Science.gov

Sample records for ii type-1 receptor

  1. Effects of angiotensin II type 1 receptor blocker on bones in mice with type 1 diabetes induced by streptozotocin.

    PubMed

    Zhang, Yan; Diao, Teng-Yue; Gu, Sa-Sa; Wu, Shu-Yan; Gebru, Yoseph A; Chen, Xi; Wang, Jing-Yu; Ran, Shu; Wong, Man-Sau

    2014-09-01

    This study was performed to address the pathological roles of the skeletal renin-angiotensin system (RAS) in type 1 diabetes-induced osteoporosis and the effects of the angiotensin II type 1 receptor blocker losartan on bones in diabetic mice. Bone histomorphology was detected by H&E staining, Safranin O staining and X-ray radiography. Micro-CT was performed for the analysis of bone parameters. Gene and protein expression were determined by RT-PCR and immunoblotting. Type 1 diabetic mice displayed osteopenia phenotype, and losartan treatment had no osteoprotective effects on diabetic mice as shown by the reduction of bone mineral density and microarchitectural parameters at the proximal metaphysis of the tibia. The mRNA expression of AGT, renin receptor and ACE, and protein expression of renin and AT1R were markedly up-regulated in the bones of vehicle-treated diabetic mice compared to those of non-diabetic mice. The treatment with losartan further significantly increased the expression of AGT, renin, angiotensin II and AT1R, and reduced the expression of AT2R receptor as compared to those of diabetic mice. Local bone RAS functionally played a role in the development of type 1 diabetic osteoporosis, and losartan had no bone-sparing function in diabetes mice because of enhance skeletal RAS activity. © The Author(s) 2013.

  2. Angiotensin II Type 1 Receptor-Dependent GLP-1 and PYY Secretion in Mice and Humans

    PubMed Central

    Pais, Ramona; Rievaj, Juraj; Larraufie, Pierre

    2016-01-01

    Angiotensin II (Ang II) is the key hormone mediator of the renin angiotensin system, which regulates blood pressure and fluid and electrolyte balance in the body. Here we report that in the colonic epithelium, the Ang II type 1 receptor is highly and exclusively expressed in enteroendocrine L cells, which produce the gut hormones glucagon-like peptide-1 and peptide YY (PYY). Ang II stimulated glucagon-like peptide-1 and PYY release from primary cultures of mouse and human colon, which was antagonized by the specific Ang II type 1 receptor blocker candesartan. Ang II raised intracellular calcium levels in L cells in primary cultures, recorded by live-cell imaging of L cells specifically expressing the fluorescent calcium sensor GCaMP3. In Ussing chamber recordings, Ang II reduced short circuit currents in mouse distal colon preparations, which was antagonized by candesartan or a specific neuropeptide Y1 receptor inhibitor but insensitive to amiloride. We conclude that Ang II stimulates PYY secretion, in turn inhibiting epithelial anion fluxes, thereby reducing net fluid secretion into the colonic lumen. Our findings highlight an important role of colonic L cells in whole-body fluid homeostasis by controlling water loss through the intestine. PMID:27447725

  3. Angiotensin II type 1 receptor-mediated augmentation of renal interstitial fluid angiotensin II in angiotensin II-induced hypertension.

    PubMed

    Nishiyama, Akira; Seth, Dale M; Navar, L Gabriel

    2003-10-01

    Angiotensin II (Ang II)-dependent hypertension is associated with augmented intrarenal concentrations of Ang II; however, the distribution of the increased intrarenal Ang II has not been fully established. To determine the changes in renal interstitial fluid Ang II concentrations in Ang II-induced hypertension and the consequences of treatment with an angiotensin II type 1 (AT1) receptor blocker. Rats were selected to receive vehicle (5% acetic acid subcutaneously; n = 6), Ang II (80 ng/min subcutaneously, via osmotic minipump; n = 7) or Ang II plus an AT1 receptor antagonist, candesartan cilexetil (10 mg/kg per day, in drinking water; n = 6) for 13-14 days, at which time, experiments were performed on anesthetized rats. Microdialysis probes were implanted in the renal cortex and were perfused at 2 microl/min. The effluent dialysate concentrations of Ang I and Ang II were measured by radioimmunoassay and reported values were corrected for the equilibrium rates at this perfusion rate. Ang II-infused rats developed greater mean arterial pressures (155 +/- 7 mmHg) than vehicle-infused rats (108 +/- 3 mmHg). Ang II-infused rats showed greater plasma (181 +/- 30 fmol/ml) and kidney (330 +/- 38 fmol/g) Ang II concentrations than vehicle-infused rats (98 +/- 14 fmol/ml and 157 +/- 22 fmol/g, respectively). Renal interstitial fluid Ang II concentrations were much greater than plasma concentrations, averaging 5.74 +/- 0.26 pmol/ml in Ang II-infused rats - significantly greater than those in vehicle-infused rats (2.86 +/- 0.23 pmol/ml). Candesartan treatment prevented the hypertension (87 +/- 3 mmHg) and led to increased plasma Ang II concentrations (441 +/- 27 fmol/ml), but prevented increases in kidney (120 +/- 15 fmol/g) and renal interstitial fluid (2.15 +/- 0.12 pmol/ml) Ang II concentrations. These data indicate that Ang II-infused rats develop increased renal interstitial fluid concentrations of Ang II, which may contribute to the increased vascular resistance and

  4. Activation Induces Structural Changes in the Liganded Angiotensin II Type 1 Receptor*

    PubMed Central

    Clément, Martin; Cabana, Jérôme; Holleran, Brian J.; Leduc, Richard; Guillemette, Gaétan; Lavigne, Pierre; Escher, Emanuel

    2009-01-01

    The octapeptide hormone angiotensin II (AngII) binds to and activates the human angiotensin II type 1 receptor (hAT1) of the G protein-coupled receptor class A family. Several activation mechanisms have been proposed for this family, but they have not yet been experimentally validated. We previously used the methionine proximity assay to show that 11 residues in transmembrane domain (TMD) III, VI, and VII of the hAT1 receptor reside in close proximity to the C-terminal residue of AngII. With the exception of a single change in TMD VI, the same contacts are present on N111G-hAT1, a constitutively active mutant; this N111G-hAT1 is a model for the active form of the receptor. In this study, two series of 53 individual methionine mutations were constructed in TMD I, II, IV, and V on both receptor forms. The mutants were photolabeled with a neutral antagonist, 125I-[Sar1,p-benzoyl-l-Phe8]AngII, and the resulting complexes were digested with cyanogen bromide. Although no new contacts were found for the hAT1 mutants, two were found in the constitutively active mutants, Phe-77 in TMD II and Asn-200 in TMD V. To our knowledge, this is the first time that a direct ligand contact with TMD II and TMD V has been reported. These contact point differences were used to identify the structural changes between the WT-hAT1 and N111G-hAT1 complexes through homology-based modeling and restrained molecular dynamics. The model generated revealed an important structural rearrangement of several TMDs from the basal to the activated form in the WT-hAT1 receptor. PMID:19635801

  5. Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade

    PubMed Central

    Tsukuda, Kana; Mogi, Masaki; Iwanami, Jun; Kanno, Harumi; Nakaoka, Hirotomo; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Higaki, Akinori; Yamauchi, Toshifumi; Min, Li-Juan; Horiuchi, Masatsugu

    2016-01-01

    Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named ‘beige’ or ‘brite’ adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders. PMID:27992452

  6. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor

    PubMed Central

    Unal, Hamiyet; Karnik, Sadashiva S.; Node, Koichi

    2015-01-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109TM3, Phe182ECL2, Gln257TM6, Tyr292TM7, and Asn295TM7) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108TM3, Ser109TM3, Ala163TM4, Phe182ECL2, Lys199TM5, Tyr292TM7, and Asn295TM7), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R. PMID:26121982

  7. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor.

    PubMed

    Takezako, Takanobu; Unal, Hamiyet; Karnik, Sadashiva S; Node, Koichi

    2015-09-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109(TM3), Phe182(ECL2), Gln257(TM6), Tyr292(TM7), and Asn295(TM7)) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108(TM3), Ser109(TM3), Ala163(TM4), Phe182(ECL2), Lys199(TM5), Tyr292(TM7), and Asn295(TM7)), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R.

  8. Angiotensin II type 1 receptor blocker inhibits arterial calcification in a pre-clinical model.

    PubMed

    Armstrong, Zachary B; Boughner, Derek R; Drangova, Maria; Rogers, Kem A

    2011-04-01

    Arterial calcification is a common complication of several disorders and is a strong predictor of mortality. The mechanism underlying arterial calcification is not fully understood and as such, no pharmaceutical therapies are currently available which impede its progression. The aim of this study was to investigate the effects of an angiotensin II (AngII) type 1 receptor blocker (ARB) on arterial calcification. Male New Zealand White rabbits were fed an atherogenic diet to induce atherosclerosis and arterial calcification over a period of 12 weeks, with an ARB administered in the final 4 weeks. Using clinically relevant micro-computed tomography, we found that animals fed the atherogenic diet displayed extensive arterial calcification when compared with control. In contrast, administration of the ARB completely inhibited calcification (2.80 ± 1.17 vs. 0.01 ± 0.01% calcified tissue in cholesterol and ARB-treated, respectively; n = 6 and 5; P < 0.05). Calcified regions were characterized by up-regulation of bone morphogenetic protein 2, osteocalcin, and the AngII type 1 receptor and concomitant down-regulation of α-smooth muscle actin, consistent with a phenotypic switch from vascular to osteoblast-like cells. These data provide the first evidence that angiotensin receptor blockade can inhibit arterial calcification by disrupting vascular osteogenesis and suggest that ARBs may be a novel treatment option for patients suffering from vascular calcification.

  9. Reassessment of the Unique Mode of Binding between Angiotensin II Type 1 Receptor and Their Blockers

    PubMed Central

    Matsuo, Yoshino; Saku, Keijiro; Karnik, Sadashiva S.

    2013-01-01

    While the molecular structures of angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) are very similar, they are also slightly different. Although each ARB has been shown to exhibit a unique mode of binding to AT1 receptor, different positions of the AT1 receptor have been analyzed and computational modeling has been performed using different crystal structures for the receptor as a template and different kinds of software. Therefore, we systematically analyzed the critical positions of the AT1 receptor, Tyr113, Tyr184, Lys199, His256 and Gln257 using a mutagenesis study, and subsequently performed computational modeling of the binding of ARBs to AT1 receptor using CXCR4 receptor as a new template and a single version of software. The interactions between Tyr113 in the AT1 receptor and the hydroxyl group of olmesartan, between Lys199 and carboxyl or tetrazole groups, and between His256 or Gln257 and the tetrazole group were studied. The common structure, a tetrazole group, of most ARBs similarly bind to Lys199, His256 and Gln257 of AT1 receptor. Lys199 in the AT1 receptor binds to the carboxyl group of EXP3174, candesartan and azilsartan, whereas oxygen in the amidecarbonyl group of valsartan may bind to Lys199. The benzimidazole portion of telmisartan may bind to a lipophilic pocket that includes Tyr113. On the other hand, the n-butyl group of irbesartan may bind to Tyr113. In conclusion, we confirmed that the slightly different structures of ARBs may be critical for binding to AT1 receptor and for the formation of unique modes of binding. PMID:24260317

  10. Angiotensin II type 1 receptor A1166C gene polymorphism and essential hypertension in San Luis.

    PubMed

    Lapierre, Alicia Viviana; Arce, Maria Elena; Lopez, José Raul; Ciuffo, Gladys María

    2006-12-01

    Essential hypertension is considered a multifactorial trait resulting from a combination of environmental and genetic factors. The angiotensin II type 1 receptor mediates the vasoconstrictor and growth-promoting effects of Ang II. The A1166C polymorphism of the AT1 receptor gene may be associated with cardiovascular phenotypes, such as high arterial blood pressure, aortic stiffness, and increased cardiovascular risk. We investigated the association between this A1166C polymorphism and hypertension in hypertense and normotense subjects from San Luis (Argentina) by mismatch PCR-RFLP analysis. Hypertense patients exhibited significant increases in lipid related values and body mass index. The frequency of occurrence of the C1166 allele was higher among patients with hypertension (0.19) than in the control group (0.06). No significant association was found between this polymorphism and essential hypertension in the study population, although the AC genotype prevalence was higher in patients with hypertension and positive family history of hypertension (32%) than in control subjects (12%). Patients with the A1166C polymorphism exhibited higher levels of serum total cholesterol, LDL-cholesterol and BMI than in control subjects. Taken together the genotype and biochemical parameters and considering the restrictive selection criteria used, the present results suggest a correlation between AT1 A1166C gene polymorphism and risk of cardiovascular disease.

  11. Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent.

    PubMed

    Zhang, Zhi-Hua; Yu, Yang; Wei, Shun-Guang; Felder, Robert B

    2012-02-01

    Angiotensin II (ANG II)-induced mitogen-activated protein kinase (MAPK) signaling upregulates angiotensin II type-1 receptors (AT(1)R) in hypothalamic paraventricular nucleus (PVN) and contributes to AT(1)R-mediated sympathetic excitation in heart failure. Aldosterone has similar effects to increase AT(1)R expression in the PVN and sympathetic drive. The present study was undertaken to determine whether aldosterone also activates the sympathetic nervous system via MAPK signaling and, if so, whether its effect is independent of ANG II and AT(1)R. In anesthetized rats, a 4-h intravenous infusion of aldosterone induced increases (P < 0.05) in phosphorylated (p-) p44/42 MAPK in PVN, PVN neuronal excitation, renal sympathetic nerve activity (RSNA), mean blood pressure (MBP), and heart rate (HR). Intracerebroventricular or bilateral PVN microinjection of the p44/42 MAPK inhibitor PD-98059 reduced the aldosterone-induced RSNA, HR, and MBP responses. Intracerebroventricular pretreatment (5 days earlier) with pooled small interfering RNAs targeting p44/42 MAPK reduced total and p-p44/42 MAPK, aldosterone-induced c-Fos expression in the PVN, and the aldosterone-induced increases in RSNA, HR, and MBP. Intracerebroventricular infusion of either the mineralocorticoid receptor antagonist RU-28318 or the AT(1)R antagonist losartan blocked aldosterone-induced phosphorylation of p44/42 MAPK and prevented the increases in RSNA, HR, and MBP. These data suggest that aldosterone-induced sympathetic excitation depends upon that AT(1)R-induced MAPK signaling in the brain. The short time course of this interaction suggests a nongenomic mechanism, perhaps via an aldosterone-induced transactivation of the AT(1)R as described in peripheral tissues.

  12. Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent

    PubMed Central

    Zhang, Zhi-Hua; Yu, Yang; Wei, Shun-Guang

    2012-01-01

    Angiotensin II (ANG II)-induced mitogen-activated protein kinase (MAPK) signaling upregulates angiotensin II type-1 receptors (AT1R) in hypothalamic paraventricular nucleus (PVN) and contributes to AT1R-mediated sympathetic excitation in heart failure. Aldosterone has similar effects to increase AT1R expression in the PVN and sympathetic drive. The present study was undertaken to determine whether aldosterone also activates the sympathetic nervous system via MAPK signaling and, if so, whether its effect is independent of ANG II and AT1R. In anesthetized rats, a 4-h intravenous infusion of aldosterone induced increases (P < 0.05) in phosphorylated (p-) p44/42 MAPK in PVN, PVN neuronal excitation, renal sympathetic nerve activity (RSNA), mean blood pressure (MBP), and heart rate (HR). Intracerebroventricular or bilateral PVN microinjection of the p44/42 MAPK inhibitor PD-98059 reduced the aldosterone-induced RSNA, HR, and MBP responses. Intracerebroventricular pretreatment (5 days earlier) with pooled small interfering RNAs targeting p44/42 MAPK reduced total and p-p44/42 MAPK, aldosterone-induced c-Fos expression in the PVN, and the aldosterone-induced increases in RSNA, HR, and MBP. Intracerebroventricular infusion of either the mineralocorticoid receptor antagonist RU-28318 or the AT1R antagonist losartan blocked aldosterone-induced phosphorylation of p44/42 MAPK and prevented the increases in RSNA, HR, and MBP. These data suggest that aldosterone-induced sympathetic excitation depends upon that AT1R-induced MAPK signaling in the brain. The short time course of this interaction suggests a nongenomic mechanism, perhaps via an aldosterone-induced transactivation of the AT1R as described in peripheral tissues. PMID:22081704

  13. Inhibition of prolyl hydroxylase domain-containing protein downregulates vascular angiotensin II type 1 receptor.

    PubMed

    Matsuura, Hirohide; Ichiki, Toshihiro; Ikeda, Jiro; Takeda, Kotaro; Miyazaki, Ryohei; Hashimoto, Toru; Narabayashi, Eriko; Kitamoto, Shiro; Tokunou, Tomotake; Sunagawa, Kenji

    2011-09-01

    Inhibition of prolyl hydroxylase domain-containing protein (PHD) by hypoxia stabilizes hypoxia-inducible factor 1 and increases the expression of target genes, such as vascular endothelial growth factor. Although the systemic renin-angiotensin system is activated by hypoxia, the role of PHD in the regulation of the renin-angiotensin system remains unknown. We examined the effect of PHD inhibition on the expression of angiotensin II type 1 receptor (AT(1)R). Hypoxia, cobalt chloride, and dimethyloxalylglycine, all known to inhibit PHD, reduced AT(1)R expression in vascular smooth muscle cells. Knockdown of PHD2, a major isoform of PHDs, by RNA interference also reduced AT(1)R expression. Cobalt chloride diminished angiotensin II-induced extracellular signal-regulated kinase phosphorylation. Cobalt chloride decreased AT(1)R mRNA through transcriptional and posttranscriptional mechanisms. Oral administration of cobalt chloride (14 mg/kg per day) to C57BL/6J mice receiving angiotensin II infusion (490 ng/kg per minute) for 4 weeks significantly attenuated perivascular fibrosis of the coronary arteries without affecting blood pressure level. These data suggest that PHD inhibition may be beneficial for the treatment of cardiovascular diseases by inhibiting renin-angiotensin system via AT(1)R downregulation.

  14. Angiotensin II type 1a receptor signalling directly contributes to the increased arrhythmogenicity in cardiac hypertrophy

    PubMed Central

    Yasuno, Shinji; Kuwahara, Koichiro; Kinoshita, Hideyuki; Yamada, Chinatsu; Nakagawa, Yasuaki; Usami, Satoru; Kuwabara, Yoshihiro; Ueshima, Kenji; Harada, Masaki; Nishikimi, Toshio; Nakao, Kazuwa

    2013-01-01

    BACKGROUND AND PURPOSE Angiotensin II has been implicated in the development of various cardiovascular ailments, including cardiac hypertrophy and heart failure. The fact that inhibiting its signalling reduced the incidences of both sudden cardiac death and heart failure in several large-scale clinical trials suggests that angiotensin II is involved in increased cardiac arrhythmogenicity during the development of heart failure. However, because angiotensin II also promotes structural remodelling, including cardiomyocyte hypertrophy and cardiac fibrosis, it has been difficult to assess its direct contribution to cardiac arrhythmogenicity independently of the structural effects. EXPERIMENTAL APPROACH We induced cardiac hypertrophy in wild-type (WT) and angiotensin II type 1a receptor knockout (AT1aR-KO) mice by transverse aortic constriction (TAC). The susceptibility to ventricular tachycardia (VT) assessed in an in vivo electrophysiological study was compared in the two genotypes. The effect of acute pharmacological blockade of AT1R on the incidences of arrhythmias was also assessed. KEY RESULTS As described previously, WT and AT1aR-KO mice with TAC developed cardiac hypertrophy to the same degree, but the incidence of VT was much lower in the latter. Moreover, although TAC induced an increase in tyrosine phosphorylation of connexin 43, a critical component of gap junctional channels, and a reduction in ventricular levels of connexin 43 protein in both genotypes, the effect was significantly ameliorated in AT1aR-KO mice. Acute pharmacological blockade of AT1R also reduced the incidence of arrhythmias. CONCLUSIONS AND IMPLICATIONS Our findings demonstrate that AT1aR-mediated signalling makes a direct contribution to the increase in arrhythmogenicity in hypertrophied hearts independently of structural remodelling. PMID:23937445

  15. Angiotensin II type 1 receptor blockade suppresses light-induced neural damage in the mouse retina.

    PubMed

    Narimatsu, Toshio; Ozawa, Yoko; Miyake, Seiji; Nagai, Norihiro; Tsubota, Kazuo

    2014-06-01

    Exposure to light contributes to the development and progression of retinal degenerative diseases. However, the mechanisms underlying light-induced tissue damage are not fully understood. Here, we examined the role of angiotensin II type 1 receptor (AT1R) signaling, which is part of the renin-angiotensin system, in light-induced retinal damage. Light-exposed Balb/c mice that were treated with the AT1R blockers (angiotensin II receptor blockers; ARBs) valsartan, losartan, and candesartan before and after the light exposure exhibited attenuated visual function impairment, compared to vehicle-treated mice. This effect was dose-dependent and observed across the ARB class of inhibitors. Further evaluation of valsartan showed that it suppressed a number of light-induced retinal effects, including thinning of the photoreceptor cell layer caused by apoptosis, shortening of the photoreceptor cell outer segment, and increased levels of reactive oxygen species (ROS). The role of ROS in retinal pathogenesis was investigated further using the antioxidant N-acetyl-l-cysteine (NAC). Treatment of light-exposed mice with NAC before the light exposure suppressed the visual function impairment and photoreceptor cell histological changes due to apoptosis. Moreover, treatment with valsartan or NAC suppressed the induction of c-fos (a component of the AP-1 transcription factor) and the upregulation of fasl (a proapoptotic molecule whose transcript is regulated downstream of AP-1). Our results suggest that AT1R signaling mediates light-induced apoptosis, by increasing the levels of ROS and proapoptotic molecules in the retina. Thus, AT1R blockade may represent a new therapeutic approach for preventing light-induced retinal neural tissue damage. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Angiotensin II type 1 receptor blockers increase tolerance of cells to copper and cisplatin

    PubMed Central

    Spincemaille, Pieter; Chandhok, Gursimran; Zibert, Andree; Schmidt, Hartmut; Verbeek, Jef; Chaltin, Patrick; Cammue, Bruno P.; Cassiman, David; Thevissen, Karin

    2014-01-01

    The human pathology Wilson disease (WD) is characterized by toxic copper (Cu) accumulation in brain and liver, resulting in, among other indications, mitochondrial dysfunction and apoptosis of hepatocytes. In an effort to identify novel compounds that can alleviate Cu-induced toxicity, we screened the Pharmakon 1600 repositioning library using a Cu-toxicity yeast screen. We identified 2 members of the drug class of Angiotensin II Type 1 receptor blockers (ARBs) that could increase yeast tolerance to Cu, namely Candesartan and Losartan. Subsequently, we show that specific ARBs can increase yeast tolerance to Cu and/or the chemotherapeutic agent cisplatin (Cp). The latter also induces mitochondrial dysfunction and apoptosis in mammalian cells. We further demonstrate that specific ARBs can prevent the prevalence of Cu-induced apoptotic markers in yeast, with Candesartan Cilexetil being the ARB which demonstrated most pronounced reduction of apoptosis-related markers. Next, we tested the sensitivity of a selection of yeast knockout mutants affected in detoxification of reactive oxygen species (ROS) and Cu for Candesartan Cilexetil rescue in presence of Cu. These data indicate that Candesartan Cilexetil increases yeast tolerance to Cu irrespectively of major ROS-detoxifying proteins. Finally, we show that specific ARBs can increase mammalian cell tolerance to Cu, as well as decrease the prevalence of Cu-induced apoptotic markers. All the above point to the potential of ARBs in preventing Cu-induced toxicity in yeast and mammalian cells. PMID:28357214

  17. Angiotensin II type 1 receptor polymorphisms and susceptibility to hypertension: A HuGE review

    PubMed Central

    Mottl, Amy K.; Shoham, David A.; North, Kari E.

    2016-01-01

    The angiotensin II type 1 receptor (AGTR1) plays an integral role in blood pressure control, and is implicated in the pathogenesis of hypertension. Polymorphisms within this gene have been extensively studied in association with hypertension; however, findings are conflicting. To clarify these data, we conducted a systematic review of association studies of AGTR1 polymorphisms and hypertension, and performed a meta-analysis of the rs5186 variant. Results show that the currently available literature is too heterogeneous to draw meaningful conclusions. The definition of hypertension and gender composition of individual studies helps to explain this heterogeneity. Although the structure and splicing pattern of AGTR1 would suggest a likely effect of polymorphisms within the promoter region on gene function, few studies have been conducted thus far. In conclusion, there is insufficient evidence that polymorphisms in the AGTR1 gene are risk factors for hypertension. However, most studies are inadequately powered, and larger well-designed studies of haplotypes are warranted. PMID:18641512

  18. Dietary sodium intake regulates angiotensin II type 1, mineralocorticoid receptor, and associated signaling proteins in heart.

    PubMed

    Ricchiuti, Vincent; Lapointe, Nathalie; Pojoga, Luminita; Yao, Tham; Tran, Loc; Williams, Gordon H; Adler, Gail K

    2011-10-01

    Liberal or high-sodium (HS) intake, in conjunction with an activated renin-angiotensin-aldosterone system, increases cardiovascular (CV) damage. We tested the hypothesis that sodium intake regulates the type 1 angiotensin II receptor (AT(1)R), mineralocorticoid receptor (MR), and associated signaling pathways in heart tissue from healthy rodents. HS (1.6% Na(+)) and low-sodium (LS; 0.02% Na(+)) rat chow was fed to male healthy Wistar rats (n=7 animals per group). Protein levels were assessed by western blot and immunoprecipitation analysis. Fractionation studies showed that MR, AT(1)R, caveolin-3 (CAV-3), and CAV-1 were located in both cytoplasmic and membrane fractions. In healthy rats, consumption of an LS versus a HS diet led to decreased cardiac levels of AT(1)R and MR. Decreased sodium intake was also associated with decreased cardiac levels of CAV-1 and CAV-3, decreased immunoprecipitation of AT(1)R-CAV-3 and MR-CAV-3 complexes, but increased immunoprecipitation of AT(1)R/MR complexes. Furthermore, decreased sodium intake was associated with decreased cardiac extracellular signal-regulated kinase (ERK), phosphorylated ERK (pERK), and pERK/ERK ratio; increased cardiac striatin; decreased endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (peNOS), but increased peNOS/eNOS ratio; and decreased cardiac plasminogen activator inhibitor-1. Dietary sodium restriction has beneficial effects on the cardiac expression of factors associated with CV injury. These changes may play a role in the cardioprotective effects of dietary sodium restriction.

  19. Variations of the angiotensin II type 1 receptor gene are associated with extreme human longevity.

    PubMed

    Benigni, Ariela; Orisio, Silvia; Noris, Marina; Iatropoulos, Paraskevas; Castaldi, Davide; Kamide, Kei; Rakugi, Hiromi; Arai, Yasumichi; Todeschini, Marta; Ogliari, Giulia; Imai, Enyu; Gondo, Yasuyuki; Hirose, Nobuyoshi; Mari, Daniela; Remuzzi, Giuseppe

    2013-06-01

    Longevity phenotype in humans results from the influence of environmental and genetic factors. Few gene polymorphisms have been identified so far with a modest effect on lifespan leaving room for the search of other players in the longevity game. It has been recently demonstrated that targeted disruption of the mouse homolog of the human angiotensin II type 1 receptor (AT1R) gene (AGTR1) translates into marked prolongation of animal lifespan (Benigni et al., J Clin Invest 119(3):524-530, 2009). Based on the above study in mice, here we sought to search for AGTR1 variations associated to reduced AT1 receptor protein levels and to prolonged lifespan in humans. AGTR1 was sequenced in 173 Italian centenarians and 376 younger controls. A novel non-synonymous mutation was detected in a centenarian. Two polymorphisms in AGTR1 promoter, rs422858 and rs275653, in complete linkage disequilibrium, were significantly associated with the ability to attain extreme old age. We then replicated the study of rs275653 in a large independent cohort of Japanese origin (598 centenarians and semi-supercentenarians, 422 younger controls) and indeed confirmed its association with exceptional old age. In combined analyses, rs275653 was associated to extreme longevity either at recessive model (P = 0.007, odds ratio (OR) 3.57) or at genotype level (P = 0.015). Significance was maintained after correcting for confounding factors. Fluorescence activated cell sorting analysis revealed that subjects homozygous for the minor allele of rs275653 had less AT1R-positive peripheral blood polymorphonuclear cells. Moreover, rs275653 was associated to lower blood pressure in centenarians. These findings highlight the role of AGTR1 as a possible candidate among longevity-enabling genes.

  20. Angiotensin II type 1 receptor blockers as a first choice in patients with acute myocardial infarction

    PubMed Central

    Lee, Jang Hoon; Bae, Myung Hwan; Yang, Dong Heon; Park, Hun Sik; Cho, Yongkeun; Lee, Won Kee; Jeong, Myung Ho; Kim, Young Jo; Cho, Myeong Chan; Kim, Chong Jin; Chae, Shung Chull

    2016-01-01

    Background/Aims: Angiotensin II type 1 receptor blockers (ARBs) have not been adequately evaluated in patients without left ventricular (LV) dysfunction or heart failure after acute myocardial infarction (AMI). Methods: Between November 2005 and January 2008, 6,781 patients who were not receiving angiotensin-converting enzyme inhibitors (ACEIs) or ARBs were selected from the Korean AMI Registry. The primary endpoints were 12-month major adverse cardiac events (MACEs) including death and recurrent AMI. Results: Seventy percent of the patients were Killip class 1 and had a LV ejection fraction ≥ 40%. The prescription rate of ARBs was 12.2%. For each patient, a propensity score, indicating the likelihood of using ARBs during hospitalization or at discharge, was calculated using a non-parsimonious multivariable logistic regression model, and was used to match the patients 1:4, yielding 715 ARB users versus 2,860 ACEI users. The effect of ARBs on in-hospital mortality and 12-month MACE occurrence was assessed using matched logistic and Cox regression models. Compared with ACEIs, ARBs significantly reduced in-hospital mortality(1.3% vs. 3.3%; hazard ratio [HR], 0.379; 95% confidence interval [CI], 0.190 to0.756; p = 0.006) and 12-month MACE occurrence (4.6% vs. 6.9%; HR, 0.661; 95% CI, 0.457 to 0.956; p = 0.028). However, the benefit of ARBs on 12-month mortality compared with ACEIs was marginal (4.3% vs. 6.2%; HR, 0.684; 95% CI, 0.467 to 1.002; p = 0.051). Conclusions: Our results suggest that ARBs are not inferior to, and may actually be better than ACEIs in Korean patients with AMI. PMID:26701233

  1. Association of angiotensin II type 1 receptor polymorphism with resistant essential hypertension.

    PubMed

    Szombathy, T; Szalai, C; Katalin, B; Palicz, T; Romics, L; Császár, A

    1998-01-12

    Angiotensin II type 1 receptor (AT1) mediates the vasoconstrictive and growth-promoting effect of angiotensin II in humans. It has been reported that a polymorphism of the AT1 gene (an A/C transversion at position 1166: A-C1166) occurs more frequently in resistant hypertensives taking two or more antihypertensive drugs. On the contrary, a recent study of the influence of the A-C1166 polymorphism on aortic stiffness demonstrated that the distribution of the genotypes did not differ between normotensive and hypertensive subjects. In addition, a recent population-based survey of Caucasian hypertensives reported lower blood pressure values in CC homozygotes than in heterozygotes and AA homozygotes. Because of these controversial results and the lack of a sufficient amount of data the present study was designed to assess the contribution of the AT, gene A-C1166 polymorphism to resistant essential hypertension. Forty-eight subjects with resistant essential hypertension (HT) and 48 normotensive (NT), age and sex-adjusted controls (from a population of 300 healthy blood donors) were selected. All subjects were genotyped for the A-C1166 polymorphism in the 3'-UTR of the AT1 gene using PCR-based techniques. The influence of genotype on blood pressure (BP) was investigated using ANOVA Randomized Complete Block (ANOVA RCB) design according to sex, age and BMI. There were no significant differences in allele or genotype frequencies between HT and NT subjects (X2 = 0.61; P = NS). In HT subjects higher values of systolic blood pressure were associated with the C allele of the AT1 gene only in older and overweight patients (P < 0.001 and P < 0.001, respectively). Also in HT patients an association between the presence of the C allele of the AT1 gene and higher values of diastolic blood pressure was present in overweight patients (P = 0.001). These results suggest that in resistant hypertensive subjects the AT1 A-C1166 polymorphism is potentially involved in the regulation of blood

  2. Angiotensin-(1-7) Suppresses Hepatocellular Carcinoma Growth and Angiogenesis via Complex Interactions of Angiotensin II Type 1 Receptor, Angiotensin II Type 2 Receptor and Mas Receptor.

    PubMed

    Liu, Yanping; Li, Bin; Wang, Ximing; Li, Guishuang; Shang, Rui; Yang, Jianmin; Wang, Jiali; Zhang, Meng; Chen, Yuguo; Zhang, Yun; Zhang, Cheng; Hao, Panpan

    2015-07-27

    We recently confirmed that angiotensin II (Ang II) type 1 receptor (AT1R) was overexpressed in hepatocellular carcinoma tissue using a murine hepatoma model. Angiotensin(Ang)-(1-7) has been found beneficial in ameliorating lung cancer and prostate cancer. Which receptor of Ang-(1-7) is activated to mediate its effects is much speculated. This study was designed to investigate the effects of Ang-(1-7) on hepatocellular carcinoma, as well as the probable mechanisms. H22 hepatoma-bearing mice were randomly divided into five groups for treatment: mock group, low-dose Ang-(1-7), high-dose Ang-(1-7), high-dose Ang-(1-7) + A779 and high-dose Ang-(1-7) + PD123319. Ang-(1-7) treatment inhibited tumor growth time- and dose-dependently by arresting tumor proliferation and promoting tumor apoptosis as well as inhibiting tumor angiogenesis. The effects of Ang-(1-7) on tumor proliferation and apoptosis were reversed by coadministration with A779 or PD123319, whereas the effects on tumor angiogenesis were completely reversed by A779 but not by PD123319. Moreover, Ang-(1-7) downregulated AT1R mRNA, upregulated mRNA levels of Ang II type 2 receptor (AT2R) and Mas receptor (MasR) and p38-MAPK phosphorylation and suppressed H22 cell-endothelial cell communication. Thus, Ang-(1-7) administration suppresses hepatocellular carcinoma via complex interactions of AT1R, AT2R and MasR and may provide a novel and promising approach for the treatment of hepatocellular carcinoma.

  3. Angiotensin-(1–7) Suppresses Hepatocellular Carcinoma Growth and Angiogenesis via Complex Interactions of Angiotensin II Type 1 Receptor, Angiotensin II Type 2 Receptor and Mas Receptor

    PubMed Central

    Liu, Yanping; Li, Bin; Wang, Ximing; Li, Guishuang; Shang, Rui; Yang, Jianmin; Wang, Jiali; Zhang, Meng; Chen, Yuguo; Zhang, Yun; Zhang, Cheng; Hao, Panpan

    2015-01-01

    We recently confirmed that angiotensin II (Ang II) type 1 receptor (AT1R) was overexpressed in hepatocellular carcinoma tissue using a murine hepatoma model. Angiotensin(Ang)-(1–7) has been found beneficial in ameliorating lung cancer and prostate cancer. Which receptor of Ang-(1–7) is activated to mediate its effects is much speculated. This study was designed to investigate the effects of Ang-(1–7) on hepatocellular carcinoma, as well as the probable mechanisms. H22 hepatoma-bearing mice were randomly divided into five groups for treatment: mock group, low-dose Ang-(1–7), high-dose Ang-(1–7), high-dose Ang-(1–7) + A779 and high-dose Ang-(1–7) + PD123319. Ang-(1–7) treatment inhibited tumor growth time- and dose-dependently by arresting tumor proliferation and promoting tumor apoptosis as well as inhibiting tumor angiogenesis. The effects of Ang-(1–7) on tumor proliferation and apoptosis were reversed by coadministration with A779 or PD123319, whereas the effects on tumor angiogenesis were completely reversed by A779 but not by PD123319. Moreover, Ang-(1–7) downregulated AT1R mRNA, upregulated mRNA levels of Ang II type 2 receptor (AT2R) and Mas receptor (MasR) and p38-MAPK phosphorylation and suppressed H22 cell–endothelial cell communication. Thus, Ang-(1–7) administration suppresses hepatocellular carcinoma via complex interactions of AT1R, AT2R and MasR and may provide a novel and promising approach for the treatment of hepatocellular carcinoma. PMID:26225830

  4. Angiotensin II type 1/adenosine A 2A receptor oligomers: a novel target for tardive dyskinesia.

    PubMed

    Oliveira, Paulo A de; Dalton, James A R; López-Cano, Marc; Ricarte, Adrià; Morató, Xavier; Matheus, Filipe C; Cunha, Andréia S; Müller, Christa E; Takahashi, Reinaldo N; Fernández-Dueñas, Víctor; Giraldo, Jesús; Prediger, Rui D; Ciruela, Francisco

    2017-05-12

    Tardive dyskinesia (TD) is a serious motor side effect that may appear after long-term treatment with neuroleptics and mostly mediated by dopamine D2 receptors (D2Rs). Striatal D2R functioning may be finely regulated by either adenosine A2A receptor (A2AR) or angiotensin receptor type 1 (AT1R) through putative receptor heteromers. Here, we examined whether A2AR and AT1R may oligomerize in the striatum to synergistically modulate dopaminergic transmission. First, by using bioluminescence resonance energy transfer, we demonstrated a physical AT1R-A2AR interaction in cultured cells. Interestingly, by protein-protein docking and molecular dynamics simulations, we described that a stable heterotetrameric interaction may exist between AT1R and A2AR bound to antagonists (i.e. losartan and istradefylline, respectively). Accordingly, we subsequently ascertained the existence of AT1R/A2AR heteromers in the striatum by proximity ligation in situ assay. Finally, we took advantage of a TD animal model, namely the reserpine-induced vacuous chewing movement (VCM), to evaluate a novel multimodal pharmacological TD treatment approach based on targeting the AT1R/A2AR complex. Thus, reserpinized mice were co-treated with sub-effective losartan and istradefylline doses, which prompted a synergistic reduction in VCM. Overall, our results demonstrated the existence of striatal AT1R/A2AR oligomers with potential usefulness for the therapeutic management of TD.

  5. Radionuclide imaging of angiotensin II type 1 receptor upregulation after myocardial ischemia-reperfusion injury.

    PubMed

    Higuchi, Takahiro; Fukushima, Kenji; Xia, Jinsong; Mathews, William B; Lautamäki, Riikka; Bravo, Paco E; Javadi, Mehrbod S; Dannals, Robert F; Szabo, Zsolt; Bengel, Frank M

    2010-12-01

    The renin-angiotensin system (RAS) mediates proapoptotic, profibrotic, and proinflammatory processes in maladaptive conditions. Activation after myocardial infarction may initialize and promote cardiac remodeling. Using a novel positron-emitting ligand, we sought to determine the presence and time course of regional myocardial upregulation of the angiotensin II type 1 receptor (AT1R) and the blocking efficacy of various anti-RAS agents. In male Wistar rats (n = 31), ischemia-reperfusion damage was induced by 20- to 25-min ligation of the left coronary artery. The AT1R blocker (11)C-2-butyl-5-methoxymethyl-6-(1-oxopyridin-2-yl)-3-[[2-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]-3H-imidazo[4,5-b]pyridine ((11)C-KR31173) was injected intravenously at different times until 6 mo after surgery and sacrifice. Autoradiography, histology, and immunohistochemistry were performed for ex vivo validation. Additional in vivo PET was conducted in 3 animals. A second series of experiments (n = 16) compared untreated animals with animals treated with oral valsartan (50 mg/kg/d), oral enalapril (10 mg/kg/d), and complete intravenous blockage (SK-1080, 2 mg/kg, 10 min before imaging). Transient regional AT1R upregulation was detected in the infarct area, with a peak at 1-3 wk after surgery (autoradiographic infarct-to-remote ratio, 1.07 ± 0.09, 1.68 ± 0.34, 2.54 ± 0.40, 2.98 ± 0.70, 3.16 ± 0.57, 1.86 ± 0.65, and 1.28 ± 0.27 at control, day 1, day 3, week 1, week 3, month 3, and month 6, respectively). The elevated uptake of (11)C-KR31173 in the infarct area was detectable by small-animal PET in vivo, and it was blocked completely by intravenous SK-1080. Although oral treatment with enalapril did not reduce focal tracer uptake, oral valsartan resulted in partial blockade (infarct-to-remote ratio, 2.94 ± 0.52, 2.88 ± 0.60, 2.07 ± 0.25, and 1.26 ± 0.10 for no treatment, enalapril, valsartan, and SK-1080, respectively). After ischemic myocardial damage in a rat model, transient

  6. Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors.

    PubMed

    Kellici, Tahsin F; Tzakos, Andreas G; Mavromoustakos, Thomas

    2015-03-02

    The angiotensin II (Ang II) type 1 and type 2 receptors (AT1R and AT2R) orchestrate an array of biological processes that regulate human health. Aberrant function of these receptors triggers pathophysiological responses that can ultimately lead to death. Therefore, it is important to design and synthesize compounds that affect beneficially these two receptors. Cardiovascular disease, which is attributed to the overactivation of the vasoactive peptide hormone Αng II, can now be treated with commercial AT1R antagonists. Herein, recent achievements in rational drug design and synthesis of molecules acting on the two AT receptors are reviewed. Quantitative structure activity relationships (QSAR) and molecular modeling on the two receptors aim to assist the search for new active compounds. As AT1R and AT2R are GPCRs and drug action is localized in the transmembrane region the role of membrane bilayers is exploited. The future perspectives in this field are outlined. Tremendous progress in the field is expected if the two receptors are crystallized, as this will assist the structure based screening of the chemical space and lead to new potent therapeutic agents in cardiovascular and other diseases.

  7. Angiotensin-II Type 1 Receptor-Mediated Janus Kinase 2 Activation Induces Liver Fibrosis

    PubMed Central

    Granzow, Michaela; Schierwagen, Robert; Klein, Sabine; Kowallick, Benita; Huss, Sebastian; Linhart, Markus; Reza Mazar, Irela G.; Görtzen, Jan; Vogt, Annabelle; Schildberg, Frank A.; Gonzalez-Carmona, Maria A.; Wojtalla, Alexandra; Krämer, Benjamin; Nattermann, Jacob; Siegmund, Sören V.; Werner, Nikos; Fürst, Dieter O.; Laleman, Wim; Knolle, Percy; Shah, Vijay H.; Sauerbruch, Tilman; Trebicka, Jonel

    2017-01-01

    Activation of the renin angiotensin system resulting in stimulation of angiotensin-II (AngII) type I receptor (AT1R) is an important factor in the development of liver fibrosis. Here, we investigated the role of Janus kinase 2 (JAK2) as a newly described intra-cellular effector of AT1R in mediating liver fibrosis. Fibrotic liver samples from rodents and humans were compared to respective controls. Transcription, protein expression, activation, and localization of JAK2 and downstream effectors were analyzed by realtime polymerase chain reaction, western blotting, immunohistochemistry, and confocal microscopy. Experimental fibrosis was induced by bile duct ligation (BDL), CCl4 intoxication, thioacetamide intoxication or continuous AngII infusion. JAK2 was inhibited by AG490. In vitro experiments were performed with primary rodent hepatic stellate cells (HSCs), Kupffer cells (KCs), and hepatocytes as well as primary human and human-derived LX2 cells. JAK2 expression and activity were increased in experimental rodent and human liver fibrosis, specifically in myofibroblastic HSCs. AT1R stimulation in wild-type animals led to activation of HSCs and fibrosis in vivo through phosphorylation of JAK2 and subsequent RhoA/Rho-kinase activation. These effects were prevented in AT1R–/– mice. Pharmacological inhibition of JAK2 attenuated liver fibrosis in rodent fibrosis models. In vitro, JAK2 and downstream effectors showed increased expression and activation in activated HSCs, when compared to quiescent HSCs, KCs, and hepatocytes isolated from rodents. In primary human and LX2 cells, AG490 blocked AngII-induced profibrotic gene expression. Overexpression of JAK2 led to increased profibrotic gene expression in LX2 cells, which was blocked by AG490. Conclusion Our study substantiates the important cell-intrinsic role of JAK2 in HSCs for development of liver fibrosis. Inhibition of JAK2 might therefore offer a promising therapy for liver fibrosis. PMID:24619965

  8. Rapid detection of the hypertension-associated A1166C polymorphism of the angiotensin II type 1 receptor (AGTR1).

    PubMed

    Stankovic, Aleksandra; Alavantic, Dragan

    2002-01-01

    Screening for polymorphisms in the human type 1 angiotensin II receptor locus (AGTR1) has led to the identification of an A1166C transversion in the 3'-untranslated region. This molecular variant, C(1166), has been linked to essential hypertension. We describe here a rapid method for the detection of this point mutation by a simple modification of PCR amplification with allele-specific oligonucleotides (ASO), so as to avoid a hybridization procedure involving either radioactive- or non-radioactive-labeled probes, labeled primers, or restriction typing. The procedure described is convenient for routine clinical laboratory use with manual sample processing and offers the potential for further automation, as well.

  9. How does the angiotensin II type 1 receptor 'trump' the type 2 receptor in blood pressure control?

    PubMed

    Schalekamp, Maarten A D H; Danser, A H Jan

    2013-04-01

    A kinetic model for the binding of angiotensin II (Ang II) to AT1 receptors (AT1Rs) in arterioles did suggest a novel mechanism of association rate amplification and facilitated Ang II diffusion in vivo. To examine how this mechanism, acting on AT1R, will affect the stimulation of AT2R. The model distinguishes between the diffusion of plasma Ang II across the endothelium layer (thickness 10(-4) - 5 × 10(-4) cm) into the vascular smooth muscle (VSM) layer (5 × 10(-4) cm), and the diffusion of tissue Ang II from perivascular interstitium (thickness of micromilieu fluid layer at abluminal VSM surface 10(-6) - 10(-5) cm, i.e. 1 to 10 times the glycocalyx). Thus, Ang II concentration [Ang II] is taken to be 0 at the abluminal and adluminal VSM cell surfaces, respectively. Tissue Ang II is defined as originating from local generation and/or from the capillary circulation. [Ang II]/AT1R and [Ang II]/AT2R occupancy curves for the two directions of diffusion are constructed from the model-based calculations. Ang II, at 10(-15)-10(-13) mol/ml (~1-100 pg/ml), is much less likely to react with vascular AT2R than AT1R, though it has similar affinity for the receptor types. With plasma [Ang II] = 10(-15)-10(-13) mol/ml, AT2R occupancy is less than 10% of maximum on endothelium, and virtually 0 on VSM, whereas AT1R occupancy on VSM is virtually 0 at plasma [Ang II] < 10(-14) mol/ml, and between 0 and 30% at plasma [Ang II] = 10(-13) mol/ml. With tissue [Ang II] = 10(-15)-10(-13) mol/ml, VSM AT2R occupancy is close to 0, whereas VSM AT1R occupancy is 40-60% in the absence of endocytotic AT1R down-regulation, and up to 70-90% in its presence. The threshold concentration of Ang II needed for response is much higher for AT2R than for AT1R. Plasma Ang II rather than tissue Ang II is the agonist of AT2R, and the reverse applies to AT1R. Thus, AT2R stimulation may come into play only at unusually high circulating levels of Ang II.

  10. Small Molecules with Similar Structures Exhibit Agonist, Neutral Antagonist or Inverse Agonist Activity toward Angiotensin II Type 1 Receptor

    PubMed Central

    Hanzawa, Hiroyuki; Nakao, Naoki; Fujino, Masahiro; Imaizumi, Satoshi; Matsuo, Yoshino; Yanagisawa, Hiroaki; Koike, Hiroyuki; Komuro, Issei; Karnik, Sadashiva S.; Saku, Keijiro

    2012-01-01

    Small differences in the chemical structures of ligands can be responsible for agonism, neutral antagonism or inverse agonism toward a G-protein-coupled receptor (GPCR). Although each ligand may stabilize the receptor conformation in a different way, little is known about the precise conformational differences. We synthesized the angiotensin II type 1 receptor blocker (ARB) olmesartan, R239470 and R794847, which induced inverse agonism, antagonism and agonism, respectively, and then investigated the ligand-specific changes in the receptor conformation with respect to stabilization around transmembrane (TM)3. The results of substituted cysteine accessibility mapping studies support the novel concept that ligand-induced changes in the conformation of TM3 play a role in stabilizing GPCR. Although the agonist-, neutral antagonist and inverse agonist-binding sites in the AT1 receptor are similar, each ligand induced specific conformational changes in TM3. In addition, all of the experimental data were obtained with functional receptors in a native membrane environment (in situ). PMID:22719858

  11. Troglitazone stimulates {beta}-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1{sub A} receptor

    SciTech Connect

    Tilley, Douglas G.; Nguyen, Anny D.; Rockman, Howard A.

    2010-06-11

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPAR{gamma}-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPAR{gamma} activity, thus we hypothesized that a PPAR{gamma} agonist may exert physiologic effects via the angiotensin II type 1{sub A} receptor (AT1{sub A}R). In AT1{sub A}R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPAR{gamma} agonist troglitazone (Trog) enhanced AT1{sub A}R internalization and recruitment of endogenous {beta}-arrestin1/2 ({beta}arr1/2) to the AT1{sub A}R. A fluorescence assay to measure diacylglycerol (DAG) accumulation showed that although Ang II induced AT1{sub A}R-G{sub q} protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of {beta}arr1/2 was selective to AT1{sub A}R as the response was prevented by an ARB- and Trog-mediated {beta}arr1/2 recruitment to {beta}1-adrenergic receptor ({beta}1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be {beta}arr2-dependent, as cardiomyocytes isolated from {beta}arr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPAR{gamma} agonist Trog acts at the AT1{sub A}R to simultaneously block G{sub q} protein activation and induce the recruitment of {beta}arr1/2, which leads to an increase in cardiomyocyte contractility.

  12. Central angiotensin II stimulates cutaneous water intake behavior via an angiotensin II type-1 receptor pathway in the Japanese tree frog Hyla japonica.

    PubMed

    Maejima, Sho; Konno, Norifumi; Matsuda, Kouhei; Uchiyama, Minoru

    2010-08-01

    Angiotensin II (Ang II) stimulates oral water intake by causing thirst in all terrestrial vertebrates except anurans. Anuran amphibians do not drink orally but absorb water osmotically through ventral skin. In this study, we examined the role of Ang II on the regulation of water-absorption behavior in the Japanese tree frog (Hyla japonica). In fully hydrated frogs, intracerebroventricular (ICV) and intralymphatic sac (ILS) injection of Ang II significantly extended the residence time of water in a dose-dependent manner. Ang II-dependent water uptake was inhibited by ICV pretreatment with an angiotensin II type-1 (AT(1)) receptor antagonist but not a type-2 (AT(2)) receptor antagonist. These results suggest that Ang II stimulates water-absorption behavior in the tree frog via an AT(1)-like but not AT(2)-like receptor. We then cloned and characterized cDNA of the tree frog AT(1) receptor from the brain. The tree frog AT(1) receptor cDNA encodes a 361 amino acid residue protein, which is 87% identical to the toad (Bufo marinus) AT(1) receptor and exhibits the functional characteristics of an Ang II receptor. AT(1) receptor mRNAs were found to be present in a number of tissues including brain (especially in the diencephalon), lung, large intestine, kidney and ventral pelvic skin. When tree frogs were exposed to dehydrating conditions, AT(1) receptor mRNA significantly increased in the diencephalon and the rhombencephalon. These data suggest that central Ang II may control water intake behavior via an AT(1) receptor on the diencephalon and rhombencephalon in anuran amphibians and may have implications for water consumption in vertebrates.

  13. Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance.

    PubMed

    Violin, Jonathan D; DeWire, Scott M; Yamashita, Dennis; Rominger, David H; Nguyen, Lisa; Schiller, Kevin; Whalen, Erin J; Gowen, Maxine; Lark, Michael W

    2010-12-01

    Biased G protein-coupled receptor ligands engage subsets of the receptor signals normally stimulated by unbiased agonists. However, it is unclear whether ligand bias can elicit differentiated pharmacology in vivo. Here, we describe the discovery of a potent, selective β-arrestin biased ligand of the angiotensin II type 1 receptor. TRV120027 (Sar-Arg-Val-Tyr-Ile-His-Pro-D-Ala-OH) competitively antagonizes angiotensin II-stimulated G protein signaling, but stimulates β-arrestin recruitment and activates several kinase pathways, including p42/44 mitogen-activated protein kinase, Src, and endothelial nitric-oxide synthase phosphorylation via β-arrestin coupling. Consistent with β-arrestin efficacy, and unlike unbiased antagonists, TRV120027 increased cardiomyocyte contractility in vitro. In rats, TRV120027 reduced mean arterial pressure, as did the unbiased antagonists losartan and telmisartan. However, unlike the unbiased antagonists, which decreased cardiac performance, TRV120027 increased cardiac performance and preserved cardiac stroke volume. These striking differences in vivo between unbiased and β-arrestin biased ligands validate the use of biased ligands to selectively target specific receptor functions in drug discovery.

  14. Telmisartan, an angiotensin II type 1 receptor blocker, prevents the development of diabetes in male Spontaneously Diabetic Torii rats.

    PubMed

    Hasegawa, Goji; Fukui, Michiaki; Hosoda, Hiroko; Asano, Mai; Harusato, Ichiko; Tanaka, Muhei; Shiraishi, Emi; Senmaru, Takashi; Sakabe, Kazumi; Yamasaki, Masahiro; Kitawaki, Jo; Fujinami, Aya; Ohta, Mitsuhiro; Obayashi, Hiroshi; Nakamura, Naoto

    2009-03-01

    To assess the beneficial effects of the angiotensin II type 1 receptor blocker telmisartan on a non-obese animal model of reduced function and mass of islet beta-cells prior to the development of diabetes, Spontaneously Diabetic Torii (SDT) rats were treated with telmisartan at 8 weeks of age. At 24 weeks of age, the treatment with telmisartan dose-dependently ameliorated hyperglycemia and hypoinsulinemia, and high-dose (5 mg/kg/day) treated SDT rats did not developed diabetes. Real-time RT-PCR analysis revealed that treatment with high-dose telmisartan reduced mRNA expression of local renin-angiotensin system (RAS) components, components of NAD(P)H oxidase, transforming growth factor-beta1 and vascular endothelial growth factor in the pancreas of male SDT rats. Immunohistochemical and Western blot analyses revealed that treatment with telmisartan also reduced expression of p47(phox). These results suggest that treatment with telmisartan reduces oxidative stress by local RAS activation and protects against islet beta-cell damage and dysfunction. These findings provide at least a partial explanation for the reduced incidence of new-onset diabetes that has been observed in several clinical trials involving angiotensin II type 1 receptor blockers and ACE inhibitors.

  15. Renoprotective effects of benidipine in combination with angiotensin II type 1 receptor blocker in hypertensive Dahl rats.

    PubMed

    Yao, Kozo; Sato, Hitoshi; Ina, Yasuhiro; Suzuki, Kazuo; Ohno, Tetsuji; Shirakura, Shiro

    2003-08-01

    We examined the effects of the angiotensin II type 1 receptor blocker candesartan, the calcium channel blockers benidipine and amlodipine, hydralazine, and the combination of candesartan and benidipine or amlodipine on blood pressure and renal function in Dahl salt-sensitive (DS) hypertensive rats. Male DS rats (5 weeks of age) were fed a high-salt (8% NaCl) diet, resulting in hypertension accompanied by glomerular sclerosis and an increased urinary albumin excretion. Drugs were orally administered from 2 to 6 weeks after the start of the feeding. Although candesartan (1 or 10 mg/kg) had little effect on the blood pressure, benidipine (4 mg/kg), amlodipine (4 mg/kg) and hydralazine (5 mg/kg) had similar hypotensive effects. Benidipine, but not amlodipine, hydralazine, or candesartan, significantly inhibited the increase in the albuminuria and glomerular sclerosis. The combination of candesartan (1 mg/kg) and benidipine (4 mg/kg) lowered the levels of blood pressure and albuminuria more effectively than the combination of candesartan (1 mg/kg) and amlodipine (4 mg/kg). These results indicate that benidipine is effective in preventing the impairment of renal function in DS hypertensive rats, and suggest that additional benefits can be expected by combination therapy with benidipine and an angiotensin II type 1 receptor blocker.

  16. Preparation and Biological Activity of the Monoclonal Antibody against the Second Extracellular Loop of the Angiotensin II Type 1 Receptor

    PubMed Central

    Wei, Mingming; Zhao, Chengrui; Zhang, Suli; Wang, Li; Liu, Huirong; Ma, Xinliang

    2016-01-01

    The current study was to prepare a mouse-derived antibody against the angiotensin II type 1 receptor (AT1-mAb) based on monoclonal antibody technology, to provide a foundation for research on AT1-AA-positive diseases. Balb/C mice were actively immunized with the second extracellular loop of the angiotensin II type 1 receptor (AT1R-ECII). Then, mouse spleen lymphocytes were fused with myeloma cells and monoclonal hybridomas that secreted AT1-mAb were generated and cultured, after which those in logarithmic-phase were injected into the abdominal cavity of mice to retrieve the ascites. Highly purified AT1-mAb was isolated from mouse ascites after injection with 1 × 107 hybridomas. A greater amount of AT1-mAb was purified from mouse ascites compared to the cell supernatant of hybridomas. AT1-mAb purified from mouse ascites constricted the thoracic aorta of mice and increased the beat frequency of neonatal rat myocardial cells via the AT1R, identical to the effects of AT1-AA extracted from patients' sera. Murine blood pressure increased after intravenous injection of AT1-mAb via the tail vein. High purity and good biological activity of AT1-mAb can be obtained from mouse ascites after intraperitoneal injection of monoclonal hybridomas that secrete AT1-mAb. These data provide a simple tool for studying AT1-AA-positive diseases. PMID:27057554

  17. Angiotensin II Type 1 receptor (AGTR1) gene polymorphisms are associated with vascular manifestations in patients with systemic sclerosis (SSc).

    PubMed

    Rodríguez-Reyna, Tatiana S; Núñez-Alvarez, Carlos; Cruz-Lagunas, Alfredo; Posadas-Sánchez, Rosalinda; Pérez-Hernández, Nonanzit; Jiménez-Alvarez, Luis; Ramírez-Martínez, Gustavo; Granados, Julio; Vargas-Alarcón, Gilberto; Zúñiga, Joaquín

    2016-07-01

    Systemic sclerosis (SSc) shows variable clinical expression in different ethnic groups; vascular abnormalities are a prominent feature of this disease and its clinical expression may be influenced by genetic factors. Herein, we describe 15 polymorphisms of the renin-angiotensin-aldosterone pathway in 170 Mexican admixed SSc patients (defined as patients with Mexican ancestry for at least 3 generations) and 199 healthy controls. We determined the presence of angiotensin II Type 1 receptor (AGTR1), angiotensin converting enzyme (ACE) and Endothelin 1 single nucleotide polymorphisms (SNPs) using 5' exonuclease TaqMan genotyping assays on a 7900HT real-time fast polymerase chain reaction (PCR) system. These polymorphisms had a similar distribution between SSc patients and controls, but we found that the AGTR1 G-680T (rs275652) (p = 0.02; OR 3.5; 95%CI 1.2-10.4) and AGTR1 A-119G (rs275653) (p = 0.008; OR 4.2; 95% CI 1.5-12.1) polymorphisms were associated with severe vascular involvement in our SSc patients. This is the first report of the association of these polymorphisms with vasculopathy in Mexican admixed SSc patients. Our findings suggested that the angiotensin II Type 1 receptor genotype may influence the clinical expression of vasculopathy in these patients. Functional analyses should follow. © The Author(s) 2016.

  18. G protein-coupled receptor kinase and beta-arrestin-mediated desensitization of the angiotensin II type 1A receptor elucidated by diacylglycerol dynamics.

    PubMed

    Violin, Jonathan D; Dewire, Scott M; Barnes, William G; Lefkowitz, Robert J

    2006-11-24

    Receptor desensitization progressively limits responsiveness of cells to chronically applied stimuli. Desensitization in the continuous presence of agonist has been difficult to study with available assay methods. Here, we used a fluorescence resonance energy transfer-based live cell assay for the second messenger diacylglycerol to measure desensitization of a model seven-transmembrane receptor, the Gq-coupled angiotensin II type 1(A) receptor, expressed in human embryonic kidney 293 cells. In response to angiotensin II, we observed a transient diacylglycerol response reflecting activation and complete desensitization of the receptor within 2-5 min. By utilizing a variety of approaches including graded tetracycline-inducible receptor expression, mutated receptors, and overexpression or short interfering RNA-mediated silencing of putative components of the cellular desensitization machinery, we conclude that the rate and extent of receptor desensitization are critically determined by the following: receptor concentration in the plasma membrane; the presence of phosphorylation sites on the carboxyl terminus of the receptor; kinase activity of G protein-coupled receptor kinase 2, but not of G protein-coupled receptor kinases 3, 5, or 6; and stoichiometric expression of beta-arrestin. The findings introduce the use of the biosensor diacylglycerol reporter as a powerful means for studying Gq-coupled receptor desensitization and document that, at the levels of receptor overexpression commonly used in such studies, the properties of the desensitization process are markedly perturbed and do not reflect normal cellular physiology.

  19. Angiotensin II type 1a receptor signals are involved in the progression of heart failure in MLP-deficient mice.

    PubMed

    Yamamoto, Rie; Akazawa, Hiroshi; Ito, Kaoru; Toko, Haruhiro; Sano, Masanori; Yasuda, Noritaka; Qin, Yingjie; Kudo, Yoko; Sugaya, Takeshi; Chien, Kenneth R; Komuro, Issei

    2007-12-01

    Angiotensin II (AT) is implicated in the development of cardiac remodeling, which leads to heart failure, and pharmacological inhibition of the AT type 1 (AT1) receptor has improved mortality and morbidity in patients of heart failure. The aim of this study was to elucidate the role of the AT1 receptor in disease progression in muscle LIM protein (MLP)-deficient mice, which are susceptible to heart failure because of defective function of mechanosensors in cardiomyocytes. Hearts from MLP knockout (MLPKO) mice and MLP-AT1a receptor double knockout (DKO) mice were analyzed. MLPKO hearts showed marked chamber dilatation with cardiac fibrosis and reactivation of the fetal gene program. All of these changes were significantly milder in the DKO hearts. Impaired left ventricular (LV) contractility and filling were alleviated in DKO hearts. However, the impaired relaxation and downregulated expression of sarcoplasmic reticulum calcium-ATPase 2 were unchanged in DKO hearts. The AT1a receptor is involved in progression of LV remodeling and deterioration of cardiac function in the hearts of MLPKO mice. These results suggest that blockade of the receptor is effective in preventing progression of heart failure in dilated cardiomyopathy.

  20. Differential Contribution of Transmembrane Domains IV, V, VI, and VII to Human Angiotensin II Type 1 Receptor Homomer Formation.

    PubMed

    Young, Brent M; Nguyen, Elaine; Chedrawe, Matthew A J; Rainey, Jan K; Dupré, Denis J

    2017-02-24

    G protein-coupled receptors (GPCRs) play an important role in drug therapy and represent one of the largest families of drug targets. The angiotensin II type 1 receptor (AT1R) is notable as it has a central role in the treatment of cardiovascular disease. Blockade of AT1R signaling has been shown to alleviate hypertension and improve outcomes in patients with heart failure. Despite this, it has become apparent that our initial understanding of AT1R signaling is oversimplified. There is considerable evidence to suggest that AT1R signaling is highly modified in the presence of receptor-receptor interactions, but there is very little structural data available to explain this phenomenon even with the recent elucidation of the AT1R crystal structure. The current study investigates the involvement of transmembrane domains in AT1R homomer assembly with the goal of identifying hydrophobic interfaces that contribute to receptor-receptor affinity. A recently published crystal structure of the AT1R was used to guide site-directed mutagenesis of outward-facing hydrophobic residues within the transmembrane region of the AT1R. Bioluminescence resonance energy transfer was employed to analyze how receptor mutation affects the assembly of AT1R homomers with a specific focus on hydrophobic residues. Mutations within transmembrane domains IV, V, VI, and VII had no effect on angiotensin-mediated β-arrestin1 recruitment; however, they exhibited differential effects on the assembly of AT1R into oligomeric complexes. Our results demonstrate the importance of hydrophobic amino acids at the AT1R transmembrane interface and provide the first glimpse of the requirements for AT1R complex assembly.

  1. Role of angiotensin II type 1 receptors in the subfornical organ in the pressor responses to central sodium in rats.

    PubMed

    Tiruneh, Missale A; Huang, Bing S; Leenen, Frans H H

    2013-08-21

    Central infusion of Na(+)-rich artificial cerebro-spinal fluid (aCSF) activates the brain renin-angiotensin system and causes sympatho-excitatory and pressor responses. We evaluated the role of the subfornical organ (SFO) and angiotensin II type 1 (AT1) receptors in the SFO in mediating the central Na(+)-induced pressor response. In conscious Wistar rats, intra SFO infusions of Na(+)-rich aCSF containing 0.45 and 0.6M Na(+) at 10 nl/min or injection of angiotensin II (Ang II) at 80 ng increased blood pressure (BP) by 15-22 mmHg, whereas mannitol with the same osmolarity as the Na(+)-rich aCSF had no effects. Intra SFO infusion of the AT1 receptor blocker candesartan abolished the pressor response induced by intra SFO administration of Na(+)-rich aCSF or Ang II. Intra cerebro-ventricular (icv) infusion of Na(+)-rich aCSF (0.3M Na(+)) at 3.8 μl/min for 10 min increased BP by 15-20 mmHg. Electrolytic lesion of the SFO attenuated these BP increases by 50-70%. Intra SFO infusion of candesartan also prevented 50% of these pressor responses. These data suggest that SFO neurons are indeed sensitive to Na(+), the SFO is a major - but not only - site in the brain to sense an increase in CSF [Na(+)], and activation of AT1 receptors in the SFO mediates the SFO component of the Na(+)-induced pressor response. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A different role of angiotensin II type 1a receptor in the development and hypertrophy of plantaris muscle in mice.

    PubMed

    Zempo, Hirofumi; Suzuki, Jun-Ichi; Ogawa, Masahito; Watanabe, Ryo; Isobe, Mitsuaki

    2016-02-01

    The role of angiotensin II type 1 (AT1) receptors in muscle development and hypertrophy remains unclear. This study was designed to reveal the effects that a loss of AT1 receptors has on skeletal muscle development and hypertrophy in mice. Eight-week-old male AT1a receptor knockout (AT1a(-/-)) mice were used for this experiment. The plantaris muscle to body weight ratio, muscle fiber cross-sectional area, and number of muscle fibers of AT1a(-/-) mice was significantly greater than wild type (WT) mice in the non-intervention condition. Next, the functional overload (OL) model was used to induce plantaris muscle hypertrophy by surgically removing the two triceps muscles consisting of the calf, soleus, and gastrocnemius muscles in mice. After 14 days of OL intervention, the plantaris muscle weight, the amount of fiber, and the fiber area increased. However, the magnitude of the increment of plantaris weight was not different between the two strains. Agtr1a mRNA expression did not change after OL in WT muscle. Actually, the Agt mRNA expression level of WT-OL was lower than WT-Control (C) muscle. An atrophy-related gene, atrogin-1 mRNA expression levels of AT1a(-/-)-C, WT-OL, and AT1a(-/-)-OL muscle were lower than that of WT-C muscle. Our findings suggest that AT1 receptor contributes to plantaris muscle development via atrogin-1 in mice.

  3. Angiotensin II type 1 (AT1) receptor-mediated accumulation of angiotensin II in tissues and its intracellular half-life in vivo.

    PubMed

    van Kats, J P; de Lannoy, L M; Jan Danser, A H; van Meegen, J R; Verdouw, P D; Schalekamp, M A

    1997-07-01

    Angiotensin II (Ang II) is internalized by various cell types via receptor-mediated endocytosis. Little is known about the kinetics of this process in the whole animal and about the half-life of intact Ang II after its internalization. We measured the levels of 125I-Ang II and 125I-Ang I that were reached in various tissues and blood plasma during infusions of these peptides into the left cardiac ventricle of pigs. Steady-state concentrations of 125I-Ang II in skeletal muscle, heart, kidney, and adrenal were 8% to 41%, 64% to 150%, 340% to 550%, and 680% to 2100%, respectively, of the 125I-Ang II concentration in arterial blood plasma (ranges of six experiments). The tissue concentrations of 125I-Ang I were less than 5% of the arterial plasma concentrations. 125I-Ang II accumulation seen in heart, kidney, and adrenal was almost completely blocked by a specific Ang II type 1 (AT1) receptor antagonist. Steady-state concentrations of 125I-Ang II were reached within 30 to 60 minutes in the tissues and within 5 minutes in blood plasma. The in vivo half-life of intact 125I-Ang II in heart, kidney, and adrenal was approximately 15 minutes, compared with 0.5 minute in the circulation. Thus, Ang II, but not Ang I, from the circulation is accumulated by some tissues, and this is mediated by AT1 receptors. The time course of this process and the long half-life of the accumulated Ang II support the contention that this Ang II has been internalized after its binding to the AT1 receptor, so that it is protected from rapid degradation by endothelial peptidases. The results of this study are in agreement with growing evidence of an important physiological role for internalized Ang II.

  4. Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression.

    PubMed

    Chabrashvili, Tina; Kitiyakara, Chagriya; Blau, Jonathan; Karber, Alex; Aslam, Shakil; Welch, William J; Wilcox, Christopher S

    2003-07-01

    Oxidative stress accompanies angiotensin (ANG) II infusion, but the role of ANG type 1 vs. type 2 receptors (AT1-R and AT2-R, respectively) is unknown. We infused ANG II subcutaneously in rats for 1 wk. Excretion of 8-isoprostaglandin F2alpha (8-Iso) and malonyldialdehyde (MDA) were related to renal cortical mRNA abundance for subunits of NADPH oxidase and superoxide dismutases (SODs) using real-time PCR. Subsets of ANG II-infused rats were given the AT1-R antagonist candesartan cilexetil (Cand) or the AT2-R antagonist PD-123,319 (PD). Compared to vehicle (Veh), ANG II increased 8-Iso excretion by 41% (Veh, 5.4 +/- 0.8 vs. ANG II, 7.6 +/- 0.5 pg/24 h; P < 0.05). This was prevented by Cand (5.6 +/- 0.5 pg/24 h; P < 0.05) and increased by PD (15.8 +/- 2.0 pg/24 h; P < 0.005). There were similar changes in MDA excretion. Compared to Veh, ANG II significantly (P < 0.005) increased the renal cortical mRNA expression of p22phox (twofold), Nox-1 (2.6-fold), and Mn-SOD (1.5-fold) and decreased expression of Nox-4 (2.1-fold) and extracellular (EC)-SOD (2.1-fold). Cand prevented all of these changes except for the increase in Mn-SOD. PD accentuated changes in p22phox and Nox-1 and increased p67phox. We conclude that ANG II infusion stimulates oxidative stress via AT1-R, which increases the renal cortical mRNA expression of p22phox and Nox-1 and reduces abundance of Nox-4 and EC-SOD. This is offset by strong protective effects of AT2-R, which are accompanied by decreased expression of p22phox, Nox-1, and p67phox.

  5. Mechanical activation of angiotensin II type 1 receptors causes actin remodelling and myogenic responsiveness in skeletal muscle arterioles.

    PubMed

    Hong, Kwangseok; Zhao, Guiling; Hong, Zhongkui; Sun, Zhe; Yang, Yan; Clifford, Philip S; Davis, Michael J; Meininger, Gerald A; Hill, Michael A

    2016-12-01

    Candesartan, an inverse agonist of the type 1 angiotensin II receptor (AT1 R), causes a concentration-dependent inhibition of pressure-dependent myogenic tone consistent with previous reports of mechanosensitivity of this G protein-coupled receptor. Mechanoactivation of the AT1 R occurs independently of local angiotensin II production and the type 2 angiotensin receptor. Mechanoactivation of the AT1 R stimulates actin polymerization by a protein kinase C-dependent mechanism, but independently of a change in intracellular Ca(2+) . Using atomic force microscopy, changes in single vascular smooth muscle cell cortical actin are observed to remodel following mechanoactivation of the AT1 R. The Gq/11 protein-coupled angiotensin II type 1 receptor (AT1 R) has been shown to be activated by mechanical stimuli. In the vascular system, evidence supports the AT1 R being a mechanosensor that contributes to arteriolar myogenic constriction. The aim of this study was to determine if AT1 R mechanoactivation affects myogenic constriction in skeletal muscle arterioles and to determine underlying cellular mechanisms. Using pressure myography to study rat isolated first-order cremaster muscle arterioles the AT1 R inhibitor candesartan (10(-7) -10(-5)  m) showed partial but concentration-dependent inhibition of myogenic reactivity. Inhibition was demonstrated by a rightward shift in the pressure-diameter relationship over the intraluminal pressure range, 30-110 mmHg. Pressure-induced changes in global vascular smooth muscle intracellular Ca(2+) (using Fura-2) were similar in the absence or presence of candesartan, indicating that AT1 R-mediated myogenic constriction relies on Ca(2+) -independent downstream signalling. The diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) reversed the inhibitory effect of candesartan, while this rescue effect was prevented by the protein kinase C (PKC) inhibitor GF 109203X. Both candesartan and PKC inhibition caused increased G-actin levels

  6. Microvascular vasodilator properties of the angiotensin II type 2 receptor in a mouse model of type 1 diabetes

    PubMed Central

    Begorre, Marc-Antoine; Dib, Abdallah; Habchi, Khalil; Guihot, Anne-Laure; Bourreau, Jennifer; Vessieres, Emilie; Blondeau, Bertrand; Loufrani, Laurent; Chabbert, Marie; Henrion, Daniel; Fassot, Céline

    2017-01-01

    Diabetes Mellitus is associated with severe cardiovascular disorders involving the renin-angiotensin system, mainly through activation of the angiotensin II type 1 receptor (AT1R). Although the type 2 receptor (AT2R) opposes the effects of AT1R, with vasodilator and anti-trophic properties, its role in diabetes is debatable. Thus we investigated AT2R-mediated dilatation in a model of type 1 diabetes induced by streptozotocin in 5-month-old male mice lacking AT2R (AT2R−/y). Glucose tolerance was reduced and markers of inflammation and oxidative stress (cyclooxygenase-2, gp91phox p22phox and p67phox) were increased in AT2R−/y mice compared to wild-type (WT) animals. Streptozotocin-induced hyperglycaemia was higher in AT2R−/y than in WT mice. Arterial gp91phox and MnSOD expression levels in addition to blood 8-isoprostane and creatinine were further increased in diabetic AT2R−/y mice compared to diabetic WT mice. AT2R-dependent dilatation in both isolated mesenteric resistance arteries and perfused kidneys was greater in diabetic mice than in non-diabetic animals. Thus, in type 1 diabetes, AT2R may reduce glycaemia and display anti-oxidant and/or anti-inflammatory properties in association with greater vasodilatation in mesenteric arteries and in the renal vasculature, a major target of diabetes. Therefore AT2R might represent a new therapeutic target in diabetes. PMID:28361992

  7. New angiotensin II type 1 receptor blocker, azilsartan, attenuates cardiac remodeling after myocardial infarction.

    PubMed

    Nakamura, Yuichi; Suzuki, Satoshi; Saitoh, Shu-ichi; Takeishi, Yasuchika

    2013-01-01

    After an acute myocardial infarction (MI), neurohumoral systems including renin-angiotensin-aldosterone system (RAAS) are activated which in turn aggravate cardiac remodeling. Angiotensin receptor blockers (ARBs) are useful drugs for suppression of RAAS. The purpose of this study was to evaluate a new ARB, azilsartan, for suppressing cardiac remodeling and progression to heart failure after MI. We created MI by left anterior descending coronary artery ligation in male mice, and these mice were orally administered saline (0.2 mL) in the control group (Group C), 0.1 mg/kg/d of azilsartan in the low dose group (Group L), and 1.0 mg/kg/d in the high dose group (Group H) everyday. Blood pressure was decreased in Group H, but not in Group L, compared to Group C. At 2 weeks after MI creation, infarct size and fibrotic change at the site remote to the myocardial infarcted area were attenuated in Group L and Group H compared to Group C. Echocardiography revealed that cardiac remodeling was suppressed in Group L and Group H compared to Group C. Increases of mRNA expression levels related to fibrotic change were attenuated in Group L and Group H compared to Group C. The new ARB, azilsartan, had a cardiac remodeling suppression effect after MI, and this effect was observed without blood pressure lowering.

  8. Structure of the Human Angiotensin II Type 1 (AT1) Receptor Bound to Angiotensin II from Multiple Chemoselective Photoprobe Contacts Reveals a Unique Peptide Binding Mode*

    PubMed Central

    Fillion, Dany; Cabana, Jérôme; Guillemette, Gaétan; Leduc, Richard; Lavigne, Pierre; Escher, Emanuel

    2013-01-01

    Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs. PMID:23386604

  9. Structure of the human angiotensin II type 1 (AT1) receptor bound to angiotensin II from multiple chemoselective photoprobe contacts reveals a unique peptide binding mode.

    PubMed

    Fillion, Dany; Cabana, Jérôme; Guillemette, Gaétan; Leduc, Richard; Lavigne, Pierre; Escher, Emanuel

    2013-03-22

    Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs.

  10. Effects of the angiotensin II type 1 receptor antagonist valsartan on the expression of superoxide dismutase in hypertensive patients.

    PubMed

    Yang, Hung-Yu; Kao, Pai-Feng; Chen, Tso-Hsiao; Tomlinson, Brian; Ko, Wen-Chin; Chan, Paul

    2007-03-01

    The role of oxidative stress in the pathogenesis of vascular diseases such as hypertension has been well recognized. Angiotensin (Ang) II is regarded as a pro-oxidant because it can stimulate the production of reactive oxygen species. The purpose of this study was to evaluate whether treatment with the Ang II type 1 (AT(1)) receptor antagonist valsartan has an antioxidant effect in patients with mild to moderate hypertension. A randomized, double-blind, placebo-controlled study was conducted in 48 stage I and II hypertensive subjects. Patients were followed every 4 weeks for 12 weeks after randomization to valsartan titrated to 80 to 160 mg once or twice daily or matching placebo. The erythrocyte superoxide dismutase (SOD) activity and expression of SOD-mRNA in polymorphonuclear leukocytes were measured before and after treatment. Valsartan showed concentration-dependent inhibition of reactive oxygen species generation in polymorphonuclear leukocytes from hypertensive patients. The erythrocyte superoxide dismutase activity before treatment was more than 2 times higher in hypertensive subjects compared to normal controls. Superoxide dismutase activity decreased significantly after 12 weeks of treatment with valsartan but did not change with placebo. The amount of SOD-mRNA in the polymorphonuclear leukocytes decreased progressively over 3 months in the hypertensive subjects receiving valsartan treatment but did not change in the placebo group. The production of reactive oxygen species is increased in hypertension, and superoxide dismutase activity is increased, presumably as a compensatory mechanism. Treatment with valsartan but not placebo resulted in a progressive down-regulation of SOD-mRNA expression and a reduction in superoxide dismutase activity, suggesting antioxidant activity and a reduction of reactive oxygen species generation. These findings imply that AT(1) receptor antagonists may provide benefits to hypertensive patients beyond blood pressure reduction.

