Science.gov

Sample records for ii viral fusion

  1. Negative Potentials Across Biological Membranes Promote Fusion by Class II and Class III Viral Proteins

    PubMed Central

    Markosyan, Ruben M.

    2010-01-01

    Voltage was investigated as a factor in the fusion of virions. Virions, pseudotyped with a class II, SFV E1 or VEEV E, or a class III protein, VSV G, were prepared with GFP within the core and a fluorescent lipid. This allowed both hemifusion and fusion to be monitored. Voltage clamping the target cell showed that fusion is promoted by a negative potential and hindered by a positive potential. Hemifusion occurred independent of polarity. Lipid dye movement, in the absence of content mixing, ceased before complete transfer for positive potentials, indicating that reversion of hemifused membranes into two distinct membranes is responsible for voltage dependence and inhibition of fusion. Content mixing quickly followed lipid dye transfer for a negative potential, providing a direct demonstration that hemifusion induced by class II and class III viral proteins is a functional intermediate of fusion. In the hemifused state, virions that fused exhibited slower lipid transfer than did nonfusing virions. All viruses with class II or III fusion proteins may utilize voltage to achieve infection. PMID:20427575

  2. Viral membrane fusion

    PubMed Central

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. PMID:25866377

  3. Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes)

    PubMed Central

    Garry, Courtney E; Garry, Robert F

    2004-01-01

    The Bunyaviridae family of enveloped RNA viruses includes five genuses, orthobunyaviruses, hantaviruses, phleboviruses, nairoviruses and tospoviruses. It has not been determined which Bunyavirus protein mediates virion:cell membrane fusion. Class II viral fusion proteins (beta-penetrenes), encoded by members of the Alphaviridae and Flaviviridae, are comprised of three antiparallel beta sheet domains with an internal fusion peptide located at the end of domain II. Proteomics computational analyses indicate that the carboxyl terminal glycoprotein (Gc) encoded by Sandfly fever virus (SAN), a phlebovirus, has a significant amino acid sequence similarity with envelope protein 1 (E1), the class II fusion protein of Sindbis virus (SIN), an Alphavirus. Similar sequences and common structural/functional motifs, including domains with a high propensity to interface with bilayer membranes, are located collinearly in SAN Gc and SIN E1. Gc encoded by members of each Bunyavirus genus share several sequence and structural motifs. These results suggest that Gc of Bunyaviridae, and similar proteins of Tenuiviruses and a group of Caenorhabditis elegans retroviruses, are class II viral fusion proteins. Comparisons of divergent viral fusion proteins can reveal features essential for virion:cell fusion, and suggest drug and vaccine strategies. PMID:15544707

  4. Viral membrane fusion

    SciTech Connect

    Harrison, Stephen C.

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  5. Viral membrane fusion

    PubMed Central

    Harrison, Stephen C

    2008-01-01

    Infection by viruses having lipid-bilayer envelopes proceeds through fusion of the viral membrane with a membrane of the target cell. Viralfusion proteins’ facilitate this process. They vary greatly in structure, but all seem to have a common mechanism of action, in which a ligand-triggered, large-scale conformational change in the fusion protein is coupled to apposition and merger of the two bilayers. We describe three examples—the influenza virus hemagglutinin, the flavivirus E protein and the vesicular stomatitis virus G protein—in some detail, to illustrate the ways in which different structures have evolved to implement this common mechanism. Fusion inhibitors can be effective antiviral agents. PMID:18596815

  6. Viral membrane fusion.

    PubMed

    Harrison, Stephen C

    2015-05-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a "fusion loop" or "fusion peptide") engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  7. Fusion induced by a class II viral fusion protein, semliki forest virus E1, is dependent on the voltage of the target cell.

    PubMed

    Markosyan, Ruben M; Kielian, Margaret; Cohen, Fredric S

    2007-10-01

    Cells expressing the low pH-triggered class II viral fusion protein E1 of Semliki Forest virus (SFV) were fused to target cells. Fusion was monitored by electrical capacitance and aqueous dye measurements. Electrical voltage-clamp measurements showed that SFV E1-induced cell-cell fusion occurred quickly after acidification for a trans-negative potential across the target membrane (i.e., negative potential inside the target cell) but that a trans-positive potential eliminated all fusion. Use of an ionophore to control potentials for a large population of cells confirmed the dependence of fusion on voltage polarity. In contrast, fusion induced by the class I fusion proteins of human immunodeficiency virus, avian sarcoma leukosis virus, and influenza virus was independent of the voltage polarity across the target cell. Initial pore size and pore growth were also independent of voltage polarity for the class I proteins. An intermediate of SFV E1-induced fusion was created by transient acidification at low temperature. Membranes were hemifused at this intermediate state, and raising the temperature at neutral pH allowed full fusion to occur. Capacitance measurements showed that maintaining a trans-positive potential definitely blocked fusion at steps following the creation of the hemifusion intermediate and may have inhibited fusion at prior steps. It is proposed that the trans-negative voltage across the endosomal membrane facilitates fusion after low-pH-induced conformational changes of SFV E1 have occurred.

  8. Characterization of EBV gB indicates properties of both class I and class II viral fusion proteins

    SciTech Connect

    Backovic, Marija; Leser, George P.; Lamb, Robert A.; Longnecker, Richard; Jardetzky, Theodore S.

    2007-11-10

    To gain insight into Epstein-Barr virus (EBV) glycoprotein B (gB), recombinant, secreted variants were generated. The role of putative transmembrane regions, the proteolytic processing and the oligomerization state of the gB variants were investigated. Constructs containing 2 of 3 C-terminal hydrophobic regions were secreted, indicating that these do not act as transmembrane anchors. The efficiency of cleavage of the gB furin site was found to depend on the nature of C-terminus. All of the gB constructs formed rosette structures reminiscent of the postfusion aggregates formed by other viral fusion proteins. However, substitution of putative fusion loop residues, WY{sup 112-113} and WLIY{sup 193-196}, with less hydrophobic amino acids from HSV-1 gB, produced trimeric protein and abrogated the ability of the EBV gB ectodomains to form rosettes. These data demonstrate biochemical features of EBV gB that are characteristic of other class I and class II viral fusion proteins, but not of HSV-1 gB.

  9. Structure-Function Studies Link Class II Viral Fusogens with the Ancestral Gamete Fusion Protein HAP2.

    PubMed

    Pinello, Jennifer Fricke; Lai, Alex L; Millet, Jean K; Cassidy-Hanley, Donna; Freed, Jack H; Clark, Theodore G

    2017-03-06

    The conserved transmembrane protein, HAP2/GCS1, has been linked to fertility in a wide range of taxa and is hypothesized to be an ancient gamete fusogen. Using template-based structural homology modeling, we now show that the ectodomain of HAP2 orthologs from Tetrahymena thermophila and other species adopt a protein fold remarkably similar to the dengue virus E glycoprotein and related class II viral fusogens. To test the functional significance of this predicted structure, we developed a flow-cytometry-based assay that measures cytosolic exchange across the conjugation junction to rapidly probe the effects of HAP2 mutations in the Tetrahymena system. Using this assay, alterations to a region in and around a predicted "fusion loop" in T. thermophila HAP2 were found to abrogate membrane pore formation in mating cells. Consistent with this, a synthetic peptide corresponding to the HAP2 fusion loop was found to interact directly with model membranes in a variety of biophysical assays. These results raise interesting questions regarding the evolutionary relationships of class II membrane fusogens and harken back to a long-held argument that eukaryotic sex arose as the byproduct of selection for the horizontal transfer of a "selfish" genetic element from cell to cell via membrane fusion.

  10. Lipids as modulators of membrane fusion mediated by viral fusion proteins.

    PubMed

    Teissier, Elodie; Pécheur, Eve-Isabelle

    2007-11-01

    Enveloped viruses infect host cells by fusion of viral and target membranes. This fusion event is triggered by specific glycoproteins in the viral envelope. Fusion glycoproteins belong to either class I, class II or the newly described third class, depending upon their arrangement at the surface of the virion, their tri-dimensional structure and the location within the protein of a short stretch of hydrophobic amino acids called the fusion peptide, which is able to induce the initial lipid destabilization at the onset of fusion. Viral fusion occurs either with the plasma membrane for pH-independent viruses, or with the endosomal membranes for pH-dependent viruses. Although, viral fusion proteins are parted in three classes and the subcellular localization of fusion might vary, these proteins have to act, in common, on lipid assemblies. Lipids contribute to fusion through their physical, mechanical and/or chemical properties. Lipids can thus play a role as chemically defined entities, or through their preferential partitioning into membrane microdomains called "rafts", or by modulating the curvature of the membranes involved in the fusion process. The purpose of this review is to make a state of the art on recent findings on the contribution of cholesterol, sphingolipids and glycolipids in cell entry and membrane fusion of a number of viral families, whose members bear either class I or class II fusion proteins, or fusion proteins of the recently discovered third class.

  11. Mechanisms of influenza viral membrane fusion.

    PubMed

    Blijleven, Jelle S; Boonstra, Sander; Onck, Patrick R; van der Giessen, Erik; van Oijen, Antoine M

    2016-12-01

    Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact nature of the HA conformational changes that deliver the energy required for fusion remains poorly understood. This review summarizes our current knowledge of HA structure and dynamics, describes recent single-particle experiments and modeling studies, and discusses their role in understanding how multiple HAs mediate fusion. These approaches provide a mechanistic picture in which HAs independently and stochastically insert into the target membrane, forming a cluster of HAs that is collectively able to overcome the barrier to membrane fusion. The new experimental and modeling approaches described in this review hold promise for a more complete understanding of other viral fusion systems and the protein systems responsible for cellular fusion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Chemical studies of viral entry mechanisms: I. Hydrophobic protein-lipid interactions during Sendai virus membrane fusion. II. Kinetics of bacteriophage. lambda. DNA injection

    SciTech Connect

    Novick, S.L.

    1990-01-01

    Sendai virus glycoprotein interactions with target membranes during the early stages of fusion were examined using time-resolved hydrophobic photoaffinity labeling with the lipid-soluble carbene generator 3-(trifluoromethyl)-3-(m({sup 125}I) iodophenyl)diazirine. During Sendai virus fusion with liposomes composed of cardiolipin or phosphatidylserine, the viral fusion (F) protein is preferentially labeled at early time points, supporting the hypothesis that hydrophobic interaction of the fusion peptide at the N-terminus of the F{sub 1} subunit with the target membrane is an initiating event in fusion. Correlation of hydrophobic interactions with independently monitored fusion kinetics further supports this conclusion. The F{sub 1} subunit, containing the putative hydrophobic fusion sequence, is exclusively labeled, and the F{sub 2} subunit does not participate in fusion. Labeling shows temperature and pH dependence consistent with a need for protein conformational mobility and fusion at neutral pH. Higher amounts of labeling during fusion with CL vesicles than during virus-PS vesicle fusion reflects membrane packing regulation of peptide insertion into target membranes. Labeling of the viral hemagglutinin/neuraminidase (HN) at low pH indicates that HN-mediated fusion is triggered by hydrophobic interactions. Controls for diffusional labeling exclude a major contribution from this source. Labeling during reconstituted Sendai virus envelope-liposome fusion shows that functional reconstitution involves protein retention of the ability to undergo hydrophobic interactions. Examination of Sendai virus fusion with erythrocyte membranes indicates that hydrophobic interactions also trigger fusion between biological membranes. The data show that hydrophobic fusion protein interaction with both artificial and biological membranes is a triggering event in fusion.

  13. Henipavirus membrane fusion and viral entry.

    PubMed

    Aguilar, Hector C; Iorio, Ronald M

    2012-01-01

    Nipah (NiV) and Hendra (HeV) viruses cause cell-cell fusion (syncytia) in brain, lung, heart, and kidney tissues, leading to encephalitis, pneumonia, and often death. Membrane fusion is essential to both viral entry and virus-induced cell-cell fusion, a hallmark of henipavirus infections. Elucidiation of the mechanism(s) of membrane fusion is critical to understanding henipavirus pathobiology and has the potential to identify novel strategies for the development of antiviral therapeutic agents. Henipavirus membrane fusion requires the coordinated actions of the viral attachment (G) and fusion (F) glycoproteins. Current henipavirus fusion models posit that attachment of NiV or HeV G to its cell surface receptors releases F from its metastable pre-fusion conformation to mediate membrane fusion. The identification of ephrinB2 and ephrinB3 as henipavirus receptors has paved the way for recent advances in our understanding of henipavirus membrane fusion. These advances highlight mechanistic similarities and differences between membrane fusion for the henipavirus and other genera within the Paramyxoviridae family. Here, we review these mechanisms and the current gaps in our knowledge in the field.

  14. Neutron diffraction studies of viral fusion peptides

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  15. Broad-spectrum antivirals against viral fusion

    PubMed Central

    Vigant, Frederic; Santos, Nuno C.; Lee, Benhur

    2015-01-01

    Effective antivirals have been developed against specific viruses, such as HIV, Hepatitis C virus and influenza virus. This ‘one bug–one drug’ approach to antiviral drug development can be successful, but it may be inadequate for responding to an increasing diversity of viruses that cause significant diseases in humans. The majority of viral pathogens that cause emerging and re-emerging infectious diseases are membrane-enveloped viruses, which require the fusion of viral and cell membranes for virus entry. Therefore, antivirals that target the membrane fusion process represent new paradigms for broad-spectrum antiviral discovery. In this Review, we discuss the mechanisms responsible for the fusion between virus and cell membranes and explore how broad-spectrum antivirals target this process to prevent virus entry. PMID:26075364

  16. Enhancement of viral fusion by nonadsorbing polymers.

    PubMed Central

    Herrmann, A; Clague, M J; Blumenthal, R

    1993-01-01

    Nonadsorbing polymers such as dextran and poly(ethylene glycol) enhance binding as well as extents of fusion of influenza virus with erythrocytes. Kinetics and extent of viral membrane fusion were measured using an assay based on lipid mixing of a fluorescent dye. The effects of nonadsorbing polymers were in the concentration range from 0 to 10 wt%, far below the concentration required to overcome hydration repulsion forces. The enhancing effects were dependent on the molecular weight of nonadsorbing polymer, and only occurred at molecular weight > 1500; this links the phenomena we observe to the so-called "excluded volume effect" of nonadsorbing polymers. The time delay between triggering and the onset of influenza virus fusion was significantly reduced in the presence of nonadsorbing polymers. High molecular weight poly(ethylene glycol) also induced fusion of vesicular stomatitis virus with intact erythrocytes, which do not serve as target of vesicular stomatitis virus fusion in the absence of the polymer. The forces between membranes which determine rate-limiting processes in viral fusion and how they are affected by nonadsorbing polymers are discussed. PMID:7690263

  17. The three lives of viral fusion peptides

    PubMed Central

    Apellániz, Beatriz; Huarte, Nerea; Largo, Eneko; Nieva, José L.

    2014-01-01

    Fusion peptides comprise conserved hydrophobic domains absolutely required for the fusogenic activity of glycoproteins from divergent virus families. After 30 years of intensive research efforts, the structures and functions underlying their high degree of sequence conservation are not fully elucidated. The long-hydrophobic viral fusion peptide (VFP) sequences are structurally constrained to access three successive states after biogenesis. Firstly, the VFP sequence must fulfill the set of native interactions required for (meta) stable folding within the globular ectodomains of glycoprotein complexes. Secondly, at the onset of the fusion process, they get transferred into the target cell membrane and adopt specific conformations therein. According to commonly accepted mechanistic models, membrane-bound states of the VFP might promote the lipid bilayer remodeling required for virus-cell membrane merger. Finally, at least in some instances, several VFPs co-assemble with transmembrane anchors into membrane integral helical bundles, following a locking movement hypothetically coupled to fusion-pore expansion. Here we review different aspects of the three major states of the VFPs, including the functional assistance by other membrane-transferring glycoprotein regions, and discuss briefly their potential as targets for clinical intervention. PMID:24704587

  18. Structures and Mechanisms of Viral Membrane Fusion Proteins

    PubMed Central

    White, Judith M.; Delos, Sue E.; Brecher, Matthew; Schornberg, Kathryn

    2009-01-01

    Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus. PMID:18568847

  19. Concepts in viral pathogenesis II

    SciTech Connect

    Notkins, A.L.; Oldstone, M.B.A.

    1986-01-01

    This paper contains papers divided among 10 sections. The section titles are: Viral Structure and Function; Viral Constructs; Oncogenes, Transfection, and Differentiation; Viral Tropism and Entry into Cells; Immune Recognition of Viruses; Evolving Concepts in Viral Pathogenesis Illustrated by Selected Plant and Animal Models; Evolving Concepts in Viral Pathogenesis Illustrated by Selected Diseases in Humans; New Trends in Diagnosis and Epidemiology; and Vaccines and Antiviral Therapy.

  20. Viral and developmental cell fusion mechanisms: conservation and divergence.

    PubMed

    Sapir, Amir; Avinoam, Ori; Podbilewicz, Benjamin; Chernomordik, Leonid V

    2008-01-01

    Membrane fusion is a fundamental requirement in numerous developmental, physiological, and pathological processes in eukaryotes. So far, only a limited number of viral and cellular fusogens, proteins that fuse membranes, have been isolated and characterized. Despite the diversity in structures and functions of known fusogens, some common principles of action apply to all fusion reactions. These can serve as guidelines in the search for new fusogens, and may allow the formulation of a cross-species, unified theory to explain divergent and convergent evolutionary principles of membrane fusion.

  1. Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens.

    PubMed

    Valansi, Clari; Moi, David; Leikina, Evgenia; Matveev, Elena; Graña, Martín; Chernomordik, Leonid V; Romero, Héctor; Aguilar, Pablo S; Podbilewicz, Benjamin

    2017-03-06

    Cell-cell fusion is inherent to sexual reproduction. Loss of HAPLESS 2/GENERATIVE CELL SPECIFIC 1 (HAP2/GCS1) proteins results in gamete fusion failure in diverse organisms, but their exact role is unclear. In this study, we show that Arabidopsis thaliana HAP2/GCS1 is sufficient to promote mammalian cell-cell fusion. Hemifusion and complete fusion depend on HAP2/GCS1 presence in both fusing cells. Furthermore, expression of HAP2 on the surface of pseudotyped vesicular stomatitis virus results in homotypic virus-cell fusion. We demonstrate that the Caenorhabditis elegans Epithelial Fusion Failure 1 (EFF-1) somatic cell fusogen can replace HAP2/GCS1 in one of the fusing membranes, indicating that HAP2/GCS1 and EFF-1 share a similar fusion mechanism. Structural modeling of the HAP2/GCS1 protein family predicts that they are homologous to EFF-1 and viral class II fusion proteins (e.g., Zika virus). We name this superfamily Fusexins: fusion proteins essential for sexual reproduction and exoplasmic merger of plasma membranes. We suggest a common origin and evolution of sexual reproduction, enveloped virus entry into cells, and somatic cell fusion.

  2. Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens

    PubMed Central

    Valansi, Clari; Moi, David; Leikina, Evgenia; Matveev, Elena; Chernomordik, Leonid V.

    2017-01-01

    Cell–cell fusion is inherent to sexual reproduction. Loss of HAPLESS 2/GENERATIVE CELL SPECIFIC 1 (HAP2/GCS1) proteins results in gamete fusion failure in diverse organisms, but their exact role is unclear. In this study, we show that Arabidopsis thaliana HAP2/GCS1 is sufficient to promote mammalian cell–cell fusion. Hemifusion and complete fusion depend on HAP2/GCS1 presence in both fusing cells. Furthermore, expression of HAP2 on the surface of pseudotyped vesicular stomatitis virus results in homotypic virus–cell fusion. We demonstrate that the Caenorhabditis elegans Epithelial Fusion Failure 1 (EFF-1) somatic cell fusogen can replace HAP2/GCS1 in one of the fusing membranes, indicating that HAP2/GCS1 and EFF-1 share a similar fusion mechanism. Structural modeling of the HAP2/GCS1 protein family predicts that they are homologous to EFF-1 and viral class II fusion proteins (e.g., Zika virus). We name this superfamily Fusexins: fusion proteins essential for sexual reproduction and exoplasmic merger of plasma membranes. We suggest a common origin and evolution of sexual reproduction, enveloped virus entry into cells, and somatic cell fusion. PMID:28137780

  3. Influenza viral membrane fusion is sensitive to sterol concentration but surprisingly robust to sterol chemical identity

    PubMed Central

    Zawada, Katarzyna E.; Wrona, Dominik; Rawle, Robert J.; Kasson, Peter M.

    2016-01-01

    Influenza virions are enriched in cholesterol relative to the plasma membrane from which they bud. Previous work has shown that fusion between influenza virus and synthetic liposomes is sensitive to the amount of cholesterol in either the virus or the target membrane. Here, we test the chemical properties of cholesterol required to promote influenza fusion by replacing cholesterol with other sterols and assaying viral fusion kinetics. We find that influenza fusion with liposomes is surprisingly robust to sterol chemical identity, showing no significant dependence on sterol identity in target membranes for any of the sterols tested. In the viral membrane, lanosterol slowed fusion somewhat, while polar sterols produced a more pronounced slowing and inhibition of fusion. No other sterols tested showed a significant perturbation in fusion rates, including ones previously shown to alter membrane bending moduli or phase behavior. Although fusion rates depend on viral cholesterol, they thus do not require cholesterol’s ability to support liquid-liquid phase coexistence. Using electron cryo-microscopy, we further find that sterol-dependent changes to hemagglutinin spatial patterning in the viral membrane do not require liquid-liquid phase coexistence. We therefore speculate that local sterol-hemagglutinin interactions in the viral envelope may control the rate-limiting step of fusion. PMID:27431907

  4. Influenza viral membrane fusion is sensitive to sterol concentration but surprisingly robust to sterol chemical identity.

    PubMed

    Zawada, Katarzyna E; Wrona, Dominik; Rawle, Robert J; Kasson, Peter M

    2016-07-19

    Influenza virions are enriched in cholesterol relative to the plasma membrane from which they bud. Previous work has shown that fusion between influenza virus and synthetic liposomes is sensitive to the amount of cholesterol in either the virus or the target membrane. Here, we test the chemical properties of cholesterol required to promote influenza fusion by replacing cholesterol with other sterols and assaying viral fusion kinetics. We find that influenza fusion with liposomes is surprisingly robust to sterol chemical identity, showing no significant dependence on sterol identity in target membranes for any of the sterols tested. In the viral membrane, lanosterol slowed fusion somewhat, while polar sterols produced a more pronounced slowing and inhibition of fusion. No other sterols tested showed a significant perturbation in fusion rates, including ones previously shown to alter membrane bending moduli or phase behavior. Although fusion rates depend on viral cholesterol, they thus do not require cholesterol's ability to support liquid-liquid phase coexistence. Using electron cryo-microscopy, we further find that sterol-dependent changes to hemagglutinin spatial patterning in the viral membrane do not require liquid-liquid phase coexistence. We therefore speculate that local sterol-hemagglutinin interactions in the viral envelope may control the rate-limiting step of fusion.

  5. HYFIRE II: a fusion/synfuel producer

    SciTech Connect

    Fillo, J.A.

    1981-01-01

    HYFIRE II is a point design study of a commercial fusion Tokamak reactor coupled to a high-temperature electrolysis (HTE) system for the production of hydrogen and oxygen. The purpose of the study is to assess the technical and economic feasibility of the application of fusion energy for the production of these basic fuels. The HYFIRE II fusion reactor design is based on the STARFIRE commercial power reactor, the primary differences are in the type of blankets between the two reactors, the power cycle design and in the increased thermal power rating (to 6000 MW(th)). Otherwise, the major features of STARFIRE which are maintained include: steady-state operation; rf drive; mechanical limiters; number of TF coils; etc. Based on HYFIRE conceptual design studies to date, the following observations are made: a) blanket designs have been identified to simultaneously meet global tritium breeding requirements and required energy splits between process steam and helium; b) attractive tritium breeders such as LiAlO/sub 2/ and liquid lead with dissolved lithium have been identified; c) gross power cycle efficiencies in the 40 to 45% range appear achievable; and d) high H/sub 2/ production efficiencies in the 50 to 55% range appear achievable.

  6. Dynamic Viral Glycoprotein Machines: Approaches for Probing Transient States That Drive Membrane Fusion

    PubMed Central

    Garcia, Natalie K.; Lee, Kelly K.

