Ronnie Per-Arne; Peng, Lisheng; Svensson, Linda Marie; Dong, Min; Stenmark, Pål

    2013-09-03

    Botulinum neurotoxins (BoNTs) can cause paralysis at exceptionally low concentrations and include seven serotypes (BoNT/A-G). The chimeric BoNT/DC toxin has a receptor binding domain similar to the same region in BoNT/C. However, BoNT/DC does not share protein receptor with BoNT/C. Instead, it shares synaptotagmin (Syt) I and II as receptors with BoNT/B, despite their low sequence similarity. Here, we present the crystal structures of the binding domain of BoNT/DC in complex with the recognition domains of its protein receptors, Syt-I and Syt-II. The structures reveal that BoNT/DC possesses a Syt binding site, distinct from the established Syt-II binding site in BoNT/B. Structure-based mutagenesis further shows that hydrophobic interactions play a key role in Syt binding. The structures suggest that the BoNT/DC ganglioside binding sites are independent of the protein receptor binding site. Our results reveal the remarkable versatility in the receptor recognition of the BoNTs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    NASA Technical Reports Server (NTRS)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  8. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-01

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.

  9. Synthesis and characterization of a series of transition metal complexes with a new symmetrical polyoxaaza macroacyclic Schiff base ligand: X-ray crystal structure of cobalt(II) and nickel(II) complexes and their antibacterial properties

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura

    2013-01-01

    A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.

  10. Synthesis, structure, spectroscopic and electrochemical properties of bis(histamine-saccharinate) copper(II) complex

    NASA Astrophysics Data System (ADS)

    Bulut, İclal; Uçar, İbrahim; Karabulut, Bünyamin; Bulut, Ahmet

    2007-05-01

    Crystal structure of [Cu(hsm) 2(sac) 2] (hsm is histamine and sac is saccharinate) complex has been determined by X-ray diffraction analyses and its magnetic environment has been identified by electron paramagnetic resonance (EPR) technique. The title complex crystallizes in the monoclinic system, space group P 21/ c with a = 7.4282(4), b = 22.5034(16), c = 8.3300(5) Å, β = 106.227(4)°, V = 1336.98(14) Å 3, and Z = 2. The structure consist of discrete [Cu(hsm) 2(sac) 2] molecules in which the copper ion is centrosymmetrically coordinated by two histamine ligands forming an equatorial plane [Cu-N hsm = 2.024(2) and Cu-N hsm = 2.0338(18) Å]. Two N atoms from the saccharinate ligands coordinate on the elongated axial positions with Cu-N sac being 2.609(5) Å. The complex is also characterized by spectroscopic (IR, UV/Vis) and thermal (TG, and TDA) methods. The cyclic voltammogram of the title complex investigated in DMSO (dimethylsulfoxide) solution exhibits only metal centred electroactivity in the potential range - 1.25-1.5 V versus Ag/AgCl reference electrode. The molecular orbital bond coefficients of Cu(II) ion in d 9 state is also calculated by using EPR and optical absorption parameters.

  11. Ultrafast relaxation dynamics of amine-substituted bipyridyl ruthenium(II) complexes

    NASA Astrophysics Data System (ADS)

    Song, Hongwei; Wang, Xian; Yang, WenWen; He, Guiying; Kuang, Zhuoran; Li, Yang; Xia, Andong; Zhong, Yu-Wu; Kong, Fan'ao

    2017-09-01

    The excited state properties of a series of ruthenium(II) amine-substituted bipyridyl complexes, [Ru(bpy)n(NNbpy)3-n]2+, were investigated by steady-state and transient absorption spectroscopy, as well as quantum chemical calculations. The steady-state absorption spectra of these complexes in CH3CN show a distinct red-shift of the 1MLCT absorption with increasing numbers of amine substituent, whereas the emission spectra indicate an energy gap order of [Ru(bpy)3]2+ > [Ru(bpy)2(NNbpy)]2+ > [Ru(NNbpy)3]2+ > [Ru(bpy)(NNbpy)2]2+. Nanosecond, femtosecond transient absorption and electrochemical measurements suggest that NNbpy ligand has a strong influence on the electronic and emission properties of these complexes, due to electron-rich amine substituent. We illustrate how the numbers of amine s