  11. Urinary angiotensin-converting enzyme 2 increases in diabetic nephropathy by angiotensin II type 1 receptor blocker olmesartan.

    PubMed

    Abe, Masanori; Oikawa, Osamu; Okada, Kazuyoshi; Soma, Masayoshi

    2015-03-01

    Angiotensin-converting enzyme 2 (ACE2) is a member of the renin-angiotensin system that degrades angiotensin (Ang) II to the seven-amino acid peptide fragment Ang-(1-7). We evaluated the changes in urinary ACE2 levels in response to treatment with the angiotensin II type 1 receptor blocker olmesartan in diabetes patients with nephropathy. This prospective, open-label, interventional study was conducted with 31 type 2 diabetes patients with nephropathy. After initial evaluation, patients received 20 mg/day olmesartan, which was increased to 40 mg/day over a 24-week period. In diabetes patients with chronic kidney disease, olmesartan significantly increased urinary ACE2 levels independently of blood pressure and plasma aldosterone levels and reduced albuminuria, urinary liver-type fatty acid binding protein (L-FABP), and plasma aldosterone levels. Multivariable regression analysis revealed that the change in urinary L-FABP levels was an independent predictor of increased urinary ACE2 levels. Olmesartan may have the unique effect of increasing urinary ACE2 levels. However, whether this contributes to olmesartan's renoprotective effect must be examined further. © The Author(s) 2014.

  12. Effect of angiotensin II type 1 receptor blockade on kidney ischemia/reperfusion; a gender-related difference

    PubMed Central

    Moslemi, Fatemeh; Taheri, Pegah; Azimipoor, Mahdis; Ramtin, Sina; Hashemianfar, Mostafa; Momeni- Ashjerdi, Ali; Eshraghi-Jazi, Fatemeh; Talebi, Ardeshir; Nasri, Hamid; Nematbakhsh, Mehdi

    2016-01-01

    Background: Renal ischemia/reperfusion (I/R) injury may be related to activity of reninangiotensin system (RAS), which is gender-related. In this study, it was attempted to compare the effect of angiotensin II (Ang II) receptor type 1 (AT1R) blockade; losartan in I/R injury in male and female rats. Materials and Methods: Male and female Wistar rats were assigned as sham surgery, control I/R groups treated with vehicle, and case I/R groups treated with losartan (30 mg/kg). Vehicle and losartan were given 2 hours before bilateral kidney ischemia induced by clamping renal arteries for 45 minutes followed by 24 hours of renal reperfusion. Results: The I/R injury significantly increased the serum levels of blood urea nitrogen (BUN) and creatinine (Cr), and kidney tissue damage score in both genders. However, losartan decreased these values in female rats significantly (P < 0.05). This was not observed in male rats. Conclusion: Losartan protects the kidney from I/R injury in female but not in male rats possibly because of gender-related difference of RAS. PMID:27689110

  13. The Prognostic Role of Angiotensin II Type 1 Receptor Autoantibody in Non-Gravid Hypertension and Pre-eclampsia

    PubMed Central

    Lei, Jinghui; Li, Yafeng; Zhang, Suli; Wu, Ye; Wang, Pengli; Liu, Huirong

    2016-01-01

    Abstract Angiotensin II type 1 receptor autoantibody (AT1-AA) is found in patients with non-gravid hypertension or pre-eclampsia, but the relationship is uncertain. The aim of the present study was to assess the association between AT1-AA and high blood pressure using meta-analysis, and to evaluate the prognosis value of AT1-AA for hypertensive diseases. Literature search from PubMed, Embase, and Cochrane databases were conducted using keywords “hypertension” or “pre-eclampsia,” “angiotensin II receptor type 1 autoantibody,” and its aliases from April 1999 to December 2015. Studies evaluating the association between AT1-AA and non-gravid hypertension or pre-eclampsia were included in this analysis. The quality of the eligible studies was assessed based on the Newcastle–Ottawa Scale with some modifications. Two researchers then independently reviewed all included studies and extracted all relevant data. Association between AT1-AA and hypertension was tested with pooled odds ratios (ORs) and 95% confidence intervals (CIs). Finally, we evaluated whether AT1-AA predicted the prognosis of hypertension by using a summary receiver-operating characteristic (ROC) curve and sensitivity analysis. Ten studies were finally included in this meta-analysis. AT1-AA showed more significant association with pre-eclampsia than that with non-gravid hypertension (pooled OR 32.84, 95% CI 17.19–62.74; and pooled OR 4.18, 95% CI 2.20–7.98, respectively). Heterogeneity among studies was also detected probably due to different hypertensive subtypes and AT1-AA measuring methods. Area under summary ROC curve (AUC) of pre-eclampsia was 0.92 (sensitivity 0.76; specificity 0.86). Area under the ROC curve of overall hypertensive diseases or non-gravid hypertension was lower than that of pre-eclampsia (0.86 and 0.72, respectively) with lower sensitivities (0.46 and 0.26, respectively). The major limitation of this analysis was the publication bias due to lack of unpublished data

  14. MicroRNA-410 functions as a tumor suppressor by targeting angiotensin II type 1 receptor in pancreatic cancer.

    PubMed

    Guo, Rende; Gu, Jianhua; Zhang, Zhibin; Wang, Yi; Gu, Chuan

    2015-01-01

    MicroRNAs (miRNAs) act as key regulators of gene expression in diverse biological processes and are intimately involved in tumorigenesis. However, the underlying molecular mechanisms of miR-410 in pancreatic cancer remain poorly understood. In this study, we found that miR-410 overexpression suppressed pancreatic cancer cell growth in vitro and in vivo as well as cell invasion and migration. miR-410 also resulted in G1/S cell-cycle arrest. We then showed that angiotensin II type 1 receptor (AGTR1) was a direct target of miR-410, with miR-410 suppressing AGTR1 expression levels. In contrast, inhibition of miR-410 increased the expression of AGTR1. Silencing of AGTR1 inhibited cell growth and invasion, similar to miR-410 overexpression. In addition, we found that the induction of vascular endothelial growth factor and the activation of the ERK signaling pathway by angiotensin II were blocked by miR-410, similar to the angiotensin II inhibitor losartan. miR-410 overexpression inhibited angiogenesis in mice through the repression of CD31 expression. ERK pathway knockdown suppressed pancreatic cancer cell proliferation, invasion, and angiogenesis. Finally, we found that miR-410 was downregulated in pancreatic cancer tissues compared to adjacent nontumor tissues, whereas AGTR1 was upregulated in pancreatic cancer tissues. Pearson correlation analysis showed that miR-410 and AGTR1 were inversely expressed. In conclusion, our data indicate that miR-410 suppresses pancreatic cancer growth, cell invasion, migration, and angiogenesis via the downregulation of AGTR1, acting as a tumor-suppressive miRNA. In addition, our results suggest that miR-410 is a potential diagnostic biomarker and therapeutic target for patients with pancreatic cancer. © 2015 International Union of Biochemistry and Molecular Biology.

  15. Impaired endocytosis in proximal tubule from subchronic exposure to cadmium involves angiotensin II type 1 and cubilin receptors

    PubMed Central

    2013-01-01

    Background Chronic exposure to low cadmium (Cd) levels produces urinary excretion of low molecular weight proteins, which is considered the critical effect of Cd exposure. However, the mechanisms involved in Cd-induced proteinuria are not entirely clear. Therefore, the present study was designed to evaluate the possible role of megalin and cubilin (important endocytic receptors in proximal tubule cells) and angiotensin II type 1 (AT1) receptor on Cd-induced microalbuminuria. Methods Four groups of female Wistar rats were studied. Control (CT) group, vehicle-treated rats; LOS group, rats treated with losartan (an AT1 antagonist) from weeks 5 to 8 (10 mg/kg/day by gavage); Cd group, rats subchronically exposed to Cd (3 mg/kg/day by gavage) during 8 weeks, and Cd + LOS group, rats treated with Cd for 8 weeks and LOS from weeks 5–8. Kidney Cd content, glomerular function (evaluated by creatinine clearance and plasma creatinine), kidney injury and tubular function (evaluated by Kim-1 expression, urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) and glucose, and microalbuminuria), oxidative stress (measured by lipid peroxidation and NAD(P)H oxidase activity), mRNA levels of megalin, expressions of megalin and cubilin (by confocal microscopy) and AT1 receptor (by Western blot), were measured in the different experimental groups. Data were analyzed by one-way ANOVA or Kruskal-Wallis test using GraphPad Prism 5 software (Version 5.00). P < 0.05 was considered statistically significant. Results Administration of Cd (Cd and Cd + LOS groups) increased renal Cd content. LOS-treatment decreased Cd-induced microalbuminuria without changes in: plasma creatinine, creatinine clearance, urinary NAG and glucose, oxidative stress, mRNA levels of megalin and cubilin, neither protein expression of megalin nor AT1 receptor, in the different experimental groups studied. However, Cd exposure did induce the expression of the tubular injury marker Kim-1 and decreased

  16. Clinical and Pharmacotherapeutic Relevance of the Double-Chain Domain of the Angiotensin II Type 1 Receptor Blocker Olmesartan

    PubMed Central

    Kiya, Yoshihiro; Miura, Shin-ichiro; Fujino, Masahiro; Imaizumi, Satoshi; Karnik, Sadashiva S.; Saku, Keijiro

    2014-01-01

    We previously reported that the angiotensin II type 1 (AT1) receptor blocker (ARB) olmesartan has two important interactions to evoke inverse agonism (IA). We refer to these interactions as the “double-chain domain (DCD).” Since the clinical pharmacotherapeutic relevance of olmesartan is still unclear, we examined these effects in rats and humans. We analyzed the effects at an advanced stage of renal insufficiency in Dahl salt-sensitive hypertensive rats (Study 1). Rats were fed a high-salt diet from age 9 weeks and arbitrarily assigned to three treatment regimens at age 16 to 21 weeks: olmesartan (2 mg/kg/day) with DCD, a compound related to olmesartan without DCD (6 mg/kg/day, R-239470) or placebo. We also compared the depressor effects of olmesartan to those of other ARBs in patients with essential hypertension (Study 2). Thirty essential hypertensive outpatients who had been receiving ARBs other than olmesartan were recruited for this study. Our protocol was approved by the hospital ethics committee and informed consent was obtained from all patients 12 weeks prior to switching from ARBs other than olmesartan to olmesartan. In Study 1, olmesartan induced a more prominent suppression of the ratio of urinary protein excretion to creatinine at age 21 weeks without lowering blood pressure among the three groups. In Study 2, the depressor effect of olmesartan was significantly stronger than those of other ARBs, which do not contain the DCD. These additive effects by olmesartan may be due to DCD. PMID:20374187

  17. Therapeutic Effect of Losartan, an Angiotensin II Type 1 Receptor Antagonist, on CCl4-Induced Skeletal Muscle Injury

    PubMed Central

    Hwang, Ok-Kyung; Park, Jin-Kyu; Lee, Eun-Joo; Lee, Eun-Mi; Kim, Ah-Young; Jeong, Kyu-Shik

    2016-01-01

    TGF-β1 is known to inhibit muscle regeneration after muscle injury. However, it is unknown if high systemic levels of TGF-β can affect the muscle regeneration process. In the present study, we demonstrated the effect of a CCl4 intra-peritoneal injection and losartan (an angiotensin II type 1 receptor antagonist) on skeletal muscle (gastrocnemius muscle) injury and regeneration. Male C57BL/6 mice were grouped randomly as follows: control (n = 7), CCl4-treatment group (n = 7), and CCl4 + losartan treatment group (n = 7). After CCl4 treatment for a 16-week period, the animals were sacrificed and analyzed. The expression of dystrophin significantly decreased in the muscle tissues of the control group, as compared with that of the CCl4 + losartan group (p < 0.01). p(phospho)-Smad2/3 expression significantly increased in the muscles of the control group compared to that in the CCl4 + losartan group (p < 0.01). The expressions of Pax7, MyoD, and myogenin increased in skeletal muscles of the CCl4 + losartan group compared to the corresponding levels in the control group (p < 0.01). We hypothesize that systemically elevated TGF-β1 as a result of CCl4-induced liver injury causes skeletal muscle injury, while losartan promotes muscle repair from injury via blockade of TGF-β1 signaling. PMID:26867195

  18. Regulation of angiotensin II type 1 receptor expression in ovarian cancer: a potential role for BRCA1.

    PubMed

    Bi, Fang-Fang; Li, Da; Cao, Chen; Li, Chun-Yan; Yang, Qing

    2013-12-09

    Both BRCA1 and angiotensin II type 1 receptor (AGTR1) play a critical role in ovarian cancer progression. However, the crosstalk between BRCA1 and AGTR1 signaling pathways remains largely unknown. BRCA1 promoter methylation was analyzed by bisulfite sequence using primers focused on the core promoter region. Expression levels of BRCA1 and AGTR1 were assessed by immunohistochemistry and real-time PCR. Regression analysis was used to examine the possible relationship between BRCA1 and AGTR1 protein levels. Knockdown or overexpression of BRCA1 was achieved by using a lentiviral vector in 293 T cells and SKOV3 ovarian carcinoma cells, and primary non-mutated and BRCA1-mutated ovarian cancer cells. BRCA1 dysfunction (BRCA1 mutation or hypermethylated BRCA1 promoter) ovarian cancer showed decreased AGTR1 levels compared to normal tissue. In contrast, AGTR1 expression was increased in non-BRCA1-mutated ovarian cancer. Notably, BRCA1 activation was an effective way to induce AGTR1 expression in primary ovarian cancer cells and a positive correlation exists between BRCA1 and AGTR1 expression in human ovarian cancer specimens. These results indicate that BRCA1 may be a potential trigger involved in the transcriptional regulation of AGTR1 in the development of ovarian cancer.

  19. Analysis of correlations between coronary heart disease and haplotypes of the angiotensin II receptor type 1 (AGTR1) gene.

    PubMed

    Duan, L J; Wang, X D

    2016-03-18

    This study aimed to explore correlations between haplotypes of the angiotensin II receptor type 1 (AGTR1) gene and coronary heart disease (CHD). In total, 204 patients with CHD and 206 healthy controls were genotyped using denaturing high-performance liquid chromatography between 2008 and 2014. Five polymorphic loci were found, namely, A-43281G, A-32954G, G-32839A, G-11064A, and A1880G. Likelihood estimates were used to identify haplotypes consisting of the A1166C locus and four of these five loci, then correlations between these haplotypes and CHD were assessed. Eight haplotypes with a frequency greater than 3% in the study population were discerned: ACCAA [odds ratio (OR) = 1.2381, 95% confidence interval (CI) = 0.7726-1.9843]; ACCCA (OR = 1.2604, 95%CI = 0.6104-2.6027); ACTAA (OR = 0.8929, 95%CI = 0.6607-1.2067); ACTAG (OR = 0.9274, 95%CI = 0.5692-1.5110); ATTAA (OR = 1.0347, 95%CI = 0.7505-1.4265); ATTAG (OR = 0.9110, 95%CI = 0.4227-1.9631); GCCAA (OR = 1.1273, 95%CI = 0.7259-1.7506); and GCTAA (OR = 0.7981, 95%CI = 0.4379-1.4546). However, the frequency of these haplotypes did not significantly differ between CHD and the control groups. Thus, no correlation was established between the occurrence of CHD and AGTR1 haplotypes present at frequencies greater than 3%.

  20. Regulation of angiotensin II type 1 receptor expression in ovarian cancer: a potential role for BRCA1

    PubMed Central

    2013-01-01

    Background Both BRCA1 and angiotensin II type 1 receptor (AGTR1) play a critical role in ovarian cancer progression. However, the crosstalk between BRCA1 and AGTR1 signaling pathways remains largely unknown. Methods BRCA1 promoter methylation was analyzed by bisulfite sequence using primers focused on the core promoter region. Expression levels of BRCA1 and AGTR1 were assessed by immunohistochemistry and real-time PCR. Regression analysis was used to examine the possible relationship between BRCA1 and AGTR1 protein levels. Knockdown or overexpression of BRCA1 was achieved by using a lentiviral vector in 293 T cells and SKOV3 ovarian carcinoma cells, and primary non-mutated and BRCA1-mutated ovarian cancer cells. Results BRCA1 dysfunction (BRCA1 mutation or hypermethylated BRCA1 promoter) ovarian cancer showed decreased AGTR1 levels compared to normal tissue. In contrast, AGTR1 expression was increased in non-BRCA1-mutated ovarian cancer. Notably, BRCA1 activation was an effective way to induce AGTR1 expression in primary ovarian cancer cells and a positive correlation exists between BRCA1 and AGTR1 expression in human ovarian cancer specimens. Conclusions These results indicate that BRCA1 may be a potential trigger involved in the transcriptional regulation of AGTR1 in the development of ovarian cancer. PMID:24321324

  1. Therapeutic Effect of Losartan, an Angiotensin II Type 1 Receptor Antagonist, on CCl₄-Induced Skeletal Muscle Injury.

    PubMed

    Hwang, Ok-Kyung; Park, Jin-Kyu; Lee, Eun-Joo; Lee, Eun-Mi; Kim, Ah-Young; Jeong, Kyu-Shik

    2016-02-08

    TGF-β1 is known to inhibit muscle regeneration after muscle injury. However, it is unknown if high systemic levels of TGF-β can affect the muscle regeneration process. In the present study, we demonstrated the effect of a CCl₄ intra-peritoneal injection and losartan (an angiotensin II type 1 receptor antagonist) on skeletal muscle (gastrocnemius muscle) injury and regeneration. Male C57BL/6 mice were grouped randomly as follows: control (n = 7), CCl₄-treatment group (n = 7), and CCl₄ + losartan treatment group (n = 7). After CCl₄ treatment for a 16-week period, the animals were sacrificed and analyzed. The expression of dystrophin significantly decreased in the muscle tissues of the control group, as compared with that of the CCl₄ + losartan group (p < 0.01). p(phospho)-Smad2/3 expression significantly increased in the muscles of the control group compared to that in the CCl₄ + losartan group (p < 0.01). The expressions of Pax7, MyoD, and myogenin increased in skeletal muscles of the CCl₄ + losartan group compared to the corresponding levels in the control group (p < 0.01). We hypothesize that systemically elevated TGF-β1 as a result of CCl₄-induced liver injury causes skeletal muscle injury, while losartan promotes muscle repair from injury via blockade of TGF-β1 signaling.

  2. Polymorphisms at the angiotensinogen (AGT) and angiotensin II type 1 receptor (AT1R) loci and normal blood pressure.

    PubMed

    Berge, K E; Berg, K

    1998-03-01

    The M235T polymorphism at the angiotensinogen (AGT) locus and the A1166C polymorphism at the angiotensin II type 1 receptor (AT1R) locus have been reported to be associated with hypertension in several populations. We examined these polymorphisms in three samples of healthy Norwegians with respect to normal blood pressure (BP) levels. None of the genotypes defined by the polymorphisms or their combinations were associated with systolic (S) BP (SBP) or diastolic (D) BP (DBP) level. However, there was a trend in all three series that individuals carrying the C allele of the A1166C polymorphism at the AT1R locus (homozygotes as well as heterozygotes) had higher SBP, than AA homozygous individuals. The observation did not reach statistical significance in any of the series. When examining these two polymorphisms with respect to possible variability gene effects on BP in two series of monozygote (MZ) twin pairs, no such effect was detected. We could not detect any interaction between the loci studied with respect to BP level or variability. Thus, neither the AGT locus nor AT1R locus, separately analysed or together, seem to have variability gene effects or definite level gene effects on normal BP.

  3. ACE inhibitor and angiotensin II type 1 receptor antagonist therapies in elderly patients with diabetes mellitus: are they underutilized?

    PubMed

    Pappoe, Lamioko Shika; Winkelmayer, Wolfgang C

    2010-02-01

    Diabetes mellitus is highly prevalent in older adults in the industrialized world. These patients are at high risk of complications from diabetes, including diabetic kidney disease. ACE inhibitors and their newer cousins, angiotensin II type 1 receptor antagonists (angiotensin receptor blockers [ARBs]), are powerful medications for the prevention of progression of diabetic renal disease. Unfortunately, among the elderly, these medications have been underutilized. The reasons for this include physician concerns regarding patient age and limited life expectancy and potential complications of ACE inhibitor or ARB use, specifically an increase in creatinine levels and hyperkalaemia. As discussed in this article, there have been several studies that show that the effects of inhibition of the renin-angiotensin system can be beneficial for the treatment of cardiovascular disease and renal disease among elderly patients with diabetes and that the potential risks mentioned above are no greater in this group than in the general population. For these reasons, several professional societies recommend that elderly patients with diabetes and hypertension (systolic blood pressure >or=140 mmHg or diastolic blood pressure >or=90 mmHg) be treated with an ACE inhibitor or ARB (as is recommended for younger diabetics). Use of ACE inhibitors or ARBs is also recommended for those with cardiovascular disease or those who are at risk of cardiovascular disease. Furthermore, in the management of diabetic kidney disease in elderly patients, treatment with ACE inhibitors or ARBs is also recommended to reduce the risk or slow the progression of nephropathy. Renal function and potassium levels should be monitored within the first 12 weeks of initiation of these medications, with each dose increase, and on a yearly basis thereafter. This article summarizes the current guidelines on the use of ACE inhibitors and ARBs in older adults with diabetes, reviews the evidence for their use in the elderly

  4. Acute atrial tachyarrhythmia induces angiotensin II type 1 receptor-mediated oxidative stress and microvascular flow abnormalities in the ventricles

    PubMed Central

    Goette, Andreas; Bukowska, Alicja; Dobrev, Dobromir; Pfeiffenberger, Jan; Morawietz, Henning; Strugala, Denis; Wiswedel, Ingrid; Röhl, Friedrich-Wilhelm; Wolke, Carmen; Bergmann, Sybille; Bramlage, Peter; Ravens, Ursula; Lendeckel, Uwe

    2009-01-01

    Aims Patients with paroxysmal atrial fibrillation (AF) often present with typical angina pectoris and mildly elevated levels of cardiac troponin (non ST-segment elevation myocardial infarction) during an arrhythmic event. However, in a large proportion of these patients, significant coronary artery disease is excluded by coronary angiography. Here we explored the potential underlying mechanism of these events. Methods and results A total of 14 pigs were studied using a closed chest, rapid atrial pacing (RAP) model. In five pigs RAP was performed for 7 h (600 b.p.m.; n = 5), in five animals RAP was performed in the presence of angiotensin-II type-1-receptor (AT1-receptor) inhibitor irbesartan (RAP+Irb), and four pigs were instrumented without intervention (Sham). One-factor analysis of variance was performed to assess differences between and within the three groups. Simultaneous measurements of fractional flow reserve (FFR) and coronary flow reserve (CFR) before, during, and after RAP demonstrated unchanged FFR (P = 0.327), but decreased CFR during RAP (RAP: 67.7 ± 7.2%, sham: 97.2 ± 2.8%, RAP+Irb: 93.2 ± 3.3; P = 0.0013) indicating abnormal left ventricular (LV) microcirculation. Alterations in microcirculatory blood flow were accompanied by elevated ventricular expression of NADPH oxidase subunit Nox2 (P = 0.039), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1, P = 0.004), and F2-isoprostane levels (P = 0.008) suggesting RAP-related oxidative stress. Plasma concentrations of cardiac troponin-I (cTn-I) increased in RAP (RAP: 613.3 ± 125.8 pmol/L vs. sham: 82.5 ± 12.5 pmol/L; P = 0.013), whereas protein levels of eNOS and LV function remained unchanged. RAP+Irb prevented the increase of Nox2, LOX-1, and F2-isoprostanes, and abolished the impairment of microvascular blood flow. Conclusion Rapid atrial pacing induces AT1-receptor-mediated oxidative stress in LV myocardium that is accompanied by impaired microvascular blood flow and cTn-I release

  5. Valsartan ameliorates ageing-induced aorta degeneration via angiotensin II type 1 receptor-mediated ERK activity.

    PubMed

    Shan, HaiYan; Zhang, Siyang; Li, Xuelian; Yu, Kai; Zhao, Xin; Chen, Xinyue; Jin, Bo; Bai, XiaoJuan

    2014-06-01

    Angiotensin II (Ang II) plays important roles in ageing-related disorders through its type 1 receptor (AT1 R). However, the role and underlying mechanisms of AT1R in ageing-related vascular degeneration are not well understood. In this study, 40 ageing rats were randomly divided into two groups: ageing group which received no treatment (ageing control), and valsartan group which took valsartan (selective AT1R blocker) daily for 6 months. 20 young rats were used as adult control. The aorta structure were analysed by histological staining and electron microscopy. Bcl-2/Bax expression in aorta was analysed by immunohistochemical staining, RT-PCR and Western blotting. The expressions of AT1 R, AT2 R and mitogen-activated protein kinases (MAPKs) were detected. Significant structural degeneration of aorta in the ageing rats was observed, and the degeneration was remarkably ameliorated by long-term administration of valsartan. With ageing, the expression of AT1R was elevated, the ratio of Bcl-2/Bax was decreased and meanwhile, an important subgroup of MAPKs, extracellular signal-regulated kinase (ERK) activity was elevated. However, these changes in ageing rats could be reversed to some extent by valsartan. In vitro experiments observed consistent results as in vivo study. Furthermore, ERK inhibitor could also acquire partial effects as valsartan without affecting AT1R expression. The results indicated that AT1R involved in the ageing-related degeneration of aorta and AT1R-mediated ERK activity was an important mechanism underlying the process.

  6. Mineralocorticoid and angiotensin II type 1 receptors in the subfornical organ mediate angiotensin II - induced hypothalamic reactive oxygen species and hypertension.

    PubMed

    Wang, Hong-Wei; Huang, Bing S; White, Roselyn A; Chen, Aidong; Ahmad, Monir; Leenen, Frans H H

    2016-08-04

    Activation of angiotensinergic pathways by central aldosterone (Aldo)-mineralocorticoid receptor (MR) pathway plays a critical role in angiotensin II (Ang II)-induced hypertension. The subfornical organ (SFO) contains both MR and angiotensin II type 1 receptors (AT1R) and can relay the signals of circulating Ang II to downstream nuclei such as the paraventricular nucleus (PVN), supraoptic nucleus (SON) and rostral ventrolateral medulla (RVLM). In Wistar rats, subcutaneous (sc) infusion of Ang II at 500ng/min/kg for 1 or 2weeks increased reactive oxygen species (ROS) as measured by dihydroethidium (DHE) staining in a nucleus - specific pattern. Intra-SFO infusion of AAV-MR- or AT1aR-siRNA prevented the Ang II-induced increase in AT1R mRNA expression in the SFO and decreased MR mRNA. Both MR- and AT1aR-siRNA prevented increases in ROS in the PVN and RVLM. MR- but not AT1aR-siRNA in the SFO prevented the Ang II-induced ROS in the SON. Both MR- and AT1aR-siRNA in the SFO prevented most of the Ang II-induced hypertension as assessed by telemetry. These results indicate that Aldo-MR signaling in the SFO is needed for the activation of Ang II-AT1R-ROS signaling from the SFO to the PVN and RVLM. Activation of Aldo-MR signaling from the SFO to the SON may enhance AT1R dependent activation of pre-sympathetic neurons in the PVN. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Knockdown of mineralocorticoid or angiotensin II type 1 receptor gene expression in the paraventricular nucleus prevents angiotensin II hypertension in rats

    PubMed Central

    Chen, Aidong; Huang, Bing S; Wang, Hong-Wei; Ahmad, Monir; Leenen, Frans H H

    2014-01-01

    Circulating Ang II activates an aldosterone-mineralocorticoid receptor (MR) – angiotensin II (Ang II) – angiotensin type 1 receptor (AT1R) pathway in the hypothalamus. To obtain insights into the actual neuronal projections involved, adeno-associated virus carrying small interfering RNA against either AT1aR (AAV-AT1aR-siRNA) or MR (AAV-MR-siRNA) were infused into the paraventricular nucleus (PVN) in Wistar rats. Intra-PVN infusion of AAV-AT1aR-siRNA or AAV-MR-siRNA decreased AT1R or MR expression in the PVN but not in the subfornical organ (SFO) or supraoptic nucleus (SON). Subcutaneous infusion of Ang II at 500 ng kg−1 min−1 for 2 weeks increased mean arterial pressure by 60–70 mmHg, and increased AT1R and MR expression in the SFO, SON and PVN. Intra-PVN AT1aR-siRNA prevented the Ang II-induced increase in AT1R but not MR expression in the PVN, and MR-siRNA prevented MR but not AT1R expression in the PVN. The increases in AT1R and MR expression in both the SFO and the SON were not changed by the two AAV-siRNAs. Specific knockdown of AT1R or MR in the PVN by AAV-siRNA each prevented most of the Ang II-induced hypertension. Prevention of the subcutaneous Ang II-induced increase in MR but not the increase in AT1R by knockdown of MR and vice versa suggests an independent regulation of MR and AT1R expression in the PVN. Both AT1R and MR activation in the PVN play a critical role in Ang II-induced hypertension in rats. PMID:24973408

  8. Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin-6 and soluble adhesion molecules in patients with chronic heart failure.

    PubMed

    Tsutamoto, T; Wada, A; Maeda, K; Mabuchi, N; Hayashi, M; Tsutsui, T; Ohnishi, M; Sawaki, M; Fujii, M; Matsumoto, T; Kinoshita, M

    2000-03-01

    To evaluate the effects of an angiotensin (Ang II) type 1 receptor antagonist on immune markers in patients with congestive heart failure (CHF). Ang II stimulates production of immune factors via the Ang II type 1 receptor in vitro, and the long-term effects of Ang II type 1 receptor antagonists on plasma markers of immune activation are unknown in patients with CHF. Twenty-three patients with mild to moderate CHF with left ventricular dysfunction were randomly divided into two groups: treatment with Ang II type 1 receptor (candesartan cilexetil) (n = 14) or placebo (n = 9). We measured plasma levels of immune factors such as tumor necrosis factor alpha (TNFalpha), interleukin-6 (IL-6), soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1). We also measured plasma levels of the neurohumoral factors such as atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) and cyclic guanosine monophosphate (cGMP), a biological marker of ANP and BNP. Plasma levels of TNFalpha, IL-6, sICAM-1 and sVCAM-1 were increased in the 23 CHF patients compared with normal subjects and significantly decreased after 14 weeks of candesartan cilexetil treatment, but did not change in the placebo group. Plasma levels of BNP, which is a marker of ventricular injury, significantly decreased, and the molar ratio of plasma cGMP to cardiac natriuretic peptides (ANP + BNP) was significantly increased after candesartan cilexetil treatment, but did not change in the placebo group. These findings suggest that 14 weeks of treatment with an Ang II type 1 receptor antagonist (candesartan cilexetil) decreased plasma levels of the immune markers such as TNFalpha, IL-6, sICAM-1 and sVCAM-1 and that it improved the biological compensatory action of endogenous cardiac natriuretic peptides in patients with mild to moderate CHF.

  9. The angiotensin II type 1 receptor blocker olmesartan preferentially improves nocturnal hypertension and proteinuria in chronic kidney disease

    PubMed Central

    Yanagi, Mai; Tamura, Kouichi; Fujikawa, Tetsuya; Wakui, Hiromichi; Kanaoka, Tomohiko; Ohsawa, Masato; Azushima, Kengo; Maeda, Akinobu; Kobori, Hiroyuki; Umemura, Satoshi

    2013-01-01

    Accumulated evidence suggests that an altered ambulatory blood pressure (BP) profile, particularly elevated nighttime BP, reflects target organ injury and is a better predictor of further cardiorenal risk than the clinic BP or daytime BP in hypertensive patients complicated by chronic kidney disease (CKD). In this study, we examined the beneficial effects of olmesartan, an angiotensin II type 1 receptor blocker (ARB), on ambulatory BP profiles and renal function in hypertensive CKD patients. Forty-six patients were randomly assigned to the olmesartan add-on group (n=23) or the non-ARB group (n=23). At baseline and after the 16-week treatment period, ambulatory BP monitoring was performed and renal function parameter measurements were collected. Although the baseline clinic BP levels and the after-treatment/baseline (A/B) ratios of clinic BP levels were similar in the olmesartan add-on and non-ARB groups, the A/B ratios of ambulatory 24-h and nighttime BP levels in the olmesartan add-on group were significantly lower. Furthermore, the A/B ratios of urinary protein, albumin and type IV collagen excretion in the olmesartan add-on group were significantly lower than those in the non-ARB group (urinary protein excretion, 0.72±0.41 vs. 1.45±1.48, P=0.030; urinary albumin excretion, 0.73±0.37 vs. 1.50±1.37, P 0.005; urinary type IV collagen excretion, 0.87±0.42 vs. 1.48±0.87, P=0.014) despite comparable A/B ratios for the estimated glomerular filtration rate in the two groups. These results indicate that in hypertensive patients with CKD, olmesartan add-on therapy improves the ambulatory BP profile via a preferential reduction in nighttime BP with concomitant renal injury inhibition. PMID:23154587

  10. Increased expression of angiotensin II type 1 receptor (AGTR1) in heart transplant recipients with recurrent rejection.

    PubMed

    Yamani, Mohamad H; Cook, Daniel J; Rodriguez, E Rene; Thomas, Dawn M; Gupta, Sandeep; Alster, Joan; Taylor, David O; Hobbs, Robert; Young, James B; Smedira, Nicholas; Starling, Randall C

    2006-11-01

    Angiotensin II receptor sub-type 1 (AGTR1) plays an important role in the regulation of the cellular immune process. We hypothesized that recurrent acute rejection is associated with increased gene expression of AGTR1 in human heart transplantation. We identified a group of 14 heart transplant recipients who had recurrent acute cellular rejection (RAR), defined as three consecutive episodes of acute rejection (Grade > or =3A). These patients were matched to a control group (n = 15). mRNA gene expression of AGTR1 was measured in heart biopsy specimens of controls at 1 week post-transplant. AGTR1 mRNA was determined serially in the RAR group at baseline, each rejection episode, and after resolution of rejection. Angiotensin-converting enzyme (ACE) polymorphism was also evaluated. Both the control and RAR groups had similar mRNA AGTR1 expression at baseline. Compared with baseline, the RAR group had significantly increased mRNA expression of AGTR1 at the first episode of rejection (9-fold, p < 0.001), which increased further at the second episode (12-fold, p < 0.001) and peaked at the third episode (35-fold, p < 0.001). After resolution of rejection, AGTR1 expression was decreased significantly (p < 0.001), but remained elevated above baseline (6-fold, p < 0.001). No difference in ACE polymorphism was noted between the two groups. Compared with controls, the RAR patients had an increased incidence of hypertension, diabetes mellitus, chronic renal insufficiency and transplant vasculopathy during a mean follow-up period of 51.5 +/- 12 months. This is the first report to describe increased mRNA expression of AGTR1 in response to recurrent cellular rejection. Up-regulation of AGTR1 responds to treatment of rejection but not to complete recovery, a phenomenon that may potentially explain the link between rejection and subsequent clinical outcome.

  11. Polymorphism in the angiotensin II type 1 receptor (AGTR1) is associated with age at diagnosis in pulmonary arterial hypertension.

    PubMed

    Chung, Wendy K; Deng, Liyong; Carroll, J Sheila; Mallory, Nicole; Diamond, Beverly; Rosenzweig, Erika Berman; Barst, Robyn J; Morse, Jane H

    2009-04-01

    Pulmonary arterial hypertension (PAH) is a rare, lethal disease associated with single gene disorders, connective tissue disease, exposures to anorexigens, and often, idiopathic etiology. Genes can modify the risk of PAH: (1) monogenic disorders associated with PAH are incompletely penetrant, and (2) not all patients with associated conditions at increased risk for PAH develop the disease. The renin angiotensin aldosterone system (RAAS) provides a set of candidate genes that could modulate pulmonary vascular disease similar to its effects on renal and peripheral vasculature. We studied 247 patients with PAH, comprising 177 with idiopathic PAH (IPAH), 63 with PAH/connective tissue disease (CTD), and 7 with PAH associated with anorexigens. Patients were genotyped for 5 common polymorphisms in angiotensinogen (AGT), angiotensin-converting enzyme (ACE), cardiac chymase A (CMA1), angiotensin II type 1 receptor (AGTR1), and aldosterone synthase (CYP11B2). Genotypes were tested for associations with age at diagnosis, hemodynamic parameters at diagnosis, and/or response to acute pulmonary vasodilator testing at diagnosis. Associations were demonstrated for AGTR1 and age at diagnosis in IPAH (p = 0.005). Homozygotes for the 1166C allele (n = 13) were associated with an age at diagnosis 26 years later than those with A/A (n = 139) or A/C (n = 90) genotypes. No associations were demonstrated for AGT, ACE, CMA1, or CYP11B2. The 1166C polymorphism in AGTR1 appears to be associated with a later age at diagnosis in IPAH, suggesting that this pathway could be involved in the biologic variability that is known to occur in PAH.

  12. Polymorphism in the Angiotensin II Type 1 Receptor (AGTR1) is Associated with Age at Diagnosis in Pulmonary Arterial Hypertension

    PubMed Central

    Chung, Wendy K.; Deng, Liyong; Carroll, J. Sheila; Mallory, Nicole; Diamond, Beverly; Rosenzweig, Erika Berman; Barst, Robyn J.; Morse, Jane H.

    2013-01-01

    Background Pulmonary arterial hypertension (PAH) is a rare, lethal disease associated with single gene disorders, connective tissue disease, exposures to anorexigens, and often idiopathic etiology. There is evidence that genes can modify the risk of PAH: 1) monogenic disorders associated with PAH are incompletely penetrant, and 2) not all patients with associated conditions at increased risk for PAH develop the disease. The renin angiotensin aldosterone system (RAAS) provides a set of candidate genes that could modulate pulmonary vascular disease similar to its effects on renal and peripheral vasculature. Methods We studied 247 subjects with PAH (177 subjects with idiopathic PAH (IPAH); 63 subjects with PAH/connective tissue disease (CTD); and 7 subjects with PAH associated with anorexigens). Subjects were genotyped for five common polymorphisms in angiotensinogen (AGT), angiotensin converting enzyme (ACE), cardiac chymase A (CMA1), angiotensin II type 1 receptor (AGTR1) and aldosterone synthase (CYP11B2). Genotypes were tested for associations with age at diagnosis, hemodynamic parameters at diagnosis, and/or response to acute pulmonary vasodilator testing at diagnosis. Results Associations were demonstrated for AGTR1 and age at diagnosis in IPAH (p=0.005). Homozygotes for the C1166 allele (n=13) were associated with an age at diagnosis 26 years later than subjects with A/A (n=139) or A/C (n=90) genotypes. No associations were demonstrated for AGT, ACE, CMA1, or CYP11B2. Conclusions The 1166C polymorphism in AGTR1 appears to be associated with a later age at diagnosis in IPAH suggesting that this pathway could be involved in the biologic variability that is known to occur in PAH. PMID:19332265

  13. Functional Interaction between Angiotensin II Receptor Type 1 and Chemokine (C-C Motif) Receptor 2 with Implications for Chronic Kidney Disease

    PubMed Central

    Kelly, Robyn S.; See, Heng B.; Johnstone, Elizabeth K. M.; McCall, Elizabeth A.; Williams, James H.; Kelly, Darren J.; Pfleger, Kevin D. G.

    2015-01-01

    Understanding functional interactions between G protein-coupled receptors is of great physiological and pathophysiological importance. Heteromerization provides one important potential mechanism for such interaction between different signalling pathways via macromolecular complex formation. Previous studies suggested a functional interplay between angiotensin II receptor type 1 (AT1) and Chemokine (C-C motif) Receptor 2 (CCR2). However the molecular mechanisms are not understood. We investigated AT1-CCR2 functional interaction in vitro using bioluminescence resonance energy transfer in HEK293 cells and in vivo using subtotal-nephrectomized rats as a well-established model for chronic kidney disease. Our data revealed functional heteromers of these receptors resulting in CCR2-Gαi1 coupling being sensitive to AT1 activation, as well as apparent enhanced β-arrestin2 recruitment with agonist co-stimulation that is synergistically reversed by combined antagonist treatment. Moreover, we present in vivo findings where combined treatment with AT1- and CCR2-selective inhibitors was synergistically beneficial in terms of decreasing proteinuria, reducing podocyte loss and preventing renal injury independent of blood pressure in the subtotal-nephrectomized rat model. Our findings further support a role for G protein-coupled receptor functional heteromerization in pathophysiology and provide insights into previous observations indicating the importance of AT1-CCR2 functional interaction in inflammation, renal and hypertensive disorders. PMID:25807547

  14. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells.

    PubMed

    Adebiyi, Adebowale; Soni, Hitesh; John, Theresa A; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca(2+) ([Ca(2+)]i) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca(2+)]i elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca(2+)]i chelator; KN-93, a Ca(2+)/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca(2+)]i-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells.

    PubMed

    Li, Hewang; Armando, Ines; Yu, Peiying; Escano, Crisanto; Mueller, Susette C; Asico, Laureano; Pascua, Annabelle; Lu, Quansheng; Wang, Xiaoyan; Villar, Van Anthony M; Jones, John E; Wang, Zheng; Periasamy, Ammasi; Lau, Yuen-Sum; Soares-da-Silva, Patricio; Creswell, Karen; Guillemette, Gaétan; Sibley, David R; Eisner, Gilbert; Gildea, John J; Felder, Robin A; Jose, Pedro A

    2008-06-01

    Hypertension is a multigenic disorder in which abnormal counterregulation between dopamine and Ang II plays a role. Recent studies suggest that this counterregulation results, at least in part, from regulation of the expression of both the antihypertensive dopamine 5 receptor (D5R) and the prohypertensive Ang II type 1 receptor (AT1R). In this report, we investigated the in vivo and in vitro interaction between these GPCRs. Disruption of the gene encoding D5R in mice increased both blood pressure and AT1R protein expression, and the increase in blood pressure was reversed by AT1R blockade. Activation of D5R increased the degradation of glycosylated AT1R in proteasomes in HEK cells and human renal proximal tubule cells heterologously and endogenously expressing human AT1R and D5R. Confocal microscopy, Förster/fluorescence resonance energy transfer microscopy, and fluorescence lifetime imaging microscopy revealed that activation of D5R initiated ubiquitination of the glycosylated AT1R at the plasma membrane. The regulated degradation of AT1R via a ubiquitin/proteasome pathway by activation of D5R provides what we believe to be a novel mechanism whereby blood pressure can be regulated by the interaction of 2 counterregulatory GPCRs. Our results therefore suggest that treatments for hypertension might be optimized by designing compounds that can target the AT1R and the D5R.

  16. Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells

    PubMed Central

    Li, Hewang; Armando, Ines; Yu, Peiying; Escano, Crisanto; Mueller, Susette C.; Asico, Laureano; Pascua, Annabelle; Lu, Quansheng; Wang, Xiaoyan; Villar, Van Anthony M.; Jones, John E.; Wang, Zheng; Periasamy, Ammasi; Lau, Yuen-Sum; Soares-da-Silva, Patricio; Creswell, Karen; Guillemette, Gaétan; Sibley, David R.; Eisner, Gilbert; Felder, Robin A.; Jose, Pedro A.

    2008-01-01

    Hypertension is a multigenic disorder in which abnormal counterregulation between dopamine and Ang II plays a role. Recent studies suggest that this counterregulation results, at least in part, from regulation of the expression of both the antihypertensive dopamine 5 receptor (D5R) and the prohypertensive Ang II type 1 receptor (AT1R). In this report, we investigated the in vivo and in vitro interaction between these GPCRs. Disruption of the gene encoding D5R in mice increased both blood pressure and AT1R protein expression, and the increase in blood pressure was reversed by AT1R blockade. Activation of D5R increased the degradation of glycosylated AT1R in proteasomes in HEK cells and human renal proximal tubule cells heterologously and endogenously expressing human AT1R and D5R. Confocal microscopy, Förster/fluorescence resonance energy transfer microscopy, and fluorescence lifetime imaging microscopy revealed that activation of D5R initiated ubiquitination of the glycosylated AT1R at the plasma membrane. The regulated degradation of AT1R via a ubiquitin/proteasome pathway by activation of D5R provides what we believe to be a novel mechanism whereby blood pressure can be regulated by the interaction of 2 counterregulatory GPCRs. Our results therefore suggest that treatments for hypertension might be optimized by designing compounds that can target the AT1R and the D5R. PMID:18464932

  17. Tumor necrosis factor-α inhibits angiotensin II receptor type 1 expression in dorsal root ganglion neurons via β-catenin signaling.

    PubMed

    Yang, Y; Wu, H; Yan, J-Q; Song, Z-B; Guo, Q-L

    2013-09-17

    Both tumor necrosis factor (TNF)-α and the angiotensin (Ang) II/angiotensin II receptor type 1 (AT1) axis play important roles in neuropathic pain and nociception. In the present study, we explored the interaction between the two systems by examining the mutual effects between TNF-α and the Ang II/AT1 receptor axis in dorsal root ganglion (DRG) neurons. Rat DRG neurons were treated with TNF-α in different concentrations for different lengths of time in the presence or absence of transcription inhibitor actinomycin D, TNF receptor 1 (TNFR1) inhibitor SPD304, β-catenin signaling inhibitor CCT031374, or different kinase inhibitors. TNF-α decreased the AT1 receptor mRNA level as well as the AT1a receptor promoter activity in a dose-dependent manner within 30 h, which led to dose-dependent inhibition of Ang II-binding AT1 receptor level on the cell membrane. Actinomycin D (1 mg/ml), SPD304 (50 μM), p38 mitogen-activated protein kinase (MAPK) inhibitor PD169316 (25 μM), and CCT031374 (50 μM) completely abolished the inhibitory effect of TNF-α on AT1 receptor expression. TNF-α dose-dependently increased soluble β-catenin and phosphorylated GSK-3β levels, which was blocked by SPD304 and PD169316. In DRG neurons treated with AT2 receptor agonist CGP421140, or Ang II with or without AT1 receptor antagonist losartan or AT2 receptor antagonist PD123319 for 30 h, we found that Ang II and Ang II+PD123319 significantly decreased TNF-α expression, whereas CPG421140 and Ang II+losartan increased TNF-α expression. In conclusion, we demonstrate that TNF-α inhibits AT1 receptor expression at the transcription level via TNFR1 in rat DRG neurons by increasing the soluble β-catenin level through the p38 MAPK/GSK-3β pathway. In addition, Ang II appears to inhibit and induce TNF-α expression via the AT1 receptor and the AT2 receptor in DRG neurons, respectively. This is the first evidence of crosstalk between TNF-α and the Ang II/AT receptor axis in DRG neurons.

  18. Imbalance of angiotensin type 1 receptor and angiotensin II type 2 receptor in the rostral ventrolateral medulla: potential mechanism for sympathetic overactivity in heart failure.

    PubMed

    Gao, Lie; Wang, Wei-Zhong; Wang, Wei; Zucker, Irving H

    2008-10-01

    Upregulation of angiotensin II type 1 receptors (AT(1)R) in the rostral ventrolateral medulla (RVLM) contributes to the sympathoexcitation in the chronic heart failure (CHF). However, the role of angiotensin II type 2 receptor (AT(2)R) is not clear. In this study, we measured AT(1)R and AT(2)R protein expression in the RVLM and determined their effects on renal sympathetic nerve activity, blood pressure, and heart rate in anesthetized sham and CHF rats. We found that (1) although AT(1)R expression in the RVLM was upregulated, the AT(2)R was significantly downregulated (CHF: 0.06+/-0.02 versus sham: 0.15+/-0.02, P<0.05); (2) simultaneously stimulating RVLM AT(1)R and AT(2)R by angiotensin II evoked sympathoexcitation, hypertension, and tachycardia in both sham and CHF rats with greater responses in CHF; (3) stimulating RVLM AT1R with angiotensin II plus the specific AT(2)R antagonist PD123319 induced a larger sympathoexcitatory response than simultaneously stimulating AT(1)R and AT(2)R in sham rats, but not in CHF; (4) activating RVLM AT(2)R with CGP42112 induced a sympathoinhibition, hypotension, and bradycardia only in sham rats (renal sympathetic nerve activity: 36.4+/-5.1% of baseline versus 102+/-3.9% of baseline in artificial cerebrospinal fluid, P<0.05); (5) pretreatment with 5,8,11,14-eicosatetraynoic acid, a general inhibitor of arachidonic acid metabolism, into the RVLM attenuates the CGP42112-induced sympathoinhibition. These results suggest that AT(2)R in the RVLM exhibits an inhibitory effect on sympathetic outflow, which is, at least partially, mediated by an arachidonic acid metabolic pathway. These data implicate a downregulation in the AT(2)R as a contributory factor in the sympathoexcitation in CHF.

  19. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    SciTech Connect

    Adebiyi, Adebowale Soni, Hitesh; John, Theresa A.; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.

  20. Novel leptin receptor mutation in NOD/LtJ mice suppresses type 1 diabetes progression: II. Immunologic analysis.

    PubMed

    Lee, Chul-Ho; Chen, Yi-Guang; Chen, Jing; Reifsnyder, Peter C; Serreze, David V; Clare-Salzler, Michael; Rodriguez, Michelle; Wasserfall, Clive; Atkinson, Mark A; Leiter, Edward H

    2006-01-01

    Recently, we identified in normally type 1 diabetes-prone NOD/LtJ mice a spontaneous new leptin receptor (LEPR) mutation (designated Lepr(db-5J)) producing juvenile obesity, hyperglycemia, hyperinsulinemia, and hyperleptinemia. This early type 2 diabetes syndrome suppressed intra-islet insulitis and permitted spontaneous diabetes remission. No significant differences in plasma corticosterone, splenic CD4(+) or CD8(+) T-cell percentages, or functions of CD3(+) T-cells in vitro distinguished NOD wild-type from mutant mice. Yet splenocytes from hyperglycemic mutant donors failed to transfer type 1 diabetes into NOD.Rag1(-/-) recipients over a 13-week period, whereas wild-type donor cells did so. This correlated with significantly reduced (P < 0.01) frequencies of insulin and islet-specific glucose-6-phosphatase catalytic subunit-related protein-reactive CD8(+) T-effector clonotypes in mutant mice. Intra-islet insulitis was also significantly suppressed in lethally irradiated NOD-Lepr(db-5J)/Lt recipients reconstituted with wild-type bone marrow (P < 0.001). In contrast, type 1 diabetes eventually developed when mutant marrow was transplanted into irradiated wild-type recipients. Mitogen-induced T-cell blastogenesis was significantly suppressed when splenic T-cells from both NOD/Lt and NOD-Lepr(db-5J)/Lt donors were incubated with irradiated mutant peritoneal exudate cells (P < 0.005). In conclusion, metabolic disturbances elicited by a type 2 diabetes syndrome (insulin and/or leptin resistance, but not hypercorticism) appear to suppress type 1 diabetes development in NOD-Lepr(db-5J)/Lt by inhibiting activation of T-effector cells.

  1. The effect of the angiotensin II receptor, type 1 receptor antagonists, losartan and telmisartan, on thioacetamide-induced liver fibrosis in rats.

    PubMed

    Czechowska, G; Celinski, K; Korolczuk, A; Wojcicka, G; Dudka, J; Bojarska, A; Madro, A; Brzozowski, T

    2016-08-01

    It has been reported previously that the density of angiotensin II receptors is increased in the rat liver in experimentally-induced fibrosis. We hypothesized that pharmacological blockade of angiotensin receptors may produce beneficial effects in models of liver fibrosis. In this study, we used the widely used thioacetamide (TAA)-induced model of liver fibrosis (300 mg/L TAA ad libitum for 12 weeks). Rats received daily injections (i.p), lasting 4 weeks of the angiotensin II type 1 receptor antagonists, losartan 30 mg/kg (TAA + L) or telmisartan 10 mg/kg (TAA + T) and were compared to rat that received TAA alone. Chronic treatment with losartan and telmisartan was associated with a significant reduction in the activity of alkaline phosphatase, and decreased concentrations of tumor necrosis factor-alpha and transforming growth factor beta-1 compared to controls. We also found a significant reduction interleukin-6 in rats receiving telmisartan (P < 0.05) but not losartan. Both treatments increased the concentration of liver glutathione along with a concomitant decrease of GSSG compared to controls. In addition, increased paraoxonase 1 activity was observed in the serum of rats receiving telmisartan group compared to the TAA alone controls. Finally, histological evaluation of liver sections revealed losartan and telmisartan treatment was associated with reduced inflammation and liver fibrosis. Taken together, these results indicate that both telmisartan and losartan have anti-inflammatory and anti-oxidative properties in the TAA model of liver fibrosis. These finding add support to a growing body of literature indicating a potentially important role for the angiotensin system in liver fibrosis and indicate angiotensin antagonists may be useful agents for fibrosis treatment.

  2. miR-802 regulates human angiotensin II type 1 receptor expression in intestinal epithelial C2BBe1 cells

    PubMed Central

    Sansom, Sarah E.; Nuovo, Gerard J.; Martin, Mickey M.; Kotha, Sainath R.; Parinandi, Narasimham L.

    2010-01-01

    Studies have demonstrated that angiotensin II (Ang II) can regulate intestinal fluid and electrolyte transport and control intestinal wall muscular activity. Ang II is also a proinflammatory mediator that participates in inflammatory responses such as apoptosis, angiogenesis, and vascular remodeling; accumulating evidence suggests that this hormone may be involved in gastrointestinal (GI) inflammation and carcinogenesis. Ang II binds to two distinct G protein-coupled receptor subtypes, the AT1R and AT2R, which are widely expressed in the GI system. Together these studies suggest that Ang II-AT1R/-AT2R actions may play an important role in GI tract physiology and pathophysiology. Currently it is not known whether miRNAs can regulate the expression of the human AT1R (hAT1R) in the GI system. PCR and in situ hybridization experiments demonstrated that miR-802 was abundantly expressed in human colon and intestine. Luciferase reporter assays demonstrated that miR-802 could directly interact with the bioinformatics-predicted target site harbored within the 3′-untranslated region of the hAT1R mRNA. To validate that the levels of miR-802 were physiologically relevant in the GI system, we demonstrated that miR-802 “loss-of-function” experiments resulted in augmented hAT1R levels and enhanced Ang II-induced signaling in a human intestinal epithelial cell line. These results suggest that miR-802 can modulate the expression of the hAT1R in the GI tract and ultimately play a role in regulating the biological efficacy of Ang II in this system. PMID:20558762

  3. Angiotensin II type 1 receptor blocker telmisartan induces apoptosis and autophagy in adult T-cell leukemia cells.

    PubMed

    Kozako, Tomohiro; Soeda, Shuhei; Yoshimitsu, Makoto; Arima, Naomichi; Kuroki, Ayako; Hirata, Shinya; Tanaka, Hiroaki; Imakyure, Osamu; Tone, Nanako; Honda, Shin-Ichiro; Soeda, Shinji

    2016-05-01

    Adult T-cell leukemia/lymphoma (ATL), an aggressive T-cell malignancy that develops after long-term infection with human T-cell leukemia virus (HTLV-1), requires new treatments. Drug repositioning, reuse of a drug previously approved for the treatment of another condition to treat ATL, offers the possibility of reduced time and risk. Among clinically available angiotensin II receptor blockers, telmisartan is well known for its unique ability to activate peroxisome proliferator-activated receptor-γ, which plays various roles in lipid metabolism, cellular differentiation, and apoptosis. Here, telmisartan reduced cell viability and enhanced apoptotic cells via caspase activation in ex vivo peripheral blood monocytes from asymptomatic HTLV-1 carriers (ACs) or via caspase-independent cell death in acute-type ATL, which has a poor prognosis. Telmisartan also induced significant growth inhibition and apoptosis in leukemia cell lines via caspase activation, whereas other angiotensin II receptor blockers did not induce cell death. Interestingly, telmisartan increased the LC3-II-enriched protein fraction, indicating autophagosome accumulation and autophagy. Thus, telmisartan simultaneously caused caspase activation and autophagy. A hypertension medication with antiproliferation effects on primary and leukemia cells is intriguing. Patients with an early diagnosis of ATL are generally monitored until the disease progresses; thus, suppression of progression from AC and indolent ATL to acute ATL is important. Our results suggest that telmisartan is highly effective against primary cells and leukemia cell lines in caspase-dependent and -independent manners, and its clinical use may suppress acute transformation and improve prognosis of patients with this mortal disease. This is the first report demonstrating a cell growth-inhibitory effect of telmisartan in fresh peripheral blood mononuclear cells from leukemia patients.

  4. Genotoxicity of Advanced Glycation End Products: Involvement of Oxidative Stress and of Angiotensin II Type 1 Receptors

    NASA Astrophysics Data System (ADS)

    Schupp, Nicole; Schinzel, Reinhard; Heidland, August; Stopper, Helga

    2005-06-01

    In patients with chronic renal failure, cancer incidence is increased. This may be related to an elevated level of genomic damage, which has been demonstrated by micronuclei formation as well as by comet assay analysis. Advanced glycation end products (AGEs) are markedly elevated in renal failure. In the comet assay, the model AGEs methylglyoxal- and carboxy(methyl)lysine-modified bovine serum albumin (BSA) induced significant DNA damage in colon, kidney, and liver cells. The addition of antioxidants prevented AGE-induced DNA damage, suggesting enhanced formation of reactive oxygen species (ROS). The coincubation with dimethylfumarate (DMF), an inhibitor of NF-κB translocation, reduced the genotoxic effect, thereby underscoring the key role of NF-κB in this process. One of the genes induced by NF-κB is angiotensinogen. The ensuing proteolytic activity yields angiotensin II, which evokes oxidative stress as well as proinflammatory responses. A modulator of the renin-angiotensin system (RAS), the angiotensin II (Ang II) receptor 1 antagonist, candesartan, yielded a reduction of the AGE-induced DNA damage, connecting the two signal pathways, RAS and AGE signaling. We were able to identify important participants in AGE-induced DNA damage: ROS, NF-κB, and Ang II, as well as modulators to prevent this DNA damage: antioxidants, DMF, and AT1 antagonists.

  5. Angiotensin II receptor type 1 blockers suppress the cell proliferation effects of angiotensin II in breast cancer cells by inhibiting AT1R signaling.

    PubMed

    Du, Ning; Feng, Jiang; Hu, Li-Juan; Sun, Xin; Sun, Hai-Bing; Zhao, Yang; Yang, Yi-Ping; Ren, Hong

    2012-06-01

    Chronic stress and a high-fat diet are well-documented risk factors associated with the renin-angiotensin system in the development of breast cancer. The angiotensin II type 1 receptor (AT1R) is a novel component of the renin-angiotensin system. Several recent studies have focused on the function of AT1R in cell proliferation during cancer development. Thus, we hypothesized that angiotensin II (Ang Ⅱ) can promote proliferation of breast cancer via activated AT1R; the activation of AT1R may play an important role in promoting breast cancer growth, and AT1R blocker (ARB) may suppress the promotional effect on proliferation by antagonizing AT1R. The expression level of AT1R was found to be significantly upregulated in breast cancer cells by immunohistochemistry, but no correlation between AT1R expression and ER/PR/Her-2 expression was observed. The AT1R(+)-MCF-7 cell line exhibited high expression of AT1R protein, and we generated the AT1R(-)-MCF-7 cell line using RNA interference. ARBs, and in particular irbesartan, effectively inhibited the effects of Ang II on cell proliferation, cell cycle development and downstream AT1R signaling events, including the activation of the Ras-Raf-MAPK pathway and the transcription factors NF-κB and CREB. Irbesartan also significantly altered p53, PCNA and cyclin D1 expression, which was also influenced by activated AT1R in AT1R(+)-MCF-7 cells. These results suggest that ARBs may be useful as a novel preventive and therapeutic strategy for treating breast cancer.

  6. Immunohistochemical localization of angiotensin II receptor types 1 and 2 in the mesenteric artery from spontaneously hypertensive rats.

    PubMed

    Diniz, Carmen; Leal, Sandra; Logan, Karen; Rocha-Pereira, Carolina; Soares, Ana Sofia; Rocha, Eduardo; Gonçalves, Jorge; Fresco, Paula

    2007-08-01

    Angiotensin II plays a crucial role in the control of blood pressure, acting at AT1 or AT2 receptors, and can act as a potent vasoconstrictor of the peripheral vasculature inducing hypertrophy, hyperplasia, or both, in resistance arteries. The aim of the present study was to investigate whether the pattern of distribution of angiotensin AT1 and AT2 receptors on mesenteric artery sections differs in spontaneously hypertensive rats (SHR) versus their respective controls (Wistar-Kyoto [WKY] rats). Immunohistochemistry using anti-AT1 or anti-AT2 antibodies was performed on perfused-fixed/paraffin-embedded mesenteric arteries from SHR and WKY rats. 3,3'-Diaminobenzidine tetrahydrochloride (DAB; activated by hydrogen peroxide) staining revealed distinct AT1 and AT2 labeling of all artery layers (adventitia, media and intima) from WKY rats, whereas in SHR an abundant AT1 labeling was found in both intima and adventitia and a sparser labeling in the media. There was a vast reduction of AT2 labeling throughout all layers. These results suggest a crucial role for AT2 receptors in the pathogenesis of hypertension.

  7. Angiotensin II type 1 and 2 receptors and lymphatic vessels modulate lung remodeling and fibrosis in systemic sclerosis and idiopathic pulmonary fibrosis.

    PubMed

    Parra, Edwin Roger; Ruppert, Aline Domingos Pinto; Capelozzi, Vera Luiza

    2014-01-01

    To validate the importance of the angiotensin II receptor isotypes and the lymphatic vessels in systemic sclerosis and idiopathic pulmonary fibrosis. We examined angiotensin II type 1 and 2 receptors and lymphatic vessels in the pulmonary tissues obtained from open lung biopsies of 30 patients with systemic sclerosis and 28 patients with idiopathic pulmonary fibrosis. Their histologic patterns included cellular and fibrotic non-specific interstitial pneumonia for systemic sclerosis and usual interstitial pneumonia for idiopathic pulmonary fibrosis. We used immunohistochemistry and histomorphometry to evaluate the number of cells in the alveolar septae and the vessels stained by these markers. Survival curves were also used. We found a significantly increased percentage of septal and vessel cells immunostained for the angiotensin type 1 and 2 receptors in the systemic sclerosis and idiopathic pulmonary fibrosis patients compared with the controls. A similar percentage of angiotensin 2 receptor positive vessel cells was observed in fibrotic non-specific interstitial pneumonia and usual interstitial pneumonia. A significantly increased percentage of lymphatic vessels was present in the usual interstitial pneumonia group compared with the non-specific interstitial pneumonia and control groups. A Cox regression analysis showed a high risk of death for the patients with usual interstitial pneumonia and a high percentage of vessel cells immunostained for the angiotensin 2 receptor in the lymphatic vessels. We concluded that angiotensin II receptor expression in the lung parenchyma can potentially control organ remodeling and fibrosis, which suggests that strategies aimed at preventing high angiotensin 2 receptor expression may be used as potential therapeutic target in patients with pulmonary systemic sclerosis and idiopathic pulmonary fibrosis.

  8. Antihypertensive, insulin-sensitising and renoprotective effects of a novel, potent and long-acting angiotensin II type 1 receptor blocker, azilsartan medoxomil, in rat and dog models.

    PubMed

    Kusumoto, Keiji; Igata, Hideki; Ojima, Mami; Tsuboi, Ayako; Imanishi, Mitsuaki; Yamaguchi, Fuminari; Sakamoto, Hiroki; Kuroita, Takanobu; Kawaguchi, Naohiro; Nishigaki, Nobuhiro; Nagaya, Hideaki

    2011-11-01

    The pharmacological profile of a novel angiotensin II type 1 receptor blocker, azilsartan medoxomil, was compared with that of the potent angiotensin II receptor blocker olmesartan medoxomil. Azilsartan, the active metabolite of azilsartan medoxomil, inhibited the binding of [(125)I]-Sar(1)-I1e(8)-angiotensin II to angiotensin II type 1 receptors. Azilsartan medoxomil inhibited angiotensin II-induced pressor responses in rats, and its inhibitory effects lasted 24h after oral administration. The inhibitory effects of olmesartan medoxomil disappeared within 24h. ID(50) values were 0.12 and 0.55 mg/kg for azilsartan medoxomil and olmesartan medoxomil, respectively. In conscious spontaneously hypertensive rats (SHRs), oral administration of 0.1-1mg/kg azilsartan medoxomil significantly reduced blood pressure at all doses even 24h after dosing. Oral administration of 0.1-3mg/kg olmesartan medoxomil also reduced blood pressure; however, only the two highest doses significantly reduced blood pressure 24h after dosing. ED(25) values were 0.41 and 1.3mg/kg for azilsartan medoxomil and olmesartan medoxomil, respectively. In renal hypertensive dogs, oral administration of 0.1-1mg/kg azilsartan medoxomil reduced blood pressure more potently and persistently than that of 0.3-3mg/kg olmesartan medoxomil. In a 2-week study in SHRs, azilsartan medoxomil showed more stable antihypertensive effects than olmesartan medoxomil and improved the glucose infusion rate, an indicator of insulin sensitivity, more potently (≥ 10 times) than olmesartan medoxomil. Azilsartan medoxomil also exerted more potent antiproteinuric effects than olmesartan medoxomil in Wistar fatty rats. These results suggest that azilsartan medoxomil is a potent angiotensin II receptor blocker that has an attractive pharmacological profile as an antihypertensive agent. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Perioperative angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor blockers for preventing mortality and morbidity in adults.

    PubMed

    Zou, Zui; Yuan, Hong B; Yang, Bo; Xu, Fengying; Chen, Xiao Y; Liu, Guan J; Shi, Xue Y

    2016-01-27

    Perioperative hypertension requires careful management. Angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II type 1 receptor blockers (ARBs) have shown efficacy in treating hypertension associated with surgery. However, there is lack of consensus about whether they can prevent mortality and morbidity. To systematically assess the benefits and harms of administration of ACEIs or ARBs perioperatively for the prevention of mortality and morbidity in adults (aged 18 years and above) undergoing any type of surgery under general anaesthesia. We searched the current issue of the Cochrane Central Register of Controlled Trials (CENTRAL; 2014, Issue 12), Ovid MEDLINE (1966 to 8 December 2014), EMBASE (1980 to 8 December 2014), and references of the retrieved randomized trials, meta-analyses, and systematic reviews. We included randomized controlled trials (RCTs) comparing perioperative administration of ACEIs or ARBs with placebo in adults (aged 18 years and above) undergoing any type of surgery under general anaesthesia. We excluded studies in which participants underwent procedures that required local anaesthesia only, or participants who had already been on ACEIs or ARBs. Two review authors independently performed study selection, assessed the risk of bias, and extracted data. We used standard methodological procedures expected by Cochrane. We included seven RCTs with a total of 571 participants in the review. Two of the seven trials involved 36 participants undergoing non-cardiac vascular surgery (infrarenal aortic surgery), and five involved 535 participants undergoing cardiac surgery, including valvular surgery, coronary artery bypass surgery, and cardiopulmonary bypass surgery. The intervention was started from 11 days to 25 minutes before surgery in six trials and during surgery in one trial. We considered all seven RCTs to carry a high risk of bias. The effects of ACEIs or ARBs on perioperative mortality and acute myocardial infarction were uncertain

  10. High-density lipoprotein inhibits mechanical stress-induced cardiomyocyte autophagy and cardiac hypertrophy through angiotensin II type 1 receptor-mediated PI3K/Akt pathway.

    PubMed

    Lin, Li; Liu, Xuebo; Xu, Jianfeng; Weng, Liqing; Ren, Jun; Ge, Junbo; Zou, Yunzeng

    2015-08-01

    Mechanical stress triggers cardiac hypertrophy and autophagy through an angiotensin II (Ang II) type 1 (AT1) receptor-dependent mechanism. Low level of high density lipoprotein (HDL) is an independent risk factor for cardiac hypertrophy. This study was designed to evaluate the effect of HDL on mechanical stress-induced cardiac hypertrophy and autophagy. A 48-hr mechanical stretch and a 4-week transverse aortic constriction were employed to induce cardiomyocyte hypertrophy in vitro and in vivo, respectively, prior to the assessment of myocardial autophagy using LC3b-II and beclin-1. Our results indicated that HDL significantly reduced mechanical stretch-induced rise in autophagy as demonstrated by LC3b-II and beclin-1. In addition, mechanical stress up-regulated AT1 receptor expression in both cultured cardiomyocytes and in mouse hearts, whereas HDL significantly suppressed the AT1 receptor. Furthermore, the role of Akt phosphorylation in HDL-mediated action was assessed using MK-2206, a selective inhibitor for Akt phosphorylation. Our data further revealed that MK-2206 mitigated HDL-induced beneficial responses on cardiac remodelling and autophagy. Taken together, our data revealed that HDL inhibited mechanical stress-induced cardiac hypertrophy and autophagy through downregulation of AT1 receptor, and HDL ameliorated cardiac hypertrophy and autophagy via Akt-dependent mechanism. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Possible roles of tumor necrosis factor-α and angiotensin II type 1 receptor on high glucose-induced damage in renal proximal tubular cells.

    PubMed

    Takao, Toshihiro; Horino, Taro; Matsumoto, Reiko; Shimamura, Yoshiko; Ogata, Koji; Inoue, Kousuke; Taniguchi, Yoshinori; Taguchi, Takafumi; Terada, Yoshio

    2015-02-01

    Recent studies have identified that high glucose-induced renal tubular cell damage. We previously demonstrated that high glucose treatment induced oxidative stress in human renal proximal tubular epithelial cells (RPTECs), and angiotensin II type 1 (AT1) receptor blockers reduce high glucose-induced oxidative stress in RPTEC possibly via blockade of intracellular as well as extracellular AT1 receptor. However, exact roles of tumor necrosis factor (TNF)-α and AT1 receptor on high glucose-induced renal tubular function remain unclear. N-acetyl-beta-glucosaminidase (NAG), concentrations of TNF-α/angiotensin II and p22(phox) protein levels after high glucose treatment with or without AT1 receptor blocker or thalidomide, an inhibitor of TNF-α protein synthesis, were measured in immortalized human renal proximal tubular epithelial cells (HK2 cells). AT1 receptor knockdown was performed with AT1 receptor small interfering RNA (siRNA). High glucose treatment (30 mM) significantly increased NAG release, TNF-α/angiotensin II concentrations in cell media and p22(phox) protein levels compared with those in regular glucose medium (5.6 mM). Candesartan, an AT1R blocker, showed a significant reduction on high glucose-induced NAG release, TNF-α concentrations and p22(phox) protein levels in HK2 cells. In addition, significant decreases of NAG release, TNF-α concentrations and p22(phox) protein levels in HK2 cells were observed in high glucose-treated group with thalidomide. AT1R knockdown with siRNA markedly reversed high glucose, angiotensin II or TNF-α-induced p22(phox) protein levels in HK2 cells. TNF-α may be involved in high glucose-induced renal tubular damage in HK2 cells possibly via AT1 receptor signaling.

  12. Effect of sodium on vasoconstriction and angiotensin II type 1 receptor mRNA expression in cold-induced hypertensive rats.

    PubMed

    Zhu, Zhiming; Zhu, Shanjun; Zhu, Jijun; van der Giet, Markus; Tepel, Martin

    2004-08-01

    Angiotensin II and sodium play an important pathogenetic role in several models of hypertension. Now, we investigated the effects of sodium on vasoconstriction and angiotensin II type 1 (AT1) and type 2 (AT2) receptor mRNA expression in aortic vessels from cold-induced hypertensive rats. Wistar rats on low sodium and high sodium diet were exposed to cold-stress for 8 weeks. The effects of angiotensin II infusion on mean arterial blood pressure were investigated in these rats. In addition, angiotensin II induced contraction was measured using aortic rings. Expression of AT1 receptor mRNA and AT2 receptor mRNA was assessed in aortic vessels by reverse transcription polymerase chain reaction. After infusion of angiotensin II mean arterial blood pressure in cold-induced hypertensive rats on high sodium diet was significantly higher compared to cold-induced hypertensive rats on low sodium diet (p < 0.05). Angiotensin II-induced contraction of aortic rings was significantly higher in cold-induced hypertensive rats on high sodium diet compared to cold-induced hypertensive rats on low sodium diet (2.39 +/- 0.03 g vs. 2.21 +/- 0.04 g, n = 12, p < 0.01). Angiotensin AT1 receptor mRNA was significantly higher in cold-induced hypertensive rats on high sodium diet compared to cold-induced hypertensive rats on low sodium diet (p < 0.05). It is concluded that in this nongenetic, nonsurgical animal model of cold-induced hypertension increased vasoconstriction and increased AT1 receptor mRNA expression in aortic vessels are dependent on sodium intake.

  13. Genetic polymorphism of ACE and the angiotensin II type1 receptor genes in children with chronic kidney disease

    PubMed Central

    2011-01-01

    Aim and Methods We investigated the association between polymorphisms of the angiotensin converting enzyme-1 (ACE-1) and angiotensin II type one receptor (AT1RA1166C) genes and the causation of renal disease in 76 advanced chronic kidney disease (CKD) pediatric patients undergoing maintenance hemodialysis (MHD) or conservative treatment (CT). Serum ACE activity and creatine kinase-MB fraction (CK-MB) were measured in all groups. Left ventricular mass index (LVMI) was calculated according to echocardiographic measurements. Seventy healthy controls were also genotyped. Results The differences of D allele and DI genotype of ACE were found significant between MHD group and the controls (p = 0.0001). ACE-activity and LVMI were higher in MHD, while CK-MB was higher in CT patients than in all other groups. The combined genotype DD v/s ID+II comparison validated that DD genotype was a high risk genotype for hypertension .~89% of the DD CKD patients were found hypertensive in comparison to ~ 61% of patients of non DD genotype(p = 0.02). The MHD group showed an increased frequency of the C allele and CC genotype of the AT1RA1166C polymorphism (P = 0.0001). On multiple linear regression analysis, C-allele was independently associated with hypertension (P = 0.04). Conclusion ACE DD and AT1R A/C genotypes implicated possible roles in the hypertensive state and in renal damage among children with ESRD. This result might be useful in planning therapeutic strategies for individual patients. PMID:21859496

  14. Enhancement by exogenous and locally generated angiotensin II of purinergic neurotransmission via angiotensin type 1 receptor in the guinea-pig isolated mesenteric artery

    PubMed Central

    Onaka, Uran; Fujii, Koji; Abe, Isao; Fujishima, Masatoshi

    1997-01-01

    Angiotensin II is known to enhance sympathetic neurotransmission in the vasculature by increasing the release of noradrenaline, but little is known about the effect on the co-released transmitter, adenosine 5′-triphosphate (ATP). In the present study we have examined the effect of angiotensin II on the excitatory junction potential (e.j.p.) elicited by repetitive field stimulation in the guinea-pig isolated mesenteric artery, to establish the angiotensin II receptor subtype involved in modulating the release of ATP and the role of the endothelium in converting angiotensin I to angiotensin II. Suramin (300 μM), a P2 purinoceptor antagonist, abolished both the e.j.ps and depolarizing response to α,β-methylene-ATP, a stable analogue of ATP, without affecting the resting membrane potential and noradrenaline-induced depolarization. Angiotensin II (0.1 μM) affected neither the resting membrane potential nor the amplitude of the first e.j.p., but increased the amplitudes of the subsequent e.j.ps. This enhancing effect of angiotensin II was abolished by CV-11974 (0.1 μM), an angiotensin II type 1 (AT1) receptor antagonist, but unaffected by PD 123319 (1 μM), an angiotensin II type 2 (AT2) receptor antagonist, or CGP 42112A (1 μM), AT2 receptor ligand. Angiotensin I (0.1 μM) exerted a similar effect on e.j.ps to that of angiotensin II. CV-11974 (0.1 μM) or temocaprilat (10 μM), an angiotensin converting enzyme (ACE) inhibitor, abolished the effect of angiotensin I. Removal of the endothelium did not alter the action of angiotensin I. The results of the present study indicate that the release of ATP from sympathetic nerves innervating the guinea-pig isolated mesenteric artery, as determined from the magnitude of the e.j.p., can be enhanced by angiotensin II via activation of prejunctional AT1 receptors. Qualitatively similar effects were observed with angiotensin I, which appears to be converted into angiotensin II by a subendothelial process

  15. Activation of the angiotensin II type 1 receptor leads to movement of the sixth transmembrane domain: analysis by the substituted cysteine accessibility method.

    PubMed

    Martin, Stéphane S; Holleran, Brian J; Escher, Emanuel; Guillemette, Gaétan; Leduc, Richard

    2007-07-01

    The role of transmembrane domain six (TMD6) of the angiotensin II type 1 receptor, which is predicted to undergo conformational changes after agonist binding, was investigated using the substituted-cysteine accessibility method. Each residue in the Lys240-Leu265 fragment was mutated, one at a time, to a cysteine. The resulting mutants were expressed in COS-7 cells, which were subsequently treated with the charged sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). This treatment led to a significant reduction in binding of (125)I-[Sar(1),Ile(8)]AngII to the F249C, H256C, T260C, and V264C mutant receptors, suggesting that these residues orient themselves within the water-accessible binding pocket of the AT(1) receptor. It is noteworthy that this pattern of acquired MTSEA sensitivity was altered for TMD6 cysteines engineered in a constitutively active AT(1) receptor. Indeed, mutant F249C was insensitive to MTSEA treatment, whereas the sensitivity of mutant V264C decreased. Under these conditions, one other mutant, F261C, was found to be sensitive to MTSEA treatment. Our results suggest that constitutive activation of the AT(1) receptor causes TMD6 to pivot. This movement moves the top (extracellular side) of TMD6 toward the binding pocket and simultaneously distances the bottom (intracellular side) away from the binding pocket. Using this approach, we identified key elements within TMD6 that contribute to the activation of class A GPCRs through structural rearrangements.

  16. Human GRK4γ142V Variant Promotes Angiotensin II Type I Receptor-Mediated Hypertension via Renal Histone Deacetylase Type 1 Inhibition.