    2016-01-01

    The fusion glycoproteins that decorate the surface of enveloped viruses undergo dramatic conformational changes in the course of engaging with target cells through receptor interactions and during cell entry. These refolding events ultimately drive the fusion of viral and cellular membranes leading to delivery of the genetic cargo. While well-established methods for structure determination such as X-ray crystallography have provided detailed structures of fusion proteins in the pre- and post-fusion fusion states, to understand mechanistically how these fusion glycoproteins perform their structural calisthenics and drive membrane fusion requires new analytical approaches that enable dynamic intermediate states to be probed. Methods including structural mass spectrometry, small-angle X-ray scattering, and electron microscopy have begun to provide new insight into pathways of conformational change and fusion protein function. In combination, the approaches provide a significantly richer portrait of viral fusion glycoprotein structural variation and fusion activation as well as inhibition by neutralizing agents. Here recent studies that highlight the utility of these complementary approaches will be reviewed with a focus on the well-characterized influenza virus hemagglutinin fusion glycoprotein system. PMID:26761026

  7. Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm

    PubMed Central

    Melikyan, Gregory B

    2008-01-01

    Enveloped viruses encode specialized fusion proteins which promote the merger of viral and cell membranes, permitting the cytosolic release of the viral cores. Understanding the molecular details of this process is essential for antiviral strategies. Recent structural studies revealed a stunning diversity of viral fusion proteins in their native state. In spite of this diversity, the post-fusion structures of these proteins share a common trimeric hairpin motif in which the amino- and carboxy-terminal hydrophobic domains are positioned at the same end of a rod-shaped molecule. The converging hairpin motif, along with biochemical and functional data, implies that disparate viral proteins promote membrane merger via a universal "cast-and-fold" mechanism. According to this model, fusion proteins first anchor themselves to the target membrane through their hydrophobic segments and then fold back, bringing the viral and cellular membranes together and forcing their merger. However, the pathways of protein refolding and the mechanism by which this refolding is coupled to membrane rearrangements are still not understood. The availability of specific inhibitors targeting distinct steps of HIV-1 entry permitted the identification of key conformational states of its envelope glycoprotein en route to fusion. These studies provided functional evidence for the direct engagement of the target membrane by HIV-1 envelope glycoprotein prior to fusion and revealed the role of partially folded pre-hairpin conformations in promoting the pore formation. PMID:19077194

  8. Roles of the Putative Integrin-Binding Motif of the Human Metapneumovirus Fusion (F) Protein in Cell-Cell Fusion, Viral Infectivity, and Pathogenesis

    PubMed Central

    Wei, Yongwei; Zhang, Yu; Cai, Hui; Mirza, Anne M.; Iorio, Ronald M.; Peeples, Mark E.; Niewiesk, Stefan

    2014-01-01

    ABSTRACT Human metapneumovirus (hMPV) is a relatively recently identified paramyxovirus that causes acute upper and lower respiratory tract infection. Entry of hMPV is unusual among the paramyxoviruses, in that fusion is accomplished by the fusion (F) protein without the attachment glycoprotein (G protein). It has been suggested that hMPV F protein utilizes integrin αvβ1 as a cellular receptor. Consistent with this, the F proteins of all known hMPV strains possess an integrin-binding motif (329RGD331). The role of this motif in viral entry, infectivity, and pathogenesis is poorly understood. Here, we show that α5β1 and αv integrins are essential for cell-cell fusion and hMPV infection. Mutational analysis found that residues R329 and G330 in the 329RGD331 motif are essential for cell-cell fusion, whereas mutations at D331 did not significantly impact fusion activity. Furthermore, fusion-defective RGD mutations were either lethal to the virus or resulted in recombinant hMPVs that had defects in viral replication in cell culture. In cotton rats, recombinant hMPV with the R329K mutation in the F protein (rhMPV-R329K) and rhMPV-D331A exhibited significant defects in viral replication in nasal turbinates and lungs. Importantly, inoculation of cotton rats with these mutants triggered a high level of neutralizing antibodies and protected against hMPV challenge. Taken together, our data indicate that (i) α5β1 and αv integrins are essential for cell-cell fusion and viral replication, (ii) the first two residues in the RGD motif are essential for fusion activity, and (iii) inhibition of the interaction of the integrin-RGD motif may serve as a new target to rationally attenuate hMPV for the development of live attenuated vaccines. IMPORTANCE Human metapneumovirus (hMPV) is one of the major causative agents of acute respiratory disease in humans. Currently, there is no vaccine or antiviral drug for hMPV. hMPV enters host cells via a unique mechanism, in that viral

  9. Measurement of membrane fusion activity from viral membrane fusion proteins based on a fusion-dependent promoter induction system in insect cells

    PubMed Central

    Slack, J. M.; Blissard, G. W.

    2013-01-01

    Summary A number of viral membrane fusion proteins can be expressed alone on the surface of host cells, then triggered to induce cell-to-cell fusion or syncytium formation. Although rapid and easily observed, syncytium formation is not easily quantified and differences in fusion activity are not easily distinguished or measured. To address this problem, we developed a rapid and quantitative cell-to-cell fusion system that is useful for comparative analysis and may be suitable for high throughput screening. In this system, expression of a reporter protein, the enhanced green fluorescent protein (EGFP), is dependent on cell-to-cell fusion. Spodoptera frugiperda (Sf9) insect cells expressing a chimeric Lac Repressor-IE1 protein were fused to Sf9 cells containing an EGFP reporter construct under the control of a responsive lac operator containing promoter. Membrane fusion efficiency was measured from the resulting EGFP fluorescence activity. Sf9 cells expressing the Orgyia pseudotsugata Multicapsid Nucleopolyhedrovirus (OpMNPV) GP64 envelope fusion protein were used as a model to test this fusion assay. Subtle changes in fusion activities of GP64 proteins containing single amino acid substitutions in a putative membrane fusion domain were distinguished, and decreases in EGFP fluorescence corresponded to decreases in the hydrophobicity in the small putative membrane fusion domain. PMID:11562545

  10. Fusion Power Demonstrations I and II

    SciTech Connect

    Doggett, J.N.

    1985-01-01

    In this report we present a summary of the first phase of the Fusion Power Demonstration (FPD) design study. During this first phase, we investigated two configurations, performed detailed studies of major components, and identified and examined critical issues. In addition to these design specific studies, we also assembled a mirror-systems computer code to help optimize future device designs. The two configurations that we have studied are based on the MARS magnet configuration and are labeled FPD-I and FPD-II. The FPD-I configuration employs the same magnet set used in the FY83 FPD study, whereas the FPD-II magnets are a new, much smaller set chosen to help reduce the capital cost of the system. As part of the FPD study, we also identified and explored issues critical to the construction of an Engineering Test Reactor (ETR). These issues involve subsystems or components, which because of their cost or state of technology can have a significant impact on our ability to meet FPD's mission requirements on the assumed schedule. General Dynamics and Grumman Aerospace studied two of these systems, the high-field choke coil and the halo pump/direct converter, in great detail and their findings are presented in this report.

  11. The Ancient Gamete Fusogen HAP2 Is a Eukaryotic Class II Fusion Protein.

    PubMed

    Fédry, Juliette; Liu, Yanjie; Péhau-Arnaudet, Gérard; Pei, Jimin; Li, Wenhao; Tortorici, M Alejandra; Traincard, François; Meola, Annalisa; Bricogne, Gérard; Grishin, Nick V; Snell, William J; Rey, Félix A; Krey, Thomas

    2017-02-23

    Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa-animals, plants, and protists (including important human pathogens like Plasmodium)-suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Phosphorylation of Nonmuscle myosin II-A regulatory light chain resists Sendai virus fusion with host cells

    PubMed Central

    Das, Provas; Saha, Shekhar; Chandra, Sunandini; Das, Alakesh; Dey, Sumit K.; Das, Mahua R.; Sen, Shamik; Sarkar, Debi P.; Jana, Siddhartha S.

    2015-01-01

    Enveloped viruses enter host cells through membrane fusion and the cells in turn alter their shape to accommodate components of the virus. However, the role of nonmuscle myosin II of the actomyosin complex of host cells in membrane fusion is yet to be understood. Herein, we show that both (−) blebbistatin, a specific inhibitor of nonmuscle myosin II (NMII) and small interfering RNA markedly augment fusion of Sendai virus (SeV), with chinese hamster ovary cells and human hepatocarcinoma cells. Inhibition of RLC phosphorylation using inhibitors against ROCK, but not PKC and MRCK, or overexpression of phospho-dead mutant of RLC enhances membrane fusion. SeV infection increases cellular stiffness and myosin light chain phosphorylation at two hour post infection. Taken together, the present investigation strongly indicates that Rho-ROCK-NMII contractility signaling pathway may provide a physical barrier to host cells against viral fusion. PMID:25993465

  13. Conservation of hydrophobicity within viral envelope glycoproteins reveals a putative hepatitis C virus fusion peptide.

    PubMed

    Taylor, A; O'Leary, J M; Pollock, S; Zitzmann, N

    2009-01-01

    The mechanism(s) by which hepatitis C virus (HCV) enters and infects cells remains unknown. Identifying the HCV fusion peptide(s) and understanding the early stages of infection may provide new opportunities for improved antiviral therapy. The HCV envelope glycoprotein E2 is thought to be a class II fusion protein. Class II fusion proteins are exemplified by the E protein of the tick-borne encephalitis virus (TBEV) and the E1 protein of the Semliki Forest virus (SFV). Analysis of the hydrophobicity profiles of four HCV E2 envelope glycoproteins revealed a region with a conserved three-pronged pattern of hydrophobicity, termed the tridentate (TD) region. The primary sequence of the TD region is highly conserved in all 490 HCV strains currently reported. The known fusion peptide loops of TBEV and SFV share the characteristic TD region hydrophobicity profile and significant sequence conservation in the TD region was identified in the E and E1 glycoproteins of members of the Flaviviridae and Togaviridae families, respectively. The HCV TD region peptides have membranotropic activity; in molecular dynamics (MD) simulations, the HCV TD region peptides insert into in a biomimetic bilayer in a similar manner to the TBEV fusion peptide and the peptides induce effective mixing of lipid membranes in a liposome fusion assay. Together these results indicate that the highly conserved TD region of the HCV E2 protein is a fusion peptide candidate and may be an important factor in the class II fusion mechanism.

  14. Lipid Phase Control and Secondary Structure of Viral Fusion Peptides Anchored in Monoolein Membranes.

    PubMed

    Levin, Artem; Jeworrek, Christoph; Winter, Roland; Weise, Katrin; Czeslik, Claus

    2017-09-14

    The fusion of lipid membranes involves major changes of the membrane curvatures and is mediated by fusion proteins that bind to the lipid membranes. For a better understanding of the way fusion proteins steer this process, we have studied the interaction of two different viral fusion peptides, HA2-FP and TBEV-FP, with monoolein mesophases as a function of temperature and pressure at limited hydration. The fusion peptides are derived from the influenza virus hemagglutinin fusion protein (HA2-FP) and from the tick-borne encephalitis virus envelope glycoprotein E (TBEV-FP). By using synchrotron X-ray diffraction, the changes of the monoolein phase behavior upon binding the peptides have been determined and the concomitant secondary structures of the peptides have been analyzed by FTIR spectroscopy. As main results we have found that the fusion peptides interact differently with monoolein and change the pressure and temperature dependent lipid phase behavior to different extents. However, they both destabilize the fluid lamellar phase and favor phases with negative curvature, i.e. inverse bicontinuous cubic and inverse hexagonal phases. These peptide-induced phase changes can partially be reversed by the application of high pressure, demonstrating that the promotion of negative curvature is achieved by a less dense packing of the monoolein membranes by the fusion peptides. Pressure jumps across the cubic-lamellar phase transition reveal that HA2-FP has a negligible effect on the rates of the cubic and the lamellar phase formation. Interestingly, the secondary structures of the fusion peptides appear unaffected by monoolein fluid-fluid phase transitions, suggesting that the fusion peptides are the structure dominant species in the fusion process of lipid membranes.

  15. Unwinding initiation by the viral RNA helicase NPH-II.

    PubMed

    Fairman-Williams, Margaret E; Jankowsky, Eckhard

    2012-02-03

    Viral RNA helicases of the NS3/NPH-II group unwind RNA duplexes by processive, directional translocation on one of the duplex strands. The translocation is preceded by a poorly understood unwinding initiation phase. For NPH-II from vaccinia virus, unwinding initiation is rate limiting for the overall unwinding reaction. To develop a mechanistic understanding of the unwinding initiation, we studied kinetic and thermodynamic aspects of this reaction phase for NPH-II in vitro, using biochemical and single molecule fluorescence approaches. Our data show that NPH-II functions as a monomer and that different stages of the ATP hydrolysis cycle dictate distinct binding preferences of NPH-II for duplex versus single-stranded RNA. We further find that the NPH-II-RNA complex does not adopt a single conformation but rather at least two distinct conformations in each of the analyzed stages of ATP hydrolysis. These conformations interconvert with rate constants that depend on the stage of the ATP hydrolysis cycle. Our data establish a basic mechanistic framework for unwinding initiation by NPH-II and suggest that the various stages of the ATP hydrolysis cycle do not induce single, stage-specific conformations in the NPH-II-RNA complex but primarily control transitions between multiple states.

  16. Sendai virus-erythrocyte membrane interaction: quantitative and kinetic analysis of viral binding, dissociation, and fusion.

    PubMed

    Hoekstra, D; Klappe, K

    1986-04-01

    A kinetic and quantitative analysis of the binding and fusion of Sendai virus with erythrocyte membranes was performed by using a membrane fusion assay based on the relief of fluorescence self-quenching. At 37 degrees C, the process of virus association displayed a half time of 2.5 min; at 4 degrees C, the half time was 3.0 min. The fraction of the viral dose which became cell associated was independent of the incubation temperature and increased with increasing target membrane concentration. On the average, one erythrocyte ghost can accommodate ca. 1,200 Sendai virus particles. The stability of viral attachment was sensitive to a shift in temperature: a fraction of the virions (ca. 30%), attached at 4 degrees C, rapidly (half time, ca. 2.5 min) eluted from the cell surface at 37 degrees C, irrespective of the presence of free virus in the medium. The elution can be attributed to a spontaneous, temperature-induced release, rather than to viral neuraminidase activity. Competition experiments with nonlabeled virus revealed that viruses destined to fuse do not exchange with free particles in the medium but rather bind in a rapid and irreversible manner. The fusion rate of Sendai virus was affected by the density of the virus particles on the cell surface and became restrained when more than 170 virus particles were attached per ghost. In principle, all virus particles added displayed fusion activity. However, at high virus-to-ghost ratios, only a fraction actually fused, indicating that a limited number of fusion sites exist on the erythrocyte membrane. We estimate that ca. 180 virus particles maximally can fuse with one erythrocyte ghost.

  17. Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry

    SciTech Connect

    Janas, Alicia M.; Dong, Chunsheng; Wang Jianhua; Wu Li

    2008-06-05

    Human immunodeficiency virus type 1 (HIV-1) enters dendritic cells (DCs) through endocytosis and viral receptor-mediated fusion. Although endocytosis-mediated HIV-1 entry can generate productive infection in certain cell types, including human monocyte-derived macrophages, productive HIV-1 infection in DCs appears to be dependent on fusion-mediated viral entry. It remains to be defined whether endocytosed HIV-1 in DCs can initiate productive infection. Using HIV-1 infection and cellular fractionation assays to measure productive viral infection and entry, here we show that HIV-1 enters monocyte-derived DCs predominately through endocytosis; however, endocytosed HIV-1 cannot initiate productive HIV-1 infection in DCs. In contrast, productive HIV-1 infection in DCs requires fusion-mediated viral entry. Together, these results provide functional evidence in understanding HIV-1 cis-infection of DCs, suggesting that different pathways of HIV-1 entry into DCs determine the outcome of viral infection.

  18. The β-Lactamase Assay: Harnessing a FRET Biosensor to Analyse Viral Fusion Mechanisms

    PubMed Central

    Jones, Daniel M.; Padilla-Parra, Sergi

    2016-01-01

    The β-lactamase (BlaM) assay was first revealed in 1998 and was demonstrated to be a robust Förster resonance energy transfer (FRET)-based reporter system that was compatible with a range of commonly-used cell lines. Today, the BlaM assay is available commercially as a kit and can be utilised readily and inexpensively for an array of experimental procedures that require a fluorescence-based readout. One frequent application of the BlaM assay is the measurement of viral fusion—the moment at which the genetic material harboured within virus particles is released into the cytosol following successful entry. The flexibility of the system permits evaluation of not only total fusion levels, but also the kinetics of fusion. However, significant variation exists in the scientific literature regarding the methodology by which the assay is applied to viral fusion analysis, making comparison between results difficult. In this review we draw attention to the disparity of these methodologies and examine the advantages and disadvantages of each approach. Successful strategies shown to render viruses compatible with BlaM-based analyses are also discussed. PMID:27347948

  19. Interfacial pre-transmembrane domains in viral proteins promoting membrane fusion and fission.

    PubMed

    Lorizate, Maier; Huarte, Nerea; Sáez-Cirión, Asier; Nieva, José L

    2008-01-01

    Membrane fusion and fission underlie two limiting steps of enveloped virus replication cycle: access to the interior of the host-cell (entry) and dissemination of viral progeny after replication (budding), respectively. These dynamic processes proceed mediated by specialized proteins that disrupt and bend the lipid bilayer organization transiently and locally. We introduced Wimley-White membrane-water partitioning free energies of the amino acids as an algorithm for predicting functional domains that may transmit protein conformational energy into membranes. It was found that many viral products possess unusually extended, aromatic-rich pre-transmembrane stretches predicted to stably reside at the membrane interface. Here, we review structure-function studies, as well as data reported on the interaction of representative peptides with model membranes, all of which sustain a functional role for these domains in viral fusion and fission. Since pre-transmembrane sequences also constitute antigenic determinants in a membrane-bound state, we also describe some recent results on their recognition and blocking at membrane interface by neutralizing antibodies.

  20. Fluorescent protein-tagged Vpr dissociates from HIV-1 core after viral fusion and rapidly enters the cell nucleus.

    PubMed

    Desai, Tanay M; Marin, Mariana; Sood, Chetan; Shi, Jiong; Nawaz, Fatima; Aiken, Christopher; Melikyan, Gregory B

    2015-10-29

    HIV-1 Vpr is recruited into virions during assembly and appears to remain associated with the viral core after the reverse transcription and uncoating steps of entry. This feature has prompted the use of fluorescently labeled Vpr to visualize viral particles and to follow trafficking of post-fusion HIV-1 cores in the cytoplasm. Here, we tracked single pseudovirus entry and fusion and observed that fluorescently tagged Vpr gradually dissociates from post-fusion viral cores over the course of several minutes and accumulates in the nucleus. Kinetics measurements showed that fluorescent Vpr released from the cores very rapidly entered the cell nucleus. More than 10,000 Vpr molecules can be delivered into the cell nucleus within 45 min of infection by HIV-1 particles pseudotyped with the avian sarcoma and leukosis virus envelope glycoprotein. The fraction of Vpr from cell-bound viruses that accumulated in the nucleus was proportional to the extent of virus-cell fusion and was fully blocked by viral fusion inhibitors. Entry of virus-derived Vpr into the nucleus occurred independently of envelope glycoproteins or target cells. Fluorescence correlation spectroscopy revealed two forms of nuclear Vpr-monomers and very large complexes, likely involving host factors. The kinetics of viral Vpr entering the nucleus after fusion was not affected by point mutations in the capsid protein that alter the stability of the viral core. The independence of Vpr shedding of capsid stability and its relatively rapid dissociation from post-fusion cores suggest that this process may precede capsid uncoating, which appears to occur on a slower time scale. Our results thus demonstrate that a bulk of fluorescently labeled Vpr incorporated into HIV-1 particles is released shortly after fusion. Future studies will address the question whether the quick and efficient nuclear delivery of Vpr derived from incoming viruses can regulate subsequent steps of HIV-1 infection.

  1. Trainable fusion rules. II. Small sample-size effects.

    PubMed

    Raudys, Sarunas

    2006-12-01

    Profound theoretical analysis is performed of small-sample properties of trainable fusion rules to determine in which situations neural network ensembles can improve or degrade classification results. We consider small sample effects, specific only to multiple classifiers system design in the two-category case of two important fusion rules: (1) linear weighted average (weighted voting), realized either by the standard Fisher classifier or by the single-layer perceptron, and (2) the non-linear Behavior-Knowledge-Space method. The small sample effects include: (i) training bias, i.e. learning sample size influence on generalization error of the base experts or of the fusion rule, (ii) optimistic biased outputs of the experts (self-boasting effect) and (iii) sample size impact on determining optimal complexity of the fusion rule. Correction terms developed to reduce the self-boasting effect are studied. It is shown that small learning sets increase classification error of the expert classifiers and damage correlation structure between their outputs. If the sizes of learning sets used to develop the expert classifiers are too small, non-trainable fusion rules can outperform more sophisticated trainable ones. A practical technique to fight sample size problems is a noise injection technique. The noise injection reduces the fusion rule's complexity and diminishes the expert's boasting bias.

  2. Viral Membrane Fusion and Nucleocapsid Delivery into the Cytoplasm are Distinct Events in Some Flaviviruses

    PubMed Central

    Nour, Adel M.; Li, Yue; Wolenski, Joseph; Modis, Yorgo

    2013-01-01

    Flaviviruses deliver their genome into the cell by fusing the viral lipid membrane to an endosomal membrane. The sequence and kinetics of the steps required for nucleocapsid delivery into the cytoplasm remain unclear. Here we dissect the cell entry pathway of virions and virus-like particles from two flaviviruses using single-particle tracking in live cells, a biochemical membrane fusion assay and virus infectivity assays. We show that the virus particles fuse with a small endosomal compartment in which the nucleocapsid remains trapped for several minutes. Endosomal maturation inhibitors inhibit infectivity but not membrane fusion. We propose a flavivirus cell entry mechanism in which the virus particles fuse preferentially with small endosomal carrier vesicles and depend on back-fusion of the vesicles with the late endosomal membrane to deliver the nucleocapsid into the cytoplasm. Virus entry modulates intracellular calcium release and phosphatidylinositol-3-phosphate kinase signaling. Moreover, the broadly cross-reactive therapeutic antibody scFv11 binds to virus-like particles and inhibits fusion. PMID:24039574

  3. Viral membrane fusion and nucleocapsid delivery into the cytoplasm are distinct events in some flaviviruses.

    PubMed

    Nour, Adel M; Li, Yue; Wolenski, Joseph; Modis, Yorgo

    2013-01-01

    Flaviviruses deliver their genome into the cell by fusing the viral lipid membrane to an endosomal membrane. The sequence and kinetics of the steps required for nucleocapsid delivery into the cytoplasm remain unclear. Here we dissect the cell entry pathway of virions and virus-like particles from two flaviviruses using single-particle tracking in live cells, a biochemical membrane fusion assay and virus infectivity assays. We show that the virus particles fuse with a small endosomal compartment in which the nucleocapsid remains trapped for several minutes. Endosomal maturation inhibitors inhibit infectivity but not membrane fusion. We propose a flavivirus cell entry mechanism in which the virus particles fuse preferentially with small endosomal carrier vesicles and depend on back-fusion of the vesicles with the late endosomal membrane to deliver the nucleocapsid into the cytoplasm. Virus entry modulates intracellular calcium release and phosphatidylinositol-3-phosphate kinase signaling. Moreover, the broadly cross-reactive therapeutic antibody scFv11 binds to virus-like particles and inhibits fusion.

  4. Submodeling Simulations in Fusion Welds: Part II

    NASA Astrophysics Data System (ADS)

    Bonifaz, E. A.

    2013-11-01

    In part I, three-dimensional transient non-linear sub modeling heat transfer simulations were performed to study the thermal histories and thermal cycles that occur during the welding process at the macro, meso and micro scales. In the present work, the corresponding non-uniform temperature changes were imposed as load conditions on structural calculations to study the evolution of localized plastic strains and residual stresses at these sub-level scales. To reach the goal, a three-dimensional finite element elastic-plastic model (ABAQUS code) was developed. The sub-modeling technique proposed to be used in coupling phase-field (and/or digital microstructures) codes with finite element codes, was used to mesh a local part of the model with a refined mesh based on interpolation of the solution from an initial, relatively coarse, macro global model. The meso-sub-model is the global model for the subsequent micro sub-model. The strategy used to calculate temperatures, strains and residual stresses at the macro, meso and micro scale level, is very flexible to be used to any number of levels. The objective of this research was to initiate the development of microstructural models to identify fusion welding process parameters for preserving the single crystal nature of gas turbine blades during repair procedures. The multi-scale submodeling approach can be used to capture weld pool features at the macro-meso scale level, and micro residual stress and secondary dendrite arm spacing features at the micro scale level.

  5. A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge

    NASA Astrophysics Data System (ADS)

    Deliyannis, Georgia; Boyle, Jefferey S.; Brady, Jamie L.; Brown, Lorena E.; Lew, Andrew M.

    2000-06-01

    Improving the immunological potency, particularly the Ab response, is a serious hurdle for the protective efficacy and hence broad application of DNA vaccines. We examined the immunogenicity and protective efficacy of a hemagglutinin-based influenza DNA vaccine that was targeted to antigen-presenting cells (APCs) by fusion to CTLA4. The targeted vaccine was shown to induce an accelerated and increased Ab response (as compared with those receiving the nontargeted control) that was predominated by IgG1 and recognized conformationally dependent viral epitopes. Moreover, mice receiving the APC-targeted DNA vaccine had significantly reduced viral titers (100-fold) after a nonlethal virus challenge. The increased protective efficacy was most likely because of increased Ab responses, as cytotoxic T lymphocyte responses were not enhanced. Targeting was demonstrated by direct binding studies of CTLA4 fusion proteins to the cognate ligand (B7; expressed on APCs in vivo). In addition, a targeted protein was detected at 4-fold higher levels in draining lymph nodes within 2-24 h of administration. Therefore, this study demonstrates that targeting DNA-encoded antigen to APCs results in enhanced immunity and strongly suggests that this approach may be useful in improving the protective efficacy of DNA vaccines.

  6. Fusion Ship II- A Fast Manned Interplanetary Space Vehicle Using Inertial Electrostatic Fusion

    NASA Astrophysics Data System (ADS)

    Burton, R. L.; Momota, H.; Richardson, N.; Shaban, Y.; Miley, G. H.

    2003-01-01

    A preliminary system design, Fusion Ship II, is presented for a high performance 750 MWthrust manned space vehicle in the 500 metric ton class. Fusion Ship II is based on Inertial Electrostatic Fusion (IEC), giving round trip times to the outer planets of 1-2 years. An IEC is chosen because it simplifies structure results in a very high power to weight ratio. The fusion reactor uses D-3He fuel that generates 14.7-MeV protons as the primary reaction product. The propulsion system uses direct conversion of proton energy to electricity, avoiding the thermalization of the working fluid to maximize efficiency. Design calculations are described for the principle system components (crew compartment, crew shielding, avionics, fusion reactor modules, traveling wave direct energy converter, step-down transformer, rectifier, ion thruster, heat rejection radiators) along with vehicle trajectory calculations. Since unburned fusion fuels are recycled rather than exhausted with the propellant, problems of fuel weight and preservation of 3He are minimized. The 750-MWthrust propulsion system is based on NSTAR-extrapolated Argon ion thrusters operating at a specific impulse of 35,000 seconds and a total thrust of 4,370 N. Round trip travel time for a Jupiter mission ΔV of 202,000 m/s is then 363 days. This design requires that an IEC reactor with a proton energy gain (power in 14.7-MeV protons/input electric power) of 9 or better is achieved. Extrapolation of present laboratory-scale IEC experiments to such conditions is possible theoretically, but faces several open issues including stability under high-density plasma operation.

  7. Evidence that TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response▿

    PubMed Central

    Glowacka, Ilona; Bertram, Stephanie; Müller, Marcel A.; Allen, Paul; Soilleux, Elizabeth; Pfefferle, Susanne; Steffen, Imke; Tsegaye, Theodros Solomon; He, Yuxian; Gnirss, Kerstin; Niemeyer, Daniela; Schneider, Heike; Drosten, Christian; Pöhlmann, Stefan

    2011-01-01

    The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) can be proteolytically activated by cathepsins B and L upon viral uptake into target cell endosomes. In contrast, it is largely unknown whether host cell proteases located in the secretory pathway of infected cells and/or on the surface of target cells can cleave SARS S. We along with others could previously show that the type II transmembrane protease TMPRSS2 activates the influenza virus hemagglutinin and the human metapneumovirus F protein by cleavage. Here, we assessed whether SARS S is proteolytically processed by TMPRSS2. Western blot analysis revealed that SARS S was cleaved into several fragments upon coexpression of TMPRSS2 (cis-cleavage) and upon contact between SARS S-expressing cells and TMPRSS2-positive cells (trans-cleavage). cis-cleavage resulted in release of SARS S fragments into the cellular supernatant and in inhibition of antibody-mediated neutralization, most likely because SARS S fragments function as antibody decoys. trans-cleavage activated SARS S on effector cells for fusion with target cells and allowed efficient SARS S-driven viral entry into targets treated with a lysosomotropic agent or a cathepsin inhibitor. Finally, ACE2, the cellular receptor for SARS-CoV, and TMPRSS2 were found to be coexpressed by type II pneumocytes, which represent important viral target cells, suggesting that SARS S is cleaved by TMPRSS2 in the lung of SARS-CoV-infected individuals. In summary, we show that TMPRSS2 might promote viral spread and pathogenesis by diminishing viral recognition by neutralizing antibodies and by activating SARS S for cell-cell and virus-cell fusion. PMID:21325420

  8. Prediction of antiviral peptides derived from viral fusion proteins potentially active against herpes simplex and influenza A viruses

    PubMed Central

    Jesús, Torres; Rogelio, López; Abraham, Cetina; Uriel, López; J- Daniel, García; Alfonso, Méndez-Tenorio; Lilia, Barrón Blanca

    2012-01-01

    There are very few antiviral drugs available to fight viral infections and the appearance of viral strains resistant to these antivirals is not a rare event. Hence, the design of new antiviral drugs is important. We describe the prediction of peptides with antiviral activity (AVP) derived from the viral glycoproteins involved in the entrance of herpes simplex (HSV) and influenza A viruses into their host cells. It is known, that during this event viral glycoproteins suffer several conformational changes due to protein-protein interactions, which lead to membrane fusion between the viral envelope and the cellular membrane. Our hypothesis is that AVPs can be derived from these viral glycoproteins, specifically from regions highly conserved in amino acid sequences, which at the same time have the physicochemical properties of being highly exposed (antigenic), hydrophilic, flexible, and charged, since these properties are important for protein-protein interactions. For that, we separately analyzed the HSV glycoprotein H and B, and influenza A viruses hemagglutinin (HA), using several bioinformatics tools. A set of multiple alignments was carried out, to find the most conserved regions in the amino acid sequences. Then, the physicochemical properties indicated above were analyzed. We predicted several peptides 12-20 amino acid length which by docking analysis were able to interact with the fusion viral glycoproteins and thus may prevent conformational changes in them, blocking the viral infection. Our strategy to design AVPs seems to be very promising since the peptides were synthetized and their antiviral activities have produced very encouraging results. PMID:23144542

  9. Full-Length Trimeric Influenza Virus Hemagglutinin II Membrane Fusion Protein and Shorter Constructs Lacking the Fusion Peptide or Transmembrane Domain: Hyperthermostability of the Full-Length Protein and the Soluble Ectodomain and Fusion Peptide Make Significant Contributions to Fusion of Membrane Vesicles†

    PubMed Central

    Ratnayake, Punsisi U.; Ekanayaka, E. A. Prabodha; Komanduru, Sweta S.; Weliky, David P.

    2015-01-01

    Influenza virus is a Class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5–6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ~25, ~160, ~25, and ~10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP + SE, and SHA2-TM ≡ SE + TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm > 90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM. PMID:26297995

  10. Fusion of a New World Alphavirus with Membrane Microdomains Involving Partially Reversible Conformational Changes in the Viral Spike Proteins.

    PubMed

    Sousa, Ivanildo P; Carvalho, Carlos A Marques; Mendes, Ygara Silva; Weissmuller, Gilberto; Oliveira, Andréa C; Gomes, Andre M O

    2017-09-28

    Alphaviruses are enveloped arboviruses mainly proposed to infect host cells by receptor-mediated endocytosis followed by fusion between the viral envelope and the endosomal membrane. The fusion reaction is triggered by low pH and requires the presence of both cholesterol and sphingolipids in the target membrane, suggesting the involvement of lipid rafts in the cell entry mechanism. In this study, we show for the first time the interaction of an enveloped virus with membrane microdomains isolated from living cells. Using Mayaro virus (MAYV), a New World alphavirus, we verified that virus fusion to these domains occurred to a significant extent upon acidification, although its kinetics was quite slow when compared to that of fusion with artificial liposomes demonstrated on a previous work. Surprisingly, when virus was previously exposed to acidic pH, a condition previously shown to inhibit alphavirus binding and fusion to target membranes as well as infectivity, and then reneutralized, its ability of fusing with membrane microdomains at low pH was retained. Interestingly, this observation correlated with a partial reversion of low pH-induced conformational changes in viral proteins and retention of virus infectivity upon reneutralization. Our results suggest that MAYV entry into host cells could alternatively involve internalization via lipid rafts, and that the conformational changes triggered by low pH in the viral spike proteins during the entry process are partially reversible.

  11. Transforaminal lumbar interbody fusion versus instrumented posterolateral fusion in Grade I/II spondylolisthesis

    PubMed Central

    Pooswamy, Shanmugasundaram; Muralidharagopalan, Niranjanan Raghavn; Subbaiah, Sivasubramaniam

    2017-01-01

    Background: Spondylolisthesis refers to slippage of one vertebra over the other, which may be caused by a variety of reasons such as degenerative, trauma, and isthmic. Surgical management forms the mainstay of treatment to prevent further slip and worsening. However, there is no consensus regarding the best surgical option to treat these patients. This study compares TLIF and instrumented PLF in patients with Grade I and II spondylolisthesis and analysis the outcome with respect to functional outcome, pain, fusion rate, adequacy of medial facetectomy for decompression, and complications. Materials and Methods: Forty patients operated for spondylolisthesis by instrumented posterolateral or transforaminal fusion between January 1, 2010, and June 30, 2012 were included in this retrospective study. They were followed up for 3 years. Twenty one cases were of instrumented posterolateral fusion (PLF) and 19 cases were of transforaminal lumbar interbody fusion (TLIF). The patients were asked to fill up the Oswestry disability index (ODI), Dallas Pain Questionnaire (DPQ), and low back pain rating scale (LBPRS) preoperatively, at 1-month postoperatively, and at 6, 12, 24, and 36 months postoperatively. Radiological parameters were assessed using radiographs. Results: No significant differences were found in DPQ, LBPRS, or ODI scores preoperative, 1-month postoperative, and at 6, 12, 24 and 36 months followup. No significant difference was found between the two groups in blood loss. The only significant difference between the two groups was in the operative time, in which the instrumented PLF group had a mean of 50 min lesser than the TLIF group (P = 0.02). Conclusions: TLIF and instrumented PLF are equally efficacious options in the treatment of Grade I and II spondylolisthesis, except lytic type. PMID:28400657

  12. Transforaminal lumbar interbody fusion versus instrumented posterolateral fusion in Grade I/II spondylolisthesis.

    PubMed

    Pooswamy, Shanmugasundaram; Muralidharagopalan, Niranjanan Raghavn; Subbaiah, Sivasubramaniam

    2017-01-01

    Spondylolisthesis refers to slippage of one vertebra over the other, which may be caused by a variety of reasons such as degenerative, trauma, and isthmic. Surgical management forms the mainstay of treatment to prevent further slip and worsening. However, there is no consensus regarding the best surgical option to treat these patients. This study compares TLIF and instrumented PLF in patients with Grade I and II spondylolisthesis and analysis the outcome with respect to functional outcome, pain, fusion rate, adequacy of medial facetectomy for decompression, and complications. Forty patients operated for spondylolisthesis by instrumented posterolateral or transforaminal fusion between January 1, 2010, and June 30, 2012 were included in this retrospective study. They were followed up for 3 years. Twenty one cases were of instrumented posterolateral fusion (PLF) and 19 cases were of transforaminal lumbar interbody fusion (TLIF). The patients were asked to fill up the Oswestry disability index (ODI), Dallas Pain Questionnaire (DPQ), and low back pain rating scale (LBPRS) preoperatively, at 1-month postoperatively, and at 6, 12, 24, and 36 months postoperatively. Radiological parameters were assessed using radiographs. No significant differences were found in DPQ, LBPRS, or ODI scores preoperative, 1-month postoperative, and at 6, 12, 24 and 36 months followup. No significant difference was found between the two groups in blood loss. The only significant difference between the two groups was in the operative time, in which the instrumented PLF group had a mean of 50 min lesser than the TLIF group (P = 0.02). TLIF and instrumented PLF are equally efficacious options in the treatment of Grade I and II spondylolisthesis, except lytic type.

  13. Interaction between the Hemagglutinin-Neuraminidase and Fusion Glycoproteins of Human Parainfluenza Virus Type III Regulates Viral Growth In Vivo

    PubMed Central

    Xu, Rui; Palmer, Samantha G.; Porotto, Matteo; Palermo, Laura M.; Niewiesk, Stefan; Wilson, Ian A.; Moscona, Anne

    2013-01-01

    ABSTRACT Paramyxoviruses, enveloped RNA viruses that include human parainfluenza virus type 3 (HPIV3), cause the majority of childhood viral pneumonia. HPIV3 infection starts when the viral receptor-binding protein engages sialic acid receptors in the lung and the viral envelope fuses with the target cell membrane. Fusion/entry requires interaction between two viral surface glycoproteins: tetrameric hemagglutinin-neuraminidase (HN) and fusion protein (F). In this report, we define structural correlates of the HN features that permit infection in vivo. We have shown that viruses with an HN-F that promotes growth in cultured immortalized cells are impaired in differentiated human airway epithelial cell cultures (HAE) and in vivo and evolve in HAE into viable viruses with less fusogenic HN-F. In this report, we identify specific structural features of the HN dimer interface that modulate HN-F interaction and fusion triggering and directly impact infection. Crystal structures of HN, which promotes viral growth in vivo, show a diminished interface in the HN dimer compared to the reference strain’s HN, consistent with biochemical and biological data indicating decreased dimerization and decreased interaction with F protein. The crystallographic data suggest a structural explanation for the HN’s altered ability to activate F and reveal properties that are critical for infection in vivo. IMPORTANCE Human parainfluenza viruses cause the majority of childhood cases of croup, bronchiolitis, and pneumonia worldwide. Enveloped viruses must fuse their membranes with the target cell membranes in order to initiate infection. Parainfluenza fusion proceeds via a multistep reaction orchestrated by the two glycoproteins that make up its fusion machine. In vivo, viruses adapt for survival by evolving to acquire a set of fusion machinery features that provide key clues about requirements for infection in human beings. Infection of the lung by parainfluenzavirus is determined by

  14. Clustering and Mobility of HIV-1 Env at Viral Assembly Sites Predict Its Propensity To Induce Cell-Cell Fusion

    PubMed Central

    Roy, Nathan H.; Chan, Jany; Lambelé, Marie

    2013-01-01

    HIV-1 Env mediates virus attachment to and fusion with target cell membranes, and yet, while Env is still situated at the plasma membrane of the producer cell and before its incorporation into newly formed particles, Env already interacts with the viral receptor CD4 on target cells, thus enabling the formation of transient cell contacts that facilitate the transmission of viral particles. During this first encounter with the receptor, Env must not induce membrane fusion, as this would prevent the producer cell and the target cell from separating upon virus transmission, but how Env's fusion activity is controlled remains unclear. To gain a better understanding of the Env regulation that precedes viral transmission, we examined the nanoscale organization of Env at the surface of producer cells. Utilizing superresolution microscopy (stochastic optical reconstruction microscopy [STORM]) and fluorescence recovery after photobleaching (FRAP), we quantitatively assessed the clustering and dynamics of Env upon its arrival at the plasma membrane. We found that Gag assembly induced the aggregation of small Env clusters into larger domains and that these domains were completely immobile. Truncation of the cytoplasmic tail (CT) of Env abrogated Gag's ability to induce Env clustering and restored Env mobility at assembly sites, both of which correlated with increased Env-induced fusion of infected and uninfected cells. Hence, while Env trapping by Gag secures Env incorporation into viral particles, Env clustering and its sequestration at assembly sites likely also leads to the repression of its fusion function, and thus, by preventing the formation of syncytia, Gag helps to secure efficient transfer of viral particles to target cells. PMID:23637402

  15. The Dynamic Envelope of a Fusion Class II Virus

    PubMed Central

    Wu, Shang-Rung; Haag, Lars; Sjöberg, Mathilda; Garoff, Henrik; Hammar, Lena

    2008-01-01

    In alphaviruses, here represented by Semliki Forest virus, infection requires an acid-responsive spike configuration to facilitate membrane fusion. The creation of this relies on the chaperon function of glycoprotein E2 precursor (p62) and its maturation cleavage into the small external E3 and the membrane-anchored E2 glycoproteins. To reveal how the E3 domain of p62 exerts its control of spike functions, we determine the structure of a p62 cleavage-impaired mutant virus particle (SQL) by electron cryomicroscopy. A comparison with the earlier solved wild type virus structure reveals that the E3 domain of p62SQL forms a bulky side protrusion in the spike head region. This establishes a gripper over part of domain II of the fusion protein, with a cotter-like connection downward to a hydrophobic cluster in its central β-sheet. This finding reevaluates the role of the precursor from being only a provider of a shield over the fusion loop to a structural playmate in formation of the fusogenic architecture. PMID:18596032

  16. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.

    PubMed

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei

    2016-12-13

    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no (13)C-(13)C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  17. Rare earth ions block the ion pores generated by the class II fusion proteins of alphaviruses and allow analysis of the biological functions of these pores.

    PubMed

    Koschinski, Andreas; Wengler, Gerd; Wengler, Gisela; Repp, Holger

    2005-12-01

    Recently, class II fusion proteins have been identified on the surface of alpha- and flaviviruses. These proteins have two functions besides membrane fusion: they generate an isometric lattice on the viral surface and they form ion-permeable pores at low pH. An attempt was made to identify inhibitors for the ion pores generated by the fusion proteins of the alphaviruses Semliki Forest virus and Sindbis virus. These pores can be detected and analysed in three situations: (i) in the target membrane during virus entry, by performing patch-clamp measurements of membrane currents; (ii) in the virus particle, by studying the entry of propidium iodide; and (iii) in the plasma membrane of infected cells, by Fura-2 fluorescence imaging of Ca2+ entry into infected cells. It is shown here that, at a concentration of 0.1 mM, rare earth ions block the ion permeability of alphavirus ion pores in all three situations. Even at a concentration of 0.5 mM, these ions do not block formation of the viral fusion pore, as they do not inhibit entry or multiplication of alphaviruses. The data indicate that ions flow through the ion pores into the virus particle in the endosome and from the endosome into the cytoplasm after fusion of the viral envelope with the endosomal membrane. These ion flows, however, are not necessary for productive infection. The possibility that the ability of class II fusion proteins to form ion-permeable pores reflects their origin from protein toxins that form ion-permeable pores, and that entry via class II fusion proteins may resemble the entry of non-enveloped viruses, is discussed.

  18. Contribution of N-linked glycans on HSV-2 gB to cell–cell fusion and viral entry

    SciTech Connect

    Luo, Sukun; Hu, Kai; He, Siyi; Wang, Ping; Zhang, Mudan; Huang, Xin; Du, Tao; Zheng, Chunfu; Liu, Yalan; Hu, Qinxue

    2015-09-15

    HSV-2 is the major cause of genital herpes and its infection increases the risk of HIV-1 acquisition and transmission. HSV-2 glycoprotein B together with glycoproteins D, H and L are indispensable for viral entry, of which gB, as a class III fusogen, plays an essential role. HSV-2 gB has seven potential N-linked glycosylation (N-CHO) sites, but their significance has yet to be determined. For the first time, we systematically analyzed the contributions of N-linked glycans on gB to cell–cell fusion and viral entry. Our results demonstrated that, of the seven potential N-CHO sites on gB, mutation at N390, N483 or N668 decreased cell–cell fusion and viral entry, while mutation at N133 mainly affected protein expression and the production of infectious virus particles by blocking the transport of gB from the endoplasmic reticulum to Golgi. Our findings highlight the significance of N-linked glycans on HSV-2 gB expression and function. - Highlights: • N-linked glycan at N133 is important for gB intracellular trafficking and maturation. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal cell–cell fusion. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal viral entry.

  19. Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages

    SciTech Connect

    Jiang Jiyang; Aiken, Christopher . E-mail: chris.aiken@vanderbilt.edu

    2006-03-15

    HIV-1 infection requires fusion of viral and cellular membranes in a reaction catalyzed by the viral envelope proteins gp120 and gp41. We recently reported that efficient HIV-1 particle fusion with target cells is linked to maturation of the viral core by an activity of the gp41 cytoplasmic domain. Here, we show that maturation enhances the fusion of a variety of recombinant viruses bearing primary and laboratory-adapted Env proteins with primary human CD4{sup +} T cells. Overall, HIV-1 fusion was more dependent on maturation for viruses bearing X4-tropic envelope proteins than for R5-tropic viruses. Fusion of HIV-1 with monocyte-derived macrophages was also dependent on particle maturation. We conclude that the ability to couple fusion to particle maturation is a common feature of HIV-1 Env proteins and may play an important role during HIV-1 replication in vivo.

  20. Inhibition of Nipah Virus Infectin In Vivo: Targeting an Early Stage of Paramyxovirus Fusion Activation during Viral Entry

    SciTech Connect

    M Porotto; B Rockx; C Yokoyama; A Talekar; I DeVito; l Palermo; J Liu; R Cortese; M Lu; et al.

    2011-12-31

    In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.

  1. Enfuvirtide (T20)-Based Lipopeptide Is a Potent HIV-1 Cell Fusion Inhibitor: Implications for Viral Entry and Inhibition.

    PubMed

    Ding, Xiaohui; Zhang, Xiujuan; Chong, Huihui; Zhu, Yuanmei; Wei, Huamian; Wu, Xiyuan; He, Jinsheng; Wang, Xinquan; He, Yuxian

    2017-09-15

    The peptide drug enfuvirtide (T20) is the only viral fusion inhibitor used in combination therapy for HIV-1 infection, but it has relatively low antiviral activity and easily induces drug resistance. Emerging studies demonstrate that lipopeptide-based fusion inhibitors, such as LP-11 and LP-19, which mainly target the gp41 pocket site, have greatly improved antiviral potency and in vivo stability. In this study, we focused on developing a T20-based lipopeptide inhibitor that lacks pocket-binding sequence and targets a different site. First, the C-terminal tryptophan-rich motif (TRM) of T20 was verified to be essential for its target binding and inhibition; then, a novel lipopeptide, termed LP-40, was created by replacing the TRM with a fatty acid group. LP-40 showed markedly enhanced binding affinity for the target site and dramatically increased inhibitory activity on HIV-1 membrane fusion, entry, and infection. Unlike LP-11 and LP-19, which required a flexible linker between the peptide sequence and the lipid moiety, addition of a linker to LP-40 sharply reduced its potency, implying different binding modes with the extended N-terminal helices of gp41. Also, interestingly, LP-40 showed more potent activity than LP-11 in inhibiting HIV-1 Env-mediated cell-cell fusion while it was less active than LP-11 in inhibiting pseudovirus entry, and the two inhibitors displayed synergistic antiviral effects. The crystal structure of LP-40 in complex with a target peptide revealed their key binding residues and motifs. Combined, our studies have not only provided a potent HIV-1 fusion inhibitor, but also revealed new insights into the mechanisms of viral inhibition.IMPORTANCE T20 is the only membrane fusion inhibitor available for treatment of viral infection; however, T20 requires high doses and has a low genetic barrier for resistance, and its inhibitory mechanism and structural basis remain unclear. Here, we report the design of LP-40, a T20-based lipopeptide inhibitor

  2. N-Glycans on the Nipah Virus Attachment Glycoprotein Modulate Fusion and Viral Entry as They Protect against Antibody Neutralization

    PubMed Central

    Biering, Scott B.; Huang, Andrew; Vu, Andy T.; Robinson, Lindsey R.; Bradel-Tretheway, Birgit; Choi, Eric

    2012-01-01

    Nipah virus (NiV) is the deadliest known paramyxovirus. Membrane fusion is essential for NiV entry into host cells and for the virus' pathological induction of cell-cell fusion (syncytia). The mechanism by which the attachment glycoprotein (G), upon binding to the cell receptors ephrinB2 or ephrinB3, triggers the fusion glycoprotein (F) to execute membrane fusion is largely unknown. N-glycans on paramyxovirus glycoproteins are generally required for proper protein conformational integrity, transport, and sometimes biological functions. We made conservative mutations (Asn to Gln) at the seven potential N-glycosylation sites in the NiV G ectodomain (G1 to G7) individually or in combination. Six of the seven N-glycosylation sites were found to be glycosylated. Moreover, pseudotyped virions carrying these N-glycan mutants had increased antibody neutralization sensitivities. Interestingly, our results revealed hyperfusogenic and hypofusogenic phenotypes for mutants that bound ephrinB2 at wild-type levels, and the mutant's cell-cell fusion phenotypes generally correlated to viral entry levels. In addition, when removing multiple N-glycans simultaneously, we observed synergistic or dominant-negative membrane fusion phenotypes. Interestingly, our data indicated that 4- to 6-fold increases in fusogenicity resulted from multiple mechanisms, including but not restricted to the increase of F triggering. Altogether, our results suggest that NiV-G N-glycans play a role in shielding virions against antibody neutralization, while modulating cell-cell fusion and viral entry via multiple mechanisms. PMID:22915812

  3. Virus—Cell—Fusion

    NASA Astrophysics Data System (ADS)

    Aranda, S.; Aranda-Espinoza, H.

    1998-08-01

    The first step of the viral-fusion mechanism is studied in terms of energetically favorable configurations of the target membrane and the haemagglutinin (HA) protein, which is presumed to be involved in the influenza viral fusion. It is found that this first step of viral-fusion depends strongly on the elastic moduli of the target membrane. Two viral-fusion mechanisms are studied: i).—When the HA protein is tilted, and therefore induces a distortion of the target membrane. In this case, the acceptance of the configuration depends on the stiffness of the target membrane. ii).—The HA protein has a conformational change and a subunit of HA penetrates the target membrane. In this case, the acceptance of the configuration depends on the spontaneous curvature of the target membrane.

  4. Kaposi's Sarcoma-Associated Herpesvirus Hijacks RNA Polymerase II To Create a Viral Transcriptional Factory.

    PubMed

    Chen, Christopher Phillip; Lyu, Yuanzhi; Chuang, Frank; Nakano, Kazushi; Izumiya, Chie; Jin, Di; Campbell, Mel; Izumiya, Yoshihiro

    2017-06-01

    Locally concentrated nuclear factors ensure efficient binding to DNA templates, facilitating RNA polymerase II recruitment and frequent reutilization of stable preinitiation complexes. We have uncovered a mechanism for effective viral transcription by focal assembly of RNA polymerase II around Kaposi's sarcoma-associated herpesvirus (KSHV) genomes in the host cell nucleus. Using immunofluorescence labeling of latent nuclear antigen (LANA) protein, together with fluorescence in situ RNA hybridization (RNA-FISH) of the intron region of immediate early transcripts, we visualized active transcription of viral genomes in naturally infected cells. At the single-cell level, we found that not all episomes were uniformly transcribed following reactivation stimuli. However, those episomes that were being transcribed would spontaneously aggregate to form transcriptional "factories," which recruited a significant fraction of cellular RNA polymerase II. Focal assembly of "viral transcriptional factories" decreased the pool of cellular RNA polymerase II available for cellular gene transcription, which consequently impaired cellular gene expression globally, with the exception of selected ones. The viral transcriptional factories localized with replicating viral genomic DNAs. The observed colocalization of viral transcriptional factories with replicating viral genomic DNA suggests that KSHV assembles an "all-in-one" factory for both gene transcription and DNA replication. We propose that the assembly of RNA polymerase II around viral episomes in the nucleus may be a previously unexplored aspect of KSHV gene regulation by confiscation of a limited supply of RNA polymerase II in infected cells.IMPORTANCE B cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV) harbor multiple copies of the KSHV genome in the form of episomes. Three-dimensional imaging of viral gene expression in the nucleus allows us to study interactions and changes in the physical distribution of

  5. Kaposi's Sarcoma-Associated Herpesvirus Hijacks RNA Polymerase II To Create a Viral Transcriptional Factory

    PubMed Central

    Chen, Christopher Phillip; Lyu, Yuanzhi; Chuang, Frank; Nakano, Kazushi; Izumiya, Chie; Jin, Di; Campbell, Mel

    2017-01-01

    ABSTRACT Locally concentrated nuclear factors ensure efficient binding to DNA templates, facilitating RNA polymerase II recruitment and frequent reutilization of stable preinitiation complexes. We have uncovered a mechanism for effective viral transcription by focal assembly of RNA polymerase II around Kaposi's sarcoma-associated herpesvirus (KSHV) genomes in the host cell nucleus. Using immunofluorescence labeling of latent nuclear antigen (LANA) protein, together with fluorescence in situ RNA hybridization (RNA-FISH) of the intron region of immediate early transcripts, we visualized active transcription of viral genomes in naturally infected cells. At the single-cell level, we found that not all episomes were uniformly transcribed following reactivation stimuli. However, those episomes that were being transcribed would spontaneously aggregate to form transcriptional “factories,” which recruited a significant fraction of cellular RNA polymerase II. Focal assembly of “viral transcriptional factories” decreased the pool of cellular RNA polymerase II available for cellular gene transcription, which consequently impaired cellular gene expression globally, with the exception of selected ones. The viral transcriptional factories localized with replicating viral genomic DNAs. The observed colocalization of viral transcriptional factories with replicating viral genomic DNA suggests that KSHV assembles an “all-in-one” factory for both gene transcription and DNA replication. We propose that the assembly of RNA polymerase II around viral episomes in the nucleus may be a previously unexplored aspect of KSHV gene regulation by confiscation of a limited supply of RNA polymerase II in infected cells. IMPORTANCE B cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV) harbor multiple copies of the KSHV genome in the form of episomes. Three-dimensional imaging of viral gene expression in the nucleus allows us to study interactions and changes in the

  6. A high throughput Cre–lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry

    SciTech Connect

    Esposito, Anthony M.; Cheung, Pamela; Swartz, Talia H.; Li, Hongru; Tsibane, Tshidi; Durham, Natasha D.; Basler, Christopher F.; Felsenfeld, Dan P.; Chen, Benjamin K.

    2016-03-15

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. - Highlights: • Cre recombinase viral fusion assay screens cell-free or cell–cell entry inhibitors. • This Gag-iCre based assay is specific for the entry step of HIV replication. • Screened a library of known pharmacologic compounds for HIV fusion antagonists. • Many top hits were previously noted as HIV inhibitors, but here are classified as entry antagonists. Many top hits were previously noted as HIV inhibitors, but not as entry antagonists. • The assay is compatible with pseudotyping with HIV and heterologous viruses.