    PubMed

    Wang, Zheng; Zeng, Chunyu; Villar, Van Anthony M; Chen, Shi-You; Konkalmatt, Prasad; Wang, Xiaoyan; Asico, Laureano D; Jones, John E; Yang, Yu; Sanada, Hironobu; Felder, Robin A; Eisner, Gilbert M; Weir, Matthew R; Armando, Ines; Jose, Pedro A

    2016-02-01

    The influence of a single gene on the pathogenesis of essential hypertension may be difficult to ascertain, unless the gene interacts with other genes that are germane to blood pressure regulation. G-protein-coupled receptor kinase type 4 (GRK4) is one such gene. We have reported that the expression of its variant hGRK4γ(142V) in mice results in hypertension because of impaired dopamine D1 receptor. Signaling through dopamine D1 receptor and angiotensin II type I receptor (AT1R) reciprocally modulates renal sodium excretion and blood pressure. Here, we demonstrate the ability of the hGRK4γ(142V) to increase the expression and activity of the AT1R. We show that hGRK4γ(142V) phosphorylates histone deacetylase type 1 and promotes its nuclear export to the cytoplasm, resulting in increased AT1R expression and greater pressor response to angiotensin II. AT1R blockade and the deletion of the Agtr1a gene normalize the hypertension in hGRK4γ(142V) mice. These findings illustrate the unique role of GRK4 by targeting receptors with opposite physiological activity for the same goal of maintaining blood pressure homeostasis, and thus making the GRK4 a relevant therapeutic target to control blood pressure. © 2015 American Heart Association, Inc.

  17. Depletion of Endothelial or Smooth Muscle Cell-Specific Angiotensin II Type 1a Receptors Does Not Influence Aortic Aneurysms or Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Rateri, Debra L.; Moorleghen, Jessica J.; Knight, Victoria; Balakrishnan, Anju; Howatt, Deborah A.; Cassis, Lisa A.; Daugherty, Alan

    2012-01-01

    Background Whole body genetic deletion of AT1a receptors in mice uniformly reduces hypercholesterolemia and angiotensin II-(AngII) induced atherosclerosis and abdominal aortic aneurysms (AAAs). However, the role of AT1a receptor stimulation of principal cell types resident in the arterial wall remains undefined. Therefore, the aim of this study was to determine whether deletion of AT1a receptors in either endothelial cells or smooth muscle cells influences the development of atherosclerosis and AAAs. Methodology/Principal Findings AT1a receptor floxed mice were developed in an LDL receptor −/− background. To generate endothelial or smooth muscle cell specific deficiency, AT1a receptor floxed mice were bred with mice expressing Cre under the control of either Tie2 or SM22, respectively. Groups of males and females were fed a saturated fat-enriched diet for 3 months to determine effects on atherosclerosis. Deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effect on the size of atherosclerotic lesions. We also determined the effect of cell-specific AT1a receptor deficiency on atherosclerosis and AAAs using male mice fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min). Again, deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effects on either AngII-induced atherosclerotic lesions or AAAs. Conclusions Although previous studies have demonstrated whole body AT1a receptor deficiency diminishes atherosclerosis and AAAs, depletion of AT1a receptors in either endothelial or smooth muscle cells did not affect either of these vascular pathologies. PMID:23236507

  18. Leveraging NMR and X-ray Data of the Free Ligands to Build Better Drugs Targeting Angiotensin II Type 1 G-Protein Coupled Receptor.

    PubMed

    Kellici, Tahsin F; Ntountaniotis, Dimitrios; Kritsi, Eftichia; Zervou, Maria; Zoumpoulakis, Panagiotis; Potamitis, Constantinos; Durdagi, Serdar; Salmas, Ramin Ekhteiari; Ergun, Gizem; Gokdemir, Ebru; Halabalaki, Maria; Gerothanassis, Ioannis P; Liapakis, George; Tzakos, Andreas; Mavromoustakos, Thomas

    2016-01-01

    The angiotensin II type 1 receptor (AT1R) has been recently crystallized. A new era has emerged for the structure-based rational drug design and the synthesis of novel AT1R antagonists. In this critical review, the X-ray crystallographic data of commercially available AT1R antagonists in free form are analyzed and compared with the conformational analysis results obtained using a combination of NMR spectroscopy and Molecular Modeling. The same AT1R antagonists are docked and compared in terms of their interactions in their binding site using homology models and the crystallized AT1R receptor. Various aspects derived from these comparisons regarding rational drug design are outlined.

  19. Effect of angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on streptozotocin-induced diabetic nephropathy.

    PubMed

    Sen, Saniye; Saniye, Sen; Kanter, Mehmet; Mehmet, Kanter; Ustundag, Sedat; Sedat, Ustundag; Aktas, Cevat; Cevat, Aktas; Dogutan, Haluk; Yalcin, Omer; Omer, Yalcin

    2008-01-01

    The aim of this study was designed to investigate the possible beneficial effects of the angiotensin-converting enzyme (ACE) inhibitor, Quinapril (Q) and, the angiotensin (ang) II T(1) (AT1) receptor blocker, irbesartan (Irb), in streptozotocin (STZ)-induced diabetes in rats. The rats were randomly allotted into one of five experimental groups: A (control), B (diabetic untreated), C (diabetic treated with Q), D (diabetic treated with Irb), and E (diabetic treated with Q&Irb), each group containing 10 animals. Groups B-E received STZ. Diabetes was induced in four groups by a single intraperitoneal (i.p) injection of STZ (50 mg/kg, freshly dissolved in 5 mmol/L citrate buffer, pH 4.5). Two days after STZ treatment, development of diabetes in four experimental groups was confirmed by measuring blood glucose levels in a tail vein blood samples. Rats with blood glucose levels of 250 mg/dL or higher were considered to be diabetic. The rats in Q-, Irb-, and Q&Irb-treated groups were given Q (in a dose of 3 mg/kg body weight), Irb (5 mg/kg body weight), and Q&Irb (in a dose of 1.5 mg/kg + 2.5 mg/kg body weight) once a day orally by using intra-gastric intubation for 12 weeks starting two days after STZ injection. Treatment of Q and especially Irb reduced the glomerular size and thickening of capsular, glomerular, and tubular basement membranes; and increased amounts of mesangial matrix and tubular dilatation and renal function as compared with diabetics untreated. Notably, the better effects were obtained when Q and Irb given together. We conclude that Q, Irb, and especially Q+Irb therapy causes renal morphologic and functional improvement after STZ-induced diabetes in rats. We believe that further preclinical research into the utility of Q and Irb treatment, alone or its combination, may indicate its usefulness as a potential treatment in diabetic nephropathy (DNp).

  20. The angiotensin II type 1 receptor blocker losartan attenuates bioprosthetic valve leaflet calcification in a rabbit intravascular implant model.

    PubMed

    Shin, Hong Ju; Kim, Dae-Hyun; Park, Han Ki; Park, Young Hwan

    2016-12-01

    There is evidence that angiotensin II type I receptor blocker (ARB) could reduce structural valve deterioration. However, the anticalcification effect on the bioprosthetic heart valve (BHV) has not been investigated. Thus, we investigated the effects of losartan (an ARB) on calcification of implanted bovine pericardial tissue in a rabbit intravascular implant model. A total of 16 male New Zealand White rabbits (20 weeks old, 2.98-3.34 kg) were used in this study. Commercially available BHV leaflet of bovine pericardium was trimmed to the shape of a 3-mm triangle and implanted to both external jugular veins of the rabbit. The ARB group (n = 8) was given 25 mg/kg of powdered losartan daily until 6 weeks after surgery by direct administration in the buccal pouch of the animals. The control group (n = 8) was given 5 ml of normal saline by the same method. After 6 weeks, quantitative calcium determination, histological evaluation and western blot analysis of interleukin-6 (IL-6), osteopontin and bone morphogenetic protein 2 (BMP-2) were performed to investigate the mechanisms of the anticalcification effect of losartan. No deaths or complications such as infection or haematoma were recorded during the experiment. All animals were euthanized on the planned date. The calcium measurement level in the ARB group (2.28 ± 0.65 mg/g) was significantly lower than that in the control group (3.68 ± 1.00 mg/g) (P = 0.0092). Immunohistochemistry analyses revealed that BMP-2-positive reactions were significantly attenuated in the ARB group. Western blot analysis showed that losartan suppressed the expression of IL-6, osteopontin and BMP-2. Our results indicate that losartan significantly attenuates postimplant degenerative calcification of a bovine pericardial bioprosthesis in a rabbit intravascular implant model. Further studies are required to assess the effects of ARBs on BHV tissue in orthotopic implantations using a large animal model. © The Author 2016. Published by Oxford

  1. Age determines the magnitudes of angiotensin II-induced contractions, mRNA, and protein expression of angiotensin type 1 receptors in rat carotid arteries.

    PubMed

    Vamos, Zoltan; Cseplo, Peter; Ivic, Ivan; Matics, Robert; Hamar, Janos; Koller, Akos

    2014-05-01

    In this study, we hypothesized that aging alters angiotensin II (Ang II)-induced vasomotor responses and expression of vascular mRNA and protein angiotensin type 1 receptor (AT1R). Thus, carotid arteries were isolated from the following age groups of rats: 8 days, 2-9 months, 12-20 months, and 20-30 months, and their vasomotor responses were measured in a myograph after repeated administrations of Ang II. Vascular relative AT1R mRNA level was determined by quantitative reverse-transcriptase polymerase chain reaction and the AT1R protein density was measured by Western blot. Contractions to the first administration of Ang II increased from 8 days to 6 months and then they decreased to 30 months. In general, second administration of Ang II elicited reduced contractions, but they also increased from 8 days until 2 months and then they decreased to 30 months. Similarly the AT1R mRNA level increased from 8 days to 12 months and then decreased to 30 months. Similarly the AT1R protein density increased from 8 days until 16 months and then they decreased to 30 months. The pattern of these changes correlated with functional vasomotor data. We conclude that aging (newborn to senescence) has substantial effects on Ang II-induced vasomotor responses and AT1R signaling suggesting the importance of genetic programs.

  2. Involvement of Type 1 Angiontensin II Receptor (AT1) in Cardiovascular Changes Induced by Chronic Emotional Stress: Comparison between Homotypic and Heterotypic Stressors

    PubMed Central

    Costa-Ferreira, Willian; Vieira, Jonas O.; Almeida, Jeferson; Gomes-de-Souza, Lucas; Crestani, Carlos C.

    2016-01-01

    Consistent evidence has shown an important role of emotional stress in pathogenesis of cardiovascular diseases. Additionally, studies in animal models have demonstrated that daily exposure to different stressor (heterotypic stressor) evokes more severe changes than those resulting from repeated exposure to the same aversive stimulus (homotypic stressor), possibly due to the habituation process upon repeated exposure to the same stressor. Despite these pieces of evidence, the mechanisms involved in the stress-evoked cardiovascular dysfunction are poorly understood. Therefore, the present study investigated the involvement of angiotensin II (Ang II) acting on the type 1 Ang II receptor (AT1) in the cardiovascular dysfunctions evoked by both homotypic and heterotypic chronic emotional stresses in rats. For this purpose, we compared the effect of the chronic treatment with the AT1 receptor antagonist losartan (30 mg/kg/day, p.o.) on the cardiovascular and autonomic changes evoked by the heterotypic stressor chronic variable stress (CVS) and the homotypic stressor repeated restraint stress (RRS). RRS increased the sympathetic tone to the heart and decreased the cardiac parasympathetic activity, whereas CVS decreased the cardiac parasympathetic activity. Additionally, both stressors impaired the baroreflex function. Alterations in the autonomic activity and the baroreflex impairment were inhibited by losartan treatment. Additionally, CVS reduced the body weight and increased the circulating corticosterone; however, these effects were not affected by losartan. In conclusion, these findings indicate the involvement of angiotensin II/AT1 receptors in the autonomic changes evoked by both homotypic and heterotypic chronic stressors. Moreover, the present results provide evidence that the increase in the circulating corticosterone and body weight reduction evoked by heterotypic stressors are independent of AT1 receptors. PMID:27588004

  3. Valsartan ameliorates the constitutive adipokine expression pattern in mature adipocytes: a role for inverse agonism of the angiotensin II type 1 receptor in obesity.

    PubMed

    Hasan, Arif U; Ohmori, Koji; Hashimoto, Takeshi; Kamitori, Kazuyo; Yamaguchi, Fuminori; Ishihara, Yasuhiro; Ishihara, Naoko; Noma, Takahisa; Tokuda, Masaaki; Kohno, Masakazu

    2014-07-01

    Angiotensin (Ang) II receptor blockers (ARBs) alleviate obesity-related insulin resistance, which suggests an important role for the Ang II type 1 receptor (AT1R) in the regulation of adipocytokines. Therefore, we treated mature 3T3-L1 adipocytes with 50 μmol l(-1) of valsartan, a selective AT1R blocker without direct agonism to peroxisome proliferator-activated receptor (PPAR)-γ. In the absence of effective concentrations of Ang II, unstimulated mature adipocytes expressed and secreted high levels of interleukin (IL)-6. This constitutive proinflammatory activity was attenuated by the suppression of extracellular signal-regulated kinase phosphorylation by valsartan but was unaffected by the Ang II type 2 receptor blocker PD123319. COS7 cells co-transfected with AT1R and IL-6, which expressed NF-κB but lacked PPAR-γ, showed no constitutive but substantial ligand-dependent IL-6 reporter activity, which was counteracted by valsartan. Valsartan preserved cytosolic IκB-α and subsequently reduced nuclear NF-κB1 protein expression in mature adipocytes. Interestingly, valsartan did not increase PPAR-γ messenger RNA expression per se but enhanced the transcriptional activity of PPAR-γ in mature adipocytes; this enhancement was accompanied by upregulation of the PPAR coactivator (PGC)-1α. Moreover, T0090907, a PPAR-γ inhibitor, increased IL-6 expression, and this increase was attenuated by valsartan. Indeed, addition of valsartan without direct PPAR-γ agonism increased adiponectin production in mature adipocytes. Together, the findings indicate that valsartan blocks the constitutive AT1R activity involving the NF-κB pathway that limits PPAR-γ activity in mature adipocytes. Thus, inverse agonism of AT1R attenuates the spontaneous proinflammatory response and enhances the constitutive insulin-sensitizing activities of mature adipocytes, which may underlie the beneficial metabolic impacts of ARBs.

  4. Excess of Aminopeptidase A in the Brain Elevates Blood Pressure via the Angiotensin II Type 1 and Bradykinin B2 Receptors without Dipsogenic Effect

    PubMed Central

    Ishida, Akio; Ohya, Yusuke

    2017-01-01

    Aminopeptidase A (APA) cleaves angiotensin (Ang) II, kallidin, and other related peptides. In the brain, it activates the renin angiotensin system and causes hypertension. Limited data are available on the dipsogenic effect of APA and pressor effect of degraded peptides of APA such as bradykinin. Wistar-Kyoto rats received intracerebroventricular (icv) APA in a conscious, unrestrained state after pretreatment with (i) vehicle, (ii) 80 μg of telmisartan, an Ang II type-1 (AT1) receptor blocker, (iii) 800 nmol of amastatin, an aminopeptidase inhibitor, and (iv) 1 nmol of HOE-140, a bradykinin B2 receptor blocker. Icv administration of 400 and 800 ng of APA increased blood pressure by 12.6 ± 3.0 and 19.0 ± 3.1 mmHg, respectively. APA did not evoke drinking behavior. Pressor response to APA was attenuated on pretreatment with telmisartan (vehicle: 22.1 ± 2.2 mmHg versus telmisartan: 10.4 ± 3.2 mmHg). Pressor response to APA was also attenuated with amastatin and HOE-140 (vehicle: 26.5 ± 1.1 mmHg, amastatin: 14.4 ± 4.2 mmHg, HOE-140: 16.4 ± 2.2 mmHg). In conclusion, APA increase in the brain evokes a pressor response via enzymatic activity without dipsogenic effect. AT1 receptors and B2 receptors in the brain may contribute to the APA-induced pressor response. PMID:28421141

  5. Detection of Nitric Oxide Induced by Angiotensin II Receptor Type 1 Using Soluble Guanylate Cyclase beta1 Subunit Fused to a Yellow Fluorescent Protein, Venus.

    PubMed

    Tsuji, Yuichi; Ozawa, Kentaro; Komatsubara, Akira T; Zhao, Jing; Nishi, Mayumi; Yoshizumi, Masanori

    2017-01-01

    Nitric oxide (NO) is an important gaseous molecule involved in many physiological and pathophysiological processes, including the regulation of G protein-coupled receptors (GPCRs). Here, we report the development of a high-affinity method to detect NO using soluble guanylate cyclase beta1 subunit fused to Venus, a variant of yellow fluorescent protein (sGC-Venus). We measured the fluorescence intensity of sGC-Venus with and without an NO donor using purified probes. At 560 nm emission, the fluorescence intensity of sGC-Venus at 405 nm excitation was increased by approximately 2.5-fold by the NO donor, but the fluorescence intensities of sGC-Venus excited by other wavelengths showed much less of an increase or no significant increase. To measure NO in living cells, the fluorescence intensity of sGC-Venus at 405 nm excitation was normalized to that at 488 nm excitation because it showed no significant difference with or without the NO donor. In HEK293 cells overexpressing the angiotensin II receptor type 1 (AT1 receptor), the production of NO induced by activation of the AT1 receptor was detected using sGC-Venus. These data indicate that sGC-Venus will be a useful tool for visualizing intracellular NO in living cells and that NO might be a common tool to regulate GPCRs.

  6. Cardiac Overexpression of Constitutively Active Galpha q Causes Angiotensin II Type1 Receptor Activation, Leading to Progressive Heart Failure and Ventricular Arrhythmias in Transgenic Mice

    PubMed Central

    Matsushita, Naoko; Kashihara, Toshihide; Shimojo, Hisashi; Suzuki, Satoshi; Nakada, Tsutomu; Takeishi, Yasuchika; Mende, Ulrike; Taira, Eiichi; Yamada, Mitsuhiko; Sanbe, Atsushi; Hirose, Masamichi

    2014-01-01

    Background Transgenic mice with transient cardiac expression of constitutively active Galpha q (Gαq-TG) exhibt progressive heart failure and ventricular arrhythmias after the initiating stimulus of transfected constitutively active Gαq becomes undetectable. However, the mechanisms are still unknown. We examined the effects of chronic administration of olmesartan on heart failure and ventricular arrhythmia in Gαq-TG mice. Methodology/Principal Findings Olmesartan (1 mg/kg/day) or vehicle was chronically administered to Gαq-TG from 6 to 32 weeks of age, and all experiments were performed in mice at the age of 32 weeks. Chronic olmesartan administration prevented the severe reduction of left ventricular fractional shortening, and inhibited ventricular interstitial fibrosis and ventricular myocyte hypertrophy in Gαq-TG. Electrocardiogram demonstrated that premature ventricular contraction (PVC) was frequently (more than 20 beats/min) observed in 9 of 10 vehicle-treated Gαq-TG but in none of 10 olmesartan-treated Gαq-TG. The collected QT interval and monophasic action potential duration in the left ventricle were significantly shorter in olmesartan-treated Gαq-TG than in vehicle-treated Gαq-TG. CTGF, collagen type 1, ANP, BNP, and β-MHC gene expression was increased and olmesartan significantly decreased the expression of these genes in Gαq-TG mouse ventricles. The expression of canonical transient receptor potential (TRPC) 3 and 6 channel and angiotensin converting enzyme (ACE) proteins but not angiotensin II type 1 (AT1) receptor was increased in Gαq-TG ventricles compared with NTG mouse ventricles. Olmesartan significantly decreased TRPC6 and tended to decrease ACE expressions in Gαq-TG. Moreover, it increased AT1 receptor in Gαq-TG. Conclusions/Significance These findings suggest that angiotensin II type 1 receptor activation plays an important role in the development of heart failure and ventricular arrhythmia in Gαq-TG mouse model of heart failure

  7. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression.

    PubMed

    Lu, B; Yang, X J; Chen, K; Yang, D J; Yan, J Q

    2009-12-15

    Previous studies have indicated that the renin-angiotensin-aldosterone system (RAAS) is implicated in the induction of sodium appetite in rats and that different dietary sodium intakes influence the mRNA expression of central and peripheral RAAS components. To determine whether dietary sodium deprivation activates regional brain neurons related to sodium appetite, and changes their gene expression of RAAS components of rats, the present study examined the c-Fos expression after chronic exposure to low sodium diet, and determined the relationship between plasma and brain angiotensin I (ANG I), angiotensin II (ANG II) and aldosterone (ALD) levels and the sodium ingestive behavior variations, as well as the effects of prolonged dietary sodium deprivation on ANG II type 1 (AT1) and ANG II type 2 (AT2) receptors and angiotensin-convertion enzyme (ACE) mRNA levels in the involved brain regions using the method of real-time polymerase chain reaction (PCR). Results showed that the Fos immunoreactivity (Fos-ir) expression in forebrain areas such as subfornical organ (SFO), paraventricular hypothalamic nuclei (PVN), supraoptic nucleus (SON) and organum vasculosum laminae terminalis (OVLT) all increased significantly and that the levels of ANG I, ANG II and ALD also increased in plasma and forebrain in rats fed with low sodium diet. In contrast, AT1, ACE mRNA in PVN, SON and OVLT decreased significantly in dietary sodium depleted rats, while AT2 mRNA expression did not change in the examined areas. These results suggest that many brain areas are activated by increased levels of plasma and/or brain ANG II and ALD, which underlies the elevated preference for hypertonic salt solution after prolonged exposure to low sodium diet, and that the regional AT1 and ACE mRNA are down-regulated after dietary sodium deprivation, which may be mediated by increased ANG II in plasma and/or brain tissue.

  8. The ACE-2/Ang1-7/Mas cascade enhances bone structure and metabolism following angiotensin-II type 1 receptor blockade.

    PubMed

    Abuohashish, Hatem M; Ahmed, Mohammed M; Sabry, Dina; Khattab, Mahmoud M; Al-Rejaie, Salim S

    2017-07-15

    The renin angiotensin system (RAS) regulates numerous systemic functions and is expressed locally in skeletal tissues. Angiotensin1-7 (Ang1-7) is a beneficial member of the RAS, and the therapeutic effects of a large number of angiotensin receptors blockers (ARBs) are mediated by an Ang1-7-dependent cascade. This study examines whether the reported osteo-preservative effects of losartan are mediated through the angiotensin converting enzyme2 (ACE-2)/Ang1-7/Mas pathway in ovariectomized (OVX) rats. Sham and OVX animals received losartan (10mg/kg/d p.o.) for 6 weeks. A specific Mas receptor blocker (A-779) was delivered via mini-osmotic pumps during the losartan treatment period. Serum and urine bone metabolism biomarker levels were measured. Bone trabecular and cortical morphometry were quantified in distal femurs, whereas mineral contents were estimated in ashed bones, serum and urine. Finally, the expression of RAS components, the receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) was determined. Losartan significantly improved the elevated bone metabolism marker levels and altered trabecular and cortical structures in OVX animals, and restored normal urinary and skeletal mineral levels. Mas receptor inhibition significantly abolished all osteo-protective effects of losartan and enhanced the deleterious effects of OVX. Losartan enhanced OVX-induced up-regulation of ACE-1, AngII, angiotensin type 1 (AT1) receptor and RANKL expression, and increased ACE-2, Ang1-7, Mas and OPG expression in OVX animals. However, A-779 significantly eradicated the effects of losartan on RAS components and RANKL/OPG expression. Thus, Ang1-7 are involved in the osteo-preservative effects of losartan via Mas receptor, which may add therapeutic value to this well-known antihypertensive agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Staphylococcal nuclease domain containing-1 (SND1) promotes migration and invasion via angiotensin II type 1 receptor (AT1R) and TGFβ signaling

    PubMed Central

    Santhekadur, Prasanna K.; Akiel, Maaged; Emdad, Luni; Gredler, Rachel; Srivastava, Jyoti; Rajasekaran, Devaraja; Robertson, Chadia L.; Mukhopadhyay, Nitai D.; Fisher, Paul B.; Sarkar, Devanand

    2014-01-01

    Staphylococcal nuclease domain containing-1 (SND1) is overexpressed in human hepatocellular carcinoma (HCC) patients and promotes tumorigenesis by human HCC cells. We now document that SND1 increases angiotensin II type 1 receptor (AT1R) levels by increasing AT1R mRNA stability. This results in activation of ERK, Smad2 and subsequently the TGFβ signaling pathway, promoting epithelial–mesenchymal transition (EMT) and migration and invasion by human HCC cells. A positive correlation was observed between SND1 and AT1R expression levels in human HCC patients. Small molecule inhibitors of SND1, alone or in combination with AT1R blockers, might be an effective therapeutic strategy for late-stage aggressive HCC. PMID:24918049

  10. Angiotensinogen promoter and angiotensinogen II receptor type 1 gene polymorphisms and incidence of ischemic stroke and neurologic phenotype in Fabry disease.

    PubMed

    Altarescu, Gheona; Haim, Shimon; Elstein, Deborah

    2013-11-01

    Stroke and/or white matter lesions (WMLs) are significant in Fabry disease. Polymorphisms of angiotensinogen (AGT), AGT Promoter and angiotensinogen II receptor type 1 (AGTR1) are correlated with WMLs. We compared AGT. AGT Promoter and AGTR1 genotypes to stroke incidence, Fabry-specific [Mainz Severity Score Index (MSSI)] severity score, and neurologic sub-score (n-MSSI). Sixty-three Fabry patients and 49 matched controls plus historic controls were genotyped. Institutional Review Board approval was received. Results. C and/or CC alleles of AGT Promoter and AGTR1 were significantly correlated with stroke and n-MSSI. Findings are suggestive of role of AGT Promoter and AGTR1 genotypes in Fabry phenotypes.

  11. A method for developing high-density SNP maps and its application at the type 1 angiotensin II receptor (AGTR1) locus.

    PubMed

    Antonellis, Anthony; Rogus, John J; Canani, Luis H; Makita, Yuchiro; Pezzolesi, Marcus G; Nam, MoonSuk; Ng, Daniel; Moczulski, Dariusz; Warram, James H; Krolewski, Andrzej S

    2002-03-01

    Evaluating the potential genetic components of complex disease will likely be aided through the use of dense polymorphism maps. Previously, we reported evidence for linkage with diabetic nephropathy on chromosome 3q in a region encompassing the type 1 angiotensin II receptor (AGTR1) gene. To further investigate any role for this gene in disease onset, we set out to design a dense polymorphism map spanning the AGTR1 locus for the purpose of association studies. Toward this goal, we have developed a technique for rapid identification of polymorphisms in long stretches of genomic DNA. This approach uses long-range PCR, DNA pooling, and transposon-based DNA sequencing. Using this technique, we efficiently validated and genotyped 18 polymorphisms spanning the 60.5-kb AGTR1 locus. Our panel of polymorphisms has an average spacing of 3.2 kb and an average minor allele frequency of 24%.

  12. In vivo imaging of oxidative stress in the kidney of diabetic mice and its normalization by angiotensin II type 1 receptor blocker

    SciTech Connect

    Sonta, Toshiyo; Inoguchi, Toyoshi . E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp; Matsumoto, Shingo; Yasukawa, Keiji; Inuo, Mieko; Tsubouchi, Hirotaka; Sonoda, Noriyuki; Kobayashi, Kunihisa; Utsumi, Hideo; Nawata, Hajime

    2005-05-06

    This study was undertaken to evaluate oxidative stress in the kidney of diabetic mice by electron spin resonance (ESR) imaging technique. Oxidative stress in the kidney was evaluated as organ-specific reducing activity with the signal decay rates of carbamoyl-PROXYL probe using ESR imaging. The signal decay rates were significantly faster in corresponding image pixels of the kidneys of streptozotocin-induced diabetic mice than in those of controls. This technique further demonstrated that administration of angiotensin II type 1 receptor blocker (ARB), olmesartan (5 mg/kg), completely restored the signal decay rates in the diabetic kidneys to control values. In conclusion, this study provided for the first time the in vivo evidence for increased oxidative stress in the kidneys of diabetic mice and its normalization by ARB as evaluated by ESR imaging. This technique would be useful as a means of further elucidating the role of oxidative stress in diabetic nephropathy.

  13. Low dose ouabain stimulates NaK ATPase α1 subunit association with angiotensin II type 1 receptor in renal proximal tubule cells.

    PubMed

    Ketchem, Corey J; Conner, Clayton D; Murray, Rebecca D; DuPlessis, Madalyn; Lederer, Eleanor D; Wilkey, Daniel; Merchant, Michael; Khundmiri, Syed J

    2016-11-01

    Our laboratory has recently demonstrated that low concentrations of ouabain increase blood pressure in rats associated with stimulation of NaK ATPase activity and activation of the Src signaling cascade in NHE1-dependent manner. Proteomic analysis of human kidney proximal tubule cells (HKC11) suggested that the Angiotensin II type 1 receptor (AT1R) as an ouabain-associating protein. We hypothesize that ouabain-induced stimulation of NaK ATPase activity is mediated through AT1R. To test this hypothesis, we examined the effect of ouabain on renal cell angiotensin II production, the effect of AT1R inhibition on ouabain-stimulated NKA activity, and the effect of ouabain on NKA-AT1R association. Ouabain increased plasma angiotensin II levels in rats treated with ouabain (1μg/kg body wt./day) for 9days and increased angiotensin II levels in cell culture media after 24h treatment with ouabain in human (HKC11), mouse (MRPT), and human adrenal cells. Ouabain 10pM stimulated NKA-mediated (86)Rb uptake and phosphorylation of EGFR, Src, and ERK1/2. These effects were prevented by the AT1R receptor blocker candesartan. FRET and TIRF microscopy using Bodipy-labeled ouabain and mCherry-NKA or mCherry-AT1R demonstrated association of ouabain with AT1R and NKA. Further our FRET and TIRF studies demonstrated increased association between AT1R and NKA upon treatment with low dose ouabain. We conclude that ouabain stimulates NKA in renal proximal tubule cells through an angiotensin/AT1R-dependent mechanism and that this pathway contributes to cardiac glycoside associated hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A review of mutagenesis studies of angiotensin II type 1 receptor, the three-dimensional receptor model in search of the agonist and antagonist binding site and the hypothesis of a receptor activation mechanism.

    PubMed

    Inoue, Y; Nakamura, N; Inagami, T

    1997-07-01

    To seek the mechanism whereby agonists, competitive antagonists and insurmountable antagonists affect the receptor function differently, by reviewing recent mutagenesis studies of angiotensin II type 1 receptor (AT1) in which the binding of the agonist and antagonists and receptor signaling were affected. We built a model of seven transmembrane spanning domains of the AT1 receptors using bacteriorhodopsin as a template. The carboxy terminal of angiotensin II binds to Lys199 in transmembrane domain 5, whereas the guanidinium group of Arg2 binds to Asp281 in transmembrane domain 7. Results of studies using mutagenesis supporting proposed ligand-docking models are discussed. HYPOTHESIS FOR THE LIGAND-INDUCED RECEPTOR SIGNALING MECHANISM: We submit a set of hypotheses for a mechanism whereby the ligand binding induces changes in the receptor conformation by the rotation of transmembrane helices as the initial event for the subsequent activation of a G protein. In this mechanism antagonists are not capable of rotating the helices but agonists are able to do so, which results in the formation of a hydrogen bond between Asp74 in transmembrane domain 2 and Tyr292 in transmembrane domain 7. This mechanism also provides plausible explanation for the activation of monoamine receptors. Competitive antagonists share the same binding sites with agonists, but insurmountable antagonists do not, and binding of the latter does not preclude agonist binding, for example, to Asp281. This hypothesis of the intrareceptor signaling mechanism and the receptor model indicate that some amino acid residues essential for the signaling play their roles in the intrareceptor activation mechanism, whereas others participate directly in ligand binding.

  15. Antihypertensive drugs and erectile dysfunction as seen in spontaneous reports, with focus on angiotensin II type 1 receptor blockers

    PubMed Central

    Ekman, Elisabet; Hägg, Staffan; Sundström, Anders; Werkström, Viktoria

    2010-01-01

    Aim: To describe spontaneously reported cases of erectile dysfunction (ED) in association with angiotensin II type I blockers (ARB) and other antihypertensive drugs. Subjects and methods: All spontaneously reported cases of ED submitted to the Swedish Medical Products Agency (MPA) between 1990 and 2006, where at least one antihypertensive drug was the suspected agent, were scrutinized. Patient demographics, drug treatment and adverse reactions were recorded. Using the Bayesian Confidence Propagation Neural Network (BCPNN) method, the information component (IC) was calculated. Results: Among a total of 225 reports of ED, 59 involved antihypertensive drugs including ARB (9 cases) as suspected agents. A positive IC value was found indicating that ED was reported more often in association with antihypertensive drugs classes, except for angiotensin-converting enzyme inhibitors, compared with all other drugs in the database. Positive dechallenge was reported in 43 cases (72%). Discussion: All classes of major antihypertensive drugs including ARB were implicated as suspected agents in cases of ED. Few risk factors were identified. The relatively high reporting of ED in association with ARB is in contrast with previous studies, suggesting that ARB have neither a positive nor any effect on ED. This discrepancy suggests that further studies are warrnted on this potential adverse reaction to ARB. PMID:21701615

  16. Neuronal angiotensin II type 1 receptor upregulation in heart failure: activation of activator protein 1 and Jun N-terminal kinase.

    PubMed

    Liu, Dongmei; Gao, Lie; Roy, Shyamal K; Cornish, Kurtis G; Zucker, Irving H

    2006-10-27

    Chronic heart failure (CHF) is a leading cause of mortality in developed countries. Angiotensin II (Ang II) plays an important role in the development and progression of CHF. Many of the important functions of Ang II are mediated by the Ang II type 1 receptor (AT(1)R), including the increase in sympathetic nerve activity in CHF. However, the central regulation of the AT(1)R in the setting of CHF is not well understood. This study investigated the AT(1)R in the rostral ventrolateral medulla (RVLM) of rabbits with CHF, its downstream pathway, and its gene regulation by the transcription factor activator protein 1 (AP-1). Studies were performed in 5 groups of rabbits: sham (n=5), pacing-induced (3 to 4 weeks) CHF (n=5), CHF with intracerebroventricular (ICV) losartan treatment (n=5), normal with ICV Ang II treatment (n=5), and normal with ICV Ang II plus losartan treatment (n=5). AT(1)R mRNA and protein expressions, plasma Ang II, and AP-1-DNA binding activity were significantly higher in RVLM of CHF compared with Sham rabbits (240.4+/-30.2%, P<0.01; 206.6+/-25.8%, P<0.01; 280+/-36.5%, P<0.05; 207+/-16.4%, P<0.01, respectively). Analysis of the stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK) pathway showed that phosphorylated c-Jun proteins, phosphorylated JNK proteins, and JNK activity increased significantly in RVLM of CHF compared with sham (262.9+/-48.1%, 213.8+/-27.7%, 148.2+/-10.1% of control, respectively). Importantly, ICV losartan in CHF rabbits attenuated these increases. ICV Ang II in normal rabbits simulated the molecular changes seen in CHF. This effect was blocked by concomitant ICV losartan. In addition, Ang II-induced AT(1)R expression was blocked by losartan and a JNK inhibitor, but not by extracellular signal-regulated kinase or p38 MAP kinase inhibitors in a neuronal cell culture. These data suggest that central Ang II activates the AT(1)R, SAPK/JNK pathway. AP-1 may further regulate gene expression in RVLM in the CHF state.

  17. Impact of Angiotensin I-converting Enzyme Inhibitors and Angiotensin II Type-1 Receptor Blockers on Survival of Patients with NSCLC

    PubMed Central

    Miao, Lili; Chen, Wei; Zhou, Ling; Wan, Huanying; Gao, Beili; Feng, Yun

    2016-01-01

    It has been shown that angiotensin I-converting enzyme inhibitors (ACEIs) and angiotensin II type-1 receptor blockers (ARBs) can decrease tumor growth and tumor-associated angiogenesis and inhibit metastasis. Epidermal growth factor receptor (EGFR) mutations are found in approximately 30% of patients with advanced non-small cell lung cancer (NSCLC) in East Asia and in 10–15% of such patients in Western countries. We retrospectively identified 228 patients with histologically confirmed advanced NSCLC and 73 patients with early stage disease; 103 of these patients took antihypertensive drugs, and 112 received treatment with EGFR tyrosine kinase inhibitors (TKIs). There was a significant difference in progression-free survival after first-line therapy (PFS1) between the ACEI/ARB group and the non-ACEI/ARB group. For the patients treated with TKIs, there was a significant difference in PFS but not in overall survival (OS) between the ACEI/ARB group and the non-ACEI/ARB group. For the patients with advanced NSCLC, there was a significant difference in PFS1 between the ACEI/ARB group and the non-ACEI/ARB group. ACEI/ARB in combination with standard chemotherapy or TKIs had a positive effect on PFS1 or OS, regardless of whether the lung cancer was in the early or advanced stage. PMID:26883083

  18. Autoantibodies isolated from patients with preeclampsia induce soluble endoglin production from trophoblast cells via interactions with angiotensin II type 1 receptor.

    PubMed

    Kobayashi, Yusuke; Yamamoto, Tatsuo; Chishima, Fumihisa; Takahashi, Hideki; Suzuki, Manami

    2015-04-01

    This study investigated whether angiotensin II type 1 receptor agonistic autoantibodies (AT1 -AAs) mediate the increased release of soluble endoglin (sEng) in women with preeclampsia. Serum samples were obtained from women with normal pregnancies or with preeclampsia. Human first-trimester trophoblast cells were cultured with purified IgG derived from these sera, and the sEng protein and mRNA expression levels were measured in the supernatants. We also determined the effects of the AT1 -AAs on these cells following treatment with an AT1 receptor antagonist (losartan). Compared with the IgG isolated from the women with normal pregnancies, treatments of the preeclamptic patients markedly increased sEng production and mRNA expression in trophoblast cells. Co-treatment with losartan significantly attenuated the release of sEng and sEng mRNA expression in the trophoblast cells. AT1 -AAs may be related to the increased release of sEng observed during preeclampsia and may play important roles in the pathology of this disorder. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Angiotensin II Receptor Type 1—A Novel Target for Preventing Neonatal Meningitis in Mice by Escherichia coli K1

    PubMed Central

    Krishnan, Subramanian; Shanmuganathan, Muthusamy V.; Behenna, Douglas; Stoltz, Brian M.; Prasadarao, Nemani V.

    2014-01-01

    The increasing incidence of Escherichia coli K1 meningitis due to escalating antibiotic resistance warrants alternate treatment options to prevent this deadly disease. We screened a library of small molecules from the National Institutes of Health clinical collection and identified telmisartan, an angiotensin II receptor type 1 (AT1R) blocker, as a potent inhibitor of E. coli invasion into human brain microvascular endothelial cells (HBMECs). Immunoprecipitation studies revealed that AT1R associates with endothelial cell gp96, the receptor in HBMECs for E. coli outer membrane protein A. HBMECs pretreated with telmisartan or transfected with AT1R small interfering RNA were resistant to E. coli invasion because of downregulation of protein kinase C-α phosphorylation. Administration of a soluble derivative of telmisartan to newborn mice before infection with E. coli prevented the onset of meningitis and suppressed neutrophil infiltration and glial cell migration in the brain. Therefore, telmisartan has potential as an alternate treatment option for preventing E. coli meningitis. PMID:24041786

  20. Cannabinoid receptor type-1: breaking the dogmas

    PubMed Central

    Busquets Garcia, Arnau; Soria-Gomez, Edgar; Bellocchio, Luigi; Marsicano, Giovanni

    2016-01-01

    The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB 1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB 1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB 1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB 1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile. PMID:27239293

  1. Genetic Association Study of Angiotensin II Receptor Types 1 (A168G) and 2 (T1247G and A5235G) Polymorphisms in Breast Carcinoma among Brazilian Women

    PubMed Central

    Molina Wolgien, Maria del Carmen Garcia; Guerreiro da Silva, Ismael Dale Cotrim; Pinto Nazário, Afonso Celso; Nakaie, Clovis Riuche; Correa-Noronha, Silvana Aparecida Alves; Ribeiro de Noronha, Samuel Marcos; Facina, Gil

    2014-01-01

    Summary Background Many types of cancer are associated with polymorphisms of the renin-angiotensin system. Our aim was to assess possible association between single-nucleotide polymorphisms (SNPs) of the angiotensin II receptor types 1 (A168G), and 2 (T1247G and A5235G) with breast cancer. Patients and Methods 242 participating subjects were genotyped and allocated to case or control groups. Results Genotype distribution (in %) was: for AGTR1 (A168G): AA, AG, GG = 61, 30, 09 for cases, and 69, 25, 06 for controls (p = 0.55); for AGTR2 (T1247G): TT, TG, GG = 84, 12, 04 for cases, and 81, 17, 02 for controls (p = 0.45); for AGTR2 (A5235G): AA, AG, GG = 32, 67, 01 for cases, and 53, 28, 19 for controls (p < 0.0001). Women carrying genotypes AA/AG in the intronic region of angiotensin II type 2 receptor had an 11-fold higher risk of breast cancer than GG carriers. Conclusions Many types of cancer have been associated with polymorphisms of the renin-angiotensin system. For SNP A5235G, the GG genotype seems to be protective against breast cancer. The other 2 SNPs showed no association. However, SNPs T1247G and A5235G were associated with at least 1 clinical variable, with G being a predictor of better outcome. The use of SNPs A5235G and T1247G (the latter to a lesser degree) as genetic markers should be considered. PMID:25177259

  2. Effects of angiotensin II type 1 receptor blocker on albumin-induced cell damage in human renal proximal tubular epithelial cells.

    PubMed

    Takao, Toshihiro; Horino, Taro; Kagawa, Toru; Matsumoto, Reiko; Inoue, Kousuke; Taguchi, Takafumi; Morita, Tatsuhito; Iwasaki, Yasumasa; Hashimoto, Kozo; Terada, Yoshio

    2009-01-01

    Proteinuria is not merely a marker of chronic nephropathies, but may also be involved in the progression to end-stage renal failure. We investigated the effect of angiotensin II type 1 receptor blockers (ARBs) on albumin-induced cell damage in human renal proximal tubular epithelial cells (RPTEC). The N-acetyl-beta-D-glucosaminidase (NAG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the medium after albumin treatment with ARBs were determined by commercially available kits. The levels of p22(phox) protein in RPTEC were measured using Western blotting after albumin treatment with ARBs. Angiotensin II concentrations in cell media and cell lysates were assayed with a commercially available kit. Human albumin (0.1-10 mg/ml) dose-dependently increased NAG release and olmesartan or valsartan (10(-9)-10(-7) mol/l) showed a significant reduction on albumin (1 mg/ml)-induced NAG release in RPTEC. Albumin treatment (1 mg/ml) showed significant increases in p22(phox) protein levels in RPTEC and ARBs significantly decreased albumin-induced p22(phox) protein levels. Significant increases in 8-OHdG levels were observed in the albumin (1 mg/ml)-treated group and ARBs markedly reduced albumin-induced 8-OHdG levels in RPTEC. Human albumin dose-dependently increased angiotensin II concentrations in both cell media and lysates. These observations suggest renal tubular cell-protective properties of ARBs related to decreased oxidative stress during proteinuria. Copyright (c) 2008 S. Karger AG, Basel.

  3. Identification of Distinct Conformations of the Angiotensin-II Type 1 Receptor Associated with the Gq/11 Protein Pathway and the β-Arrestin Pathway Using Molecular Dynamics Simulations*

    PubMed Central

    Cabana, Jérôme; Holleran, Brian; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan; Lavigne, Pierre

    2015-01-01

    Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. The angiotensin-II type 1 (AT1) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the Gq/11 protein and β-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT1 receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore the conformational landscape sampled by the WT-AT1 receptor, the N111G-AT1 receptor (constitutively active and biased for the Gq/11 pathway), and the D74N-AT1 receptor (biased for the β-arrestin1 and -2 pathways) in their apo-forms and in complex with AngII. The molecular dynamics simulations of the AngII-WT-AT1, N111G-AT1, and AngII-N111G-AT1 receptors revealed specific structural rearrangements compared with the initial and ground state of the receptor. Simulations of the D74N-AT1 receptor revealed that the mutation stabilizes the receptor in the initial ground state. The presence of AngII further stabilized the ground state of the D74N-AT1 receptor. The biased agonist [Sar1,Ile8]AngII also showed a preference for the ground state of the WT-AT1 receptor compared with AngII. These results suggest that activation of the Gq/11 pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the β-arrestin pathway is linked to the stabilization of the ground state of the receptor. PMID:25934394

  4. Efficacy and Safety of Combination Therapy Consisting of Angiotensin II Type 1 Receptor Blocker, Calcium Channel Blocker and Hydrochlorothiazide in Patients With Hypertension

    PubMed Central

    Shiga, Yuhei; Miura, Shin-ichiro; Motozato, Kota; Yoshimine, Yuka; Norimatsu, Kenji; Arimura, Tadaaki; Koyoshi, Rie; Morii, Joji; Kuwano, Takashi; Inoue, Ken; Shirotani, Tetsuro; Fujisawa, Kazuaki; Matsunaga, Eiyu; Saku, Keijiro

    2017-01-01

    Background Many patients continue to have high blood pressure (BP) even after treatment with high-dose (H)-angiotensin II type 1 receptor blocker (ARB)/calcium channel blocker (CCB) or middle-dose (M)-ARB/CCB/hydrochlorothiazide (HCTZ). Methods Thirty-two hypertensive patients who had the use of H-ARB/CCB or M-ARB/CCB/HCTZ were enrolled in this study. We applied a changeover with a switch to H-ARB (telmisartan 80 mg/day)/CCB (amlodipine 5 mg/day or nifedipine CR 40 mg/day)/HCTZ (12.5 mg/day). Results Systolic BP (SBP) and diastolic BP (DBP) were significantly decreased in all patients and in the H-ARB/CCB and M-ARB/CCB/HCTZ groups after 3 months. Percentage (%) of patients who reached the target BP after 3 months (72%) in all patients was significantly higher than that at 0 months (19%). There were no serious adverse effects in any of the patients. Conclusions Combination therapy with H-ARB/CCB/HCTZ was associated with a significant reduction of BP. PMID:28090225

  5. Angiotensin-converting enzyme (ACE), angiotensinogen (AGT), and angiotensin II type 1 receptor (AT1R) gene polymorphisms in generalized aggressive periodontitis.

    PubMed

    Gürkan, Ali; Emingil, Gülnur; Saygan, Buket Han; Atilla, Gül; Köse, Timur; Baylas, Haluk; Berdeli, Afig

    2009-04-01

    Host response to periodontopathic microorganisms can be modulated by genetic factors. Accumulated evidence highlighted the role of renin-angiotensin system (RAS) in inflammatory response thus potential implication of this molecular system in the pathogenesis of periodontitis can be suggested. The present study investigated common genetic variants of molecules within the RAS family namely angiotensin-converting enzyme (ACE), angiotensinogen (AGT) and angiotensin II type 1 receptor (AT1R) in relation to generalized aggressive periodontitis (G-AgP). DNA was obtained from peripheral blood of 103 G-AgP patients and 100 periodontally healthy subjects. ACE I/D, AGT M235T and AT1R A1166C polymorphisms were genotyped by polymerase chain reaction and restriction fragment length polymorphism method. Chi-square, ANOVA and logistic regression were used in statistical analyses. Both ACE I/D and AT1R polymorphisms were similar in G-AgP and healthy groups (p>0.05). G-AgP subjects exhibited decreased AGT TT genotype and T allele frequency as compared to healthy subjects (p<0.05). The same trend was also observed in the nonsmoker subgroup regarding investigated RAS polymorphisms. Present findings suggest that AGT M235T TT genotype and T allele might be associated with decreased risk for G-AgP in Turkish population.

  6. Paracrine Effects of Adipose-Derived Stem Cells on Matrix Stiffness-Induced Cardiac Myofibroblast Differentiation via Angiotensin II Type 1 Receptor and Smad7

    PubMed Central

    Yong, Kar Wey; Li, Yuhui; Liu, Fusheng; Bin Gao; Lu, Tian Jian; Wan Abas, Wan Abu Bakar; Wan Safwani, Wan Kamarul Zaman; Pingguan-Murphy, Belinda; Ma, Yufei; Xu, Feng; Huang, Guoyou

    2016-01-01

    Human mesenchymal stem cells (hMSCs) hold great promise in cardiac fibrosis therapy, due to their potential ability of inhibiting cardiac myofibroblast differentiation (a hallmark of cardiac fibrosis). However, the mechanism involved in their effects remains elusive. To explore this, it is necessary to develop an in vitro cardiac fibrosis model that incorporates pore size and native tissue-mimicking matrix stiffness, which may regulate cardiac myofibroblast differentiation. In the present study, collagen coated polyacrylamide hydrogel substrates were fabricated, in which the pore size was adjusted without altering the matrix stiffness. Stiffness is shown to regulate cardiac myofibroblast differentiation independently of pore size. Substrate at a stiffness of 30 kPa, which mimics the stiffness of native fibrotic cardiac tissue, was found to induce cardiac myofibroblast differentiation to create in vitro cardiac fibrosis model. Conditioned medium of hMSCs was applied to the model to determine its role and inhibitory mechanism on cardiac myofibroblast differentiation. It was found that hMSCs secrete hepatocyte growth factor (HGF) to inhibit cardiac myofibroblast differentiation via downregulation of angiotensin II type 1 receptor (AT1R) and upregulation of Smad7. These findings would aid in establishment of the therapeutic use of hMSCs in cardiac fibrosis therapy in future. PMID:27703175

  7. Absence of angiotensin II type 1 receptor in bone marrow–derived cells is detrimental in the evolution of renal fibrosis

    PubMed Central

    Nishida, Masashi; Fujinaka, Hidehiko; Matsusaka, Taiji; Price, James; Kon, Valentina; Fogo, Agnes B.; Davidson, Jeffrey M.; Linton, MacRae F.; Fazio, Sergio; Homma, Toshio; Yoshida, Hiroaki; Ichikawa, Iekuni

    2002-01-01

    We examined the in vivo function of the angiotensin II type 1 receptor (Agtr1) on macrophages in renal fibrosis. Fourteen days after the induction of unilateral ureteral obstruction (UUO), wild-type mice reconstituted with marrow lacking the Agtr1 gene (Agtr1–/–) developed more severe interstitial fibrosis with fewer interstitial macrophages than those in mice reconstituted with Agtr1+/+ marrow. These differences were not observed at day 5 of UUO. The expression of profibrotic genes — including TGF-β1, α1(I) collagen, and α1(III) collagen — was substantially higher in the obstructed kidneys of mice with Agtr1–/– marrow than in those with Agtr1+/+ marrow at day 14 but not at day 5 of UUO. Mice with Agtr1–/– marrow were characterized by reduced numbers of peripheral-blood monocytes and macrophage progenitors in bone marrow. In vivo assays revealed a significantly impaired phagocytic capability in Agtr1–/– macrophages. In vivo treatment of Agtr1+/+ mice with losartan reduced phagocytic capability of Agtr1+/+ macrophages to a level comparable to that of Agtr1–/– macrophages. Thus, during urinary tract obstruction, the Agtr1 on bone marrow–derived macrophages functions to preserve the renal parenchymal architecture, and this function depends in part on its modulatory effect on phagocytosis. PMID:12488436

  8. Histopathologic changes in anti-angiotensin II type 1 receptor antibody-positive kidney transplant recipients with acute rejection and no donor specific HLA antibodies.

    PubMed

    Lim, Mary Ann; Palmer, Matthew; Trofe-Clark, Jennifer; Bloom, Roy D; Jackson, Annette; Philogene, Mary Carmelle; Kamoun, Malek

    2017-04-01

    To determine the association of antibodies against angiotensin II type 1 receptor (AT1R Ab) and histopathologic changes seen in patients with kidney allograft rejection and negative donor specific HLA antibodies (DSA). Stored sera from 27 patients who had biopsy-proven rejection in the absence of DSA were tested for AT1R Ab. Biopsy slides of all patients were re-examined and classified according to Banff 2013 criteria. Histopathologic changes were compared between AT1R positive and negative patients. 75% of patients with positive pre-transplant AT1R Ab had antibody mediated rejection (AMR) compared to 37% of AT1R Ab-negative patients. A trend towards increased interstitial inflammation was observed in the AT1R Ab positive group (p=0.08). More patients in the AT1R Ab positive group had microcirculation inflammation (88% vs 58% with glomerulitis scores ≥1; 75% vs 58% with peritubular capillaritis scores ≥1). In kidney transplant recipients with rejection and no DSA, a higher incidence of AMR and worse inflammation scores are observed in the presence of positive pre-transplant AT1R antibodies. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  9. Paracrine Effects of Adipose-Derived Stem Cells on Matrix Stiffness-Induced Cardiac Myofibroblast Differentiation via Angiotensin II Type 1 Receptor and Smad7.

    PubMed

    Yong, Kar Wey; Li, Yuhui; Liu, Fusheng; Bin Gao; Lu, Tian Jian; Wan Abas, Wan Abu Bakar; Wan Safwani, Wan Kamarul Zaman; Pingguan-Murphy, Belinda; Ma, Yufei; Xu, Feng; Huang, Guoyou

    2016-10-05

    Human mesenchymal stem cells (hMSCs) hold great promise in cardiac fibrosis therapy, due to their potential ability of inhibiting cardiac myofibroblast differentiation (a hallmark of cardiac fibrosis). However, the mechanism involved in their effects remains elusive. To explore this, it is necessary to develop an in vitro cardiac fibrosis model that incorporates pore size and native tissue-mimicking matrix stiffness, which may regulate cardiac myofibroblast differentiation. In the present study, collagen coated polyacrylamide hydrogel substrates were fabricated, in which the pore size was adjusted without altering the matrix stiffness. Stiffness is shown to regulate cardiac myofibroblast differentiation independently of pore size. Substrate at a stiffness of 30 kPa, which mimics the stiffness of native fibrotic cardiac tissue, was found to induce cardiac myofibroblast differentiation to create in vitro cardiac fibrosis model. Conditioned medium of hMSCs was applied to the model to determine its role and inhibitory mechanism on cardiac myofibroblast differentiation. It was found that hMSCs secrete hepatocyte growth factor (HGF) to inhibit cardiac myofibroblast differentiation via downregulation of angiotensin II type 1 receptor (AT1R) and upregulation of Smad7. These findings would aid in establishment of the therapeutic use of hMSCs in cardiac fibrosis therapy in future.

  10. Azilsartan, an angiotensin II type 1 receptor blocker, attenuates tert-butyl hydroperoxide-induced endothelial cell injury through inhibition of mitochondrial dysfunction and anti-inflammatory activity.

    PubMed

    Liu, Hao; Mao, Ping; Wang, Jia; Wang, Tuo; Xie, Chang-Hou

    2016-03-01

    Angiotensin II type 1 receptor (AT1-R) blockers protect against brain ischemia by mechanisms dependent on and independent of arterial blood pressure. However, the effects of AT1-R blockers on brain endothelial cell injury and detailed mechanisms remain unclear. The goal of this study is to investigate whether azilsartan, an AT1-R blocker, could attenuate oxidative injury in endothelial cells via regulating mitochondrial function and inflammatory responses. We found that treatment with azilsartan suppressed tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in murine brain endothelial cells (mBECs) by increasing cell viability, decreasing lactate dehydrogenase (LDH) release and inhibiting cell apoptosis. Azilsartan significantly inhibited reactive oxygen species (ROS) generation and lipid peroxidation, but had no effect on antioxidant system. We also detected preserved mitochondrial function after azilsartan treatment, as evidenced by increased mitochondrial membrane potential (MMP), reduced cytochrome c release, preserved ATP synthesis and inhibited mitochondrial swelling. In addition, azilsartan differently regulated expression of inflammatory cytokines and increased the activation of endothelial nitric oxide synthase (eNOS). Pretreatment with eNOS inhibitor L-NIO partially prevented the azilsartan-induced regulation of cytokines and protection. Furthermore, azilsartan-induced protection in our in vitro model was shown to be associated with protein stability of peroxisome proliferator-activated receptor-γ (PPAR-γ). Overall, our data suggest that the AT1-R blocker azilsartan may have therapeutic values in treating endothelial dysfunction associated neurological disorders through anti-oxidative and anti-inflammatory properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Angiotensin II type 1a receptors in subfornical organ contribute towards chronic intermittent hypoxia-associated sustained increase in mean arterial pressure

    PubMed Central

    Saxena, Ashwini; Little, Joel T.; Nedungadi, T. Prashant

    2014-01-01

    Sleep apnea is associated with hypertension. The mechanisms contributing to a sustained increase in mean arterial pressure (MAP) even during normoxic awake-state remain unknown. Rats exposed to chronic intermittent hypoxia for 7 days, a model of the hypoxemia associated with sleep apnea, exhibit sustained increases in MAP even during the normoxic dark phase. Activation of the renin-angiotensin system (RAS) has been implicated in chronic intermittent hypoxia (CIH) hypertension. Since the subfornical organ (SFO) serves as a primary target for the central actions of circulating ANG II, we tested the effects of ANG II type 1a receptor (AT1aR) knockdown in the SFO on the sustained increase in MAP in this CIH model. Adeno-associated virus carrying green fluorescent protein (GFP) and small-hairpin RNA against either AT1aR or a scrambled control sequence (SCM) was stereotaxically injected in the SFO of rats. After recovery, MAP, heart rate, respiratory rate, and activity were continuously recorded using radiotelemetry. In the normoxic groups, the recorded variables did not deviate from the baseline values. Both CIH groups exhibited significant increases in MAP during CIH exposures (P < 0.05). During the normoxic dark phase in the CIH groups, only the SCM-injected group exhibited a sustained increase in MAP (P < 0.05). The AT1aR-CIH group showed significant decreases in FosB/ΔFosB staining in the median preoptic nucleus and the paraventricular nuclei of the hypothalamus compared with the SCM-CIH group. Our data indicate that AT1aRs in the SFO are critical for the sustained elevation in MAP and increased FosB/ΔFosB expression in forebrain autonomic nuclei associated with CIH. PMID:25539713

  12. Angiotensin II type 1a receptors in subfornical organ contribute towards chronic intermittent hypoxia-associated sustained increase in mean arterial pressure.

    PubMed

    Saxena, Ashwini; Little, Joel T; Nedungadi, T Prashant; Cunningham, J Thomas

    2015-03-01

    Sleep apnea is associated with hypertension. The mechanisms contributing to a sustained increase in mean arterial pressure (MAP) even during normoxic awake-state remain unknown. Rats exposed to chronic intermittent hypoxia for 7 days, a model of the hypoxemia associated with sleep apnea, exhibit sustained increases in MAP even during the normoxic dark phase. Activation of the renin-angiotensin system (RAS) has been implicated in chronic intermittent hypoxia (CIH) hypertension. Since the subfornical organ (SFO) serves as a primary target for the central actions of circulating ANG II, we tested the effects of ANG II type 1a receptor (AT1aR) knockdown in the SFO on the sustained increase in MAP in this CIH model. Adeno-associated virus carrying green fluorescent protein (GFP) and small-hairpin RNA against either AT1aR or a scrambled control sequence (SCM) was stereotaxically injected in the SFO of rats. After recovery, MAP, heart rate, respiratory rate, and activity were continuously recorded using radiotelemetry. In the normoxic groups, the recorded variables did not deviate from the baseline values. Both CIH groups exhibited significant increases in MAP during CIH exposures (P < 0.05). During the normoxic dark phase in the CIH groups, only the SCM-injected group exhibited a sustained increase in MAP (P < 0.05). The AT1aR-CIH group showed significant decreases in FosB/ΔFosB staining in the median preoptic nucleus and the paraventricular nuclei of the hypothalamus compared with the SCM-CIH group. Our data indicate that AT1aRs in the SFO are critical for the sustained elevation in MAP and increased FosB/ΔFosB expression in forebrain autonomic nuclei associated with CIH.

  13. Polymorphisms in angiotensin II type 1 receptor and angiotensin I-converting enzyme genes and breast cancer risk among Chinese women in Singapore.

    PubMed

    Koh, Woon-Puay; Yuan, Jian-Min; Van Den Berg, David; Lee, Hin-Peng; Yu, Mimi C

    2005-02-01

    Angiotensin II is converted from its precursor by angiotensin I-converting enzyme (ACE) and has been shown to mediate growth in breast cancer cell lines via ligand-induced activity through the angiotensin II type 1 receptor (AGTR1). Earlier we showed that women with the low activity genotype of the ACE gene have a statistically significantly ( approximately 50%) reduced breast cancer risk compared with those possessing the high activity ACE genotype. To further test the hypothesis that angiotensin II participates in breast carcinogenesis through AGTR1, we examined genetic polymorphisms in the 5'-region of the AGTR1 gene (A-168G, C-535T and T-825A) in relation to risk of breast cancer in 258 breast cancer cases and 670 female controls within the Singapore Chinese Health Study. Relative to the homozygotes, individual genotypes with one or two copies of the respective allelic variants (putative low risk genotypes) were each associated with an approximately 30% reduction in risk of breast cancer. Risk of breast cancer decreased with increasing number of low risk AGTR1 genotypes after adjustment for potential confounders. Relative to those carrying no low risk genotypes (homozygous for A, C and T alleles for the three polymorphisms, respectively), the odds ratios (95% confidence intervals) were 0.84 (0.51-1.37) for women possessing one low risk genotype and 0.68 (0.46-1.01) for women possessing two or three low risk genotypes (P for trend = 0.05). When both AGTR1 and ACE gene polymorphisms were examined simultaneously, women possessing at least one AGTR1 low risk genotype in combination with the ACE low activity genotype had an odds ratio of 0.35 (95% confidence interval, 0.20-0.62) compared with those possessing the ACE high activity genotype and no AGTR1 low risk genotype. Our findings suggest that pharmacological inhibition of the angiotensin II effect by blockade of ACE and/or AGTR1 could be potential targets for the prevention and treatment of breast cancer.

  14. Intracerebroventricular losartan infusion modulates angiotensin II type 1 receptor expression in the subfornical organ and drinking behaviour in bile-duct-ligated rats.

    PubMed

    Walch, Joseph D; Carreño, Flávia Regina; Cunningham, J Thomas

    2013-04-01

    Bile duct ligation (BDL) causes congestive liver failure that initiates haemodynamic changes, including peripheral vasodilatation and generalized oedema. Peripheral vasodilatation is hypothesized to activate compensatory mechanisms, including increased drinking behaviour and neurohumoral activation. This study tested the hypothesis that changes in the expression of angiotensin II type 1 receptor (AT(1)R) mRNA and protein in the lamina terminalis are associated with BDL-induced hyposmolality in the rat. All rats received either BDL or sham-ligation surgery. The rats were housed in metabolic chambers for measurement of fluid and food intake and urine output. Expression of AT(1)R in the lamina terminalis was assessed by Western blot and quantitative real-time PCR (RT-qPCR). Average baseline water intake increased significantly in BDL rats compared with sham-operated rats, and upregulation of AT(1)R protein and AT(1a)R mRNA were observed in the subfornical organ of BDL rats. Separate groups of BDL and sham-ligated rats were instrumented with minipumps filled with either losartan (2.0 μg μl(-1)) or 0.9% saline for chronic intracerebroventricular or chronic subcutaneous infusion. Chronic intracerebroventricular losartan infusion attenuated the increased drinking behaviour and prevented the increased abundance of AT(1)R protein in the subfornical organ in BDL rats. Chronic subcutaneous infusion did not affect water intake or AT(1)R abundance in the subfornical organ. The data presented here indicate a possible role of increased central AT(1)R expression in the regulation of drinking behaviour during congestive cirrhosis.

  15. Central Rho kinase inhibition restores baroreflex sensitivity and angiotensin II type 1 receptor protein imbalance in conscious rabbits with chronic heart failure.

    PubMed

    Haack, Karla K V; Gao, Lie; Schiller, Alicia M; Curry, Pamela L; Pellegrino, Peter R; Zucker, Irving H

    2013-03-01

    The small GTPase RhoA and its associated kinase ROCKII are involved in vascular smooth muscle cell contraction and endothelial NO synthase mRNA destabilization. Overactivation of the RhoA/ROCKII pathway is implicated in several pathologies, including chronic heart failure (CHF), and may contribute to the enhanced sympathetic outflow seen in CHF as a result of decreased NO availability. Thus, we hypothesized that central ROCKII blockade would improve the sympathovagal imbalance in a pacing rabbit model of CHF in an NO-dependent manner. CHF was induced by rapid ventricular pacing and characterized by an ejection fraction of ≤45%. Animals were implanted with an intracerbroventricular cannula and osmotic minipump (rate, 1 μL/h) containing sterile saline, 1.5 µg/kg per day fasudil (Fas, a ROCKII inhibitor) for 4 days or Fas+100 µg/kg per day Nω-Nitro-l-arginine methyl ester hydrochloride, a NO synthase inhibitor. Arterial baroreflex control was assessed by intravenous infusion of sodium nitroprusside and phenylephrine. Fas infusion significantly lowered resting heart rate by decreasing sympathetic and increasing vagal tone. Furthermore, Fas improved baroreflex gain in CHF in an NO-dependent manner. In CHF Fas animals, the decrease in heart rate in response to intravenous metoprolol was similar to Sham and was reversed by Nω-Nitro-l-arginine methyl ester hydrochloride. Fas decreased angiotensin II type 1 receptor and phospho-ERM protein expression and increased endothelial NO synthase expression in the brain stem of CHF animals. These data strongly suggest that central ROCKII activation contributes to cardiac sympathoexcitation in the setting of CHF and that central Fas restores vagal and sympathetic tone in an NO-dependent manner. ROCKII may be a new central therapeutic target in the setting of CHF.

  16. Anti-Angiotensin II Type 1 Receptor and Anti-Endothelial Cell Antibodies: A Cross-Sectional Analysis of Pathological Findings in Allograft Biopsies

    PubMed Central

    Philogene, Mary Carmelle; Bagnasco, Serena; Kraus, Edward S.; Montgomery, Robert A.; Dragun, Duska; Leffell, Mary S.; Zachary, Andrea A.; Jackson, Annette M.

    2017-01-01

    Background This is a cross-sectional study designed to evaluate the histologic characteristics of graft injury in the presence of anti-angiotensin II type 1 receptor antibody (AT1R-Ab) and anti-endothelial cell antibody (AECA). Methods Non-HLA antibody testing was included in the posttransplant evaluation for 70 kidney recipients. Biopsies were performed for cause for 47 patients and as protocol for the remaining 23 patients. Biopsy-proven rejection was defined according to the Banff 2009-2013 criteria. AT1R-Ab was measured on an ELISA platform. Patients were divided into 3 groups based on AT1R-Ab levels (>17, 10-17, and <10 U/ml). AECA was evaluated using an endothelial cell crossmatch (ECXM) in patients whose HLA antibody level was insufficient to cause a positive flow cytometric crossmatch. Results AT1R-Ab levels were higher in patients diagnosed with antibody mediated rejection compared to those with no rejection (P = 0.004). Glomerulitis (g) and peritubular capillaritis (ptc) scores were independently correlated with increased AT1R-Ab concentrations in the presence or absence of HLA-DSA (P = 0.007 and 0.03 for g scores; p = 0.005 and 0.03 for ptc scores). Patients with a positive ECXM had higher AT1R-Ab levels compared to those with a negative ECXM (P = 0.005). Microcirculation inflammation (MCI = g + ptc score) was higher in patients with a positive ECXM and with AT1R-Ab >17 U/ml, although this did not reach statistical significance (P = 0.07). Conclusions The data show an association between non-HLA antibodies detected in the ECXM and AT1R ELISA and microvascular injury observed in antibody mediated rejection. PMID:27222934

  17. Angiotensin II type 1 receptor antagonists alleviate muscle pathology in the mouse model for laminin-α2-deficient congenital muscular dystrophy (MDC1A)

    PubMed Central

    2012-01-01

    Background Laminin-α2-deficient congenital muscular dystrophy (MDC1A) is a severe muscle-wasting disease for which no curative treatment is available. Antagonists of the angiotensin II receptor type 1 (AT1), including the anti-hypertensive drug losartan, have been shown to block also the profibrotic action of transforming growth factor (TGF)-β and thereby ameliorate disease progression in mouse models of Marfan syndrome. Because fibrosis and failure of muscle regeneration are the main reasons for the severe disease course of MDC1A, we tested whether L-158809, an analog derivative of losartan, could ameliorate the dystrophy in dyW/dyW mice, the best-characterized model of MDC1A. Methods L-158809 was given in food to dyW/dyW mice at the age of 3 weeks, and the mice were analyzed at the age of 6 to 7 weeks. We examined the effect of L-158809 on muscle histology and on muscle regeneration after injury as well as the locomotor activity and muscle strength of the mice. Results We found that TGF-β signaling in the muscles of the dyW/dyW mice was strongly increased, and that L-158809 treatment suppressed this signaling. Consequently, L-158809 reduced fibrosis and inflammation in skeletal muscle of dyW/dyW mice, and largely restored muscle regeneration after toxin-induced injury. Mice showed improvement in their locomotor activity and grip strength, and their body weight was significantly increased. Conclusion These data provide evidence that AT1 antagonists ameliorate several hallmarks of MDC1A in dyW/dyW mice, the best-characterized mouse model for this disease. Because AT1 antagonists are well tolerated in humans and widely used in clinical practice, these results suggest that losartan may offer a potential future treatment of patients with MDC1A. PMID:22943509

  18. Gene polymorphisms of angiotensin-converting enzyme and angiotensin II type 1 receptor among chronic kidney disease patients in a Chinese population.

    PubMed

    Su, Sui-Lung; Lu, Kuo-Cheng; Lin, Yuh-Feng; Hsu, Yu-Juei; Lee, Pong-Ying; Yang, Hsin-Yi; Kao, Sen-Yeong

    2012-03-01

    Chronic kidney disease (CKD) is highly prevalent in Taiwan and an increasing number of patients are affected, with a high risk of progression to end-stage renal disease and huge medical expenses. It has been predicted that the presence of hypertension increases with decreasing renal function due to a decrease in sodium excretion and activation of the renin-angiotensin system (RAS). The aim of this study was to investigate the influence of genetic variants of the RAS gene on CKD. We performed a case control association study and genotyped 135 CKD patients and 270 healthy controls among Han Chinese in Taiwan. All subjects were genotyped for angiotensinogen (AGT-M235T, T174M, A-20C), angiotensin-I converting enzyme (ACE-A2350G) and angiotensin II type 1 receptor (AGTR1-A1166C, C573T, C-521T) polymorphisms of RAS genes by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Significant associations were observed in ACE-A2350G and AGTR1-C573T polymorphism between CKD patients and controls. In regard to ACE-A2350G, compared with the AA genotype the GG genotype protected against CKD (adjusted odds ratio [OR] = 0.34; p = 0.01). In regard to AGTR1-C573T, the CT genotype was a risk for CKD compared with the CC genotype (adjusted OR = 1.82; p = 0.03). We conclude that ACE-A2350G and AGTR1-C573T polymorphisms are likely candidate determinants of CKD.

  19. The Relationship between Angiotensin-II Type 1 Receptor Gene Polymorphism and Repolarization Parameters after a First Anterior Acute Myocardial Infarction

    PubMed Central

    Ozturk, Unal; Nergiz, Sebnem; Karahan, M. Zulkif

    2016-01-01

    Background and Objectives Genetic influence on T-wave peak to End (Tpe) time in patients with a first anterior acute myocardial infarction (AMI) is uncertain. A polymorphism in the angiotensin-II type 1 receptor (AT1R) gene was discovered recently. The polymorphism consists of an A or C variant, given three different possible genotypes: AA, AC, CC. The purpose of this study was to determine the effects of polymorphism of the AT1R gene polymorphism on Tpe after a first anterior AMI. Subjects and Methods The subjects were 142 patients (110 men, 32 women, 58±13 years) with a first anterior AMI; ten patients were excluded from this study. Based on the polymorphism of the AT1R gene, they were classified into two groups: Group 1 (AA genotype) of 91 patients and group 2 (AC and CC genotype) of 41 patients. A 12-lead resting ECG was recorded at admission to the coronary care unit in patients with anterior AMI and were manually measured with a ruler. QTc, QTd, QTcd, Tpe, Tpe/QT parameters were measured. Results There was no significant difference in the baseline characteristics of patients (p>0.05). We found significant reduction in QTc, QTd, QTcd, Tpe, Tpe/QT indices Group 1 (AA genotype) (mean 66±28 ms) than group 2 (AC and CC genotype) (mean 95±34 ms) (p<0.05). Conclusion In patients with a first anterior AMI, AT1R gene polymorphisms may influence on repolarization parameters. Although further studies are required. PMID:27826337

  20. Discovery of a series of imidazo[4,5-b]pyridines with dual activity at angiotensin II type 1 receptor and peroxisome proliferator-activated receptor-γ.

    PubMed

    Casimiro-Garcia, Agustin; Filzen, Gary F; Flynn, Declan; Bigge, Christopher F; Chen, Jing; Davis, Jo Ann; Dudley, Danette A; Edmunds, Jeremy J; Esmaeil, Nadia; Geyer, Andrew; Heemstra, Ronald J; Jalaie, Mehran; Ohren, Jeffrey F; Ostroski, Robert; Ellis, Teresa; Schaum, Robert P; Stoner, Chad

    2011-06-23

    Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-γ (PPARγ) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPARγ confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPARγ activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC(50) = 1.6 nM) with partial PPARγ agonism (EC(50) = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.

  1. Discovery of a Series of Imidazo[4,5-b]pyridines with Dual Activity at Angiotensin II Type 1 Receptor and Peroxisome Proliferator-Activated Receptor-[gamma

    SciTech Connect

    Casimiro-Garcia, Agustin; Filzen, Gary F.; Flynn, Declan; Bigge, Christopher F.; Chen, Jing; Davis, Jo Ann; Dudley, Danette A.; Edmunds, Jeremy J.; Esmaeil, Nadia; Geyer, Andrew; Heemstra, Ronald J.; Jalaie, Mehran; Ohren, Jeffrey F.; Ostroski, Robert; Ellis, Teresa; Schaum, Robert P.; Stoner, Chad

    2013-03-07

    Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPAR{gamma} confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPAR{gamma} activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC{sub 50} = 1.6 nM) with partial PPAR{gamma} agonism (EC{sub 50} = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.

  2. Contribution of deletion in angiotensin-converting enzyme but not A1166C angiotensin II type-1 receptor gene polymorphisms to clinical outcomes in atherothrombotic disease.

    PubMed

    Le Hello, Claire; Fradin, Sabine; Morello, Rémy; Coffin, Olivier; Maïza, Dominique; Hamon, Martial

    2011-04-01

    Angiotensin-converting enzyme insertion/deletion (rs4340) and angiotensin II type 1 receptor A1166C (rs5186) gene polymorphisms may be involved in coronary heart disease (CHD). This study was designed to evaluate potential relationships between these polymorphisms and the risk of long-term all-cause mortality and major adverse cardiovascular events (MACE) in patients requiring revascularization for atherothrombotic disease (ATD) lesions. This prospective observational study concerned patients referred for supra-aortic vessel disease (SVD), CHD, peripheral artery occlusive disease (PAOD) or visceral artery disease (VAD). Collected data included ATD referral site, ATD symptoms, personal and familial medical histories, ATD extent, vascular risk factors, biological values, medication use and rs4340 and rs5186 polymorphisms. The primary end point was all-cause mortality. The secondary end point, MACE, included cardiovascular death, clinical ischemic event related to SVD, CHD, PAOD or VAD. The cohort comprised 956 patients of whom 872 (91.2%) were genotyped and followed for 21.1 ± 9.9 months. Patients were referred for SVD (25.9%), CHD (42.3%), PAOD (35.2%) or VAD (1.6%). All-cause mortality and MACE rates were 7.6 and 27.2%, respectively. When comparing I/D + D/D vs. I/I genotypes, rs4340 polymorphism was associated with higher all-cause mortality rates according to uni- and multivariate analyses (p=0.008 and 0.011, respectively). Other differences were not significant (rs4340 polymorphism and MACE, rs5186 polymorphism and all-cause mortality and MACE). No interaction was found between the polymorphisms. Other independent predictors of all-cause mortality included PAOD history, SVD history, body mass index <25 kg/m(2), HbA(1c) ≥6.5%, absence of dyslipidemia and no use of aspirin. rs4340 polymorphism is associated with long-term all-cause mortality in advanced ATD patients requiring revascularization, whereas rs5186 polymorphism does not. Copyright © 2011 IMSS

  3. Correlation between VEGFR-2 receptor kinase domain-containing receptor (KDR) mRNA and angiotensin II receptor type 1 (AT1-R) mRNA in endometrial cancer.

    PubMed

    Piastowska-Ciesielska, Agnieszka W; Płuciennik, Elżbieta; Wójcik-Krowiranda, Katarzyna; Bieńkiewicz, Andrzej; Nowakowska, Magdalena; Pospiech, Karolina; Bednarek, Andrzej K; Domińska, Kamila; Ochędalski, Tomasz

    2013-02-01

    Angiogenesis, a multistep process that results in new blood vessel formation from preexisting vasculature is essential for both the growth of solid tumour and for metastasis. Stimulation of vascular endothelial growth factor receptor (VEGFR), a transmembrane glycoprotein, results in mitogenesis. Within this family of receptors, VEGFR 2/kinase-insert-domain containing receptor appears to be principally upregulated during tumorigenesis. The aim of this study was to determine the expression of VEGFR-2/kinase-insert-domain containing receptor (KDR) and its correlation with angiotensin receptor type 1 (AT1-R) and clinical factors in endometrial carcinoma. The expression of KDR and AT1-R was studied in endometrial carcinoma and normal endometrium by Real-time RT-PCR and Western blot analysis in 136 samples. The expression profile was correlated with the clinicopathological characteristics of endometrial adenocarcinoma. We noted a significant correlation between the expression of KDR and AT1-R in tumour grade G1, G2 and G3 (R(s)=0.50; p=0.002, R(s)=0.69; p=0.0001, R(s)=0.52; p=0.005, respectively). In stage I and stage II carcinoma, a significant correlation was also found between the expression of KDR and AT1-R (R(s)=0.70, p=0.0001, R(s)=0.67; p=0.001, respectively). Moreover significant correlation was observed between both KDR and AT1-R in tissue with different myometrial invasion (R(s)=0.54, p=0.0001, R(s)=0.68; p=0.0001; respectively for tumours with invasion into the inner half and invasion into the outer half). Basing on received correlation between AT1-R and KDR expression and previous results we speculate that angiotensin through AT1-R modulates KDR expression and thus have influence on local VEGF level. However, further studies are required to clarify the biological interaction between KDR, AT1-R and other hormonal regulators in endometrial carcinoma. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Endogenous hydrogen sulfide is associated with angiotensin II type 1 receptor in a rat model of carbon tetrachloride-induced hepatic fibrosis.