  7. In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication.

    PubMed

    Freitas, Ferdinando B; Frouco, Gonçalo; Martins, Carlos; Leitão, Alexandre; Ferreira, Fernando

    2016-10-01

    African swine fever virus (ASFV) is the etiological agent of a highly-contagious and fatal disease of domestic pigs, leading to serious socio-economic impact in affected countries. To date, neither a vaccine nor a selective anti-viral drug are available for prevention or treatment of African swine fever (ASF), emphasizing the need for more detailed studies at the role of ASFV proteins involved in viral DNA replication and transcription. Notably, ASFV encodes for a functional type II topoisomerase (ASFV-Topo II) and we recently showed that several fluoroquinolones (bacterial DNA topoisomerase inhibitors) fully abrogate ASFV replication in vitro. Here, we report that ASFV-Topo II gene is actively transcribed throughout infection, with transcripts being detected as early as 2 hpi and reaching a maximum peak concentration around 16 hpi, when viral DNA synthesis, transcription and translation are more active. siRNA knockdown experiments showed that ASFV-Topo II plays a critical role in viral DNA replication and gene expression, with transfected cells presenting lower viral transcripts (up to 89% decrease) and reduced cytopathic effect (-66%) when compared to the control group. Further, a significant decrease in the number of both infected cells (75.5%) and viral factories per cell and in virus yields (up to 99.7%, 2.5 log) was found only in cells transfected with siRNA targeting ASFV-Topo II. We also demonstrate that a short exposure to enrofloxacin during the late phase of infection (from 15 to 1 hpi) induces fragmentation of viral genomes, whereas no viral genomes were detected when enrofloxacin was added from the early phase of infection (from 2 to 16 hpi), suggesting that fluoroquinolones are ASFV-Topo II poisons. Altogether, our results demonstrate that ASFV-Topo II enzyme has an essential role during viral genome replication and transcription, emphasizing the idea that this enzyme can be a potential target for drug and vaccine development against ASF.

  8. Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition.

    PubMed

    Jiao, Junyi; Rebane, Aleksander A; Ma, Lu; Gao, Ying; Zhang, Yongli

    2015-06-02

    HIV-1 glycoprotein 41 (gp41) mediates viral entry into host cells by coupling its folding energy to membrane fusion. Gp41 folding is blocked by fusion inhibitors, including the commercial drug T20, to treat HIV/AIDS. However, gp41 folding intermediates, energy, and kinetics are poorly understood. Here, we identified the folding intermediates of a single gp41 trimer-of-hairpins and measured their associated energy and kinetics using high-resolution optical tweezers. We found that folding of gp41 hairpins was energetically independent but kinetically coupled: Each hairpin contributed a folding energy of ∼-23 kBT, but folding of one hairpin successively accelerated the folding rate of the next one by ∼20-fold. Membrane-mimicking micelles slowed down gp41 folding and reduced the stability of the six-helix bundle. However, the stability was restored by cooperative folding of the membrane-proximal external region. Surprisingly, T20 strongly inhibited gp41 folding by actively displacing the C-terminal hairpin strand in a force-dependent manner. The inhibition was abolished by a T20-resistant gp41 mutation. The energetics and kinetics of gp41 folding established by us provides a basis to understand viral membrane fusion, infection, and therapeutic intervention.

  9. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-10-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses.

  10. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    PubMed Central

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-01-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses. PMID:27752100

  11. Comparison of type I and type II bovine viral diarrhea virus infection in swine.

    PubMed Central

    Walz, P H; Baker, J C; Mullaney, T P; Kaneene, J B; Maes, R K

    1999-01-01

    Some isolates of type II bovine viral diarrhea virus (BVDV) are capable of causing severe clinical disease in cattle. Bovine viral diarrhea virus infection has been reported in pigs, but the ability of these more virulent isolates of type II BVDV to induce severe clinical disease in pigs is unknown. It was our objective to compare clinical, virologic, and pathologic findings between type I and type II BVDV infection in pigs. Noninfected control and BVDV-infected 2-month-old pigs were used. A noncytopathic type I and a noncytopathic type II BVDV isolate were chosen for evaluation in feeder age swine based upon preliminary in vitro and in vivo experiments. A dose titration study was performed using 4 groups of 4 pigs for each viral isolate. The groups were inoculated intranasally with either sham (control), 10(3), 10(5), or 10(7) TCID50 of virus. The pigs were examined daily and clinical findings were recorded. Antemortem and postmortem samples were collected for virus isolation. Neither the type I nor type II BVDV isolates resulted in clinical signs of disease in pigs. Bovine viral diarrhea virus was isolated from antemortem and postmortem samples from groups of pigs receiving the 10(5) and the 10(7) TCID50 dose of the type I BVDV isolate. In contrast, BVDV was only isolated from postmortem samples in the group of pigs receiving the 10(7) TCID50 dose of the type II BVDV isolate. Type I BVDV was able to establish infection in pigs at lower doses by intranasal instillation than type II BVDV. Infection of pigs with a type II isolate of BVDV known to cause severe disease in calves did not result in clinically apparent disease in pigs. PMID:10369569

  12. A Novel Mode of Poxvirus Superinfection Exclusion That Prevents Fusion of the Lipid Bilayers of Viral and Cellular Membranes

    PubMed Central

    Laliberte, Jason P.

    2014-01-01

    ABSTRACT Superinfection exclusion is a widespread phenomenon that prevents secondary infections by closely related viruses. The vaccinia virus A56 and K2 proteins in the cell membrane can prevent superinfection by interacting with the entry-fusion complex of subsequent viruses. Here, we described another form of exclusion that is established earlier in infection and does not require the A56 or K2 protein. Cells infected with one or more infectious virions excluded hundreds of superinfecting vaccinia virus particles. A related orthopoxvirus, but neither a flavivirus nor a rhabdovirus, was also excluded, indicating selectivity. Although superinfecting vaccinia virus bound to cells, infection was inhibited at the membrane fusion step, thereby preventing core entry into the cytoplasm and early gene expression. In contrast, A56/K2 protein-mediated exclusion occurred subsequent to membrane fusion. Induction of resistance to superinfection depended on viral RNA and protein synthesis by the primary virus but did not require DNA replication. Although superinfection resistance correlated with virus-induced changes in the cytoskeleton, studies with mutant vaccinia viruses indicated that the cytoskeletal changes were not necessary for resistance to superinfection. Interferon-inducible transmembrane proteins, which can inhibit membrane fusion in other viral systems, did not prevent vaccinia virus membrane fusion, suggesting that these interferon-inducible proteins are not involved in superinfection exclusion. While the mechanism remains to be determined, the early establishment of superinfection exclusion may provide a “winner-take-all” reward to the first poxvirus particles that successfully initiate infection and prevent the entry and genome reproduction of defective or less fit particles. IMPORTANCE The replication of a virus usually follows a defined sequence of events: attachment, entry into the cytoplasm or nucleus, gene expression, genome replication, assembly of

  13. Ovine Herpesvirus 2 Glycoproteins B, H, and L Are Sufficient for, and Viral Glycoprotein Ov8 Can Enhance, Cell-Cell Membrane Fusion.

    PubMed

    AlHajri, Salim M; Cunha, Cristina W; Nicola, Anthony V; Aguilar, Hector C; Li, Hong; Taus, Naomi S

    2017-03-15

    Ovine herpesvirus 2 (OvHV-2) is a gammaherpesvirus in the genus Macavirus that is carried asymptomatically by sheep. Infection of poorly adapted animals with OvHV-2 results in sheep-associated malignant catarrhal fever, a fatal disease characterized by lymphoproliferation and vasculitis. There is no treatment or vaccine for the disease and no cell culture system to propagate the virus. The lack of cell culture has hindered studies of OvHV-2 biology, including its entry mechanism. As an alternative method to study OvHV-2 glycoproteins responsible for membrane fusion as a part of the entry mechanism, we developed a virus-free cell-to-cell membrane fusion assay to identify the minimum required OvHV-2 glycoproteins to induce membrane fusion. OvHV-2 glycoproteins B, H, and L (gB, gH, and gL) were able to induce membrane fusion together but not when expressed individually. Additionally, open reading frame Ov8, unique to OvHV-2, was found to encode a transmembrane glycoprotein that can significantly enhance membrane fusion. Thus, OvHV-2 gB, gH, and gL are sufficient to induce membrane fusion, while glycoprotein Ov8 plays an enhancing role by an unknown mechanism.IMPORTANCE Herpesviruses enter cells via attachment of the virion to the cellular surface and fusion of the viral envelope with cellular membranes. Virus-cell membrane fusion is an important step for a successful viral infection. Elucidating the roles of viral glycoproteins responsible for membrane fusion is critical toward understanding viral entry. Entry of ovine herpesvirus 2 (OvHV-2), the causative agent of sheep associated-malignant catarrhal fever, which is one of the leading causes of death in bison and other ungulates, has not been well studied due to the lack of a cell culture system to propagate the virus. The identification of OvHV-2 glycoproteins that mediate membrane fusion may help identify viral and/or cellular factors involved in OvHV-2 cell tropism and will advance investigation of cellular

  14. Aqueous extract from a Chaga medicinal mushroom, Inonotus obliquus (higher Basidiomycetes), prevents herpes simplex virus entry through inhibition of viral-induced membrane fusion.

    PubMed

    Pan, Hong-Hui; Yu, Xiong-Tao; Li, Ting; Wu, Hong-Ling; Jiao, Chun-Wei; Cai, Mian-Hua; Li, Xiang-Min; Xie, Yi-Zhen; Wang, Yi; Peng, Tao

    2013-01-01

    Chaga medicinal mushroom, Inonotus obliquus, a popular prescription in traditional medicine in Europe and Asia, was used to reduce inflammation in the nasopharynx and to facilitate breathing. The aqueous extract from I. obliquus (AEIO) exhibited marked decrease in herpes simplex virus (HSV) infection (the 50% inhibitory concentration was 3.82 μg/mL in the plaque reduction assay and 12.29 μg/mL in the HSV-1/blue assay) as well as safety in Vero cells (the 50% cellular cytotoxicity was > 1 mg/mL, and selection index was > 80). Using a time course assay, effective stage analysis, and fusion inhibition assay, the mechanism of anti-HSV activity was found against the early stage of viral infection through inhibition of viral-induced membrane fusion. Therefore, AEIO could effectively prevent HSV-1 entry by acting on viral glycoproteins, leading to the prevention of membrane fusion, which is different from nucleoside analog antiherpetics.

  15. Measuring T Cell-to-T Cell HIV-1 Transfer, Viral Fusion, and Infection Using Flow Cytometry.

    PubMed

    Durham, Natasha D; Chen, Benjamin K

    2016-01-01

    Direct T cell-to-T cell HIV-1 infection is a distinct mode of HIV-1 infection that requires physical contact between an HIV-1-infected "donor" cell and an uninfected, CD4-expressing "target" cell. In vitro studies indicate that HIV-1 cell-to-cell infection is much more efficient than infection by cell-free viral particles; however, the exact mechanisms of the enhanced efficiency of this infection pathway are still unclear. Several assays have been developed to study the mechanism of direct cell-to-cell HIV-1 transmission and to assess sensitivity to neutralizing antibodies and pharmacologic inhibitors. These assays are based on the coculture of donor and target cells. Here, we describe methods that utilize flow cytometry, which can discriminate donor and target cells and can assess different stages of entry and infection following cell-to-cell contact. HIV Gag-iGFP, a clone that makes fluorescent virus particles, can be used to measure cell-to-cell transfer of virus particles. HIV NL-GI, a clone that expresses GFP as an early gene, facilitates the measure of productive infection after cell-to-cell contact. Lastly, a variation of the β-lactamase (BlaM)-Vpr fusion assay can be used to measure the viral membrane fusion process after coculture of donor and target cells in a manner that is independent of cell-cell fusion. These assays can be performed in the presence of neutralizing antibodies/inhibitors to determine the 50 % inhibitory concentration (IC50) required to block infection specifically in the target cells.

  16. Human parainfluenza virus infection of the airway epithelium: viral hemagglutinin-neuraminidase regulates fusion protein activation and modulates infectivity.

    PubMed

    Palermo, Laura M; Porotto, Matteo; Yokoyama, Christine C; Palmer, Samantha G; Mungall, Bruce A; Greengard, Olga; Niewiesk, Stefan; Moscona, Anne

    2009-07-01

    Three discrete activities of the paramyxovirus hemagglutinin-neuraminidase (HN) protein, receptor binding, receptor cleaving (neuraminidase), and triggering of the fusion protein, each affect the promotion of viral fusion and entry. For human parainfluenza virus type 3 (HPIV3), the effects of specific mutations that alter these functions of the receptor-binding protein have been well characterized using cultured monolayer cells, which have identified steps that are potentially relevant to pathogenesis. In the present study, proposed mechanisms that are relevant to pathogenesis were tested in natural host cell cultures, a model of the human airway epithelium (HAE) in which primary HAE cells are cultured at an air-liquid interface and retain functional properties. Infection of HAE cells with wild-type HPIV3 and variant viruses closely reflects that seen in an animal model, the cotton rat, suggesting that HAE cells provide an ideal system for assessing the interplay of host cell and viral factors in pathogenesis and for screening for inhibitory molecules that would be effective in vivo. Both HN's receptor avidity and the function and timing of F activation by HN require a critical balance for the establishment of ongoing infection in the HAE, and these HN functions independently modulate the production of active virions. Alterations in HN's F-triggering function lead to the release of noninfectious viral particles and a failure of the virus to spread. The finding that the dysregulation of F triggering prohibits successful infection in HAE cells suggests that antiviral strategies targeted to HN's F-triggering activity may have promise in vivo.

  17. A high throughput Cre–lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry

    PubMed Central

    Esposito, Anthony M.; Cheung, Pamela; Swartz, Talia H.; Li, Hongru; Tsibane, Tshidi; Durham, Natasha D.; Basler, Christopher F.; Felsenfeld, Dan P.; Chen, Benjamin K.

    2016-01-01

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. PMID:26803470

  18. A high throughput Cre-lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry.

    PubMed

    Esposito, Anthony M; Cheung, Pamela; Swartz, Talia H; Li, Hongru; Tsibane, Tshidi; Durham, Natasha D; Basler, Christopher F; Felsenfeld, Dan P; Chen, Benjamin K

    2016-03-01

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes.

  19. Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry

    SciTech Connect

    Ruel, Nancy . E-mail: n-ruel@northwestern.edu; Zago, Anna . E-mail: anna_zago@acgtinc.com; Spear, Patricia G. . E-mail: p-spear@northwestern.edu

    2006-03-01

    Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutant forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity.

  20. Homopolar Gun for Pulsed Spheromak Fusion Reactors II

    SciTech Connect

    Fowler, T

    2004-06-14

    A homopolar gun is discussed that could produce the high currents required for pulsed spheromak fusion reactors even with unit current amplification and open field lines during injection, possible because close coupling between the gun and flux conserver reduces gun losses to acceptable levels. Example parameters are given for a gun compatible with low cost pulsed reactors and for experiments to develop the concept.

  1. Vaccinia Mature Virus Fusion Regulator A26 Protein Binds to A16 and G9 Proteins of the Viral Entry Fusion Complex and Dissociates from Mature Virions at Low pH

    PubMed Central

    Chang, Shu-Jung; Shih, Ao-Chun; Tang, Yin-Liang

    2012-01-01

    Vaccinia mature virus enters cells through either endocytosis or plasma membrane fusion, depending on virus strain and cell type. Our previous results showed that vaccinia virus mature virions containing viral A26 protein enter HeLa cells preferentially through endocytosis, whereas mature virions lacking A26 protein enter through plasma membrane fusion, leading us to propose that A26 acts as an acid-sensitive fusion suppressor for mature virus (S. J. Chang, Y. X. Chang, R. Izmailyan R, Y. L. Tang, and W. Chang, J. Virol. 84:8422–8432, 2010). In the present study, we investigated the fusion suppression mechanism of A26 protein. We found that A26 protein was coimmunoprecipitated with multiple components of the viral entry-fusion complex (EFC) in infected HeLa cells. Transient expression of viral EFC components in HeLa cells revealed that vaccinia virus A26 protein interacted directly with A16 and G9 but not with G3, L5 and H2 proteins of the EFC components. Consistently, a glutathione S-transferase (GST)-A26 fusion protein, but not GST, pulled down A16 and G9 proteins individually in vitro. Together, our results supported the idea that A26 protein binds to A16 and G9 protein at neutral pH contributing to suppression of vaccinia virus-triggered membrane fusion from without. Since vaccinia virus extracellular envelope proteins A56/K2 were recently shown to bind to the A16/G9 subcomplex to suppress virus-induced fusion from within, our results also highlight an evolutionary convergence in which vaccinia viral fusion suppressor proteins regulate membrane fusion by targeting the A16 and G9 components of the viral EFC complex. Finally, we provide evidence that acid (pH 4.7) treatment induced A26 protein and A26-A27 protein complexes of 70 kDa and 90 kDa to dissociate from mature virions, suggesting that the structure of A26 protein is acid sensitive. PMID:22278246

  2. Vaccinia mature virus fusion regulator A26 protein binds to A16 and G9 proteins of the viral entry fusion complex and dissociates from mature virions at low pH.

    PubMed

    Chang, Shu-Jung; Shih, Ao-Chun; Tang, Yin-Liang; Chang, Wen

    2012-04-01

    Vaccinia mature virus enters cells through either endocytosis or plasma membrane fusion, depending on virus strain and cell type. Our previous results showed that vaccinia virus mature virions containing viral A26 protein enter HeLa cells preferentially through endocytosis, whereas mature virions lacking A26 protein enter through plasma membrane fusion, leading us to propose that A26 acts as an acid-sensitive fusion suppressor for mature virus (S. J. Chang, Y. X. Chang, R. Izmailyan R, Y. L. Tang, and W. Chang, J. Virol. 84:8422-8432, 2010). In the present study, we investigated the fusion suppression mechanism of A26 protein. We found that A26 protein was coimmunoprecipitated with multiple components of the viral entry-fusion complex (EFC) in infected HeLa cells. Transient expression of viral EFC components in HeLa cells revealed that vaccinia virus A26 protein interacted directly with A16 and G9 but not with G3, L5 and H2 proteins of the EFC components. Consistently, a glutathione S-transferase (GST)-A26 fusion protein, but not GST, pulled down A16 and G9 proteins individually in vitro. Together, our results supported the idea that A26 protein binds to A16 and G9 protein at neutral pH contributing to suppression of vaccinia virus-triggered membrane fusion from without. Since vaccinia virus extracellular envelope proteins A56/K2 were recently shown to bind to the A16/G9 subcomplex to suppress virus-induced fusion from within, our results also highlight an evolutionary convergence in which vaccinia viral fusion suppressor proteins regulate membrane fusion by targeting the A16 and G9 components of the viral EFC complex. Finally, we provide evidence that acid (pH 4.7) treatment induced A26 protein and A26-A27 protein complexes of 70 kDa and 90 kDa to dissociate from mature virions, suggesting that the structure of A26 protein is acid sensitive.

  3. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    SciTech Connect

    Maric, Martina; Haugo, Alison C.; Dauer, William; Johnson, David; Roller, Richard J.

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  4. Significant differences in cell-cell fusion and viral entry between strains revealed by scanning mutagenesis of the C-heptad repeat of HIV gp41.

    PubMed

    Diaz-Aguilar, Barbara; Dewispelaere, Karen; Yi, Hyun Ah; Jacobs, Amy

    2013-05-21

    The transmembrane subunit, gp41, of the HIV envelope mediates the viral fusion step of entry into the host cell. The protein consists of an extracellular domain, a transmembrane domain, and a cytoplasmic tail. The extracellular domain contains a fusion peptide, an N-terminal heptad repeat, a loop region, a C-terminal heptad repeat (CHR), and a membrane-proximal external region. For this study, we examined each amino acid in the CHR (residues 623-659) by alanine scanning mutagenesis in two HIV strains: one CCR5-utilizing strain (JRFL) and one CXCR4-utilizing strain (HXB2). We studied the functional importance of each amino acid residue by measuring mutational effects in both cell-cell fusion and viral entry and assessing envelope expression and gp120-gp41 proteolytic processing. The transmembrane subunit of the HIV envelope, gp41, is very sensitive to subtle changes, like alanine substitution, which severely affect envelope function at multiple sites. Two important general findings are apparent when the entire data set from this study is taken into account. (1) Strain HXB2 is much more stable to mutagenesis than strain JRFL, and (2) viral entry is much more stable to mutagenesis than cell-cell fusion. These findings strengthen our notion that gp41 is a vulnerable target for therapeutic and prophylactic intervention. Further structural studies aimed at gaining a full understanding of the intermediate states that drive HIV membrane fusion are imperative.

  5. Physics of laser fusion. Volume II. Diagnostics of experiments on laser fusion targets at LLNL

    SciTech Connect

    Ahlstrom, H.G.

    1982-01-01

    These notes present the experimental basis and status for laser fusion as developed at LLNL. There are two other volumes in this series: Vol. I, by C.E. Max, presents the theoretical laser-plasma interaction physics; Vol. III, by J.F. Holzrichter et al., presents the theory and design of high-power pulsed lasers. A fourth volume will present the theoretical implosion physics. The notes consist of six sections. The first, an introductory section, provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLNL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLNL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  6. A computational approach identifies two regions of Hepatitis C Virus E1 protein as interacting domains involved in viral fusion process.

    PubMed

    Bruni, Roberto; Costantino, Angela; Tritarelli, Elena; Marcantonio, Cinzia; Ciccozzi, Massimo; Rapicetta, Maria; El Sawaf, Gamal; Giuliani, Alessandro; Ciccaglione, Anna Rita

    2009-07-29

    The E1 protein of Hepatitis C Virus (HCV) can be dissected into two distinct hydrophobic regions: a central domain containing an hypothetical fusion peptide (FP), and a C-terminal domain (CT) comprising two segments, a pre-anchor and a trans-membrane (TM) region. In the currently accepted model of the viral fusion process, the FP and the TM regions are considered to be closely juxtaposed in the post-fusion structure and their physical interaction cannot be excluded. In the present study, we took advantage of the natural sequence variability present among HCV strains to test, by purely sequence-based computational tools, the hypothesis that in this virus the fusion process involves the physical interaction of the FP and CT regions of E1. Two computational approaches were applied. The first one is based on the co-evolution paradigm of interacting peptides and consequently on the correlation between the distance matrices generated by the sequence alignment method applied to FP and CT primary structures, respectively. In spite of the relatively low random genetic drift between genotypes, co-evolution analysis of sequences from five HCV genotypes revealed a greater correlation between the FP and CT domains than respect to a control HCV sequence from Core protein, so giving a clear, albeit still inconclusive, support to the physical interaction hypothesis.The second approach relies upon a non-linear signal analysis method widely used in protein science called Recurrence Quantification Analysis (RQA). This method allows for a direct comparison of domains for the presence of common hydrophobicity patterns, on which the physical interaction is based upon. RQA greatly strengthened the reliability of the hypothesis by the scoring of a lot of cross-recurrences between FP and CT peptides hydrophobicity patterning largely outnumbering chance expectations and pointing to putative interaction sites. Intriguingly, mutations in the CT region of E1, reducing the fusion process in

  7. Human cytomegalovirus pUL79 is an elongation factor of RNA polymerase II for viral gene transcription.

    PubMed

    Perng, Yi-Chieh; Campbell, Jessica A; Lenschow, Deborah J; Yu, Dong

    2014-08-01

    In this study, we have identified a unique mechanism in which human cytomegalovirus (HCMV) protein pUL79 acts as an elongation factor to direct cellular RNA polymerase II for viral transcription during late times of infection. We and others previously reported that pUL79 and its homologues are required for viral transcript accumulation after viral DNA synthesis. We hypothesized that pUL79 represented a unique mechanism to regulate viral transcription at late times during HCMV infection. To test this hypothesis, we analyzed the proteome associated with pUL79 during virus infection by mass spectrometry. We identified both cellular transcriptional factors, including multiple RNA polymerase II (RNAP II) subunits, and novel viral transactivators, including pUL87 and pUL95, as protein binding partners of pUL79. Co-immunoprecipitation (co-IP) followed by immunoblot analysis confirmed the pUL79-RNAP II interaction, and this interaction was independent of any other viral proteins. Using a recombinant HCMV virus where pUL79 protein is conditionally regulated by a protein destabilization domain ddFKBP, we showed that this interaction did not alter the total levels of RNAP II or its recruitment to viral late promoters. Furthermore, pUL79 did not alter the phosphorylation profiles of the RNAP II C-terminal domain, which was critical for transcriptional regulation. Rather, a nuclear run-on assay indicated that, in the absence of pUL79, RNAP II failed to elongate and stalled on the viral DNA. pUL79-dependent RNAP II elongation was required for transcription from all three kinetic classes of viral genes (i.e. immediate-early, early, and late) at late times during virus infection. In contrast, host gene transcription during HCMV infection was independent of pUL79. In summary, we have identified a novel viral mechanism by which pUL79, and potentially other viral factors, regulates the rate of RNAP II transcription machinery on viral transcription during late stages of HCMV infection.

  8. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    SciTech Connect

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs. Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.

  9. Identification of a RNA Polymerase II Initiation Site in the Long Terminal Repeat of Moloney Murine Leukemia Viral DNA

    NASA Astrophysics Data System (ADS)

    Fuhrman, Shella A.; van Beveren, Charles; Verma, Inder M.

    1981-09-01

    We have used a soluble in vitro RNA polymerase II transcription system to define the site of initiation of Moloney murine leukemia viral RNA synthesis. Molecularly cloned integrated and unintegrated Moloney murine leukemia virus DNAs were used as templates. The 5' ends of in vitro transcripts and virion RNA of Moloney murine leukemia virus were compared by nuclease S1 protection experiments. Our results indicate that viral sequences upstream of the in vivo cap site are implicated in the transcription of viral RNA and that the 5' end of an in vitro transcript derived from an integrated Moloney murine leukemia virus clone corresponds to the 5' end of viral genomic RNA.

  10. Dual Mutation Events in the Haemagglutinin-Esterase and Fusion Protein from an Infectious Salmon Anaemia Virus HPR0 Genotype Promote Viral Fusion and Activation by an Ubiquitous Host Protease.