    PubMed

    Fan, Hui-Ning; Chen, Ni-Wei; Shen, Wei-Lin; Zhao, Xiang-Yun; Zhang, Jing

    2015-09-01

    The present study aimed to investigate the effects of endogenous hydrogen sulfide (H2S) on the expression levels of angiotensin II type 1 receptor (AGTR1) in a rat model of carbon tetrachloride (CCl4)‑induced hepatic fibrosis. A total of 56 Wistar rats were randomly divided into four groups: Normal control group, model group, sodium hydrosulfide (NaHS) group, and DL‑propargylglycine (PAG) group. Hepatic fibrosis was induced by CCl4. The rats in the PAG group were intraperitoneally injected with PAG, an inhibitor of cystathionine‑γ‑lyase (CSE). The rats in the NaHS group were intraperitoneally injected with NaHS. An equal volume of saline solution was intraperitoneally injected into both the control and model groups. All rats were sacrificed at week three or four following treatment. The serum levels of hyaluronidase (HA), laminin protein (LN), procollagen III (PcIII), and collagen IV (cIV) were detected using ELISA. The serum levels of alanine transaminase (ALT), aspartate transaminase (AST), and albumin (ALB) were detected using an automatic biochemical analyzer. The liver mRNA expression levels of CSE were detected by reverse transcription‑quantitative polymerase chain reaction. The liver expression levels of AGTR1 and the plasma expression levels of H2S were detected using western blot analyses. The results indicated that the severity of hepatic fibrosis, the serum expression levels of HA, LN, PcIII, cIV, ALT, and AST, the liver expression levels of CSE and AGTR1, and the plasma expression levels of H2S were significantly higher in the PAG group, as compared with the model group (P<0.05). Conversely, the expression levels of ALB were significantly lower in the PAG group, as compared with the model group. In addition, the severity of hepatic fibrosis, the serum expression levels of HA, LN, PcIII, cIV, ALT, and AST, the liver expression levels of CSE and AGTR1, and the plasma expression levels of H2S were significantly lower in the NaHS group, as

  5. Endogenous hydrogen sulfide is associated with angiotensin II type 1 receptor in a rat model of carbon tetrachloride-induced hepatic fibrosis

    PubMed Central

    FAN, HUI-NING; CHEN, NI-WEI; SHEN, WEI-LIN; ZHAO, XIANG-YUN; ZHANG, JING

    2015-01-01

    The present study aimed to investigate the effects of endogenous hydrogen sulfide (H2S) on the expression levels of angiotensin II type 1 receptor (AGTR1) in a rat model of carbon tetrachloride (CCl4)-induced hepatic fibrosis. A total of 56 Wistar rats were randomly divided into four groups: Normal control group, model group, sodium hydrosulfide (NaHS) group, and DL-propargylglycine (PAG) group. Hepatic fibrosis was induced by CCl4. The rats in the PAG group were intraperitoneally injected with PAG, an inhibitor of cystathionine-γ-lyase (CSE). The rats in the NaHS group were intraperitoneally injected with NaHS. An equal volume of saline solution was intraperitoneally injected into both the control and model groups. All rats were sacrificed at week three or four following treatment. The serum levels of hyaluronidase (HA), laminin protein (LN), procollagen III (PcIII), and collagen IV (cIV) were detected using ELISA. The serum levels of alanine transaminase (ALT), aspartate transaminase (AST), and albumin (ALB) were detected using an automatic biochemical analyzer. The liver mRNA expression levels of CSE were detected by reverse transcription-quantitative polymerase chain reaction. The liver expression levels of AGTR1 and the plasma expression levels of H2S were detected using western blot analyses. The results indicated that the severity of hepatic fibrosis, the serum expression levels of HA, LN, PcIII, cIV, ALT, and AST, the liver expression levels of CSE and AGTR1, and the plasma expression levels of H2S were significantly higher in the PAG group, as compared with the model group (P<0.05). Conversely, the expression levels of ALB were significantly lower in the PAG group, as compared with the model group. In addition, the severity of hepatic fibrosis, the serum expression levels of HA, LN, PcIII, cIV, ALT, and AST, the liver expression levels of CSE and AGTR1, and the plasma expression levels of H2S were significantly lower in the NaHS group, as compared with

  6. Pretransplant angiotensin II type 1-receptor antibodies are a risk factor for earlier detection of de novo HLA donor-specific antibodies.

    PubMed

    Cuevas, Eric; Arreola-Guerra, José M; Hernández-Méndez, Erick A; Salcedo, Isaac; Castelán, Natalia; Uribe-Uribe, Norma O; Vilatobá, Mario; Contreras-Saldívar, Alan G; Sánchez-Cedillo, Aczel I; Ramírez, Julia B; de Rungs, David; Granados, Julio; Morales-Buenrostro, Luis E; Alberú, Josefina

    2016-10-01

    Angiotensin II type 1 receptor antibodies (AT1Rabs) have been associated with significantly reduced graft survival. Earlier graft loss has been observed in patients who had pretransplant AT1Rabs and posttransplant donor-specific antibodies (DSA). The main goal of this retrospective cohort study was to examine the association between AT1Rabs and the time period to detection of de novo human leukocyte antigen (HLA-DSA) posttransplantation in living donor kidney transplant recipients (KTR). The analysis included 141 KTRs. Pretransplant frozen serum samples were tested for AT1Rabs by ELISA and HLA-DSA by SAB (Luminex) at both the pre- and post-KT time points. The median AT1Rab level was 9.13 U (interquartile range 5.22-14.33). After a mean follow-up period of 3.55 years, 48 patients were found to harbour de novo HLA-DSAs. The presence of AT1Rabs [hazard ratio (HR) 1.009, 95% confidence interval (CI) 1.002-1.01, P = 0.010], male-to-male transplantation (HR 2.57, 95% CI 1.42-4.67, P = 0.002) and antecedent borderline changes or acute cellular rejection (ACR) (HR 2.47, 95% CI 1.29-4.75, P = 0.006) were significantly associated with de novo DSA detection. A dose-dependent association between AT1Rab levels (<10 U, 10.1-16.9 U, 17-29.9 U and >30 U) and de novo DSA detection was observed (log-rank P = 0.0031). After multivariate analysis of AT1Rab levels (continuous variable), AT1Rabs >30 U, male-to-male transplantation, donor age, higher class I percentage of Panel Reactive Antibody and antecedent borderline changes or ACR remained as independent significant risk factors for the detection of de novo DSAs. The findings suggest that higher levels of pretransplant circulating antibodies against AT1R (>30 U) in kidney graft recipients constitute an independent risk factor for earlier de novo HLA-DSA detection during the posttransplant period. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  7. Construction of a yeast-based signaling biosensor for human angiotensin II type 1 receptor via functional coupling between Asn295-mutated receptor and Gpa1/Gi3 chimeric Gα.

    PubMed

    Nakamura, Yasuyuki; Ishii, Jun; Kondo, Akihiko

    2014-11-01

    Angiotensin II (Ang II) type 1 receptor (AGTR1) is a G-protein-coupled receptor (GPCR). Its natural ligand, Ang II, is an important effector molecule controlling blood pressure and volume in the cardiovascular system, and is consequently involved in various diseases such as hypertension and heart failure. Thus, the signaling mediator, AGTR1, is a significant molecular target in medicinal and therapeutic fields. Yeast is a useful organism for sensing GPCR signaling because it provides a simplified version of the complicated machinery used by mammalian cells for signal transduction. Although yeast cells can successfully transmit a signal through a variety of human GPCRs expressed in the cell membrane, there have been no reports of the functional activation of AGTR1-mediated signaling in yeast cells. In the present study, we introduced a single mutation into human AGTR1 and used yeast-human chimeric Gα to exert the functional activation of AGTR1 in yeast cells. The engineered yeast cells expressing AGTR1 mutated at Asn295 and the chimeric Gα successfully transmitted the signal inside the yeast cells in response to Ang II peptide and its analogs (Ang III and Ang IV peptides) added to the assay medium. Further, we demonstrated that the autocrine Ang II peptide and its analog, produced and secreted by the engineered yeast cells, could by themselves promote AGTR1-mediated signaling. This means that screening for agonistic peptides with various sequences from a self-produced genetic library would be a viable strategy. Thus, the constructed yeast biosensor, integrating an Asn295-mutated AGTR1 receptor, will be valuable in the design of drugs to treat AGTR1-related diseases. © 2014 Wiley Periodicals, Inc.

  8. COX-1-derived PGE2 and PGE2 type 1 receptors are vital for angiotensin II-induced formation of reactive oxygen species and Ca(2+) influx in the subfornical organ.

    PubMed

    Wang, Gang; Sarkar, Pallabi; Peterson, Jeffrey R; Anrather, Josef; Pierce, Joseph P; Moore, Jamie M; Feng, Ji; Zhou, Ping; Milner, Teresa A; Pickel, Virginia M; Iadecola, Costantino; Davisson, Robin L

    2013-11-15

    Regulation of blood pressure by angiotensin II (ANG II) is a process that involves the reactive oxygen species (ROS) and calcium. We have shown that ANG-II type 1 receptor (AT1R) and prostaglandin E2 (PGE2) type 1 receptors (EP1R) are required in the subfornical organ (SFO) for ROS-mediated hypertension induced by slow-pressor ANG-II infusion. However, the signaling pathway associated with this process remains unclear. We sought to determine mechanisms underlying the ANG II-induced ROS and calcium influx in mouse SFO cells. Ultrastructural studies showed that cyclooxygenase 1 (COX-1) codistributes with AT1R in the SFO, indicating spatial proximity. Functional studies using SFO cells revealed that ANG II potentiated PGE2 release, an effect dependent on AT1R, phospholipase A2 (PLA2) and COX-1. Furthermore, both ANG II and PGE2 increased ROS formation. While the increase in ROS initiated by ANG II, but not PGE2, required the activation of the AT1R/PLA2/COX-1 pathway, both ANG II and PGE2 were dependent on EP1R and Nox2 as downstream effectors. Finally, ANG II potentiated voltage-gated L-type Ca(2+) currents in SFO neurons via the same signaling pathway required for PGE2 production. Blockade of EP1R and Nox2-derived ROS inhibited ANG II and PGE2-mediated Ca(2+) currents. We propose a mechanism whereby ANG II increases COX-1-derived PGE2 through the AT1R/PLA2 pathway, which promotes ROS production by EP1R/Nox2 signaling in the SFO. ANG II-induced ROS are coupled with Ca(2+) influx in SFO neurons, which may influence SFO-mediated sympathoexcitation. Our findings provide the first evidence of a spatial and functional framework that underlies ANG-II signaling in the SFO and reveal novel targets for antihypertensive therapies.

  9. COX-1-derived PGE2 and PGE2 type 1 receptors are vital for angiotensin II-induced formation of reactive oxygen species and Ca2+ influx in the subfornical organ

    PubMed Central

    Sarkar, Pallabi; Peterson, Jeffrey R.; Anrather, Josef; Pierce, Joseph P.; Moore, Jamie M.; Feng, Ji; Zhou, Ping; Milner, Teresa A.; Pickel, Virginia M.; Iadecola, Costantino; Davisson, Robin L.

    2013-01-01

    Regulation of blood pressure by angiotensin II (ANG II) is a process that involves the reactive oxygen species (ROS) and calcium. We have shown that ANG-II type 1 receptor (AT1R) and prostaglandin E2 (PGE2) type 1 receptors (EP1R) are required in the subfornical organ (SFO) for ROS-mediated hypertension induced by slow-pressor ANG-II infusion. However, the signaling pathway associated with this process remains unclear. We sought to determine mechanisms underlying the ANG II-induced ROS and calcium influx in mouse SFO cells. Ultrastructural studies showed that cyclooxygenase 1 (COX-1) codistributes with AT1R in the SFO, indicating spatial proximity. Functional studies using SFO cells revealed that ANG II potentiated PGE2 release, an effect dependent on AT1R, phospholipase A2 (PLA2) and COX-1. Furthermore, both ANG II and PGE2 increased ROS formation. While the increase in ROS initiated by ANG II, but not PGE2, required the activation of the AT1R/PLA2/COX-1 pathway, both ANG II and PGE2 were dependent on EP1R and Nox2 as downstream effectors. Finally, ANG II potentiated voltage-gated L-type Ca2+ currents in SFO neurons via the same signaling pathway required for PGE2 production. Blockade of EP1R and Nox2-derived ROS inhibited ANG II and PGE2-mediated Ca2+ currents. We propose a mechanism whereby ANG II increases COX-1-derived PGE2 through the AT1R/PLA2 pathway, which promotes ROS production by EP1R/Nox2 signaling in the SFO. ANG II-induced ROS are coupled with Ca2+ influx in SFO neurons, which may influence SFO-mediated sympathoexcitation. Our findings provide the first evidence of a spatial and functional framework that underlies ANG-II signaling in the SFO and reveal novel targets for antihypertensive therapies. PMID:24014678

  10. Angiotensin II type-1 receptor (AT1R) regulates expansion, differentiation, and functional capacity of antigen-specific CD8+ T cells

    PubMed Central

    Silva-Filho, João Luiz; Caruso-Neves, Celso; Pinheiro, Ana Acacia Sá

    2016-01-01

    Angiotensin II (Ang II) and its receptor AT1 (AT1R), an important effector axis of renin-angiotensin system (RAS), have been demonstrated to regulate T-cell responses. However, these studies characterized Ang II and AT1R effects using pharmacological tools, which do not target only Ang II/AT1R axis. The specific role of AT1R expressed by antigen-specific CD8+ T cells is unknown. Then we immunized transgenic mice expressing a T-cell receptor specific for SIINFEKL epitope (OT-I mice) with sporozoites of the rodent malaria parasite Plasmodium berghei expressing the cytotoxic epitope SIINFEKL. Early priming events after immunization were not affected but the expansion and contraction of AT1R-deficient (AT1R−/−) OT-I cells was decreased. Moreover, they seemed more activated, express higher levels of CTLA-4, PD-1, LAG-3, and have decreased functional capacity during the effector phase. Memory AT1R−/− OT-I cells exhibited higher IL-7Rα expression, activation, and exhaustion phenotypes but less cytotoxic capacity. Importantly, AT1R−/− OT-I cells show better control of blood parasitemia burden and ameliorate mice survival during lethal disease induced by blood-stage malaria. Our study reveals that AT1R in antigen-specific CD8+ T cells regulates expansion, differentiation, and function during effector and memory phases of the response against Plasmodium, which could apply to different infectious agents. PMID:27782175

  11. Differential expression of angiotensin II type 1 and type 2 receptors at the maternal-fetal interface: potential roles in early placental development.

    PubMed

    Tower, C L; Lui, S; Charlesworth, N R; Smith, S D; Aplin, J D; Jones, R L

    2010-12-01

    Angiotensin II (Ang II) is locally generated in the placenta and regulates syncytial transport, vascular contractility and trophoblast invasion. It acts through two receptor subtypes, AGTR1 and AGTR2 (AT1 and AT2), which typically mediate antagonising actions. The objectives of this study are to characterise the cellular distribution of AGTR1 and AGTR2 at the maternal-fetal interface and explore the effects on cytotrophoblast turnover. Low levels of AGTR2 mRNA were detected in first trimester placental homogenates using real-time PCR. Immunohistochemistry using polyclonal antibodies against AGTR1 and AGTR2 detected the receptors in first trimester placenta, decidua basalis and villous tip outgrowths in culture. Serial staining with cytokeratin-7 was used to identify extravillous trophoblasts (EVTs). AGTR1 was found in the syncytiotrophoblast microvillous membrane, in a subpopulation of villous cytotrophoblasts, and in Hofbauer cells. AGTR1 was strongly upregulated in cytotrophoblasts in cell columns and villous tip outgrowths, but was absent in interstitial and endovascular EVTs within the decidua. AGTR2 immunostaining was present in Hofbauer cells and villous cytotrophoblasts, but was absent from syncytiotrophoblast. Faint staining was detected in cell column cytotrophoblasts and villous outgrowths, but not in EVTs within the decidua. Both receptors were detected in placental homogenates by western blotting. Ang II significantly increased proliferation of cytotrophoblasts in both villous explants and villous tip outgrowths, but did not affect apoptosis. Blockade of AGTR1 and AGTR2 together abrogated this effect. This study shows specific expression patterns for AGTR1 and AGTR2 in distinct trophoblast populations at the maternal-fetal interface and suggests that Ang II plays a role in placental development and generation of EVTs.

  12. Role of Mas receptor antagonist (A779) on pressure diuresis and natriuresis and renal blood flow in the absence of angiotensin II receptors type 1 and 2 in female and male rats.

    PubMed

    Mansoori, A; Oryan, S; Nematbakhsh, M

    2014-10-01

    Sexual differences in blood pressure are associated with angiotensin 1-7 (Ang1-7) and its receptor and enzyme function targeting. Blockade of angiotensin II (AngII) receptors type 1 and 2 (AT1R and AT2R) inhibits some actions of Ang1-7. We described the role of Ang1-7 receptor (MasR) antagonist (A779) on kidney hemodynamics when AT1R and AT2R are blocked with losartan and PD123319. In anaesthetized male and female rats after blockade of both AT1R and AT2R, the renal perfusion pressure (RPP) was controlled in two levels of 80 and 100 mmHg via an adjustable clamp placed around the aorta above the level of the renal arteries. Then, the effects of saline vehicle and MasR blocker (A779) were tested on pressure natriuresis and diuresis, renal blood flow (RBF), and renal vascular resistance (RVR). In the absence of AT1R and AT2R; RVR, RBF/wet kidney tissue weight, and serum level of renin did not alter in both genders either MasR was blocked or not. However, urine flow rate (UF) and sodium excretion (UNaV) increased significantly at the pressure level of 100 mmHg in the presence of MasR in male (P<0.05) but not in female rats. When AT1R and AT2R were blocked, the impact of MasR is gender-related in pressure natriuresis and diuresis, and pressure natriuresis and diuresis in male rats (not female) increases in the presence of MasR.

  13. Targeting Angiotensin II Type-1 Receptor (AT1R) Inhibits the Harmful Phenotype of Plasmodium-Specific CD8+ T Cells during Blood-Stage Malaria

    PubMed Central

    Silva-Filho, João L.; Caruso-Neves, Celso; Pinheiro, Ana A. S.

    2017-01-01

    CD8+ T-cell response is critical in the pathogenesis of cerebral malaria during blood-stage. Our group and other have been shown that angiotensin II (Ang II) and its receptor AT1 (AT1R), a key effector axis of renin-angiotensin system (RAS), have immune regulatory effects on T cells. Previously, we showed that inhibition of AT1R signaling protects mice against the lethal disease induced by Plasmodium berghei ANKA infection However, most of the Ang II/AT1R actions were characterized by using only pharmacological approaches, the effects of which may not always be due to a specific receptor blockade. In addition, the mechanisms of action of the AT1R in inducing the pathogenic activity of Plasmodium-specific CD8+ T cells during blood-stage were not determined. Here, we examined how angiotensin II/AT1R axis promotes the harmful response of Plasmodium-specific CD8+ T-cell during blood-stage by using genetic and pharmacological approaches. We evaluated the response of wild-type (WT) and AT1R−/− Plasmodium-specific CD8+ T cells in mice infected with a transgenic PbA lineage expressing ovalbumin; and in parallel infected mice receiving WT Plasmodium-specific CD8+ T cells were treated with losartan (AT1R antagonist) or captopril (ACE inhibitor). Both, AT1R−/− OT-I cells and WT OT-I cells from losartan- or captopril-treated mice showed lower expansion, reduced IL-2 production and IL-2Rα expression, lower activation (lower expression of CD69, CD44 and CD160) and lower exhaustion profiles. AT1R−/− OT-I cells also exhibit lower expression of the integrin LFA-1 and the chemokine receptors CCR5 and CXCR3, known to play a key role in the development of cerebral malaria. Moreover, AT1R−/− OT-I cells produce lower amounts of IFN-γ and TNF-α and show lower degranulation upon restimulation. In conclusion, our results show the pivotal mechanisms of AT1R-induced harmful phenotype of Plasmodium-specific CD8+ T cells during blood-stage malaria. PMID:28261571

  14. Targeting Angiotensin II Type-1 Receptor (AT1R) Inhibits the Harmful Phenotype of Plasmodium-Specific CD8(+) T Cells during Blood-Stage Malaria.

    PubMed

    Silva-Filho, João L; Caruso-Neves, Celso; Pinheiro, Ana A S

    2017-01-01

    CD8(+) T-cell response is critical in the pathogenesis of cerebral malaria during blood-stage. Our group and other have been shown that angiotensin II (Ang II) and its receptor AT1 (AT1R), a key effector axis of renin-angiotensin system (RAS), have immune regulatory effects on T cells. Previously, we showed that inhibition of AT1R signaling protects mice against the lethal disease induced by Plasmodium berghei ANKA infection However, most of the Ang II/AT1R actions were characterized by using only pharmacological approaches, the effects of which may not always be due to a specific receptor blockade. In addition, the mechanisms of action of the AT1R in inducing the pathogenic activity of Plasmodium-specific CD8(+) T cells during blood-stage were not determined. Here, we examined how angiotensin II/AT1R axis promotes the harmful response of Plasmodium-specific CD8(+) T-cell during blood-stage by using genetic and pharmacological approaches. We evaluated the response of wild-type (WT) and AT1R(-/-)Plasmodium-specific CD8(+) T cells in mice infected with a transgenic PbA lineage expressing ovalbumin; and in parallel infected mice receiving WT Plasmodium-specific CD8(+) T cells were treated with losartan (AT1R antagonist) or captopril (ACE inhibitor). Both, AT1R(-/-) OT-I cells and WT OT-I cells from losartan- or captopril-treated mice showed lower expansion, reduced IL-2 production and IL-2Rα expression, lower activation (lower expression of CD69, CD44 and CD160) and lower exhaustion profiles. AT1R(-/-) OT-I cells also exhibit lower expression of the integrin LFA-1 and the chemokine receptors CCR5 and CXCR3, known to play a key role in the development of cerebral malaria. Moreover, AT1R(-/-) OT-I cells produce lower amounts of IFN-γ and TNF-α and show lower degranulation upon restimulation. In conclusion, our results show the pivotal mechanisms of AT1R-induced harmful phenotype of Plasmodium-specific CD8(+) T cells during blood-stage malaria.

  15. Angiotensin II receptor type 1 blockade decreases CTGF/CCN2-mediated damage and fibrosis in normal and dystrophic skeletal muscles

    PubMed Central

    Cabello-Verrugio, Claudio; Morales, María Gabriela; Cabrera, Daniel; Vio, Carlos P; Brandan, Enrique

    2012-01-01

    Abstract Connective tissue growth factor (CTGF/CCN-2) is mainly involved in the induction of extracellular matrix (ECM) proteins. The levels of CTGF correlate with the degree and severity of fibrosis in many tissues, including dystrophic skeletal muscle. The CTGF overexpression in tibialis anterior skeletal muscle using an adenoviral vector reproduced many of the features observed in dystrophic muscles including muscle damage and regeneration, fibrotic response and decrease in the skeletal muscle strength. The renin–angiotensin system is involved in the genesis and progression of fibrotic diseases through its main fibrotic components angiotensin-II and its transducer receptor AT-1. The use of AT-1 receptor blockers (ARB) has been shown to decrease fibrosis. In this paper, we show the effect of AT-1 receptor blockade on CTGF-dependent biological activity in skeletal muscle cells as well as the response to CTGF overexpression in normal skeletal muscle. Our results show that in myoblasts ARB decreased CTGF-mediated increase of ECM protein levels, extracellular signal regulated kinases 1/2 (ERK-1/2) phosphorylation and stress fibres formation. In tibialis anterior muscle overexpressing CTGF using an adenovirus, ARB treatment decreased CTGF-mediated increase of ECM molecules, α-SMA and ERK-1/2 phosphorylation levels. Quite remarkable, ARB was able to prevent the loss of contractile force of tibialis anterior muscles overexpressing CTGF. Finally, we show that ARB decreased the levels of fibrotic proteins, CTGF and ERK-1/2 phosphorylation augmented in a dystrophic skeletal muscle from mdx mice. We propose that ARB is a novel pharmacological tool that can be used to decrease the fibrosis induced by CTGF in skeletal muscle associated with muscular dystrophies. PMID:21645240

  16. Metabotropic glutamate receptor type 1 autoimmunity

    PubMed Central

    Lopez-Chiriboga, A. Sebastian; Komorowski, Lars; Kümpfel, Tania; Probst, Christian; Hinson, Shannon R.; Pittock, Sean J.

    2016-01-01

    Objective: To describe retrospectively the clinical associations of immunoglobulin G (IgG) targeting metabotropic glutamate receptor 1 (mGluR1-IgG). Methods: Specimens of 9 patients evaluated on a service basis in the Mayo Clinic Neuroimmunology Laboratory by tissue-based immunofluorescence assay (IFA) yielded a robust, synaptic immunostaining pattern consistent with mGluR1-IgG (serum, 9; CSF, 2 available). Transfected HEK293 cell-based assay (CBA) confirmed mGluR1 specificity in all 11 specimens. A further 2 patients were detected in Germany primarily by CBA. Results: The median symptom onset age for the 11 patients was 58 years (range 33–81 years); 6 were male. All 9 Mayo Clinic patients had subacute onset of cerebellar ataxia, 4 had dysgeusia, 1 had psychiatric symptoms, and 1 had cognitive impairment. All were evaluated for malignancy, but only 1 was affected (cutaneous T-cell lymphoma). One developed ataxia post–herpes zoster infection. Head MRIs were generally atrophic or normal-appearing, and CSF was inflammatory in just 1 of 5 tested, though mGluR1-IgG was detected in both specimens submitted. Five patients improved (attributable to immunotherapy in 4, spontaneously in 1), 3 stabilized (attributable to immunotherapy in 2, cancer therapy in 1), and 1 progressively declined (untreated). The 2 German patients had ataxia, but fulfilled multiple sclerosis diagnostic criteria (1 relapsing-remitting, 1 progressive). However, both had histories of hematologic malignancy (acute lymphocytic leukemia and mantle cell lymphoma), and had mGluR1-IgG detected in serum by CBA (weakly positive on tissue-based IFA). Conclusions: mGluR1 autoimmunity represents a treatable form of cerebellar ataxia. Dysgeusia may be a diagnostic clue. Paraneoplastic, parainfectious, or idiopathic causes may occur. PMID:26888994

  17. Overexpression of angiotensin II type 1 receptor in breast cancer cells induces epithelial-mesenchymal transition and promotes tumor growth and angiogenesis.

    PubMed

    Oh, Eunhye; Kim, Ji Young; Cho, Youngkwan; An, Hyunsook; Lee, Nahyun; Jo, Hunho; Ban, Changill; Seo, Jae Hong

    2016-06-01

    The angiotensin II type I receptor (AGTR1) has been implicated in diverse aspects of human disease, from the regulation of blood pressure and cardiovascular homeostasis to cancer progression. We sought to investigate the role of AGTR1 in cell proliferation, epithelial-mesenchymal transition (EMT), migration, invasion, angiogenesis and tumor growth in the breast cancer cell line MCF7. Stable overexpression of AGTR1 was associated with accelerated cell proliferation, concomitant with increased expression of survival factors including poly(ADP-ribose) polymerase (PARP) and X-linked inhibitor of apoptosis (XIAP), as well as extracellular signal-regulated kinase (ERK) activation. AGTR1-overexpressing MCF7 cells were more aggressive than their parent line, with significantly increased activity in migration and invasion assays. These observations were associated with changes in EMT markers, including reduced E-cadherin expression and increased p-Smad3, Smad4 and Snail levels. Treatment with the AGTR1 antagonist losartan attenuated these effects. AGTR1 overexpression also accelerated tumor growth and increased Ki-67 expression in a xenograft model. This was associated with increased tumor angiogenesis, as evidenced by a significant increase in microvessels in the intratumoral and peritumoral areas, and enhanced tumor invasion, with the latter response associated with increased EMT marker expression and matrix metallopeptidase 9 (MMP-9) upregulation. In vivo administration of losartan significantly reduced both tumor growth and angiogenesis. Our findings suggest that AGTR1 plays a significant role in tumor aggressiveness, and its inhibition may have therapeutic implications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Blood pressure, magnesium and other mineral balance in two rat models of salt-sensitive, induced hypertension: effects of a non-peptide angiotensin II receptor type 1 antagonist.

    PubMed

    Rondón, Lusliany Josefina; Marcano, Eunice; Rodríguez, Fátima; del Castillo, Jesús Rafael

    2014-01-01

    The renin-angiotensin system is critically involved in regulating arterial blood pressure (BP). Inappropriate angiotensin type-1 receptor activation by angiotensin-II (Ang-II) is related to increased arterial BP. Mg has a role in BP; it can affect cardiac electrical activity, myocardial contractility, and vascular tone. To evaluate the relationship between high BP induced by a high sodium (Na) diet and Mg, and other mineral balances, two experimental rat models of salt-sensitive, induced-hypertension were used: Ang-II infused and Dahl salt-sensitive (SS) rats. We found that: 1) Ang-II infusion progressively increased BP, which was accompanied by hypomagnesuria and signs of secondary hyperaldosteronism; 2) an additive effect between Ang-II and a high Na load may have an effect on strontium (Sr), zinc (Zn) and copper (Cu) balances; 3) Dahl SS rats fed a high Na diet had a slow pressor response, accompanied by altered Mg, Na, potassium (K), and phosphate (P) balances; and 4) losartan prevented BP increases induced by Ang II-NaCl, but did not modify mineral balances. In Dahl SS rats, losartan attenuated high BP and ameliorated magnesemia, Na and K balances. Mg metabolism maybe considered a possible defect in this strain of rat that may contribute to hypertension.

  19. Hypoxia-inducible factor-1α in vascular smooth muscle regulates blood pressure homeostasis through a peroxisome proliferator-activated receptor-γ-angiotensin II receptor type 1 axis.

    PubMed

    Huang, Yan; Di Lorenzo, Annarita; Jiang, Weidong; Cantalupo, Anna; Sessa, William C; Giordano, Frank J

    2013-09-01

    Hypertension is a major worldwide health issue for which only a small proportion of cases have a known mechanistic pathogenesis. Of the defined causes, none have been directly linked to heightened vasoconstrictor responsiveness, despite the fact that vasomotor tone in resistance vessels is a fundamental determinant of blood pressure. Here, we reported a previously undescribed role for smooth muscle hypoxia-inducible factor-1α (HIF-1α) in controlling blood pressure homeostasis. The lack of HIF-1α in smooth muscle caused hypertension in vivo and hyperresponsiveness of resistance vessels to angiotensin II stimulation ex vivo. These data correlated with an increased expression of angiotensin II receptor type I in the vasculature. Specifically, we show that HIF-1α, through peroxisome proliferator-activated receptor-γ, reciprocally defined angiotensin II receptor type I levels in the vessel wall. Indeed, pharmacological blockade of angiotensin II receptor type I by telmisartan abolished the hypertensive phenotype in smooth muscle cell-HIF-1α-KO mice. These data revealed a determinant role of a smooth muscle HIF-1α/peroxisome proliferator-activated receptor-γ/angiotensin II receptor type I axis in controlling vasomotor responsiveness and highlighted an important pathway, the alterations of which may be critical in a variety of hypertensive-based clinical settings.

  20. Dlitiazem inhibits the oxidative stress induced by angiotensin II through growth hormone secretagogue receptor type 1a in human umbilicus vein endothelial cells.

    PubMed

    Zhou, Lingyun; Yang, Meng; Zuo, Shanru; Guan, Xiaofeng; Wang, Jianglin; Chen, Qingjie; Zuo, Xiaocong; Jia, Sujie; Guo, Ren

    2017-02-16

    Diltiazem has been used for post-transplant hypertension, but the mechanism underlying its protective effect of endothelial cells against angiotensin II (Ang II) - induced impairment remains unclear. Human umbilicus vein endothelial cells (HUVECs) were cultured and divided into seven groups: control, Ang II (10(-6)M), diltiazem (10(-6)M), [D-Lys3]-GHRP-6(25μM), diltiazem (10(-6)M)+Ang II (10(-6)M), losartan (10(-6)M)+Ang II (10(-6)M), [D-Lys3]-GHRP-6 (25μM) + Dil(10(-6)M)+Ang II (10(-6)M) groups. Nitric oxide (NO) production, intracellular reactive oxygen species (ROS) levels, protein and mRNA expressions of endothelial nitric oxide synthase (eNOS) and p47 phox subunit of NADPH were evaluated. Results indicated that pre- treatment with diltiazem significantly decreased the intracellular ROS levels and increased NO production. Treatment with 10(-6)M Ang II for 24h induced a significant decrease in the mRNA and protein levels of eNOS, which was significantly increased by the pre-incubated with diltiazem (10(-6)M). Treatment with 10(-6)M Ang II for 24h induced a significant increase in the mRNA and protein levels of p47 phox subunit of NADHP oxidase, which was significantly decreased by the pre-incubated with diltiazem. However, all of these protective roles of diltiazem were attenuated by pre-incubation of [D-Lys3]-GHRP-6. The results reveal that diltiazem inhibits the Ang II - induced oxidative stress in HUVECs, which may be partly mediated by GHSR1a.

  1. Sex differences in NMDA GluN1 plasticity in rostral ventrolateral medulla neurons containing corticotropin-releasing factor type 1 receptor following slow-pressor angiotensin II hypertension.

    PubMed

    Van Kempen, T A; Dodos, M; Woods, C; Marques-Lopes, J; Justice, N J; Iadecola, C; Pickel, V M; Glass, M J; Milner, T A

    2015-10-29

    There are profound, yet incompletely understood, sex differences in the neurogenic regulation of blood pressure. Both corticotropin signaling and glutamate receptor plasticity, which differ between males and females, are known to play important roles in the neural regulation of blood pressure. However, the relationship between hypertension and glutamate plasticity in corticotropin-releasing factor (CRF)-receptive neurons in brain cardiovascular regulatory areas, including the rostral ventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), is not understood. In the present study, we used dual-label immuno-electron microscopy to analyze sex differences in slow-pressor angiotensin II (AngII) hypertension with respect to the subcellular distribution of the obligatory NMDA glutamate receptor subunit 1 (GluN1) subunit of the N-methyl-D-aspartate receptor (NMDAR) in the RVLM and PVN. Studies were conducted in mice expressing the enhanced green fluorescence protein (EGFP) under the control of the CRF type 1 receptor (CRF1) promoter (i.e., CRF1-EGFP reporter mice). By light microscopy, GluN1-immunoreactivity (ir) was found in CRF1-EGFP neurons of the RVLM and PVN. Moreover, in both regions tyrosine hydroxylase (TH) was found in CRF1-EGFP neurons. In response to AngII, male mice showed an elevation in blood pressure that was associated with an increase in the proportion of GluN1 on presumably functional areas of the plasma membrane (PM) in CRF1-EGFP dendritic profiles in the RVLM. In female mice, AngII was neither associated with an increase in blood pressure nor an increase in PM GluN1 in the RVLM. Unlike the RVLM, AngII-mediated hypertension had no effect on GluN1 localization in CRF1-EGFP dendrites in the PVN of either male or female mice. These studies provide an anatomical mechanism for sex-differences in the convergent modulation of RVLM catecholaminergic neurons by CRF and glutamate. Moreover, these results suggest that sexual dimorphism in

  2. Cannabinoid type 1 receptor: another arrow in the adipocytes' bow.

    PubMed

    Bellocchio, L; Cervino, C; Vicennati, V; Pasquali, R; Pagotto, U

    2008-05-01

    The endocannabinoid system has recently emerged as an important modulator of several functions of adipose tissue, including cell proliferation, differentiation and secretion. Here, we will review the effects of cannabinoid type 1 (CB(1)) receptor activation/blockade in adipocytes by summarising the data in the literature since the discovery of the presence of this receptor in adipose tissue. We will also discuss our original data obtained in mouse 3T3-L1 adipocyte cells using WIN55 212, a CB(1)/CB(2) receptor agonist and SR141716 (rimonabant), a specific CB(1) receptor antagonist, respectively, in different experimental settings.

  3. Combined blockade of angiotensin II type 1 receptor and activation of peroxisome proliferator-activated receptor-γ by telmisartan effectively inhibits vascularization and growth of murine endometriosis-like lesions.

    PubMed

    Nenicu, A; Körbel, C; Gu, Y; Menger, M D; Laschke, M W

    2014-05-01

    Is telmisartan effective in the treatment of endometriosis? Combined blockade of angiotensin II type 1 receptor (AT1R) and activation of peroxisome proliferator-activated receptor (PPAR)-γ by telmisartan inhibits vascularization and growth of murine endometriosis-like lesions. AT1R and PPAR-γ are involved in the regulation of inflammation, proliferation and angiogenesis. These processes are also crucial for the pathogenesis of endometriosis and both receptors are expressed in endometrial tissue. Telmisartan is a partial agonist of PPAR-γ, which additionally blocks AT1R. This was a randomized study in the mouse dorsal skinfold chamber and peritoneal model of endometriosis. Endometriosis-like lesions were induced in dorsal skinfold chambers of 21 female C57BL/6 mice, and in the peritoneal cavity of 15 additional animals, which were daily treated with an i.p. injection of pioglitazone (10 mg/kg, n = 12), telmisartan (10 mg/kg, n = 12) or vehicle (5% dimethyl sulfoxide (DMSO), n = 12) throughout an observation period of 14 and 28 days, respectively. The anti-angiogenic actions of pioglitazone, a full PPAR-γ agonist, and telmisartan were firstly assessed in vitro by an aortic ring assay. Endometriosis-like lesions were induced in the dorsal skinfold chamber or peritoneal cavity and the effects of telmisartan and pioglitazone on their vascularization, immune cell content and growth were studied by intravital fluorescence microscopy, high-resolution ultrasound imaging as well as histological, immunohistochemical and immunofluorescent analyses. Additional quantitative real-time polymerase chain reaction (qRT-PCR) arrays served for gene expression profiling of the lesions. To limit the role of chance, the experiments were conducted under standardized laboratory conditions with appropriate vehicle-treated controls. Statistical significance was accepted for a value of P < 0.05. Telmisartan inhibited vascular sprout formation of aortic rings more effectively than

  4. DPP-4 inhibition with alogliptin on top of angiotensin II type 1 receptor blockade ameliorates albuminuria via up-regulation of SDF-1α in type 2 diabetic patients with incipient nephropathy.

    PubMed

    Fujita, Hiroki; Taniai, Hisanori; Murayama, Hiroko; Ohshiro, Haruyo; Hayashi, Hikaru; Sato, Seiko; Kikuchi, Nyuko; Komatsu, Taiga; Komatsu, Koga; Komatsu, Kanji; Narita, Takuma; Yamada, Yuichiro

    2014-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitor is a new class of anti-diabetic drug which exerts its glucose-lowering action by suppressing the degradation of a gut incretin hormone glucagon-like peptide-1 (GLP-1). To elucidate whether treatment with stronger DPP-4 inhibitor on top of angiotensin II type 1 receptor blocker (ARB) provides greater renal protective effects, we performed a crossover study with two DPP-4 inhibitors, sitagliptin and alogliptin, in twelve type 2 diabetic patients with incipient nephropathy taking ARBs. This study consisted of three treatment periods: sitagliptin 50 mg/day for 4 weeks (first period), alogliptin 25 mg/day for 4 weeks (second period), and sitagliptin 50 mg/day for 4 weeks (third period). Significant changes in body mass index, blood pressure, serum lipids, serum creatinine, estimated glomerular filtration rate, and HbA1c were not observed among the three treatment periods. Reduced urinary levels of albumin and an oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG), increased urinary cAMP levels, and elevated plasma levels of stromal cell-derived factor-1α (SDF-1α) which is a physiological substrate of DPP-4 were observed after the switch from sitagliptin to a stronger DPP-4 inhibitor alogliptin. Given a large body of evidence indicating anti-oxidative action of cAMP and up-regulation of cellular cAMP production by SDF-1α, the present results suggest that more powerful DPP-4 inhibition on top of angiotensin II type 1 receptor blockade would offer additional protection against early-stage diabetic nephropathy beyond that attributed to glycemic control, via reduction of renal oxidative stress by SDF-1α-cAMP pathway activation.

  5. Angiotensin II–Induced MMP-2 Activity and MMP-14 and Basigin Protein Expression Are Mediated via the Angiotensin II Receptor Type 1–Mitogen-Activated Protein Kinase 1 Pathway in Retinal Pigment Epithelium

    PubMed Central

    Pons, Marianne; Cousins, Scott W.; Alcazar, Oscar; Striker, Gary E.; Marin-Castaño, Maria E.

    2011-01-01

    Accumulation of various lipid-rich extracellular matrix (ECM) deposits under the retinal pigment epithelium (RPE) has been observed in eyes with age-related macular degeneration (AMD). RPE-derived matrix metalloproteinase (MMP)-2, MMP-14, and basigin (BSG) are major enzymes involved in the maintenance of ECM turnover. Hypertension (HTN) is a systemic risk factor for AMD. It has previously been reported that angiotensin II (Ang II), one of the most important hormones associated with HTN, increases MMP-2 activity and its key regulator, MMP-14, in RPE, inducing breakdown of the RPE basement membrane, which may lead to progression of sub-RPE deposits. Ang II exerts most of its actions by activating the mitogen-activated protein kinase (MAPK) signaling pathway. Herein is explored the MAPK signaling pathway as a potential key intracellular modulator of Ang II–induced increase in MMP-2 activity and MMP-14 and BSG protein expression. It was observed that Ang II stimulates phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAPK in RPE cells and ERK/p38 and Jun N-terminal kinase (JNK) in mice. These effects were mediated by Ang II type 1 receptors. Blockade of ERK or p38 MAPK abrogated the increase in MMP-2 activity and MMP-14 and BSG proteins in ARPE-19 cells. A better understanding of the molecular events by which Ang II induces ECM dysregulation is of critical importance to further define its contribution to the progression of sub-RPE deposits in AMD patients with HTN. PMID:21641389

  6. The blocking of angiotensin II type 1 receptor and RhoA/Rho kinase activity in hypertensive patients: Effect of olmesartan medoxomil and implication with cardiovascular-renal remodeling.

    PubMed

    Ravarotto, Verdiana; Pagnin, Elisa; Maiolino, Giuseppe; Fragasso, Antonio; Carraro, Gianni; Rossi, Barbara; Calò, Lorenzo A

    2015-12-01

    The pathophysiological role of oxidative stress (OxSt) in hypertension and target organ damage is recognized. Angiotensin II (Ang II) induces OxSt via NAD(P)H oxidase activation and production of proinflammatory cytokines/growth factors leading to cardiovascular-renal remodeling. Ang II stimulates the RhoA/Rho kinase (ROCK) pathway, which is deeply involved in the development of cardiovascular-renal remodeling via OxSt induction. Olmesartan, an Ang II type 1 receptor blocker, possesses antioxidant and activating nitric oxide system-related effects, which we have shown in terms of p22(phox) reduction, heme oxygenase-1 and calcitonin gene-related peptide increase. This study evaluates in 15 untreated hypertensive patients the effect of olmesartan treatment on p63RhoGEF, key in Ang II-induced ROCK activation, and MYPT-1 phosphorylation, a marker of ROCK activity. The p63RhoGEF protein level and MYPT-1 phosphorylation (Western blot) were evaluated at baseline, and after three and six months of olmesartan treatment. Olmesartan normalized systolic and diastolic BP (p < 0.001), reduced p63RhoGEF level: 1.3±0.25 d.u. (baseline) vs 1.0±0.29 (three months), p < 0.0001 vs 1.0±0.22, (six months), p < 0.0001 and MYPT-1 phosphorylation: 1.2 ±0.14 (baseline) vs 0.9±0.19 (three months), p = 0.008, vs 0.8±0.16 (six months), p = 0.001. These data added to our previous results further provide a mechanistic rationale for olmesartan's antioxidant/anti-inflammatory potential translation, in the long term, toward anti-atherosclerotic/anti-remodeling effects reported by clinical trials. © The Author(s) 2015.

  7. The angiotensin II type 1 receptor antagonist telmisartan inhibits cell proliferation and tumor growth of esophageal adenocarcinoma via the AMPKα/mTOR pathway in vitro and in vivo.

    PubMed

    Fujihara, Shintaro; Morishita, Asahiro; Ogawa, Kana; Tadokoro, Tomoko; Chiyo, Taiga; Kato, Kiyohito; Kobara, Hideki; Mori, Hirohito; Iwama, Hisakazu; Masaki, Tsutomu

    2017-01-31

    Telmisartan, a widely used antihypertensive drug, is an angiotensin II type 1 (AT1) receptor blocker (ARB). This drug inhibits cancer cell proliferation, but the underlying mechanisms in various cancers, including esophageal cancer, remain unknown. The aim of the present study was to evaluate the effects of telmisartan on human esophageal cancer cell proliferation in vitro and in vivo. We assessed the effects of telmisartan on human esophageal adenocarcinoma (EAC) cells using the cell lines OE19, OE33, and SKGT-4. Telmisartan inhibited the proliferation of these three cell lines via blockade of the G0 to G1 cell cycle transition. This blockade was accompanied by a strong decrease in cyclin D1, cyclin E, and other cell cycle-related proteins. Notably, the AMP-activated protein kinase (AMPK) pathway, a fuel sensor signaling pathway, was enhanced by telmisartan. Compound C, which inhibits the two catalytic subunits of AMPK, enhanced the expression of cyclin E, leading to G0/G1 arrest in human EAC cells. In addition, telmisartan reduced the phosphorylation of epidermal growth factor receptor (p-EGFR) and ERBB2 in vitro. In our in vivo study, intraperitoneal injection of telmisartan led to a 73.2% reduction in tumor growth in mice bearing xenografts derived from OE19 cells. Furthermore, miRNA expression was significantly altered by telmisartan in vitro and in vivo. In conclusion, telmisartan suppressed human EAC cell proliferation and tumor growth by inducing cell cycle arrest via the AMPK/mTOR pathway.

  8. Discoidin domain receptor 2 inhibits fibrillogenesis of collagen type 1.

    PubMed

    Mihai, Cosmin; Iscru, Daniel F; Druhan, Lawrence J; Elton, Terry S; Agarwal, Gunjan

    2006-09-01

    Discoidin domain receptors (DDR1 and DDR2) are widely expressed cell-surface receptors, which bind to and are activated by collagens, including collagen type 1. Activation of DDRs and the resulting downstream signaling is known to regulate the extracellular matrix. However, little is known about how DDRs interact with collagen and its direct impact on collagen regulation. Here, we have established that by binding to collagen, the extracellular domain (ECD) of DDR2 inhibits collagen fibrillogenesis and alters the morphology of collagen type 1 fibers. Our in vitro assays utilized DDR2-Fc fusion proteins, which contain only the ECD of DDR2. Using surface plasmon resonance, we confirmed that further oligomerization of DDR2-Fc (by means of anti-Fc antibody) greatly enhances its binding to immobilized collagen type 1. Collagen turbidity measurements and biochemical assays indicated that DDR2 delays the formation of collagen fibrils. Atomic force microscopy of soluble collagen revealed that a predominately monomeric state of collagen was present with DDR2, while control solutions had an abundance of polymeric collagen. Transmission electron microscopy of collagen fibers, showed that the native periodic banded structure of collagen fibers was weakened and nearly absent in the presence of DDR2. Further, using a cell-based assay we demonstrate that overexpression of full length DDR2 inhibits fibrillogenesis of collagen type 1. Our results demonstrate a novel and important functional role of the DDR2 ECD that may contribute to collagen regulation via modulation of fibrillogenesis.

  9. Azilsartan, an angiotensin II type 1 receptor blocker, restores endothelial function by reducing vascular inflammation and by increasing the phosphorylation ratio Ser1177/Thr497 of endothelial nitric oxide synthase in diabetic mice

    PubMed Central

    2014-01-01

    Background Azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB), has a higher affinity for and slower dissociation from AT1 receptors and shows stronger inverse agonism compared to other ARBs. Possible benefits of azilsartan in diabetic vascular dysfunction have not been established. Methods We measured vascular reactivity of aortic rings in male KKAy diabetic mice treated with vehicle, 0.005% azilsartan, or 0.005% candesartan cilexetil for 3 weeks. Expression of markers of inflammation and oxidative stress was measured using semiquantitative RT-PCR in the vascular wall, perivascular fat, and skeletal muscle. Phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and Thr495 was measured using Western blotting, and the ratio of phosphorylation at Ser1177 to phosphorylation at Thr495 was used as a putative indicator of vascular eNOS activity. Results (1) Vascular endothelium–dependent relaxation with acetylcholine in KKAy mice was improved by azilsartan treatment compared to candesartan cilexetil; (2) the ratio of Ser1177/Thr495 phosphorylation of eNOS was impaired in KKAy and was effectively restored by azilsartan; (3) anomalies in the expression levels of monocyte chemotactic protein 1 (MCP1), F4/80, NAD(P)H oxidase (Nox) 2, and Nox4 of the aortic wall and in the expression of TNFα in the perivascular fat were strongly attenuated by azilsartan compared to candesartan cilexetil. Conclusions These results provide evidence that azilsartan prevents endothelial dysfunction in diabetic mice, more potently than does candesartan cilexetil. Azilsartan’s higher affinity for and slower dissociation from AT1 receptors may underlie its efficacy in diabetic vascular dysfunction via a dual effect on uncoupled eNOS and on Nox. PMID:24485356

  10. Azilsartan, an angiotensin II type 1 receptor blocker, restores endothelial function by reducing vascular inflammation and by increasing the phosphorylation ratio Ser(1177)/Thr(497) of endothelial nitric oxide synthase in diabetic mice.

    PubMed

    Matsumoto, Sachiko; Shimabukuro, Michio; Fukuda, Daiju; Soeki, Takeshi; Yamakawa, Ken; Masuzaki, Hiroaki; Sata, Masataka

    2014-01-31

    Azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB), has a higher affinity for and slower dissociation from AT1 receptors and shows stronger inverse agonism compared to other ARBs. Possible benefits of azilsartan in diabetic vascular dysfunction have not been established. We measured vascular reactivity of aortic rings in male KKAy diabetic mice treated with vehicle, 0.005% azilsartan, or 0.005% candesartan cilexetil for 3 weeks. Expression of markers of inflammation and oxidative stress was measured using semiquantitative RT-PCR in the vascular wall, perivascular fat, and skeletal muscle. Phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and Thr495 was measured using Western blotting, and the ratio of phosphorylation at Ser1177 to phosphorylation at Thr495 was used as a putative indicator of vascular eNOS activity. (1) Vascular endothelium-dependent relaxation with acetylcholine in KKAy mice was improved by azilsartan treatment compared to candesartan cilexetil; (2) the ratio of Ser1177/Thr495 phosphorylation of eNOS was impaired in KKAy and was effectively restored by azilsartan; (3) anomalies in the expression levels of monocyte chemotactic protein 1 (MCP1), F4/80, NAD(P)H oxidase (Nox) 2, and Nox4 of the aortic wall and in the expression of TNFα in the perivascular fat were strongly attenuated by azilsartan compared to candesartan cilexetil. These results provide evidence that azilsartan prevents endothelial dysfunction in diabetic mice, more potently than does candesartan cilexetil. Azilsartan's higher affinity for and slower dissociation from AT1 receptors may underlie its efficacy in diabetic vascular dysfunction via a dual effect on uncoupled eNOS and on Nox.

  11. 20-Hydroxyeicosatetraenoic Acid (HETE)-dependent Hypertension in Human Cytochrome P450 (CYP) 4A11 Transgenic Mice: NORMALIZATION OF BLOOD PRESSURE BY SODIUM RESTRICTION, HYDROCHLOROTHIAZIDE, OR BLOCKADE OF THE TYPE 1 ANGIOTENSIN II RECEPTOR.

    PubMed

    Savas, Üzen; Wei, Shouzou; Hsu, Mei-Hui; Falck, John R; Guengerich, F Peter; Capdevila, Jorge H; Johnson, Eric F

    2016-08-05

    Male and female homozygous 129/Sv mice carrying four copies of the human cytochrome P450 4A11 gene (CYP4A11) under control of its native promoter (B-129/Sv-4A11(+/+)) develop hypertension (142 ± 8 versus 113 ± 7 mm Hg systolic blood pressure (BP)), and exhibit increased 20-hydroxyeicosatetraenoic acid (20-HETE) in kidney and urine. The hypertension is reversible by a low-sodium diet and by the CYP4A inhibitor HET0016. B-129/Sv-4A11(+/+) mice display an 18% increase of plasma potassium (p < 0.02), but plasma aldosterone, angiotensin II (ANGII), and renin activities are unchanged. This phenotype resembles human genetic disorders with elevated activity of the sodium chloride co-transporter (NCC) and, accordingly, NCC abundance is increased by 50% in transgenic mice, and NCC levels are normalized by HET0016. ANGII is known to increase NCC abundance, and renal mRNA levels of its precursor angiotensinogen are increased 2-fold in B-129/Sv-4A11(+/+), and blockade of the ANGII receptor type 1 with losartan normalizes BP. A pro-hypertensive role for 20-HETE was implicated by normalization of BP and reversal of renal angiotensin mRNA increases by administration of the 20-HETE antagonists 2-((6Z,15Z)-20-hydroxyicosa-6,15-dienamido)acetate or (S)-2-((6Z,15Z)-20-hydroxyicosa-6,15-dienamido)succinate. SGK1 expression is also increased in B-129/Sv-4A11(+/+) mice and paralleled increases seen for NCC. Losartan, HET0016, and 20-HETE antagonists each normalized SGK1 mRNA expression. These results point to a potential 20-HETE dependence of intrarenal angiotensinogen production and ANGII receptor type 1 activation that are associated with increases in NCC and SGK1 and identify elevated P450 4A11 activity and 20-HETE as potential risk factors for salt-sensitive human hypertension by perturbation of the renal renin-angiotensin axis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Association of angiotensin I converting enzyme, angiotensin II type 1 receptor and angiotensin I converting enzyme 2 gene polymorphisms with the dyslipidemia in type 2 diabetic patients of Chinese Han origin.

    PubMed

    Xu, Y; Bao, Q; He, B; Pan, Y; Zhang, R; Mao, X; Tang, Z; Qu, L; Zhu, C; Tian, F; Wang, S

    2012-04-01

    To investigate whether the genetic polymorphisms in the angiotensin I converting enzyme (ACE) (insertion/ deletion, or I/D), angiotensin II type 1 receptor (AT1R) (rs5186), and ACE2 (rs2285666) could be associated with dyslipidemia in Type 2 diabetic (T2D) patients of Chinese Han origin. The above 3 polymorphisms were genotyped in a total of 282 patients with T2D and dyslipidemia (Group A), 182 patients with T2D but without dyslipidemia (Group B), and 324 healthy controls. The association between a certain polymorphism and each group was assessed by an odds ratio (OR). The D allele of the ACE (I/D) was significantly associated with the risk of T2D accompanying dyslipidemia between group A and controls [OR=1.37, 95% confidence interval (CI)=1.08-1.74; p=0.010], and significant association of the D allele with dyslipidemia was also observed in diabetic patients (OR=1.88, 95% CI=1.40-2.54; p<0.001). Furthermore, the ID genotype had a decreased risk of developing T2D without dyslipidemia as compared with controls (OR=0.52, 95% CI=0.32-0.82; p=0.0060). The distributions of the AT1R (rs5186) and ACE2 (rs2285666) genotypes and alleles did not differ between T2D patients with or without dyslipidemia and the controls. This study demonstrates that the ACE (I/D) polymorphism is associated with T2D, regardless of the absence or presence of dyslipidemia. The polymorphisms in the AT1R (rs5186) and ACE2 (rs2285666) seem to play lesser roles in the development of T2D.

  13. Multiple Sleep Alterations in Mice Lacking Cannabinoid Type 1 Receptors

    PubMed Central

    Bastianini, Stefano; Lo Martire, Viviana; Mazza, Roberta; Pagotto, Uberto; Quarta, Carmelo; Zoccoli, Giovanna

    2014-01-01

    Cannabinoid type 1 (CB1) receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD). We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD) and HFD. CB1 cannabinoid receptor knock-out (KO) and wild-type (WT) mice were fed SD or HFD for 4 months (n = 9–10 per group). Mice were instrumented with electroencephalographic (EEG) and electromyographic electrodes. Recordings were performed during baseline (48 hours), sleep deprivation (gentle handling, 6 hours), sleep recovery (18 hours), and after cage switch (insomnia model paradigm, 6 hours). We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS) than WT during the dark (active) period but not during the light (rest) period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice. PMID:24586776

  14. Microbiota regulates type 1 diabetes through Toll-like receptors

    PubMed Central

    Burrows, Michael P.; Volchkov, Pavel; Kobayashi, Koichi S.; Chervonsky, Alexander V.

    2015-01-01

    Deletion of the innate immune adaptor myeloid differentiation primary response gene 88 (MyD88) in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D) results in microbiota-dependent protection from the disease: MyD88-negative mice in germ-free (GF), but not in specific pathogen-free conditions develop the disease. These results could be explained by expansion of particular protective bacteria (“specific lineage hypothesis”) or by dominance of negative (tolerizing) signaling over proinflammatory signaling (“balanced signal hypothesis”) in mutant mice. Here we found that colonization of GF mice with a variety of intestinal bacteria was capable of reducing T1D in MyD88-negative (but not wild-type NOD mice), favoring the balanced signal hypothesis. However, the receptors and signaling pathways involved in prevention or facilitation of the disease remained unknown. The protective signals triggered by the microbiota were revealed by testing NOD mice lacking MyD88 in combination with knockouts of several critical components of innate immune sensing for development of T1D. Only MyD88- and TIR-domain containing adapter inducing IFN β (TRIF) double deficient NOD mice developed the disease. Thus, TRIF signaling (likely downstream of Toll-like receptor 4, TLR4) serves as one of the microbiota-induced tolerizing pathways. At the same time another TLR (TLR2) provided prodiabetic signaling by controlling the microbiota, as reduction in T1D incidence caused by TLR2 deletion was reversed in GF TLR2-negative mice. Our results support the balanced signal hypothesis, in which microbes provide signals that both promote and inhibit autoimmunity by signaling through different receptors, including receptors of the TLR family. PMID:26216961

  15. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.

    PubMed

    Silvani, Alessandro; Berteotti, Chiara; Bastianini, Stefano; Lo Martire, Viviana; Mazza, Roberta; Pagotto, Uberto; Quarta, Carmelo; Zoccoli, Giovanna

    2014-01-01

    Cannabinoid type 1 (CB1) receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD). We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD) and HFD. CB1 cannabinoid receptor knock-out (KO) and wild-type (WT) mice were fed SD or HFD for 4 months (n = 9-10 per group). Mice were instrumented with electroencephalographic (EEG) and electromyographic electrodes. Recordings were performed during baseline (48 hours), sleep deprivation (gentle handling, 6 hours), sleep recovery (18 hours), and after cage switch (insomnia model paradigm, 6 hours). We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS) than WT during the dark (active) period but not during the light (rest) period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice.

  16. Activation of Neurotensin Receptor Type 1 Attenuates Locomotor Activity

    PubMed Central

    Vadnie, Chelsea A.; Hinton, David J.; Choi, Sun; Choi, YuBin; Ruby, Christina L.; Oliveros, Alfredo; Prieto, Miguel L.; Park, Jun Hyun; Choi, Doo-Sup

    2014-01-01

    Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders. PMID:24929110

  17. The β-Arrestin Pathway-selective Type 1A Angiotensin Receptor (AT1A) Agonist [Sar1,Ile4,Ile8]Angiotensin II Regulates a Robust G Protein-independent Signaling Network*

    PubMed Central

    Kendall, Ryan T.; Strungs, Erik G.; Rachidi, Saleh M.; Lee, Mi-Hye; El-Shewy, Hesham M.; Luttrell, Deirdre K.; Janech, Michael G.; Luttrell, Louis M.

    2011-01-01

    The angiotensin II peptide analog [Sar1,Ile4,Ile8]AngII (SII) is a biased AT1A receptor agonist that stimulates receptor phosphorylation, β-arrestin recruitment, receptor internalization, and β-arrestin-dependent ERK1/2 activation without activating heterotrimeric G-proteins. To determine the scope of G-protein-independent AT1A receptor signaling, we performed a gel-based phosphoproteomic analysis of AngII and SII-induced signaling in HEK cells stably expressing AT1A receptors. A total of 34 differentially phosphorylated proteins were detected, of which 16 were unique to SII and eight to AngII stimulation. MALDI-TOF/TOF mass fingerprinting was employed to identify 24 SII-sensitive phosphoprotein spots, of which three (two peptide inhibitors of protein phosphatase 2A (I1PP2A and I2PP2A) and prostaglandin E synthase 3 (PGES3)) were selected for validation and further study. We found that phosphorylation of I2PP2A was associated with rapid and transient inhibition of a β-arrestin 2-associated pool of protein phosphatase 2A, leading to activation of Akt and increased phosphorylation of glycogen synthase kinase 3β in an arrestin signalsome complex. SII-stimulated PGES3 phosphorylation coincided with an increase in β-arrestin 1-associated PGES3 and an arrestin-dependent increase in cyclooxygenase 1-dependent prostaglandin E2 synthesis. These findings suggest that AT1A receptors regulate a robust G protein-independent signaling network that affects protein phosphorylation and autocrine/paracrine prostaglandin production and that these pathways can be selectively modulated by biased ligands that antagonize G protein activation. PMID:21502318

  18. The beta-arrestin pathway-selective type 1A angiotensin receptor (AT1A) agonist [Sar1,Ile4,Ile8]angiotensin II regulates a robust G protein-independent signaling network.

    PubMed

    Kendall, Ryan T; Strungs, Erik G; Rachidi, Saleh M; Lee, Mi-Hye; El-Shewy, Hesham M; Luttrell, Deirdre K; Janech, Michael G; Luttrell, Louis M

    2011-06-03

    The angiotensin II peptide analog [Sar(1),Ile(4),Ile(8)]AngII (SII) is a biased AT(1A) receptor agonist that stimulates receptor phosphorylation, β-arrestin recruitment, receptor internalization, and β-arrestin-dependent ERK1/2 activation without activating heterotrimeric G-proteins. To determine the scope of G-protein-independent AT(1A) receptor signaling, we performed a gel-based phosphoproteomic analysis of AngII and SII-induced signaling in HEK cells stably expressing AT(1A) receptors. A total of 34 differentially phosphorylated proteins were detected, of which 16 were unique to SII and eight to AngII stimulation. MALDI-TOF/TOF mass fingerprinting was employed to identify 24 SII-sensitive phosphoprotein spots, of which three (two peptide inhibitors of protein phosphatase 2A (I1PP2A and I2PP2A) and prostaglandin E synthase 3 (PGES3)) were selected for validation and further study. We found that phosphorylation of I2PP2A was associated with rapid and transient inhibition of a β-arrestin 2-associated pool of protein phosphatase 2A, leading to activation of Akt and increased phosphorylation of glycogen synthase kinase 3β in an arrestin signalsome complex. SII-stimulated PGES3 phosphorylation coincided with an increase in β-arrestin 1-associated PGES3 and an arrestin-dependent increase in cyclooxygenase 1-dependent prostaglandin E(2) synthesis. These findings suggest that AT(1A) receptors regulate a robust G protein-independent signaling network that affects protein phosphorylation and autocrine/paracrine prostaglandin production and that these pathways can be selectively modulated by biased ligands that antagonize G protein activation.

  19. Susceptibility and gene interaction study of the angiotensin II type 1 receptor (AGTR1) gene polymorphisms with non-alcoholic fatty liver disease in a multi-ethnic population.

    PubMed

    Zain, Shamsul Mohd; Mohamed, Zahurin; Mahadeva, Sanjiv; Rampal, Sanjay; Basu, Roma Choudhury; Cheah, Phaik-Leng; Salim, Agus; Mohamed, Rosmawati

    2013-01-01

    Angiotensin II type 1 receptor (AGTR1) has been reported to play a fibrogenic role in non-alcoholic fatty liver disease (NAFLD). In this study, five variants of the AGTR1 gene (rs3772622, rs3772627, rs3772630, rs3772633, and rs2276736) were examined for their association with susceptibility to NAFLD. Subjects made up of 144 biopsy-proven NAFLD patients and 198 controls were genotyped using TaqMan assays. The liver biopsy specimens were histologically graded and scored according to the method of Brunt. Single locus analysis in pooled subjects revealed no association between each of the five variants with susceptibility to NAFLD. In the Indian ethnic group, the rs2276736, rs3772630 and rs3772627 appear to be protective against NAFLD (p = 0.010, p = 0.016 and p = 0.026, respectively). Haplotype ACGCA is shown to be protective against NAFLD for the Indian ethnic subgroup (p = 0.03). Gene-gene interaction between the AGTR1 gene and the patatin-like phospholipase domain-containing 3 (PNPLA3) gene, which we previously reported as associated with NAFLD in this sample, showed a strong interaction between AGTR1 (rs3772627), AGTRI (rs3772630) and PNPLA3 (rs738409) polymorphisms on NAFLD susceptibility (p = 0.007). Further analysis of the NAFLD patients revealed that the G allele of the AGTR1 rs3772622 is associated with increased fibrosis score (p = 0.003). This is the first study that replicates an association between AGTR1 polymorphism and NAFLD, with further details in histological features of NAFLD. There is lack of evidence to suggest an association between any of the five variants of the AGTR1 gene and NAFLD in the Malays and Chinese. In the Indians, the rs2276736, rs3772630 and rs3772627 appear to protect against NAFLD. We report novel findings of an association between the G allele of the rs3772622 with occurrence of fibrosis and of the gene-gene interaction between AGTR1gene and the much-studied PNPLA3 gene.

  20. Susceptibility and Gene Interaction Study of the Angiotensin II Type 1 Receptor (AGTR1) Gene Polymorphisms with Non-Alcoholic Fatty Liver Disease in a Multi-Ethnic Population

    PubMed Central

    Zain, Shamsul Mohd; Mohamed, Zahurin; Mahadeva, Sanjiv; Rampal, Sanjay; Basu, Roma Choudhury; Cheah, Phaik-Leng; Salim, Agus; Mohamed, Rosmawati

    2013-01-01

    Angiotensin II type 1 receptor (AGTR1) has been reported to play a fibrogenic role in non-alcoholic fatty liver disease (NAFLD). In this study, five variants of the AGTR1 gene (rs3772622, rs3772627, rs3772630, rs3772633, and rs2276736) were examined for their association with susceptibility to NAFLD. Subjects made up of 144 biopsy-proven NAFLD patients and 198 controls were genotyped using TaqMan assays. The liver biopsy specimens were histologically graded and scored according to the method of Brunt. Single locus analysis in pooled subjects revealed no association between each of the five variants with susceptibility to NAFLD. In the Indian ethnic group, the rs2276736, rs3772630 and rs3772627 appear to be protective against NAFLD (p = 0.010, p = 0.016 and p = 0.026, respectively). Haplotype ACGCA is shown to be protective against NAFLD for the Indian ethnic subgroup (p = 0.03). Gene-gene interaction between the AGTR1 gene and the patatin-like phospholipase domain-containing 3 (PNPLA3) gene, which we previously reported as associated with NAFLD in this sample, showed a strong interaction between AGTR1 (rs3772627), AGTRI (rs3772630) and PNPLA3 (rs738409) polymorphisms on NAFLD susceptibility (p = 0.007). Further analysis of the NAFLD patients revealed that the G allele of the AGTR1 rs3772622 is associated with increased fibrosis score (p = 0.003). This is the first study that replicates an association between AGTR1 polymorphism and NAFLD, with further details in histological features of NAFLD. There is lack of evidence to suggest an association between any of the five variants of the AGTR1 gene and NAFLD in the Malays and Chinese. In the Indians, the rs2276736, rs3772630 and rs3772627 appear to protect against NAFLD. We report novel findings of an association between the G allele of the rs3772622 with occurrence of fibrosis and of the gene-gene interaction between AGTR1gene and the much-studied PNPLA3 gene. PMID:23484035

  1. Type 1 Taste Receptors in Taste and Metabolism.

    PubMed

    Kochem, Matthew

    2017-01-01

    Our sense of taste allows us to evaluate the nutritive value of foods prior to ingesting them. Sweet taste signals the presence of sugars, and savory taste signals the presence of amino acids. The ability to identify these macronutrients in foods was likely crucial for the survival of our species when nourishing food sources were sparse. In modern, industrialized settings, taste perception continues to play an important role in human health as we attempt to prevent and treat conditions stemming from overnutrition. Recent research has revealed that type 1 taste receptors (T1Rs), which are largely responsible for sweet and umami taste, may also influence the absorption and metabolism of the foods we eat. Preliminary research shows that T1Rs contribute to intestinal glucose absorption, blood sugar and insulin regulation, and the body's responses to excessive energy intake. In light of these findings, T1Rs have come to be understood as nutrient sensors, among other roles, that facilitate the selection, digestion, and metabolism of foods. © 2017 S. Karger AG, Basel.

  2. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    SciTech Connect

    Wang, Xianwei Lu, Jingjun; Khaidakov, Magomed; Mitra, Sona; Ding, Zufeng; Raina, Sameer; Goyal, Tanu; Mehta, Jawahar L.

    2012-03-15

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22{sup phox}, p47{sup phox}, p67{sup phox}, NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H{sub 2}O{sub 2}. Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac fibroblast

  3. In vivo type 1 cannabinoid receptor availability in Alzheimer's disease.

    PubMed

    Ahmad, Rawaha; Goffin, Karolien; Van den Stock, Jan; De Winter, François-Laurent; Cleeren, Evy; Bormans, Guy; Tournoy, Jos; Persoons, Philippe; Van Laere, Koen; Vandenbulcke, Mathieu

    2014-02-01

    The endocannabinoid system (ECS) is an important modulatory and potentially neuroprotective homeostatic system in the brain. In Alzheimer's disease (AD), the role of type 1 cannabinoid receptor (CB₁R) is unclear, with contradictory findings in post-mortem studies showing upregulation, downregulation or unchanged CB₁R status. We have investigated CB₁R availability in vivo in patients with AD, in relation to amyloid deposition, cognitive functioning and apolipoprotein E (ApoE) genotype. Eleven AD patients and 7 healthy volunteers (HV) underwent combined [¹⁸F]MK-9470 PET and [¹¹C]PIB PET scans to assess CB₁R availability and amyloid deposition, respectively, and T1 volumetric MRI for partial volume correction. We found no difference in CB₁R availability between AD and HV, VOI-based fractional uptake values (FUR) were 0.043±0.01 for AD and 0.045±0.01 for controls (p=0.9). CB₁R availability did not correlate with neuropsychological test scores and was not modulated by ApoE genotype. As expected, global [¹¹C]PIB SUVR (standardized uptake value ratio) was increased in AD (SUVR 1.9±0.3) compared to HV (1.2±0.1) with p<0.001, but no correlation was found between amyloid β (Aβ) deposition and CB₁R availability. In conclusion, we found no in vivo evidence for a difference in CB₁R availability in AD compared to age-matched controls. Taken together with recently reported in vivo CB₁R changes in Parkinson's and Huntington's disease, these data suggest that the CB₁R is differentially involved in neurodegenerative disorders. © 2013 Published by Elsevier B.V. and ECNP.

  4. Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons

    PubMed Central

    Chakraborty, Saikat; Rebecchi, Mario; Kaczocha, Martin

    2016-01-01

    Key points Transient receptor potential vanilloid type 1 (TRPV1) receptors transduce noxious thermal stimuli and are responsible for the thermal hyperalgesia associated with inflammatory pain.A large population of dorsal root ganglia (DRG) neurons, including the C low threshold mechanoreceptors (C‐LTMRs), express tyrosine hydroxylase, and probably release dopamine.We found that dopamine and SKF 81297 (an agonist at D1/D5 receptors), but not quinpirole (an agonist at D2 receptors), downregulate the activity of TRPV1 channels in DRG neurons.The inhibitory effect of SKF 81297 on TRPV1 channels was strongly dependent on external calcium and preferentially linked to calcium–calmodulin‐dependent protein kinase II (CaMKII).We suggest that modulation of TRPV1 channels by dopamine in nociceptive neurons may represent a way for dopamine to modulate incoming noxious stimuli. Abstract The transient receptor potential vanilloid type 1 (TRPV1) receptor plays a key role in the modulation of nociceptor excitability. To address whether dopamine can modulate the activity of TRPV1 channels in nociceptive neurons, the effects of dopamine and dopamine receptor agonists were tested on the capsaicin‐activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons. Dopamine or SKF 81297 (an agonist at D1/D5 receptors), caused inhibition of both inward and outward currents by ∼60% and ∼48%, respectively. The effect of SKF 81297 was reversed by SCH 23390 (an antagonist at D1/D5 receptors), confirming that it was mediated by activation of D1/D5 dopamine receptors. In contrast, quinpirole (an agonist at D2 receptors) had no significant effect on the capsaicin‐activated current. Inhibition of the capsaicin‐activated current by SKF 81297 was mediated by G protein coupled receptors (GPCRs), and highly dependent on external calcium. The inhibitory effect of SKF 81297 on the capsaicin‐activated current was not affected when

  5. Cannabinoid type 1 receptor antagonists for smoking cessation.

    PubMed

    Cahill, Kate; Ussher, Michael H

    2011-03-16

    Selective type 1 cannabinoid (CB1) receptor antagonists may assist with smoking cessation by restoring the balance of the endocannabinoid system, which can be disrupted by prolonged use of nicotine. They also seeks to address many smokers' reluctance to persist with a quit attempt because of concerns about weight gain. To determine whether selective CB1 receptor antagonists (currently rimonabant and taranabant) increase the numbers of people stopping smoking To assess their effects on weight change in successful quitters and in those who try to quit but fail. We searched the Cochrane Tobacco Addiction Review Group specialized register for trials, using the terms ('rimonabant' or 'taranabant') and 'smoking' in the title or abstract, or as keywords. We also searched MEDLINE, EMBASE, CINAHL and PsycINFO, using major MESH terms. We acquired electronic or paper copies of posters of preliminary trial results presented at the American Thoracic Society Meeting in 2005, and at the Society for Research on Nicotine and Tobacco European Meeting 2006. We also attempted to contact the authors of ongoing studies of rimonabant, and Sanofi Aventis (manufacturers of rimonabant). The most recent search was in January 2011. Types of studies Randomized controlled trialsTypes of participants Adult smokersTypes of interventions Selective CB1 receptor antagonists, such as rimonabant and taranabant. Types of outcome measures The primary outcome is smoking status at a minimum of six months after the start of treatment. We preferred sustained cessation rates to point prevalence, and biochemically verified cessation to self-reported quitting. We regarded smokers who drop out or are lost to follow up as continuing smokers. We have noted any adverse effects of treatment.A secondary outcome is weight change associated with the cessation attempt. Two authors checked the abstracts for relevance, and attempted to acquire full trial reports. One author extracted the data, and a second author checked

  6. Angiotensin II Receptor Blockers

    MedlinePlus

    ... side effects include: Dizziness Elevated blood potassium level (hyperkalemia) Localized swelling of tissues (angioedema) There have been ... 31, 2016. Townsend RR. Major side effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers. http://www.uptodate. ...

  7. Identification of cannabinoid type 1 receptor in dog hair follicles.

    PubMed

    Mercati, Francesca; Dall'Aglio, Cecilia; Pascucci, Luisa; Boiti, Cristiano; Ceccarelli, Piero

    2012-01-01

    In veterinary medicine, there is an increasing interest in the study of the endo-cannabinoid system and the possible use of the cannabinoids for the treatment of several diseases. Cannabinoid receptors (CB) are widely distributed in human and laboratory animal tissues, justifying the involvement of the endo-cannabinoid system in a great number of metabolic ways. Since there are no data regarding cannabinoid receptors in hair follicles of domestic animals, we investigated the presence and localization of CB1 receptor in dog hair follicles. By using a goat anti-CB1 polyclonal antibody, we observed CB1 receptor in the proximal part of both primary and secondary hair follicles. Staining was localized in the inner root sheath cells. We suppose that the endo-cannabinoid system is involved in the molecular mechanisms regulating hair follicle activity in dog. The identification of CB1 receptor at the level of the inner root sheath may help in the understanding of hair follicle biology and the possibility that cannabinoid molecules could be considered as suitable therapeutic tools in dog.

  8. Type-1 cannabinoid receptor activity during Alzheimer's disease progression.

    PubMed

    Manuel, Iván; González de San Román, Estíbaliz; Giralt, M Teresa; Ferrer, Isidro; Rodríguez-Puertas, Rafael

    2014-01-01

    The activity of CB1 cannabinoid receptors was studied in postmortem brain samples of Alzheimer's disease (AD) patients during clinical deterioration. CB1 activity was higher at earlier AD stages in limited hippocampal areas and internal layers of frontal cortex, but a decrease was observed at the advanced stages. The pattern of modification appears to indicate initial hyperactivity of the endocannabinoid system in brain areas that lack classical histopathological markers at earlier stages of AD, indicating an attempt to compensate for the initial synaptic impairment, which is then surpassed by disease progression. These results suggest that initial CB1 stimulation might have therapeutic relevance.

  9. Identification of Growth Hormone Receptor in Plexiform Neurofibromas of Patients with Neurofibromatosis Type 1

    PubMed Central

    Cunha, Karin Soares Gonçalves; Barboza, Eliane Porto; da Fonseca, Eliene Carvalho

    2008-01-01

    OBJECTIVE The aim of this study was to investigate the presence of growth hormone receptor in plexiform neurofibromas of neurofibromatosis type 1 patients. INTRODUCTION The development of multiple neurofibromas is one of the major features of neurofibromatosis type 1. Since neurofibromas commonly grow during periods of hormonal change, especially during puberty and pregnancy, it has been suggested that hormones may influence neurofibromatosis type 1 neurofibromas. A recent study showed that the majority of localized neurofibromas from neurofibromatosis type 1 patients have growth hormone receptor. METHODS Growth hormone receptor expression was investigated in 5 plexiform neurofibromas using immunohistochemistry. RESULTS Four of the 5 plexiform neurofibromas were immunopositive for growth hormone receptor. CONCLUSION This study suggests that growth hormone may influence the development of plexiform neurofibromas in patients with neurofibromatosis type 1. PMID:18297205

  10. Functional Interaction between Class II Histone Deacetylases and ICP0 of Herpes Simplex Virus Type 1

    PubMed Central

    Lomonte, Patrick; Thomas, Joëlle; Texier, Pascale; Caron, Cécile; Khochbin, Saadi; Epstein, Alberto L.

    2004-01-01

    This study describes the physical and functional interactions between ICP0 of herpes simplex virus type 1 and class II histone deacetylases (HDACs) 4, 5, and 7. Class II HDACs are mainly known for their participation in the control of cell differentiation through the regulation of the activity of the transcription factor MEF2 (myocyte enhancer factor 2), implicated in muscle development and neuronal survival. Immunofluorescence experiments performed on transfected cells showed that ICP0 colocalizes with and reorganizes the nuclear distribution of ectopically expressed class I and II HDACs. In addition, endogenous HDAC4 and at least one of its binding partners, the corepressor protein SMRT (for silencing mediator of retinoid and thyroid receptor), undergo changes in their nuclear distribution in ICP0-transfected cells. As a result, during infection endogenous HDAC4 colocalizes with ICP0. Coimmunoprecipitation and glutathione S-transferase pull-down assays confirmed that class II but not class I HDACs specifically interacted with ICP0 through their amino-terminal regions. This region, which is not conserved in class I HDACs but homologous to the MITR (MEF2-interacting transcription repressor) protein, is responsible for the repression, in a deacetylase-independent manner, of MEF2 by sequestering it under an inactive form in the nucleus. Consequently, we show that ICP0 is able to overcome the HDAC5 amino-terminal- and MITR-induced MEF2A repression in gene reporter assays. This is the first report of a viral protein interacting with and controlling the repressor activity of class II HDACs. We discuss the putative consequences of such an interaction for the biology of the virus both during lytic infection and reactivation from latency. PMID:15194749

  11. Post-natal development of type 1 cannabinoid receptor immunoreactivity in the rat hippocampus.

    PubMed

    Morozov, Yury M; Freund, Tamás F

    2003-09-01

    Type 1 cannabinoid receptors, selectively located on axon terminals of GABAergic interneurons in the hippocampus, are known to be involved in endocannabinoid-mediated retrograde synaptic signalling. The question arises whether type 1 cannabinoid receptors appear on these axons during early post-natal life, when GABAergic transmission is still depolarizing, and whether there are any developmental changes in the cellular or subcellular expression pattern. Here we demonstrate, using single and double immunocytochemical methods at the light and electron microscopic levels, that type 1 cannabinoid receptors are expressed only on the membrane of axon terminals and pre-terminal axons but not on the soma-dendritic membrane at all examined timepoints between post-natal days 0 and 20, similar to the adult distribution. All type 1 cannabinoid receptor-positive boutons formed symmetric synapses. Granular labelling in the somata was already strong at post-natal day 0 and corresponded to multivesicular bodies, lysosomes, Golgi apparatus and rough endoplasmic reticulum. The type 1 cannabinoid receptor-positive axons were shown to originate largely from cholecystokinin-immunoreactive basket and bistratified neurons throughout the hippocampus (90% of all type 1 cannabinoid receptor-containing cells) and dentate gyrus (70% of all type 1 cannabinoid receptor-containing cells). The remaining cells have not been identified but probably belong to the somatostatin- and/or neuropeptide Y-containing subsets, as cholecystokinin-negative, type 1 cannabinoid receptor-positive axons have been observed in strata moleculare and lacunosum-moleculare of the dentate gyrus and CA1-3, respectively, where these neurons are known to arborize. No cell types were found that expressed type 1 cannabinoid receptors transiently at some developmental stage. We conclude that the cellular and subcellular pattern of type 1 cannabinoid receptor expression during early post-natal life is similar to the adult

  12. Centrally mediated erectile dysfunction in rats with type 1 diabetes: role of angiotensin II and superoxide.

    PubMed

    Zheng, Hong; Liu, Xuefei; Patel, Kaushik P

    2013-09-01

    Erectile dysfunction is a serious complication of diabetes mellitus. Apart from the peripheral actions, central mechanisms are also responsible for penile erection. This study aims to determine the contribution of angiotensin (ANG) II in the dysfunction of central N-methyl-D-aspartic acid (NMDA)- and nitric oxide (NO)-induced erectile responses in streptozotocin-induced type 1 diabetic (T1D) rats. Three weeks after streptozotocin injections, rats were randomly treated with the angiotensin-converting enzyme inhibitor-enalapril, or the ANG II type 1 receptor blocker, losartan, or the superoxide dismutase mimetic, tempol, or vehicle via chronic intracerebroventricular infusion by osmotic mini-pump for 2 weeks. Central NMDA receptor stimulation or the administration of the NO donor, sodium nitroprusside (SNP)-induced penile erectile responses and concurrent behavioral responses were monitored in conscious rats. Two weeks of enalapril, losartan, or tempol treatment significantly improved the erectile responses to central microinjection of both NMDA and SNP in the paraventricular nucleus (PVN) of conscious T1D rats (NMDA responses-T1D+enalapril: 1.7 ± 0.6, T1D+losartan: 2.0 ± 0.3, T1D+tempol: 2.0 ± 0.6 vs. T1D+vehicle: 0.6 ± 0.3 penile erections/rat in the first 20 minutes, P < 0.05; SNP responses-T1D+enalapril: 0.9 ± 0.3, T1D+losartan: 1.3 ± 0.3, T1D+tempol: 1.4 ± 0.4 vs. T1D+vehicle: 0.4 ± 0.2 penile erections/rat in the first 20 minutes, P < 0.05). Concurrent behavioral responses including yawning and stretching, induced by central NMDA and SNP microinjections, were also significantly increased in T1D rats after enalapril, losartan, or tempol treatments. Neuronal NO synthase expression within the PVN was also significantly increased, and superoxide production was reduced in T1D rats after these treatments. These data strongly support the contention that enhanced ANG II mechanism/s within the PVN of T1D rats contributes

  13. Centrally Mediated Erectile Dysfunction in Rats with Type 1 Diabetes: Role of Angiotensin II and Superoxide

    PubMed Central

    Zheng, Hong; Liu, Xuefei; Patel, Kaushik P.

    2015-01-01

    Introduction Erectile dysfunction is a serious complication of diabetes mellitus. Apart from the peripheral actions, central mechanisms are also responsible for penile erection. Aim To determine the contribution of angiotensin (ANG) II in the dysfunction of central N-methyl-D-aspartic acid (NMDA)-nitric oxide (NO)-induced erectile responses in streptozotocin-induced type 1 diabetic (T1D) rats. Methods Three weeks after streptozotocin injections, rats were randomly treated with the angiotensin-converting enzyme inhibitor-enalapril, or the ANG II type 1 receptor blocker, losartan, or the superoxide dismutase mimetic, tempol or vehicle via chronic intracerebroventricular infusion by osmotic mini-pump for 2 weeks. Main Outcome Measure Central NMDA receptor stimulation or the administration of the NO donor, sodium nitroprusside (SNP)-induced penile erectile responses and concurrent behavioral responses were monitored in conscious rats. Results Two weeks of enalapril, losartan or tempol treatment significantly improved the erectile responses to central microinjection of both NMDA and SNP in the paraventricular nucleus (PVN) of conscious T1D rats (NMDA responses – T1D+enalapril: 1.7 ± 0.6, T1D+losartan: 2.0 ± 0.3, T1D+tempol: 2.0 ± 0.6 vs. T1D+vehicle: 0.6 ± 0.3 penile erections/rat in the first 20 min, P < 0.05; SNP responses – T1D+enalapril: 0.9 ± 0.3, T1D+losartan: 1.3 ± 0.3, T1D+tempol: 1.4 ± 0.4 vs. T1D+vehicle: 0.4 ± 0.2 penile erections/rat in the first 20 min, P < 0.05). Concurrent behavioral responses including yawning and stretching, induced by central NMDA and SNP microinjections were also significantly increased in T1D rats after enalapril, losartan or tempol treatments. Neuronal NO synthase expression within the PVN was also significantly increased and superoxide production was reduced in T1D rats after these treatments. Conclusions These data strongly support the contention that enhanced ANG II mechanism/s within the PVN of T1D rats contributes

  14. Obtaining anti-type 1 melatonin receptor antibodies by immunization with melatonin receptor-expressing cells.

    PubMed

    Cordeiro, Nelia; Wijkhuisen, Anne; Savatier, Alexandra; Moulharat, Natacha; Ferry, Gilles; Léonetti, Michel

    2016-01-01

    Antibodies (Abs) specific to cell-surface receptors are attractive tools for studying the physiological role of such receptors or for controlling their activity. We sought to obtain such antibodies against the type 1 receptor for melatonin (MT1). For this, we injected mice with CHO cells transfected with a plasmid encoding human MT1 (CHO-MT1-h), in the presence or absence of an adjuvant mixture containing Alum and CpG1018. As we previously observed that the immune response to a protein antigen is increased when it is coupled to a fusion protein, called ZZTat101, we also investigated if the association of ZZTat101 with CHO-MT1-h cells provides an immunogenic advantage. We measured similar levels of anti-CHO and anti-MT1-h Ab responses in animals injected with either CHO-MT1-h cells or ZZTat101/CHO-MT1-h cells, with or without adjuvant, indicating that neither the adjuvant mixture nor ZZTat101 increased the anti-cell immune response. Then, we investigated whether the antisera also recognized murine MT1 (MT1-m). Using cloned CHO cells transfected with a plasmid encoding MT1-m, we found that antisera raised against CHO-MT1-h cells also bound the mouse receptor. Altogether our studies indicate that immunizing approaches based on MT1-h-expressing CHO cells allow the production of polyclonal antibodies against MT1 receptors of different origins. This paves the way to preparation of MT1-specific monoclonal antibodies.

  15. POLLUTANT PARTICLES PRODUCE VASOCONSTRICTION AND ENHANCE MAPK SIGNALING VIA ANGIOTENSIN TYPE 1 RECEPTOR

    EPA Science Inventory

    Exposure to particulate matter (PM) is associated with acute cardiovascular mortality and morbidity, but the mechanisms are not entirely clear. In this study, we hypothesized that PM may activate the angiotensin type 1 receptor (AT1R), a G protein-coupled receptor that regulates ...

  16. POLLUTANT PARTICLES PRODUCE VASOCONSTRICTION AND ENHANCE MAPK SIGNALING VIA ANGIOTENSIN TYPE 1 RECEPTOR

    EPA Science Inventory

    Exposure to particulate matter (PM) is associated with acute cardiovascular mortality and morbidity, but the mechanisms are not entirely clear. In this study, we hypothesized that PM may activate the angiotensin type 1 receptor (AT1R), a G protein-coupled receptor that regulates ...

  17. Regulation of central angiotensin type 1 receptors and sympathetic outflow in heart failure.

    PubMed

    Zucker, Irving H; Schultz, Harold D; Patel, Kaushik P; Wang, Wei; Gao, Lie

    2009-11-01

    Angiotensin type 1 receptors (AT(1)Rs) play a critical role in a variety of physiological functions and pathophysiological states. They have been strongly implicated in the modulation of sympathetic outflow in the brain. An understanding of the mechanisms by which AT(1)Rs are regulated in a variety of disease states that are characterized by sympathoexcitation is pivotal in development of new strategies for the treatment of these disorders. This review concentrates on several aspects of AT(1)R regulation in the setting of chronic heart failure (CHF). There is now good evidence that AT(1)R expression in neurons is mediated by activation of the transcription factor activator protein 1 (AP-1). This transcription factor and its component proteins are upregulated in the rostral ventrolateral medulla of animals with CHF. Because the increase in AT(1)R expression and transcription factor activation can be blocked by the AT(1)R antagonist losartan, a positive feedback mechanism of AT(1)R expression in CHF is suggested. Oxidative stress has also been implicated in the regulation of receptor expression. Recent data suggest that the newly discovered catabolic enzyme angiotensin-converting enzyme 2 (ACE2) may play a role in the modulation of AT(1)R expression by altering the balance between the octapeptide ANG II and ANG- (1-7). Finally, exercise training reduces both central oxidative stress and AT(1)R expression in animals with CHF. These data strongly suggest that multiple central and peripheral influences dynamically alter AT(1)R expression in CHF.

  18. Presynaptic inhibition of transient receptor potential vanilloid type 1 (TRPV1) receptors by noradrenaline in nociceptive neurons.

    PubMed

    Chakraborty, Saikat; Elvezio, Vincent; Kaczocha, Martin; Rebecchi, Mario; Puopolo, Michelino

    2017-04-15

    The transient receptor potential vanilloid type 1 (TRPV1) receptor is a polymodal molecular integrator in the pain pathway expressed in Aδ- and C-fibre nociceptors and is responsible for the thermal hyperalgesia associated with inflammatory pain. Noradrenaline strongly inhibited the activity of TRPV1 channels in dorsal root ganglia neurons. The effect of noradrenaline was reproduced by clonidine and antagonized by yohimbine, consistent with contribution of α2 adrenergic receptors. The inhibitory effect of noradrenaline on TRPV1 channels was dependent on calcium influx and linked to calcium/calmodulin-dependent protein kinase II. In spinal cord slices, clonidine reduced the frequency of capsaicin-induced miniature EPSCs in the presence of tetrodotoxin and ω-conotoxin-MVIIC, consistent with inhibition of presynaptic TRPV1 channels by α2 adrenergic receptors. We suggest that modulation of presynaptic TRPV1 channels in nociceptive neurons by descending noradrenergic inputs may constitute a mechanism for noradrenaline to modulate incoming noxious stimuli in the dorsal horn of the spinal cord. The transient receptor potential vanilloid type 1 (TRPV1) receptor is a well-known contributor to nociceptor excitability. To address whether noradrenaline can down-regulate TRPV1 channel activity in nociceptors and reduce their synaptic transmission, the effects of noradrenaline and clonidine were tested on the capsaicin-activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons and on miniature (m)EPSCs recorded from large lamina I neurons in horizontal spinal cord slices. Noradrenaline or clonidine inhibited the capsaicin-activated current by ∼60%, and the effect was reversed by yohimbine, confirming that it was mediated by activation of α2 adrenergic receptors. Similarly, clonidine reduced the frequency of capsaicin-induced mEPSCs by ∼60%. Inhibition of capsaicin-activated current by noradrenaline was mediated by GTP

  19. Effect of ghrelin receptor antagonist on meal patterns in cholecystokinin type 1 receptor null mice.

    PubMed

    Lee, Jennifer; Martin, Elizabeth; Paulino, Gabriel; de Lartigue, Guillaume; Raybould, Helen E

    2011-05-03

    Vagal afferent neurons (VAN) express the cholecystokinin (CCK) type 1 receptor (CCK₁R) and, as predicted by the role of CCK in inducing satiation, CCK₁R⁻/⁻ mice ingest larger and longer meals. However, after a short fast, CCK₁R⁻/⁻ mice ingesting high fat (HF) diets initiate feeding earlier than wild-type mice. We hypothesized that the increased drive to eat in CCK₁R⁻/⁻ mice eating HF diet is mediated by ghrelin, a gut peptide that stimulates food intake. The decrease in time to first meal, and the increase in meal size and duration in CCK₁R⁻/⁻ compared to wild-type mice ingesting high fat (HF) diet were reversed by administration of GHSR1a antagonist D-(Lys3)-GHRP-6 (p<0.05). Administration of the GHSR1a antagonist significantly increased expression of the neuropeptide cocaine and amphetamine-regulated transcript (CART) in VAN of HF-fed CCK₁R⁻/⁻ but not wild-type mice. Administration of the GHSR1a antagonist decreased neuronal activity measured by immunoreactivity for fos protein in the nucleus of the solitary tract (NTS) and the arcuate nucleus of both HF-fed wild-type and CCK₁R⁻/⁻ mice. The data show that hyperphagia in CCK₁R⁻/⁻ mice ingesting HF diet is reversed by blockade of the ghrelin receptor, suggesting that in the absence of the CCK₁R, there is an increased ghrelin-dependent drive to feed. The site of action of ghrelin receptors is unclear, but may involve an increase in expression of CART peptide in VAN in HF-fed CCK₁R⁻/⁻ mice.

  20. The activating receptor NKp46 is essential for the development of type 1 diabetes.

    PubMed

    Gur, Chamutal; Porgador, Angel; Elboim, Moran; Gazit, Roi; Mizrahi, Saar; Stern-Ginossar, Noam; Achdout, Hagit; Ghadially, Hormas; Dor, Yuval; Nir, Tomer; Doviner, Victoria; Hershkovitz, Oren; Mendelson, Michal; Naparstek, Yaakov; Mandelboim, Ofer

    2010-02-01

    The mechanism of action of natural killer (NK) cells in type 1 diabetes is still unknown. Here we show that the activating receptor NKp46 recognizes mouse and human ligands on pancreatic beta cells. NK cells appeared in the pancreas when insulitis progressed to type 1 diabetes, and NKp46 engagement by beta cells led to degranulation of NK cells. NKp46-deficient mice had less development of type 1 diabetes induced by injection of a low dose of streptozotocin. Injection of soluble NKp46 proteins into nonobese diabetic mice during the early phase of insulitis and the prediabetic stage prevented the development of type 1 diabetes. Our findings demonstrate that NKp46 is essential for the development of type 1 diabetes and highlight potential new therapeutic modalities for this disease.

  1. Angiotensin type 1 receptor resistance to blockade in the opossum proximal tubule cell due to variations in the binding pocket.

    PubMed

    Nistala, Ravi; Andresen, Bradley T; Pulakat, Lakshmi; Meuth, Alex; Sinak, Catherine; Mandavia, Chirag; Thekkumkara, Thomas; Speth, Robert C; Whaley-Connell, Adam; Sowers, James R

    2013-04-15

    Blockade of the angiotensin (ANG) II receptor type 1 (AT(1)R) with angiotensin receptor blockers (ARBs) is widely used in the treatment of hypertension. However, ARBs are variably effective in reducing blood pressure, likely due, in part, to polymorphisms in the ARB binding pocket of the AT(1)R. Therefore, we need a better understanding of variations/polymorphisms that alter binding of ARBs in heterogeneous patient populations. The opossum proximal tubule cell (OKP) line is commonly used in research to evaluate renal sodium handling and therefore blood pressure. Investigating this issue, we found natural sequence variations in the opossum AT(1)R paralleling those observed in the human AT(1)R. Therefore, we posited that these sequence variations may explain ARB resistance. We demonstrate that OKP cells express AT(1)R mRNA, bind (125)I-labeled ANG II, and exhibit ANG II-induced phosphorylation of Jak2. However, Jak2 phosphorylation is not inhibited by five different ARBs commonly used to treat hypertension. Additionally, nonradioactive ANG II competes (125)I-ANG II efficiently, whereas a 10-fold molar excess of olmesartan and the ANG II receptor type 2 blocker PD-123319 is unable to block (125)I-ANG II binding. In contrast, ANG II binding to OKP cells stably expressing rat AT(1A)Rs, which have a conserved AT(1)R-binding pocket with human AT(1)R, is efficiently inhibited by olmesartan. A novel observation was that resistance to ARB binding to opossum AT(1)Rs correlates with variations from the human receptor at positions 108, 163, 192, and 198 within the ARB-binding pocket. These observations highlight the potential utility of evaluating AT(1)R polymorphisms within the ARB-binding pocket in various hypertensive populations.

  2. Angiotensin type 1 receptor resistance to blockade in the opossum proximal tubule cell due to variations in the binding pocket

    PubMed Central

    Nistala, Ravi; Andresen, Bradley T.; Pulakat, Lakshmi; Meuth, Alex; Sinak, Catherine; Mandavia, Chirag; Thekkumkara, Thomas; Speth, Robert C.; Whaley-Connell, Adam

    2013-01-01

    Blockade of the angiotensin (ANG) II receptor type 1 (AT1R) with angiotensin receptor blockers (ARBs) is widely used in the treatment of hypertension. However, ARBs are variably effective in reducing blood pressure, likely due, in part, to polymorphisms in the ARB binding pocket of the AT1R. Therefore, we need a better understanding of variations/polymorphisms that alter binding of ARBs in heterogeneous patient populations. The opossum proximal tubule cell (OKP) line is commonly used in research to evaluate renal sodium handling and therefore blood pressure. Investigating this issue, we found natural sequence variations in the opossum AT1R paralleling those observed in the human AT1R. Therefore, we posited that these sequence variations may explain ARB resistance. We demonstrate that OKP cells express AT1R mRNA, bind 125I-labeled ANG II, and exhibit ANG II-induced phosphorylation of Jak2. However, Jak2 phosphorylation is not inhibited by five different ARBs commonly used to treat hypertension. Additionally, nonradioactive ANG II competes 125I-ANG II efficiently, whereas a 10-fold molar excess of olmesartan and the ANG II receptor type 2 blocker PD-123319 is unable to block 125I-ANG II binding. In contrast, ANG II binding to OKP cells stably expressing rat AT1ARs, which have a conserved AT1R-binding pocket with human AT1R, is efficiently inhibited by olmesartan. A novel observation was that resistance to ARB binding to opossum AT1Rs correlates with variations from the human receptor at positions 108, 163, 192, and 198 within the ARB-binding pocket. These observations highlight the potential utility of evaluating AT1R polymorphisms within the ARB-binding pocket in various hypertensive populations. PMID:23389452

  3. Angiotensin Type 1a Receptor Signaling Is Not Necessary for the Production of Reactive Oxygen Species in Polymorphonuclear Leukocytes

    PubMed Central

    Yamato, Fumiko; Tsuji, Shoji; Hasui, Masafumi; Kaneko, Kazunari

    2012-01-01

    Background. Although angiotensin II (Ang II) has inflammatory effects, little is known about its role in polymorphonuclear leucocytes (PMLs). To elucidate the role of Ang II in PMLs ROS production, we examined hydrogen peroxide (H2O2), one of the ROS, and NO production in AT1a receptor knockout (AT1KO) mice. Methods and Results. PMLs were analyzed from Ang II type 1a receptor knockout mice (AT1KO) and C57BL/6 wild type mice. Using flow cytometry, we studied hydrogen peroxide (H2O2) production from PMLs after Staphylococcus aureus phagocytosis or phorbol myristate acetate (PMA) stimulation. Nitric oxide (NO) production in the AT1KO was low at basal and after phagocytosis. In the AT1KO, basal H2O2 production was low. After PMA or phagocytosis stimulation, however, H2O2 production was comparable to wild type mice. Next we studied the H2O2 production in C57BL/6 mice exposed to Ang II or saline. H2O2 production stimulated by PMA or phagocytosis did not differ between the two groups. Conclusions. AT1a pathway is not necessary for PMLs H2O2 production but for NO production. There was a compensatory pathway for H2O2 production other than the AT1a receptor. PMID:24049645

  4. Vaccination against type 1 angiotensin receptor prevents streptozotocin-induced diabetic nephropathy.

    PubMed

    Ding, Dan; Du, Yimei; Qiu, Zhihua; Yan, Sen; Chen, Fen; Wang, Min; Yang, Shijun; Zhou, Yanzhao; Hu, Xiajun; Deng, Yihuan; Wang, Shijia; Wang, Liangping; Zhang, Hongrong; Wu, Hailang; Yu, Xian; Zhou, Zihua; Liao, Yuhua; Chen, Xiao

    2016-02-01

    Recently, our group has developed a therapeutic hypertensive vaccine against angiotensin (Ang) II type 1 receptor (AT1R) named ATRQβ-001. To explore its potential effectiveness on streptozotocin-induced diabetic nephropathy, male Sprague Dawley rats were randomly divided into two groups: a control and a diabetic model. After 1 week, the diabetic rats were divided into four subgroups (each with 15 rats) for 14-week treatments with saline, olmesartan, ATRQβ-001, and Qβ virus-like particle (VLP), respectively. In addition to lower blood pressure, ATRQβ-001 vaccination ameliorated biochemical parameter changes of renal dysfunction, mesangial expansion, and fibrosis through inhibiting oxidative stress, macrophage infiltration, and proinflammatory factor expression. Furthermore, ATRQβ-001 vaccination suppressed renal Ang II-AT1R activation and abrogated the downregulation of angiotensin-converting enzyme 2-Ang (1-7), similar to olmesartan treatment, while no obvious feedback activation of circulating or local renin-angiotensin system (RAS) was only observed in vaccine group. In rat mesangial cells, the anti-ATR-001 antibody inhibited high glucose-induced transforming growth factor-β1 (TGF)-β1/Smad3 signal pathway. Additionally, no significant immune-mediated damage was detected in vaccinated animals. In conclusion, the ATRQβ-001 vaccine ameliorated streptozotocin-induced diabetic renal injury via modulating two RAS axes and inhibiting TGF-β1/Smad3 signal pathway, providing a novel, safe, and promising method to treat diabetic nephropathy. Overactivation of RAS plays a crucial role in the development of the DN. Our aim was to verify the effectiveness of ATRQβ-001 vaccine in STZ-induced DN. The ATRQβ-001 modulated two RAS axes and inhibited TGF-β1/Smad3 signal pathway. The vaccine therapy may provide a novel, safe, and promising method to treat DN.

  5. Removal of melatonin receptor type 1 induces insulin resistance in the mouse.

    PubMed

    Contreras-Alcantara, Susana; Baba, Kenkichi; Tosini, Gianluca

    2010-09-01

    The incidence of obesity, insulin resistance, and type 2 diabetes (T2D) is increasing at an alarming rate worldwide. Emerging experimental evidence suggests that the hormone melatonin plays an important role in the regulation of glucose metabolisms. In this study, we report that removal of melatonin receptor type 1 (MT1) significantly impairs the ability of mice to metabolize glucose and such inability is probably due to an increased insulin resistance in these mice. Our data suggest that MT1 receptors are implicated in the pathogenesis of T2D and open the door for a detailed exploration on the mechanisms by which MT1 receptors signaling may affect glucose metabolism.

  6. A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors.

    PubMed Central

    Cardy, T J; Taylor, C W

    1998-01-01

    Calmodulin inhibits both inositol 1,4,5-trisphosphate (IP3) binding to, and IP3-evoked Ca2+ release by, cerebellar IP3 receptors [Patel, Morris, Adkins, O'Beirne and Taylor (1997) Proc. Natl. Acad. Sci. U. S.A. 94, 11627-11632]. In the present study, full-length rat type-1 and -3 IP3 receptors were expressed at high levels in insect Spodoptera frugiperda 9 cells and the effects of calmodulin were examined. In the absence of Ca2+, calmodulin caused a concentration-dependent and reversible inhibition of [3H]IP3 binding to type-1 IP3 receptors by decreasing their apparent affinity for IP3. The effect was not reproduced by high concentrations of troponin C, parvalbumin or S-100. Increasing the medium free [Ca2+] ([Ca2+]m) inhibited [3H]IP3 binding to type-1 receptors, but the further inhibition caused by a submaximal concentration of calmodulin was similar at each [Ca2+]m. In the absence of Ca2+, 125I-calmodulin bound to a single site on each type-1 receptor subunit and to an additional site in the presence of Ca2+. There was no detectable binding of 125I-calmodulin to type-3 receptors and binding of [3H]IP3 was insensitive to calmodulin at all [Ca2+]m. Both peptide and conventional Ca2+-calmodulin antagonists affected neither [3H]IP3 binding directly nor the inhibitory effect of calmodulin in the absence of Ca2+, but each caused a [Ca2+]m-dependent reversal of the inhibition of [3H]IP3 binding caused by calmodulin. Camstatin, a peptide that binds to calmodulin equally well in the presence or absence of Ca2+, reversed the inhibitory effects of calmodulin on [3H]IP3 binding at all [Ca2+]m. We conclude that calmodulin specifically inhibits [3H]IP3 binding to type-1 IP3 receptors: the first example of a protein regulated by calmodulin in an entirely Ca2+-independent manner. Inhibition of type-1 IP3 receptors by calmodulin may dynamically regulate their sensitivity to IP3 in response to the changes in cytosolic free calmodulin concentration thought to accompany stimulation

  7. THE CONNECTIONS BETWEEN THE UV AND OPTICAL Fe ii EMISSION LINES IN TYPE 1 AGNs

    SciTech Connect

    Kovacević-Dojcinović, Jelena; Popović, Luka Č. E-mail: lpopovic@aob.bg.ac.rs

    2015-12-15

    We investigate the spectral properties of the UV (λλ2650–3050 Å) and optical (λλ4000–5500 Å) Fe ii emission features in a sample of 293 Type 1 active galactic nuclei (AGNs) from the Sloan Digital Sky Survey database. We explore different correlations between their emission line properties, as well as the correlations with other emission lines from the spectral range. We find several interesting correlations and outline the most interesting results as follows. (i) There is a kinematical connection between the UV and optical Fe ii lines, indicating that the UV and optical Fe ii lines originate from the outer part of the broad line region, the so-called intermediate line region. (ii) The unexplained anticorrelations of the optical Fe ii equivalent width (EW Fe ii{sub opt}) versus EW [O iii] 5007 Å and EW Fe ii{sub opt} versus FWHM Hβ have not been detected for the UV Fe ii lines. (iii) The significant averaged redshift in the UV Fe ii lines, which is not present in optical Fe ii, indicates an inflow in the UV Fe ii emitting clouds, and probably their asymmetric distribution. (iv) Also, we confirm the anticorrelation between the intensity ratio of the optical and UV Fe ii lines and the FWHM of Hβ, and we find the anticorrelations of this ratio with the widths of Mg ii 2800 Å, optical Fe ii, and UV Fe ii. This indicates a very important role for the column density and microturbulence in the emitting gas. We discuss the starburst activity in high-density regions of young AGNs as a possible explanation of the detected optical Fe ii correlations and intensity line ratios of the UV and optical Fe ii lines.

  8. Opposing roles for cannabinoid receptor type-1 (CB₁) and transient receptor potential vanilloid type-1 channel (TRPV1) on the modulation of panic-like responses in rats.

    PubMed

    Casarotto, Plínio C; Terzian, Ana Luisa B; Aguiar, Daniele C; Zangrossi, Hélio; Guimarães, Francisco S; Wotjak, Carsten T; Moreira, Fabrício A

    2012-01-01

    The midbrain dorsal periaqueductal gray (dPAG) has an important role in orchestrating anxiety- and panic-related responses. Given the cellular and behavioral evidence suggesting opposite functions for cannabinoid type 1 receptor (CB₁) and transient receptor potential vanilloid type-1 channel (TRPV1), we hypothesized that they could differentially influence panic-like reactions induced by electrical stimulation of the dPAG. Drugs were injected locally and the expression of CB₁ and TRPV1 in this structure was assessed by immunofluorescence and confocal microscopy. The CB₁-selective agonist, ACEA (0.01, 0.05 and 0.5 pmol) increased the threshold for the induction of panic-like responses solely at the intermediary dose, an effect prevented by the CB₁-selective antagonist, AM251 (75 pmol). Panicolytic-like effects of ACEA at the higher dose were unmasked by pre-treatment with the TRPV1 antagonist capsazepine (0.1 nmol). Similarly to ACEA, capsazepine (1 and 10 nmol) raised the threshold for triggering panic-like reactions, an effect mimicked by another TRPV1 antagonist, SB366791 (1 nmol). Remarkably, the effects of both capsazepine and SB366791 were prevented by AM251 (75 pmol). These pharmacological data suggest that a common endogenous agonist may have opposite functions at a given synapse. Supporting this view, we observed that several neurons in the dPAG co-expressed CB₁ and TRPV1. Thus, the present work provides evidence that an endogenous substance, possibly anandamide, may exert both panicolytic and panicogenic effects via its actions at CB₁ receptors and TRPV1 channels, respectively. This tripartite set-point system might be exploited for the pharmacotherapy of panic attacks and anxiety-related disorders.

  9. Angiotensin II receptor heterogeneity

    SciTech Connect

    Herblin, W.F.; Chiu, A.T.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L. )

    1991-04-01

    The possibility of receptor heterogeneity in the angiotensin II (AII) system has been suggested previously, based on differences in Kd values or sensitivity to thiol reagents. One of the authors earliest indications was the frequent observation of incomplete inhibition of the binding of AII to adrenal cortical membranes. Autoradiographic studies demonstrated that all of the labeling of the rat adrenal was blocked by unlabeled AII or saralasin, but not by DuP 753. The predominant receptor in the rat adrenal cortex (80%) is sensitive to dithiothreitol (DTT) and DuP 753, and is designated AII-1. The residual sites in the adrenal cortex and almost all of the sites in the rat adrenal medulla are insensitive to both DTT and DuP 753, but were blocked by EXP655. These sites have been confirmed by ligand binding studies and are designated AII-2. The rabbit adrenal cortex is unique in yielding a nonuniform distribution of AII-2 sites around the outer layer of glomerulosa cells. In the rabbit kidney, the sites on the glomeruli are AII-1, but the sites on the kidney capsule are AII-2. Angiotensin III appears to have a higher affinity for AII-2 sites since it inhibits the binding to the rabbit kidney capsule but not the glomeruli. Elucidation of the distribution and function of these diverse sites should permit the development of more selective and specific therapeutic strategies.

  10. Rising stars: modulation of brain functions by astroglial type-1 cannabinoid receptors.

    PubMed

    Metna-Laurent, Mathilde; Marsicano, Giovanni

    2015-03-01

    The type-1-cannabinoid (CB1 ) receptor is amongst the most widely expressed G protein-coupled receptors in the brain. In few decades, CB1 receptors have been shown to regulate a large array of functions from brain cell development and survival to complex cognitive processes. Understanding the cellular mechanisms underlying these functions of CB1 is complex due to the heterogeneity of the brain cell types on which the receptor is expressed. Although the large majority of CB1 receptors act on neurons, early studies pointed to a direct control of CB1 receptors over astroglial functions including brain energy supply and neuroprotection. In line with the growing concept of the tripartite synapse highlighting astrocytes as direct players in synaptic plasticity, astroglial CB1 receptor signaling recently emerged as the mediator of several forms of synaptic plasticity associated to important cognitive functions. Here, we shortly review the current knowledge on CB1 receptor-mediated astroglial functions. This functional spectrum is large and most of the mechanisms by which CB1 receptors control astrocytes, as well as their consequences in vivo, are still unknown, requiring innovative approaches to improve this new cannabinoid research field. © 2014 Wiley Periodicals, Inc.

  11. Immunolocalization of cannabinoid receptor type 1 and CB2 cannabinoid receptors, and transient receptor potential vanilloid channels in pterygium.

    PubMed

    Assimakopoulou, Martha; Pagoulatos, Dionysios; Nterma, Pinelopi; Pharmakakis, Nikolaos

    2017-10-01

    Cannabinoids, as multi‑target mediators, activate cannabinoid receptors and transient receptor potential vanilloid (TRPV) channels. There is evidence to support a functional interaction of cannabinoid receptors and TRPV channels when they are coexpressed. Human conjunctiva demonstrates widespread cannabinoid receptor type 1 (CB1), CB2 and TRPV channel localization. The aim of the present study was to investigate the expression profile for cannabinoid receptors (CB1 and CB2) and TRPV channels in pterygium, an ocular surface lesion originating from the conjunctiva. Semi‑serial paraffin‑embedded sections from primary and recurrent pterygium samples were immunohistochemically examined with the use of specific antibodies. All of the epithelial layers in 94, 78, 96, 73 and 80% of pterygia cases, exhibited CB1, CB2, TRPV1, TRPV2 and TRPV3 cytoplasmic immunoreactivity, respectively. The epithelium of all pterygia cases (100%) showed strong, mainly nuclear, TRPV4 immunolocalization. In the pterygium stroma, scattered cells demonstrated intense CB2 immunoreactivity, whereas vascular endothelial cells were immunopositive for the cannabinoid receptors and all TRPV channels. Quantitative analyses of the immunohistochemical findings in epithelial cells demonstrated a significantly higher expression level in conjunctiva compared with primary pterygia (P=0.04) for CB1, but not for CB2 (P>0.05). Additionally, CB1 and CB2 were significantly highly expressed in primary pterygia (P=0.01), compared with recurrent pterygia. Furthermore, CB1 expression levels were significantly correlated with CB2 expression levels in primary pterygia (P=0.005), but not in recurrent pterygia (P>0.05). No significant difference was detected for all TRPV channel expression levels between pterygium (primary or recurrent) and conjunctival tissues (P>0.05). A significant correlation between the TRPV1 and TRPV3 expression levels (P<0.001) was detected independently of pterygium recurrence. Finally, TRPV

  12. Binding site and subclass specificity of the herpes simplex virus type 1-induced Fc receptor.

    PubMed Central

    Wiger, D; Michaelsen, T E

    1985-01-01

    Immunoglobulin Fc-binding activity was detected by indirect immunofluorescence employing fluorochrome conjugated F(ab')2 antibody fragments on acetone-fixed cell cultures infected with herpes simplex virus type 1 (HSV-1). Using this method the Fc receptor-like activity seemed to be restricted to the IgG class of human immunoglobulins. While IgG1, IgG2, and IgG4 myeloma proteins bind to this putative Fc gamma receptor at a concentration of 0.002 mg/ml, IgG3 myeloma proteins were without activity at 0.1 mg/ml. The binding activity was associated with the Fc fragments of IgG, while the pFc' fragments of IgG appeared to be unable to bind in this assay system. The reactivity and specificity of the HSV-1 Fc receptor was independent of both the type of tissue culture cells used and the strain of HSV-1 inducing the Fc receptor-like activity. The HSV-1-induced Fc receptor has a similar specificity for human immunoglobulin class and subclasses as staphylococcal Protein A. However, these two Fc receptors exhibit at least one striking difference. The IgG3 G3m(st) protein which binds to Protein A does not bind to HSV-1-induced Fc receptor. A possible reaction site for the HSV-1 Fc receptor on IgG could be at or near Asp 276. Images Figure 1 PMID:2982735

  13. Rabbit heart cell culture, strain RHF-1. II. Behavior of adenovirus types 1 to 4.

    PubMed

    ANKUDAS, M M; KHOOBYARIAN, N

    1962-12-01

    Ankudas, Milda M. (University of Illinois, Chicago) and Newton Khoobyarian. Rabbit heart cell cultures, strain RHF-1. II. Behavior of adenovirus types 1 to 4. J. Bacteriol. 84:1287-1291. 1962.-In general, the findings indicate that adsorption to RHF-1 cells of adenovirus types 1, 2, and 4, but not type 3, precedes the events leading toward virus multiplication. Adenovirus type 3 attained maximal adsorption (90%) in 2 hr, with no evidence of virus multiplication. Under optimal conditions in the present experiments, the type 1 virus appeared to be released from the infected cells at a much slower rate than types 2 and 4. No correlation seemed to exist between the extent of cytopathic changes produced by type 1 in RHF-1 cells and the rise in virus infectivity during the logarithmic phase. On the other hand, the progression of cytopathic effect of type 2- and type 4-infected cells appeared to be a direct result of virus propagation. Further-more, the relative yield of virus per host cell, though small in quantity, was more or less similar for all three types. Histopathologically, no marked difference among the cells infected with types 1, 2, and 4 was clearly evident. Upon serial subculturing of these viruses in RHF-1 cells, a concomitant decrease in infectious virus, as well as complement-fixing antigen titers at each passage level, was also noted.

  14. Different Involvement of Type 1, 2, and 3 Ryanodine Receptors in Memory Processes

    ERIC Educational Resources Information Center

    Galeotti, Nicoletta; Quattrone, Alessandro; Vivoli, Elisa; Norcini, Monica; Bartolini, Alessandro; Ghelardini, Carla

    2008-01-01

    The administration of the ryanodine receptor (RyR) agonist 4-Cmc (0.003-9 nmol per mouse intracerebroventricularly [i.c.v.]) ameliorated memory functions, whereas the RyR antagonist ryanodine (0.0001-1 nmol per mouse i.c.v.) induced amnesia in the mouse passive avoidance test. The role of the type 1, 2, and 3 RyR isoforms in memory processes was…

  15. Repression of host RNA polymerase II transcription by herpes simplex virus type 1.

    PubMed Central

    Spencer, C A; Dahmus, M E; Rice, S A

    1997-01-01

    Lytic infection of mammalian cells with herpes simplex virus type 1 (HSV-1) results in rapid repression of host gene expression and selective activation of the viral genome. This transformation in gene expression is thought to involve repression of host transcription and diversion of the host RNA polymerase (RNAP II) transcription machinery to the viral genome. However, the extent of virus-induced host transcription repression and the mechanisms responsible for these major shifts in transcription specificities have not been examined. To determine how HSV-1 accomplishes repression of host RNAP II transcription, we assayed transcription patterns on several cellular genes in cells infected with mutant and wild-type HSV-1. Our results suggest that HSV-1 represses RNAP II transcription on most cellular genes. However, each cellular gene we examined responds differently to the transcription repressive effects of virus infection, both quantitatively and with respect to the involvement of viral gene products. Virus-induced shutoff of host RNAP II transcription requires expression of multiple immediate-early genes. In contrast, expression of delayed-early and late genes and viral DNA replication appear to contribute little to repression of host cell RNAP II transcription. Modification of RNAP II to the intermediately phosphorylated (II(I)) form appears unlinked to virus-induced repression of host cell transcription. However, full repression of host transcription is correlated with depletion of the hyperphosphorylated (IIO) form of RNAP II. PMID:9032335

  16. Toll-like receptor 3 gene polymorphisms in South African Blacks with type 1 diabetes.

    PubMed

    Pirie, F J; Pegoraro, R; Motala, A A; Rauff, S; Rom, L; Govender, T; Esterhuizen, T M

    2005-08-01

    Type 1 diabetes is the consequence of exposure of genetically susceptible individuals to specific environmental precipitants. The innate immune system provides the initial response to exogenous antigen and links with the adaptive immune system. The aim of this study was to assess the role of polymorphisms occurring in the cytoplasmic region of toll-like receptor (TLR) 3 gene and immediate 5' sequence, in subjects of Zulu descent with type 1 diabetes in KwaZulu-Natal, South Africa. Seventy-nine subjects with type 1 diabetes and 74 healthy normal glucose tolerant gender-matched control subjects were studied. Parts of exon 4 and exon 3/intron 3 of the TLR3 gene were studied by polymerase chain reaction, direct sequencing and restriction enzyme digestion with Bts 1. Of the nine polymorphisms studied, a significant association with type 1 diabetes was found for the major allele in the 2593 C/T polymorphism and for the minor alleles in the 2642 C/A and 2690 A/G polymorphisms, which were found to be in complete linkage disequilibrium. Correction of the P-values for the number of alleles studied, however, rendered the results no longer significant. These results suggest that polymorphisms in the TLR3 gene, which is part of the innate immune system, may be associated with type 1 diabetes in this population.

  17. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells.

    PubMed

    Carpi, Sara; Fogli, Stefano; Polini, Beatrice; Montagnani, Valentina; Podestà, Adriano; Breschi, Maria Cristina; Romanini, Antonella; Stecca, Barbara; Nieri, Paola

    2017-04-01

    The role of endocannabinoid system in melanoma development and progression is actually not fully understood. This study was aimed at clarifying whether cannabinoid-type 1 (CB1) receptor may function as tumor-promoting or -suppressing signal in human cutaneous melanoma. CB1 receptor expression was measured in human melanoma cell lines by real-time PCR. A genetic deletion of CB1 receptors in selected melanoma cells was carried out by using three different short hairpin RNAs (shRNAs). Performance of target gene silencing was verified by real-time PCR and Western blot. The effects of CB1 receptor silencing on cell growth, clonogenicity, migration capability, cell cycle progression, and activation of mitogenic signals was tested. Lentiviral shRNAs vectors targeting different regions of the human CB1 gene led to a significant reduction in CB1 receptor mRNA and a near complete loss of CB1 receptor protein, compared to control vector (LV-c). The number of viable cells, the colony-forming ability and cell migration were significantly reduced in cells transduced with CB1 lentiviral shRNAs compared to LV-c. Cell cycle analyses showed arrest at G1/S phase. p-Akt and p-ERK expression were decreased in transduced versus control cells. Findings of this study suggest that CB1 receptor might function as tumor-promoting signal in human cutaneous melanoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. THE NEURONAL DISTRIBUTION OF CANNABINOID RECEPTOR TYPE 1 IN THE TRIGEMINAL GANGLION OF THE RAT

    PubMed Central

    PRICE, T. J.; HELESIC, G.; PARGHI, D.; HARGREAVES, K. M.; FLORES, C. M.

    2007-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of the adult rat through combined in situ hybridization (ISH) and immunohistochemistry (IHC). CB1 receptor mRNA was localized mainly to medium and large diameter neurons of the maxillary and mandibular branches of the TG. Consistent with this distribution, in a de facto nociceptive sensory neuron population that exhibited vanilloid receptor type 1 immunoreactivity, colocalization with CB1 mRNA was also sparse (<5%). Furthermore, very few neurons (approximately 5%) in the peptidergic (defined as calcitonin gene-related peptide- or substance P-immunoreactive) or the isolectin B4-binding sensory neuron populations contained CB1 mRNA. In contrast, and consistent with the neuron-size distribution for CB1, nearly 75% of CB1-positive neurons exhibited N52-immunoreactivity, a marker of myelinated axons. These results indicate that in the rat TG, CB1 receptors are expressed predominantly in neurons that are not thought to subserve nociceptive neurotransmission in the noninjured animal. Taken together with the absence of an above background in situ signal for CB2 mRNA in TG neurons, these findings suggest that the peripherally mediated antinociceptive effects of cannabinoids may involve either as yet unidentified receptors or interaction with afferent neuron populations that normally subserve non-nociceptive functions. PMID:12849749

  19. Angiotensin Type 1 Receptor Blocker Reduces Intimal Neovascularization and Plaque Growth in Apolipoprotein E–Deficient Mice

    PubMed Central

    Cheng, Xian Wu; Song, Haizhen; Sasaki, Takeshi; Hu, Lina; Inoue, Aiko; Bando, Yasuko K.; Shi, Guo-Ping; Kuzuya, Masafumi; Okumura, Kenji; Murohara, Toyoaki

    2012-01-01

    The interactions between the renin-angiotensin system and neovascularization in atherosclerotic plaque development are unclear. We investigated the effects of angiotensin II type 1 receptor antagonism in the pathogenesis of atherosclerosis in apolipoprotein E–deficient (ApoE−/−) mice with a special focus on plaque neovascularization. ApoE−/− mice fed a high-fat diet were randomly assigned to 1 of 2 groups and administered vehicle or olmesartan for 12 weeks. Quantification of plaque areas at the aortic root and in the thoracic and abdominal aorta revealed that, in all 3 of the regions, olmesartan reduced intimal neovessel density and the mRNA levels of toll-like receptor (TLR) 2 and TLR4. Olmesartan increased the levels of collagen and elastin, reduced the level of macrophages in the aortic root, and reduced the mRNA and the activity of matrix metalloproteinase (MMP) 2 in aortic roots and thoracic aortas. Aortic ring assay revealed that olmesartan-treated ApoE−/− mice had a markedly lower angiogenic response than that of untreated ApoE−/− mice. Bone marrow–derived endothelial progenitor cell-like c-Kit+ cells from olmesartan-treated ApoE−/− mice showed marked impairment of cellular functions and lower expression of TLR2/TLR4 and MMP-2 compared with those of untreated controls. MMP-2 deficiency reduced intimal neovessel density and atherosclerotic lesion formation. Olmesartan and small-interfering RNA targeting TLR2 reduced the levels of TLR2, and MMP-2 mRNA induced angiotensin II in cultured endothelial cells. Angiotensin II type 1 receptor antagonism appears to inhibit intimal neovascularization in ApoE−/− mice, partly by reducing TLR2/TLR4-mediated inflammatory action and MMP activation, thus decreasing atherosclerotic plaque growth and increasing plaque instability. PMID:21464389

  20. Is the positivity of estrogen receptor or progesterone receptor different between type 1 and type 2 endometrial cancer?

    PubMed Central

    Shen, Fang; Gao, Yifei; Ding, Jingxin; Chen, Qi

    2017-01-01

    Endometrial cancer is a major cancer in women and traditionally divided into type 1 and type 2. It is well known that type 2 endometrial cancer has a poor prognosis. Studies have suggested that estrogen receptor (ER) or progesterone receptor (PR) positive are positively associated with endometrial cancer survive. However whether the positivity of ER or PR is different between cancer types has not been investigated yet. In this retrospective study, the positivity of ER or PR was analysed in 1054 women with primary diagnosed endometrial cancer taking into account cancer types and menopausal status from the largest university teaching women's hospital in China. The positivity of ER or PR (over 90%) was significantly higher in type 1 compared to that in type 2 endometrial cancer (71% or 64%) in both premenopausal and postmenopausal women. There was no different in positivity of ER or PR in type 1 endometrial cancer between premenopausal and postmenopausal women. However, in type 2 endometrial cancer, the positivity of ER or PR in premenopausal women was significantly higher compared to that in postmenopausal women. Our data demonstrate that both ER and PR positivity are significantly higher in type 1 endometrial cancer (92%) compared to type 2 (72% ER positive, 65% PR positive). Menopausal status is not associated with the positivity of ER or PR in type 1 endometrial cancer. Our data may provide some novel insights why Asian women have better outcomes of endometrial cancer which was reported in the literature. PMID:27888807

  1. Is the positivity of estrogen receptor or progesterone receptor different between type 1 and type 2 endometrial cancer?

    PubMed

    Shen, Fang; Gao, Yifei; Ding, Jingxin; Chen, Qi

    2017-01-03

    Endometrial cancer is a major cancer in women and traditionally divided into type 1 and type 2. It is well known that type 2 endometrial cancer has a poor prognosis. Studies have suggested that estrogen receptor (ER) or progesterone receptor (PR) positive are positively associated with endometrial cancer survive. However whether the positivity of ER or PR is different between cancer types has not been investigated yet. In this retrospective study, the positivity of ER or PR was analysed in 1054 women with primary diagnosed endometrial cancer taking into account cancer types and menopausal status from the largest university teaching women's hospital in China. The positivity of ER or PR (over 90%) was significantly higher in type 1 compared to that in type 2 endometrial cancer (71% or 64%) in both premenopausal and postmenopausal women. There was no different in positivity of ER or PR in type 1 endometrial cancer between premenopausal and postmenopausal women. However, in type 2 endometrial cancer, the positivity of ER or PR in premenopausal women was significantly higher compared to that in postmenopausal women. Our data demonstrate that both ER and PR positivity are significantly higher in type 1 endometrial cancer (92%) compared to type 2 (72% ER positive, 65% PR positive). Menopausal status is not associated with the positivity of ER or PR in type 1 endometrial cancer. Our data may provide some novel insights why Asian women have better outcomes of endometrial cancer which was reported in the literature.

  2. [Association of vitamin D receptor gene polymorphism with type 1 diabetes mellitus in two Spanish populations].

    PubMed

    Martí, Gertrudis; Audí, Laura; Esteban, Cristina; Oyarzábal, Miren; Chueca, María; Gussinyé, Miquel; Yeste, Diego; Fernández-Cancio, Mónica; Andaluz, Pilar; Carrascosa, Antonio

    2004-09-11

    In order to assess whether vitamin D receptor gene polymorphisms are involved in the genetic regulation of type 1 diabetes susceptibility, a case-control study was conducted in two Spanish populations with different genetic backgrounds. 155 patients with childhood-onset type 1 diabetes and 280 healthy controls from Barcelona, and 89 patients and 116 controls from Navarre were studied for vitamin D receptor gene polymorphisms in peripheral blood DNA. Intron 8 (BsmI) and exon 2 (FokI) segments were amplified by PCR and sequenced to determine each corresponding genotype. Differences for allele, genotype and combined haplotype and genotype distribution between patients and controls within each population and between the two populations were analyzed. BsmI genotype and allele frequencies showed a tendency towards increased bb genotype and b allele frequencies in Barcelona patients and the tendency was inverse in Navarre. FokI polymorphism distribution analysis showed a significant decrease in ff genotype (p = 0.016) in patients versus controls from Navarre. Combined genotypes showed homozygous bb/FF genotype to be increased in Barcelona patients (p = 0.04) whereas homozygous bb/ff genotype was decreased in Navarre patients (p = 0.02) versus their corresponding controls. BF haplotype frequency distribution between patients and controls was inverse and significantly different between Barcelona and Navarre (p = 0.04). Combined genotypes for vitamin D receptor gene polymorphisms at intron 8 and exon 2 suggest that the more active form of vitamin D receptor gene (FF genotype) can be increased in Mediterranean diabetic patients whereas the less active form (ff genotype) can be decreased in those from Navarre. Our results suggest that, in both groups, the F allele of exon 2 VDR gene polymorphism may increase type 1 diabetes susceptibility.

  3. Diagnostic and prognostic value of scavenger receptor class B type 1 in clear cell renal cell carcinoma.

    PubMed

    Xu, Guanghua; Lou, Ning; Xu, Yuchen; Shi, Hangchuan; Ruan, Hailong; Xiao, Wen; Liu, Lei; Xiao, Haibing; Qiu, Bin; Bao, Lin; Yuan, Changfei; Chen, Ke; Yang, Hongmei; Zhang, Xiaoping

    2017-05-01

    Aberrant expression of scavenger receptor class B type 1 has been reported in several human cancers. Nevertheless, the roles of scavenger receptor class B type 1 in clear cell renal cell carcinoma remain unclear. The aim of this study was to evaluate the diagnostic and prognostic value of scavenger receptor class B type 1 in clear cell renal cell carcinoma. The messenger RNA level of scavenger receptor class B type 1 in clear cell renal cell carcinoma tissues was detected by quantitative reverse transcription polymerase chain reaction, while protein level was determined by western blot and immunohistochemistry. The lipid content between clear cell renal cell carcinoma tissues and normal kidney tissues was differentiated by Oil Red O and hematoxylin-eosin staining. The diagnostic value of scavenger receptor class B type 1 was determined by receiver operating characteristic curve. The prognostic significance of scavenger receptor class B type 1 was assessed by Kaplan-Meier analysis and Cox regression analysis. Our results showed that the expression of scavenger receptor class B type 1 in clear cell renal cell carcinoma tissues at both messenger RNA and protein level was much higher than that in normal kidney tissues. Receiver operating characteristic curve analysis exhibited a significant value of area under the curve (0.8486, 95% confidence interval: 0.7926-0.9045) with strong sensitivity (0.75, 95% confidence interval: 0.6535-0.8312) and specificity (0.90, 95% confidence interval: 0.8238-0.9510). Kaplan-Meier analysis revealed that patients with higher scavenger receptor class B type 1 expression had shorter progression-free survival time. Cox analysis indicated that scavenger receptor class B type 1 was an independent prognostic biomarker. In conclusion, our findings implied that scavenger receptor class B type 1 might serve as a diagnostic and independent prognostic biomarker in clear cell renal cell carcinoma.

  4. Psychometric Properties of the Hypoglycemia Fear Survey-II for Adults With Type 1 Diabetes

    PubMed Central

    Gonder-Frederick, Linda A.; Schmidt, Karen M.; Vajda, Karen A.; Greear, Megan L.; Singh, Harsimran; Shepard, Jaclyn A.; Cox, Daniel J.

    2011-01-01

    OBJECTIVE To perform the first comprehensive psychometric evaluation of the Hypoglycemia Fear Survey-II (HFS-II), a measure of the behavioral and affective dimensions of fear of hypoglycemia, using modern test-theory methods, including item-response theory (IRT). RESEARCH DESIGN AND METHODS Surveys completed in four previous studies by 777 adults with type 1 diabetes were aggregated for analysis, with 289 subjects completing both subscales of the HFS-II and 488 subjects completing only the Worry subscale. The aggregated sample (53.3% female, 44.4% using insulin pumps) had a mean age of 41.9 years, diabetes duration of 23.8 years, HbA1c value of 7.7%, and 1.4 severe hypoglycemic episodes in the past year. Data analysis included exploratory factor analysis using polychoric correlations and IRT. Factors were analyzed for fit, trait-level locations, point-measure correlations, and separation values. RESULTS Internal and test-retest reliability was good, as well as convergent validity, as demonstrated by significant correlations with other measures of psychological distress. Scores were significantly higher in subjects who had experienced severe hypoglycemia in the past year. Factor analyses validated the two subscales of the HFS-II. Item analyses showed that 12 of 15 items on the Behavior subscale, and all of the items on the Worry subscale had good-fit statistics. CONCLUSIONS The HFS-II is a reliable and valid measure of the fear of hypoglycemia in adults with type 1 diabetes, and factor analyses and IRT support the two separate subscales of the survey. PMID:21346182

  5. Cannabinoid type-1 receptor signaling in central serotonergic neurons regulates anxiety-like behavior and sociability

    PubMed Central

    Häring, Martin; Enk, Vanessa; Aparisi Rey, Alejandro; Loch, Sebastian; Ruiz de Azua, Inigo; Weber, Tillmann; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat

    2015-01-01

    The endocannabinoid (eCB) system possesses neuromodulatory functions by influencing the release of various neurotransmitters, including γ-aminobutyric acid (GABA) and glutamate. A functional interaction between eCBs and the serotonergic system has already been suggested. Previously, we showed that cannabinoid type-1 (CB1) receptor mRNA and protein are localized in serotonergic neurons of the raphe nuclei, implying that the eCB system can modulate serotonergic functions. In order to substantiate the physiological role of the CB1 receptor in serotonergic neurons of the raphe nuclei, we generated serotonergic 5-hydroxytryptamine (5-HT) neuron-specific CB1 receptor-deficient mice, using the Cre/loxP system with a tamoxifen-inducible Cre recombinase under the control of the regulatory sequences of the tryptophan hydroxylase 2 gene (TPH2-CreERT2), thus, restricting the recombination to 5-HT neurons of the central nervous system (CNS). Applying several different behavioral paradigms, we revealed that mice lacking the CB1 receptor in serotonergic neurons are more anxious and less sociable than control littermates. Thus, we were able to show that functional CB1 receptor signaling in central serotonergic neurons modulates distinct behaviors in mice. PMID:26388750

  6. Type 1 metabotropic glutamate receptors (mGlu1) trigger the gating of GluD2 delta glutamate receptors

    PubMed Central

    Ady, Visou; Perroy, Julie; Tricoire, Ludovic; Piochon, Claire; Dadak, Selma; Chen, Xiaoru; Dusart, Isabelle; Fagni, Laurent; Lambolez, Bertrand; Levenes, Carole

    2014-01-01

    The orphan GluD2 receptor belongs to the ionotropic glutamate receptor family but does not bind glutamate. Ligand-gated GluD2 currents have never been evidenced, and whether GluD2 operates as an ion channel has been a long-standing question. Here, we show that GluD2 gating is triggered by type 1 metabotropic glutamate receptors, both in a heterologous expression system and in Purkinje cells. Thus, GluD2 is not only an adhesion molecule at synapses but also works as a channel. This gating mechanism reveals new properties of glutamate receptors that emerge from their interaction and opens unexpected perspectives regarding synaptic transmission and plasticity. PMID:24357660

  7. Distribution of angiotensin type 1a receptor containing cells in the brains of bacterial artificial chromosome transgenic mice

    PubMed Central

    Gonzalez, Andreina D.; Wang, Gang; Waters, Elizabeth M.; Gonzales, Keith L.; Speth, Robert C.; Van Kempen, Tracey A.; Marques-Lopes, Jose; Young, Colin N.; Butler, Scott D.; Davisson, Robin L.; Iadecola, Costantino; Pickel, Virginia M.; Pierce, Joseph P.; Milner, Teresa A.

    2012-01-01

    In the central nervous system, angiotensin II (AngII) binds to angiotensin type 1 receptors (AT1R) to affect autonomic and endocrine functions as well as learning and memory. However, understanding the function of cells containing AT1Rs has been restricted by limited availability of specific antisera, difficulties discriminating AT1 receptor-immunoreactive cells in many brain regions and, the identification of AT1R-containing neurons for physiological and molecular studies. Here, we demonstrate that an Agtr1a bacterial artificial chromosome (BAC) transgenic mouse line that expresses type A AT1Rs (AT1aRs) identified by enhanced green fluorescent protein (EGFP) overcomes these shortcomings. Throughout the brain, AT1aR-EGFP was detected in the nuclei and cytoplasm of cells, most of which were neurons. EGFP often extended into dendritic processes and could be identified either natively or with immunolabeling of EGFP. The distribution of AT1aR-EGFP cells in brain closely corresponded to that reported for AngII binding and AT1aR protein and mRNA. In particular, AT1aR-EGFP cells were in autonomic regions (e.g., hypothalamic paraventricular nucleus, central nucleus of the amygdala, parabrachial nucleus, nuclei of the solitary tract and rostral ventrolateral medulla) and in regions involved in electrolyte and fluid balance (i.e., subfornical organ) and learning and memory (i.e., cerebral cortex and hippocampus). Additionally, dual label electron microscopic studies in select brain areas demonstrate that cells containing AT1aR-EGFP colocalize with AT1R-immunoreactivity. Assessment of AngII-induced free radical production in isolated EGFP cells demonstrated feasibility of studies investigating AT1aR signaling ex vivo. These findings support the utility of Agtr1a BAC transgenic reporter mice for future studies understanding the role of AT1 receptor containing cells in brain function. PMID:22922351

  8. Defective insulin secretion in pancreatic β cells lacking type 1 IGF receptor

    PubMed Central

    Xuan, Shouhong; Kitamura, Tadahiro; Nakae, Jun; Politi, Katerina; Kido, Yoshiaki; Fisher, Peter E.; Morroni, Manrico; Cinti, Saverio; White, Morris F.; Herrera, Pedro L.; Accili, Domenico; Efstratiadis, Argiris

    2002-01-01

    Defective insulin secretion is a feature of type 2 diabetes that results from inadequate compensatory increase of β cell mass and impaired glucose-dependent insulin release. β cell proliferation and secretion are thought to be regulated by signaling through receptor tyrosine kinases. In this regard, we sought to examine the potential proliferative and/or antiapoptotic role of IGFs in β cells by tissue-specific conditional mutagenesis ablating type 1 IGF receptor (IGF1R) signaling. Unexpectedly, lack of functional IGF1R did not affect β cell mass, but resulted in age-dependent impairment of glucose tolerance, associated with a decrease of glucose- and arginine-dependent insulin release. These observations reveal a requirement of IGF1R-mediated signaling for insulin secretion. PMID:12370279

  9. RS rearrangement frequency as a marker of receptor editing in lupus and type 1 diabetes.

    PubMed

    Panigrahi, Anil K; Goodman, Noah G; Eisenberg, Robert A; Rickels, Michael R; Naji, Ali; Luning Prak, Eline T

    2008-12-22

    Continued antibody gene rearrangement, termed receptor editing, is an important mechanism of central B cell tolerance that may be defective in some autoimmune individuals. We describe a quantitative assay for recombining sequence (RS) rearrangement that we use to estimate levels of antibody light chain receptor editing in various B cell populations. RS rearrangement is a recombination of a noncoding gene segment in the kappa antibody light chain locus. RS rearrangement levels are highest in the most highly edited B cells, and are inappropriately low in autoimmune mouse models of systemic lupus erythematosus (SLE) and type 1 diabetes (T1D), including those without overt disease. Low RS rearrangement levels are also observed in human subjects with SLE or T1D.

  10. RS rearrangement frequency as a marker of receptor editing in lupus and type 1 diabetes

    PubMed Central

    Panigrahi, Anil K.; Goodman, Noah G.; Eisenberg, Robert A.; Rickels, Michael R.; Naji, Ali; Luning Prak, Eline T.

    2008-01-01

    Continued antibody gene rearrangement, termed receptor editing, is an important mechanism of central B cell tolerance that may be defective in some autoimmune individuals. We describe a quantitative assay for recombining sequence (RS) rearrangement that we use to estimate levels of antibody light chain receptor editing in various B cell populations. RS rearrangement is a recombination of a noncoding gene segment in the κ antibody light chain locus. RS rearrangement levels are highest in the most highly edited B cells, and are inappropriately low in autoimmune mouse models of systemic lupus erythematosus (SLE) and type 1 diabetes (T1D), including those without overt disease. Low RS rearrangement levels are also observed in human subjects with SLE or T1D. PMID:19075293

  11. Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus protect against diet-induced obesity

    PubMed Central

    de Kloet, Annette D.; Pati, Dipanwita; Wang, Lei; Hiller, Helmut; Sumners, Colin; Frazier, Charles J.; Seeley, Randy J.; Herman, James P.; Woods, Stephen C.; Krause, Eric G.

    2013-01-01

    Obesity is associated with increased levels of angiotensin-II (Ang-II), which activates angiotensin type-1a receptors (AT1a) to influence cardiovascular function and energy homeostasis. To test the hypothesis that specific AT1a within the brain control these processes, we utilized the Cre/lox system to delete AT1a from the paraventricular nucleus of the hypothalamus (PVN) of mice. PVN AT1a deletion did not affect body mass or adiposity when mice were maintained on standard chow. However, maintenance on a high-fat diet revealed a gene by environment interaction whereby mice lacking AT1a in the PVN had increased food intake and decreased energy expenditure that augmented body mass and adiposity relative to controls. Despite this increased adiposity, PVN AT1a deletion reduced systolic blood pressure, suggesting that this receptor population mediates the positive correlation between adiposity and blood pressure. Gene expression studies revealed that PVN AT1a deletion decreased hypothalamic expression of corticotrophin-releasing hormone and oxytocin, neuropeptides known to control food intake and sympathetic nervous system activity. Whole cell patch clamp recordings confirmed that PVN AT1a deletion eliminates responsiveness of PVN parvocellular neurons to Ang-II, and suggest that Ang-II responsiveness is increased in obese wild-type mice. Central inflammation is associated with metabolic and cardiovascular disorders and PVN AT1a deletion reduced indices of hypothalamic inflammation. Collectively, these studies demonstrate that PVN AT1a regulate energy balance during environmental challenges that promote metabolic and cardiovascular pathologies. The implication is that the elevated Ang-II that accompanies obesity serves as a negative feedback signal that activates PVN neurons to alleviate weight gain. PMID:23486953

  12. Expression of type 1 corticotropin-releasing factor receptor in the guinea pig enteric nervous system.

    PubMed

    Liu, Sumei; Gao, Xiang; Gao, Na; Wang, Xiyu; Fang, Xiucai; Hu, Hong-Zhen; Wang, Guo-Du; Xia, Yun; Wood, Jackie D

    2005-01-17

    Reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, electrophysiological recording, and intraneuronal injection of the neuronal tracer biocytin were integrated in a study of the functional expression of corticotropin-releasing factor (CRF) receptors in the guinea pig enteric nervous system. RT-PCR revealed expression of CRF1 receptor mRNA, but not CRF2, in both myenteric and submucosal plexuses. Immunoreactivity for the CRF1 receptor was distributed widely in the myenteric plexus of the stomach and small and large intestine and in the submucosal plexus of the small and large intestine. CRF1 receptor immunoreactivity was coexpressed with calbindin, choline acetyltransferase, and substance P in the myenteric plexus. In the submucosal plexus, CRF1 receptor immunoreactivity was found in neurons that expressed calbindin, substance P, choline acetyltransferase, or neuropeptide Y. Application of CRF evoked slowly activating depolarizing responses associated with elevated excitability in both myenteric and submucosal neurons. Histological analysis of biocytin-filled neurons revealed that both uniaxonal neurons with S-type electrophysiological behavior and neurons with AH-type electrophysiological behavior and Dogiel II morphology responded to CRF. The CRF-evoked depolarizing responses were suppressed by the CRF1/CRF2 receptor antagonist astressin and the selective CRF1 receptor antagonist NBI27914 and were unaffected by the selective CRF2 receptor antagonist antisauvagine-30. The findings support the hypothesis that the CRF1 receptor mediates the excitatory actions of CRF on neurons in the enteric nervous system. Actions on enteric neurons might underlie the neural mechanisms by which stress-related release of CRF in the periphery alters intestinal propulsive motor function, mucosal secretion, and barrier functions.

  13. Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus.

    PubMed

    Grus, Wendy E; Shi, Peng; Zhang, Jianzhi

    2007-10-01

    Vertebrate vomeronasal chemoreception plays important roles in many aspects of an organism's daily life, such as mating, territoriality, and foraging. Vomeronasal type 1 receptors (V1Rs) and vomeronasal type 2 receptors (V2Rs), 2 large families of G protein-coupled receptors, serve as vomeronasal receptors to bind to various pheromones and odorants. Contrary to the previous observations of reduced olfaction in aquatic and semiaquatic mammals, we here report the surprising finding that the platypus, a semiaquatic monotreme, has the largest V1R repertoire and nearly largest combined repertoire of V1Rs and V2Rs of all vertebrates surveyed, with 270 intact genes and 579 pseudogenes in the V1R family and 15 intact genes, 55 potentially intact genes, and 57 pseudogenes in the V2R family. Phylogenetic analysis shows a remarkable expansion of the V1R repertoire and a moderate expansion of the V2R repertoire in platypus since the separation of monotremes from placentals and marsupials. Our results challenge the view that olfaction is unimportant to aquatic mammals and call for further study into the role of vomeronasal reception in platypus physiology and behavior.

  14. Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration

    PubMed Central

    Lee, Bora; Lee, Seung-Min; Bahn, Young Jae; Lee, Kwang-Pyo; Kang, Moonkyung; Kim, Yeon-Soo; Woo, Sun-Hee; Lim, Jae-Young; Kim, Eunhee; Kwon, Ki-Sun

    2016-01-01

    Skeletal muscle mass and power decrease with age, leading to impairment of mobility and metabolism in the elderly. Ca2+ signaling is crucial for myoblast differentiation as well as muscle contraction through activation of transcription factors and Ca2+-dependent kinases and phosphatases. Ca2+ channels, such as dihydropyridine receptor (DHPR), two-pore channel (TPC) and inositol 1,4,5-triphosphate receptor (ITPR), function to maintain Ca2+ homeostasis in myoblasts. Here, we observed a significant decrease in expression of type 1 IP3 receptor (ITPR1), but not types 2 and 3, in aged mice skeletal muscle and isolated myoblasts, compared with those of young mice. ITPR1 knockdown using shRNA-expressing viruses in C2C12 myoblasts and tibialis anterior muscle of mice inhibited myotube formation and muscle regeneration after injury, respectively, a typical phenotype of aged muscle. This aging phenotype was associated with repression of muscle-specific genes and activation of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. ERK inhibition by U0126 not only induced recovery of myotube formation in old myoblasts but also facilitated muscle regeneration after injury in aged muscle. The conserved decline in ITPR1 expression in aged human skeletal muscle suggests utility as a potential therapeutic target for sarcopenia, which can be treated using ERK inhibition strategies. PMID:27658230

  15. Soluble complement receptor type 1 (CD35) in bronchoalveolar lavage of inflammatory lung diseases.

    PubMed

    Hamacher, J; Sadallah, S; Schifferli, J A; Villard, J; Nicod, L P

    1998-01-01

    Complement receptor type 1 (CR1) (CD35; C3b/C4b receptor) is a transmembrane protein of many haematopoietic cells. Once cleaved, soluble complement receptor type 1 (sCR1) exerts opposite effects as a powerful inhibitor of complement. This study addressed both the question of whether sCR1 was found in bronchoalveolar lavage (BAL) of normals and patients with various inflammatory disease, and its possible origin. In this retrospective study covering specimen and clinical data of 124 patients with acute and chronic inflammatory lung pathologies, BAL supernatants were analysed by enzyme-linked immunosorbent assay technique for sCR1. Correlations were made between the sCR1 levels obtained and the constituents of BAL. Human alveolar macrophages were cultivated in order to determine their secretory capacity of sCR1. Alveolar macrophages from normal subjects were shown to release sCR1 in vitro. In addition, sCR1 was present in BAL of normal controls and was significantly increased in acute inflammatory lung diseases such as acute respiratory distress syndrome (ARDS), bacterial and Pneumocystis carinii pneumonia, as well as in chronic inflammatory diseases such as interstitial lung fibrosis and sarcoidosis. In BAL of ARDS, bacterial, and P. carinii pneumonia, there was a good correlation between sCR1 and the absolute neutrophil counts. In sarcoidosis, a correlation was found with BAL lymphocyte counts. Serum sCR1 was not increased in patients compared to controls. Soluble complement receptor type 1 (sCR1) is found in the bronchoalveolar lavage in health as well as in acute and chronic inflammatory disease. Alveolar macrophages are capable of releasing sCR1 in vitro and may be the main physiological source of sCR1 in the alveoli. The good correlation between sCR1 and the absolute neutrophil or lymphocyte numbers in bronchoalveolar lavage of inflammatory diseases suggests a predominant role of leucocytes for the release of sCR1 in such conditions. The release of this

  16. Cannabinoid Type 1 Receptors Transiently Silence Glutamatergic Nerve Terminals of Cultured Cerebellar Granule Cells

    PubMed Central

    Ramírez-Franco, Jorge; Bartolomé-Martín, David; Alonso, Beatris; Torres, Magdalena; Sánchez-Prieto, José

    2014-01-01

    Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent activation of cannabinoid type 1 receptors (CB1Rs) mutes GABAergic terminals, although it is unclear if CB1Rs can also induce silencing at glutamatergic synapses. Cerebellar granule cells were transfected with VGLUT1-pHluorin to visualise the exo-endocytotic cycle. We found that prolonged stimulation (10 min) of cannabinoid receptors with the agonist HU-210 induces the silencing of previously active synapses. However, the presynaptic silencing induced by HU-210 is transient as it reverses after 20 min. cAMP with forskolin prevented CB1R-induced synaptic silencing, via activation of the Exchange Protein directly Activated by cAMP (Epac). Furthermore, Epac activation accelerated awakening of already silent boutons. Electron microscopy revealed that silencing was associated with synaptic vesicle (SV) redistribution within the nerve terminal, which diminished the number of vesicles close to the active zone of the plasma membrane. Finally, by combining functional and immunocytochemical approaches, we observed a strong correlation between the release capacity of the nerve terminals and RIM1α protein content, but not that of Munc13-1 protein. These results suggest that prolonged stimulation of cannabinoid receptors can transiently silence glutamatergic nerve terminals. PMID:24533119

  17. Ligand-induced internalization of the type 1 cholecystokinin receptor independent of recognized signaling activity.

    PubMed

    Cawston, Erin E; Harikumar, Kaleeckal G; Miller, Laurence J

    2012-02-01

    distinct from that being studied. This interpretation was further supported by the inability of peptide 309-323 to inhibit its d-Trp-OPE-stimulated internalization. Thus the 309-323 region of the type 1 CCK receptor affects antagonist-stimulated internalization of this receptor, although its mechanism and interacting partner are not yet clear.

  18. Activation of Lysophosphatidic Acid Receptor Type 1 Contributes to Pathophysiology of Spinal Cord Injury

    PubMed Central

    Santos-Nogueira, Eva; López-Serrano, Clara; Hernández, Joaquim; Lago, Natalia; Astudillo, Alma M.; Balsinde, Jesús; Estivill-Torrús, Guillermo; de Fonseca, Fernando Rodriguez; Chun, Jerold

    2015-01-01

    Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions that signals through six known G-protein-coupled receptors (LPA1–LPA6). A wide range of LPA effects have been identified in the CNS, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and development of neuropathic pain. However, little is known about the involvement of LPA in CNS pathologies. Herein, we demonstrate for the first time that LPA signaling via LPA1 contributes to secondary damage after spinal cord injury. LPA levels increase in the contused spinal cord parenchyma during the first 14 d. To model this potential contribution of LPA in the spinal cord, we injected LPA into the normal spinal cord, revealing that LPA induces microglia/macrophage activation and demyelination. Use of a selective LPA1 antagonist or mice lacking LPA1 linked receptor-mediated signaling to demyelination, which was in part mediated by microglia. Finally, we demonstrate that selective blockade of LPA1 after spinal cord injury results in reduced demyelination and improvement in locomotor recovery. Overall, these results support LPA–LPA1 signaling as a novel pathway that contributes to secondary damage after spinal cord contusion in mice and suggest that LPA1 antagonism might be useful for the treatment of acute spinal cord injury. SIGNIFICANCE STATEMENT This study reveals that LPA signaling via LPA receptor type 1 activation causes demyelination and functional deficits after spinal cord injury. PMID:26180199

  19. Tumor necrosis factor-alpha inhibits pre-osteoblast differentiation through its type-1 receptor.

    PubMed

    Abbas, Sabiha; Zhang, Yan-Hong; Clohisy, John C; Abu-Amer, Yousef

    2003-04-01

    Tumor necrosis factor-alpha (TNF) is a pro-inflammatory cytokine with a profound role in many skeletal diseases. The cytokine has been described as a mediator of bone loss in osteolysis and other inflammatory bone diseases. In addition to its known bone resorptive action, TNF reduces bone formation by inhibiting osteoblast differentiation. Using primary and transformed osteoblastic cells, we first document that TNF inhibits expression of alkaline phosphatase and matrix deposition, both considered markers of osteoblast differentiation. The effects are dose- and time-dependent. Core-binding factor A1 (cbfa1) is a transcription factor critical for osteoblast differentiation, and we show here that it is activated by the osteoblast differentiation agent, beta-glycerophosphate. Therefore, we investigated whether the inhibitory effects of TNF were associated with altered activity of this transcription factor. Using retardation assays, we show that TNF significantly inhibits cbfal activation by beta-glycerophosphate, manifested by reduced DNA-binding activity. Next, we turned to determine the signaling pathway by which TNF inhibits osteoblast differentiation. Utilizing animals lacking individual TNF receptors, we document that TNFr1 is required for transmitting the cytokine's inhibitory effect. In the absence of this receptor, TNF failed to impact all osteoblast differentiation markers tested. In summary, TNF blocks expression of osteoblast differentiation markers and inhibits beta-glycerophosphate-induced activation of the osteoblast differentiation factor cbfa1. Importantly, these effects are mediated via a mechanism requiring the TNF type-1 receptor.

  20. Structure and function of the type 1 insulin-like growth factor receptor.

    PubMed

    Adams, T E; Epa, V C; Garrett, T P; Ward, C W

    2000-07-01

    The type 1 insulin-like growth factor receptor (IGF-1R), a transmembrane tyrosine kinase, is widely expressed across many cell types in foetal and postnatal tissues. Activation of the receptor following binding of the secreted growth factor ligands IGF-1 and IGF-2 elicits a repertoire of cellular responses including proliferation, and the protection of cells from programmed cell death or apoptosis. As a result, signalling through the IGF-1R is the principal pathway responsible for somatic growth in foetal mammals, whereas somatic growth in postnatal animals is achieved through the synergistic interaction of growth hormone and the IGFs. Forced overexpression of the IGF-1R results in the malignant transformation of cultured cells: conversely, downregulation of IGF-1R levels can reverse the transformed phenotype of tumour cells, and may render them sensitive to apoptosis in vivo. Elevated levels of IGF-IR are observed in a variety of human tumour types, whereas epidemiological studies implicate the IGF-1 axis as a predisposing factor in the pathogenesis of human breast and prostate cancer. The IGF-1R has thus emerged as a therapeutic target for the development of antitumour agents. Recent progress towards the elucidation of the three-dimensional structure of the extracellular domain of the IGF-1R represents an opportunity for the rational assembly of small molecule antagonists of receptor function for clinical use.