    PubMed

    Fourrier, Mickael; Lester, Katherine; Markussen, Turhan; Falk, Knut; Secombes, Christopher J; McBeath, Alastair; Collet, Bertrand

    2015-01-01

    In Infectious salmon anaemia virus (ISAV), deletions in the highly polymorphic region (HPR) in the near membrane domain of the haemagglutinin-esterase (HE) stalk, influence viral fusion. It is suspected that selected mutations in the associated Fusion (F) protein may also be important in regulating fusion activity. To better understand the underlying mechanisms involved in ISAV fusion, several mutated F proteins were generated from the Scottish Nevis and Norwegian SK779/06 HPR0. Co-transfection with constructs encoding HE and F were performed, fusion activity assessed by content mixing assay and the degree of proteolytic cleavage by western blot. Substitutions in Nevis F demonstrated that K276 was the most likely cleavage site in the protein. Furthermore, amino acid substitutions at three sites and two insertions, all slightly upstream of K276, increased fusion activity. Co-expression with HE harbouring a full-length HPR produced high fusion activities when trypsin and low pH were applied. In comparison, under normal culture conditions, groups containing a mutated HE with an HPR deletion were able to generate moderate fusion levels, while those with a full length HPR HE could not induce fusion. This suggested that HPR length may influence how the HE primes the F protein and promotes fusion activation by an ubiquitous host protease and/or facilitate subsequent post-cleavage refolding steps. Variations in fusion activity through accumulated mutations on surface glycoproteins have also been reported in other orthomyxoviruses and paramyxoviruses. This may in part contribute to the different virulence and tissue tropism reported for HPR0 and HPR deleted ISAV genotypes.

  11. Viral gastroenteritis associated with genogroup II norovirus among U.S. military personnel in Turkey, 2009.

    PubMed

    Ahmed, Salwa F; Klena, John D; Mostafa, Manal; Dogantemur, Jessica; Middleton, Tracy; Hanson, James; Sebeny, Peter J

    2012-01-01

    The present study demonstrates that multiple NoV genotypes belonging to genogroup II contributed to an acute gastroenteritis outbreak at a US military facility in Turkey that was associated with significant negative operational impact. Norovirus (NoV) is an important pathogen associated with acute gastroenteritis among military populations. We describe the genotypes of NoV outbreak occurred at a United States military facility in Turkey. Stool samples were collected from 37 out of 97 patients presenting to the clinic on base with acute gastroenteritis and evaluated for bacterial and viral pathogens. NoV genogroup II (GII) was identified by RT-PCR in 43% (16/37) stool samples. Phylogenetic analysis of a 260 base pair fragment of the NoV capsid gene from ten stool samples indicated the circulation of multiple and rare genotypes of GII NoV during the outbreak. We detected four GII.8 isolates, three GII.15, two GII.9 and a sole GII.10 NoV. Viral sequences could be grouped into four clusters, three of which have not been previously reported in Turkey. The fact that current NoV outbreak was caused by rare genotypes highlights the importance of norovirus strain typing. While NoV genogroup II is recognized as causative agent of outbreak, circulation of current genotypes has been rarely observed in large number of outbreaks.

  12. Viral Gastroenteritis Associated with Genogroup II Norovirus among U.S. Military Personnel in Turkey, 2009

    PubMed Central

    Ahmed, Salwa F.; Klena, John D.; Mostafa, Manal; Dogantemur, Jessica; Middleton, Tracy; Hanson, James; Sebeny, Peter J.

    2012-01-01

    The present study demonstrates that multiple NoV genotypes belonging to genogroup II contributed to an acute gastroenteritis outbreak at a US military facility in Turkey that was associated with significant negative operational impact. Norovirus (NoV) is an important pathogen associated with acute gastroenteritis among military populations. We describe the genotypes of NoV outbreak occurred at a United States military facility in Turkey. Stool samples were collected from 37 out of 97 patients presenting to the clinic on base with acute gastroenteritis and evaluated for bacterial and viral pathogens. NoV genogroup II (GII) was identified by RT-PCR in 43% (16/37) stool samples. Phylogenetic analysis of a 260 base pair fragment of the NoV capsid gene from ten stool samples indicated the circulation of multiple and rare genotypes of GII NoV during the outbreak. We detected four GII.8 isolates, three GII.15, two GII.9 and a sole GII.10 NoV. Viral sequences could be grouped into four clusters, three of which have not been previously reported in Turkey. The fact that current NoV outbreak was caused by rare genotypes highlights the importance of norovirus strain typing. While NoV genogroup II is recognized as causative agent of outbreak, circulation of current genotypes has been rarely observed in large number of outbreaks. PMID:22606235

  13. Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry

    SciTech Connect

    Spear, Patricia G. . E-mail: p-spear@northwestern.edu; Manoj, Sharmila; Yoon, Miri; Jogger, Cheryl R.; Zago, Anna; Myscofski, Dawn

    2006-01-05

    One of the herpes simplex virus envelope glycoproteins, designated gD, is the principal determinant of cell recognition for viral entry. Other viral glycoproteins, gB, gH and gL, cooperate with gD to mediate the membrane fusion that is required for viral entry and cell fusion. Membrane fusion is triggered by the binding of gD to one of its receptors. These receptors belong to three different classes of cell surface molecules. This review summarizes recent findings on the structure and function of gD. The results presented indicate that gD may assume more than one conformation, one in the absence of receptor, another when gD is bound to the herpesvirus entry mediator, a member of the TNF receptor family, and a third when gD is bound to nectin-1, a cell adhesion molecule in the immunoglobulin superfamily. Finally, information and ideas are presented about a membrane-proximal region of gD that is required for membrane fusion, but not for receptor binding, and that may have a role in activating the fusogenic activity of gB, gH and gL.

  14. Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design.

    PubMed

    Aydin, Halil; Al-Khooly, Dina; Lee, Jeffrey E

    2014-05-01

    Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation=0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections. © 2014 The Protein Society.

  15. Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design

    PubMed Central

    Aydin, Halil; Al-Khooly, Dina; Lee, Jeffrey E

    2014-01-01

    Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation = 0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections. PMID:24519901

  16. Fusion by diffusion. II. Synthesis of transfermium elements in cold fusion reactions

    SciTech Connect

    Swiatecki, W.J.; Siwek-Wilczynska, K.; Wilczynski, J.

    2005-01-01

    We describe a method of estimating cross sections for the synthesis of very heavy nuclei by the fusion of two lighter ones. The cross section is considered to be the product of three factors: the cross section for the projectile to overcome the Coulomb barrier, the probability that the resulting composite nucleus reaches the compound nucleus configuration by a shape fluctuation treated as a diffusion of probability in one dimension, and the probability that the excited compound nucleus survives fission. Semi-empirical formulas for the mean Coulomb barrier height and its distribution around the mean are constructed. After overcoming the Coulomb barrier the system is assumed to be injected into an 'asymmetric fission valley' by a rapid growth of the neck between the target and projectile at approximately frozen asymmetry and elongation. Diffusion in the elongation coordinate in this valley can occasionally bring the system over the saddle separating the injection point from the compound nucleus configuration. This is the stage that accounts for the hindrance to fusion observed for very heavy reacting systems. The competition between deexcitation of the compound nucleus by neutron emission and fission is treated by standard methods, but an interesting insight allows one to predict in an elementary way the location of the maximum in the resulting excitation function. Adjusting one parameter in the theory causes the calculated peak cross sections to agree within about a factor of 2 or so with 12 measured or estimated values for 'cold' one-neutron-out reactions where targets of {sup 208}Pb and {sup 209}Bi are bombarded with projectiles ranging from {sup 48}Ca to {sup 70}Zn. The centroids of the excitation functions agree with theory to within 1 or 2 MeV for the six cases where they have been determined, and their widths are reproduced. 'Hot' fusion reactions, where several neutrons are emitted, are not treated, except that a comparison is made between the hindrance

  17. Analysis of Cathepsin and Furin Proteolytic Enzymes Involved in Viral Fusion Protein Activation in Cells of the Bat Reservoir Host

    PubMed Central

    El Najjar, Farah; Lampe, Levi; Baker, Michelle L.; Wang, Lin-Fa; Dutch, Rebecca Ellis

    2015-01-01

    Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing. PMID:25706132

  18. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  19. Molecular evolution of viral fusion and matrix protein genes and phylogenetic relationships among the Paramyxoviridae.

    PubMed

    Westover, K M; Hughes, A L

    2001-10-01

    Phylogenetic relationships among the Paramyxoviridae, a broad family of viruses whose members cause devastating diseases of wildlife, livestock, and humans, were examined with both fusion (F) and matrix (M) protein-coding sequences. Neighbor-joining trees of F and M protein sequences showed that the Paramyxoviridae was divided into the two traditionally recognized subfamilies, the Paramyxovirinae and the Pneumovirinae. Within the Paramyxovirinae, the results also showed groups corresponding to three currently recognized genera: Respirovirus, Morbillivirus, and Rubulavirus. The relationships among the three genera of the Paramyxovirinae were resolved with M protein sequences and there was significant bootstrap support (100%) showing that members of the genus Respirovirus and the genus Morbillivirus were more closely related to each other than to members of the genus Rubulavirus. Both F and M phylogenies showed that Newcastle disease virus (NDV) was more closely related to the genus Rubulavirus than to the other two genera but were consistent with the proposal (B. S. Seal et al., 2000, Virus Res. 66, 1-11) that NDV be classified as a separate genus within the Paramyxovirinae. Both F and M phylogenies were also consistent with the proposal (L. Wang et al., 2000, J. Virol 74, 9972-9979) that Hendra virus be classified as a new genus closely related and basal to the genus Morbillivirus. Rinderpest was most closely related to measles and a more derived virus than to canine distemper virus, phocine distemper virus, or dolphin morbillivirus.

  20. Low convergence path to fusion II: An integrated NIF design

    NASA Astrophysics Data System (ADS)

    Schmitt, Mark J.; Molvig, K.; McCall, G. H.; Edgel, D. H.; Myatt, J. E.; Betti, R.; Froula, D. H.; Campbell, E. M.

    2016-10-01

    We report on the Revolver design methodology for achieving ignition using large diameter (6mm) Be shells to efficiently ( 10%) convert laser energy from a short, 5 ns, 320TW laser pulse on the National Ignition Facility (NIF) into a dynamic pressure source for inertial confinement fusion. It is shown that this source can be used to kinetically drive two nested internal shells to achieve ignition conditions inside a central liquid DT core. Using principles recently elucidated [K. Molvig, et al., Phys. Rev. Lett. 116, 255003, 2016], we formulate a robust optimization of a triple shell target that mitigates long-standing issues with conventional ignition schemes including drive non-uniformities, laser plasma instabilities (including the hot electrons they produce), non-local heat conduction and deceleration Rayleigh-Taylor (RT) mix. Rad-hydro simulations predict ignition initiating at 2.5keV with 90% of the maximum inner shell velocity remaining (before deceleration RT can cause significant mix in the compressed DT fuel). Simulations in 2D show that the short pulse design produces a spatially uniform kinetic drive that is tolerant to random 5% variations in laser cone power. Moreover, it will be shown that intra-shell parameters can be adjusted to mitigate convergence growth of capsule spatial non-uniformities. This research supported by the US DOE/NNSA, performed in part at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  1. Gene expression of herpes simplex virus. II. UV radiological analysis of viral transcription units.

    PubMed Central

    Millette, R L; Klaiber, R

    1980-01-01

    The transcriptional organization of the genome of herpes simplex virus type 1 was analyzed by measuring the sensitivity of viral polypeptide synthesis to UV irradiation of the infecting virus. Herpes simplex virus type 1 was irradiated with various doses of UV light and used to infect xeroderma pigmentosum fibroblasts. Immediate early transcription units were analyzed by having cycloheximide present throughout the period of infection, removing the drug at 8 h postinfection, and pulse-labeling proteins with [35S]methionine. Delayed early transcription units were analyzed in similar studies by having 9-beta-D-arabinofuranosyladenine present during the experiment to block replication of the input irradiated genome. The viral polypeptides were separated by gel electrophoresis and quantitated by densitometry of the gel autoradiograms. The following results were obtained. (i) The UV target sizes for the viral transcription units analyzed ranged from 1.44 to 5.65 kilobase pairs. This implies that the corresponding primary transcripts have minimum molecular weights ranging from 0.46 x 10(6). (ii) The genes for the four viral proteins, 165, 145, 116, and 71 (molecular weight x 10(3), exhibited UV target sizes that agree with their calculated gene size or measured mRNA size or both and thus must reside in promoter-adjacent positions. (iii) The transcription units for the remaining genes analyzed showed target sizes that range from 0.42 to 2.59 kilobase pairs greater than needed to encode the respective proteins. This probably is a reflection of their distances from promoters or the presence of intervening sequences or both. It further suggests that these genes are transcribed as precursor RNA molecules that are larger than their mRNA's. (iv) The results indicate that none of the immediate early genes analyzed can be cotranscribed, whereas some of the delayed early genes might be cotranscribed. No evidence was found for the existance of large, multigene transcription units

  2. Dendritic cell preactivation impairs MHC class II presentation of vaccines and endogenous viral antigens

    PubMed Central

    Young, Louise J.; Wilson, Nicholas S.; Schnorrer, Petra; Mount, Adele; Lundie, Rachel J.; La Gruta, Nicole L.; Crabb, Brendan S.; Belz, Gabrielle T.; Heath, William R.; Villadangos, Jose A.

    2007-01-01

    When dendritic cells (DCs) encounter signals associated with infection or inflammation, they become activated and undergo maturation. Mature DCs are very efficient at presenting antigens captured in association with their activating signal but fail to present subsequently encountered antigens, at least in vitro. Such impairment of MHC class II (MHC II) antigen presentation has generally been thought to be a consequence of down-regulation of endocytosis, so it might be expected that antigens synthesized by the DCs themselves (for instance, viral antigens) would still be presented by mature DCs. Here, we show that DCs matured in vivo could still capture and process soluble antigens, but were unable to present peptides derived from these antigens. Furthermore, presentation of viral antigens synthesized by the DCs themselves was also severely impaired. Indeed, i.v. injection of pathogen mimics, which caused systemic DC activation in vivo, impaired the induction of CD4 T cell responses against subsequently encountered protein antigens. This immunosuppressed state could be reversed by adoptive transfer of DCs loaded exogenously with antigens, demonstrating that impairment of CD4 T cell responses was due to lack of antigen presentation rather than to overt suppression of T cell activation. The biochemical mechanism underlying this phenomenon was the down-regulation of MHC II–peptide complex formation that accompanied DC maturation. These observations have important implications for the design of prophylactic and therapeutic DC vaccines and contribute to the understanding of the mechanisms causing immunosuppression during systemic blood infections. PMID:17978177

  3. HYLIFE-II inertial confinement fusion reactor design

    NASA Astrophysics Data System (ADS)

    Moir, R. W.

    1990-12-01

    The HYLIFE-2 inertial fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-1 used liquid lithium. HYLIFE 2 avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li2, BeF4) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-1. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required. In addition, although not considered for HYLIFE-1, there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW times h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost.

  4. Strategy for treating motor neuron diseases using a fusion protein of botulinum toxin binding domain and streptavidin for viral vector access: work in progress.

    PubMed

    Drachman, Daniel B; Adams, Robert N; Balasubramanian, Uma; Lu, Yang

    2010-12-01

    Although advances in understanding of the pathogenesis of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) have suggested attractive treatment strategies, delivery of agents to motor neurons embedded within the spinal cord is problematic. We have designed a strategy based on the specificity of botulinum toxin, to direct entry of viral vectors carrying candidate therapeutic genes into motor neurons. We have engineered and expressed fusion proteins consisting of the binding domain of botulinum toxin type A fused to streptavidin (SAv). This fusion protein will direct biotinylated viral vectors carrying therapeutic genes into motor nerve terminals where they can enter the acidified endosomal compartments, be released and undergo retrograde transport, to deliver the genes to motor neurons. Both ends of the fusion proteins are shown to be functionally intact. The binding domain end binds to mammalian nerve terminals at neuromuscular junctions, ganglioside GT1b (a target of botulinum toxin), and a variety of neuronal cells including primary chick embryo motor neurons, N2A neuroblastoma cells, NG108-15 cells, but not to NG CR72 cells, which lack complex gangliosides. The streptavidin end binds to biotin, and to a biotinylated Alexa 488 fluorescent tag. Further studies are in progress to evaluate the delivery of genes to motor neurons in vivo, by the use of biotinylated viral vectors.

  5. Strategy for Treating Motor Neuron Diseases Using a Fusion Protein of Botulinum Toxin Binding Domain and Streptavidin for Viral Vector Access: Work in Progress

    PubMed Central

    Drachman, Daniel B.; Adams, Robert N.; Balasubramanian, Uma; Lu, Yang

    2010-01-01

    Although advances in understanding of the pathogenesis of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) have suggested attractive treatment strategies, delivery of agents to motor neurons embedded within the spinal cord is problematic. We have designed a strategy based on the specificity of botulinum toxin, to direct entry of viral vectors carrying candidate therapeutic genes into motor neurons. We have engineered and expressed fusion proteins consisting of the binding domain of botulinum toxin type A fused to streptavidin (SAv). This fusion protein will direct biotinylated viral vectors carrying therapeutic genes into motor nerve terminals where they can enter the acidified endosomal compartments, be released and undergo retrograde transport, to deliver the genes to motor neurons. Both ends of the fusion proteins are shown to be functionally intact. The binding domain end binds to mammalian nerve terminals at neuromuscular junctions, ganglioside GT1b (a target of botulinum toxin), and a variety of neuronal cells including primary chick embryo motor neurons, N2A neuroblastoma cells, NG108-15 cells, but not to NG CR72 cells, which lack complex gangliosides. The streptavidin end binds to biotin, and to a biotinylated Alexa 488 fluorescent tag. Further studies are in progress to evaluate the delivery of genes to motor neurons in vivo, by the use of biotinylated viral vectors. PMID:22069580

  6. Prevalence of Abelson murine leukemia viral oncogene homolog-breakpoint cluster region fusions and correlation with peripheral blood parameters in chronic myelogenous leukemia patients in Lorestan Province, Iran

    PubMed Central

    Kiani, Ali Asghar; Shahsavar, Farhad; Gorji, Mojtaba; Ahmadi, Kolsoum; Nazarabad, Vahideh Heydari; Bahmani, Banafsheh

    2016-01-01

    Context: Chronic myelogenous leukemia (CML) is a chronic malignancy of myeloid linage associated with a significant increase in granulocytes in bone marrow and peripheral blood. CML diagnosis is based on detection of Philadelphia chromosome and “Abelson murine leukemia viral oncogene homolog” (ABL)-“breakpoint cluster region protein” fusions (ABL-BCR fusions). Aims: In this study, patients with CML morphology were studied according to ABL-BCR fusions and the relationship between the fusions and peripheral blood cell changes was examined. Materials and Methods: All patients suspected to chronic myeloproliferative disorders in Lorestan Province visiting subspecialist hematology clinics who were confirmed by oncologist were studied over a period of 5 years. After completing basic data questionnaire, blood samples were obtained with informed consent from the patients. Blood cell count and morphology were investigated and RNA was extracted from blood samples. cDNA was synthesized from RNA and ABL-BCR fusions including b3a2 and b2a2 (protein 210 kd or p210), e1a2 (protein 190 kdor p190), and e19a2 (protein 230 kdor p230) were studied by multiplex reverse transcription polymerase chain reaction method. Coexistence of e1a2 and b2a2 (p210/p190) fusions was also studied. The prevalence of mutations and their correlation with the blood parameters were statistically analyzed. Results: Of 58 patients positive for ABL-BCR fusion, 18 (30.5%) had b2a2 fusion, 37 (62.71%) had b3a2 fusion and three (3.08%) had e1a2 fusion. Coexistence of e1a2 and b2a2 (p210/p190) was not observed. There was no significant correlation between ABL-BCR fusions and white blood cell count, platelet count, and hemoglobin concentration. Conclusions: The ABL-BCR fusions in Lorestan Province were similar to other studies in Iran, and b3a2 fusion had the highest prevalence in the studied patients studied. PMID:27857896

  7. Progress in accident analysis of the HYLIFE-II inertial fusion energy power plant design

    SciTech Connect

    Reyes, S; Latkowski, J F; Gomez del Rio, J; Sanz, J

    2000-10-11

    The present work continues our effort to perform an integrated safety analysis for the HYLIFE-II inertial fusion energy (IFE) power plant design. Recently we developed a base case for a severe accident scenario in order to calculate accident doses for HYLIFE-II. It consisted of a total loss of coolant accident (LOCA) in which all the liquid flibe (Li{sub 2}BeF{sub 4}) was lost at the beginning of the accident. Results showed that the off-site dose was below the limit given by the DOE Fusion Safety Standards for public protection in case of accident, and that his dose was dominated by the tritium released during the accident.

  8. Type II integral membrane protein, TM of J paramyxovirus promotes cell-to-cell fusion.

    PubMed

    Li, Zhuo; Hung, Cher; Paterson, Reay G; Michel, Frank; Fuentes, Sandra; Place, Ryan; Lin, Yuan; Hogan, Robert J; Lamb, Robert A; He, Biao

    2015-10-06

    Paramyxoviruses include many important animal and human pathogens. Most paramyxoviruses have two integral membrane proteins: fusion protein (F) and attachment proteins hemagglutinin, hemagglutinin-neuraminidase, or glycoprotein (G), which are critical for viral entry into cells. J paramyxovirus (JPV) encodes four integral membrane proteins: F, G, SH, and transmembrane (TM). The function of TM is not known. In this work, we have generated a viable JPV lacking TM (JPV∆TM). JPV∆TM formed opaque plaques compared with JPV. Quantitative syncytia assays showed that JPV∆TM was defective in promoting cell-to-cell fusion (i.e., syncytia formation) compared with JPV. Furthermore, cells separately expressing F, G, TM, or F plus G did not form syncytia whereas cells expressing F plus TM formed some syncytia. However, syncytia formation was much greater with coexpression of F, G, and TM. Biochemical analysis indicates that F, G, and TM interact with each other. A small hydrophobic region in the TM ectodomain from amino acid residues 118 to 132, the hydrophobic loop (HL), was important for syncytial promotion, suggesting that the TM HL region plays a critical role in cell-to-cell fusion.

  9. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    SciTech Connect

    Reyes, S; Gomez del Rio, J; Sanz, J

    2000-02-23

    Previous studies of the safety and environmental (S and E) aspects of the HYLIFE-II inertial fusion energy (IFE) power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work a set of computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) has been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here the authors consider a severe lost of coolant accident (LOCA) producing simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the containment) and of the two barriers surrounding the chamber (inner shielding and containment building it self). Even though containment failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product release and transport. The results of these calculations show that the estimated off-site dose is less than 6 mSv (0.6 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  10. A computational approach identifies two regions of Hepatitis C Virus E1 protein as interacting domains involved in viral fusion process

    PubMed Central

    Bruni, Roberto; Costantino, Angela; Tritarelli, Elena; Marcantonio, Cinzia; Ciccozzi, Massimo; Rapicetta, Maria; El Sawaf, Gamal; Giuliani, Alessandro; Ciccaglione, Anna Rita

    2009-01-01

    Background The E1 protein of Hepatitis C Virus (HCV) can be dissected into two distinct hydrophobic regions: a central domain containing an hypothetical fusion peptide (FP), and a C-terminal domain (CT) comprising two segments, a pre-anchor and a trans-membrane (TM) region. In the currently accepted model of the viral fusion process, the FP and the TM regions are considered to be closely juxtaposed in the post-fusion structure and their physical interaction cannot be excluded. In the present study, we took advantage of the natural sequence variability present among HCV strains to test, by purely sequence-based computational tools, the hypothesis that in this virus the fusion process involves the physical interaction of the FP and CT regions of E1. Results Two computational approaches were applied. The first one is based on the co-evolution paradigm of interacting peptides and consequently on the correlation between the distance matrices generated by the sequence alignment method applied to FP and CT primary structures, respectively. In spite of the relatively low random genetic drift between genotypes, co-evolution analysis of sequences from five HCV genotypes revealed a greater correlation between the FP and CT domains than respect to a control HCV sequence from Core protein, so giving a clear, albeit still inconclusive, support to the physical interaction hypothesis. The second approach relies upon a non-linear signal analysis method widely used in protein science called Recurrence Quantification Analysis (RQA). This method allows for a direct comparison of domains for the presence of common hydrophobicity patterns, on which the physical interaction is based upon. RQA greatly strengthened the reliability of the hypothesis by the scoring of a lot of cross-recurrences between FP and CT peptides hydrophobicity patterning largely outnumbering chance expectations and pointing to putative interaction sites. Intriguingly, mutations in the CT region of E1, reducing the

  11. TALE-PvuII fusion proteins--novel tools for gene targeting.

    PubMed

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.

  12. Ca2+ -regulated lysosome fusion mediates angiotensin II-induced lipid raft clustering in mesenteric endothelial cells.

    PubMed

    Han, Wei-Qing; Chen, Wen-Dong; Zhang, Ke; Liu, Jian-Jun; Wu, Yong-Jie; Gao, Ping-Jin

    2016-04-01

    It has been reported that intracellular Ca2+ is involved in lysosome fusion and membrane repair in skeletal cells. Given that angiotensin II (Ang II) elicits an increase in intracellular Ca2+ and that lysosome fusion is a crucial mediator of lipid raft (LR) clustering, we hypothesized that Ang II induces lysosome fusion and activates LR formation in rat mesenteric endothelial cells (MECs). We found that Ang II acutely increased intracellular Ca2+ content, an effect that was inhibited by the extracellular Ca2+ chelator ethylene glycol tetraacetic acid (EGTA) and the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release inhibitor 2-aminoethoxydiphenyl borate (2-APB). Further study showed that EGTA almost completely blocked Ang II-induced lysosome fusion, the translocation of acid sphingomyelinase (ASMase) to LR clusters, ASMase activation and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase activation. In contrast, 2-APB had a slight inhibitory effect. Functionally, both the lysosome inhibitor bafilomycin A1 and the ASMase inhibitor amitriptyline reversed Ang II-induced impairment of vasodilation. We conclude that Ca2+ -regulated lysosome fusion mediates the Ang II-induced regulation of the LR-redox signaling pathway and mesenteric endothelial dysfunction.

  13. RF Ion Gun Injector in Support of Fusion Ship II Research and Development

    NASA Astrophysics Data System (ADS)

    Miley, G. H.; Shaban, Y.; Yang, Y.