  1. Blocking 5-HT2 receptor restores cardiovascular disorders in type 1 experimental diabetes

    PubMed Central

    García-Pedraza, José-Ángel; Ferreira-Santos, Pedro; Aparicio, Rubén; Montero, María-José; Morán, Asunción

    2016-01-01

    This study aimed to determine whether the serotonergic modulation, through selective 5-HT2 receptor blockade, restores cardiovascular disturbances in type 1 diabetic rats. Diabetes was induced by alloxan (150 mg/kg, s.c.) and maintained for 4 weeks. 5-HT2 receptor was blocked by sarpogrelate (30 mg/kg.day; 14 days; p.o.). Systolic blood pressure (SBP), heart rate (HR), glycaemia and body weight (BW) were monitored periodically. Animals were sacrificed at the end of the study and the heart, right kidney and thoracic aorta were removed; plasma samples were also obtained. Left ventricular hypertrophy index (LVH) and renal hypertrophy index (RH) were determined. Vascular function was studied in aorta rings; additionally, superoxide anion (O2•−) production (by lucigenin-enhanced chemiluminescence) and lipid peroxidation (by thiobarbituric acid reactive substances assay) were measured. Neither alloxan nor sarpogrelate treatments altered HR, LVH or endothelium-independent relaxation. SBP, glycaemia, BW, RH, O2•− production and lipid peroxidation were significantly altered in diabetic animals compared with controls. Sarpogrelate treatment considerably decreased SBP, RH, O2•− production and lipid peroxidation. Endothelium-dependent relaxation was severely reduced in diabetic animal aortas compared to controls; sarpogrelate treatment markedly improved it. Our outcomes show that selectively blocking 5-HT2 receptors has beneficial effects on impaired cardiovascular parameters in diabetes. PMID:27659784

  2. [SERUM LEVEL OF ENDOTHELIAL MONOCYTE ACTIVATING POLYPEPTIDE-II IN CHILDHOOD-ONSET TYPE 1 DIABETIC PATIENTS AND OBESE ADOLESCENTS].

    PubMed

    Mogylnytska, L A

    2015-01-01

    The atherosclerotic process begins in adolescence, and its progression is determined by the same risk factors as in adults. Endothelial monocyte activating polypeptide-II (EMAP-II) is a multifunctional cytokine with proinflammatory and antiangiogenetic activity that may play a pathogenic role in the development of endothelial dysfunction and atherosclerosis. The aim of our study was to determine the serum level of EMAP-II in childhood-onset type 1 diabetic patients and obese adolescents. We found increased of serum level of EMAP-II in childhood-onset type 1 diabetic patients and in patients with obesity that do not suffer from diabetes. Also, the level of EMAP-II correlated with the serum level of glycosylated hemoglobin and blood glucose, and key markers of lipid metabolism, body mass index. Increased serum level of EMAP-II may be one of the pathway of endothelial dysfunction in type 1 diabetes.

  3. Receptor for Advanced Glycation End Products (RAGE) in Type 1 Diabetes Pathogenesis.

    PubMed

    Leung, Sherman S; Forbes, Josephine M; Borg, Danielle J

    2016-10-01

    The receptor for advanced glycation end products (RAGE) is a novel protein increasingly studied in the pathogenesis of type 1 diabetes (T1D). RAGE is expressed by several immune cell types, including T cells, antigen-presenting cells, endothelial cells, and the endocrine cells of the pancreatic islets. RAGE binds various ligands including advanced glycation end products (AGEs), high-mobility group box protein 1 (HMGB1), S100 proteins, β-amyloid, β-sheet fibrils, and lipopolysaccharide. AGEs are a particularly interesting ligand because their exogenous introduction into the body can be accelerated by the consumption of AGE-rich processed foods. This review will detail RAGE isoforms and its ligands and discuss how RAGE binding on the aforementioned cells could be linked to T1D pathogenesis.

  4. Rimonabant: a cannabinoid receptor type 1 blocker for management of multiple cardiometabolic risk factors.

    PubMed

    Gelfand, Eli V; Cannon, Christopher P

    2006-05-16

    Rimonabant is a first selective blocker of the cannabinoid receptor type 1 (CB1) being developed for the treatment of multiple cardiometabolic risk factors, including abdominal obesity and smoking. In four large trials, after one year of treatment, rimonabant 20 mg led to greater weight loss and reduction in waist circumference compared with placebo. Therapy with rimonabant is also associated with favorable changes in serum lipid levels and an improvement in glycemic control in prediabetes patients and in type 2 diabetic patients. At the same dose, rimonabant significantly increased cigarette smoking quit rates as compared with placebo. Rimonabant seems to be well tolerated, with a primary side effect of mild nausea. As an agent with a novel mechanism of action, rimonabant has a potential to be a useful adjunct to lifestyle and behavior modification in treatment of multiple cardiometabolic risk factors, including abdominal obesity and smoking.

  5. Altered pattern of cannabinoid type 1 receptor expression in adipose tissue of dysmetabolic and overweight patients.

    PubMed

    Sarzani, Riccardo; Bordicchia, Marica; Marcucci, Pierfrancesco; Bedetta, Samuele; Santini, Silvia; Giovagnoli, Andrea; Scappini, Lorena; Minardi, Daniele; Muzzonigro, Giovanni; Dessì-Fulgheri, Paolo; Rappelli, Alessandro

    2009-03-01

    In overweight patients (OW), the increased peripheral activity of the endocannabinoid system in visceral adipose tissue (VAT) may be mediated by cannabinoid type 1 (CB1) receptor expression. We determined whether CB1 receptor splice variants and messenger RNA (mRNA) levels in perirenal and subcutaneous adipose tissues are associated with obesity and metabolic syndrome (MetS). Gene expression with multiple-primers real-time polymerase chain reaction (TaqMan; Applied Biosystem, Weiterstadt, Germany) was performed to study VAT and paired subcutaneous adipose tissue (SAT) mRNA from 36 consecutive patients undergoing nephrectomy. Cannabinoid type 1A and CB1E mRNAs variants with the longer version of exon 4 were expressed. The CB1 expression in perirenal VAT significantly correlated with body mass index (BMI). Paired subcutaneous/perirenal samples from normal-weight patients (BMI < 25 kg/m(2)) showed higher CB1 expression in SAT (P = .002), whereas in OW (BMI > or = 25 kg/m(2)), the higher CB1 expression was in VAT (P = .038). In unpaired samples, SAT of normal-weight patients had significantly higher CB1 mRNA levels compared with SAT of OW, whereas higher CB1 expression (P = .009) was found in VAT of OW (n = 25). Overweight patients with increased visceral CB1 expression had higher waist circumference (P < .01), insulin (P < .01), and homeostasis model assessment index (P < .01). In addition, patients with the MetS (n = 22) showed higher CB1 expression in perirenal adipose tissues (P = .007). Visceral adipose CB1 expression correlated with BMI. Overweight patients and those with MetS showed a CB1 expression pattern supporting a CB1-mediated overactivity of the endocannabinoid system in human VAT.

  6. Differential induction of Toll-like receptors & type 1 interferons by Sabin attenuated & wild type 1 polioviruses in human neuronal cells

    PubMed Central

    Mohanty, Madhu C.; Deshpande, Jagadish M.

    2013-01-01

    Background & objectives: Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains) do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV) and Sabin attenuated type 1 poliovirus (Sabin PV) in cultured human neuronal cells. Methods: By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs) and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH) infected with Sabin PV and wild PV. Results: Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5) m-RNA in neuronal cells at the beginning of infection (up to 4 h) as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Interpretation & conclusions: Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies. PMID:24056597

  7. Angiotensin II receptors in testes

    SciTech Connect

    Millan, M.A.; Aguilera, G.

    1988-05-01

    Receptors for angiotensin II (AII) were identified and characterized in testes of rats and several primate species. Autoradiographic analysis of the binding of 125I-labeled (Sar1,Ile8)AII to rat, rhesus monkey, cebus monkey, and human testicular slide-mounted frozen sections indicated specific binding to Leydig cells in the interstitium. In rat collagenase-dispersed interstitial cells fractionated by Percoll gradient, AII receptor content was parallel to that of hCG receptors, confirming that the AII receptors are in the Leydig cells. In rat dispersed Leydig cells, binding was specific for AII and its analogs and of high affinity (Kd, 4.8 nM), with a receptor concentration of 15 fmol/10(6) cells. Studies of AII receptors in rat testes during development reveals the presence of high receptor density in newborn rats which decreases toward the adult age (4934 +/- 309, 1460 +/- 228, 772 +/- 169, and 82 +/- 12 fmol/mg protein at 5, 15, 20, and 30 days of age, respectively) with no change in affinity. At all ages receptors were located in the interstitium, and the decrease in binding was parallel to the decrease in the interstitial to tubular ratio observed with age. AII receptor properties in membrane-rich fractions from prepuberal testes were similar in the rat and rhesus monkey. Binding was time and temperature dependent, reaching a plateau at 60 min at 37 C, and was increased by divalent cations, EGTA, and dithiothreitol up to 0.5 mM. In membranes from prepuberal monkey testes, AII receptors were specific for AII analogs and of high affinity (Kd, 4.2 nM) with a receptor concentration of 7599 +/- 1342 fmol/mg protein. The presence of AII receptors in Leydig cells in rat and primate testes in conjunction with reports of the presence of other components of the renin-angiotensin system in the testes suggests that the peptide has a physiological role in testicular function.

  8. Lack of neurotensin type 1 receptor facilitates contextual fear memory depending on the memory strength.

    PubMed

    Yamada, Daisuke; Wada, Etsuko; Amano, Taiju; Wada, Keiji; Sekiguchi, Masayuki

    2010-09-01

    Neurotensin is known to have antipsychotic-like behavioral and neurochemical effects, but its participation in fear memory has not been fully elucidated. Here, we report that a lack of type 1 neurotensin receptor (Ntsr1) increases the behavioral fear response elicited by weak fear memory. Adult Ntsr1-knockout (KO) mice and their wild-type (WT) littermates were compared in contextual fear conditioning. The mice were exposed twice for 3min to the context 24 and 48h after conditioning (first and second exposure, respectively), and freezing response of mice at the exposure was measured to evaluate fear memory. Ntsr1-KO mice showed a higher freezing rate than WT mice at both first and second exposures under the condition where a relatively weak unconditioned stimulus (footshock) was applied and thus elicited a relatively lower freezing rate. The difference in the first exposure between Ntsr1-KO and WT mice disappeared under the condition where a more intense unconditioned stimulus was used. The enhancement of freezing response in Ntsr1-KO mice at second exposure was abolished by propranolol, a beta-adrenergic blocker that suppresses fear memory reconsolidation, and suppressed by MK-801, an NMDA receptor antagonist. These results suggest that Ntsr1 plays inhibitory roles in weak fear memory. Copyright 2010 Elsevier Inc. All rights reserved.

  9. In silico mapping of allosteric ligand binding sites in type-1 cannabinoid receptor.

    PubMed

    Sabatucci, Annalaura; Tortolani, Daniel; Dainese, Enrico; Maccarrone, Mauro

    2017-08-17

    The recent resolution of the crystal structure of type-1 cannabinoid receptor (CB1 ), and the discovery of novel modulators for this target open the way to the possibility of elucidating the structural requirements for CB1 binding, and thereby facilitate a rational drug design. Compounds that target the orthosteric site of CB1 in some cases have shown side effects. Allosteric modulators could potentially avoid these side effects by influencing binding and/or efficacy of orthosteric ligands. Here, we summarize and compare previous data on different putative allosteric binding sites observed in CB1 homology models with an in silico docking study of the recently published crystal structure of the same receptor on endogenous and natural hydrophobic ligands that act as positive allosteric modulators (PAMs) and negative allosteric modulators (NAMs) of CB1 . In particular, a lipid-exposed pocket targeted by most of the tested molecules is reported and discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Statins Increase Plasminogen Activator Inhibitor Type 1 Gene Transcription through a Pregnane X Receptor Regulated Element.

    PubMed

    Stanley, Frederick M; Linder, Kathryn M; Cardozo, Timothy J

    2015-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a multifunctional protein that has important roles in inflammation and wound healing. Its aberrant regulation may contribute to many disease processes such as heart disease. The PAI-1 promoter is responsive to multiple inputs including cytokines, growth factors, steroids and oxidative stress. The statin drugs, atorvastatin, mevastatin and rosuvastatin, increased basal and stimulated expression of the PAI-1 promoter 3-fold. A statin-responsive, nuclear hormone response element was previously identified in the PAI-1 promoter, but it was incompletely characterized. We characterized this direct repeat (DR) of AGGTCA with a 3-nucleotide spacer at -269/-255 using deletion and directed mutagenesis. Deletion or mutation of this element increased basal transcription from the promoter suggesting that it repressed PAI-1 transcription in the unliganded state. The half-site spacing and the ligand specificity suggested that this might be a pregnane X receptor (PXR) responsive element. Computational molecular docking showed that atorvastatin, mevastatin and rosuvastatin were structurally compatible with the PXR ligand-binding pocket in its agonist conformation. Experiments with Gal4 DNA binding domain fusion proteins showed that Gal4-PXR was activated by statins while other DR + 3 binding nuclear receptor fusions were not. Overexpression of PXR further enhanced PAI-1 transcription in response to statins. Finally, ChIP experiments using Halo-tagged PXR and RXR demonstrated that both components of the PXR-RXR heterodimer bound to this region of the PAI-1 promoter.

  11. Statins Increase Plasminogen Activator Inhibitor Type 1 Gene Transcription through a Pregnane X Receptor Regulated Element

    PubMed Central

    Stanley, Frederick M.; Linder, Kathryn M.; Cardozo, Timothy J.

    2015-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a multifunctional protein that has important roles in inflammation and wound healing. Its aberrant regulation may contribute to many disease processes such as heart disease. The PAI-1 promoter is responsive to multiple inputs including cytokines, growth factors, steroids and oxidative stress. The statin drugs, atorvastatin, mevastatin and rosuvastatin, increased basal and stimulated expression of the PAI-1 promoter 3-fold. A statin-responsive, nuclear hormone response element was previously identified in the PAI-1 promoter, but it was incompletely characterized. We characterized this direct repeat (DR) of AGGTCA with a 3-nucleotide spacer at -269/-255 using deletion and directed mutagenesis. Deletion or mutation of this element increased basal transcription from the promoter suggesting that it repressed PAI-1 transcription in the unliganded state. The half-site spacing and the ligand specificity suggested that this might be a pregnane X receptor (PXR) responsive element. Computational molecular docking showed that atorvastatin, mevastatin and rosuvastatin were structurally compatible with the PXR ligand-binding pocket in its agonist conformation. Experiments with Gal4 DNA binding domain fusion proteins showed that Gal4-PXR was activated by statins while other DR + 3 binding nuclear receptor fusions were not. Overexpression of PXR further enhanced PAI-1 transcription in response to statins. Finally, ChIP experiments using Halo-tagged PXR and RXR demonstrated that both components of the PXR-RXR heterodimer bound to this region of the PAI-1 promoter. PMID:26379245

  12. The dynamic nature of type 1 cannabinoid receptor (CB1) gene transcription

    PubMed Central

    Laprairie, RB; Kelly, MEM; Denovan-Wright, EM

    2012-01-01

    The type 1 cannabinoid receptor (CB1) is an integral component of the endocannabinoid system that modulates several functions in the CNS and periphery. The majority of our knowledge of the endocannabinoid system involves ligand–receptor binding, mechanisms of signal transduction, and protein–protein interactions. In contrast, comparatively little is known about regulation of CB1 gene expression. The levels and anatomical distribution of CB1 mRNA and protein are developmental stage-specific and are dysregulated in several pathological conditions. Moreover, exposure to a variety of drugs, including cannabinoids themselves, alters CB1 gene expression and mRNA levels. As such, alterations in CB1 gene expression are likely to affect the optimal response to cannabinoid-based therapies, which are being developed to treat a growing number of conditions. Here, we will examine the regulation of CB1 mRNA levels and the therapeutic potential inherent in manipulating expression of this gene. Linked Articles This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8 PMID:22924606

  13. The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity.

    PubMed

    Wang, Yaya; Shaked, Iftach; Stanford, Stephanie M; Zhou, Wenbo; Curtsinger, Julie M; Mikulski, Zbigniew; Shaheen, Zachary R; Cheng, Genhong; Sawatzke, Kristy; Campbell, Amanda M; Auger, Jennifer L; Bilgic, Hatice; Shoyama, Fernanda M; Schmeling, David O; Balfour, Henry H; Hasegawa, Kiminori; Chan, Andrew C; Corbett, John A; Binstadt, Bryce A; Mescher, Matthew F; Ley, Klaus; Bottini, Nunzio; Peterson, Erik J

    2013-07-25

    Immune cells sense microbial products through Toll-like receptors (TLR), which trigger host defense responses including type 1 interferons (IFNs) secretion. A coding polymorphism in the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is a susceptibility allele for human autoimmune and infectious disease. We report that Ptpn22 selectively regulated type 1 IFN production after TLR engagement in myeloid cells. Ptpn22 promoted host antiviral responses and was critical for TLR agonist-induced, type 1 IFN-dependent suppression of inflammation in colitis and arthritis. PTPN22 directly associated with TNF receptor-associated factor 3 (TRAF3) and promotes TRAF3 lysine 63-linked ubiquitination. The disease-associated PTPN22W variant failed to promote TRAF3 ubiquitination, type 1 IFN upregulation, and type 1 IFN-dependent suppression of arthritis. The findings establish a candidate innate immune mechanism of action for a human autoimmunity "risk" gene in the regulation of host defense and inflammation.

  14. Enhanced Functional Activity of the Cannabinoid Type-1 Receptor Mediates Adolescent Behavior

    PubMed Central

    Kasanetz, Fernando; Lynch, Diane L.; Friemel, Chris M.; Lassalle, Olivier; Hurst, Dow P.; Steindel, Frauke; Monory, Krisztina; Schäfer, Carola; Miederer, Isabelle; Leweke, F. Markus; Schreckenberger, Mathias; Lutz, Beat; Reggio, Patricia H.; Manzoni, Olivier J.; Spanagel, Rainer

    2015-01-01

    Adolescence is characterized by drastic behavioral adaptations and comprises a particularly vulnerable period for the emergence of various psychiatric disorders. Growing evidence reveals that the pathophysiology of these disorders might derive from aberrations of normal neurodevelopmental changes in the adolescent brain. Understanding the molecular underpinnings of adolescent behavior is therefore critical for understanding the origin of psychopathology, but the molecular mechanisms that trigger adolescent behavior are unknown. Here, we hypothesize that the cannabinoid type-1 receptor (CB1R) may play a critical role in mediating adolescent behavior because enhanced endocannabinoid (eCB) signaling has been suggested to occur transiently during adolescence. To study enhanced CB1R signaling, we introduced a missense mutation (F238L) into the rat Cnr1 gene that encodes for the CB1R. According to our hypothesis, rats with the F238L mutation (Cnr1F238L) should sustain features of adolescent behavior into adulthood. Gain of function of the mutated receptor was demonstrated by in silico modeling and was verified functionally in a series of biochemical and electrophysiological experiments. Mutant rats exhibit an adolescent-like phenotype during adulthood compared with wild-type littermates, with typical high risk/novelty seeking, increased peer interaction, enhanced impulsivity, and augmented reward sensitivity for drug and nondrug reward. Partial inhibition of CB1R activity in Cnr1F238L mutant rats normalized behavior and led to a wild-type phenotype. We conclude that the activity state and functionality of the CB1R is critical for mediating adolescent behavior. These findings implicate the eCB system as an important research target for the neuropathology of adolescent-onset mental health disorders. SIGNIFICANCE STATEMENT We present the first rodent model with a gain-of-function mutation in the cannabinoid type-1 receptor (CB1R). Adult mutant rats exhibit an adolescent

  15. Aberrant Methylation Inactivates Somatostatin and Somatostatin Receptor Type 1 in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Misawa, Kiyoshi; Misawa, Yuki; Kondo, Haruki; Mochizuki, Daiki; Imai, Atsushi; Fukushima, Hirofumi; Uehara, Takayuki; Kanazawa, Takeharu; Mineta, Hiroyuki

    2015-01-01

    Purpose The aim of this study was to define somatostatin (SST) and somatostatin receptor type 1 (SSTR1) methylation profiles for head and neck squamous cell carcinoma (HNSCC) tumors at diagnosis and follow up and to evaluate their prognostic significance and value as a biomarker. Methods Gene expression was measured by quantitative RT-PCR. Promoter methylation status was determined by quantitative methylation-specific PCR (Q-MSP) in HNSCC. Results Methylation was associated with transcription inhibition. SST methylation in 81% of HNSCC tumor specimens significantly correlated with tumor size (P = 0.043), stage (P = 0.008), galanin receptor type 2 (GALR2) methylation (P = 0.041), and tachykinin-1 (TAC1) (P = 0.040). SSTR1 hypermethylation in 64% of cases was correlated with tumor size (P = 0.037), stage (P = 0.037), SST methylation (P < 0.001), and expression of galanin (P = 0.03), GALR2 (P = 0.014), TAC1 (P = 0.023), and tachykinin receptor type 1 (TACR1) (P = 0.003). SST and SSTR1 promoter hypermethylation showed highly discriminating receiver operator characteristic curve profiles, which clearly distinguished HNSCC from adjacent normal mucosal tissues. Concurrent hypermethylation of galanin and SSTR1 promoters correlated with reduced disease-free survival (log-rank test, P = 0.0001). Among patients with oral cavity and oropharynx cancer, methylation of both SST and SSTR1 promoters correlated with reduced disease-free survival (log-rank test, P = 0.028). In multivariate logistic-regression analysis, concomitant methylation of galanin and SSTR1 was associated with an odds ratio for recurrence of 12.53 (95% CI, 2.62 to 59.8; P = 0.002). Conclusions CpG hypermethylation is a likely mechanism of SST and SSTR1 gene inactivation, supporting the hypothesis that SST and SSTR1 play a role in the tumorigenesis of HNSCC and that this hypermethylation may serve as an important biomarker. PMID:25734919

  16. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    SciTech Connect

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  17. Activation of Lysophosphatidic Acid Receptor Type 1 Contributes to Pathophysiology of Spinal Cord Injury.

    PubMed

    Santos-Nogueira, Eva; López-Serrano, Clara; Hernández, Joaquim; Lago, Natalia; Astudillo, Alma M; Balsinde, Jesús; Estivill-Torrús, Guillermo; de Fonseca, Fernando Rodriguez; Chun, Jerold; López-Vales, Rubèn

    2015-07-15

    Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions that signals through six known G-protein-coupled receptors (LPA1-LPA6). A wide range of LPA effects have been identified in the CNS, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and development of neuropathic pain. However, little is known about the involvement of LPA in CNS pathologies. Herein, we demonstrate for the first time that LPA signaling via LPA1 contributes to secondary damage after spinal cord injury. LPA levels increase in the contused spinal cord parenchyma during the first 14 d. To model this potential contribution of LPA in the spinal cord, we injected LPA into the normal spinal cord, revealing that LPA induces microglia/macrophage activation and demyelination. Use of a selective LPA1 antagonist or mice lacking LPA1 linked receptor-mediated signaling to demyelination, which was in part mediated by microglia. Finally, we demonstrate that selective blockade of LPA1 after spinal cord injury results in reduced demyelination and improvement in locomotor recovery. Overall, these results support LPA-LPA1 signaling as a novel pathway that contributes to secondary damage after spinal cord contusion in mice and suggest that LPA1 antagonism might be useful for the treatment of acute spinal cord injury. This study reveals that LPA signaling via LPA receptor type 1 activation causes demyelination and functional deficits after spinal cord injury. Copyright © 2015 the authors 0270-6474/15/3510224-12$15.00/0.

  18. Expression of Interleukin-1 and Interleukin-1 Receptors Type 1 and Type 2 in Hodgkin Lymphoma.

    PubMed

    Oelmann, Elisabeth; Stein, Harald; Berdel, Wolfgang E; Herbst, Hermann

    2015-01-01

    Signaling through the IL-1-receptor type 1 (IL-1R1), IL-1 is required for initiation and maintenance of diverse activities of the immune system. A second receptor, IL-1R2, blocks IL-1 signal transduction. We studied expression of IL-1beta, IL-1R1, and IL-1R2 in 17 Hodgkin lymphomas (HL) by in situ hybridization (ISH). IL-1beta expressing cells, morphologically consistent with endothelial cells and fibroblasts, occurred in all HL tissues with elevated transcript levels in areas of active fibrosis. Hodgkin and Reed-Sternberg (HRS) cells of all cases expressed low IL-1R1 transcript levels in some tumor cells, and high levels of IL-1R2 in large proportions of HRS cells. Only few bystander cells showed low levels of IL-1R1 and IL-1R2 RNA. Supernatants of 4 out of 7 HL-derived cell lines contained soluble IL-1R2 protein at high levels. HL patient sera carried variably amounts of IL-1R2 protein with significantly increased titers in patients with active disease compared to patients in complete remission and control individuals without HL. Western blots and co-immunoprecipitations showed binding of the IL-1R2 to the intracellular IL-1R-accessory protein (IL-1IRAcP). These data suggest functions of the IL-1R2 as a "decoy-receptor" sequestrating paracrine IL-1 extracellularly and intracellularly by engaging IL-1IRAcP, thus depriving IL1-R1 molecules of their extracellular and intracellular ligands. Expression of IL1-R2 by HRS cells seems to contribute to local and systemic modulation of immune function in HL.

  19. Angiotensin type 1a receptor deficiency decreases amyloid β-protein generation and ameliorates brain amyloid pathology

    PubMed Central

    Liu, Junjun; Liu, Shuyu; Matsumoto, Yukino; Murakami, Saki; Sugakawa, Yusuke; Kami, Ayako; Tanabe, Chiaki; Maeda, Tomoji; Michikawa, Makoto; Komano, Hiroto; Zou, Kun

    2015-01-01

    Alzheimer’s disease is characterized by neuronal loss and cerebral accumulation of amyloid-β protein (Aβ) and lowering the generation of Aβ is a pivotal approach in the strategy of Alzheimer’s disease treatment. Midlife hypertension is a major risk factor for the future onset of sporadic Alzheimer’s disease and the use of some antihypertensive drugs may decrease the incidence of Alzheimer’s disease. However, it is largely unknown how the blood pressure regulation system is associated with the pathogenesis of Alzheimer’s disease. Here we found that the deficiency of angiotensin type 1a receptor (AT1a), a key receptor for regulating blood pressure, significantly decreased Aβ generation and amyloid plaque formation in a mouse model of Alzheimer’s disease. The lack of AT1a inhibited the endocleavage of presenilin-1 (PS1), which is essential for γ-secretase complex formation and Aβ generation. Notably, the ligand of AT1a, angiotensin II, enhanced Aβ generation, PS1 endocleavage and γ-secretase complex formation. Our results suggest that AT1a activation is closely associated with Aβ generation and brain amyloid accumulation by regulating γ-secretase complex formation. Thus, removal of life style factors or stresses that stimulate AT1a to elevate blood pressure may decrease Aβ generation and brain amyloid accumulation, thereby preventing the pathogenesis of Alzheimer’s disease. PMID:26154270

  20. Overactivation of corticotropin-releasing factor receptor type 1 and aquaporin-4 by hypoxia induces cerebral edema

    PubMed Central

    Chen, Shao-Jun; Yang, Jia-Fang; Kong, Fan-Ping; Ren, Ji-Long; Hao, Ke; Li, Min; Yuan, Yuan; Chen, Xin-Can; Yu, Ri-Sheng; Li, Jun-Fa; Leng, Gareth; Chen, Xue-Qun; Du, Ji-Zeng

    2014-01-01

    Cerebral edema is a potentially life-threatening illness, but knowledge of its underlying mechanisms is limited. Here we report that hypobaric hypoxia induces rat cerebral edema and neuronal apoptosis and increases the expression of corticotrophin releasing factor (CRF), CRF receptor type 1 (CRFR1), aquaporin-4 (AQP4), and endothelin-1 (ET-1) in the cortex. These effects, except for the increased expression of CRF itself, could all be blocked by pretreatment with an antagonist of the CRF receptor CRFR1. We also show that, in cultured primary astrocytes: (i) both CRFR1 and AQP4 are expressed; (ii) exogenous CRF, acting through CRFR1, triggers signaling of cAMP/PKA, intracellular Ca2+, and PKCε; and (iii) the up-regulated cAMP/PKA signaling contributes to the phosphorylation and expression of AQP4 to enhance water influx into astrocytes and produces an up-regulation of ET-1 expression. Finally, using CHO cells transfected with CRFR1+ and AQP4+, we show that transfected CRFR1+ contributes to edema via transfected AQP4+. In conclusion, hypoxia triggers cortical release of CRF, which acts on CRFR1 to trigger signaling of cAMP/PKA in cortical astrocytes, leading to activation of AQP4 and cerebral edema. PMID:25146699

  1. Two functional growth hormone secretagogue receptor (ghrelin receptor) type 1a and 2a in goldfish, Carassius auratus.

    PubMed

    Kaiya, Hiroyuki; Miura, Tohru; Matsuda, Kouhei; Miyazato, Mikiya; Kangawa, Kenji

    2010-10-07

    Here we report the identification and characterization of ghrelin (GRLN) receptors in goldfish Carassius auratus. We identified four distinct mRNAs generated from four different genes. Those were roughly divided into two types, based on the number of amino acids and amino acid sequence similarity; one composed of 360-amino acids, which is similar to zebrafish GHS-R1a (showing 94-96% identity) and the other encodes a 366- or 367-amino acid protein, which demonstrated 95% identity to zebrafish GHS-R2a. We therefore designated these proteins as goldfish GHS-R1a type 1 (1a-1) and type 2 (1a-2) and GHS-R2a type 1 (2a-1) and type 2 (2a-2). GHS-R1a and 2a proteins share 74% sequence identity with each other. In functional analyses, three of these four receptors (except 2a-2 receptor), were activated by goldfish GRLN or GHS. The GRLN activity was inhibited by [D-Lys(3)] GHRP-6 but not by des-acyl goldfish GRLN. Expression levels of GHS-R1a mRNA were 2- to 50-folds higher than those of GHS-R2a, and GHS-R2a-2 mRNA expression was 1/25 of GHS-R2a-1. GHS-R1a-1 and 1a-2 mRNAs were mainly detected in the central nervous system (CNS), pituitary, liver, intestine and testis, whereas GHS-R2a-1 and 2a-2 mRNAs were predominantly expressed in the CNS, body kidney, ovary and testis. A 7-day fasting led to a decrease in GHS-R1a-1 mRNA expression in the vagal lobe, but stimulated GHS-R1a-2 mRNA in the liver, although no change was observed in GHS-R2a mRNAs. These results indicate that goldfish has four GHS-Ra that is divided into two types, 1a and 2a; and each receptor expression is separately regulated with GHS-R1a acts on energy metabolism.

  2. Targeting Anti-Insulin B Cell Receptors Improves Receptor Editing in Type 1 Diabetes-Prone Mice1, 2, 3

    PubMed Central

    Bonami, Rachel H.; Thomas, James W.

    2015-01-01

    Autoreactive B lymphocytes that commonly arise in the developing repertoire can be salvaged by receptor editing, a central tolerance mechanism that alters BCR specificity through continued L chain rearrangement. It is unknown whether autoantigens with weak cross-linking potential, such as insulin, elicit receptor editing, or if this process is dysregulated in related autoimmunity. To resolve these issues, an editing-competent model was developed in which anti-insulin Vκ125 was targeted to the Igκ locus and paired with anti-insulin VH125Tg. Physiologic, circulating insulin increased RAG-2 expression and was associated with BCR replacement that eliminated autoantigen recognition in a proportion of developing anti-insulin B lymphocytes. The proportion of anti-insulin B cells that underwent receptor editing was reduced in the type 1 diabetes-prone NOD strain relative to a non-autoimmune strain. Resistance to editing was associated with increased surface IgM expression on immature (but not transitional or mature) anti-insulin B cells in the NOD strain. The actions of mAb123 on central tolerance were also investigated, as selective targeting of insulin-occupied BCR by mAb123 eliminates anti-insulin B lymphocytes and prevents type 1 diabetes. Autoantigen-targeting by mAb123 increased RAG-2 expression and dramatically enhanced BCR replacement in newly developed B lymphocytes. Administering F(ab’)2123 induced IgM downregulation and reduced the frequency of anti-insulin B lymphocytes within the polyclonal repertoire of VH125Tg/NOD mice, suggesting enhanced central tolerance by direct BCR interaction. These findings indicate that weak or faulty checkpoints for central tolerance can be overcome by autoantigen-specific immunomodulatory therapy. PMID:26432895

  3. Role of the TNF-α receptor type 1 on prostate carcinogenesis in knockout mice.

    PubMed

    Galheigo, Maria Raquel Unterkircher; Cruz, Amanda Rodrigues; Cabral, Ágata Silva; Faria, Paulo Rogério; Cordeiro, Renato Simões; Silva, Marcelo José Barbosa; Tomiosso, Tatiana Carla; Gonçalves, Bianca Fachim; Pinto-Fochi, Maria Etelvina; Taboga, Sebastião Roberto; Góes, Rejane Maira; Ribeiro, Daniele Lisboa

    2016-07-01

    TNF-α is a key cytokine involved in prostate carcinogenesis and is mediated by the TNF-α receptor type 1 (TNFR-1). This receptor triggers two opposite pathways: cell death or cell survival and presents a protective or stimulator role in cancer. Thus, the purpose of this study was to evaluate the role of TNF signaling in chemically induced prostate carcinogenesis in mice. C57bl/6 wild type (WT) and p55 TNFR-1 knockout mice (KO) were treated with mineral oil (control) or N-methyl N-nitrosurea (MNU) in association with testosterone (MNU+T, single injection of 40 mg/kg and weekly injection 2 mg/kg, respectively) over the course of 6 months. After this induction period, prostate samples were processed for histological and biochemical analysis. MNU+T treatment led to the development of prostate intraepithelial neoplasia (PIN) and adenocarcinoma (PCa) in both WT and KO animals; however, the incidence of PCa was lower in KO group than in WT. Cell proliferation analysis showed that PCNA levels were significantly lower in the KO group, even after carcinogenesis induction. Furthermore, the prostate of KO animals had lower levels of p65 and p-mTOR after treatment with MNU+T than WT. There was also a decrease in prostate androgen receptor levels after induction of carcinogenesis in both KO and WT mice. Regarding the extracellular matrix in the prostate, KO mice had higher levels of fibronectin and lower levels of matrix metalloproteinase 2 (MMP2) after carcinogenesis. Finally, there was a similar increase in apoptosis in both groups after carcinogenesis, indicating that the TNAFr1 pathway in prostate carcinogenesis presented proliferative, and not apoptotic, stimuli. TNF-α, through its receptor TNFR-1, promoted cell proliferation and cell survival in prostate by activation of the AKT/mTOR and NFKB pathway, which stimulated prostate carcinogenesis in chemically induced mice. Prostate 76: 917-926, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Cannabinoid type 1 receptors located on single-minded 1-expressing neurons control emotional behaviors.

    PubMed

    Dubreucq, S; Kambire, S; Conforzi, M; Metna-Laurent, M; Cannich, A; Soria-Gomez, E; Richard, E; Marsicano, G; Chaouloff, F

    2012-03-01

    This study has investigated the role of hypothalamic and amygdalar type-1 cannabinoid (CB1) receptors in the emotional and neuroendocrine responses to stress. To do so, we used the Cre/loxP system to generate conditional mutant mice lacking the CB1 gene in neurons expressing the transcription factor single-minded 1 (Sim1). This choice was dictated by former evidence for Sim1-Cre transgenic mice bearing Cre activity in all areas expressing Sim1, which chiefly includes the hypothalamus (especially the paraventricular nucleus, the supraoptic nucleus, and the posterior hypothalamus) and the mediobasal amygdala. Genomic DNA analyses in Sim1-CB1(-/-) mice indicated that the CB1 allele was excised from the hypothalamus and the amygdala, but not from the cortex, the striatum, the thalamus, the nucleus accumbens, the brainstem, the hippocampus, the pituitary gland, and the spinal cord. Double-fluorescent in situ hybridization experiments further indicated that Sim1-CB1(-/-) mice displayed a weaker CB1 receptor mRNA expression in the paraventricular nucleus of the hypothalamus and the mediobasal part of the amygdala, compared to wild-type animals. Individually housed Sim1-CB1(-/-) mice and their Sim1-CB1(+/+) littermates were exposed to anxiety and fear memory tests under basal conditions as well as after acute/repeated social stress. A principal component analysis of the behaviors of Sim1-CB1(-/-) and Sim1-CB1(+/+) mice in anxiety tests (open field, elevated plus-maze, and light/dark box) revealed that CB1 receptors from Sim1-expressing neurons exert tonic, albeit opposite, controls of locomotor and anxiety reactivity to novel environments. No difference between genotypes was observed during the recall of contextual fear conditioning or during active avoidance learning. Sim1-CB1(-/-), but not Sim1-CB1(+/+), mice proved sensitive to an acute social stress as this procedure reverted the increased ambulation in the center of the open field. The stimulatory influence of

  5. Antioxidant icariside II combined with insulin restores erectile function in streptozotocin-induced type 1 diabetic rats.

    PubMed

    Wang, Lin; Xu, Yongde; Li, Huixi; Lei, Hongen; Guan, Ruili; Gao, Zhezhu; Xin, Zhongcheng

    2015-05-01

    Erectile dysfunction (ED) worsens in patients with diabetes mellitus (DM) despite good control of blood glucose level with insulin. Recent studies imply that diabetic vascular stresses (e.g. oxidative stress) persist in spite of glucose normalization, which is defined as metabolic memory. Studies suggest that the interaction between advanced glycation end products (AGEs) and their receptor (RAGE) mediates the development of metabolic memory. To investigate the effects of the antioxidant icariside II plus insulin on erectile function in streptozotocin (STZ)- induced type 1 diabetic rats. Fifty 8-week-old Sprague-Dawley rats were randomly distributed into five groups: normal control, diabetic, insulin-treated diabetic, icariside II-treated diabetic, and insulin plus icariside II-treated diabetic. Diabetes was induced by a single intraperitoneal injection of STZ. Eight weeks after induction of diabetes, icariside II was administered by gastric lavage once a day (5 mg/kg) for 6 weeks; and 2-6 units of intermediate-acting insulin were given to maintain normal glycemia for 6 weeks. The main outcome measures were the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP); histology of penile endothelial cells and smooth muscle cells; neural nitric oxide synthase, AGEs and RAGE expression; malondialdehyde concentration; superoxide dismutase activity; and apoptosis index. Diabetic rats demonstrated a significantly lower ICP/MAP ratio, reduced penile endothelial cells, reduced smooth muscle cells, increased AGEs and RAGE, and increased apoptosis. Insulin and icariside II monotherapy partially restored erectile function and histological changes. However, the combination therapy group showed significantly better erectile parameters, cytological components and biochemistry, similar to those in the normal control group. These results suggest that, although insulin can effectively control glycemic levels, it does not completely alter the pathological changes in

  6. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity.

    PubMed

    Zhang, Li Li; Yan Liu, Dao; Ma, Li Qun; Luo, Zhi Dan; Cao, Ting Bing; Zhong, Jian; Yan, Zhen Cheng; Wang, Li Juan; Zhao, Zhi Gang; Zhu, Shan Jun; Schrader, Mark; Thilo, Florian; Zhu, Zhi Ming; Tepel, Martin

    2007-04-13

    We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-gamma, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice. We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity.

  7. Increased expression of interleukin-1 receptor type 1 in active endometriotic lesions.

    PubMed

    Lawson, C; Al-Akoum, M; Maheux, R; Akoum, A

    2007-01-01

    The establishment and progression of ectopic endometrial implants are dependent upon their interaction with and responsiveness to the stimuli present in their new environment. According to our and other previous studies, immune cells-derived cytokines, such as IL-1, may alone or in concert with estrogens, enhance the capability of ectopic endometrial cells to implant and develop into the host tissue. In the present study, immunohistochemical and dual immunofluorescence analyses showed that the functional signaling interleukin-1 receptor type 1 (IL-1RI) is expressed in endometriotic tissue, particularly in the glands, and identified endothelial cells, macrophages, and T-lymphocytes as cells having marked expression of IL-1RI. The highest concentrations of IL-1RI protein in endometriotic tissue, as evaluated using histological score (HSCORE) and measured by ELISA, were found in red endometriotic lesions as compared with typical black-blue or white lesions. Western blotting showed a significant increase in the levels of the 50 kDa band, whose apparent molecular weight corresponds to the soluble form of IL-1RI. RT-PCR analysis of IL-1 mRNA levels showed a pattern of expression comparable to that of the protein. Interestingly, IL-1RI expression was more significant in the proliferative than in the secretory phase of the menstrual cycle. Marked expression of IL-1RI, the functional signaling receptor that mediates cell activation by IL-1, in red endometriotic implants, which are highly vascularized and represent the earliest and most active forms of the disease, point to a higher cell receptivity for IL-1 in these lesions, a relationship with the activity of the disease and a possible involvement in the early steps of endometriotic tissue growth and development.

  8. Expression of Interleukin-1 and Interleukin-1 Receptors Type 1 and Type 2 in Hodgkin Lymphoma

    PubMed Central

    Oelmann, Elisabeth; Stein, Harald; Berdel, Wolfgang E.; Herbst, Hermann

    2015-01-01

    Signaling through the IL-1-receptor type 1 (IL-1R1), IL-1 is required for initiation and maintenance of diverse activities of the immune system. A second receptor, IL-1R2, blocks IL-1 signal transduction. We studied expression of IL-1beta, IL-1R1, and IL-1R2 in 17 Hodgkin lymphomas (HL) by in situ hybridization (ISH). IL-1beta expressing cells, morphologically consistent with endothelial cells and fibroblasts, occurred in all HL tissues with elevated transcript levels in areas of active fibrosis. Hodgkin and Reed-Sternberg (HRS) cells of all cases expressed low IL-1R1 transcript levels in some tumor cells, and high levels of IL-1R2 in large proportions of HRS cells. Only few bystander cells showed low levels of IL-1R1 and IL-1R2 RNA. Supernatants of 4 out of 7 HL-derived cell lines contained soluble IL-1R2 protein at high levels. HL patient sera carried variably amounts of IL-1R2 protein with significantly increased titers in patients with active disease compared to patients in complete remission and control individuals without HL. Western blots and co-immunoprecipitations showed binding of the IL-1R2 to the intracellular IL-1R-accessory protein (IL-1IRAcP). These data suggest functions of the IL-1R2 as a „decoy-receptor” sequestrating paracrine IL-1 extracellularly and intracellularly by engaging IL-1IRAcP, thus depriving IL1-R1 molecules of their extracellular and intracellular ligands. Expression of IL1-R2 by HRS cells seems to contribute to local and systemic modulation of immune function in HL. PMID:26406983

  9. Neurovascular microcirculatory vasodilation mediated by C-fibers and Transient receptor potential vanilloid-type-1 channels (TRPV 1) is impaired in type 1 diabetes

    PubMed Central

    Marche, P.; Dubois, S.; Abraham, P.; Parot-Schinkel, E.; Gascoin, L.; Humeau-Heurtier, A.; Ducluzeau, PH.; Mahe, G.

    2017-01-01

    Microvascular dysfunction may have an early onset in type 1 diabetes (T1D) and can precede major complications. Our objectives were to assess the endothelial-dependent (acetylcholine, ACh; and post-occlusive hyperemia, PORH), non-endothelial-dependent (sodium nitroprusside, SNP) and neurovascular-dependent (local heating, LH and current induced vasodilation, CIV) microcirculatory vasodilation in T1D patients compared with matched control subjects using a laser speckle contrast imager. Seventeen T1D patients - matched with 17 subjects according to age, gender, Body-Mass-Index, and smoking status - underwent macro- and microvascular investigations. The LH early peak assessed the transient receptor potential vanilloid type 1 channels (TRPV1) mediated vasodilation, whereas the plateau assessed the Nitirc-Oxyde (NO) and endothelium-derived hyperpolarizing factor (EDHF) pathways. PORH explored sensory nerves and (EDHF), while CIV assessed sensory nerves (C-fibers) and prostaglandin-mediated vasodilation. Using neurological investigations, we observed that C-fiber and A-delta fiber functions in T1D patients were similar to control subjects. PORH, CIV, LH peak and plateau vasodilations were significantly decreased in T1D patients compared to controls, whereas there was no difference between the two groups for ACh and SNP vasodilations. Neurovascular microcirculatory vasodilations (C-fibers and TRPV 1-mediated vasodilations) are impaired in TD1 patients whereas no abnormalities were found using clinical neurological investigations. Clinicaltrials: No. NCT02538120. PMID:28287157

  10. Neurovascular microcirculatory vasodilation mediated by C-fibers and Transient receptor potential vanilloid-type-1 channels (TRPV 1) is impaired in type 1 diabetes.

    PubMed

    Marche, P; Dubois, S; Abraham, P; Parot-Schinkel, E; Gascoin, L; Humeau-Heurtier, A; Ducluzeau, P H; Mahe, G

    2017-03-13

    Microvascular dysfunction may have an early onset in type 1 diabetes (T1D) and can precede major complications. Our objectives were to assess the endothelial-dependent (acetylcholine, ACh; and post-occlusive hyperemia, PORH), non-endothelial-dependent (sodium nitroprusside, SNP) and neurovascular-dependent (local heating, LH and current induced vasodilation, CIV) microcirculatory vasodilation in T1D patients compared with matched control subjects using a laser speckle contrast imager. Seventeen T1D patients - matched with 17 subjects according to age, gender, Body-Mass-Index, and smoking status - underwent macro- and microvascular investigations. The LH early peak assessed the transient receptor potential vanilloid type 1 channels (TRPV1) mediated vasodilation, whereas the plateau assessed the Nitirc-Oxyde (NO) and endothelium-derived hyperpolarizing factor (EDHF) pathways. PORH explored sensory nerves and (EDHF), while CIV assessed sensory nerves (C-fibers) and prostaglandin-mediated vasodilation. Using neurological investigations, we observed that C-fiber and A-delta fiber functions in T1D patients were similar to control subjects. PORH, CIV, LH peak and plateau vasodilations were significantly decreased in T1D patients compared to controls, whereas there was no difference between the two groups for ACh and SNP vasodilations. Neurovascular microcirculatory vasodilations (C-fibers and TRPV 1-mediated vasodilations) are impaired in TD1 patients whereas no abnormalities were found using clinical neurological investigations. Clinicaltrials: No. NCT02538120.

  11. Effects of treatment on soluble tumour necrosis factor receptor type 1 and 2 in chronic periodontitis.

    PubMed

    Ikezawa-Suzuki, Ikuyo; Shimada, Yasuko; Tai, Hideaki; Komatsu, Yasutaka; Tanaka, Aya; Yoshie, Hiromasa

    2008-11-01

    We reported that soluble tumour necrosis factor receptor type 2 (sTNFR2)/type 1 (sTNFR1) ratios in gingival crevicular fluid (GCF) decreased as the severity of chronic periodontitis (CP) increased. This study investigated the effects of the periodontal treatment on TNF-alpha, sTNFR1 and R2 in GCF and serum of CP patients. Thirty-five serum and 90 GCF samples were obtained from 35 CP patients (23 non-smokers and 12 smokers) at baseline and after treatment. The levels of TNF-alpha, sTNFR1 and R2 in serum and GCF were quantified by enzyme-linked immunosorbant assay. No significant differences were found in the serum levels of TNF-alpha, sTNFR1 and R2 and the ratio of sTNFR2/R1 between baseline and after treatment. After treatment, sTNFR1 and R2 levels in GCF of non-smokers and smokers were significantly decreased compared with baseline. However, the sTNFR2/R1 ratio was significantly increased (non-smoker: 0.56+/-0.03-0.84+/-0.03, p<0.0001; smoker: 0.59+/-0.06-0.85+/-0.04, p=0.0019). There were no significant differences between non-smoking and smoking CP groups in serum and GCF. The ratio of sTNFR2/R1 in GCF significantly increased after treatment, and could be related to the clinical state of CP.

  12. Green tea catechins are potent sensitizers of ryanodine receptor type 1 (RyR1).

    PubMed

    Feng, Wei; Cherednichenko, Gennady; Ward, Chris W; Padilla, Isela T; Cabrales, Elaine; Lopez, José R; Eltit, José M; Allen, Paul D; Pessah, Isaac N

    2010-08-15

    Catechins, polyphenols extracted from green tea leaves, have a broad range of biological activities although the specific molecular mechanisms responsible are not known. At the high experimental concentrations typically used polyphenols bind to membrane phospholipid and also are easily auto-oxidized to generate superoxide anion and semiquinones, and can adduct to protein thiols. We report that the type 1 ryanodine receptor (RyR1) is a molecular target that responds to nanomolar (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG). Single channel analyses demonstrate EGCG (5-10nM) increases channel open probability (Po) twofold, by lengthening open dwell time. The degree of channel activation is concentration-dependent and is rapidly and fully reversible. Four related catechins, EGCG, ECG, EGC ((-)-epigallocatechin) and EC ((-)-epicatechin) showed a rank order of activity toward RyR1 (EGCG>ECG>EGC>EC). EGCG and ECG enhance the sensitivity of RyR1 to activation by < or =100microM cytoplasmic Ca(2+) without altering inhibitory potency by >100microM Ca(2+). EGCG as high as 10microM in the extracellular medium potentiated Ca(2+) transient amplitudes evoked by electrical stimuli applied to intact myotubes and adult FDB fibers, without eliciting spontaneous Ca(2+) release or slowing Ca(2+) transient recovery. The results identify RyR1 as a sensitive target for the major tea catechins EGCG and ECG, and this interaction is likely to contribute to their observed biological activities.

  13. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    PubMed

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  14. Sialyl Lewis(x) hybridized complement receptor type 1 moderates acid aspiration injury.

    PubMed

    Kyriakides, C; Wang, Y; Austen, W G; Favuzza, J; Kobzik, L; Moore, F D; Hechtman, H B

    2001-12-01

    The potentially enhanced anti-inflammatory effects of the sialyl Lewis(x) (sLe(x))-decorated version of soluble complement receptor type 1 (sCR1) in moderating acid aspiration injury are examined. HCl was instilled in tracheostomy tubes placed in mice, and extravasation of (125)I-labeled albumin in bronchoalveolar lavage (BAL) fluid was used to calculate the vascular permeability index (PI). Neutrophil counts in BAL fluid and immunohistochemistry were performed. PI was moderated by 82% after treatment with sCR1sLe(x) compared with 54% in sCR1-untreated mice (P < 0.05). Respective reductions in PI in mice treated 0.5 and 1 h after acid aspiration with sCR1sLe(x) of 70 and 57% were greater than the decreases in PI of 45 and 38% observed in respective sCR1-treated groups (P < 0.05). BAL fluid neutrophil counts in sCR1sLe(x)-treated mice were significantly less than those in sCR1-treated animals, which were similar to those in untreated mice. Immunohistochemistry stained for sCR1 only on the pulmonary vascular endothelium of sCR1sLe(x)- but not sCR1-treated mice. In conclusion, sCR1sLe(x) moderates permeability by antagonizing complement activation and neutrophil adhesion. Delayed complement and neutrophil antagonism significantly reduces injury.

  15. Soluble human complement receptor type 1 inhibits complement-mediated host defense.

    PubMed

    Swift, A J; Collins, T S; Bugelski, P; Winkelstein, J A

    1994-09-01

    Soluble complement receptor type 1 (sCR1) is a powerful inhibitor of complement activation. Because of this ability, sCR1 may prove to be an important therapeutic agent that can be used to block the immunopathologic effects of uncontrolled complement activation in a variety of clinically significant disorders. Although several previous studies have examined the ability of sCR1 to inhibit complemented-mediated immunopathologic damage, there is no information on its ability to interfere with the host's defense against infection. In the current experiments sCR1 exerted a concentration-dependent inhibitory effect on the phagocytosis of Streptococcus pneumoniae by human polymorphonuclear leukocytes in vitro. Not only di sCR1 inhibit complement-dependent opsonization of the pneumococcus but at higher concentrations it also inhibited the ingestion of bacteria which had been previously opsonized. Furthermore, when rats were injected with sCR1, it inhibited both their serum hemolytic activity and serum opsonic activity in a dose-dependent fashion. Finally, for rats treated with sCR1, the 50% lethal dose was S. pneumoniae and Pseudomonas aeruginosa. These data demonstrate that sCR1 significantly inhibits complement-mediated host against bacterial infection.

  16. Astrocytic expression of cannabinoid type 1 receptor in rat and human sclerotic hippocampi

    PubMed Central

    Meng, Xian-Dong; Wei, Dong; Li, Juan; Kang, Jun-Jun; Wu, Chen; Ma, Lei; Yang, Feng; Zhu, Ge-Min; Ou-Yang, Tang-Peng; Liu, Ying-Ying; Jiang, Wen

    2014-01-01

    Cannabinoid type 1 receptor (CB1R), which is traditionally located on axon terminals, plays an important role in the pathology of epilepsy and neurodegenerative diseases by modulating synaptic transmission. Using the pilocarpine model of chronic spontaneous recurrent seizures, which mimics the main features of mesial temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) in humans, we examined the expression of CB1R in hippocampal astrocytes of epileptic rats. Furthermore, we also examined the expression of astrocytic CB1R in the resected hippocampi from patients with medically refractory mesial TLE. Using immunofluorescent double labeling, we found increased expression of astrocytic CB1R in hippocampi of epileptic rats, whereas expression of astrocytic CB1R was not detectable in hippocampi of saline treated animals. Furthermore, CB1R was also found in some astrocytes in sclerotic hippocampi in a subset of patients with intractable mesial TLE. Detection with immune electron microscopy showed that the expression of CB1R was increased in astrocytes of epileptic rats and modest levels of CB1R were also found on the astrocytic membrane of sclerotic hippocampi. These results suggest that increased expression of astrocytic CB1R in sclerotic hippocampi might be involved in the cellular basis of the effects of cannabinoids on epilepsy. PMID:25031702

  17. P2X7 receptor knockout prevents streptozotocin-induced type 1 diabetes in mice.

    PubMed

    Vieira, Flávia Sarmento; Nanini, Hayandra Ferreira; Takiya, Christina Maeda; Coutinho-Silva, Robson

    2016-01-05

    Type 1 diabetes (T1D) is caused by autoimmune destruction of islet of Langerhans β-cells. P2X7 receptors (P2X7R) modulate proinflammatory immune responses by binding extracellular ATP, a classic 'danger signal'. Here, we evaluated whether the P2X7R has a role in T1D development. P2X7(-/-) mice are resistant to TD1 induction by streptozotocin (STZ) treatment, with no increase in blood glucose, decrease in insulin-positive cells, and pancreatic islet reduction, compared to WT (C57BL/6) mice. Also, the levels of proinflammatory mediators (IL-1β, IFN-γ and NO) did not increase after STZ treatment in P2X7(-/-) animals, with reduced infiltration of CD4(+), CD8(+), B220(+), CD11b(+) and CD11c(+) cells in the pancreatic lymph nodes. Treatment with a P2X7 antagonist mimicked the effect of P2X7 knockout, preventing STZ-induced diabetes. Our results show that the absence of the P2X7R provides resistance in the induction of diabetes in this model, and suggest that therapy targeting the P2X7R may be useful against clinical T1D.

  18. Addiction and corticotropin-releasing hormone type 1 receptor antagonist medications.

    PubMed

    Contoreggi, Carlo; Lee, Mary R; Chrousos, George

    2013-04-01

    Derangements in corticotropin-releasing hormone (CRH) through its type 1 receptor (CRHR1) have been identified in many pathologic conditions. Preclinical models of addiction find that small-molecule antagonists of CRHR1 can limit induction, maintenance, and relapse to drugs of abuse. Neuropsychiatric clinical trials of CRHR1 antagonists have shown mixed efficacy; treatment of addictive disorders has not been established, but finding effective treatments for addictive disorders is critical. Establishing effectiveness for substance abuse treatment will require a different design approach than was used for depression and anxiety trials. Focusing on active versus passive outcome measures, such as resilience to external stressful stimuli, may provide signals in curbing craving and relapse. Study design should include measures of abstinence and drug exposure, but additional elements of stress prevention should also be incorporated. Agents that could provide preemptive protection from drug use and relapse are novel and untested. An understanding of the evolutionary significance of the stress system and preclinical models suggests that these agents may provide protection in this manner. Investigators designing future trials might refocus their understanding of addiction and treatment in this new direction. © 2013 New York Academy of Sciences.

  19. Opposite regulation of brain angiotensin type 1 and type 2 receptors in cold-induced hypertension.

    PubMed

    Peng, J F; Phillips, M I

    2001-03-02

    Rats exposed chronically to mild cold (5 degrees C/41 degrees F) develop hypertension. This cold-induced hypertension (CIH) is an environmentally induced, non-surgical, non-pharmacological and non-genetic model for studying hypertension in rats. The blood renin angiotensin system (RAS) appears to play a role in both initiating and maintaining the high blood pressure in CIH. The goal of the present study was to evaluate the role of brain angiotensin type 1 and type 2 receptors (AT1R and AT2R) in CIH. Sprague-Dawley adult male rats were used. Thirty-six rats were kept in a cold room at 5 degrees C and the other 36 were kept at 24 degrees C as controls. Systolic blood pressure (SBP) was recorded by tail cuff. The SBP was elevated in rats exposed to cold within 1 week (n=12, P>0.05), significantly increased at 3 weeks (P<0.05) and reached a maximum (125%) at 5 weeks (P<0.01). Three subgroups of the cold-treated and the controls were sacrificed at 1, 3 and 5 weeks. Specific brain sections were removed, either for reverse transcription polymerase chain reaction (RT-PCR) to measure mRNA, or for autoradiography to measure receptor binding for AT1R and AT2R. The AT1R mRNA was increased significantly in hypothalamus and brainstem after the first week in cold-treated rats and was maintained throughout the time of exposure to cold (n=6, P<0.01). AT1R binding significantly increased initially in hypothalamus and thereafter in brainstem. The mRNA and the receptor binding for AT2R decreased significantly (P<0.01, n=6) in nucleus of inferior olive and locus coeruleus of brainstem in cold-treated rats after exposure to cold. The experiments show differential regulation of RAS components, AT1R and AT2R, in different brain areas in cold-exposed rats and provide evidence that up-regulated AT1R and down-regulated AT2R in different brain areas are involved in CIH. The opposing directions of expression of AT1R and AT2R suggest that they play counterbalancing roles in brain function.

  20. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-{delta}

    SciTech Connect

    Yan Zhencheng; Liu Daoyan; Zhang Lili; Shen Chenyi; Ma Qunli; Cao Tingbing; Wang Lijuan; Nie Hai; Zidek, Walter; Tepel, Martin; Zhu Zhiming . E-mail: zhuzm@yahoo.com

    2007-03-09

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-{delta} (PPAR-{delta})-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p < 0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p < 0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-{delta}. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-{delta}. Furthermore, selective silencing of PPAR-{delta} by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00 {+-} 0.06 (n = 3) to 1.91 {+-} 0.06 (n = 3; p < 0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-{delta} significantly reduced CB1 expression to 0.39 {+-} 0.03 (n = 3; p < 0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-{delta}. Both CB1 and PPAR-{delta} are intimately involved in therapeutic interventions against a most important cardiovascular risk factor.

  1. GPS-MBA: Computational Analysis of MHC Class II Epitopes in Type 1 Diabetes

    PubMed Central

    Ren, Jian; Ma, Chuang; Gao, Tianshun; Zhou, Yanhong; Yang, Qing; Xue, Yu

    2012-01-01

    As a severe chronic metabolic disease and autoimmune disorder, type 1 diabetes (T1D) affects millions of people world-wide. Recent advances in antigen-based immunotherapy have provided a great opportunity for further treating T1D with a high degree of selectivity. It is reported that MHC class II I-Ag7 in the non-obese diabetic (NOD) mouse and human HLA-DQ8 are strongly linked to susceptibility to T1D. Thus, the identification of new I-Ag7 and HLA-DQ8 epitopes would be of great help to further experimental and biomedical manipulation efforts. In this study, a novel GPS-MBA (MHC Binding Analyzer) software package was developed for the prediction of I-Ag7 and HLA-DQ8 epitopes. Using experimentally identified epitopes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted and improved. By extensive evaluation and comparison, the GPS-MBA performance was found to be much better than other tools of this type. With this powerful tool, we predicted a number of potentially new I-Ag7 and HLA-DQ8 epitopes. Furthermore, we designed a T1D epitope database (TEDB) for all of the experimentally identified and predicted T1D-associated epitopes. Taken together, this computational prediction result and analysis provides a starting point for further experimental considerations, and GPS-MBA is demonstrated to be a useful tool for generating starting information for experimentalists. The GPS-MBA is freely accessible for academic researchers at: http://mba.biocuckoo.org. PMID:22479466

  2. GPS-MBA: computational analysis of MHC class II epitopes in type 1 diabetes.

    PubMed

    Cai, Ruikun; Liu, Zexian; Ren, Jian; Ma, Chuang; Gao, Tianshun; Zhou, Yanhong; Yang, Qing; Xue, Yu

    2012-01-01

    As a severe chronic metabolic disease and autoimmune disorder, type 1 diabetes (T1D) affects millions of people world-wide. Recent advances in antigen-based immunotherapy have provided a great opportunity for further treating T1D with a high degree of selectivity. It is reported that MHC class II I-A(g7) in the non-obese diabetic (NOD) mouse and human HLA-DQ8 are strongly linked to susceptibility to T1D. Thus, the identification of new I-A(g7) and HLA-DQ8 epitopes would be of great help to further experimental and biomedical manipulation efforts. In this study, a novel GPS-MBA (MHC Binding Analyzer) software package was developed for the prediction of I-A(g7) and HLA-DQ8 epitopes. Using experimentally identified epitopes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted and improved. By extensive evaluation and comparison, the GPS-MBA performance was found to be much better than other tools of this type. With this powerful tool, we predicted a number of potentially new I-A(g7) and HLA-DQ8 epitopes. Furthermore, we designed a T1D epitope database (TEDB) for all of the experimentally identified and predicted T1D-associated epitopes. Taken together, this computational prediction result and analysis provides a starting point for further experimental considerations, and GPS-MBA is demonstrated to be a useful tool for generating starting information for experimentalists. The GPS-MBA is freely accessible for academic researchers at: http://mba.biocuckoo.org.

  3. HLA class II alleles in Norwegian patients with coexisting type 1 diabetes and celiac disease.

    PubMed

    Viken, M K; Flåm, S T; Skrivarhaug, T; Amundsen, S S; Sollid, L M; Drivvoll, A K; Joner, G; Dahl-Jørgensen, K; Lie, B A

    2017-05-01

    Type 1 diabetes (T1D) and celiac disease (CeD) are 2 distinct diseases, but there is an increased risk of developing CeD for T1D patients. Both diseases are associated with HLA-class II alleles, such as DQB1 *02:01 and DQB1 *03:02; however, their risk contribution vary between the diseases. We genotyped HLA-DRB1 and - DQB1 in 215 patients with coexisting T1D and CeD identified from a T1D cohort, and compared them to patients with T1D (N = 487) and CeD (N = 327), as well as healthy controls (N = 368). The patients with coexisting T1D and CeD had an intermediate carrier frequency (72.8%) of the DRB1 *03:01- DQB1 *02:01- DQA1 *05:01 haplotype compared to T1D (64.1%) and CeD (88.7%) patients. The DRB1 *03:01- DQB1 *02:01- DQA1 *05:01/ DRB1 *04- DQB1 *03:02- DQA1 *03 haplotype combination, encoding DQ2.5 and DQ8 molecules, was equally frequent among patients with both T1D and CeD (52.6%) and T1D patients (46.8%) but significantly lower in CeD patients (9.5%). Overall, the patients with coexisting T1D and CeD had an HLA profile more similar to T1D patients than CeD patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. β-Adrenergic Receptor-Mediated Cardiac Contractility is Inhibited via Vasopressin Type 1A-Receptor-Dependent Signaling

    PubMed Central

    Tilley, Douglas G.; Zhu, Weizhong; Myers, Valerie D.; Barr, Larry A.; Gao, Erhe; Li, Xue; Song, Jianliang; Carter, Rhonda L.; Makarewich, Catherine A.; Yu, Daohai; Troupes, Constantine D.; Grisanti, Laurel A.; Coleman, Ryan C.; Koch, Walter J.; Houser, Steven R.; Cheung, Joseph Y.; Feldman, Arthur M.

    2014-01-01

    Background Enhanced arginine vasopressin (AVP) levels are associated with increased mortality during end-stage human heart failure (HF), and cardiac AVP type 1A receptor (V1AR) expression becomes increased. Additionally, mice with cardiac-restricted V1AR overexpression develop cardiomyopathy and decreased β-adrenergic receptor (βAR) responsiveness. This led us to hypothesize that V1AR signaling regulated βAR responsiveness and in doing so contributes to HF development. Methods and Results Transaortic constriction resulted in decreased cardiac function and βAR density and increased cardiac V1AR expression, effects reversed by a V1AR-selective antagonist. Molecularly, V1AR stimulation led to decreased βAR ligand affinity, as well as βAR-induced Ca2+ mobilization and cAMP generation in isolated adult cardiomyocytes, effects recapitulated via ex vivo Langendorff analysis. V1AR-mediated regulation of βAR responsiveness was demonstrated to occur in a previously unrecognized Gq protein-independent/GRK-dependent manner. Conclusions This newly discovered relationship between cardiac V1AR and βAR may be informative for the treatment of patients with acute decompensated HF and elevated AVP. PMID:25205804

  5. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  6. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  7. A type 1 cholecystokinin receptor mutant that mimics the dysfunction observed for wild type receptor in a high cholesterol environment.

    PubMed

    Desai, Aditya J; Harikumar, Kaleeckal G; Miller, Laurence J

    2014-06-27

    Cholecystokinin (CCK) stimulates the type 1 CCK receptor (CCK1R) to elicit satiety after a meal. Agonists with this activity, although potentially useful for treatment of obesity, can also have side effects and toxicities of concern, making the development of an intrinsically inactive positive allosteric modulator quite attractive. Positive allosteric modulators also have the potential to correct the defective receptor-G protein coupling observed in the high membrane cholesterol environment described in metabolic syndrome. Current model systems to study CCK1R in such an environment are unstable and expensive to maintain. We now report that the Y140A mutation within a cholesterol-binding motif and the conserved, class A G protein-coupled receptor-specific (E/D)RY signature sequence results in ligand binding and activity characteristics similar to wild type CCK1R in a high cholesterol environment. This is true for natural CCK, as well as ligands with distinct chemistries and activity profiles. Additionally, the Y140A construct also behaved like CCK1R in high cholesterol in regard to its internalization, sensitivity to a nonhydrolyzable GTP analog, and anisotropy of a bound fluorescent CCK analog. Chimeric CCK1R/CCK2R constructs that systematically changed the residues in the allosteric ligand-binding pocket were studied in the presence of Y140A. This established increased importance of unique residues within TM3 and reduced the importance of TM2 for binding in the presence of this mutation, with the agonist trigger likely pulled away from its Leu(356) target on TM7. The distinct conformation of this intramembranous pocket within Y140A CCK1R provides an opportunity to normalize this by using a small molecule allosteric ligand, thereby providing safe and effective correction of the coupling defect in metabolic syndrome.

  8. Increased transient receptor potential vanilloid type 1 (TRPV1) channel expression in hypertrophic heart.

    PubMed

    Thilo, Florian; Liu, Ying; Schulz, Nico; Gergs, Ulrich; Neumann, Joachim; Loddenkemper, Christoph; Gollasch, Maik; Tepel, Martin

    2010-10-08

    The aim of this study was to compare the expression of transient receptor potential vanilloid type 1 (TRPV1) channels in hypertrophic hearts from transgenic mice showing overexpression of the catalytic subunit alpha of protein phosphatase 2A alpha (PP2Ac alpha) with wild-type mice and with TRPV1-/- mice. Transcripts of TRPV1, matrix metalloproteinase 9 (MMP9), discoidin domain receptor family, member 2 (DDR-2), atrial natriuretic peptide (ANP), GATA 4, and regulatory microRNA (miR-21) were analyzed using quantitative real-time PCR. Ventricle-to-body-weight-ratio was significantly higher in PP2Ac alpha transgenic mice compared to wild-type mice and TRPV1-/- mice (8.6±1.3mg/g; 5.4±0.3mg/g; and 5.4±0.4mg/g; respectively; p<0.05 by Kruskal-Wallis test). TRPV1 transcripts were significantly higher in PP2Ac alpha transgenic mice compared to wild-type mice (1.7±0.2 arbitrary units vs. 0.8±0.1 arbitrary units; p<0.05). TRPV1 protein expression was also significantly higher in PP2Ac alpha transgenic mice compared to wild-type mice. A significant linear correlation was observed between TRPV1 transcripts and the ventricle-to-body-weight-ratio (Spearman r=0.78; p<0.05). The expression of DDR-2 was significantly higher in PP2Ac alpha transgenic mice compared to wild-type mice and TRPV1 knockout mice. The expression of miR21 was significantly higher in PP2Ac alpha transgenic mice compared with TRPV1-/- mice (0.103±0.018 (PP2Ac alpha transgenic mice); 0.089±0.009 (wild-type mice); and 0.045±0.013 (TRPV1-/- mice), respectively; p<0.05). Masson Goldner staining revealed that PP2Ac alpha transgenic mice showed increased heart fibrosis compared with TRPV1 knockout mice. The study suggests an important role of TRPV1 in the pathogenesis of genetically associated heart hypertrophy.

  9. Binding Selectivity of Abaloparatide for PTH-Type-1-Receptor Conformations and Effects on Downstream Signaling.

    PubMed

    Hattersley, Gary; Dean, Thomas; Corbin, Braden A; Bahar, Hila; Gardella, Thomas J

    2016-01-01

    The PTH receptor type 1 (PTHR1) mediates the actions of two endogenous polypeptide ligands, PTH and PTHrP, and thereby plays key roles in bone biology. Based on its capacity to stimulate bone formation, the peptide fragment PTH (1-34) is currently in use as therapy for osteoporosis. Abaloparatide (ABL) is a novel synthetic analog of human PTHrP (1-34) that holds promise as a new osteoporosis therapy, as studies in animals suggest that it can stimulate bone formation with less of the accompanying bone resorption and hypercalcemic effects that can occur with PTH (1-34). Recent studies in vitro suggest that certain PTH or PTHrP ligand analogs can distinguish between two high-affinity PTHR1 conformations, R(0) and RG, and that efficient binding to R(0) results in prolonged signaling responses in cells and prolonged calcemic responses in animals, whereas selective binding to RG results in more transient responses. As intermittent PTH ligand action is known to favor the bone-formation response, whereas continuous ligand action favors the net bone-resorption/calcemic response, we hypothesized that ABL binds more selectively to the RG vs the R(0) PTHR1 conformation than does PTH (1-34), and thus induces more transient signaling responses in cells. We show that ABL indeed binds with greater selectivity to the RG conformation than does PTH (1-34), and as a result of this RG bias, ABL mediates more transient cAMP responses in PTHR1-expressing cells. The findings provide a plausible mechanism (ie, transient signaling via RG-selective binding) that can help account for the favorable anabolic effects that ABL has on bone.

  10. Binding Selectivity of Abaloparatide for PTH-Type-1-Receptor Conformations and Effects on Downstream Signaling

    PubMed Central

    Hattersley, Gary; Dean, Thomas; Corbin, Braden A.; Bahar, Hila

    2016-01-01

    The PTH receptor type 1 (PTHR1) mediates the actions of two endogenous polypeptide ligands, PTH and PTHrP, and thereby plays key roles in bone biology. Based on its capacity to stimulate bone formation, the peptide fragment PTH (1–34) is currently in use as therapy for osteoporosis. Abaloparatide (ABL) is a novel synthetic analog of human PTHrP (1–34) that holds promise as a new osteoporosis therapy, as studies in animals suggest that it can stimulate bone formation with less of the accompanying bone resorption and hypercalcemic effects that can occur with PTH (1–34). Recent studies in vitro suggest that certain PTH or PTHrP ligand analogs can distinguish between two high-affinity PTHR1 conformations, R0 and RG, and that efficient binding to R0 results in prolonged signaling responses in cells and prolonged calcemic responses in animals, whereas selective binding to RG results in more transient responses. As intermittent PTH ligand action is known to favor the bone-formation response, whereas continuous ligand action favors the net bone-resorption/calcemic response, we hypothesized that ABL binds more selectively to the RG vs the R0 PTHR1 conformation than does PTH (1–34), and thus induces more transient signaling responses in cells. We show that ABL indeed binds with greater selectivity to the RG conformation than does PTH (1–34), and as a result of this RG bias, ABL mediates more transient cAMP responses in PTHR1-expressing cells. The findings provide a plausible mechanism (ie, transient signaling via RG-selective binding) that can help account for the favorable anabolic effects that ABL has on bone. PMID:26562265

  11. Autoantibodies Toward the Angiotensin 2 Type 1 Receptor: A Novel Autoantibody in Alzheimer's Disease.

    PubMed

    Giil, Lasse M; Kristoffersen, Einar K; Vedeler, Christian A; Aarsland, Dag; Nordrehaug, Jan Erik; Winblad, Bengt; Cedazo-Minguez, Angel; Lund, Anders; Reksten, Tove Ragna

    2015-01-01

    Autoantibodies with agonist function are described in cardiovascular disorders. Since vascular risk factors are associated with an increased risk for Alzheimer's disease (AD), we investigated a potential association between antibodies to the angiotensin 2 type 1 receptor (anti-AT1R) and AD. The primary objective of this study was to investigate the association between anti-AT1R and AD. The secondary objective was to investigate the association between clinical or biomarker features of AD and anti-AT1R. Samples from patients with mild AD participating in a longitudinal study in Western Norway (n = 92, 65 [71%] females, mean age 74.8 [range 50-89]) and age- and gender-matched healthy controls (n = 102) were included. Cerebrospinal fluid (CSF) AD biomarkers were assessed in a subgroup of patients. Patients were examined annually, including Mini-Mental State Examination. ELISA was used to measure anti-AT1R in serum. Non-parametric tests were used for statistical calculations and a p <  0.05 was considered significant. AD patients had significantly higher levels of anti-AT1R compared with healthy controls (10.2 U/mL versus 8.1 U/mL, p = 0.04). This difference was found only in patients without hypertension and diabetes. Anti-AT1R levels correlated with CSF total tau (p = 0.03) and phosphorylated tau (p = 0.03) levels, and inversely with blood pressure in AD (Spearman R -0.277, p = 0.008). AD is associated with increased levels of anti-AT1R, and the antibodies correlated with CSF total, and phosphorylated tau levels. Further research is needed to understand the blood pressure response in AD without hypertension and a potential link between tau and anti-AT1R in AD.

  12. FRET-Based Localization of Fluorescent Protein Insertions Within the Ryanodine Receptor Type 1

    PubMed Central

    Raina, Shweta A.; Tsai, Jeffrey; Samsó, Montserrat; Fessenden, James D.

    2012-01-01

    Fluorescent protein (FP) insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM) maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, Förster resonance energy transfer (FRET) measurements were used to localize green fluorescent protein (GFP) insertions within the ryanodine receptor type 1 (RyR1), a large intracellular Ca2+ release channel that plays a key role in skeletal muscle excitation contraction coupling. A series of full-length His-tagged GFP-RyR1 fusion constructs were created, expressed in human embryonic kidney (HEK)-293T cells and then complexed with Cy3NTA, a His-tag specific FRET acceptor. FRET efficiency values measured from each GFP donor to Cy3NTA bound to each His tag acceptor site were converted into intermolecular distances and the positions of each inserted GFP were then triangulated relative to a previously published X-ray crystal structure of a 559 amino acid RyR1 fragment. We observed that the chromophoric centers of fluorescent proteins inserted into RyR1 can be located as far as 45 Å from their insertion sites and that the fused proteins can also be located in internal cavities within RyR1. These findings should prove useful in interpreting structural results obtained in cryo EM maps using fusions of small fluorescent proteins. More accurate point-to-point distance information may be obtained using complementary orthogonal labeling systems that rely on fluorescent probes that bind directly to amino acid side chains. PMID:22719904

  13. FRET-based localization of fluorescent protein insertions within the ryanodine receptor type 1.

    PubMed

    Raina, Shweta A; Tsai, Jeffrey; Samsó, Montserrat; Fessenden, James D

    2012-01-01

    Fluorescent protein (FP) insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM) maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, Förster resonance energy transfer (FRET) measurements were used to localize green fluorescent protein (GFP) insertions within the ryanodine receptor type 1 (RyR1), a large intracellular Ca(2+) release channel that plays a key role in skeletal muscle excitation contraction coupling. A series of full-length His-tagged GFP-RyR1 fusion constructs were created, expressed in human embryonic kidney (HEK)-293T cells and then complexed with Cy3NTA, a His-tag specific FRET acceptor. FRET efficiency values measured from each GFP donor to Cy3NTA bound to each His tag acceptor site were converted into intermolecular distances and the positions of each inserted GFP were then triangulated relative to a previously published X-ray crystal structure of a 559 amino acid RyR1 fragment. We observed that the chromophoric centers of fluorescent proteins inserted into RyR1 can be located as far as 45 Å from their insertion sites and that the fused proteins can also be located in internal cavities within RyR1. These findings should prove useful in interpreting structural results obtained in cryo EM maps using fusions of small fluorescent proteins. More accurate point-to-point distance information may be obtained using complementary orthogonal labeling systems that rely on fluorescent probes that bind directly to amino acid side chains.

  14. GREEN TEA CATECHINS ARE POTENT SENSITIZERS OF RYANODINE RECEPTOR TYPE 1 (RYR1)

    PubMed Central

    Feng, Wei; Cherednichenko, Gennady; Ward, Chris W.; Padilla, Isela T.; Cabrales, Elaine; Lopez, José R.; Eltit, José M.; Allen, Paul D.; Pessah, Isaac N.

    2010-01-01

    Catechins, polyphenols extracted from green tea leaves, have a broad range of biological activities although the specific molecular mechanisms responsible are not known. At the high experimental concentrations typically used polyphenols bind to membrane phospholipid and also are easily auto-oxidized to generate superoxide anion and semiquinones, and can adduct to protein thiols. We report that the type 1 ryanodine receptor (RyR1) is a molecular target that responds to nanomolar (−)-epigallocatechin-3-gallate (EGCG) and (−)-epicatechin-3-gallate (ECG). Single channel analyses demonstrate EGCG (5-10nM) increases channel open probability (Po) 2-fold, by lengthening open dwell time. The degree of channel activation is concentration dependent and is rapidly and fully reversible. Four related catechins, EGCG, ECG, EGC ((−)-epigallocatechin) and EC ((−)-epicatechin) showed a rank order of activity toward RyR1 (EGCG>ECG>>EGC>>>EC). EGCG and ECG enhance the sensitivity of RyR1 to activation by ≤100μM cytoplasmic Ca2+ without altering inhibitory potency by >100μM Ca2+. EGCG as high as 10μM in the extracellular medium potentiated Ca2+ transient amplitudes evoked by electrical stimuli applied to intact myotubes and adult FDB fibers, without eliciting spontaneous Ca2+ release or slowing Ca2+ transient recovery. The results identify RyR1 as a sensitive target for the major tea catechins EGCG and ECG, and this interaction is likely to contribute to their observed biological activities. PMID:20471964

  15. Type 1 and 3 inositol trisphosphate receptors are required for extra-embryonic vascular development.

    PubMed

    Uchida, Keiko; Nakazawa, Maki; Yamagishi, Chihiro; Mikoshiba, Katsuhiko; Yamagishi, Hiroyuki

    2016-10-01

    The embryonic-maternal interface of the placental labyrinth, allantois, and yolk sac are vital during embryogenesis; however, the precise mechanism underlying the vascularization of these structures remains unknown. Herein we focus on the role of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R), which are intracellular Ca(2+) release channels, in placentation. Double knockout (DKO) of type 1 and 3 IP3Rs (IP3R1 and IP3R3, respectively) in mice resulted in embryonic lethality around embryonic day (E) 11.5. Because IP3R1 and IP3R3 were co-expressed in endothelial cells in the labyrinth, allantois, and yolk sac, we investigated extra-embryonic vascular development in IP3R1- and IP3R3-DKO mice. The formation of chorionic plates and yolk sac vessels seemed dysregulated around the timing of the chorio-allantoic attachment, immediately followed by the disorganization of allantoic vessels, the decreased expression of the spongiotrophoblast cell marker Tpbpa and the growth retardation of the embryos in DKO mice. Fluorescent immunohistochemistry demonstrated downregulation of a vascular endothelial marker, CD31, in labyrinth embryonic vessels and poor elongation of extra-embryonic mesoderm into the labyrinth layer in DKO placenta, whereas the branching of the DKO chorionic trophoblast was initiated. In addition, allantoic and yolk sac vessels in extra-embryonic tissues were less remodeled in DKO mice. In vitro endothelial cord formation and migration activities of cultured vascular endothelial cells derived from human umbilical vein were downregulated under the inhibition of IP3R. Our results suggest that IP3R1 and IP3R3 are required for extra-embryonic vascularization in the placenta, allantois, and yolk sac. This is the first demonstration of the essential role of IP3/IP3Rs signaling in the development of the vasculature at the embryonic-maternal interface.

  16. Sulforaphane-induced apoptosis involves the type 1 IP3 receptor

    PubMed Central

    Hudecova, Sona; Markova, Jana; Simko, Veronika; Csaderova, Lucia; Stracina, Tibor; Sirova, Marta; Fojtu, Michaela; Svastova, Eliska; Gronesova, Paulina; Pastorek, Michal; Novakova, Marie; Cholujova, Dana; Kopacek, Juraj; Pastorekova, Silvia; Sedlak, Jan; Krizanova, Olga

    2016-01-01

    In this study we show that anti-tumor effect of sulforaphane (SFN) is partially realized through the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). This effect was verified in vitro on three different stable cell lines and also in vivo on the model of nude mice with developed tumors. Early response (6 hours) of A2780 ovarian carcinoma cells to SFN treatment involves generation of mitochondrial ROS and increased transcription of NRF2 and its downstream regulated genes including heme oxygenase 1, NAD(P)H:quinine oxidoreductase 1, and KLF9. Prolonged SFN treatment (24 hours) upregulated expression of NRF2 and IP3R1. SFN induces a time-dependent phosphorylation wave of HSP27. Use of IP3R inhibitor Xestospongin C (Xest) attenuates both SFN-induced apoptosis and the level of NRF2 protein expression. In addition, Xest partially attenuates anti-tumor effect of SFN in vivo. SFN-induced apoptosis is completely inhibited by silencing of IP3R1 gene but only partially blocked by silencing of NRF2; silencing of IP3R2 and IP3R3 had no effect on these cells. Xest inhibitor does not significantly modify SFN-induced increase in the rapid activity of ARE and AP1 responsive elements. We found that Xest effectively reverses the SFN-dependent increase of nuclear content and decrease of reticular calcium content. In addition, immunofluorescent staining with IP3R1 antibody revealed that SFN treatment induces translocation of IP3R1 to the nucleus. Our results clearly show that IP3R1 is involved in SFN-induced apoptosis through the depletion of reticular calcium and modulation of transcription factors through nuclear calcium up-regulation. PMID:27528021

  17. Characterization of ryanodine receptor type 1 single channel activity using "on-nucleus" patch clamp.

    PubMed

    Wagner, Larry E; Groom, Linda A; Dirksen, Robert T; Yule, David I

    2014-08-01

    In this study, we provide the first description of the biophysical and pharmacological properties of ryanodine receptor type 1 (RyR1) expressed in a native membrane using the on-nucleus configuration of the patch clamp technique. A stable cell line expressing rabbit RyR1 was established (HEK-RyR1) using the FLP-in 293 cell system. In contrast to untransfected cells, RyR1 expression was readily demonstrated by immunoblotting and immunocytochemistry in HEK-RyR1 cells. In addition, the RyR1 agonists 4-CMC and caffeine activated Ca(2+) release that was inhibited by high concentrations of ryanodine. On nucleus patch clamp was performed in nuclei prepared from HEK-RyR1 cells. Raising the [Ca(2+)] in the patch pipette resulted in the appearance of a large conductance cation channel with well resolved kinetics and the absence of prominent subconductance states. Current versus voltage relationships were ohmic and revealed a chord conductance of ∼750pS or 450pS in symmetrical 250mM KCl or CsCl, respectively. The channel activity was markedly enhanced by caffeine and exposure to ryanodine resulted in the appearance of a subconductance state with a conductance ∼40% of the full channel opening with a Po near unity. In total, these properties are entirely consistent with RyR1 channel activity. Exposure of RyR1 channels to cyclic ADP ribose (cADPr), nicotinic acid adenine dinucleotide phosphate (NAADP) or dantrolene did not alter the single channel activity stimulated by Ca(2+), and thus, it is unlikely these molecules directly modulate RyR1 channel activity. In summary, we describe an experimental platform to monitor the single channel properties of RyR channels. We envision that this system will be influential in characterizing disease-associated RyR mutations and the molecular determinants of RyR channel modulation.

  18. Dynamic regulation of ryanodine receptor type 1 (RyR1) channel activity by Homer 1.

    PubMed

    Feng, Wei; Tu, Jiancheng; Pouliquin, Pierre; Cabrales, Elaine; Shen, Xiaohua; Dulhunty, Angela; Worley, Paul F; Allen, Paul D; Pessah, Isaac N

    2008-03-01

    Homer, a family of scaffolding proteins originally identified in neurons, is also expressed in skeletal muscle. Previous studies showed that splice variants of Homer 1 (H1) amplify the gain of the ryanodine receptor type 1 (RyR1) channel complex. Using [3H]ryanodine ([3H]Ry) to probe the conformational state of RyR1, the actions of long- and short-forms of H1 are examined singly and in combination. At < or =200 nM, H1 long-forms (H1b or H1c possessing coiled-coil (CC) domains) and short-forms (H1a or H1EVH1 lacking CC domains) enhance specific [3H]Ry binding to RyR1. However, at a concentration > 200 nM, either H1 form completely inhibited [3H]Ry binding. Importantly, the combinations of H1c+H1EVH1, or H1b+H1a acted in an additive manner to enhance or inhibit [3H]Ry-binding activity. H1a and H1c individually or in combination produced the same dynamic pattern in regulating purified RyR1 channels reconstituted in planar lipid bilayers. In combination, their net action on RyR1 channels depends on total concentrations of H1. These data provide a mechanism by which constitutively and transiently expressed H1 forms can tightly regulate RyR1 channel activity in response to changing levels of expression and degradation of H1 proteins.

  19. Arsenic Requires Sphingosine-1-Phosphate Type 1 Receptors to Induce Angiogenic Genes and Endothelial Cell Remodeling

    PubMed Central

    Straub, Adam C.; Klei, Linda R.; Stolz, Donna B.; Barchowsky, Aaron

    2009-01-01

    Arsenic in drinking water is a major public health concern as it increases risk and incidence of cardiovascular disease and cancer. Arsenic exposure affects multiple vascular beds, promoting liver sinusoidal capillarization and portal hypertension, ischemic heart disease, peripheral vascular disease, and tumor angiogenesis. While Rac1-GTPase and NADPH oxidase activities are essential for arsenic-stimulated endothelial cell signaling for angiogenesis or liver sinusoid capillarization, the mechanism for initiating these effects is unknown. We found that arsenic-stimulated cell signaling and angiogenic gene expression in human microvascular endothelial cells were Pertussis toxin sensitive, indicating a G-protein coupled signaling pathway. Incubating human microvascular endothelial cells with the sphingosine-1-phosphate type 1 receptor (S1P1) inhibitor VPC23019 or performing small interfering RNA knockdown of S1P1 blocked arsenic-stimulated HMVEC angiogenic gene expression and tube formation, but did not affect induction of either HMOX1 or IL8. Liver sinusoidal endothelial cells (LSECs) defenestrate and capillarize in response to aging and environmental oxidant stresses. We found that S1P1 was enriched on LSECs in vivo and in primary cell culture and that VPC23019 inhibited both sphingosine-1-phosphate-stimulated and arsenic-stimulated LSEC oxidant generation and defenestration. These studies identified novel roles for S1P1 in mediating arsenic stimulation of both angiogenesis and pathogenic LSEC capillarization, as well as demonstrating a role for S1P1 in mediating environmental responses in the liver vasculature, providing possible mechanistic insight into arsenic-induced vascular pathogenesis and disease. PMID:19349368

  20. Angiotensin 2 type 1 receptor blockade different affects postishemic kidney injury in normotensive and hypertensive rats.

    PubMed

    Miloradović, Zoran; Ivanov, Milan; Jovović, Đurđica; Karanović, Danijela; Vajić, Una Jovana; Marković-Lipkovski, Jasmina; Mihailović-Stanojević, Nevena; Milanović, Jelica Grujić

    2016-12-01

    Many studies demonstrated that angiotensin 2 type 1 receptor (AT1R) blockade accelerates renal recovery in post-ischaemic kidney but there are many controversies related to its net effect on kidney structure and function. During the past years, our research group was trying to define the pathophysiological significance of the renin-angiotensin system on post-ischemic acute renal failure (ARF) development in normotensive Wistar as well as hypertensive rats (SHR). This review mostly summarizes our experience in that field. Our previous studies in normotensive rats revealed that AT1R blockade, except slightly renal vascular resistance improvement, had no other obvious beneficial effects, and therefore implies angiotensin 2 (Ang-2) overexpression as non-dominant on kidney reperfusion injuries development. Similarly it was observed in Wistar rats with induced mild (L-NAME, 3 mg/kg b.w.) nitric oxide (NO) deficiency. Expectably, in strong induced (L-NAME, 10 mg/kg b.w.) NO deficiency associated with ARF, massive tubular injuries indicate harmful effects of AT1R blockade, implying strongly disturbed glomerular filtration and suggesting special precaution related to AT1R blockers usage. Opposite to previous, by our opinion, AT1R antagonism promises new advance in treatment of essentially hypertensive subjects who develop ARF. Increased glomerular filtration, diminished oxidative stress, and most importantly improved tubular structure in postishemic SHR treated with AT1R blocker losartan, implicate Ang-2 over production as potently agent in the kidney ischemic injury, partly trough generation of reactive oxygen species. These data contribute understanding the pathogenesis of this devastating illness in hypertensive surroundings.

  1. Angiotensin type 1a receptors on corticotropin-releasing factor neurons contribute to the expression of conditioned fear.

    PubMed

    Hurt, R C; Garrett, J C; Keifer, O P; Linares, A; Couling, L; Speth, R C; Ressler, K J; Marvar, P J

    2015-09-01

    Although generally associated with cardiovascular regulation, angiotensin II receptor type 1a (AT1a R) blockade in mouse models and humans has also been associated with enhanced fear extinction and decreased post-traumatic stress disorder (PTSD) symptom severity, respectively. The mechanisms mediating these effects remain unknown, but may involve alterations in the activities of corticotropin-releasing factor (CRF)-expressing cells, which are known to be involved in fear regulation. To test the hypothesis that AT1a R signaling in CRFergic neurons is involved in conditioned fear expression, we generated and characterized a conditional knockout mouse strain with a deletion of the AT1a R gene from its CRF-releasing cells (CRF-AT1a R((-/-)) ). These mice exhibit normal baseline heart rate, blood pressure, anxiety and locomotion, and freeze at normal levels during acquisition of auditory fear conditioning. However, CRF-AT1a R((-/-)) mice exhibit less freezing than wild-type mice during tests of conditioned fear expression-an effect that may be caused by a decrease in the consolidation of fear memory. These results suggest that central AT1a R activity in CRF-expressing cells plays a role in the expression of conditioned fear, and identify CRFergic cells as a population on which AT1 R antagonists may act to modulate fear extinction. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  2. Angiotensin Type 1a Receptors on Corticotropin-Releasing Factor Neurons Contribute to the Expression of Conditioned Fear

    PubMed Central

    Hurt, Robert C.; Garrett, Jacob C.; Keifer, Orion P.; Linares, Andrea; Couling, Leena; Speth, Robert C.; Ressler, Kerry J.; Marvar, Paul J.

    2015-01-01

    Although generally associated with cardiovascular regulation, angiotensin II receptor type 1 (AT1aR) blockade in mouse models and humans has also been associated with enhanced fear extinction and decreased post-traumatic stress disorder (PTSD) symptom severity, respectively. The mechanisms mediating these effects remain unknown, but may involve alterations in the activities of corticotropin-releasing factor (CRF)-expressing cells, which are known to be involved in fear regulation. To test the hypothesis that AT1aR signaling in CRFergic neurons is involved in conditioned fear expression, we generated and characterized a conditional knockout mouse strain with a deletion of the AT1aR gene from its CRF-releasing cells (CRF-AT1aR(−/−)). These mice exhibit normal baseline heart rate, blood pressure, anxiety, and locomotion, and freeze at normal levels during acquisition of auditory fear conditioning. However, CRF-AT1aR(−/−) mice exhibit less freezing than wild type mice during tests of conditioned fear expression—an effect that may be caused by a decrease in the consolidation of fear memory. These results suggest that central AT1R activity in CRF-expressing cells plays a role in the expression of conditioned fear, and identify CRFergic cells as a population on which AT1R antagonists may act to modulate fear extinction. PMID:26257395

  3. Characterization of functional urotensin II receptors in human skeletal muscle myoblasts: comparison with angiotensin II receptors.

    PubMed

    Qi, Jian-shen; Minor, Lisa K; Smith, Charles; Hu, Bing; Yang, Jing; Andrade-Gordon, Patricia; Damiano, Bruce

    2005-04-01

    The properties of urotensin II (U-II) receptor (UT receptor) and angiotensin II (ANG II) receptor (AT receptor) in primary human skeletal myoblasts (HSMM) and differentiated skeletal myotubes (HSMMT) were characterized. Radiolabeled U-II and ANG II bound specifically to HSMM with Kd's of 0.31 nM (2311 receptors/cell) and 0.61 nM (18,257 receptors/cell), respectively. The cyclic segment of U-II peptide, CFWKYC, was the minimal sequence required for binding, with the WKY residues essential. Inhibitor studies suggested AT1 is the predominant ANG II receptor. After radioligand binding, under conditions designed to minimize receptor internalization, half the bound U-II was resistant to acid washing suggesting that U-II binds tightly to its receptor in a quasi-irreversible fashion. The AT1 receptor-bound radioligand was completely removed under the same conditions. RT-PCR detected the expression of mRNAs for UT and AT1 receptors. Western blotting showed that U-II and ANG II signaled via ERK1/2 kinase. UT receptor was not lost upon differentiation into myotubes since both mRNA for UT receptor and U-II binding were still present. ANG II receptors were also present as shown by ANG II-induced calcium mobilization.

  4. Stimulation of α₁-adrenoceptor or angiotensin type 1 receptor enhances DNA synthesis in human-induced pluripotent stem cells via Gq-coupled receptor-dependent signaling pathways.

    PubMed

    Ishizuka, Toshiaki; Goshima, Hazuki; Ozawa, Ayako; Watanabe, Yasuhiro

    2013-08-15

    Stimulation of either α₁-adrenoceptor or angiotensin type 1 receptor (AT₁ receptor) induces proliferation of mouse induced pluripotent stem (iPS) cells. Both α₁-adrenoceptor and AT₁ receptor are guanine nucleotide-binding protein q polypeptide (Gq)-coupled receptors. However, it is not fully understood whether stimulation of these Gq-coupled receptors exert a similar effect in human iPS cells, i.e. proliferation of human iPS cells. In this study, we evaluated the involvement of α₁-adrenoceptor and AT₁ receptor in the DNA synthesis of human iPS cells. Treatment with either l-phenylephrine (a selective α₁-adrenoceptor agonist) or angiotensin II (Ang II) significantly increased DNA synthesis in human iPS cells. Enhanced DNA synthesis was significantly inhibited by pretreatment with protein kinase C (PKC) inhibitors, mitogen-activated protein kinase kinase (MEK) inhibitor, or phosphatidylinositol-3 phosphate kinase (PI3K) inhibitor. Treatment with either l-phenylephrine or Ang II significantly increased Akt and p44/42 MAPK phosphorylation. Short interfering RNA (siRNA) directed against Gq significantly inhibited DNA synthesis and phosphorylation of Akt and p44/42 MAPK enhanced by l-phenylephrine or Ang II. These results suggest that stimulation of α₁-adrenoceptor or AT₁ receptor may enhance DNA synthesis in human iPS cells via Gq-coupled receptor-dependent signaling pathways.

  5. Angiotensin type 1 receptors in the subfornical organ mediate the drinking and hypothalamic-pituitary-adrenal response to systemic isoproterenol.

    PubMed

    Krause, Eric G; Melhorn, Susan J; Davis, Jon F; Scott, Karen A; Ma, Li Y; de Kloet, Annette D; Benoit, Stephen C; Woods, Stephen C; Sakai, Randall R

    2008-12-01

    Circulating angiotensin II (ANGII) elicits water intake and activates the hypothalamic-pituitary-adrenal (HPA) axis by stimulating angiotensin type 1 receptors (AT1Rs) within circumventricular organs. The subfornical organ (SFO) and the organum vasculosum of the lamina terminalis (OVLT) are circumventricular organs that express AT1Rs that bind blood-borne ANGII and stimulate integrative and effector regions of the brain. The goal of these studies was to determine the contribution of AT1Rs within the SFO and OVLT to the water intake and HPA response to increased circulating ANGII. Antisense oligonucleotides directed against the AT1R [AT1R antisense (AT1R AS)] were administered into the OVLT or SFO. Quantitative receptor autoradiography confirmed that AT1R AS decreased ANGII binding in the SFO and OVLT compared with the scrambled sequence control but did not affect AT1R binding in other nuclei. Subsequently, water intake, ACTH, and corticosterone (CORT) were assessed after administration of isoproterenol, a beta-adrenergic agonist that decreases blood pressure and elevates circulating ANGII. Delivery of AT1R AS into the SFO attenuated water intake, ACTH, and CORT after isoproterenol, whereas similar treatment in the OVLT had no effect. To determine the specificity of this blunted drinking and HPA response, the same parameters were measured after treatment with hypertonic saline, a stimulus that induces drinking independently of ANGII. Delivery of AT1R AS into the SFO or OVLT had no effect on water intake, ACTH, or CORT after hypertonic saline. The results imply that AT1R within the SFO mediate drinking and HPA responses to stimuli that increase circulating ANGII.

  6. The prevention of preterm labour -- corticotropin releasing hormone type 1 receptors as a target for drug design and development.

    PubMed

    Keller, P A; Kirkwood, K; Morgan, J; Westcott, S; McCluskey, A

    2003-06-01

    The role of the corticotropin releasing hormone in the onset of labour and the subsequent medicinal chemistry implications of CRH antagonists for the prevention of premature birth, and identification of the CRH type 1 receptor as the target for this drug design, are reviewed here.

  7. Coxsackie–adenovirus receptor expression is enhanced in pancreas from patients with type 1 diabetes

    PubMed Central

    Hodik, M; Anagandula, M; Fuxe, J; Krogvold, L; Dahl-Jørgensen, K; Hyöty, H; Sarmiento, L; Frisk, G

    2016-01-01

    Objectives One of the theories connecting enterovirus (EV) infection of human islets with type 1 diabetes (T1D) is the development of a fertile field in the islets. This implies induction of appropriate proteins for the viral replication such as the coxsackie–adenovirus receptor (CAR). The aim of this study was to investigate to what extent CAR is expressed in human islets of Langerhans, and what conditions that would change the expression. Design Immunohistochemistry for CAR was performed on paraffin-embedded pancreatic tissue from patients with T1D (n=9 recent onset T1D, n=4 long-standing T1D), islet autoantibody-positive individuals (n=14) and non-diabetic controls (n=24) individuals. The expression of CAR was also examined by reverse transcription PCR on microdissected islets (n=5), exocrine tissue (n=5) and on explanted islets infected with EV or exposed to chemokines produced by EV-infected islet cells. Results An increased frequency of patients with T1D and autoantibody-positive individuals expressed CAR in the pancreas (p<0.039). CAR staining was detected more frequently in pancreatic islets from patients with T1D and autoantibody-positive subjects (15/27) compared with (6/24) non-diabetic controls (p<0.033). Also in explanted islets cultured in UV-treated culture medium from coxsackievirus B (CBV)-1-infected islets, the expression of the CAR gene was increased compared with controls. Laser microdissection of pancreatic tissue revealed that CAR expression was 10-fold higher in endocrine compared with exocrine cells of the pancreas. CAR was also expressed in explanted islets and the expression level decreased with time in culture. CBV-1 infection of explanted islets clearly decreased the expression of CAR (p<0.05). In contrast, infection with echovirus 6 did not affect the expression of CAR. Conclusions CAR is expressed in pancreatic islets of patients with T1D and the expression level of CAR is increased in explanted islets exposed to proinflammatory

  8. Coxsackie-adenovirus receptor expression is enhanced in pancreas from patients with type 1 diabetes.

    PubMed

    Hodik, M; Anagandula, M; Fuxe, J; Krogvold, L; Dahl-Jørgensen, K; Hyöty, H; Sarmiento, L; Frisk, G

    2016-01-01

    One of the theories connecting enterovirus (EV) infection of human islets with type 1 diabetes (T1D) is the development of a fertile field in the islets. This implies induction of appropriate proteins for the viral replication such as the coxsackie-adenovirus receptor (CAR). The aim of this study was to investigate to what extent CAR is expressed in human islets of Langerhans, and what conditions that would change the expression. Immunohistochemistry for CAR was performed on paraffin-embedded pancreatic tissue from patients with T1D (n=9 recent onset T1D, n=4 long-standing T1D), islet autoantibody-positive individuals (n=14) and non-diabetic controls (n=24) individuals. The expression of CAR was also examined by reverse transcription PCR on microdissected islets (n=5), exocrine tissue (n=5) and on explanted islets infected with EV or exposed to chemokines produced by EV-infected islet cells. An increased frequency of patients with T1D and autoantibody-positive individuals expressed CAR in the pancreas (p<0.039). CAR staining was detected more frequently in pancreatic islets from patients with T1D and autoantibody-positive subjects (15/27) compared with (6/24) non-diabetic controls (p<0.033). Also in explanted islets cultured in UV-treated culture medium from coxsackievirus B (CBV)-1-infected islets, the expression of the CAR gene was increased compared with controls. Laser microdissection of pancreatic tissue revealed that CAR expression was 10-fold higher in endocrine compared with exocrine cells of the pancreas. CAR was also expressed in explanted islets and the expression level decreased with time in culture. CBV-1 infection of explanted islets clearly decreased the expression of CAR (p<0.05). In contrast, infection with echovirus 6 did not affect the expression of CAR. CAR is expressed in pancreatic islets of patients with T1D and the expression level of CAR is increased in explanted islets exposed to proinflammatory cytokines/chemokines produced by infected

  9. The effect of soluble complement receptor type 1 on hyperacute xenograft rejection.

    PubMed

    Pruitt, S K; Baldwin, W M; Marsh, H C; Lin, S S; Yeh, C G; Bollinger, R R

    1991-11-01

    In the guinea pig-to-rat model of hyperacute xenograft (Xg) rejection, the effect of complement inhibition using systemically administered soluble complement receptor type 1 (sCR1) on discordant cardiac Xg survival was investigated. In PBS-treated control Xg recipients (n = 13), hyperacute rejection was rapid, with a mean Xg survival of 17 +/- 4 min. Therapy with sCR1 prolonged survival of cardiac Xgs in a dose-dependent manner. A 3 mg/kg bolus of sCR1 (n = 4) prolonged Xg survival to 64 +/- 29 min (not significant). Increasing the sCR1 dose to 5.9 mg/kg (n = 4) significantly delayed Xg rejection to 71 +/- 17 min (P-0.026, log-rank test vs. control). In 10 recipients treated with 15 mg/kg sCR1, mean Xg survival was further prolonged to 189 +/- 36 min (P-0.0004) with no adverse effects. While 2 of 8 recipients receiving 60 mg/kg sCR1 died with functioning Xgs at 30 and 300 min due to anastomotic bleeding, Xg survival averaged over 12 hr (747 +/- 100 min, P-0.0004) in the remaining 6 recipients. sCR1 administration significantly inhibited serum complement activity in a parallel dose-dependent fashion, with the 60 mg/kg dose reducing complement activity by 95 +/- 1 and 96 +/- 1% five and 30 min following Xg reperfusion, respectively. Immunofluorescence microscopy revealed rat IgM bound to all cardiac Xgs in control as well as sCR1-treated recipients. In addition, serial histologic examination of cardiac Xgs harvested within 21 min of graft reperfusion revealed occlusive platelet aggregates within the coronary vessels as well as interstitial hemorrhage and myocardial necrosis in Xgs from control recipients, all of which were only minimally present in Xgs from recipients treated with sCR1. These studies show that complement inhibition with sCR1 significantly delays hyperacute cardiac Xg rejection in this discordant model and may be an important component in a therapeutic protocol for xenotransplantation.

  10. Transient receptor potential vanilloid type-1 (TRPV-1) channels contribute to cutaneous thermal hyperaemia in humans.

    PubMed

    Wong, Brett J; Fieger, Sarah M

    2010-11-01

    The initial, rapid increase in skin blood flow in response to direct application of heat is thought to be mediated by an axon reflex, which is dependent on intact cutaneous sensory nerves. We tested the hypothesis that inhibition of transient receptor potential vanilloid type 1 (TRPV-1) channels, which are putative channels located on sensory nerves, would attenuate the skin blood flow response to local heating in humans. Ten subjects were equipped with four microdialysis fibres which were randomly assigned one of four treatments: (1) vehicle control (90% propylene glycol + 10% lactated Ringer solution); (2) 20 mm capsazepine to inhibit TRPV-1 channels; (3) 10 mm l-NAME to inhibit NO synthase; and (4) combined 20 mm capsazepine + 10 mm l-NAME. Following baseline measurements, the temperature of skin heaters was increased from 33°C to 42°C at a rate of 1.0°C every 10 s and local temperature was held at 42°C for 20-30 min until a stable plateau in skin blood flow was achieved. An index of skin blood flow was measured directly over each microdialysis site via laser-Doppler flowmetry (LDF). Beat-by-beat blood pressure was measured via photoplethysmography and verified via automated brachial auscultation. At the end of the local heating protocol, temperature of the heaters was increased to 43°C and 28 mm nitroprusside was infused to achieve maximal vasodilatation. Cutaneous vascular conductance (CVC) was calculated as LDF/mean arterial pressure and normalized to maximal values (%CVCmax). Initial peak in capsazepine (44 ± 4%CVCmax), l-NAME (56 ± 4%CVCmax) and capsazepine + l-NAME (32 ± 6%CVCmax) sites was significantly attenuated compared to control (87 ± 5%CVCmax; P < 0.001 for all conditions). The plateau phase of thermal hyperaemia was significantly attenuated in capsazepine (73 ± 6%CVCmax), l-NAME (47 ± 5%CVCmax) and capsazepine + l-NAME (31 ± 7%CVCmax) sites compared to control (92 ± 5%CVCmax; P < 0.001 for all conditions). These data suggest TRPV-1

  11. Deletion of transient receptor potential vanilloid type 1 receptors exaggerates renal damage in deoxycorticosterone acetate-salt hypertension.

    PubMed

    Wang, Youping; Babánková, Dagmar; Huang, Jie; Swain, Greg M; Wang, Donna H

    2008-08-01

    To determine whether the transient receptor potential vanilloid type 1 (TRPV1) channel provides protection against hypertension-induced renal damage, hypertension was induced by uninephrectomy and by giving deoxycorticosterone acetate (DOCA)-salt in wild-type (WT) and TRPV1-null mutant (TRPV1-/-) mice. Mean arterial pressure, as determined by radiotelemetry, increased significantly and reached the peak 7 days after DOCA-salt treatment in both WT and TRPV1-/- mice. There was no difference in mean arterial pressure between the 2 strains at the baseline or at the peak that lasted for 4 treatment weeks. DOCA-salt treatment in both WT and TRPV1-/- mice led to increased urinary excretion of albumin and 8-isoprostane, glomerulosclerosis, renal cortical tubulointerstitial injury, tubulointerstitial fibrosis, increased number of tubular proliferating cell nuclear antigen-positive cells, and renal monocyte/macrophage infiltration, all of which were much more severe in DOCA-salt-treated TRPV1-/- compared with DOCA-salt-treated WT mice. Renal TRPV1 protein expression, but not the renal anandamide content, was elevated in DOCA-salt-treated WT compared with vehicle-treated WT mice. Renal anandamide levels were markedly elevated in DOCA-salt-treated TRPV1-/- but not in vehicle-treated TRPV1-/- mice. Thus, our data show that ablation of the TRPV1 gene exacerbates renal damage induced by DOCA-salt hypertension, indicating that TRPV1 may constitute a protective mechanism against end-organ damage induced by hypertension.

  12. Organization of Ca2+ stores in myeloid cells: association of SERCA2b and the type-1 inositol-1,4,5-trisphosphate receptor.

    PubMed

    Favre, C J; Jerström, P; Foti, M; Stendhal, O; Huggler, E; Lew, D P; Krause, K H

    1996-05-15

    In this study, we have analysed the relationship between Ca2+ pumps and Ins(1,4,5)P3-sensitive Ca2+ channels in myeloid cells. To study whether sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA)-type Ca(2+)-ATPases are responsible for Ca2+ uptake into Ins(1,4,5)P3-sensitive Ca2+ stores, we used the three structurally unrelated inhibitors thapsigargin, 2,5-di-t-butylhydroquinone and cyclopiazonic acid. In HL-60 cells, all three compounds precluded formation of the phosphorylated intermediate of SERCA-type Ca(2+)-ATPases. They also decreased, in parallel, ATP-dependent Ca2+ accumulation and the amount of Ins(1,4,5)P3-releasable Ca2+. Immunoblotting with subtype-directed antibodies demonstrated that HL-60 cells contain the Ca2+ pump SERCA2 (subtype b), and the Ca(2+)-release-channel type-1 Ins(1,4,5)P3 receptor. In subcellular fractionation studies, SERCA2 and type-1 Ins(1,4,5)P3 receptor co-purified. Immunofluorescence studies demonstrated that both type-1 Ins(1,4,5)P3 receptor and SERCA2 were evenly distributed throughout the cell in moving neutrophils. During phagocytosis both proteins translocated to the periphagosomal space. Taken together, our results suggest that in myeloid cells (i) SERCA-type Ca(2+)-ATPases function as Ca2+ pumps of Ins(1,4,5)P3-sensitive Ca2+ stores, and (ii) SERCA2 and type-1 Ins(1,4,5)P3 receptor reside either in the same or two tightly associated subcellular compartments.

  13. Organization of Ca2+ stores in myeloid cells: association of SERCA2b and the type-1 inositol-1,4,5-trisphosphate receptor.

    PubMed Central

    Favre, C J; Jerström, P; Foti, M; Stendhal, O; Huggler, E; Lew, D P; Krause, K H

    1996-01-01

    In this study, we have analysed the relationship between Ca2+ pumps and Ins(1,4,5)P3-sensitive Ca2+ channels in myeloid cells. To study whether sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA)-type Ca(2+)-ATPases are responsible for Ca2+ uptake into Ins(1,4,5)P3-sensitive Ca2+ stores, we used the three structurally unrelated inhibitors thapsigargin, 2,5-di-t-butylhydroquinone and cyclopiazonic acid. In HL-60 cells, all three compounds precluded formation of the phosphorylated intermediate of SERCA-type Ca(2+)-ATPases. They also decreased, in parallel, ATP-dependent Ca2+ accumulation and the amount of Ins(1,4,5)P3-releasable Ca2+. Immunoblotting with subtype-directed antibodies demonstrated that HL-60 cells contain the Ca2+ pump SERCA2 (subtype b), and the Ca(2+)-release-channel type-1 Ins(1,4,5)P3 receptor. In subcellular fractionation studies, SERCA2 and type-1 Ins(1,4,5)P3 receptor co-purified. Immunofluorescence studies demonstrated that both type-1 Ins(1,4,5)P3 receptor and SERCA2 were evenly distributed throughout the cell in moving neutrophils. During phagocytosis both proteins translocated to the periphagosomal space. Taken together, our results suggest that in myeloid cells (i) SERCA-type Ca(2+)-ATPases function as Ca2+ pumps of Ins(1,4,5)P3-sensitive Ca2+ stores, and (ii) SERCA2 and type-1 Ins(1,4,5)P3 receptor reside either in the same or two tightly associated subcellular compartments. PMID:8645196

  14. Live Cell Imaging and 3D Analysis of Angiotensin Receptor Type 1a Trafficking in Transfected Human Embryonic Kidney Cells Using Confocal Microscopy.

    PubMed

    Kadam, Parnika; McAllister, Ryan; Urbach, Jeffrey S; Sandberg, Kathryn; Mueller, Susette C

    2017-03-27

    Live-cell imaging is used to simultaneously capture time-lapse images of angiotensin type 1a receptors (AT1aR) and intracellular compartments in transfected human embryonic kidney-293 (HEK) cells following stimulation with angiotensin II (Ang II). HEK cells are transiently transfected with plasmid DNA containing AT1aR tagged with enhanced green fluorescent protein (EGFP). Lysosomes are identified with a red fluorescent dye. Live-cell images are captured on a laser scanning confocal microscope after Ang II stimulation and analyzed by software in three dimensions (3D, voxels) over time. Live-cell imaging enables investigations into receptor trafficking and avoids confounds associated with fixation, and in particular, the loss or artefactual displacement of EGFP-tagged membrane receptors. Thus, as individual cells are tracked through time, the subcellular localization of receptors can be imaged and measured. Images must be acquired sufficiently rapidly to capture rapid vesicle movement. Yet, at faster imaging speeds, the number of photons collected is reduced. Compromises must also be made in the selection of imaging parameters like voxel size in order to gain imaging speed. Significant applications of live-cell imaging are to study protein trafficking, migration, proliferation, cell cycle, apoptosis, autophagy and protein-protein interaction and dynamics, to name but a few.

  15. Spatial Distribution of the Cannabinoid Type 1 and Capsaicin Receptors May Contribute to the Complexity of Their Crosstalk

    PubMed Central

    Chen, Jie; Varga, Angelika; Selvarajah, Srikumaran; Jenes, Agnes; Dienes, Beatrix; Sousa-Valente, Joao; Kulik, Akos; Veress, Gabor; Brain, Susan D.; Baker, David; Urban, Laszlo; Mackie, Ken; Nagy, Istvan

    2016-01-01

    The cannabinoid type 1 (CB1) receptor and the capsaicin receptor (TRPV1) exhibit co-expression and complex, but largely unknown, functional interactions in a sub-population of primary sensory neurons (PSN). We report that PSN co-expressing CB1 receptor and TRPV1 form two distinct sub-populations based on their pharmacological properties, which could be due to the distribution pattern of the two receptors. Pharmacologically, neurons respond either only to capsaicin (COR neurons) or to both capsaicin and the endogenous TRPV1 and CB1 receptor ligand anandamide (ACR neurons). Blocking or deleting the CB1 receptor only reduces both anandamide- and capsaicin-evoked responses in ACR neurons. Deleting the CB1 receptor also reduces the proportion of ACR neurons without any effect on the overall number of capsaicin-responding cells. Regarding the distribution pattern of the two receptors, neurons express CB1 and TRPV1 receptors either isolated in low densities or in close proximity with medium/high densities. We suggest that spatial distribution of the CB1 receptor and TRPV1 contributes to the complexity of their functional interaction. PMID:27653550

  16. Spatial Distribution of the Cannabinoid Type 1 and Capsaicin Receptors May Contribute to the Complexity of Their Crosstalk.

    PubMed

    Chen, Jie; Varga, Angelika; Selvarajah, Srikumaran; Jenes, Agnes; Dienes, Beatrix; Sousa-Valente, Joao; Kulik, Akos; Veress, Gabor; Brain, Susan D; Baker, David; Urban, Laszlo; Mackie, Ken; Nagy, Istvan

    2016-09-22

    The cannabinoid type 1 (CB1) receptor and the capsaicin receptor (TRPV1) exhibit co-expression and complex, but largely unknown, functional interactions in a sub-population of primary sensory neurons (PSN). We report that PSN co-expressing CB1 receptor and TRPV1 form two distinct sub-populations based on their pharmacological properties, which could be due to the distribution pattern of the two receptors. Pharmacologically, neurons respond either only to capsaicin (COR neurons) or to both capsaicin and the endogenous TRPV1 and CB1 receptor ligand anandamide (ACR neurons). Blocking or deleting the CB1 receptor only reduces both anandamide- and capsaicin-evoked responses in ACR neurons. Deleting the CB1 receptor also reduces the proportion of ACR neurons without any effect on the overall number of capsaicin-responding cells. Regarding the distribution pattern of the two receptors, neurons express CB1 and TRPV1 receptors either isolated in low densities or in close proximity with medium/high densities. We suggest that spatial distribution of the CB1 receptor and TRPV1 contributes to the complexity of their functional interaction.

  17. Pilot Phase II Trial of Imatinib Mesylate in Neurofibromatosis Type 1 patients with Plexiform Neurofibromas

    PubMed Central

    Robertson, Kent A.; Nalepa, Grzegorz; Yang, Feng-Chun; Bowers, Daniel C.; Ho, Chang Y.; Hutchins, Gary D.; Croop, James M.; Vik, Terry A.; Denne, Scott C.; Parada, Luis F.; Hingtgen, Cynthia M.; Walsh, Laurence E.; Yu, Menggang; Pradhan, Kamnesh R.; Edwards-Brown, Mary K.; Cohen, Mervyn D.; Fletcher, James W.; Travers, Jeffrey B.; Staser, Karl W.; Lee, Melissa W.; Sherman, Marcie R.; Davis, Cynthia J.; Miller, Lucy C.; Ingram, David A.; Clapp, D. Wade

    2016-01-01

    : 10 – 48%) experienced ≥ 20% decrease in volume of one or more plexiform tumours and 30% of study patients had symptomatic improvement. We noted significant inter-patient and intra-patient heterogeneity of plexiform neurofibroma response. Toxicity of drug was comparable to previous reports in patients with chronic myelogenous leukemia. The most common adverse events were reversible skin rash (5 patients) and edema with weight gain (6 patients). More serious adverse events included reversible grade 3 neutropenia (2 patients) and grade 4 transaminitis (one patient). INTERPRETATION Imatinib mesylate caused disease regression in 26% of evaluable patients with clinically significant plexiform neurofibromas due to neurofibromatosis type 1. These results warrant confirmation in a larger multi-institutional clinical trial aimed at this patient population. These findings provide the first demonstration of radiographic volumetric tumour reduction in response to medical therapy in patients with NF1 plexiform neurofibromas using imatinib mesylate based on studies in a pre-clinical genetic mouse model. These translational studies form the framework whereby other agents may be tested/compared to imatinib in the pre-clinical model and moved into the clinic advancing development of more effective therapies for NF1-related plexiform neurofibromas. PMID:23099009

  18. Angiotensin type 1 receptor A1166C polymorphism and systemic lupus erythematosus: correlation with cellular immunity and oxidative stress markers.

    PubMed

    Baniamerian, H; Bahrehmand, F; Vaisi-Raygani, A; Rahimi, Z; Pourmotabbed, T

    2017-01-01

    Angiotensin II, one of the rennin-angiotensin system components, is important in the cardiovascular hemodynamic and plays an important role in the development of cardiovascular disease in systemic lupus erythematosus (SLE) patients. The angiotensin II, through interaction with angiotensin II type 1 receptor (AGTR1), promotes proliferation, inflammation and fibrosis. The single nucleotide polymorphism of the AGTR1 (dbSNP: rs5186) gene can be associated with development and progression of SLE disease. The aims of this study were to compare the frequency of AGTR1 rs5186 in SLE patients with healthy individuals and to evaluate possible association between AGTR1 A1166C gene polymorphism and serum level of lipids, neopterin and malondialdehyde in SLE patients from a population of West Iran. One hundred SLE patients and 98 healthy subjects were studied. The AGTR1 A1166C polymorphism was detected by polymerase chain reaction- restriction fragment length polymorphism method and the serum lipid profile was obtained by enzymatic method. Neopterin and malondialdehyde were detected using high-performance liquid chromatography. We did not detect significant association between AGTR1 A1166C polymorphism and the risk of SLE. The levels of triglyceride (225 ± 118 mg/dl), neopterin (30 ± 24 nmol/l) and malondialdehyde (25 ± 9.6 nmol/l) in SLE patients were significantly higher than those in control subjects (139 ± 56 mg/dl, p = 0.03, 6.4 ± 2, p = 0.03, 9.4 ± 2.5 nmol/l, p = 0.01, respectively). Individuals with AGTR1 AC + CC genotype had higher levels of total cholesterol and malondialdehyde compared with those with AGTR1 AA genotype. SLE patients with either AGTR1 AA or AGTR1AC + CC genotype had significantly higher malondialdehyde or neopterin levels compared with the corresponding control subjects. In conclusion, although the present study did not find any association between AGTR1 A1166C polymorphism and the risk of SLE

  19. The Relationship between Serum Carbonic Anhydrase I-II Autoantibody Levels and Diabetic Retinopathy in Type 1 Diabetes Patients

    PubMed Central

    Türk, Adem; Mollamehmetoğlu, Süleyman; Alver, Ahmet; Menteşe, Ahmet; Nuhoğlu, İrfan; Erem, Cihangir; İmamoğlu, Halil İbrahim

    2017-01-01

    Objectives: To investigate the relationship between serum carbonic anhydrase I-II (CA-I and II) autoantibody levels and diabetic retinopathy (DRP) in cases with type 1 diabetes. Materials and Methods: A total of 37 type-1 diabetic patients, 17 with DRP (group 1) and 20 without (group 2), and 38 healthy control subjects (group 3) were included. CA-I and CA-II autoantibody levels were measured in serum samples obtained from each of the three groups and compared statistically. Additionally, the correlation between CA-I and CA-II autoantibody levels and the presence of diabetic macular edema was examined. Results: Mean measured CA-I autoantibody levels were 0.145±0.072, 0.117±0.047, and 0.138±0.061 ABSU in group 1, group 2, and group 3, respectively (p=0.327). The average CA-II autoantibody levels achieved in the same groups were 0.253±0.174, 0.155±0.137, and 0.131±0.085 ABSU, respectively (p=0.005). No significant difference was obtained between the subgroups of group 1, with macular edema (n=8) and without (n=9), in terms of both CA-I and CA-II autoantibody levels (p=0.501, p=0.178, respectively). Conclusion: A significant correlation was observed between the development of DRP and serum CA-II autoantibody levels in type 1 diabetic cases. However, there was no correlation between the autoantibody levels and the presence of diabetic macular edema in cases with DRP. PMID:28405482

  20. The Relationship between Serum Carbonic Anhydrase I-II Autoantibody Levels and Diabetic Retinopathy in Type 1 Diabetes Patients.

    PubMed

    Türk, Adem; Mollamehmetoğlu, Süleyman; Alver, Ahmet; Menteşe, Ahmet; Nuhoğlu, İrfan; Erem, Cihangir; İmamoğlu, Halil İbrahim

    2017-04-01

    To investigate the relationship between serum carbonic anhydrase I-II (CA-I and II) autoantibody levels and diabetic retinopathy (DRP) in cases with type 1 diabetes. A total of 37 type-1 diabetic patients, 17 with DRP (group 1) and 20 without (group 2), and 38 healthy control subjects (group 3) were included. CA-I and CA-II autoantibody levels were measured in serum samples obtained from each of the three groups and compared statistically. Additionally, the correlation between CA-I and CA-II autoantibody levels and the presence of diabetic macular edema was examined. Mean measured CA-I autoantibody levels were 0.145±0.072, 0.117±0.047, and 0.138±0.061 ABSU in group 1, group 2, and group 3, respectively (p=0.327). The average CA-II autoantibody levels achieved in the same groups were 0.253±0.174, 0.155±0.137, and 0.131±0.085 ABSU, respectively (p=0.005). No significant difference was obtained between the subgroups of group 1, with macular edema (n=8) and without (n=9), in terms of both CA-I and CA-II autoantibody levels (p=0.501, p=0.178, respectively). A significant correlation was observed between the development of DRP and serum CA-II autoantibody levels in type 1 diabetic cases. However, there was no correlation between the autoantibody levels and the presence of diabetic macular edema in cases with DRP.

  1. Impact of Angiotensin Type 1A Receptors in Principal Cells of the Collecting Duct on Blood Pressure and Hypertension.

    PubMed

    Chen, Daian; Stegbauer, Johannes; Sparks, Matthew A; Kohan, Donald; Griffiths, Robert; Herrera, Marcela; Gurley, Susan B; Coffman, Thomas M

    2016-06-01

    The main actions of the renin-angiotensin system to control blood pressure (BP) are mediated by the angiotensin type 1 receptors (AT1Rs). The major murine AT1R isoform, AT1AR, is expressed throughout the nephron, including the collecting duct in both principal and intercalated cells. Principal cells play the major role in sodium and water reabsorption. Although aldosterone is considered to be the dominant regulator of sodium reabsorption by principal cells, recent studies suggest a role for direct actions of AT1R. To specifically examine the contributions of AT1AR in principal cells to BP regulation and the development of hypertension in vivo, we generated inbred 129/SvEv mice with deletion of AT1AR from principal cells (PCKO). At baseline, we found that BPs measured by radiotelemetry were similar between PCKOs and controls. During 1-week of low-salt diet (<0.02% NaCl), BPs fell significantly (P<0.05) and to a similar extent in both groups. On a high-salt (6% NaCl) diet, BP increased but was not different between groups. During the initial phase of angiotensin II-dependent hypertension, there was a modest but significant attenuation of hypertension in PCKOs (163±6 mm Hg) compared with controls (178±2 mm Hg; P<0.05) that was associated with enhanced natriuresis and decreased alpha epithelial sodium channel activation in the medulla of PCKOs. However, from day 9 onward, BPs were indistinguishable between groups. Although effects of AT1AR on baseline BP and adaptation to changes in dietary salt are negligible, our studies suggest that direct actions of AT1AR contribute to the initiation of hypertension and epithelial sodium channel activation. © 2016 American Heart Association, Inc.

  2. Lymphotropic Virions Affect Chemokine Receptor-Mediated Neural Signaling and Apoptosis: Implications for Human Immunodeficiency Virus Type 1-Associated Dementia

    PubMed Central

    Zheng, Jialin; Ghorpade, Anuja; Niemann, Douglas; Cotter, Robin L.; Thylin, Michael R.; Epstein, Leon; Swartz, Jennifer M.; Shepard, Robin B.; Liu, Xiaojuan; Nukuna, Adeline; Gendelman, Howard E.

    1999-01-01

    Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis. PMID:10482576

  3. Angiotensin type-1 receptor inhibition is neuroprotective to amacrine cells in a rat model of retinopathy of prematurity.

    PubMed

    Downie, Laura E; Hatzopoulos, Kate M; Pianta, Michael J; Vingrys, Algis J; Wilkinson-Berka, Jennifer L; Kalloniatis, Michael; Fletcher, Erica L

    2010-01-01

    Retinopathy of prematurity (ROP) is characterized by deficits in the scotopic pathway, although the cellular locus for these deficits is not clear. Here we examined neurochemical and cellular changes that develop during oxygen-induced retinopathy, a model of ROP. In addition, we examined whether treatment with the angiotensin II type-1 receptor inhibitor, valsartan, prevented these changes. Newborn Sprague-Dawley rats were exposed from postnatal day (P) 0 to 11 to 80%:20% O(2) (22:2 hr/day) and then room air until P18. Valsartan (40 mg/kg/day) was administered from P12-P18. Pattern recognition analysis of overlapping amino acid profiles was used to provide a statistically robust and spatially complete classification of neural elements for each experimental condition. Classification yielded 12 neuronal theme classes in controls and nine classes following ROP. ROP was associated with a reduction in the number of amacrine and bipolar cell theme classes. The reduction in theme classes was confirmed as true neuronal loss by quantifying anatomical changes and using an apoptotic marker. ROP was associated with shifts in amino acid levels across all neuronal populations except for horizontal cells. A reduction in the density of glycine-immunoreactive amacrine cells, and particularly parvalbumin-immunoreactive AII amacrine cells, was observed following ROP. Valsartan treatment during ROP prevented loss of theme classes and loss of AII amacrine cells. This study suggests that deficits in scotopic vision during ROP may be associated with loss of AII amacrine cells. In addition, this study highlights the potential of AT(1)R blockade in preventing neuronal anomalies in this condition.

  4. Clinical features and ryanodine receptor type 1 gene mutation analysis in a Chinese family with central core disease.

    PubMed

    Chang, Xingzhi; Jin, Yiwen; Zhao, Haijuan; Huang, Qionghui; Wang, Jingmin; Yuan, Yun; Han, Ying; Qin, Jiong

    2013-03-01

    Central core disease is a rare inherited neuromuscular disorder caused by mutations in ryanodine receptor type 1 gene. The clinical phenotype of the disease is highly variable. We report a Chinese pedigree with central core disease confirmed by the gene sequencing. All 3 patients in the family presented with mild proximal limb weakness. The serum level of creatine kinase was normal, and electromyography suggested myogenic changes. The histologic analysis of muscle biopsy showed identical central core lesions in almost all of the muscle fibers in the index case. Exon 90-106 in the C-terminal domain of the ryanodine receptor type 1 gene was amplified using polymerase chain reaction. One heterozygous missense mutation G14678A (Arg4893Gln) in exon 102 was identified in all 3 patients. This is the first report of a familial case of central core disease confirmed by molecular study in mainland China.

  5. Design, synthesis, biological evaluation and binding mode modeling of benzimidazole derivatives targeting the cannabinoid receptor type 1.

    PubMed

    Espinosa-Bustos, Christian; Lagos, Carlos F; Romero-Parra, Javier; Zárate, Ana M; Mella-Raipán, Jaime; Pessoa-Mahana, Hernán; Recabarren-Gajardo, Gonzalo; Iturriaga-Vásquez, Patricio; Tapia, Ricardo A; Pessoa-Mahana, C David

    2015-02-01

    A series of N-acyl-2,5-dimethoxyphenyl-1H-benzimidazoles were designed based on a CoMFA model for cannabinoid receptor type 1 (CB1) ligands. Compounds were synthesized and radioligand binding affinity assays were performed. Eight novel benzimidazoles exhibited affinity for the CB1 receptor in the nanomolar range, and the most promising derivative compound 5 displayed a K(i) value of 1.2 nM when compared to CP55,940. These results confirm our previously reported QSAR model on benzimidazole derivatives, providing new information for the development of small molecules with high CB1 affinity.

  6. Microinjection of orexin-A into the rat locus coeruleus nucleus induces analgesia via cannabinoid type-1 receptors.

    PubMed

    Kargar, Hossein Mohammad-Pour; Azizi, Hossein; Mirnajafi-Zadeh, Javad; Reza, Mani Ali; Semnanian, Saeed

    2015-10-22

    Locus coeruleus (LC) nucleus is involved in noradrenergic descending pain modulation. LC receives dense orexinergic projections from the lateral hypothalamus. Orexin-A and -B are hypothalamic peptides which modulate a variety of brain functions via orexin type-1 (OX1) and orexin type-2 (OX2) receptors. Previous studies have shown that activation of OX1 receptors induces endocannabinoid synthesis and alters synaptic neurotransmission by retrograde signaling via affecting cannabinoid type-1 (CB1) receptors. In the present study the interaction of orexin-A and endocannabinoids was examined at the LC level in a rat model of inflammatory pain. Pain was induced by formalin (2%) injection into the hind paw. Intra-LC microinjection of orexin-A decreased the nociception score during both phases of formalin test. Furthermore, intra-LC microinjection of either SB-334867 (OX1 receptor antagonist) or AM251 (CB1 receptor antagonist) increased flinches and also the nociception score during phase 1, 2 and the inter-phase of formalin test. The analgesic effect of orexin-A was diminished by prior intra-LC microinjection of either SB-334867 or AM251. This data show that, activation of OX1 receptors in the LC can induce analgesia and also the blockade of OX1 or CB1 receptors is associated with hyperalgesia during formalin test. Our findings also suggest that CB1 receptors may modulate the analgesic effect of orexin-A. These results outline a new mechanism by which orexin-A modulates the nociceptive processing in the LC nucleus.

  7. Synthesis and Evaluation of Candidate PET Radioligands for Corticotropin-Releasing Factor Type-1 Receptors

    PubMed Central

    Lodge, Nicholas J.; Li, Yu-Wen; Chin, Frederick T.; Dischino, Douglas D.; Zoghbi, Sami S.; Deskus, Jeffrey A.; Mattson, Ronald J.; Imaizumo, Masao; Pieschl, Rick; Molski, Thaddeus F.; Fujita, Masahiro; Dulac, Heidi; Zaczek, Robert; Bronson, Joanne J.; Macor, John E.; Innis, Robert B.; Pike, Victor W.

    2014-01-01

    Introduction A radioligand for measuring the density of corticotrophin-releasing factor subtype-1 receptors (CRF1 receptors) in living animal and human brain with positron emission tomography (PET) would be a useful tool for neuropsychiatric investigations and the development of drugs intended to interact with this target. This study was aimed at discovery of such a radioligand from a group of CRF1 receptor ligands based on a core 3-(phenylamino)pyrazin-2(1H)-one scaffold. Methods CRF1 receptor ligands were selected for development as possible PET radioligands based on their binding potency at CRF receptors (displacement of [125I]CRF from rat cortical membranes), measured lipophilicity, autoradiographic binding profile in rat and rhesus monkey brain sections, rat biodistribution, and suitability for radiolabeling with carbon-11 or fluorine-18. Two identified candidates (BMS-721313 and BMS-732098) were labeled with fluorine-18. A third candidate (BMS-709460) was labeled with carbon-11 and all three radioligands were evaluated in PET experiments in rhesus monkey. CRF1 receptor density (Bmax) was assessed in rhesus brain cortical and cerebellum membranes with the CRF receptor ligand, [3H]BMS-728300. Results The three ligands selected for development showed high binding affinity (IC50 values, 0.3–8 nM) at CRF1 receptors and moderate lipophilicity (LogD, 2.8–4.4). [3H]BMS-728300 and the two 18F-labeled ligands showed region-specific binding in rat and rhesus monkey brain autoradiography, namely higher binding density in the frontal and limbic cortex, and cerebellum than in thalamus and brainstem. CRF1 receptor Bmax in rhesus brain was found to be 50–120 fmol/mg protein across cortical regions and cerebellum. PET experiments in rhesus monkey showed that the radioligands [18F]BMS-721313, [18F]BMS-732098 and [11C]BMS-709460 gave acceptably high brain radioactivity uptake but no indication of the specific binding as seen in vitro. Conclusions Candidate CRF1 receptor

  8. Molecular determinants of the species selectivity of neurokinin type 1 receptor antagonists.

    PubMed

    Pradier, L; Habert-Ortoli, E; Emile, L; Le Guern, J; Loquet, I; Bock, M D; Clot, J; Mercken, L; Fardin, V; Garret, C

    1995-02-01

    Most nonpeptide neurokinin (NK)1 antagonists display a marked difference in affinity for rat versus human NK1 receptors. The molecular basis for the species selectivity of RP67580 and CP96,345 has been previously addressed [J. Biol. Chem. 267:25668-25671 (1992); J. Biol. Chem. 268:2319-2323 (1993)]. We are extending these previous results to additional NK1 antagonists, which are members of different chemical families. Included is a new perhydroisoindolol, RPR100893, which unlike its parent compound (RP67580) is human receptor selective. Chimeric rat/human NK1 receptors, as well as rat and human mutant NK1 receptors, were constructed and expressed in COS-1 cells, and affinities for substance P and the various antagonists were determined in binding studies. With human receptor-selective antagonists, the rat R290(S-->I) mutation was the most effective in increasing antagonist affinity (from 7- to 23-fold). Combination with the R116(L-->V) mutation led to an additional increase in affinity for trans-4-hydroxy-1-(1H-indol-3-ylcarbonyl)-L-prolyl-N- methyl-N-(phenylmethyl)-L-tyrosineamide (a derivative of FK888) and to nearly full human receptor affinity for RPR100893 and (+/-)-CP99,994. Based on the gains in affinities, these results confirm and extend the role of residues 116 and 290 of the NK1 receptor in the species selectivity of these three new human receptor-selective NK1 antagonists. In comparison, the affinity of RP67580, the least selective molecule, was most affected by changes at position 116, and combination with mutations at either position 97 (V-->E) or position 290 led to the human receptor phenotype. For the heterosteroid KAN610857, modifications of the rat receptor at positions 97 and 290, and to a lesser degree position 116, were the most effective in reducing affinity. Two double-mutants [R(97,290) and R(116,290)], although different from those identified for RP67580, also displayed human receptor-like affinity. Therefore, the molecular determinants of

  9. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression

    PubMed Central

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-IL; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y.L.; Choi, Hueng-Sik

    2017-01-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ -binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907

  10. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression.

    PubMed

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-Il; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y L; Choi, Hueng-Sik

    2015-09-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. © 2015 Authors; published by Portland Press Limited.

  11. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors.

    PubMed

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane-solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane-solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor.

  12. 17beta-estradiol deficiency reduces potassium excretion in an angiotensin type 1 receptor-dependent manner.

    PubMed

    Ji, Hong; Zheng, Wei; Falconetti, Celine; Roesch, Darren M; Mulroney, Susan E; Sandberg, Kathryn

    2007-07-01

    This study examined the effects of ovariectomy (OVX) and 17beta-estradiol (E(2)) replacement (OVX + E(2)) on renal function in Sprague-Dawley rats. OVX caused a 40% decrease in the fractional excretion of potassium (FE(K(+))) that was prevented by E(2) replacement [Sham, 24.2 +/- 2.9%; OVX, 14.5 +/- 2.1% (P < 0.05 vs. OVX + E(2)); and OVX + E(2), 26.2 +/- 2.7%; n = 7-11] and that corresponded to significant increases in plasma potassium [(in mmol/l): Sham, 3.15 +/- 0.087; OVX, 3.42 +/- 0.048 (P < 0.05 vs. OVX + E(2)); and OVX + E(2), 3.19 +/- 0.11; n = 7-11]. No effects of OVX were detected on plasma levels of sodium and aldosterone. Angiotensin II type 1 receptor (AT(1)R) densities in ovariectomized rats were 1.4-fold and 1.3-fold higher in glomerular [maximum binding capacity (B(max); in fmol/mg protein): Sham, 482 +/- 21; OVX, 666 +/- 20 (P < 0.05 vs. OVX + E(2)); and OVX + E(2), 504 +/- 26; n = 7-11] and proximal tubular [B(max) (in fmol/mg protein): Sham, 721 +/- 16; OVX, 741 +/- 24 (P < 0.05 vs. OVX + E(2)); and OVX + E(2), 569 +/- 23; n = 7-11] membranes compared with E(2) replete animals, respectively. Both the angiotensin-converting enzyme inhibitor captopril and the AT(1)R antagonist losartan prevented the OVX-induced decrease in the FE(K(+)) and the increase in renal AT(1)R densities, suggesting that E(2) deficiency reduces potassium excretion in an ANG II/AT(1)R-dependent manner. These findings may have implications for renal function in postmenopausal women as well as contribute to the reasons underlying the age-induced increase in susceptibility to hypertension-associated disease in women.

  13. A type 1 serine/threonine kinase receptor that can dorsalize mesoderm in Xenopus.

    PubMed Central

    Mahony, D; Gurdon, J B

    1995-01-01

    We have cloned a type I serine/threonine kinase receptor, XTrR-I, from Xenopus. XTrR-I (Xenopus transforming growth factor beta-related receptor type I) is expressed in all regions of embryos throughout early development. Overexpression of this receptor does not affect ectoderm or endoderm but dorsalizes the mesoderm such that muscle appears in ventral mesoderm and notochord appears in lateral mesoderm normally fated to become muscle. In addition, overexpression of XTrR-I in UV-treated embryos is able to cause formation of a partial dorsal axis. These results suggest that XTrR-I encodes a receptor which responds in normal development to a transforming growth factor beta-like ligand so as to promote dorsalization. Its function would therefore be to direct mesodermalized tissue into muscle or notochord. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7604016

  14. Voltage-gated ion channel Kv4.3 is associated with Rap guanine nucleotide exchange factors and regulates angiotensin receptor type 1 signaling to small G-protein Rap.

    PubMed

    Potapova, Irina A; Cohen, Ira S; Doronin, Sergey V

    2007-09-01

    The voltage-gated potassium channel Kv4.3 was coexpressed with its beta-subunit Kv channel-interacting protein 2 and the angiotensin type 1 receptor in HEK-293 cells. Proteomic analysis of proteins coimmunoprecipitated with Kv4.3 revealed that Kv4.3 is associated with Rap guanine nucleotide exchange factors MR-GEF and EPAC-1. Previously, we demonstrated that Kv4.3 interacts with the angiotensin type 1 receptor in HE293 cells and cardiac myocytes. On the basis of this, we investigated the angiotensin type 1 receptor signaling to small G-proteins Ras and Rap-1 in the presence and absence of the Kv4.3-Kv channel-interacting protein 2 macromolecular complex. Ras activation was not significantly affected by coexpression of Kv4.3 and Kv channel-interacting protein 2. Ras exhibited a rapid activation-inactivation pattern with maximum activity at 2.5 min after addition of angiotensin II. In contrast, activation of Rap-1 was affected dramatically by coexpression of Kv4.3 and Kv channel-interacting protein 2 with the angiotensin type 1 receptor. In the absence of Kv4.3 and Kv channel-interacting protein 2, stimulation of the angiotensin type 1 receptor resulted in steady activation of Rap-1 that reached a plateau 25 min after addition of angiotensin II. In the presence of Kv4.3 and Kv channel-interacting protein 2, Rap-1 reaches a maximum activity 2.5 min after addition of angiotensin II and then deactivates rapidly, demonstrating a pattern of activation similar to that of Ras. Our findings show that Kv4.3 regulates angiotensin type 1 receptor signaling to the small G-protein Rap-1.

  15. Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic μ-opioid receptor sensitivity

    PubMed Central

    Taschler, U; Eichmann, T O; Radner, F P W; Grabner, G F; Wolinski, H; Storr, M; Lass, A; Schicho, R; Zimmermann, R

    2015-01-01

    Background and Purpose Monoglyceride lipase (MGL) degrades 2-arachidonoyl glycerol (2-AG), an endogenous agonist of cannabinoid receptors (CB1/2). Because the CB1 receptor is involved in the control of gut function, we investigated the effects of pharmacological inhibition and genetic deletion of MGL on intestinal motility. Furthermore, we determined whether defective 2-AG degradation affects μ-opioid receptorreceptor) signalling, a parallel pathway regulating gut motility. Experimental Approach Gut motility was investigated by monitoring Evans Blue transit and colonic bead propulsion in response to MGL inhibition and CB1 receptor or μ receptor stimulation. Ileal contractility was investigated by electrical field stimulation. CB1 receptor expression in ileum and colon was assessed by immunohistochemical analyses. Key Results Pharmacological inhibition of MGL slowed down whole gut transit in a CB1 receptor-dependent manner. Conversely, genetic deletion of MGL did not affect gut transit despite increased 2-AG levels. Notably, MGL deficiency caused complete insensitivity to CB1 receptor agonist-mediated inhibition of whole gut transit and ileal contractility suggesting local desensitization of CB1 receptors. Accordingly, immunohistochemical analyses of myenteric ganglia of MGL-deficient mice revealed that CB1 receptors were trapped in endocytic vesicles. Finally, MGL-deficient mice displayed accelerated colonic propulsion and were hypersensitive to μ receptor agonist-mediated inhibition of colonic motility. This phenotype was reproduced by chronic pharmacological inhibition of MGL. Conclusion and Implications Constantly elevated 2-AG levels induce severe desensitization of intestinal CB1 receptors and increased sensitivity to μ receptor-mediated inhibition of colonic motility. These changes should be considered when cannabinoid-based drugs are used in the therapy of gastrointestinal diseases. PMID:26075589

  16. Distinct subsynaptic localization of type 1 metabotropic glutamate receptors at glutamatergic and GABAergic synapses in the rodent cerebellar cortex.

    PubMed

    Mansouri, Mahnaz; Kasugai, Yu; Fukazawa, Yugo; Bertaso, Federica; Raynaud, Fabrice; Perroy, Julie; Fagni, Laurent; Kaufmann, Walter A; Watanabe, Masahiko; Shigemoto, Ryuichi; Ferraguti, Francesco

    2015-01-01

    Type 1 metabotropic glutamate (mGlu1) receptors play a pivotal role in different forms of synaptic plasticity in the cerebellar cortex, e.g. long-term depression at glutamatergic synapses and rebound potentiation at GABAergic synapses. These various forms of plasticity might depend on the subsynaptic arrangement of the receptor in Purkinje cells that can be regulated by protein-protein interactions. This study investigated, by means of the freeze-fracture replica immunogold labelling method, the subcellular localization of mGlu1 receptors in the rodent cerebellum and whether Homer proteins regulate their subsynaptic distribution. We observed a widespread extrasynaptic localization of mGlu1 receptors and confirmed their peri-synaptic enrichment at glutamatergic synapses. Conversely, we detected mGlu1 receptors within the main body of GABAergic synapses onto Purkinje cell dendrites. Although Homer proteins are known to interact with the mGlu1 receptor C-terminus, we could not detect Homer3, the most abundant Homer protein in the cerebellar cortex, at GABAergic synapses by pre-embedding and post-embedding immunoelectron microscopy. We then hypothesized a critical role for Homer proteins in the peri-junctional localization of mGlu1 receptors at glutamatergic synapses. To disrupt Homer-associated protein complexes, mice were tail-vein injected with the membrane-permeable dominant-negative TAT-Homer1a. Freeze-fracture replica immunogold labelling analysis showed no significant alteration in the mGlu1 receptor distribution pattern at parallel fibre-Purkinje cell synapses, suggesting that other scaffolding proteins are involved in the peri-synaptic confinement. The identification of interactors that regulate the subsynaptic localization of the mGlu1 receptor at neurochemically distinct synapses may offer new insight into its trafficking and intracellular signalling.

  17. Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1.

    PubMed

    De Filippo, Elisabetta; Schiedel, Anke C; Manga, Prashiela

    2017-02-01

    Developmental eye defects in X-linked ocular albinism type 1 are caused by G-protein coupled receptor 143 (GPR143) mutations. Mutations result in dysfunctional melanosome biogenesis and macromelanosome formation in pigment cells, including melanocytes and retinal pigment epithelium. GPR143, primarily expressed in pigment cells, localizes exclusively to endolysosomal and melanosomal membranes unlike most G protein-coupled receptors, which localize to the plasma membrane. There is some debate regarding GPR143 function and elucidating the role of this receptor may be instrumental for understanding neurogenesis during eye development and for devising therapies for ocular albinism type I. Many G protein-coupled receptors require association with other proteins to function. These G protein-coupled receptor-interacting proteins also facilitate fine-tuning of receptor activity and tissue specificity. We therefore investigated potential GPR143 interaction partners, with a focus on the melanogenic enzyme tyrosinase. GPR143 coimmunoprecipitated with tyrosinase, while confocal microscopy demonstrated colocalization of the proteins. Furthermore, tyrosinase localized to the plasma membrane when coexpressed with a GPR143 trafficking mutant. The physical interaction between the proteins was confirmed using fluorescence resonance energy transfer. This interaction may be required in order for GPR143 to function as a monitor of melanosome maturation. Identifying tyrosinase as a potential GPR143 binding protein opens new avenues for investigating the mechanisms that regulate pigmentation and neurogenesis.

  18. Anti-N-Methyl-D-Aspartate Receptor Encephalitis In A Young Child With Histological Evidence On Brain Biopsy Of Coexistent Herpes Simplex Virus Type 1 Infection.

    PubMed

    Ellul, Mark A; Griffiths, Michael J; Iyer, Anand; Avula, Shivaram; Defres, Sylviane; Baborie, Atik; Vincent, Angela; Martin, Natalie G; Sadarangani, Manish; Pollard, Andrew J; Solomon, Tom; Kneen, Rachel

    2016-03-01

    We report a 3-year-old boy with anti-N-methyl-D-aspartate receptor encephalitis with a typical syndrome of movement disorder and encephalopathy and evidence of herpes simplex virus (HSV) type 1 infection on brain biopsy. HSV type 1 infection and anti-N-methyl-D-aspartate receptor encephalitis are temporally linked in some cases: this case suggests that prodromal HSV type-1 infection may be clinically subtle and easily missed.

  19. Homodimerization and internalization of galanin type 1 receptor in living CHO cells.

    PubMed

    Wirz, Sebastian A; Davis, Christopher N; Lu, Xiaoying; Zal, Tomasz; Bartfai, Tamas

    2005-12-01

    Galanin is a 29- to 30-aa-long neuropeptide affecting feeding, cognitive, and sexual behavior. It exerts its effects through galanin receptors 1, 2 and 3, which are all seven transmembrane domain G-protein coupled receptors (GPCRs). The GPCRs have been shown to function as monomers, homodimers, heterodimers and oligomers. In this study, we examined the extent of galanin receptor 1 (GalR1) dimerization and internalization in living CHO cells using fluorescence resonance energy transfer (FRET) and time lapse confocal imaging. Ratio imaging analysis and emission spectral analysis revealed substantial homodimerization of GalR1. In addition, internalization of GalR1 after 1h of agonist stimulation with the GalR1 agonist galanin (1-29) was observed with time lapse fluorescence imaging, whereas stimulation with the GalR2 specific agonist galanin (2-11) did not lead to internalization. Treatment of GalR1 transfected cells with the non-selective adenylyl cyclase activator forskolin influenced the rate of internalization when administered together with galanin (1-29). These results indicate that GalR1 can act as a dimer on the cell surface and that receptor desensitization and internalization was observed after stimulation with the agonist galanin (1-29). Western blots further confirm the FRET data that GalR1-XFP dimerizes and can be detected in the cell as a monomer or dimer using antibodies to XFP. Internalization and dimerization of GalR1 is shown, contributing to the regulation of galanergic signaling.

  20. Altered Morphine-Induced Analgesia in Neurotensin Type 1 Receptor Null Mice

    PubMed Central

    Roussy, Geneviève; Beaudry, Hélène; Lafrance, Mylène; Belleville, Karine; Beaudet, Nicolas; Wada, Keiji; Gendron, Louis; Sarret, Philippe

    2013-01-01

    Both neurotensin (NT) and opioid agonists have been shown to induce antinociception in rodents after central administration. Besides, previous studies have revealed the existence of functional interactions between NT and opioid systems in the regulation of pain processing. We recently demonstrated that NTS1 receptors play a key role in the mediation of the analgesic effects of NT in long-lasting pain. In the present study, we therefore investigated whether NTS1 gene deletion affected the antinociceptive action of mu opioid drugs. To this end, pain behavioral responses to formalin were determined following systemic administration of morphine in both male and female NTS1 knockout mice. Acute injection of morphine (2 or 5 mg/kg) produced strong antinociceptive effects in both male and female wild-type littermates, with no significant sex differences. On the other hand, morphine analgesia was considerably reduced in NTS1-deficient mice of both sexes compared to their respective controls, indicating that the NTS1 receptor actively participates in mu opioid alleviating pain. By examining specifically the flinching, licking and biting nociceptive behaviors, we also showed that the functional crosstalk between NTS1 and mu opioid receptors influences the supraspinally-mediated behaviors. Interestingly, sexual dimorphic action of morphine-induced pain inhibition was found in NTS1 null mice in the formalin test, suggesting that the endogenous NT system interacts differently with the opioid network in male and female mice. Altogether, these results demonstrated that NTS1 receptor activation operates downstream to the opioidergic transmission and that NTS1-selective agonists combined with morphine may act synergistically to reduce persistent pain. PMID:20727387

  1. Neurotensin receptor type 1: Escherichia coli expression, purification, characterization and biophysical study.

    PubMed

    Harding, P J; Attrill, H; Ross, S; Koeppe, J R; Kapanidis, A N; Watts, A

    2007-08-01

    NT (neurotensin) is an endogenous tridecapeptide neurotransmitter found in the central nervous system and gastrointestinal tract. One receptor for NT, NTS1, belongs to the GPCR (G-protein-coupled receptor) superfamily, has seven putative transmembrane domains, and is being studied by a range of single-molecule, functional and structural approaches. To enable biophysical characterization, sufficient quantities of the receptor need to be expressed and purified in an active form. To this end, rat NTS1 has been expressed in Escherichia coli in an active ligand-binding form at the cell membrane and purified in sufficient amounts for structural biology studies either with or without fluorescent protein [YFP (yellow fluorescent protein) and CFP (cyan fluorescent protein)] fusions. Ligand binding has been demonstrated in a novel SPR (surface plasmon resonance) approach, as well as by conventional radioligand binding measurements. These improvements in production of NTS1 now open up the possibility of direct structural studies, such as solid-state NMR to interrogate the NT-binding site, EM (electron microscopy), and X-ray crystallography and NMR.

  2. Evidence of a role for nonmuscle myosin II in herpes simplex virus type 1 egress.

    PubMed

    van Leeuwen, Hans; Elliott, Gill; O'Hare, Peter

    2002-04-01

    After cell entry, herpes simplex virus (HSV) particles are transported through the host cell cytoplasm to nuclear pores. Following replication, newly synthesized virus particles are transported back to the cell periphery via a complex pathway including a cytoplasmic phase involving some form of unenveloped particle. These various transport processes are likely to make use of one or more components of the cellular cytoskeletal systems and associated motor proteins. Here we report that the HSV type 1 (HSV-1) major tegument protein, VP22, interacts with the actin-associated motor protein nonmuscle myosin IIA (NMIIA). HSV-1 infection resulted in reorganization of NMIIA, inducing retraction of NMIIA from the cell periphery and condensation into a spoke-like distribution around the nucleus along with a second effect of accumulation in a perinuclear cluster. VP22 did not appear to colocalize with the reorganized cagelike distribution of NMIIA. However, VP22 has been previously reported to localize in a perinuclear vesicular pattern, and significant overlap was observed between this pattern and the perinuclear clusters of NMIIA. Inhibition of the ATPase activity of NMIIA with the myosin-specific inhibitor butanedione monoxime impaired the formation of the perinuclear vesicular VP22 accumulations and also the release of virus into the extracellular medium while having much less effect on the yield of cell-associated virus. Virus infection frequently results in the induction of highly extended processes emanating from the infected cell, and we observed that VP22-containing particles line up along NMIIA-containing filaments which run through these protrusions.

  3. Possible Therapeutic Doses of Cannabinoid Type 1 Receptor Antagonist Reverses Key Alterations in Fragile X Syndrome Mouse Model

    PubMed Central

    Gomis-González, Maria; Busquets-Garcia, Arnau; Matute, Carlos; Maldonado, Rafael; Mato, Susana; Ozaita, Andrés

    2016-01-01

    Fragile X syndrome (FXS) is the most common monogenetic cause of intellectual disability. The cognitive deficits in the mouse model for this disorder, the Fragile X Mental Retardation 1 (Fmr1) knockout (KO) mouse, have been restored by different pharmacological approaches, among those the blockade of cannabinoid type 1 (CB1) receptor. In this regard, our previous study showed that the CB1 receptor antagonist/inverse agonist rimonabant normalized a number of core features in the Fmr1 knockout mouse. Rimonabant was commercialized at high doses for its anti-obesity properties, and withdrawn from the market on the bases of mood-related adverse effects. In this study we show, by using electrophysiological approaches, that low dosages of rimonabant (0.1 mg/kg) manage to normalize metabotropic glutamate receptor dependent long-term depression (mGluR-LTD). In addition, low doses of rimonabant (from 0.01 mg/kg) equally normalized the cognitive deficit in the mouse model of FXS. These doses of rimonabant were from 30 to 300 times lower than those required to reduce body weight in rodents and to presumably produce adverse effects in humans. Furthermore, NESS0327, a CB1 receptor neutral antagonist, was also effective in preventing the novel object-recognition memory deficit in Fmr1 KO mice. These data further support targeting CB1 receptors as a relevant therapy for FXS. PMID:27589806

  4. The role of orexin type-1 receptors in the development of morphine tolerance in locus coeruleus neurons: An electrophysiological perspective.