    2004-02-01

    Ion injection into the Inertial Electrostatic Confinement (IEC) fusion power plant used in the design of the high performance Fusion Ship II (Burton et al., 2003) is a key technological issue for development of this concept. This paper discusses the design and initial experiments with a radiofrequency (RF) ion gun designed for this purpose. The RF Gun design described here was found to have some important advantages over other ion gun designs: simple construction, a higher extraction efficiency; 10 ((mA/cm2)/W), a lower divergence; 10.8 +/- 0.36 mrad, and a very intensive ion flux; 6 × 1018 ions/(cm2.sec) measured at 0.27 Pa.

  14. Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity.

    PubMed

    Yang, Su-Lin; Chou, Ying-Ting; Wu, Cheng-Nan; Ho, Mei-Shang

    2011-11-01

    Enterovirus type 71 (EV71) causes hand, foot, and mouth disease (HFMD), which is mostly self-limited but may be complicated with a severe to fatal neurological syndrome in some children. Understanding the molecular basis of virus-host interactions might help clarify the largely unknown neuropathogenic mechanisms of EV71. In this study, we showed that human annexin II (Anx2) protein could bind to the EV71 virion via the capsid protein VP1. Either pretreatment of EV71 with soluble recombinant Anx2 or pretreatment of host cells with an anti-Anx2 antibody could result in reduced viral attachment to the cell surface and a reduction of the subsequent virus yield in vitro. HepG2 cells, which do not express Anx2, remained permissive to EV71 infection, though the virus yield was lower than that for a cognate lineage expressing Anx2. Stable transfection of plasmids expressing Anx2 protein into HepG2 cells (HepG2-Anx2 cells) could enhance EV71 infectivity, with an increased virus yield, especially at a low infective dose, and the enhanced infectivity could be reversed by pretreating HepG2-Anx2 cells with an anti-Anx2 antibody. The Anx2-interacting domain was mapped by yeast two-hybrid analysis to VP1 amino acids 40 to 100, a region different from the known receptor binding domain on the surface of the picornavirus virion. Our data suggest that binding of EV71 to Anx2 on the cell surface can enhance viral entry and infectivity, especially at a low infective dose.

  15. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion.

    PubMed

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela

    2013-09-01

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs. Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection.

  16. Zn(II)-dipicolylamine-based metallo-lipids as novel non-viral gene vectors.

    PubMed

    Su, Rong-Chuan; Liu, Qiang; Yi, Wen-Jing; Zhao, Zhi-Gang

    2017-08-01

    In this study, a series of Zn(II)-dipicolylamine (Zn-DPA) based cationic lipids bearing different hydrophobic tails (long chains, α-tocopherol, cholesterol or diosgenin) were synthesized. Structure-activity relationship (SAR) of these lipids was studied in detail by investigating the effects of several structural aspects including the type of hydrophobic tails, the chain length and saturation degree. In addition, several assays were used to study their interactions with plasmid DNA, and results reveal that these lipids could condense DNA into nanosized particles with appropriate size and zeta-potentials. MTT-based cell viability assays showed that lipoplexes 5 had low cytotoxicity. The in vitro gene transfection studies showed the hydrophobic tails clearly affected the TE, and hexadecanol-containing lipid 5b gives the best TE, which was 2.2 times higher than bPEI 25k in the presence of 10% serum. The results not only demonstrate that these lipids might be promising non-viral gene vectors, but also afford us clues for further optimization of lipidic gene delivery materials.

  17. The High-Yield Lithium-Injection Fusion-Energy (HYLIFE)-II inertial fusion energy (IFE) power plant concept and implications for IFE

    NASA Astrophysics Data System (ADS)

    Moir, Ralph W.

    1995-06-01

    In the High-Yield Lithium-Injection Fusion-Energy (HYLIFE) power plant design, lithium is replaced by molten salt. HYLIFE-II [Fusion Technol. 25, 5 (1994)] is based on nonflammable, renewable-liquid-wall fusion target chambers formed with Li2BeF4 molten-salt jets, a heavy-ion driver, and single-sided illumination of indirect-drive targets. Building fusion chambers from existing materials with life-of-plant structural walls behind the liquid walls, while still meeting non-nuclear grade construction and low-level waste requirements, has profound implications for inertial fusion energy (IFE) development. Fluid-flow work and computational fluid dynamics predict chamber clearing adequate for 6 Hz pulse rates. Predicted electricity cost is reduced about 30% to 4.4¢/kWh at 1 GWe and 3.2¢/kWh at 2 GWe. Development can be foreshortened and cost reduced by obviating expensive neutron sources to develop first-wall materials. The driver and chamber can be upgraded in stages, avoiding separate and sequential facilities. Important features of a practical IFE power plant are ignition and sufficient gain in targets; low-cost, efficient, rep-ratable driver; and low-cost targets.

  18. Genetic Fusions of a CFA/I/II/IV MEFA (Multiepitope Fusion Antigen) and a Toxoid Fusion of Heat-Stable Toxin (STa) and Heat-Labile Toxin (LT) of Enterotoxigenic Escherichia coli (ETEC) Retain Broad Anti-CFA and Antitoxin Antigenicity

    PubMed Central

    Ruan, Xiaosai; Sack, David A.; Zhang, Weiping

    2015-01-01

    Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC) strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs) and two distinct enterotoxins [heat-labile toxin (LT) and heat-stable toxin type Ib (STa or hSTa)]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA) strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2):243-9], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3), CFA/IV (CS4, CS5, CS6)] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTaA14Q-dmLT or 3xSTaN12S-dmLT [IAI 2014, 82(5):1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-toxoid-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-toxoid-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTaN12S-dmLT induced broadly protective anti-CFA and antitoxin immunity, and suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in multivalent

  19. Genetic fusions of a CFA/I/II/IV MEFA (multiepitope fusion antigen) and a toxoid fusion of heat-stable toxin (STa) and heat-labile toxin (LT) of enterotoxigenic Escherichia coli (ETEC) retain broad anti-CFA and antitoxin antigenicity.

    PubMed

    Ruan, Xiaosai; Sack, David A; Zhang, Weiping

    2015-01-01

    Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC) strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs) and two distinct enterotoxins [heat-labile toxin (LT) and heat-stable toxin type Ib (STa or hSTa)]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA) strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2):243-9], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3), CFA/IV (CS4, CS5, CS6)] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTaA14Q-dmLT or 3xSTaN12S-dmLT [IAI 2014, 82(5):1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-toxoid-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-toxoid-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTaN12S-dmLT induced broadly protective anti-CFA and antitoxin immunity, and suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in multivalent

  20. Performance of plasma opening switches for the Particle Beam Fusion Accelerator II (PBFA II)

    SciTech Connect

    Rochau, G.E.; McDaniel, D.H.; Mendel, C.W.; Sweeney, M.A.; Moore, W.B.S.; Mowrer, G.R.; Simpson, W.W.; Zagar, D.M.; Grasser, T.; McDougal, C.D.

    1989-01-01

    During 1987 and 1988, Plasma Opening Switch (POS) experiments have been continued with the goal of providing voltage and power gain on the PBFA II ion beam accelerator at Sandia National Laboratories. The experiments have developed a POS that has a rugged plasma source, will open rapidly, and will couple to a high-impedance load. The initial erosion switch design with improved plasma uniformity does not couple to these loads. Therefore, we have abandoned further development of this switch for voltage and power gain. Three alternate designs have been developed, tested, and are found to have better performance with the high-impedance loads. These new switches employ magnetic fields to control and confine the injected plasma. A summary of the switch configurations, their theory of operation, and the experimental results is presented and discussed. 4 refs., 10 figs.

  1. Fusion pore expansion is a slow, discontinuous, and Ca2+-dependent process regulating secretion from alveolar type II cells

    PubMed Central

    Haller, Thomas; Dietl, Paul; Pfaller, Kristian; Frick, Manfred; Mair, Norbert; Paulmichl, Markus; Hess, Michael W.; Fürst, Johannes; Maly, Karl

    2001-01-01

    In alveolar type II cells, the release of surfactant is considerably delayed after the formation of exocytotic fusion pores, suggesting that content dispersal may be limited by fusion pore diameter and subject to regulation at a postfusion level. To address this issue, we used confocal FRAP and N-(3-triethylammoniumpropyl)-4-(4-[dibutylamino]styryl) pyridinium dibromide (FM 1-43), a dye yielding intense localized fluorescence of surfactant when entering the vesicle lumen through the fusion pore (Haller, T., J. Ortmayr, F. Friedrich, H. Volkl, and P. Dietl. 1998. Proc. Natl. Acad. Sci. USA. 95:1579–1584). Thus, we have been able to monitor the dynamics of individual fusion pores up to hours in intact cells, and to calculate pore diameters using a diffusion model derived from Fick's law. After formation, fusion pores were arrested in a state impeding the release of vesicle contents, and expanded at irregular times thereafter. The expansion rate of initial pores and the probability of late expansions were increased by elevation of the cytoplasmic Ca2+ concentration. Consistently, content release correlated with the occurrence of Ca2+ oscillations in ATP-treated cells, and expanded fusion pores were detectable by EM. This study supports a new concept in exocytosis, implicating fusion pores in the regulation of content release for extended periods after initial formation. PMID:11604423

  2. Entry of enveloped viruses into host cells: membrane fusion.

    PubMed

    Más, Vicente; Melero, José A

    2013-01-01

    Viruses are intracellular parasites that hijack the cellular machinery for their own replication. Therefore, an obligatory step in the virus life cycle is the delivery of the viral genome inside the cell. Enveloped viruses (i.e., viruses with a lipid envelope) use a two-step procedure to release their genetic material into the cell: (i) they first bind to specific surface receptors of the target cell membrane and then, (ii) they fuse the viral and cell membranes. This last step may occur at the cell surface or after internalization of the virus particle by endocytosis or by some other route (e.g., macropinocytosis). Remarkably, the virus-cell membrane fusion process goes essentially along the same intermediate steps as other membrane fusions that occur for instance in vesicular fusion at the nerve synapsis or cell-cell fusion in yeast mating. Specialized viral proteins, fusogens, promote virus-cell membrane fusion. The viral fusogens experience drastic structural rearrangements during fusion, liberating the energy required to overcome the repulsive forces that prevent spontaneous fusion of the two membranes. This chapter describes the different types of viral fusogens and their mode of action, as are currently known.

  3. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc.

    PubMed

    Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D

    2016-07-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.

  4. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc

    PubMed Central

    Barriga, Gonzalo P.; Villalón-Letelier, Fernando; Márquez, Chantal L.; Bignon, Eduardo A.; Acuña, Rodrigo; Ross, Breyan H.; Monasterio, Octavio; Mardones, Gonzalo A.; Vidal, Simon E.; Tischler, Nicole D.

    2016-01-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses

  5. Membrane-on-a-chip: microstructured silicon/silicon-dioxide chips for high-throughput screening of membrane transport and viral membrane fusion.

    PubMed

    Kusters, Ilja; van Oijen, Antoine M; Driessen, Arnold J M

    2014-04-22

    Screening of transport processes across biological membranes is hindered by the challenge to establish fragile supported lipid bilayers and the difficulty to determine at which side of the membrane reactants reside. Here, we present a method for the generation of suspended lipid bilayers with physiological relevant lipid compositions on microstructured Si/SiO2 chips that allow for high-throughput screening of both membrane transport and viral membrane fusion. Simultaneous observation of hundreds of single-membrane channels yields statistical information revealing population heterogeneities of the pore assembly and conductance of the bacterial toxin α-hemolysin (αHL). The influence of lipid composition and ionic strength on αHL pore formation was investigated at the single-channel level, resolving features of the pore-assembly pathway. Pore formation is inhibited by a specific antibody, demonstrating the applicability of the platform for drug screening of bacterial toxins and cell-penetrating agents. Furthermore, fusion of H3N2 influenza viruses with suspended lipid bilayers can be observed directly using a specialized chip architecture. The presented micropore arrays are compatible with fluorescence readout from below using an air objective, thus allowing high-throughput screening of membrane transport in multiwell formats in analogy to plate readers.

  6. Mildly Acidic pH Triggers an Irreversible Conformational Change in the Fusion Domain of Herpes Simplex Virus 1 Glycoprotein B and Inactivation of Viral Entry.

    PubMed

    Weed, Darin J; Pritchard, Suzanne M; Gonzalez, Floricel; Aguilar, Hector C; Nicola, Anthony V

    2017-03-01

    Herpes simplex virus (HSV) entry into a subset of cells requires endocytosis and endosomal low pH. Preexposure of isolated virions to mildly acidic pH of 5 to 6 partially inactivates HSV infectivity in an irreversible manner. Acid inactivation is a hallmark of viruses that enter via low-pH pathways; this occurs by pretriggering conformational changes essential for fusion. The target and mechanism(s) of low-pH inactivation of HSV are unclear. Here, low-pH-treated HSV-1 was defective in fusion activity and yet retained normal levels of attachment to cell surface heparan sulfate and binding to nectin-1 receptor. Low-pH-triggered conformational changes in gB reported to date are reversible, despite irreversible low-pH inactivation. gB conformational changes and their reversibility were measured by antigenic analysis with a panel of monoclonal antibodies and by detecting changes in oligomeric conformation. Three-hour treatment of HSV-1 virions with pH 5 or multiple sequential treatments at pH 5 followed by neutral pH caused an irreversible >2.5 log infectivity reduction. While changes in several gB antigenic sites were reversible, alteration of the H126 epitope was irreversible. gB oligomeric conformational change remained reversible under all conditions tested. Altogether, our results reveal that oligomeric alterations and fusion domain changes represent distinct conformational changes in gB, and the latter correlates with irreversible low-pH inactivation of HSV. We propose that conformational change in the gB fusion domain is important for activation of membrane fusion during viral entry and that in the absence of a host target membrane, this change results in irreversible inactivation of virions.IMPORTANCE HSV-1 is an important pathogen with a high seroprevalence throughout the human population. HSV infects cells via multiple pathways, including a low-pH route into epithelial cells, the primary portal into the host. HSV is inactivated by low-pH preexposure, and gB, a

  7. Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase.

    PubMed

    Wisner, Todd W; Wright, Catherine C; Kato, Akihisa; Kawaguchi, Yasushi; Mou, Fan; Baines, Joel D; Roller, Richard J; Johnson, David C

    2009-04-01

    Herpesvirus capsids collect along the inner surface of the nuclear envelope and bud into the perinuclear space. Enveloped virions then fuse with the outer nuclear membrane (NM). We previously showed that herpes simplex virus (HSV) glycoproteins gB and gH act in a redundant fashion to promote fusion between the virion envelope and the outer NM. HSV mutants lacking both gB and gH accumulate enveloped virions in herniations, vesicles that bulge into the nucleoplasm. Earlier studies had shown that HSV mutants lacking the viral serine/threonine kinase US3 also accumulate herniations. Here, we demonstrate that HSV gB is phosphorylated in a US3-dependent manner in HSV-infected cells, especially in a crude nuclear fraction. Moreover, US3 directly phosphorylated the gB cytoplasmic (CT) domain in in vitro assays. Deletion of gB in the context of a US3-null virus did not add substantially to defects in nuclear egress. The majority of the US3-dependent phosphorylation of gB involved the CT domain and amino acid T887, a residue present in a motif similar to that recognized by US3 in other proteins. HSV recombinants lacking gH and expressing either gB substitution mutation T887A or a gB truncated at residue 886 displayed substantial defects in nuclear egress. We concluded that phosphorylation of the gB CT domain is important for gB-mediated fusion with the outer NM. This suggested a model in which the US3 kinase is incorporated into the tegument layer (between the capsid and envelope) in HSV virions present in the perinuclear space. By this packaging, US3 might be brought close to the gB CT tail, leading to phosphorylation and triggering fusion between the virion envelope and the outer NM.

  8. Advanced control strategies for HVAC&R systems—An overview: Part II: Soft and fusion control

    SciTech Connect

    D. Subbaram Naidu; Craig G. Rieger

    2011-04-01

    A chronological overview of the advanced control strategies for HVAC&R is presented. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and the fusion or hybrid of hard and soft control techniques. Part I focused on hardcontrol strategies; Part II focuses on soft and fusion control and some future directions in HVA&R research. This overview is not intended to be an exhaustive survey on this topic, and any omissions of other works is purely unintentional.

  9. Diverse repertoire of the MHC class II-peptide complexes is required for presentation of viral superantigens.

    PubMed

    Golovkina, T; Agafonova, Y; Kazansky, D; Chervonsky, A

    2001-02-15

    Among other features, peptides affect MHC class II molecules, causing changes in the binding of bacterial superantigens (b-Sag). Whether peptides can alter binding of viral superantigens (v-Sag) to MHC class II was not known. Here we addressed the question of whether mutations limiting the diversity of peptides bound by the MHC class II molecules influenced the presentation of v-Sag and, subsequently, the life cycle of the mouse mammary tumor virus (MMTV). T cells reactive to v-Sag were found in mice lacking DM molecules as well as in A(b)Ep-transgenic mice in which MHC class II binding grooves were predominantly occupied by an invariant chain fragment or Ealpha(52-68) peptide, respectively. APCs from the mutant mice failed to present v-Sag, as determined by the lack of Sag-specific T cell activation, Sag-induced T cell deletion, and by the aborted MMTV infection. In contrast, mice that express I-A(b) with a variety of bound peptides presented v-Sag and were susceptible to MMTV infection. Comparison of v-Sag and b-Sag presentation by the same mutant cells suggested that presentation of v-Sag had requirements similar to that for presentation of toxic shock syndrome toxin-1. Thus, MHC class II peptide repertoire is critical for recognition of v-Sag by the T cells and affects the outcome of infection with a retrovirus.

  10. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks.

    PubMed

    Ge, Jinying; Wang, Xijun; Tian, Meijie; Gao, Yuwei; Wen, Zhiyuan; Yu, Guimei; Zhou, Weiwei; Zu, Shulong; Bu, Zhigao

    2015-05-15

    Canine Distemper Virus (CDV) infects many carnivores and cause several high-mortality disease outbreaks. The current CDV live vaccine cannot be safely used in some exotic species, such as mink and ferret. Here, we generated recombinant lentogenic Newcastle disease virus (NDV) LaSota expressing either envelope glycoproyein, heamagglutinine (H) or fusion protein (F), named as rLa-CDVH and rLa-CDVF, respectively. The feasibility of these recombinant NDVs to serve as live virus-vectored CD vaccine was evaluated in minks. rLa-CDVH induced significant neutralization antibodies (NA) to CDV and provided solid protection against virulent CDV challenge. On the contrast, rLa-CDVF induced much lower NA to CDV and fail to protected mink from virulent CDV challenge. Results suggest that recombinant NDV expressing CDV H is safe and efficient candidate vaccine against CDV in mink, and maybe other host species.

  11. HYLIFE-II: An approach to a long-lived, first-wall component for inertial fusion power plants

    SciTech Connect

    Moir, R.W.; House, P.A.; Leber, R.L.

    1994-08-01

    The HYLIFE-II concept for IFE (inertial fusion energy) is based on nonflammable, renewable liquid-wall fusion target chambers formed with Flibe (Li{sub 2}BeF{sub 4}) molten-salt jets, a heavy-ion driver, and single-sided illumination of indirect drive targets. As a direct result of using thick renewable liquid walls, the predicted cost of electricity is reduced about 30% to 4.4{cents}/kWh at 1 GWe (3.2{cents}/kWh at 2 GWe). The development program for HYLIFE-II can be shortened and reduced in cost by not requiring expensive neutron sources to develop first-wall materials.

  12. Functional Analysis of the Putative Fusion Domain of the Baculovirus Envelope Fusion Protein F

    PubMed Central

    Westenberg, Marcel; Veenman, Frank; Roode, Els C.; Goldbach, Rob W.; Vlak, Just M.; Zuidema, Douwe

    2004-01-01

    Group II nucleopolyhedroviruses (NPVs), e.g., Spodoptera exigua MNPV, lack a GP64-like protein that is present in group I NPVs but have an unrelated envelope fusion protein named F. In contrast to GP64, the F protein has to be activated by a posttranslational cleavage mechanism to become fusogenic. In several vertebrate viral fusion proteins, the cleavage activation generates a new N terminus which forms the so-called fusion peptide. This fusion peptide inserts in the cellular membrane, thereby facilitating apposition of the viral and cellular membrane upon sequential conformational changes of the fusion protein. A similar peptide has been identified in NPV F proteins at the N terminus of the large membrane-anchored subunit F1. The role of individual amino acids in this putative fusion peptide on viral infectivity and propagation was studied by mutagenesis. Mutant F proteins with single amino acid changes as well as an F protein with a deleted putative fusion peptide were introduced in gp64-null Autographa californica MNPV budded viruses (BVs). None of the mutations analyzed had an major effect on the processing and incorporation of F proteins in the envelope of BVs. Only two mutants, one with a substitution for a hydrophobic residue (F152R) and one with a deleted putative fusion peptide, were completely unable to rescue the gp64-null mutant. Several nonconservative substitutions for other hydrophobic residues and the conserved lysine residue had only an effect on viral infectivity. In contrast to what was expected from vertebrate virus fusion peptides, alanine substitutions for glycines did not show any effect. PMID:15194771

  13. Flibe Coolant Cleanup and Processing in the HYLIFE-II Inertial Fusion Energy Power Plant

    SciTech Connect

    Moir, R W

    2001-03-23

    In the HYLIFE-II chamber design, a thick flowing blanket of molten-salt (Li{sub 2}BeF{sub 4}) called flibe is used to protect structures from radiation damage. Since it is directly exposed to the fusion target, the flibe will absorb the target debris. Removing the materials left over from target explosions at the rate of {approx}6/s and then recycling some of these materials poses a challenge for the inertial fusion energy power plant. The choice of target materials derives from multi-disciplinary criteria such as target performance, fabricability, safety and environment, corrosion, and cost of recycle. Indirect-drive targets require high-2 materials for the hohlraum. Gold and gadolinium are favorite target materials for laboratory experiments but cost considerations may preclude their use in power plants or at least requires cost effective recycle because a year's supply of gold and gadolinium is estimated at 520 M$ and 40 M$. Environmental and waste considerations alone require recycle of this material. Separation by volatility appears to be the most attractive (e.g., Hg and Xe); centrifugation (e.g., Pb) is acceptable with some problems (e.g., materials compatibility) and chemical separation is the least attractive (e.g. Gd and Hf). Mercury, hafnium and xenon might be substituted with equal target performance and have advantages in removal and recycle due to their high volatility, except for hafnium. Alternatively, lead, tungsten and xenon might be used due to the ability to use centrifugation and gaseous separation. Hafnium or tantalum form fluorides, which will complicate materials compatibility, corrosion and require sufficient volatility of the fluoride for separation. Further complicating the coolant cleanup and processing is the formation of free fluorine due to nuclear transformation of lithium and beryllium in the flibe, which requires chemical control of the fluoride level to minimize corrosion. The study of the choice of target materials and the

  14. Use of Clearance Indexes to Assess Waste Disposal Issues for the HYLIFE-II Inertial Fusion Energy Power Plant Design

    SciTech Connect

    Reyes, S; Latkowski, J F; Sanz, J

    2002-01-17

    Traditionally, waste management studies for fusion energy have used the Waste Disposal Rating (WDR) to evaluate if radioactive material from irradiated structures could qualify for shallow land burial. However, given the space limitations and the negative public perception of large volumes of waste, there is a growing international motivation to develop a fusion waste management system that maximizes the amount of material that can be cleared or recycled. In this work, we present an updated assessment of the waste management options for the HYLIFE-II inertial fusion energy (IFE) power plant, using the concept of Clearance Index (CI) for radioactive waste disposal. With that purpose, we have performed a detailed neutronics analysis of the HYLIFE-II design, using the TART and ACAB computer codes for neutron transport and activation, respectively. Whereas the traditional version of ACAB only provided the user with the WDR as an index for waste considerations, here we have modified the code to calculate Clearance Indexes using the current International Atomic Energy Agency (IAEA) clearance limits for radiological waste disposal. The results from the analysis are used to perform an assessment of the waste management options for the HYLIFE-II IFE design.

  15. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins.

    PubMed

    Maric, Martina; Haugo, Alison C; Dauer, William; Johnson, David; Roller, Richard J

    2014-07-01

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Sulphated polysaccharides from Ulva clathrata and Cladosiphon okamuranus seaweeds both inhibit viral attachment/entry and cell-cell fusion, in NDV infection.

    PubMed

    Aguilar-Briseño, José Alberto; Cruz-Suarez, Lucia Elizabeth; Sassi, Jean-François; Ricque-Marie, Denis; Zapata-Benavides, Pablo; Mendoza-Gamboa, Edgar; Rodríguez-Padilla, Cristina; Trejo-Avila, Laura María

    2015-01-26

    Sulphated polysaccharides (SP) extracted from seaweeds have antiviral properties and are much less cytotoxic than conventional drugs, but little is known about their mode of action. Combination antiviral chemotherapy may offer advantages over single agent therapy, increasing efficiency, potency and delaying the emergence of resistant virus. The paramyxoviridae family includes pathogens causing morbidity and mortality worldwide in humans and animals, such as the Newcastle Disease Virus (NDV) in poultry. This study aims at determining the antiviral activity and mechanism of action in vitro of an ulvan (SP from the green seaweed Ulva clathrata), and of its mixture with a fucoidan (SP from Cladosiphon okamuranus), against La Sota NDV strain. The ulvan antiviral activity was tested using syncytia formation, exhibiting an IC50 of 0.1 μg/mL; ulvan had a better anti cell-cell spread effect than that previously shown for fucoidan, and inhibited cell-cell fusion via a direct effect on the F0 protein, but did not show any virucidal effect. The mixture of ulvan and fucoidan showed a greater anti-spread effect than SPs alone, but ulvan antagonizes the effect of fucoidan on the viral attachment/entry. Both SPs may be promising antivirals against paramyxovirus infection but their mixture has no clear synergistic advantage.

  17. Sulphated Polysaccharides from Ulva clathrata and Cladosiphon okamuranus Seaweeds both Inhibit Viral Attachment/Entry and Cell-Cell Fusion, in NDV Infection

    PubMed Central

    Aguilar-Briseño, José Alberto; Cruz-Suarez, Lucia Elizabeth; Sassi, Jean-François; Ricque-Marie, Denis; Zapata-Benavides, Pablo; Mendoza-Gamboa, Edgar; Rodríguez-Padilla, Cristina; Trejo-Avila, Laura María

    2015-01-01

    Sulphated polysaccharides (SP) extracted from seaweeds have antiviral properties and are much less cytotoxic than conventional drugs, but little is known about their mode of action. Combination antiviral chemotherapy may offer advantages over single agent therapy, increasing efficiency, potency and delaying the emergence of resistant virus. The paramyxoviridae family includes pathogens causing morbidity and mortality worldwide in humans and animals, such as the Newcastle Disease Virus (NDV) in poultry. This study aims at determining the antiviral activity and mechanism of action in vitro of an ulvan (SP from the green seaweed Ulva clathrata), and of its mixture with a fucoidan (SP from Cladosiphon okamuranus), against La Sota NDV strain. The ulvan antiviral activity was tested using syncytia formation, exhibiting an IC50 of 0.1 μg/mL; ulvan had a better anti cell-cell spread effect than that previously shown for fucoidan, and inhibited cell-cell fusion via a direct effect on the F0 protein, but did not show any virucidal effect. The mixture of ulvan and fucoidan showed a greater anti-spread effect than SPs alone, but ulvan antagonizes the effect of fucoidan on the viral attachment/entry. Both SPs may be promising antivirals against paramyxovirus infection but their mixture has no clear synergistic advantage. PMID:25629385

  18. Gene expression of herpes simplex virus. II. Uv radiological analysis of viral transcription units

    SciTech Connect

    Millette, R. L.; Klaiber, R.

    1980-06-01

    The transcriptional organization of the genome of herpes simplex virus type 1 was analyzed by measuring the sensitivity of viral polypeptide synthesis to uv irradiation of the infecting virus. Herpes simplex virus type 1 was irradiated with various doses of uv light and used to infect xeroderma pigmentosum fibroblasts. Immediate early transcription units were analyzed by having cycloheximide present throughout the period of infection, removing the drug at 8 h postinfection, and pulse-labeling proteins with (355)methionine. Delayed early transcription units were analyzed in similar studies by having 9-beta-D-arabinofuranosyladenine present during the experiment to block replication of the input irradiated genome. The results indicate that none of the immediate early genes analyzed can be cotranscribed, whereas some of the delayed early genes might be cotranscribed. No evidence was found for the existence of large, multigene transcription units.

  19. Identification of Sequences in Herpes Simplex Virus Type 1 ICP22 That Influence RNA Polymerase II Modification and Viral Late Gene Expression▿

    PubMed Central

    Bastian, Thomas W.; Rice, Stephen A.

    2009-01-01

    Previous studies have shown that the herpes simplex virus type 1 (HSV-1) immediate-early protein ICP22 alters the phosphorylation of the host cell RNA polymerase II (Pol II) during viral infection. In this study, we have engineered several ICP22 plasmid and virus mutants in order to map the ICP22 sequences that are involved in this function. We identify a region in the C-terminal half of ICP22 (residues 240 to 340) that is critical for Pol II modification and further show that the N-terminal half of the protein (residues 1 to 239) is not required. However, immunofluorescence analysis indicates that the N-terminal half of ICP22 is needed for its localization to nuclear body structures. These results demonstrate that ICP22's effects on Pol II do not require that it accumulate in nuclear bodies. As ICP22 is known to enhance viral late gene expression during infection of certain cultured cells, including human embryonic lung (HEL) cells, we used our engineered viral mutants to map this function of ICP22. It was found that mutations in both the N- and C-terminal halves of ICP22 result in similar defects in viral late gene expression and growth in HEL cells, despite having distinctly different effects on Pol II. Thus, our results genetically uncouple ICP22's effects on Pol II from its effects on viral late gene expression. This suggests that these two functions of ICP22 may be due to distinct activities of the protein. PMID:18971282

  20. Non-viral transfer approaches for the gene therapy of mucopolysaccharidosis type II (Hunter syndrome).

    PubMed

    Tomanin, R; Friso, A; Alba, S; Piller Puicher, E; Mennuni, C; La Monica, N; Hortelano, G; Zacchello, F; Scarpa, M

    2002-01-01

    Hunter syndrome is a rare X-linked lysosomal storage disorder caused by the deficiency of the housekeeping enzyme iduronate-2-sulphatase (IDS). Deficiency of IDS causes accumulation of undegraded dermatan and heparan-sulphate in various tissues and organs. Approaches have been proposed for the symptomatic therapy of the disease, including bone marrow transplantation and, very recently, enzyme replacement. To date, gene therapy strategies have considered mainly retroviral and adenoviral transduction of the correct cDNA. In this paper, two non-viral somatic gene therapy approaches are proposed: encapsulated heterologous cells and muscle electro-gene transfer (EGT). Hunter primary fibroblasts were co-cultured with either cell clones over-expressing the lacking enzyme or with the same incorporated in alginate microcapsules. For EGT, plasmid vector was injected into mouse quadriceps muscle, which was then immediately electro-stimulated. Co-culturing Hunter primary fibroblasts with cells over-expressing IDS resulted in a three- to fourfold increase in fibroblast enzyme activity with respect to control cells. Fibroblast IDS activity was also increased after co-culture with encapsulated cells. EGT was able to transduce genes in mouse muscle, resulting in at least a tenfold increase in IDS activity 1-5 weeks after treatment. Although preliminary, results from encapsulated heterologous cell clones and muscle EGT encourage further evaluations for possible application to gene therapy for Hunter syndrome.

  1. pH-Dependent Changes in Photoaffinity Labeling Patterns of the H1 Influenza Virus Hemagglutinin by Using an Inhibitor of Viral Fusion

    PubMed Central

    Cianci, Christopher; Yu, Kuo-Long; Dischino, Douglas D.; Harte, William; Deshpande, Milind; Luo, Guangxiang; Colonno, Richard J.; Meanwell, Nicholas A.; Krystal, Mark

    1999-01-01

    The hemagglutinin (HA) protein undergoes a low-pH-induced conformational change in the acidic milieu of the endosome, resulting in fusion of viral and cellular membranes. A class of compounds that specifically interact with the HA protein of H1 and H2 subtype viruses and inhibit this conformational change was recently described (G. X. Luo et al., Virology 226:66–76, 1996, and J. Virol. 71:4062–4070, 1997). In this study, purified HA trimers (bromelain-cleaved HA [BHA]) are used to examine the properties and binding characteristics of these inhibitors. Compounds were able to inhibit the low-pH-induced change of isolated trimers, as detected by resistance to digestion with trypsin. Protection from digestion was extremely stable, as BHA-inhibitor complexes could be incubated for 24 h in low pH with almost no change in BHA structure. One inhibitor was prepared as a radiolabeled photoaffinity analog and used to probe for specific drug interactions with the HA protein. Analysis of BHA after photoaffinity analog binding and UV cross-linking revealed that the HA2 subunit of the HA was specifically radiolabeled. Cross-linking of the photoaffinity analog to BHA under neutral (native) pH conditions identified a stretch of amino acids within the α-helix of HA2 that interact with the inhibitor. Interestingly, cross-linking of the analog under acidic conditions identified a different region within the HA2 N terminus which interacts with the photoaffinity compound. These attachment sites help to delineate a potential binding pocket and suggest a model whereby the BHA is able to undergo a partial, reversible structural change in the presence of inhibitor compound. PMID:9971755

  2. Structural basis for nonneutralizing antibody competition at antigenic site II of the respiratory syncytial virus fusion protein

    PubMed Central

    Mousa, Jarrod J.; Sauer, Marion F.; Sevy, Alexander M.; Finn, Jessica A.; Alvarado, Gabriela; King, Hannah G.; Loerinc, Leah B.; Fong, Rachel H.; Doranz, Benjamin J.; Correia, Bruno E.; Kalyuzhniy, Oleksandr; Wen, Xiaolin; Jardetzky, Theodore S.; Schief, William R.; Ohi, Melanie D.; Meiler, Jens

    2016-01-01

    Palivizumab was the first antiviral monoclonal antibody (mAb) approved for therapeutic use in humans, and remains a prophylactic treatment for infants at risk for severe disease because of respiratory syncytial virus (RSV). Palivizumab is an engineered humanized version of a murine mAb targeting antigenic site II of the RSV fusion (F) protein, a key target in vaccine development. There are limited reported naturally occurring human mAbs to site II; therefore, the structural basis for human antibody recognition of this major antigenic site is poorly understood. Here, we describe a nonneutralizing class of site II-specific mAbs that competed for binding with palivizumab to postfusion RSV F protein. We also describe two classes of site II-specific neutralizing mAbs, one of which escaped competition with nonneutralizing mAbs. An X-ray crystal structure of the neutralizing mAb 14N4 in complex with F protein showed that the binding angle at which human neutralizing mAbs interact with antigenic site II determines whether or not nonneutralizing antibodies compete with their binding. Fine-mapping studies determined that nonneutralizing mAbs that interfere with binding of neutralizing mAbs recognize site II with a pose that facilitates binding to an epitope containing F surface residues on a neighboring protomer. Neutralizing antibodies, like motavizumab and a new mAb designated 3J20 that escape interference by the inhibiting mAbs, avoid such contact by binding at an angle that is shifted away from the nonneutralizing site. Furthermore, binding to rationally and computationally designed site II helix–loop–helix epitope-scaffold vaccines distinguished neutralizing from nonneutralizing site II antibodies. PMID:27791117

  3. Structural basis for nonneutralizing antibody competition at antigenic site II of the respiratory syncytial virus fusion protein.

    PubMed

    Mousa, Jarrod J; Sauer, Marion F; Sevy, Alexander M; Finn, Jessica A; Bates, John T; Alvarado, Gabriela; King, Hannah G; Loerinc, Leah B; Fong, Rachel H; Doranz, Benjamin J; Correia, Bruno E; Kalyuzhniy, Oleksandr; Wen, Xiaolin; Jardetzky, Theodore S; Schief, William R; Ohi, Melanie D; Meiler, Jens; Crowe, James E

    2016-11-01

    Palivizumab was the first antiviral monoclonal antibody (mAb) approved for therapeutic use in humans, and remains a prophylactic treatment for infants at risk for severe disease because of respiratory syncytial virus (RSV). Palivizumab is an engineered humanized version of a murine mAb targeting antigenic site II of the RSV fusion (F) protein, a key target in vaccine development. There are limited reported naturally occurring human mAbs to site II; therefore, the structural basis for human antibody recognition of this major antigenic site is poorly understood. Here, we describe a nonneutralizing class of site II-specific mAbs that competed for binding with palivizumab to postfusion RSV F protein. We also describe two classes of site II-specific neutralizing mAbs, one of which escaped competition with nonneutralizing mAbs. An X-ray crystal structure of the neutralizing mAb 14N4 in complex with F protein showed that the binding angle at which human neutralizing mAbs interact with antigenic site II determines whether or not nonneutralizing antibodies compete with their binding. Fine-mapping studies determined that nonneutralizing mAbs that interfere with binding of neutralizing mAbs recognize site II with a pose that facilitates binding to an epitope containing F surface residues on a neighboring protomer. Neutralizing antibodies, like motavizumab and a new mAb designated 3J20 that escape interference by the inhibiting mAbs, avoid such contact by binding at an angle that is shifted away from the nonneutralizing site. Furthermore, binding to rationally and computationally designed site II helix-loop-helix epitope-scaffold vaccines distinguished neutralizing from nonneutralizing site II antibodies.

  4. Serine 204 phosphorylation and O-β-GlcNAC interplay of IGFBP-6 as therapeutic indicator to regulate IGF-II functions in viral mediated hepatocellular carcinoma.

    PubMed

    Ahmad, Waqar; Shabbiri, Khadija; Ijaz, Bushra; Asad, Sultan; Nazar, Noreen; Nazar, Shazia; Fouzia, Kiran; Kausar, Humera; Gull, Sana; Sarwar, Muhammad T; Shahid, Imaran; Hassan, Sajida

    2011-05-08

    Hepatocellular carcinoma is mainly associated with viral hepatitis B and C. Activation of cell growth stimulator IGF-II gene is observed in tumor formation especially in viral associated hepatocellular carcinoma. Elevated IGF-II levels are indicator of increased risk for cholangiocellular and hepatocellular carcinomas through over saturation of IGF-II binding capacities with IGF receptors leading to cellular dedifferentiation. In HCV, core protein is believed to trans-activate host IGF-II receptor through PKC pathway and the inhibition of tumor cell growth can be achieved by blocking IGF-II pathway either at transcriptional level or increasing its binding with IGFBPs (Insulin like growth factor proteins) at C-terminal, so that it is not available in free form. IGFBP-6 is a specific inhibitor of IGF-II actions. Affinity of IGFBPs with IGFs is controlled by post-translational modifications. Phosphorylation of IGFBPs inhibits IGFs action on target cells while O-glycosylation prevents binding of IGFBP-6 to glycosaminoglycans and cell membranes and resulting in a 10-fold higher affinity for IGF-II. O-glycosylation and phosphorylation operate the functional expression of cellular proteins, this switching on and off the protein expression is difficult to monitor in vivo. By using neural network based prediction methods, we propose that alternate O-β-GlcNAc modification and phosphorylation on Ser 204 control the binding of IGFBP-6 with IGF-II. This information may be used for developing new therapies by regulating IGFBP-6 assembly with IGF-II to minimize the risk of viral associated hepatocellular carcinoma. We can conclude that during HCV/HBV infection, O-β-GlcNAc of IGFBP-6 at Ser 204 diminish their binding with IGF-II, increase IGF-II cellular expression and promote cancer progression which can lead to hepatocellular carcinoma. Furthermore, this site can be used for developing new therapies to control the IGF-II actions during viral infection to minimize the risk of

  5. Serine 204 phosphorylation and O-β-GlcNAC interplay of IGFBP-6 as therapeutic indicator to regulate IGF-II functions in viral mediated hepatocellular carcinoma

    PubMed Central

    2011-01-01

    Hepatocellular carcinoma is mainly associated with viral hepatitis B and C. Activation of cell growth stimulator IGF-II gene is observed in tumor formation especially in viral associated hepatocellular carcinoma. Elevated IGF-II levels are indicator of increased risk for cholangiocellular and hepatocellular carcinomas through over saturation of IGF-II binding capacities with IGF receptors leading to cellular dedifferentiation. In HCV, core protein is believed to trans-activate host IGF-II receptor through PKC pathway and the inhibition of tumor cell growth can be achieved by blocking IGF-II pathway either at transcriptional level or increasing its binding with IGFBPs (Insulin like growth factor proteins) at C-terminal, so that it is not available in free form. IGFBP-6 is a specific inhibitor of IGF-II actions. Affinity of IGFBPs with IGFs is controlled by post-translational modifications. Phosphorylation of IGFBPs inhibits IGFs action on target cells while O-glycosylation prevents binding of IGFBP-6 to glycosaminoglycans and cell membranes and resulting in a 10-fold higher affinity for IGF-II. O-glycosylation and phosphorylation operate the functional expression of cellular proteins, this switching on and off the protein expression is difficult to monitor in vivo. By using neural network based prediction methods, we propose that alternate O-β-GlcNAc modification and phosphorylation on Ser 204 control the binding of IGFBP-6 with IGF-II. This information may be used for developing new therapies by regulating IGFBP-6 assembly with IGF-II to minimize the risk of viral associated hepatocellular carcinoma. We can conclude that during HCV/HBV infection, O-β-GlcNAc of IGFBP-6 at Ser 204 diminish their binding with IGF-II, increase IGF-II cellular expression and promote cancer progression which can lead to hepatocellular carcinoma. Furthermore, this site can be used for developing new therapies to control the IGF-II actions during viral infection to minimize the risk of

  6. Effect of human leukocyte antigen class I and II alleles on hepatitis C viral load among chronic hepatitis C patients in Southern Taiwan.

    PubMed

    Tseng, Kuo-Chih; Tseng, Chih-Wei; Hsieh, Yu-Hsi; Chang, Chin-Kuo; Lai, Ning-Sheng; Hung, Tsung-Hsing; Chang, Ting-Tsung

    2013-08-01

    The viral load of hepatitis C virus (HCV) in chronic hepatitis C patients affects clinical outcomes and response to interferon treatment. Various factors may be involved in determining the viral load, including host genetic factors. The aim of this study was to investigate the relationship between HCV viral load and human leukocyte antigen (HLA) class I and class II alleles. One hundred and six HCV RNA positive subjects were enrolled, and viral load was measured. HLA-A, -B, -C, -DR, and -DQ loci were determined by sequence-based genotyping. Univariate analysis indicated that HLA-B(*)40 and HLA-C(*)07 alleles had significantly higher HCV RNA levels (P<0.05). Patients with the HLA-C(*)15 allele exhibited a trend toward a lower HCV viral load (P=0.06). After controlling for confounding factors, multivariate analysis revealed that only HLA-C(*)15 allele was identified as a significant determinant for HCV-RNA level (slope=-0.91, 95% CI: -1.58, -0.24; Holm's P<0.01). Patients expressing the HLA-C(*)15 allele had significantly lower HCV RNA levels. HCV genotype 1 was significantly associated with high HCV RNA levels (P<0.05 by Mann-Whitney U test). In conclusion, HLA-C(*)15 is an important host immunogenetic factor with an inverse association to HCV viral load in CHC patients in Taiwan. HCV genotype 1 is the viral factor that associated with high viral load. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  7. Field Theoretic Study of Bilayer Membrane Fusion: II. Mechanism of a Stalk-Hole Complex

    PubMed Central

    Katsov, K.; Müller, M.; Schick, M.

    2006-01-01

    We use self-consistent field theory to determine structural and energetic properties of intermediates and transition states involved in bilayer membrane fusion. In particular, we extend our original calculations from those of the standard hemifusion mechanism, which was studied in detail in the first article of this series, to consider a possible alternative to it. This mechanism involves non-axial stalk expansion, in contrast to the axially symmetric evolution postulated in the classical mechanism. Elongation of the initial stalk facilitates the nucleation of holes and leads to destabilization of the fusing membranes via the formation of a stalk-hole complex. We study properties of this complex in detail, and show how transient leakage during fusion, previously predicted and recently observed in experiment, should vary with lipid architecture and tension. We also show that the barrier to fusion in the alternative mechanism is lower than that of the standard mechanism by a few kBT over most of the relevant region of system parameters, so that this alternative mechanism is a viable alternative to the standard pathway. We emphasize that any mechanism, such as this alternative one, which affects, even modestly, the line tension of a hole in a membrane, affects greatly the ability of that membrane to undergo fusion. PMID:16272437

  8. Epidemiological aspects of viral haemorrhagic septicaemia virus genotype II isolated from Baltic herring, Clupea harengus membras L.

    PubMed

    Gadd, T; Jakava-Viljanen, M; Tapiovaara, H; Koski, P; Sihvonen, L

    2011-07-01

    This study was carried out to clarify the role of wild fish, especially Baltic herring, Clupea harengus membras L., in the epidemiology of viral haemorrhagic septicaemia virus (VHSV) in brackish water in Finland. Baltic herring with no visible signs of disease were collected from the Archipelago Sea, the Gulf of Bothnia and the eastern Gulf of Finland. In total, 7580 herring were examined by virus isolation as 758 pooled samples and 3029 wild salmonid broodfish as pooled samples during 2004-2006. VHSV was isolated from 51 pooled herring samples in bluegill fibroblast-2 cells, but not in epithelioma papulosum cyprini cells. The majority of isolations were from the coastal archipelago and from fish caught during the spawning season. Based on glycoprotein (G) gene sequences, the virus was classified as a member of genotype II of VHSV. Pairwise comparisons of the G gene regions of herring isolates revealed that all the isolates were closely related, with 98.8-100% nucleotide homology. Phylogenetic analyses revealed that they were closely related to the strains isolated previously from herring and sprat, Sprattus sprattus (L.), in Gotland and to the VHSV isolates from European river lamprey, Lampetra fluviatilis (L.), in the rivers that flow into the Bothnian Bay. The infection in Baltic herring is likely to be independent of the VHSV Id epidemic in farmed rainbow trout, Oncorhynchus mykiss (Walbaum). © 2011 Blackwell Publishing Ltd.

  9. Performance of the SAMBA I and II HIV-1 Semi-Q Tests for viral load monitoring at the point-of-care.

    PubMed

    Goel, Neha; Ritchie, Allyson V; Mtapuri-Zinyowera, Sekesai; Zeh, Clement; Stepchenkova, Tetiana; Lehga, Jesse; De Ruiter, Annemiek; Farleigh, Laura E; Edemaga, Daniel; So, Rosario; Sembongi, Hiroshi; Wisniewski, Craig; Nadala, Lourdes; Schito, Marco; Lee, Helen

    2017-06-01

    Although access to antiretroviral therapy for HIV infection is increasing in resource-poor countries, viral load testing for monitoring of treatment efficacy remains limited, expensive, and confined to centralized laboratories. The SAMBA HIV-1 Semi-Q Test is a nucleic acid-based amplification assay developed for viral load monitoring performed on either the semi-automated SAMBA I system for laboratory use or the fully automated SAMBA II system for point-of care use. We have assessed the performance characteristics of the SAMBA HIV-1 Semi-Q Test on SAMBA I and SAMBA II systems according to the Common Technical Specifications of the European Community's 98/79 In Vitro Diagnostic Medical Devices Directive. The sensitivity, specificity, reproducibility, and viral subtype coverage of the test were similar on the SAMBA I and SAMBA II platforms. The clinical performance on the SAMBA I system was compared with the Roche CAP/CTM assay and evaluated in-house with 130 patient specimens from London as well as in the field with 390 specimens in Kenya and Zimbabwe. The overall concordance between the SAMBA and CAP/CTM assays was 98.1%. The clinical performance of the test on the SAMBA II platform in comparison with the Abbott HIV-1 RealTime Assay was evaluated in-house with 150 specimens from Ukraine, yielding a concordance of 98.0%. The results thus show that the SAMBA HIV-1 Semi-Q Test performs equivalently on SAMBA I and SAMBA II, and they suggest that the test is suitable for implementation at the point-of-care in resource-poor regions where viral load testing is desperately needed but often unavailable. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Lesions and distribution of viral antigen following an experimental infection of young seronegative calves with virulent bovine virus diarrhea virus-type II.

    PubMed Central

    Ellis, J A; West, K H; Cortese, V S; Myers, S L; Carman, S; Martin, K M; Haines, D M

    1998-01-01

    During the past several years, acute infections with bovine viral diarrhea virus (BVDV) have been causally linked to hemorrhagic and acute mucosal disease-like syndromes with high mortality. The majority of BVDVs isolated in such cases have been classified as type II on the basis of genetic and antigenic characteristics. It was our objective to examine clinical disease, lesions and potential sites of viral replication, following experimental BVDV type II infection in young calves. On approximately day 35 after birth, calves that had received BVDV-antibody-negative colostrum were infected by intranasal inoculation of 5 x 10(5) TCID50 of BVDV type II isolate 24,515 in 5 mL of tissue culture fluid (2.5 mL/nostril). Calves were monitored twice daily for signs of clinical disease. Approximately 48-72 h after infection, all calves developed transient pyrexia (39.4-40.5 degrees C) and leukopenia. Beginning on approximately day 7 after infection, all calves developed watery diarrhea, pyrexia (40.5-41.6 degrees C), marked leukopenia (> or = 75% drop from preinoculation values), variable thrombocytopenia, and moderate to severe depression. Calves were euthanized on days 10, 11, or 12 after infection due to severe disease. Gross and histological lesions consisted of multifocal bronchointerstitial pneumonia (involving 10%-25% of affected lungs), bone marrow hypoplasia and necrosis, and minimal erosive lesions in the alimentary tract. Immunohistochemical staining for BVDV revealed widespread viral antigen usually within epithelial cells, smooth muscle cells and mononuclear phagocytes in multiple organs, including lung, Peyer's patches, gastric mucosa, thymus, adrenal gland, spleen, lymph nodes, bone marrow, and skin. This BVDV type II isolate caused rapidly progressive, severe multisystemic disease in seronegative calves that was associated with widespread distribution of viral antigen and few gross or histological inflammatory lesions. Images Figure 1. Figure 2. Figure 3

  11. Lesions and distribution of viral antigen following an experimental infection of young seronegative calves with virulent bovine virus diarrhea virus-type II.

    PubMed

    Ellis, J A; West, K H; Cortese, V S; Myers, S L; Carman, S; Martin, K M; Haines, D M

    1998-07-01

    During the past several years, acute infections with bovine viral diarrhea virus (BVDV) have been causally linked to hemorrhagic and acute mucosal disease-like syndromes with high mortality. The majority of BVDVs isolated in such cases have been classified as type II on the basis of genetic and antigenic characteristics. It was our objective to examine clinical disease, lesions and potential sites of viral replication, following experimental BVDV type II infection in young calves. On approximately day 35 after birth, calves that had received BVDV-antibody-negative colostrum were infected by intranasal inoculation of 5 x 10(5) TCID50 of BVDV type II isolate 24,515 in 5 mL of tissue culture fluid (2.5 mL/nostril). Calves were monitored twice daily for signs of clinical disease. Approximately 48-72 h after infection, all calves developed transient pyrexia (39.4-40.5 degrees C) and leukopenia. Beginning on approximately day 7 after infection, all calves developed watery diarrhea, pyrexia (40.5-41.6 degrees C), marked leukopenia (> or = 75% drop from preinoculation values), variable thrombocytopenia, and moderate to severe depression. Calves were euthanized on days 10, 11, or 12 after infection due to severe disease. Gross and histological lesions consisted of multifocal bronchointerstitial pneumonia (involving 10%-25% of affected lungs), bone marrow hypoplasia and necrosis, and minimal erosive lesions in the alimentary tract. Immunohistochemical staining for BVDV revealed widespread viral antigen usually within epithelial cells, smooth muscle cells and mononuclear phagocytes in multiple organs, including lung, Peyer's patches, gastric mucosa, thymus, adrenal gland, spleen, lymph nodes, bone marrow, and skin. This BVDV type II isolate caused rapidly progressive, severe multisystemic disease in seronegative calves that was associated with widespread distribution of viral antigen and few gross or histological inflammatory lesions.

  12. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume II

    SciTech Connect

    Abdou, M.

    1984-10-01

    The Nuclear Fusion Issues chapter contains a comprehensive list of engineering issues for fusion reactor nuclear components. The list explicitly defines the uncertainties associated with the engineering option of a fusion reactor and addresses the potential consequences resulting from each issue. The next chapter identifies the fusion nuclear technology testing needs up to the engineering demonstration stage. (MOW)

  13. Solar fusion cross sections II: the pp chain and CNO cycles

    SciTech Connect

    Adelberger, E G; Bemmerer, D; Bertulani, C A; Chen, J -W; Costantini, H; Couder, M; Cyburt, R; Davids, B; Freedman, S J; Gai, M; Garcia, A; Gazit, D; Gialanella, L; Greife, U; Hass, M; Heeger, K; Haxton, W C; Imbriani, G; Itahashi, T; Junghans, A; Kubodera, K; Langanke, K; Leitner, D; Leitner, M; Marcucci, L E; Motobayashi, T; Mukhamedzhanov, A; Nollett, Kenneth M; Nunes, F M; Park, T -S; Parker, P D; Prati, P; Ramsey-Musolf, M J; Hamish Robertson, R G; Schiavilla, R; Simpson, E C; Snover, K A; Spitaleri, C; Strieder, F; Suemmerer, K; Trautvetter, R E; Tribble, R E; Typel, S; Uberseder, E; Vetter, P; Wiescher, M; Winslow, L

    2011-04-01

    The available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production are summarized and critically evaluated. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for 8B solar neutrinos. Opportunities for further increasing the precision of key rates are also discussed, including new facilities, new experimental techniques, and improvements in theory. This review, which summarizes the conclusions of a workshop held at the Institute for Nuclear Theory, Seattle, in January 2009, is intended as a 10-year update and supplement to 1998, Rev. Mod. Phys. 70, 1265.