    PubMed

    Abdollahi, Hakime; Ghaemi-Jandabi, Masoumeh; Azizi, Hossein; Semnanian, Saeed

    2016-09-01

    Long-term exposure to opioid agonists results in tolerance to their analgesic effects, so the effectiveness of opioid agonists in the management of pain becomes limited. The locus coeruleus (LC) nucleus has been involved in the development of tolerance to opiates. Orexin type-1 receptors (OX1Rs) are highly expressed in LC nucleus. Orexin plays a noteworthy role in the occurrence of morphine tolerance. The purpose of the present study is to investigate the role of orexin type-1 receptors in the development of morphine tolerance in LC neurons. In this study, adult male Wistar rats weighing 250-300g were utilized. Induction of morphine tolerance was obtained by single injection of morphine per day for 6 successive days. An orexin type-1 receptor antagonist (SB-334867) was injected into the lateral ventricle instantly prior to morphine injection. On day 7, the effect of morphine on the electrical activity of LC neurons was studied using in vivo extracellular single unit recording. The results demonstrate that morphine injection for 6 consecutive days led to the development of morphine-induced tolerance in LC neurons. In other words, there was a significant decrease in LC neuronal responsiveness to morphine injection. Inhibitory responses of LC neurons to intraperitoneally applied morphine can be observed with the treatment of the SB-334867 prior to morphine injection. This study showed that OX1R blockade by SB-334867 prevents the development of morphine tolerance in LC neurons. We hope that further studies will lead to considerable progress in understanding the molecular adaptations that contribute to morphine tolerance. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Reduced expression of CRH receptor type 1 in upper segment human myometrium during labour

    PubMed Central

    Cong, Binhai; Zhang, Lanmei; Gao, Lu; Ni, Xin

    2009-01-01

    Background Corticotropin-releasing hormone (CRH) and CRH-related peptide are shown to modulate uterine contractility through two CRH receptor subtype, CRH-R1 and CRH-R2 during pregnancy. Through different signaling pathways, CRH-R1 maintains myometrial quiescence whereas CRH-R2 promotes smooth muscle contractility. We hypothesized that the expression of CRH receptors in myometrium might be changed during pregnancy and labour. Method Immunohistochemistry, Western blot and RT-PCR were used to quantify the cellular localization, the protein levels and the mRNA variants of both CRH-R1 and CRH-R2 in upper segment (US) and lower segment (LS) myometrium from nonpregnant and pregnant women at term before or after labour. Results CRH-R1 and CRH-R2 were predominately localized to myometrial smooth muscle cells in US and LS. The protein level of CRH-R1 in US was significantly down-regulated in pregnancy, with a further decrease at the onset of labour. However, the expression of CRH-R1 in LS remained unchanged during pregnancy and labour. No significant changes in CRH-R2 expression were observed in US or LS. Six variants of CRH-R1, CRH-R1alpha,-R1beta,-R1c, -R1e,-R1f and -R1g, were identified in nonpregnant and pregnant myometrium. CRH-R2alpha was identified in pregnant myometrium, whereas CRH-R2beta was identified in nonpregnant myometrium Conclusion CRH-R1 and CRH-R2 are expressed in nonpregnant and pregnant US and LS myometrium. Changed expression of CRH receptors during labour may underlie the initiation of uterine contractility during parturition. PMID:19432998

  6. Histamine impairs midbrain dopaminergic development in vivo by activating histamine type 1 receptors

    PubMed Central

    2014-01-01

    Background Histamine (HA) regulates the sleep-wake cycle, synaptic plasticity and memory in adult mammals. Dopaminergic specification in the embryonic ventral midbrain (VM) coincides with increased HA brain levels. To study the effect of HA receptor stimulation on dopamine neuron generation, we administered HA to dopamine progenitors, both in vitro and in vivo. Results Cultured embryonic day 12 (E12) VM neural stem/progenitor cells expressed transcripts for HA receptors H1R, H2R and H3R. These undifferentiated progenitors increased intracellular calcium upon HA addition. In HA-treated cultures, dopamine neurons significantly decreased after activation of H1R. We performed intrauterine injections in the developing VM to investigate HA effects in vivo. HA administration to E12 rat embryos notably reduced VM Tyrosine Hydroxylase (TH) staining 2 days later, without affecting GABA neurons in the midbrain, or serotonin neurons in the mid-hindbrain boundary. qRT-PCR and Western blot analyses confirmed that several markers important for the generation and maintenance of dopaminergic lineage such as TH, Lmx1a and Lmx1b were significantly diminished. To identify the cell type susceptible to HA action, we injected embryos of different developmental stages, and found that neural progenitors (E10 and E12) were responsive, whereas differentiated dopaminergic neurons (E14 and E16) were not susceptible to HA actions. Proliferation was significantly diminished, whereas neuronal death was not increased in the VM after HA administration. We injected H1R or H2R antagonists to identify the receptor responsible for the detrimental effect of HA on dopaminergic lineage and found that activation of H1R was required. Conclusion These results reveal a novel action of HA affecting dopaminergic lineage during VM development. PMID:25112718

  7. Modulatory effect of insulin on T cell receptor mediated calcium signaling is blunted in long lasting type 1 diabetes mellitus.

    PubMed

    Demkow, Urszula; Winklewski, Paweł; Ciepiela, Olga; Popko, Katarzyna; Lipińska, Anna; Kucharska, Anna; Michalska, Beata; Wąsik, Maria

    2012-01-01

    Insulin significantly influences Ca(2+) signals evoked by various stimulants. In type 1 recent onset diabetes mellitus the proliferative response of T cells is significantly decreased. The number of clinical trials exploring the role of anti-CD3 monoclonal antibodies (mAb) as a therapeutic agent in recent onset diabetes mellitus type 1 is increasing last years. Therefore, a better understanding of the interplay between T cell receptor (TCR) dependent Ca(2+) increase, and insulin is of vital clinical significance. The aim of the study was to assess the effect of insulin on TCR evoked Ca(2+) responses in T lymphocytes obtained from healthy volunteers and patients suffering from long lasting diabetes mellitus type 1. Analysis was performed with use of the flow cytometer. We demonstrated that T cells ability to mobilize Ca(2+) was significantly reduced in long lasting diabetes mellitus type 1. Ca(2+) decrease achieved by the long term incubation with anti-CD3 mAb in T cells from healthy volunteers was restored by insulin. Strong interrelationship between baseline Ca(2+) level and plateau phase response to TCR stimulation was observed in the cytoplasm of cells pre-incubated with insulin from both healthy subjects and diabetic patients (r = 0.95, p < 0.0001 and r = 0.94, p < 0.0001, respectively). We postulate the existence of the interplay between TCR mediated activation and insulin. The TCR-insulin interplay is blunted in long lasting diabetes mellitus type 1. These observations may have an important implication for future therapeutic options in diabetes.

  8. Homing receptor expression is deviated on CD56+ blood lymphocytes during pregnancy in Type 1 diabetic women.

    PubMed

    Burke, Suzanne D; Seaward, Alexandra V C; Ramshaw, Heather; Smith, Graeme N; Virani, Sophia; Croy, Barbara A; Lima, Patricia D A

    2015-01-01

    Type 1 Diabetes Mellitus (T1DM) is characterized by an augmented pro-inflammatory immune state. This contributes to the increased risk for gestational complications observed in T1DM mothers. In normal pregnancies, critical immunological changes occur, including the massive recruitment of lymphocytes, particularly CD56bright NK cells, into early decidua basalis and a 2nd trimester shift towards Type 2 immunity. Decidual CD56bright NK cells arise at least partly from circulating progenitors expressing adhesion molecules SELL and ITGA4 and the chemokine receptors CXCR3 and CXCR4. In vitro studies show that T1DM reduces interactions between blood CD56+ NK cells and decidual endothelial cells by reducing SELL and ITGA4-based interactions. To address the mechanisms by which specific lymphocyte subsets may be recruited from the circulation during pregnancy and whether these mechanisms are altered in T1DM, flow cytometry was used to examine eight peripheral blood lymphocyte subsets (Type 1 (IL18R1+) and Type 2 (IL1RL1+) CD56bright NK, CD56dim NK, NKT and T cells) from control and T1DM women. Blood was collected serially over pregnancy and postpartum, and lymphocytes were compared for expression of homing receptors SELL, ITGA4, CXCR3, and CXCR4. The decline of Type 1/Type 2 immune cells in normal pregnancy was driven by an increase in Type 2 cells that did not occur in T1DM. CD56bright NK cells from control women had the highest expression of all four receptors with greatest expression in 2nd trimester. At this time, these receptors were expressed at very low levels by CD56bright NK cells from TIDM patients. Type 1/Type 2 NKT cell ratios were not influenced by either pregnancy or TIDM. Our results suggest that T1DM alters immunological balances during pregnancy with its greatest impact on CD56bright NK cells. This implicates CD56bright NK cells in diabetic pregnancy complications.

  9. The association of the IVS1-397T>C estrogen receptor α polymorphism with the regulatory conditions in longstanding type 1 diabetic girls.

    PubMed

    Ryba, Monika; Malinowska, Ewa; Rybarczyk-Kapturska, Karolina; Brandt, Agnieszka; Myśliwiec, Małgorzata; Myśliwska, Jolanta

    2011-10-01

    Type 1 diabetes is considered as pluricausal disease, whose etiology involves genetic predisposition as well as environmental factors that contribute to disease progression and pathogenesis. Women are believed to be more susceptible to develop autoimmune diseases, which may depend in part on the influence of sex hormones on the immune system. It was shown that estrogens may protect against the development of autoimmune disease by inducing the expansion of regulatory T cell pool and upregulating Foxp3 expression. Foxp3 is a transcription factor that controls the development and suppressive function of naturally occurring regulatory T cells CD4(+)Foxp3(+). Longstanding diabetes type 1 has features of low-grade chronic inflammation which may influence regulatory T cell subset by reducing their numbers or/and inhibiting their suppressive potential. As diabetic type 1 patients are differentiated with regard to metabolic factors, level of glycemic control and systemic inflammatory state, we aimed to examine if this can be associated with IVSI-397T>C estrogen receptor α polymorphism. We examined 93 young regularly menstruating girls with diagnosed type 1 diabetes and 49 healthy age-matched control individuals. The PvuII polymorphism of the ER-α gene was analyzed as well as the serum TNF level and the level of CD4(+)Foxp3(+) regulatory T cells in these individuals. Girls with type 1 diabetes had lower level of CD4(+)Foxp3(+) Tregs than their healthy counterparts. Regulatory T cells from these patients showed also lower expression of Foxp3 than Tregs in healthy, control group. In addition, DM1 girls bearing the CC genotypes showed the highest level of CD4(+)Foxp3(+) Tregs and the lowest TNF serum level in comparison to girls carrying CT or TT genotype. The CC DM1 carriers had also higher serum level of estrogens than girls bearing CT or TT genotype. We propose that different variants of IVS1-397 estrogen receptor α polymorphism may become additional genetic factor that

  10. Cysteine dioxygenase type 1 promotes adipogenesis via interaction with peroxisome proliferator-activated receptor gamma

    SciTech Connect

    Deng, Peng; Chen, Yi; Ji, Ning; Lin, Yunfeng; Yuan, Quan; Ye, Ling; Chen, Qianming

    2015-02-27

    Mammalian cysteine dioxygenase type 1 (CDO1) is an essential enzyme for taurine biosynthesis and the biodegradation of toxic cysteine. As previously suggested, Cdo1 may be a marker of liposarcoma progression and adipogenic differentiation, but the role of Cdo1 in adipogenesis has yet been reported. In this study, we found that the expression of Cdo1 is dramatically elevated during adipogenic differentiation of 3T3-L1 pre-adipocytes and mouse bone marrow-derived mesenchymal stem cells (mBMSCs). Conversely, knockdown of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation in 3T3-L1 cells and mBMSCs. Mechanistically, we found Cdo1 interacted with Pparγ in response to adipogenic stimulus. Further, depletion of Cdo1 reduced the recruitment of Pparγ to the promoters of C/EBPα and Fabp4. Collectively, our finding indicates that Cdo1 may be a co-activator of Pparγ in adipogenesis, and may contribute to the development of disease associated with excessive adipose tissue. - Highlights: • Cdo1expression is highly up-regulated during adipogenic differentiation of 3T3-L1 and mBMSCs. • Depletion of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation. • Cdo1interacts with Pparγ during adipogenesis. • Knockdown of Cdo1 inhibited Pparγ binding to the promoters of C/EBPα and Fabp4.

  11. Absence of NMDA receptor antibodies in the rare association between Type 1 Narcolepsy and Psychosis

    PubMed Central

    Dauvilliers, Y.; Gaig, C.; Barateau, L.; Graus, F.; Iranzo, A.; Lopez, R.; Santamaria, J.

    2016-01-01

    Frequency and mechanisms underlying the association between narcolepsy type 1 (NT1) and psychosis remain unclear with potential role for a common immune pathway. We estimated the frequency of psychosis and its characteristics in NT1 at two European sleep centers (France, n = 381; Spain, n = 161) and measured IgG autoantibodies that recognize the GluN1 subunit of the NMDAR in 9 patients with NT1 with psychosis, and 25 NT1 patients without psychosis. Ten NT1 patients (6 in France, 4 in Spain) were diagnosed with comorbid psychosis, a frequency of 1.8%. One patient reported psychotic symptoms few months before narcolepsy onset, two patients few months after onset, and one patient one year after onset but after modafinil introduction. The six remaining patients reported long delays between NT1 and psychosis onset. Half the patients, mostly male adults, reported onset or worsening of psychotic symptoms after medication. We found no IgG antibodies to NR1/NR2B heteromers of the NMDARs in patients with NT1 with or without psychosis. To conclude, psychosis is rare in NT1, with limited evidence for a key impact of stimulants, and no association with anti-NMDAR antibodies. However, dramatic NT1 and schizophrenia exists especially in early onset NT1, which may lead to inappropriate diagnosis and management. PMID:27143278

  12. Novel neurotrophic tyrosine kinase receptor type 1 gene mutation associated with congenital insensitivity to pain with anhidrosis.

    PubMed

    Lin, Yi-Pei; Su, Yi-Ning; Weng, Wen-Chin; Lee, Wang-Tso

    2010-12-01

    Congenital insensitivity to pain with anhidrosis (hereditary sensory and autonomic neuropathy type IV) is a rare autosomal recessive disorder caused by a defect in neurotrophic tyrosine kinase receptor and nerve growth factor, as reported in previous studies. This report is of a 6-month-old male infant with typical symptoms and signs of congenital insensitivity to pain with anhidrosis. He had a homozygous insertion mutation with c.2086_2087 ins C of neurotrophic tyrosine kinase receptor type 1 (NTRK1) gene with both parents as heterozygous carriers. This mutation may have a strong relation to hereditary sensory and autonomic neuropathy type IV Taiwanese patients. This is the youngest reported patient in Taiwan and first reported with congenital insensitivity to pain with mutation of NTRK1 gene inherited from the parents. Early diagnosis may provide appropriate medical care and education for these children and their families for better prognosis.

  13. Generation and Characterization of Mice Expressing a Conditional Allele of the Interleukin-1 Receptor Type 1

    PubMed Central

    Robson, Matthew J.; Zhu, Chong-Bin; Quinlan, Meagan A.; Botschner, David A.; Baganz, Nicole L.; Lindler, Kathryn M.; Thome, Jason G.; Hewlett, William A.; Blakely, Randy D.

    2016-01-01

    The cytokines IL-1α and IL-1β exert powerful pro-inflammatory actions throughout the body, mediated primarily by the intracellular signaling capacity of the interleukin-1 receptor (IL-1R1). Although Il1r1 knockout mice have been informative with respect to a requirement for IL-1R1 signaling in inflammatory events, the constitutive nature of gene elimination has limited their utility in the assessment of temporal and spatial patterns of cytokine action. To pursue such questions, we have generated C57Bl/6J mice containing a floxed Il1r1 gene (Il1r1loxP/loxP), with loxP sites positioned to flank exons 3 and 4 and thereby the ability to spatially and temporally eliminate Il1r1 expression and signaling. We found that Il1r1loxP/loxP mice breed normally and exhibit no gross physical or behavioral phenotypes. Moreover, Il1r1loxP/loxP mice exhibit normal IL-1R1 receptor expression in brain and spleen, as well as normal IL-1R1-dependent increases in serum IL-6 following IL-1α injections. Breeding of Il1r1loxP/loxP mice to animals expressing a cytomegalovirus (CMV)-driven Cre recombinase afforded efficient excision at the Il1r1 locus. The Il1r1loxP/loxP line should be a valuable tool for the assessment of contributions made by IL-1R1 signaling in diverse cell types across development. PMID:26930558

  14. Cysteinyl leucotriene receptor type 1 mediates contraction in human and guinea-pig oesophagus.

    PubMed

    Chang, B-S; Chang, J-C; Wang, Y-S; Huang, S-C

    2008-10-01

    Leucotriene D(4) (LTD(4)) causes contraction of the guinea-pig and cat oesophagus. Effects of cysteinyl leucotrienes in the human oesophagus were unknown. To investigate and compare the cysteinyl leucotriene effects in the human oesophagus with those in the guinea-pig oesophagus, we measured contraction of muscularis mucosae strips isolated from the human and guinea-pig oesophagus caused by cysteinyl leucotrienes, LTC(4), LTD(4) and LTE(4), as well as the dihydroxy leucotriene, LTB(4). Effects of leucotrienes in human were similar to those in guinea-pig oesophagus. LTC(4) and LTD(4) caused moderate, whereas LTE(4) caused mild, concentration-dependent contraction. LTE(4) was a partial agonist. In contrast, LTB(4) did not cause any contraction. The relative potencies for cysteinyl leucotrienes to cause contraction were LTD(4) = LTC(4) > LTE(4). The LTD(4)-induced contraction was moderately inhibited by two selective CysLT(1) receptor antagonists, montelukast and zafirlukast, in both human and guinea-pig oesophagus. In addition, the LTD(4)-induced contraction was not and only slightly inhibited by BAY u9773, the CysLT(1) and CysLT(2) receptor antagonist, in the human and guinea-pig oesophageal muscularis mucosae respectively. These indicate the existence of the CysLT(1) mediating oesophageal contraction in both human and guinea-pig oesophagus. The LTD(4)-induced contraction was not affected by tetrodotoxin, atropine or capsaicin, suggesting a direct effect. These results demonstrate that cysteinyl leucotrienes but not the dihydroxy leucotriene cause contraction in the human and guinea-pig oesophagus. CysLT(1) mediates contraction in both human and guinea-pig oesophagus.

  15. Leukotriene E4 is a full functional agonist for human cysteinyl leukotriene type 1 receptor-dependent gene expression

    PubMed Central

    Foster, Holly R.; Fuerst, Elisabeth; Branchett, William; Lee, Tak H.; Cousins, David J.; Woszczek, Grzegorz

    2016-01-01

    Leukotriene E4 (LTE4) the most stable of the cysteinyl leukotrienes (cysLTs) binds poorly to classical type 1 (CysLT1) and 2 (CysLT2) receptors although it induces potent responses in human airways in vivo, such as bronchoconstriction, airway hyperresponsiveness and inflammatory cell influx suggesting the presence of a novel receptor that preferentially responds to LTE4. To identify such a receptor two human mast cell lines, LAD2 and LUVA, were selected that differentially responded to LTE4 when analysed by intracellular signalling and gene expression. Comparative transcriptome analysis and recombinant gene overexpression experiments revealed CysLT1 as a receptor responsible for potent LTE4-induced response in LAD2 but not in LUVA cells, an observation confirmed further by gene knockdown and selective inhibitors. Lentiviral overexpression of CysLT1 in LUVA cells augmented intracellular calcium signalling induced by LTE4 but did not restore full agonist responses at the gene expression level. Our data support a model where both an increased expression of Gαq-coupled CysLT1, and sustained intracellular calcium mobilisation and extracellular signal-regulated kinase (Erk) activation, are required for LTE4-mediated regulation of gene expression in human cells. Our study shows for the first time that CysLT1 expression is critically important for responsiveness to LTE4 within a human cell system. PMID:26830450

  16. Shikonin, a Component of Chinese Herbal Medicine, Inhibits Chemokine Receptor Function and Suppresses Human Immunodeficiency Virus Type 1

    PubMed Central

    Chen, Xin; Yang, Lu; Zhang, Ning; Turpin, Jim A.; Buckheit, Robert W.; Osterling, Clay; Oppenheim, Joost J.; Howard, O. M. Zack

    2003-01-01

    Shikonin is a major component of zicao (purple gromwell, the dried root of Lithospermum erythrorhizon), a Chinese herbal medicine with various biological activities, including inhibition of human immunodeficiency virus (HIV) type 1 (HIV-1). G protein-coupled chemokine receptors are used by HIV-1 as coreceptors to enter the host cells. In this study, we assessed the effects of shikonin on chemokine receptor function and HIV-1 replication. The results showed that, at nanomolar concentrations, shikonin inhibited monocyte chemotaxis and calcium flux in response to a variety of CC chemokines (CCL2 [monocyte chemoattractant protein 1], CCL3 [macrophage inflammatory protein 1α], and CCL5 [regulated upon activation, normal T-cell expressed and secreted protein]), the CXC chemokine (CXCL12 [stromal cell-derived factor 1α]), and classic chemoattractants (formylmethionyl-leucine-phenylalanine and complement fraction C5a). Shikonin down-regulated surface expression of CCR5, a primary HIV-1 coreceptor, on macrophages to a greater degree than the other receptors (CCR1, CCR2, CXCR4, and the formyl peptide receptor) did. CCR5 mRNA expression was also down-regulated by the compound. Additionally, shikonin inhibited the replication of a multidrug-resistant strain and pediatric clinical isolates of HIV in human peripheral blood mononuclear cells, with 50% inhibitory concentrations (IC50s) ranging from 96 to 366 nM. Shikonin also effectively inhibited the replication of the HIV Ba-L isolate in monocytes/macrophages, with an IC50 of 470 nM. Our results suggest that the anti-HIV and anti-inflammatory activities of shikonin may be related to its interference with chemokine receptor expression and function. Therefore, shikonin, as a naturally occurring, low-molecular-weight pan-chemokine receptor inhibitor, constitutes a basis for the development of novel anti-HIV therapeutic agents. PMID:12936978

  17. Shikonin, a component of chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1.

    PubMed

    Chen, Xin; Yang, Lu; Zhang, Ning; Turpin, Jim A; Buckheit, Robert W; Osterling, Clay; Oppenheim, Joost J; Howard, O M Zack

    2003-09-01

    Shikonin is a major component of zicao (purple gromwell, the dried root of Lithospermum erythrorhizon), a Chinese herbal medicine with various biological activities, including inhibition of human immunodeficiency virus (HIV) type 1 (HIV-1). G protein-coupled chemokine receptors are used by HIV-1 as coreceptors to enter the host cells. In this study, we assessed the effects of shikonin on chemokine receptor function and HIV-1 replication. The results showed that, at nanomolar concentrations, shikonin inhibited monocyte chemotaxis and calcium flux in response to a variety of CC chemokines (CCL2 [monocyte chemoattractant protein 1], CCL3 [macrophage inflammatory protein 1alpha], and CCL5 [regulated upon activation, normal T-cell expressed and secreted protein]), the CXC chemokine (CXCL12 [stromal cell-derived factor 1alpha]), and classic chemoattractants (formylmethionyl-leucine-phenylalanine and complement fraction C5a). Shikonin down-regulated surface expression of CCR5, a primary HIV-1 coreceptor, on macrophages to a greater degree than the other receptors (CCR1, CCR2, CXCR4, and the formyl peptide receptor) did. CCR5 mRNA expression was also down-regulated by the compound. Additionally, shikonin inhibited the replication of a multidrug-resistant strain and pediatric clinical isolates of HIV in human peripheral blood mononuclear cells, with 50% inhibitory concentrations (IC(50)s) ranging from 96 to 366 nM. Shikonin also effectively inhibited the replication of the HIV Ba-L isolate in monocytes/macrophages, with an IC(50) of 470 nM. Our results suggest that the anti-HIV and anti-inflammatory activities of shikonin may be related to its interference with chemokine receptor expression and function. Therefore, shikonin, as a naturally occurring, low-molecular-weight pan-chemokine receptor inhibitor, constitutes a basis for the development of novel anti-HIV therapeutic agents.

  18. Co-ordinated regulation of plasmacytoid dendritic cell surface receptors upon stimulation with herpes simplex virus type 1

    PubMed Central

    Schuster, Philipp; Donhauser, Norbert; Pritschet, Kathrin; Ries, Moritz; Haupt, Sabrina; Kittan, Nicolai A; Korn, Klaus; Schmidt, Barbara

    2010-01-01

    Human plasmacytoid dendritic cells (PDC) are crucial for innate and adaptive immune responses against viral infections, mainly through production of type I interferons. Evidence is accumulating that PDC surface receptors play an important role in this process. To investigate the PDC phenotype in more detail, a chip-based expression analysis of surface receptors was combined with respective flow cytometry data obtained from fresh PDC, PDC exposed to interleukin-3 (IL-3) and/or herpes simplex virus type 1 (HSV-1). CD156b, CD229, CD305 and CD319 were newly identified on the surface of PDC, and CD180 was identified as a new intracellular antigen. After correction for multiple comparisons, a total of 33 receptors were found to be significantly regulated upon exposure to IL-3, HSV-1 or IL-3 and HSV-1. These were receptors involved in chemotaxis, antigen uptake, activation and maturation, migration, apoptosis, cytotoxicity and costimulation. Infectious and ultraviolet-inactivated HSV-1 did not differentially affect surface receptor regulation, consistent with the lack of productive virus infection in PDC, which was confirmed by HSV-1 real-time polymerase chain reaction and experiments involving autofluorescing HSV-1 particles. Viral entry was mediated at least in part by endocytosis. Time–course experiments provided evidence of a co-ordinated regulation of PDC surface markers, which play a specific role in different aspects of PDC function such as attraction to inflamed tissue, antigen recognition and subsequent migration to secondary lymphatic tissue. This knowledge can be used to investigate PDC surface receptor functions in interactions with other cells of the innate and adaptive immune system, particularly natural killer cells and cytotoxic T lymphocytes. PMID:19824924

  19. Co-ordinated regulation of plasmacytoid dendritic cell surface receptors upon stimulation with herpes simplex virus type 1.

    PubMed

    Schuster, Philipp; Donhauser, Norbert; Pritschet, Kathrin; Ries, Moritz; Haupt, Sabrina; Kittan, Nicolai A; Korn, Klaus; Schmidt, Barbara

    2010-02-01

    Human plasmacytoid dendritic cells (PDC) are crucial for innate and adaptive immune responses against viral infections, mainly through production of type I interferons. Evidence is accumulating that PDC surface receptors play an important role in this process. To investigate the PDC phenotype in more detail, a chip-based expression analysis of surface receptors was combined with respective flow cytometry data obtained from fresh PDC, PDC exposed to interleukin-3 (IL-3) and/or herpes simplex virus type 1 (HSV-1). CD156b, CD229, CD305 and CD319 were newly identified on the surface of PDC, and CD180 was identified as a new intracellular antigen. After correction for multiple comparisons, a total of 33 receptors were found to be significantly regulated upon exposure to IL-3, HSV-1 or IL-3 and HSV-1. These were receptors involved in chemotaxis, antigen uptake, activation and maturation, migration, apoptosis, cytotoxicity and costimulation. Infectious and ultraviolet-inactivated HSV-1 did not differentially affect surface receptor regulation, consistent with the lack of productive virus infection in PDC, which was confirmed by HSV-1 real-time polymerase chain reaction and experiments involving autofluorescing HSV-1 particles. Viral entry was mediated at least in part by endocytosis. Time-course experiments provided evidence of a co-ordinated regulation of PDC surface markers, which play a specific role in different aspects of PDC function such as attraction to inflamed tissue, antigen recognition and subsequent migration to secondary lymphatic tissue. This knowledge can be used to investigate PDC surface receptor functions in interactions with other cells of the innate and adaptive immune system, particularly natural killer cells and cytotoxic T lymphocytes.

  20. Role of fosaprepitant, a neurokinin Type 1 receptor antagonist, in morphine-induced antinociception in rats.

    PubMed

    Prasoon, Pranav; Gupta, Shivani; Kumar, Rahul; Gautam, Mayank; Kaler, Saroj; Ray, Subrata Basu

    2016-01-01

    Opioids such as morphine form the cornerstone in the treatment of moderate to severe pain. However, opioids also produce serious side effects such as tolerance. Fosaprepitant is a substance P (SP) receptor antagonist, which is used for treating chemotherapy-induced nausea and vomiting. SP is an important neuropeptide mediating transmission of pain at the spinal level. Thus, it was hypothesized that combining morphine with fosaprepitant would increase the antinociceptive effect of morphine. The objectives were to evaluate the effect of fosaprepitant on morphine-induced antinociception in rats and to investigate its mechanism of action. Sprague-Dawley rats were injected with morphine (10 mg/kg twice daily) and/or fosaprepitant (30 mg/kg once daily) for 7 days. Pain threshold was assessed by the hot plate test. Expression of SP and calcitonin gene-related peptide (CGRP) in the spinal cords of these rats was evaluated by immunohistochemistry. Morphine administration resulted in an antinociceptive effect compared to the control group (day 1 and to a lesser extent on day 4). The decreased antinociception despite continued morphine treatment indicated development of tolerance. Co-administration of fosaprepitant attenuated tolerance to morphine (days 1 and 3) and increased the antinociceptive effect compared to control group (days 1-4). Expression of SP was increased in the morphine + fosaprepitant group. The results show that fosaprepitant attenuates the development of tolerance to morphine and thereby, increases the antinociceptive effect. This is likely linked to decreased release of SP from presynaptic terminals.

  1. Structural mapping of divergent regions in the type 1 ryanodine receptor using fluorescence resonance energy transfer.

    PubMed

    Mahalingam, Mohana; Girgenrath, Tanya; Svensson, Bengt; Thomas, David D; Cornea, Razvan L; Fessenden, James D

    2014-09-02

    Ryanodine receptors (RyRs) release Ca(2+) to initiate striated muscle contraction. Three highly divergent regions (DRs) in the RyR protein sequence (DR1, DR2, and DR3) may confer isoform-specific functional properties to the RyRs. We used cell-based fluorescence resonance energy transfer (FRET) measurements to localize these DRs to the cryoelectron microscopic (cryo-EM) map of the skeletal muscle RyR isoform (RyR1). FRET donors were targeted to RyR1 using five different FKBP12.6 variants labeled with Alexa Fluor 488. FRET was then measured to the FRET acceptors, Cy3NTA or Cy5NTA, targeted to decahistidine tags introduced within the DRs. DR2 and DR3 were localized to separate positions within the "clamp" region of the RyR1 cryo-EM map, which is presumed to interface with Cav1.1. DR1 was localized to the "handle" region, near the regulatory calmodulin-binding site on the RyR. These localizations provide insights into the roles of DRs in RyR allosteric regulation during excitation contraction coupling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Structural mapping of divergent regions in the type 1 ryanodine receptor using fluorescence resonance energy transfer

    PubMed Central

    Mahalingam, Mohana; Girgenrath, Tanya; Svensson, Bengt; Thomas, David D.; Cornea, Razvan L.; Fessenden, James D.

    2014-01-01

    Summary Ryanodine receptors (RyR) release Ca2+ to initiate striated muscle contraction. Three highly divergent regions in the RyR protein sequence (DR1, DR2, DR3) are proposed to confer isoform-specific functional properties to the RyRs. We used cell-based fluorescence resonance energy transfer (FRET) measurements to localize these DRs to the cryo-electron microscopic (EM) map of the skeletal muscle RyR isoform (RyR1). FRET donors were targeted to RyR1 using five different FKBP12.6 variants labeled with Alexa Fluor 488. FRET was then measured to Cy3NTA or Cy5NTA, FRET acceptors targeted to decahistidine tags introduced within the DRs. DR2 and DR3 were localized to separate positions within the “clamp” region of the RyR1 cryo-EM map, which is presumed to interface with Cav1.1. DR1 was localized to the “handle” region, near the regulatory calmodulin binding site on the RyR. These localizations provide new insights into the roles of DRs in RyR allosteric regulation during excitation-contraction coupling. PMID:25132084

  3. Therapeutic Elimination of the Type 1 Interferon Receptor for Treating Psoriatic Skin Inflammation.

    PubMed

    Gui, Jun; Gober, Michael; Yang, Xiaoping; Katlinski, Kanstantsin V; Marshall, Christine M; Sharma, Meena; Werth, Victoria P; Baker, Darren P; Rui, Hallgeir; Seykora, John T; Fuchs, Serge Y

    2016-10-01

    Phototherapy with UV light is a standard treatment for psoriasis, yet the mechanisms underlying the therapeutic effects are not well understood. Studies in human and mouse keratinocytes and in the skin tissues from human patients and mice showed that UV treatment triggers ubiquitination and downregulation of the type I IFN receptor chain IFNAR1, leading to suppression of IFN signaling and an ensuing decrease in the expression of inflammatory cytokines and chemokines. The severity of imiquimod-induced psoriasiform inflammation was greatly exacerbated in skin of mice deficient in IFNAR1 ubiquitination (Ifnar1(SA)). Furthermore, these mice did not benefit from UV phototherapy. Pharmacologic induction of IFNAR1 ubiquitination and degradation by an antiprotozoal agent halofuginone also relieved psoriasiform inflammation in wild-type but not in Ifnar1(SA) mice. These data identify downregulation of IFNAR1 by UV as a major mechanism of the UV therapeutic effects against the psoriatic inflammation and provide a proof of principle for future development of agents capable of inducing IFNAR1 ubiquitination and downregulation for the treatment of psoriasis.

  4. Cannabinoid receptor type 1- and 2-mediated increase in cyclic AMP inhibits T cell receptor-triggered signaling.

    PubMed

    Börner, Christine; Smida, Michal; Höllt, Volker; Schraven, Burkhart; Kraus, Jürgen

    2009-12-18

    The aim of this study was to characterize inhibitory mechanisms on T cell receptor signaling mediated by the cannabinoid receptors CB1 and CB2. Both receptors are coupled to G(i/o) proteins, which are associated with inhibition of cyclic AMP formation. In human primary and Jurkat T lymphocytes, activation of CB1 by R(+)-methanandamide, CB2 by JWH015, and both by Delta9-tetrahydrocannabinol induced a short decrease in cyclic AMP lasting less than 1 h. However, this decrease was followed by a massive (up to 10-fold) and sustained (at least up to 48 h) increase in cyclic AMP. Mediated by the cyclic AMP-activated protein kinase A and C-terminal Src kinase, the cannabinoids induced a stable phosphorylation of the inhibitory Tyr-505 of the leukocyte-specific protein tyrosine kinase (Lck). By thus arresting Lck in its inhibited form, the cannabinoids prevented the dephosphorylation of Lck at Tyr-505 in response to T cell receptor activation, which is necessary for the subsequent initiation of T cell receptor signaling. In this way the cannabinoids inhibited the T cell receptor-triggered signaling, i.e. the activation of the zeta-chain-associated protein kinase of 70 kDa, the linker for activation of T cells, MAPK, the induction of interleukin-2, and T cell proliferation. All of the effects of the cannabinoids were blocked by the CB1 and CB2 antagonists AM281 and AM630. These findings help to better understand the immunosuppressive effects of cannabinoids and explain the beneficial effects of these drugs in the treatment of T cell-mediated autoimmune disorders like multiple sclerosis.

  5. Structural determinants of 4-chloro-m-cresol required for activation of ryanodine receptor type 1.

    PubMed

    Jacobson, Alan R; Moe, Scott T; Allen, P D; Fessenden, James D

    2006-07-01

    4-Chloro-m-cresol (4-CmC) is a clinically relevant activator of the intracellular Ca2+ release channel, the ryanodine receptor isoform 1 (RyR1). In this study, the chemical moieties on the 4-CmC molecule required for its activation of RyR1 were determined using structure-activity relationship analysis with a set of commercially available 4-CmC analogs. Separate compounds each lacking one of the three functional groups of 4-CmC (1-hydroxyl, 3-methyl, or 4-chloro) were poor activators of RyR1. Substitution of different chemical groups for the 1-hydroxyl of 4-CmC resulted in compounds that were poor activators of RyR1, suggesting that the hydroxyl group is preferred at this position. Substitution of hydrophobic groups at the 3-position enhanced bioactivity of the compound relative to 4-CmC, whereas substitution with hydrophilic groups abolished bioactivity. Likewise, 4-CmC analogs with hydrophobic groups substituted into the 4-position enhanced bioactivity, whereas hydrophilic or charged groups diminished bioactivity. 4-CmC analogs containing a single hydrophobic group at either the 3- or 4-position as well as 3,5-disubstituted or 3,4,5-trisubstituted phenols were also effective activators of RyR1. These results indicate that the 1-hydroxyl group of 4-CmC is required for activation of RyR1 and that hydrophobic groups at the 3,4- and 5-positions are preferred. These findings suggest that the 4-CmC binding site on RyR1 most likely consists of a hydrophilic region to interact with the 1-hydroxyl as well as a hydrophobic region(s) to interact with chemical groups at the 3- and/or 4-positions of 4-CmC.

  6. Role of fosaprepitant, a neurokinin Type 1 receptor antagonist, in morphine-induced antinociception in rats

    PubMed Central

    Prasoon, Pranav; Gupta, Shivani; Kumar, Rahul; Gautam, Mayank; Kaler, Saroj; Ray, Subrata Basu

    2016-01-01

    Objectives: Opioids such as morphine form the cornerstone in the treatment of moderate to severe pain. However, opioids also produce serious side effects such as tolerance. Fosaprepitant is a substance P (SP) receptor antagonist, which is used for treating chemotherapy-induced nausea and vomiting. SP is an important neuropeptide mediating transmission of pain at the spinal level. Thus, it was hypothesized that combining morphine with fosaprepitant would increase the antinociceptive effect of morphine. The objectives were to evaluate the effect of fosaprepitant on morphine-induced antinociception in rats and to investigate its mechanism of action. Methods: Sprague-Dawley rats were injected with morphine (10 mg/kg twice daily) and/or fosaprepitant (30 mg/kg once daily) for 7 days. Pain threshold was assessed by the hot plate test. Expression of SP and calcitonin gene-related peptide (CGRP) in the spinal cords of these rats was evaluated by immunohistochemistry. Results: Morphine administration resulted in an antinociceptive effect compared to the control group (day 1 and to a lesser extent on day 4). The decreased antinociception despite continued morphine treatment indicated development of tolerance. Co-administration of fosaprepitant attenuated tolerance to morphine (days 1 and 3) and increased the antinociceptive effect compared to control group (days 1–4). Expression of SP was increased in the morphine + fosaprepitant group. Conclusions: The results show that fosaprepitant attenuates the development of tolerance to morphine and thereby, increases the antinociceptive effect. This is likely linked to decreased release of SP from presynaptic terminals. PMID:27756950

  7. Receptor for advanced glycation end-products (RAGE) provides a link between genetic susceptibility and environmental factors in type 1 diabetes.

    PubMed

    Forbes, J M; Söderlund, J; Yap, F Y T; Knip, M; Andrikopoulos, S; Ilonen, J; Simell, O; Veijola, R; Sourris, K C; Coughlan, M T; Forsblom, C; Slattery, R; Grey, S T; Wessman, M; Yamamoto, H; Bierhaus, A; Cooper, M E; Groop, P-H

    2011-05-01

    This group of studies examines human genetic susceptibility conferred by the receptor for advanced glycation end-products (RAGE) in type 1 diabetes and investigates how this may interact with a western environment. We analysed the AGER gene, using 13 tag SNPs, in 3,624 Finnish individuals from the FinnDiane study, followed by AGER associations with a high risk HLA genotype (DR3)-DQA1*05-DQB1*02/DRB1*0401-DQB1*0302 (n = 546; HLA-DR3/DR4), matched in healthy newborn infants from the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study (n = 373) using allelic analysis. We also studied islets and circulating RAGE in NODLt mice. The rs2070600 and rs17493811 polymorphisms predicted increased risk of type 1 diabetes, whereas the rs9469089 SNP was related to decreased risk, on a high risk HLA background. Children from the DIPP study also showed a decline in circulating soluble RAGE levels, at seroconversion to positivity for type 1 diabetes-associated autoantibodies. Islet RAGE and circulating soluble RAGE levels in prediabetic NODLt mice decreased over time and were prevented by the AGE lowering therapy alagebrium chloride. Alagebrium chloride also decreased the incidence of autoimmune diabetes and restored islet RAGE levels. These studies suggest that inherited AGER gene polymorphisms may confer susceptibility to environmental insults. Declining circulating levels of soluble RAGE, before the development of overt diabetes, may also be predictive of clinical disease in children with high to medium risk HLA II backgrounds and this possibility warrants further investigation in a larger cohort.

  8. Parathyroid Hormone Receptor Type 1/Indian Hedgehog Expression Is Preserved in the Growth Plate of Human Fetuses Affected with Fibroblast Growth Factor Receptor Type 3 Activating Mutations

    PubMed Central

    Cormier, Sarah; Delezoide, Anne-Lise; Benoist-Lasselin, Catherine; Legeai-Mallet, Laurence; Bonaventure, Jacky; Silve, Caroline

    2002-01-01

    The fibroblast growth factor receptor type 3 (FGFR3) and Indian hedgehog (IHH)/parathyroid hormone (PTH)/PTH-related peptide receptor type 1 (PTHR1) systems are both essential regulators of endochondral ossification. Based on mouse models, activation of the FGFR3 system is suggested to regulate the IHH/PTHR1 pathway. To challenge this possible interaction in humans, we analyzed the femoral growth plates from fetuses carrying activating FGFR3 mutations (9 achondroplasia, 21 and 8 thanatophoric dysplasia types 1 and 2, respectively) and 14 age-matched controls by histological techniques and in situ hybridization using riboprobes for human IHH, PTHR1, type 10 and type 1 collagen transcripts. We show that bone-perichondrial ring enlargement and growth plate increased vascularization in FGFR3-mutated fetuses correlate with the phenotypic severity of the disease. PTHR1 and IHH expression in growth plates, bone-perichondrial rings and vascular canals is not affected by FGFR3 mutations, irrespective of the mutant genotype and age, and is in keeping with cell phenotypes. These results indicate that in humans, FGFR3 signaling does not down-regulate the main players of the IHH/PTHR1 pathway. Furthermore, we show that cells within the bone-perichondrial ring in controls and patients express IHH, PTHR1, and type 10 and type 1 collagen transcripts, suggesting that bone-perichondrial ring formation involves cells of both chondrocytic and osteoblastic phenotypes. PMID:12368206

  9. The ocular albinism type 1 protein, an intracellular G protein-coupled receptor, regulates melanosome transport in pigment cells.

    PubMed

    Palmisano, Ilaria; Bagnato, Paola; Palmigiano, Angela; Innamorati, Giulio; Rotondo, Giuseppe; Altimare, Domenico; Venturi, Consuelo; Sviderskaya, Elena V; Piccirillo, Rosanna; Coppola, Massimiliano; Marigo, Valeria; Incerti, Barbara; Ballabio, Andrea; Surace, Enrico M; Tacchetti, Carlo; Bennett, Dorothy C; Schiaffino, Maria Vittoria

    2008-11-15

    The protein product of the ocular albinism type 1 gene, named OA1, is a pigment cell-specific G protein-coupled receptor exclusively localized to intracellular organelles, namely lysosomes and melanosomes. Loss of OA1 function leads to the formation of macromelanosomes, suggesting that this receptor is implicated in organelle biogenesis, however the mechanism involved in the pathogenesis of the disease remains obscure. We report here the identification of an unexpected abnormality in melanosome distribution both in retinal pigment epithelium (RPE) and skin melanocytes of Oa1-knock-out (KO) mice, consisting in a displacement of the organelles from the central cytoplasm towards the cell periphery. Despite their depletion from the microtubule (MT)-enriched perinuclear region, Oa1-KO melanosomes were able to aggregate at the centrosome upon disruption of the actin cytoskeleton or expression of a dominant-negative construct of myosin Va. Consistently, quantification of organelle transport in living cells revealed that Oa1-KO melanosomes displayed a severe reduction in MT-based motility; however, this defect was rescued to normal following inhibition of actin-dependent capture at the cell periphery. Together, these data point to a defective regulation of organelle transport in the absence of OA1 and imply that the cytoskeleton might represent a downstream effector of this receptor. Furthermore, our results enlighten a novel function for OA1 in pigment cells and suggest that ocular albinism type 1 might result from a different pathogenetic mechanism than previously thought, based on an organelle-autonomous signalling pathway implicated in the regulation of both membrane traffic and transport.

  10. Divergent functional properties of ryanodine receptor types 1 and 3 expressed in a myogenic cell line.

    PubMed Central

    Fessenden, J D; Wang, Y; Moore, R A; Chen, S R; Allen, P D; Pessah, I N

    2000-01-01

    Of the three known ryanodine receptor (RyR) isoforms expressed in muscle, RyR1 and RyR2 have well-defined roles in contraction. However, studies on mammalian RyR3 have been difficult because of low expression levels relative to RyR1 or RyR2. Using the herpes simplex virus 1 (HSV-1) helper-free amplicon system, we expressed either RyR1 or RyR3 in 1B5 RyR-deficient myotubes. Western blot analysis revealed that RyR1- or RyR3-transduced cells expressed the appropriate RyR isoform of the correct molecular mass. Although RyR1 channels exhibited the expected unitary conductance for Cs(+) in bilayer lipid membranes, 74 of 88 RyR3 channels exhibited pronounced subconductance behavior. Western blot analysis with an FKBP12/12.6-selective antibody reveals that differences in gating behavior exhibited by RyR1 and RyR3 may be, in part, the result of lower affinity of RyR3 for FKBP12. In calcium imaging studies, RyR1 restored skeletal-type excitation-contraction coupling, whereas RyR3 did not. Although RyR3-expressing myotubes were more sensitive to caffeine than those expressing RyR1, they were much less sensitive to 4-chloro-m-cresol (CMC). In RyR1-expressing cells, regenerative calcium oscillations were observed in response to caffeine and CMC but were never seen in RyR3-expressing 1B5 cells. In [(3)H]ryanodine binding studies, only RyR1 exhibited sensitivity to CMC, but both RyR isoforms responded to caffeine. These functional differences between RyR1 and RyR3 expressed in a mammalian muscle context may reflect differences in association with accessory proteins, especially FKBP12, as well as structural differences in modulator binding sites. PMID:11053126

  11. Divergent functional properties of ryanodine receptor types 1 and 3 expressed in a myogenic cell line.

    PubMed

    Fessenden, J D; Wang, Y; Moore, R A; Chen, S R; Allen, P D; Pessah, I N

    2000-11-01

    Of the three known ryanodine receptor (RyR) isoforms expressed in muscle, RyR1 and RyR2 have well-defined roles in contraction. However, studies on mammalian RyR3 have been difficult because of low expression levels relative to RyR1 or RyR2. Using the herpes simplex virus 1 (HSV-1) helper-free amplicon system, we expressed either RyR1 or RyR3 in 1B5 RyR-deficient myotubes. Western blot analysis revealed that RyR1- or RyR3-transduced cells expressed the appropriate RyR isoform of the correct molecular mass. Although RyR1 channels exhibited the expected unitary conductance for Cs(+) in bilayer lipid membranes, 74 of 88 RyR3 channels exhibited pronounced subconductance behavior. Western blot analysis with an FKBP12/12.6-selective antibody reveals that differences in gating behavior exhibited by RyR1 and RyR3 may be, in part, the result of lower affinity of RyR3 for FKBP12. In calcium imaging studies, RyR1 restored skeletal-type excitation-contraction coupling, whereas RyR3 did not. Although RyR3-expressing myotubes were more sensitive to caffeine than those expressing RyR1, they were much less sensitive to 4-chloro-m-cresol (CMC). In RyR1-expressing cells, regenerative calcium oscillations were observed in response to caffeine and CMC but were never seen in RyR3-expressing 1B5 cells. In [(3)H]ryanodine binding studies, only RyR1 exhibited sensitivity to CMC, but both RyR isoforms responded to caffeine. These functional differences between RyR1 and RyR3 expressed in a mammalian muscle context may reflect differences in association with accessory proteins, especially FKBP12, as well as structural differences in modulator binding sites.

  12. Interaction between protein kinase Cmu and the vanilloid receptor type 1.

    PubMed

    Wang, Yun; Kedei, Noemi; Wang, Min; Wang, Q Jane; Huppler, Anna R; Toth, Attila; Tran, Richard; Blumberg, Peter M

    2004-12-17

    The capsaicin receptor VR1 is a polymodal nociceptor activated by multiple stimuli. It has been reported that protein kinase C plays a role in the sensitization of VR1. Protein kinase D/PKCmu is a member of the protein kinase D serine/threonine kinase family that exhibits structural, enzymological, and regulatory features distinct from those of the PKCs, with which they are related. As part of our effort to optimize conditions for evaluating VR1 pharmacology, we found that treatment of Chinese hamster ovary (CHO) cells heterologously expressing rat VR1 (CHO/rVR1) with butyrate enhanced rVR1 expression and activity. The expression of PKCmu and PKCbeta1, but not of other PKC isoforms, was also enhanced by butyrate treatment, suggesting the possibility that these two isoforms might contribute to the enhanced activity of rVR1. In support of this hypothesis, we found the following. 1) Overexpression of PKCmu enhanced the response of rVR1 to capsaicin and low pH, and expression of a dominant negative variant of PKCmu reduced the response of rVR1. 2) Reduction of endogenous PKCmu using antisense oligonucleotides decreased the response of exogenous rVR1 expressed in CHO cells as well as of endogenous rVR1 in dorsal root ganglion neurons. 3) PKCmu localized to the plasma membrane when overexpressed in CHO/rVR1 cells. 4) PKCmu directly bound to rVR1 expressed in CHO cells as well as to endogenous rVR1 in dorsal root ganglia or to an N-terminal fragment of rVR1, indicating a direct interaction between PKCmu and rVR1. 5) PKCmu directly phosphorylated rVR1 or a longer N-terminal fragment (amino acids 1-118) of rVR1 but not a shorter one (amino acids 1-99). 6) Mutation of S116A in rVR1 blocked both the phosphorylation of rVR1 by PKCmu and the enhancement by PKCmu of the rVR1 response to capsaicin. We conclude that PKCmu functions as a direct modulator of rVR1.

  13. CCDI: a new ligand that modulates mammalian type 1 ryanodine receptor (RyR1)

    PubMed Central

    Tian, Chengju; Shao, Chun Hong; Padanilam, Christina; Ezell, Edward; Singh, Jaipaul; Kutty, Shelby; Bidasee, Keshore R

    2014-01-01

    Background and Purpose Ryanodine receptors (RyRs) are Ca2+-release channels on the sarco(endo)plasmic reticulum that modulate a wide array of physiological functions. Three RyR isoforms are present in cells: RyR1, RyR2 and RyR3. To date, there are no reports on ligands that modulate RyR in an isoform-selective manner. Such ligands are not only valuable research tools, but could serve as intermediates for development of therapeutics. Experimental approach Pyrrole-2-carboxylic acid and 1,3-dicyclohexylcarbodiimide were allowed to react in carbon tetrachloride for 24 h at low temperatures and pressures. The chemical structures of the two products isolated were elucidated using NMR spectrometry, mass spectrometry and elemental analyses. [3H]-ryanodine binding, lipid bilayer and time-lapsed confocal imaging were used to determine their effects on RyR isoforms. Key results The major product, 2-cyclohexyl-3-cyclohexylimino-2, 3, dihydro–pyrrolo[1,2-c]imidazol-1-one (CCDI) dose-dependently potentiated Ca2+-dependent binding of [3H]-ryanodine to RyR1, with no significant effects on [3H]-ryanodine binding to RyR2 or RyR3. CCDI also reversibly increased the open probability (Po) of RyR1 with minimal effects on RyR2 and RyR3. CCDI induced Ca2+ transients in C2C12 skeletal myotubes, but not in rat ventricular myocytes. This effect was blocked by pretreating cells with ryanodine. The minor product 2-cyclohexyl-pyrrolo[1,2-c]imidazole-1,3-dione had no effect on either [3H]-ryanodine binding or Po of RyR1, RyR2 and RyR3. Conclusions and implications A new ligand that preferentially modulates RyR1 was identified. In addition to being an important research tool, the pharmacophore of this small molecule could serve as a template for the synthesis of other isoform-selective modulators of RyRs. PMID:24819467

  14. An angiotensin II receptor antagonist suppresses running-enhanced hippocampal neurogenesis in rat.

    PubMed

    Mukuda, Takao; Sugiyama, Hiroyuki

    2007-06-01

    Hippocampal neurogenesis is enhanced by voluntary running exercise in adult mammals. To elucidate the factors involved in this enhancement, we examined the effects of losartan, an antagonist of angiotensin II type 1 receptors, on the running-enhanced neurogenesis in the adult rat hippocampus. When losartan was administered orally via the drinking water, the running-enhanced cell proliferation in the subgranular zone was almost completely suppressed, indicating that this enhancement may be mediated by angiotensin II and its receptors.

  15. Crystal Structure of the Ligand Binding Suppressor Domain of Type 1 Inositol 1,4,5-Trisphosphate Receptor

    SciTech Connect

    Bosanac, Ivan; Yamazaki, Haruka; Matsu-ura, Toru; Michikawa, Takayuki; Mikoshiba, Katsuhiko; Ikura, Mitsuhiko

    2010-11-10

    Binding of inositol 1,4,5-trisphosphate (IP{sub 3}) to the amino-terminal region of IP{sub 3} receptor promotes Ca{sup 2+} release from the endoplasmic reticulum. Within the amino terminus, the first 220 residues directly preceding the IP{sub 3} binding core domain play a key role in IP{sub 3} binding suppression and regulatory protein interaction. Here we present a crystal structure of the suppressor domain of the mouse type 1 IP{sub 3} receptor at 1.8 {angstrom}. Displaying a shape akin to a hammer, the suppressor region contains a Head subdomain forming the {beta}-trefoil fold and an Arm subdomain possessing a helix-turn-helix structure. The conserved region on the Head subdomain appeared to interact with the IP{sub 3} binding core domain and is in close proximity to the previously proposed binding sites of Homer, RACK1, calmodulin, and CaBP1. The present study sheds light onto the mechanism underlying the receptor's sensitivity to the ligand and its communication with cellular signaling proteins.

  16. Alterations in Natural Killer Cell Receptor Profiles During HIV Type 1 Disease Progression Among Chronically Infected South African Adults

    PubMed Central

    Wong, Ambrose H.W.; Williams, Katie; Reddy, Sharon; Wilson, Douglas; Giddy, Janet; Alter, Galit; Ghebremichael, Musie; Carrington, Mary N.; Ndung'u, Thumbi; Walker, Bruce D.; Altfeld, Marcus

    2010-01-01

    Abstract Recent studies suggest that innate immune responses by natural killer (NK) cells play a significant role in restricting human immunodeficiency virus type-1 (HIV-1) pathogenesis. Our aim was to characterize changes in NK cells associated with HIV-1 clade C disease progression. Here we used multiparametric flow cytometry (LSRII) to quantify phenotype and function of NK cells in a cross-sectional analysis of cryopreserved blood samples from a cohort of 41 chronically HIV-1-infected, treatment-naive adult South Africans. These individuals ranged in disease severity from early (CD4 count >500) to advanced HIV-1 disease (CD4 count <50). We found that the frequency of NK cells expressing KIR2DL1, an inhibitory receptor, and/or KIR2DS1, an activating receptor, tended to decrease with increasing HIV-1 viral load. We also discovered a significant increase (p < 0.05) in overall NK cell degranulation with disease progression. We found that acutely activated NK cells (CD69pos) were deficient in NKp46 expression ex vivo. In conclusion, we observed that with viremia and advanced HIV-1 disease, activated NK cells lack NKp46 expression, and KIR2DS1pos and/ or KIR2DL1pos NK cells are reduced in frequency. These findings suggest that modulation of receptor expression on NK cells may play a role in HIV-1 pathogenesis, and provide new insights on immunological changes in advanced HIV-1 disease. PMID:20380481

  17. Angiotensin type 1a receptors in the forebrain subfornical organ facilitate leptin-induced weight loss through brown adipose tissue thermogenesis

    PubMed Central

    Young, Colin N.; Morgan, Donald A.; Butler, Scott D.; Rahmouni, Kamal; Gurley, Susan B.; Coffman, Thomas M.; Mark, Allyn L.; Davisson, Robin L.

    2015-01-01

    Objective Elevations in brain angiotensin-II cause increased energy expenditure and a lean phenotype. Interestingly, the metabolic effects of increased brain angiotensin-II mimic the actions of leptin, suggesting an interaction between the two systems. Here we demonstrate that angiotensin-type 1a receptors (AT1aR) in the subfornical organ (SFO), a forebrain structure emerging as an integrative metabolic center, play a key role in the body weight-reducing effects of leptin via brown adipose tissue (BAT) thermogenesis. Methods Cre/LoxP technology coupled with targeted viral delivery to the SFO in a mouse line bearing a conditional allele of the Agtr1a gene was utilized to determine the interaction between leptin and SFO AT1aR in metabolic regulation. Results Selective deletion of AT1aR in the SFO attenuated leptin-induced weight loss independent of changes in food intake or locomotor activity. This was associated with diminished leptin-induced increases in core body temperature, blunted upregulation of BAT thermogenic markers, and abolishment of leptin-mediated sympathetic activation to BAT. Conclusions These data identify a novel interaction between angiotensin-II and leptin in the control of BAT thermogenesis and body weight, and highlight a previously unrecognized role for the forebrain SFO in metabolic regulation. PMID:25830096

  18. Angiotensin type 1a receptors in the forebrain subfornical organ facilitate leptin-induced weight loss through brown adipose tissue thermogenesis.

    PubMed

    Young, Colin N; Morgan, Donald A; Butler, Scott D; Rahmouni, Kamal; Gurley, Susan B; Coffman, Thomas M; Mark, Allyn L; Davisson, Robin L

    2015-04-01

    Elevations in brain angiotensin-II cause increased energy expenditure and a lean phenotype. Interestingly, the metabolic effects of increased brain angiotensin-II mimic the actions of leptin, suggesting an interaction between the two systems. Here we demonstrate that angiotensin-type 1a receptors (AT1aR) in the subfornical organ (SFO), a forebrain structure emerging as an integrative metabolic center, play a key role in the body weight-reducing effects of leptin via brown adipose tissue (BAT) thermogenesis. Cre/LoxP technology coupled with targeted viral delivery to the SFO in a mouse line bearing a conditional allele of the Agtr1a gene was utilized to determine the interaction between leptin and SFO AT1aR in metabolic regulation. Selective deletion of AT1aR in the SFO attenuated leptin-induced weight loss independent of changes in food intake or locomotor activity. This was associated with diminished leptin-induced increases in core body temperature, blunted upregulation of BAT thermogenic markers, and abolishment of leptin-mediated sympathetic activation to BAT. These data identify a novel interaction between angiotensin-II and leptin in the control of BAT thermogenesis and body weight, and highlight a previously unrecognized role for the forebrain SFO in metabolic regulation.

  19. The role of Toll-like receptors and vitamin D in diabetes mellitus type 1--a review.

    PubMed

    Adamczak, D M; Nowak, J K; Frydrychowicz, M; Kaczmarek, M; Sikora, J

    2014-08-01

    It is widely accepted that type 1 diabetes mellitus (T1DM) is an autoimmune disease resulting from an interaction between immunologic, genetic and environmental factors. However, the exact mechanism leading to the development of T1DM remains incomplete. There is a large body of evidence pointing towards the important role of toll-like receptor (TLR) activation and vitamin D deficiency in T1DM pathogenesis. In this article, we review the available data on the influence of TLRs' level of activation and vitamin D status on the risk of the development of T1DM in humans and rodent models. We also summarize the current information regarding the interactions between TLRs' level of activation, vitamin D status and various environmental factors, such as enteroviral infections, the gut microbiota and breastfeeding substitution, among others. Our results stipulate that vitamin D seems to protect against T1DM by reducing the TLRs' level of activation.

  20. Left ventricular hypertrophy and angiotensin II receptor blocking agents.

    PubMed

    Yasunari, K; Maeda, K; Nakamura, M; Watanabe, T; Yoshikawa, J; Hirohashi, K

    2005-01-01

    Angiotensin II plays a significant role in cell growth and proliferation in model systems and in humans. Numerous studies have shown that left ventricular hypertrophy (LVH) increases the risk of coronary heart disease, congestive heart failure, stroke or transient ischemic attack; all-cause deaths, and sudden death. The use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) has provided beneficial effects on LVH regression and on cardiac remodeling in the presence of hypertension and heart failure. The new class of ARBs appears to provide cardioprotective effects that are similar to those of the ACE inhibitors. Most of the beneficial effects provided by these agents appear to be related to a more complete blockade of the angiotensin II type 1 (AT1) receptor. However, costimulation of the angiotensin II type 2 (AT2) receptor appears to increase nitric oxide and thus causes some bradykinin-like effects. Evidence for the role of angiotensin II in promoting LVH as well as abnormal regulation of the angiotensin II signal transduction pathways in model systems and in humans has been reviewed. Secondly, the mechanisms for the beneficial effects of angiotensin II receptor blockers studied in model systems and in humans, including possible involvement in the formation of reactive oxygen species by mononuclear cells, are presented. Finally, results from large-scale interventions such as the Losartan Intervention For Endpoint reduction (LIFE) study, as well as an overview of the Valsartan Antihypertensive Long-term Use Evaluation (VALUE) trial involving the use of ARB in high-risk patients, are presented.

  1. Acute upregulation of neuronal mitochondrial type-1 cannabinoid receptor and it's role in metabolic defects and neuronal apoptosis after TBI.

    PubMed

    Xu, Zhen; Lv, Xiao-Ai; Dai, Qun; Ge, Yu-Qing; Xu, Jie

    2016-08-02

    Metabolic defects and neuronal apoptosis initiated by traumatic brain injury (TBI) contribute to subsequent neurodegeneration. They are all regulated by mechanisms centered around mitochondrion. Type-1 cannabinoid receptor (CB1) is a G-protein coupled receptor (GPCR) enriched on neuronal plasma membrane. Recent evidences point to the substantial presence of CB1 receptors on neuronal mitochondrial outer membranes (mtCB1) and the activation of mtCB1 influences aerobic respiration via inhibiting mitochondrial cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/complex I pathway. The expression and role of neuronal mtCB1 under TBI are unknown. Using TBI models of cultured neurons, wild type and CB1 knockout mice, we found mtCB1 quickly upregulated after TBI. Activation of mtCB1 promoted metabolic defects accompanied with ATP shortage but protected neurons from apoptosis. Selective activation of plasma membrane CB1 showed no effects on neuronal metabolism and apoptosis. Activation of mtCB1 receptors inhibited mitochondrial cAMP/PKA/complex I and resulted in exacerbated metabolic defects accompanied with a higher ratio of ATP reduction to oxygen consumption decrease as well as neuronal apoptosis. Further research found the remarkable accumulation of protein kinase B (AKT) on neuronal mitochondria following TBI and the activation of mtCB1 upregulated mitochondrial AKT/complex V activity. Upregulation of mitochondrial AKT/complex V activity showed anti-apoptosis effects and alleviated ATP shortage in metabolic defects. Taken together, we have identified mtCB1 quickly upregulate after TBI and a dual role the mtCB1 might play in metabolic defects and neuronal apoptosis initiated by TBI: the inhibition of mitochondrial cAMP/PKA/complex I aggravates metabolic defects, energy insufficiency as well as neuronal apoptosis, but the coactivation of mitochondrial AKT/complex V mitigates energy insufficiency and neuronal apoptosis.

  2. Increase of cardiac M2-muscarinic receptor gene expression in type-1 but not in type-2 diabetic rats.

    PubMed

    Lee, Liang-Ming; Chang, Cheng Kuei; Cheng, Kai-Chun; Kou, Dai-Huang; Liu, I-Min; Cheng, Juei-Tang

    2008-08-22

    Changes of cardiac M2-muscarinic receptor (M2-mAChR) gene expression was investigated in type-1 like diabetic rats induced by intravenous injection of streptozotocin (STZ) and type-2 like diabetic rats induced by fed with fructose-rich chow. Systolic blood pressure (SBP) in STZ-diabetic rats was significantly lower than that in age-matched non-diabetic rats, while the SBP in type-2 like diabetic rats was higher than in non-diabetic rats. Also, the mRNA or protein level of cardiac M2-mAChR in STZ-diabetic rats was markedly higher than non-diabetic rats, but it was not observed in type-2 like diabetic rats as compared to age-matched non-diabetic rats. Arecaidine propargyl ester (APE), the agonist of M2-mAChR, produced a marked reduction of heart rate in STZ-diabetic rats but made less influence on heart rate in fructose-fed rats or non-diabetic rats. The results suggest that cardiac M2-mAChR gene expression is raised in type-1 like diabetic rats but not in type-2 like diabetic rats, this difference mainly due to hyperglycemia, for the production of hypotension in diabetic disorders.

  3. Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons

    PubMed Central

    Giuffrida, Maria L.; Tomasello, Marianna F.; Pandini, Giuseppe; Caraci, Filippo; Battaglia, Giuseppe; Busceti, Carla; Di Pietro, Paola; Pappalardo, Giuseppe; Attanasio, Francesco; Chiechio, Santina; Bagnoli, Silvia; Nacmias, Benedetta; Sorbi, Sandro; Vigneri, Riccardo; Rizzarelli, Enrico; Nicoletti, Ferdinando; Copani, Agata

    2015-01-01

    ß-amyloid (Aß1−42) is produced by proteolytic cleavage of the transmembrane type-1 protein, amyloid precursor protein. Under pathological conditions, Aß1−42self-aggregates into oligomers, which cause synaptic dysfunction and neuronal loss, and are considered the culprit of Alzheimer's disease (AD). However, Aß1−42 is mainly monomeric at physiological concentrations, and the precise role of monomeric Aß1−42 in neuronal function is largely unknown. We report that the monomer of Aß1−42 activates type-1 insulin-like growth factor receptors and enhances glucose uptake in neurons and peripheral cells by promoting the translocation of the Glut3 glucose transporter from the cytosol to the plasma membrane. In neurons, activity-dependent glucose uptake was blunted after blocking endogenous Aß production, and re-established in the presence of cerebrospinal fluid Aß. APP-null neurons failed to enhance depolarization-stimulated glucose uptake unless exogenous monomeric Aß1−42 was added. These data suggest that Aß1−42 monomers were critical for maintaining neuronal glucose homeostasis. Accordingly, exogenous Aß1−42 monomers were able to rescue the low levels of glucose consumption observed in brain slices from AD mutant mice. PMID:26300732

  4. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance

    PubMed Central

    Lee, Eunjung; Jung, Dae Young; Kim, Jong Hun; Patel, Payal R.; Hu, Xiaodi; Lee, Yongjin; Azuma, Yoshihiro; Wang, Hsun-Fan; Tsitsilianos, Nicholas; Shafiq, Umber; Kwon, Jung Yeon; Lee, Hyong Joo; Lee, Ki Won; Kim, Jason K.

    2015-01-01

    Insulin resistance is a major characteristic of obesity and type 2 diabetes, but the underlying mechanism is unclear. Recent studies have shown a metabolic role of capsaicin that may be mediated via the transient receptor potential vanilloid type-1 (TRPV1) channel. In this study, TRPV1 knockout (KO) and wild-type (WT) mice (as controls) were fed a high-fat diet (HFD), and metabolic studies were performed to measure insulin and leptin action. The TRPV1 KO mice became more obese than the WT mice after HFD, partly attributed to altered energy balance and leptin resistance in the KO mice. The hyperinsulinemic-euglycemic clamp experiment showed that the TRPV1 KO mice were more insulin resistant after HFD because of the ∼40% reduction in glucose metabolism in the white and brown adipose tissue, compared with that in the WT mice. Leptin treatment failed to suppress food intake, and leptin-mediated hypothalamic signal transducer and activator of transcription (STAT)-3 activity was blunted in the TRPV1 KO mice. We also found that the TRPV1 KO mice were more obese and insulin resistant than the WT mice at 9 mo of age. Taken together, these results indicate that lacking TRPV1 exacerbates the obesity and insulin resistance associated with an HFD and aging, and our findings further suggest that TRPV1 has a major role in regulating glucose metabolism and hypothalamic leptin’s effects in obesity.—Lee, E., Jung, D. Y., Kim, J. H., Patel, P. R., Hu, X., Lee, Y., Azuma, Y., Wang, H.-F., Tsitsilianos, N., Shafiq, U., Kwon, J. Y., Lee, H. J., Lee, K. W., Kim, J. K. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance. PMID:25888600

  5. Ca2+ release in muscle fibers expressing R4892W and G4896V type 1 ryanodine receptor disease mutants.

    PubMed

    Lefebvre, Romain; Legrand, Claude; Groom, Linda; Dirksen, Robert T; Jacquemond, Vincent

    2013-01-01

    The large and rapidly increasing number of potentially pathological mutants in the type 1 ryanodine receptor (RyR1) prompts the need to characterize their effects on voltage-activated sarcoplasmic reticulum (SR) Ca(2+) release in skeletal muscle. Here we evaluated the function of the R4892W and G4896V RyR1 mutants, both associated with central core disease (CCD) in humans, in myotubes and in adult muscle fibers. For both mutants expressed in RyR1-null (dyspedic) myotubes, voltage-gated Ca(2+) release was absent following homotypic expression and only partially restored following heterotypic expression with wild-type (WT) RyR1. In muscle fibers from adult WT mice, both mutants were expressed in restricted regions of the fibers with a pattern consistent with triadic localization. Voltage-clamp-activated confocal Ca(2+) signals showed that fiber regions endowed with G4896V-RyR1s exhibited an ∼30% reduction in the peak rate of SR Ca(2+) release, with no significant change in SR Ca(2+) content. Immunostaining revealed no associated change in the expression of either α1S subunit (Cav1.1) of the dihydropyridine receptor (DHPR) or type 1 sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA1), indicating that the reduced Ca(2+) release resulted from defective RyR1 function. Interestingly, in spite of robust localized junctional expression, the R4892W mutant did not affect SR Ca(2+) release in adult muscle fibers, consistent with a low functional penetrance of this particular CCD-associated mutant.

  6. Type 1 allergy-induced endolymphatic hydrops and the suppressive effect of H1-receptor antagonist (olopatadine hydrochloride).

    PubMed

    Egami, Naoya; Kakigi, Akinobu; Takeda, Taizo; Takeda, Setsuko; Nishioka, Rie; Hyodo, Masamitsu; Yamasoba, Tatsuya

    2014-03-01

    To investigate whether endolymphatic hydrops (EH) is experimentally induced by type 1 (or immediate) hypersensitivity allergic reaction and to investigate the inhibitory action of a histamine H(1)-receptor antagonist (olopatadine hydrochloride [OLO-Hy]) on allergic EH induced by systemic immune challenge with 2,4-dinitrophenylated-Ascaris (DNP-As). The experimental animals were actively sensitized with DNP-As twice at a 4-week interval and were provoked by an injection of DNP-BSA including DNP-As 1 week after the second sensitization. The OLO-Hy (+) group received oral administration of OLO-Hy (30 mg/kg) 1 hour before the provocation, whereas the OLO-Hy (-) group received distilled water. The temporal bones in all animals were light microscopically examined to assess the degree of EH quantitatively and the expression of degranulated mast cells in the endolymphatic sac. Endolymphatic hydrops was observed 1, 6, 12, and 24 hours after the last sensitization in the OLO-Hy (-) group but was not observed in the OLO-Hy (+) group. Quantitative analysis of the increase ratios (IRs) of the cross-sectional area of the scala media revealed that the IRs of the OLO-Hy (-) group were significantly greater compared with those of the control group (p < 0.001). There was also a significant difference in the IRs between the OLO-Hy (-) and OLO-Hy (+) groups (p < 0.001). The systemic sensitization with DNP-As produced allergy-induced experimental EH by type 1 hypersensitivity allergic reaction, and the development of this EH was prevented by histamine H(1)-receptor antagonists.

  7. Simultaneous determination of multiple angiotensin type 1 receptor antagonists and its application to high-throughput pharmacokinetic study

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyan; Sun, Jianguo; Hao, Haiping; Wang, Guangji; Hu, Xiaoling; Lv, Hua; Gu, Shenghua; Wu, Xiaoming; Xu, Jinyi

    2008-05-01

    A rapid and sensitive high performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-ESI-MS/MS) detection was developed for the simultaneous determination of multiple angiotensin type 1 receptor antagonists (AT1RAs) WX472, WX581, 1b and telmisartan in rat plasma for the purpose of high-throughout pharmacokinetic screening. The method was operated under selected reaction monitoring (SRM) mode in the positive ion mode. The analytes and the internal standard (pitavastatin) were extracted from 100 [mu]L rat plasma under acidic conditions by liquid-liquid extraction with ethyl acetate. The analytes and internal standard were baseline separated on a Gemini analytical column (3 [mu]m, 150 mm × 2.0 mm) with the adoption of a gradient elution using acetonitrile and 0.05% aqueous formic acid. The standard curves were linear in the concentration ranges of 4.5-900 ng/mL for WX472, 5-1000 ng/mL for WX581 and 0.5-100 ng/mL for 1b and telmisartan. Intra- and inter-batch precisions (R.S.D.%) were all within 15% and the method assessed a quite good accuracy (R.E.%). Recoveries were found to be >65% for all the compounds and no obvious matrix effects were found. This method has been successfully applied to the high-throughput pharmacokinetic screening study for both cassette dosing and cassette analysis of four compounds to rats. Significant drug-drug interactions were observed after cassette dosing. The study suggested that cassette analysis of pooled samples would be a better choice for the high-throughput pharmacokinetic screening of angiotensin type 1 receptor antagonists.

  8. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8.

    PubMed

    De Petrocellis, Luciano; Vellani, Vittorio; Schiano-Moriello, Aniello; Marini, Pietro; Magherini, Pier Cosimo; Orlando, Pierangelo; Di Marzo, Vincenzo

    2008-06-01

    The plant cannabinoids (phytocannabinoids), cannabidiol (CBD), and Delta(9)-tetrahydrocannabinol (THC) were previously shown to activate transient receptor potential channels of both vanilloid type 1 (TRPV1) and ankyrin type 1 (TRPA1), respectively. Furthermore, the endocannabinoid anandamide is known to activate TRPV1 and was recently found to antagonize the menthol- and icilin-sensitive transient receptor potential channels of melastatin type 8 (TRPM8). In this study, we investigated the effects of six phytocannabinoids [i.e., CBD, THC, CBD acid, THC acid, cannabichromene (CBC), and cannabigerol (CBG)] on TRPA1- and TRPM8-mediated increase in intracellular Ca2+ in either HEK-293 cells overexpressing the two channels or rat dorsal root ganglia (DRG) sensory neurons. All of the compounds tested induced TRPA1-mediated Ca2+ elevation in HEK-293 cells with efficacy comparable with that of mustard oil isothiocyanates (MO), the most potent being CBC (EC(50) = 60 nM) and the least potent being CBG and CBD acid (EC(50) = 3.4-12.0 microM). CBC also activated MO-sensitive DRG neurons, although with lower potency (EC(50) = 34.3 microM). Furthermore, although none of the compounds tested activated TRPM8-mediated Ca2+ elevation in HEK-293 cells, they all, with the exception of CBC, antagonized this response when it was induced by either menthol or icilin. CBD, CBG, THC, and THC acid were equipotent (IC(50) = 70-160 nM), whereas CBD acid was the least potent compound (IC(50) = 0.9-1.6 microM). CBG inhibited Ca2+ elevation also in icilin-sensitive DRG neurons with potency (IC(50) = 4.5 microM) similar to that of anandamide (IC(50) = 10 microM). Our findings suggest that phytocannabinoids and cannabis extracts exert some of their pharmacological actions also by interacting with TRPA1 and TRPM8 channels, with potential implications for the treatment of pain and cancer.

  9. The Effect of Class II Major Histocompatibility Complex Expression on Adherence of Helicobacter pylori and Induction of Apoptosis in Gastric Epithelial Cells: A Mechanism for T Helper Cell Type 1–mediated Damage

    PubMed Central

    Fan, Xuejun; Crowe, Sheila E.; Behar, Simon; Gunasena, Harshani; Ye, Gang; Haeberle, Helene; Van Houten, Nancy; Gourley, William K.; Ernst, Peter B.; Reyes, Victor E.

    1998-01-01

    Helicobacter pylori infection is associated with gastric epithelial damage, including apoptosis, ulceration, and cancer. Although bacterial factors and the host response are believed to contribute to gastric disease, no receptor has been identified that explains how the bacteria attach and signal the host cell to undergo apoptosis. Using H. pylori as “bait” to capture receptor proteins in solubilized membranes of gastric epithelial cells, class II major histocompatibility complex (MHC) molecules were identified as a possible receptor. Signaling through class II MHC molecules leading to the induction of apoptosis was confirmed using cross-linking IgM antibodies to surface class II MHC molecules. Moreover, binding of H. pylori and the induction of apoptosis were inhibited by antibodies recognizing class II MHC. Since type 1 T helper cells are present during infection and produce interferon (IFN)-γ, which increases class II MHC expression, gastric epithelial cell lines were exposed to H. pylori in the presence or absence of IFN-γ. IFN-γ increased the attachment of the bacteria as well as the induction of apoptosis in gastric epithelial cells. In contrast to MHC II–negative cell lines, H. pylori induced apoptosis in cells expressing class II MHC molecules constitutively or after gene transfection. These data describe a novel receptor for H. pylori and provide a mechanism by which bacteria and the host response interact in the pathogenesis of gastric epithelial cell damage. PMID:9584144

  10. Maitotoxin Is a Potential Selective Activator of the Endogenous Transient Receptor Potential Canonical Type 1 Channel in Xenopus laevis Oocytes.

    PubMed

    Flores, Pedro L; Rodríguez, Emma; Zapata, Estrella; Carbó, Roxana; Farías, José María; Martínez, Martín

    2017-06-25

    Maitotoxin (MTX) is the most potent marine toxin known to date. It is responsible for a particular human intoxication syndrome called ciguatera fish poisoning (CFP). Several reports indicate that MTX is an activator of non-selective cation channels (NSCC) in different cell types. The molecular identity of these channels is still an unresolved topic, and it has been proposed that the transient receptor potential (TRP) channels are involved in this effect. In Xenopus laevis oocytes, MTX at picomolar (pM) concentrations induces the activation of NSCC with functional and pharmacological properties that resemble the activity of TRP channels. The purpose of this study was to characterize the molecular identity of the TRP channel involved in the MTX response, using the small interference RNA (siRNA) approach and the two-electrode voltage-clamp technique (TEVC). The injection of a specifically designed siRNA to silence the transient receptor potential canonical type 1 (TRPC1) protein expression abolished the MTX response. MTX had no effect on oocytes, even at doses 20-fold higher compared to cells without injection. Total mRNA and protein levels of TRPC1 were notably diminished. The TRPC4 siRNA did not change the MTX effect, even though it was important to note that the protein level was reduced by the silencing of TRPC4. Our results suggest that MTX could be a selective activator of TRPC1 channels in X. laevis oocytes and a useful pharmacological tool for further studies on these TRP channels.

  11. Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer’s disease

    PubMed Central

    Kapogiannis, Dimitrios; Boxer, Adam; Schwartz, Janice B.; Abner, Erin L.; Biragyn, Arya; Masharani, Umesh; Frassetto, Lynda; Petersen, Ronald C.; Miller, Bruce L.; Goetzl, Edward J.

    2015-01-01

    Insulin resistance causes diminished glucose uptake in similar regions of the brain in Alzheimer’s disease (AD) and type 2 diabetes mellitus (DM2). Brain tissue studies suggested that insulin resistance is caused by low insulin receptor signaling attributable to its abnormal association with more phospho (P)-serine-type 1 insulin receptor substrate (IRS-1) and less P-tyrosine-IRS-1. Plasma exosomes enriched for neural sources by immunoabsorption were obtained once from 26 patients with AD, 20 patients with DM2, 16 patients with frontotemporal dementia (FTD), and matched case control subjects. At 2 time points, they were obtained from 22 others when cognitively normal and 1 to 10 yr later when diagnosed with AD. Mean exosomal levels of extracted P-serine 312-IRS-1 and P-pan-tyrosine-IRS-1 by ELISA and the ratio of P-serine 312-IRS-1 to P-pan-tyrosine-IRS-1 (insulin resistance factor, R) for AD and DM2 and P-serine 312-IRS-1 and R for FTD were significantly different from those for case control subjects. The levels of R for AD were significantly higher than those for DM2 or FTD. Stepwise discriminant modeling showed correct classification of 100% of patients with AD, 97.5% of patients with DM2, and 84% of patients with FTD. In longitudinal studies of 22 patients with AD, exosomal levels of P-serine 312-IRS-1, P-pan-tyrosine-IRS-1, and R were significantly different 1 to 10 yr bef