  14. [Outcome of accessory navicular fusion for the treatment of the painful accessory navicular bone of type II in adults].

    PubMed

    Xie, Bing; Tian, Jing; Liu, Xin-wei; Zhou, Da-peng; Xiang, Liang-bi

    2014-10-01

    To evaluate the clinical outcome of accessory navicular fusion for treatment of the painful accessory navicular bone of type II in adults. From June 2006 to June 2012, a total of 38 feet (in 35 adult patients) with painful accessory navicular with type I underwent an fusion operation of the primary and accessory navicular bones,including 26 males and 9 females with a mean age of (32.4±7.3) years old ranging from 18 to 44 years old. The course of disease ranged from 3 to 10 months. The perioperative complications and radiological outcomes were observed and recorded. The foot function before and after operation were assessed by the American Orthopedic Foot and Ankle Society (AOFAS) midfoot score, and the easement of the pain was evaluated by visual analog score (VAS). Two patients had transient superficial inflammation of the incision, no obvious perioperative complications occurred. All patients were follow-up for (53.5±14.7) months (12 to 84 months). Bone union was confirmed on plain radiography in 32 cases (35 feet). The mean time from the operation to union was (13.7±2.3) weeks (9 to 18 weeks). Postoperative pain VAS score was improved obviosly than preoperative (V=12.14,P< 0.01). The talar-to-first metatarsal angle [(9.4±3.5)° vs (8.3±2.7)°, t=0.736, P>0.05)], calcaneal tilt angle [(17.7±2.2)° vs (18.9±3.4)°, t=0.794, P>0.05],talonavicular uncoverage angle [(14.3±3.4)° vs(12.5?4.6)°,t=0.947, P>0.05) ],and height of the first tarsometatarsal joint [(14.8±3.1) mm vs (15.9±2.8) mm,t=0.814,P>0.05)] before and after operations had no statistic difference. The AOFAS midfoot score was improced from preoperative 45.6±5.3 to postoperative 82.5±7.4 (t=3.214,P< 0.01). For the painful accessory navicular bone of type II in adults, if the patient has a large navicular bone and not complicated with rigid flatfoot, once the conservative treatment fails, fusion of the primary and accessory naviculars may be a successful intervention. Overall, the procedure

  15. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein.

    PubMed

    Kim, Irene S; Jenni, Simon; Stanifer, Megan L; Roth, Eatai; Whelan, Sean P J; van Oijen, Antoine M; Harrison, Stephen C

    2017-01-03

    The glycoproteins (G proteins) of vesicular stomatitis virus (VSV) and related rhabdoviruses (e.g., rabies virus) mediate both cell attachment and membrane fusion. The reversibility of their fusogenic conformational transitions differentiates them from many other low-pH-induced viral fusion proteins. We report single-virion fusion experiments, using methods developed in previous publications to probe fusion of influenza and West Nile viruses. We show that a three-stage model fits VSV single-particle fusion kinetics: (i) reversible, pH-dependent, G-protein conformational change from the known prefusion conformation to an extended, monomeric intermediate; (ii) reversible trimerization and clustering of the G-protein fusion loops, leading to an extended intermediate that inserts the fusion loops into the target-cell membrane; and (iii) folding back of a cluster of extended trimers into their postfusion conformations, bringing together the viral and cellular membranes. From simulations of the kinetic data, we conclude that the critical number of G-protein trimers required to overcome membrane resistance is 3 to 5, within a contact zone between the virus and the target membrane of 30 to 50 trimers. This sequence of conformational events is similar to those shown to describe fusion by influenza virus hemagglutinin (a "class I" fusogen) and West Nile virus envelope protein ("class II"). Our study of VSV now extends this description to "class III" viral fusion proteins, showing that reversibility of the low-pH-induced transition and architectural differences in the fusion proteins themselves do not change the basic mechanism by which they catalyze membrane fusion.

  16. HYFIRE II: fusion/high-temperature electrolysis conceptual-design study. Annual report

    SciTech Connect

    Fillo, J.A.

    1983-08-01

    As in the previous HYFIRE design study, the current study focuses on coupling a Tokamak fusion reactor with a high-temperature blanket to a High-Temperature Electrolyzer (HTE) process to produce hydrogen and oxygen. Scaling of the STARFIRE reactor to allow a blanket power to 6000 MW(th) is also assumed. The primary difference between the two studies is the maximum inlet steam temperature to the electrolyzer. This temperature is decreased from approx. 1300/sup 0/ to approx. 1150/sup 0/C, which is closer to the maximum projected temperature of the Westinghouse fuel cell design. The process flow conditions change but the basic design philosophy and approaches to process design remain the same as before. Westinghouse assisted in the study in the areas of systems design integration, plasma engineering, balance-of-plant design, and electrolyzer technology.

  17. Fusion versus excision of the symptomatic Type II accessory navicular: a prospective study.

    PubMed

    Scott, Aaron T; Sabesan, Vani J; Saluta, Jonathan R; Wilson, Melanie A; Easley, Mark E

    2009-01-01

    Patients with symptomatic Type II accessory naviculars that fail nonoperative measures may be treated with excision, percutaneous drilling, a modified Kidner procedure, or a fourth option, arthrodesis of the accessory ossicle to the navicular body. There is little information in the literature on the relative merits of arthrodesis. A prospective evaluation of 20 patients undergoing surgical intervention for symptomatic Type II accessory naviculars was performed. The decision to perform either an arthrodesis (10 feet) or a modified Kidner (10 feet) was made intraoperatively based on the size of the accessory ossicle. Outcomes were measured using pre- and postoperative American Orthopaedic Foot and Ankle Society (AOFAS) Midfoot scores, plain radiographs, and chart reviews. At an average followup of 35 months, the mean AOFAS score for the arthrodesis group improved from 50 to 93 points. There were two non-unions (20%) and one patient complained of painful hardware. At an average followup of 48 months, the mean AOFAS score for the modified Kidner group improved from 52 to 80 points. However, in this group, three of ten patients (30%) had persistent midfoot pain and radiographic evidence of progressive loss of the longitudinal arch. Although the methods do not represent a randomized comparison of treatments for the same condition, the results suggest that arthrodesis may be a reasonable treatment option in selected cases of patients with symptomatic recalcitrant Type II accessory naviculars that are large enough to accept small fragment screws.

  18. Inhibition of iridovirus protein synthesis and virus replication by antisense morpholino oligonucleotides targeted to the major capsid protein, the 18 kDa immediate-early protein, and a viral homolog of RNA polymerase II

    SciTech Connect

    Sample, Robert; Bryan, Locke; Long, Scott; Majji, Sai; Hoskins, Glenn; Sinning, Allan; Olivier, Jake; Chinchar, V. Gregory . E-mail: vchinchar@microbio.umsmed.edu

    2007-02-20

    Frog virus 3 (FV3) is a large DNA virus that encodes {approx} 100 proteins. Although the general features of FV3 replication are known, the specific roles that most viral proteins play in the virus life cycle have not yet been elucidated. To address the question of viral gene function, antisense morpholino oligonucleotides (asMOs) were used to transiently knock-down expression of specific viral genes and thus infer their role in virus replication. We designed asMOs directed against the major capsid protein (MCP), an 18 kDa immediate-early protein (18K) that was thought to be a viral regulatory protein, and the viral homologue of the largest subunit of RNA polymerase II (vPol-II{alpha}). All three asMOs successfully inhibited translation of the targeted protein, and two of the three asMOs resulted in marked phenotypic changes. Knock-down of the MCP resulted in a marked reduction in viral titer without a corresponding drop in the synthesis of other late viral proteins. Transmission electron microscopy (TEM) showed that in cells treated with the anti-MCP MO assembly sites were devoid of viral particles and contained numerous aberrant structures. In contrast, inhibition of 18K synthesis did not block virion formation, suggesting that the 18K protein was not essential for replication of FV3 in fathead minnow (FHM) cells. Finally, consistent with the view that late viral gene expression is catalyzed by a virus-encoded or virus-modified Pol-II-like protein, knock-down of vPol-II{alpha} triggered a global decline in late gene expression and virus yields without affecting the synthesis of early viral genes. Collectively, these results demonstrate the utility of using asMOs to elucidate the function of FV3 proteins.

  19. Statistical Mechanics of Viral Entry

    NASA Astrophysics Data System (ADS)

    Zhang, Yaojun; Dudko, Olga K.

    2015-01-01

    Viruses that have lipid-membrane envelopes infect cells by fusing with the cell membrane to release viral genes. Membrane fusion is known to be hindered by high kinetic barriers associated with drastic structural rearrangements—yet viral infection, which occurs by fusion, proceeds on remarkably short time scales. Here, we present a quantitative framework that captures the principles behind the invasion strategy shared by all enveloped viruses. The key to this strategy—ligand-triggered conformational changes in the viral proteins that pull the membranes together—is treated as a set of concurrent, bias field-induced activated rate processes. The framework results in analytical solutions for experimentally measurable characteristics of virus-cell fusion and enables us to express the efficiency of the viral strategy in quantitative terms. The predictive value of the theory is validated through simulations and illustrated through recent experimental data on influenza virus infection.

  20. Major Histocompatibility Complex Class II Transactivator CIITA Is a Viral Restriction Factor That Targets Human T-Cell Lymphotropic Virus Type 1 Tax-1 Function and Inhibits Viral Replication▿

    PubMed Central

    Tosi, Giovanna; Forlani, Greta; Andresen, Vibeke; Turci, Marco; Bertazzoni, Umberto; Franchini, Genoveffa; Poli, Guido; Accolla, Roberto S.

    2011-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of an aggressive malignancy of CD4+ T lymphocytes. Since the viral transactivator Tax-1 is a major player in T-cell transformation, targeting Tax-1 protein is regarded as a possible strategy to arrest viral replication and to counteract neoplastic transformation. We demonstrate that CIITA, the master regulator of major histocompatibility complex class II gene transcription, inhibits HTLV-1 replication by blocking the transactivating function of Tax-1 both when exogenously transfected in 293T cells and when endogenously expressed by a subset of U937 promonocytic cells. Tax-1 and CIITA physically interact in vivo via the first 108 amino acids of Tax-1 and two CIITA adjacent regions (amino acids 1 to 252 and 253 to 410). Interestingly, only CIITA 1-252 mediated Tax-1 inhibition, in agreement with the fact that CIITA residues from positions 64 to 124 were required to block Tax-1 transactivation. CIITA inhibitory action on Tax-1 correlated with the nuclear localization of CIITA and was independent of the transcription factor NF-YB, previously involved in CIITA-mediated inhibition of Tax-2 of HTLV-2. Instead, CIITA severely impaired the physical and functional interaction of Tax-1 with the cellular coactivators p300/CBP-associated factor (PCAF), cyclic AMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1), which are required for the optimal activation of HTLV-1 promoter. Accordingly, the overexpression of PCAF, CREB, and ATF1 restored Tax-1-dependent transactivation of the viral long-terminal-repeat promoter inhibited by CIITA. These findings strongly support our original observation that CIITA, beside increasing the antigen-presenting function for pathogen antigens, acts as an endogenous restriction factor against human retroviruses by blocking virus replication and spreading. PMID:21813598

  1. Viral Infections

    MedlinePlus

    ... to fight it off. For most viral infections, treatments can only help with symptoms while you wait ... for viral infections. There are antiviral medicines to treat some viral infections. Vaccines can help prevent you ...

  2. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein

    PubMed Central

    Kim, Irene S.; Jenni, Simon; Stanifer, Megan L.; Roth, Eatai; Whelan, Sean P. J.; van Oijen, Antoine M.; Harrison, Stephen C.

    2017-01-01

    The glycoproteins (G proteins) of vesicular stomatitis virus (VSV) and related rhabdoviruses (e.g., rabies virus) mediate both cell attachment and membrane fusion. The reversibility of their fusogenic conformational transitions differentiates them from many other low-pH-induced viral fusion proteins. We report single-virion fusion experiments, using methods developed in previous publications to probe fusion of influenza and West Nile viruses. We show that a three-stage model fits VSV single-particle fusion kinetics: (i) reversible, pH-dependent, G-protein conformational change from the known prefusion conformation to an extended, monomeric intermediate; (ii) reversible trimerization and clustering of the G-protein fusion loops, leading to an extended intermediate that inserts the fusion loops into the target-cell membrane; and (iii) folding back of a cluster of extended trimers into their postfusion conformations, bringing together the viral and cellular membranes. From simulations of the kinetic data, we conclude that the critical number of G-protein trimers required to overcome membrane resistance is 3 to 5, within a contact zone between the virus and the target membrane of 30 to 50 trimers. This sequence of conformational events is similar to those shown to describe fusion by influenza virus hemagglutinin (a “class I” fusogen) and West Nile virus envelope protein (“class II”). Our study of VSV now extends this description to “class III” viral fusion proteins, showing that reversibility of the low-pH-induced transition and architectural differences in the fusion proteins themselves do not change the basic mechanism by which they catalyze membrane fusion. PMID:27974607

  3. Sequential charged-particle and neutron activation of Flibe in the HYLIFE-II inertial fusion energy power plant design

    SciTech Connect

    Latkowski, J.F.; Tobin, M.T.; Vujic, J.L.; Sanz, J.

    1996-06-14

    Most radionuclide generation/depletion codes consider only neutron reactions and assume that charged particles, which may be generated in these reactions, deposit their energy locally without undergoing further nuclear interactions. Neglect of sequential charged-particle (x,n) reactions can lead to large underestimation in the inventories of radionuclides. PCROSS code was adopted for use with the ACAB activation code to enable calculation of the effects of (x,n) reactions upon radionuclide inventories and inventory-related indices. Activation calculations were made for Flibe (2LiF + BeF{sub 2}) coolant in the HYLIFE-II inertial fusion energy (IFE) power plant design. For pure Flibe coolant, it was found that (x,n) reactions dominate the residual contact dose rate at times of interest for maintenance and decommissioning. For impure Flibe, however, radionuclides produced directly in neutron reaction dominate the contact dose rate and (x,n) reactions do not make a significant contribution. Results demonstrate potential importance of (x,n) reactions and that the relative importance of (x,n) reactions varies strongly with the composition of the material considered. Future activation calculations should consider (x,n) reactions until a method for pre-determining their importance is established.

  4. Improvements to the HYLIFE-II inertial fusion power plant design

    SciTech Connect

    Moir, R.W.

    1994-06-01

    If the present research program is successful, heavy-ion beams can be used to ignite targets and to produce high gain for yields of about 350 MJ. HYLIFE-II is a power plant design based on surrounding such targets with thick liquid (Flibe, Li{sub 2}BeF{sub 4}) so that the chamber and other apparatus can not only stand up to these 350 MJ bursts of energy but do so without replacing components during the plant`s 30-year life. The capacity factor will be increased and the cost of component replacement will be decreased. Continuous improvements to the design are being made to increase safety, decrease the generation of radioactive material, and reduce the cost of electricity (COE). Improvements discussed in this paper decreased COE for each effect by the amount in parentheses: increased plant size (22%), increased capacity factor and reduced component replacement (20%), reduced remote maintenance equipment (3.2%), use of nonnuclear grade chamber, pumps and piping (2.9%), reduced tritium inventory by a factor of 2.4, reduced excess tritium production with attendant increase energy release in the blanket (1.8%), corrected treatment of Flibe inventory costs (3.4%).

  5. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity.

    PubMed

    Budimir, Natalija; Huckriede, Anke; Meijerhof, Tjarko; Boon, Louis; Gostick, Emma; Price, David A; Wilschut, Jan; de Haan, Aalzen

    2012-01-01

    The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV) vaccine, that can target conserved internal antigens such as the nucleoprotein (NP) and/or matrix protein (M1) need to be explored. In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs), protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA) severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL) preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane fusion activity and full immunogenicity of the vaccine.

  6. NMR structures of anti-HIV D-peptides derived from the N-terminus of viral chemokine vMIP-II

    SciTech Connect

    Mori, Mayuko; Liu Dongxiang; Kumar, Santosh; Huang Ziwei; E-mail: ziweihuang@burnham.org

    2005-09-30

    The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus has unique biological activities in that it blocks the cell entry by several different human immunodeficiency virus type 1 (HIV-1) strains via chemokine receptors including CXCR4 and CCR5. In this paper, we report the solution structure of all-D-amino acid peptides derived from the N-terminus of vMIP-II, which have been shown to have strong CXCR4 binding activity and potently inhibit HIV-1 entry via CXCR4, by using long mixing time two-dimensional nuclear Overhauser enhancement spectroscopy experiments. Both of all-D-peptides vMIP-II (1-10) and vMIP-II (1-21), which are designated as DV3 and DV1, respectively, have higher CXCR4 binding ability than their L-peptide counterparts. They are partially structured in aqueous solution, displaying a turn-like structure over residues 5-8. The small temperature coefficients of His-6 amide proton for both peptides also suggest the formation of a small hydrophobic pocket centered on His-6. The structural features of DV3 are very similar to the reported solution structure of all-L-peptide vMIP-II (1-10) [M.P. Crump, E. Elisseeva, J. Gong, I. Clark-Lewis, B.D. Sykes, Structure/function of human herpesvirus-8 MIP-II (1-71) and the antagonist N-terminal segment (1-10), FEBS Lett. 489 (2001) 171], which is consistent with the notion that D- and L-enantiomeric peptides can adopt mirror image conformations. The NMR structures of the D-peptides provide a structural basis to understand their mechanism of action and design new peptidomimetic analogs to further explore the structure-activity relationship of D-peptide ligand binding to CXCR4.

  7. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  8. PIREX II — A new irradiation facility for testing fusion first wall materials

    NASA Astrophysics Data System (ADS)

    Marmy, P.; Daum, M.; Gavillet, D.; Green, S.; Green, W. V.; Hegedus, F.; Proennecke, S.; Rohrer, U.; Stiefel, U.; Victoria, M.

    1990-03-01

    A new irradiation facility, PIREX II (Proton Irradiation Experiment), became operational in March 1987. It is located on a dedicated beam line split from the main beam of the 590 MeV proton accelerator at the Paul Scherrer Institute (PSI). Irradiation with protons of this energy introduces simultaneously displacement damage, helium and other impurities. Because of the penetration range of 590 MeV protons, both damage and impurities are homogeneously distributed in the target material. The installation has its own beam line optics that can support a proton current of up to 50 μA. At a typical beam density of 4 {μA}/{mm 2}, the damage rate in steel is 0.7 × 10 -5{dpa}/{s} (dpa: displacements per atom), and the helium production rat He/dpa. Both flat tensile specimens of up to 0.4 mm thickness and tubular fatigue samples of 3 mm diameter can be irradiated. Cooling of the sample is performed by flowing pressurized helium gas over the sample. Irradiation temperatures can be controlled between 100 ° C and 800 ° C. Installation of an in situ low cycle fatigue device is foreseen. Beams of up to 20 μA have been obtained, the beam having an approximately Gaussian distribution of elliptical cross section with 4σ xbetween 0.8 and 8 nun by 4σ y of up to 10 mm. Irradiations for a dosimetry program have been completed on samples of Al, Cu, Fe, Ni, Au, W, and 1.4914 ferritic steel. The evaluation of results allows the correct choice of reactions to be used for determining total dose, from the standpoint of half life and gamma energy. A program of irradiations on candidate materials for the Next European Torus (NET) design (Cu and Cu alloys, 1.4914 ferritic martensitic steel, W and W-Re alloys and Mo and Mo alloys), where the above mentioned characteristics of this type of irradiation can be used advantageously, is now under way.

  9. Interaction of the herbicide atrazine with model membranes. II: Effect of atrazine on fusion of phospholipid vesicles.

    PubMed

    Zolese, G; Ambrosini, A; Bertoli, E; Curatola, G; Tanfani, F

    1990-12-01

    The effect of atrazine on Ca2+ induced fusion of cardiolipin(CL) and phosphatidylserine (PS) vesicles is studied by Tb3+/dipicolinic acid fluorescence and turbidity measurements. The interaction of herbicide with CL and PS membranes is studied by DPH fluorescence polarization. At low concentrations the pesticide partially inhibits fusion, especially in CL vesicles. Higher concentrations of atrazine decrease inhibition of fusion in CL, while fusion is slightly increased in PS. The Ca2(+)-induced increase of turbidity is not affected by atrazine in both PS and CL aggregation experiments. DPH polarization measurements show a perturbation only of the membrane hydrophobic core of PS, in presence of Ca2+. It is hypothesized that this biphasic effect shown by low and high atrazine concentrations on Ca2(+)-induced fusion of vesicles is due to a different localization of the pesticide in the membrane.

  10. Fusion-Activated Ca2+ Entry: An “Active Zone” of Elevated Ca2+ during the Postfusion Stage of Lamellar Body Exocytosis in Rat Type II Pneumocytes

    PubMed Central

    Wittekindt, Oliver H.; Haller, Thomas; Dietl, Paul

    2010-01-01

    Background Ca2+ is essential for vesicle fusion with the plasma membrane in virtually all types of regulated exocytoses. However, in contrast to the well-known effects of a high cytoplasmic Ca2+ concentration ([Ca2+]c) in the prefusion phase, the occurrence and significance of Ca2+ signals in the postfusion phase have not been described before. Methodology/Principal Findings We studied isolated rat alveolar type II cells using previously developed imaging techniques. These cells release pulmonary surfactant, a complex of lipids and proteins, from secretory vesicles (lamellar bodies) in an exceptionally slow, Ca2+- and actin-dependent process. Measurements of fusion pore formation by darkfield scattered light intensity decrease or FM 1-43 fluorescence intensity increase were combined with analysis of [Ca2+]c by ratiometric Fura-2 or Fluo-4 fluorescence measurements. We found that the majority of single lamellar body fusion events were followed by a transient (t1/2 of decay = 3.2 s) rise of localized [Ca2+]c originating at the site of lamellar body fusion. [Ca2+]c increase followed with a delay of ∼0.2–0.5 s (method-dependent) and in the majority of cases this signal propagated throughout the cell (at ∼10 µm/s). Removal of Ca2+ from, or addition of Ni2+ to the extracellular solution, strongly inhibited these [Ca2+]c transients, whereas Ca2+ store depletion with thapsigargin had no effect. Actin-GFP fluorescence around fused LBs increased several seconds after the rise of [Ca2+]c. Both effects were reduced by the non-specific Ca2+ channel blocker SKF96365. Conclusions/Significance Fusion-activated Ca2+ entry (FACE) is a new mechanism that leads to [Ca2+]c transients at the site of vesicle fusion. Substantial evidence from this and previous studies indicates that fusion-activated Ca2+ entry enhances localized surfactant release from type II cells, but it may also play a role for compensatory endocytosis and other cellular functions. PMID:20544027

  11. Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes.

    PubMed

    Barrero-Villar, Marta; Cabrero, José Román; Gordón-Alonso, Mónica; Barroso-González, Jonathan; Alvarez-Losada, Susana; Muñoz-Fernández, M Angeles; Sánchez-Madrid, Francisco; Valenzuela-Fernández, Agustín

    2009-01-01

    The human immunodeficiency virus 1 (HIV-1) envelope regulates the initial attachment of viral particles to target cells through its association with CD4 and either CXCR4 or CCR5. Although F-actin is required for CD4 and CXCR4 redistribution, little is known about the molecular mechanisms underlying this fundamental process in HIV infection. Using CD4(+) CXCR4(+) permissive human leukemic CEM T cells and primary lymphocytes, we have investigated whether HIV-1 Env might promote viral entry and infection by activating ERM (ezrin-radixin-moesin) proteins to regulate F-actin reorganization and CD4/CXCR4 co-clustering. The interaction of the X4-tropic protein HIV-1 gp120 with CD4 augments ezrin and moesin phosphorylation in human permissive T cells, thereby regulating ezrin-moesin activation. Moreover, the association and clustering of CD4-CXCR4 induced by HIV-1 gp120 requires moesin-mediated anchoring of actin in the plasma membrane. Suppression of moesin expression with dominant-negative N-moesin or specific moesin silencing impedes reorganization of F-actin and HIV-1 entry and infection mediated by the HIV-1 envelope protein complex. Therefore, we propose that activated moesin promotes F-actin redistribution and CD4-CXCR4 clustering and is also required for efficient X4-tropic HIV-1 infection in permissive lymphocytes.

  12. A deletion in the proximal untranslated pX region of human T-cell leukemia virus type II decreases viral replication but not infectivity in vivo.

    PubMed

    Cockerell, G L; Rovnak, J; Green, P L; Chen, I S

    1996-02-01

    The function of untranslated (UT) nucleotide sequences in the proximal portion of the pX region of the human T-cell leukemia virus (HTLV) family of retroviruses remains enigmatic. Previous studies have shown that these sequences are not necessary for the expression of viral proteins or for the induction, transmission, or maintenance of the transformed cell type in vitro. To determine the effect of the UT region in vivo, separate groups of rabbits were inoculated with lethally irradiated, stable clones of the human B-lymphoblastoid cell line, 729, transfected with either a full-length wild-type HTLV-II clone (pH6neo) or a mutant clone containing a 324-bp deletion in the proximal UT portion of pX (pH6neo delta UT[6661-6984]), or nontransfected 729 cells. All rabbits inoculated with either wild-type or pX-deleted HTLV-II developed a similar profile and titer of serum antibodies against HTLV-II antigens, as determined by Western immunoblots, by 4 weeks postinoculation (PI). Antibody titers, as determined by enzyme immunoassay, were similar between the two groups of rabbits and increased over the 18-week period of study. All rabbits were killed at 18 weeks PI, and spleen, peripheral blood lymphocytes (PBMC), bone marrow, and mesenteric lymph node were assayed for HTLV-II tax/rex sequences by quantitative polymerase chain reaction. Virus was detected in all tissues tested from all rabbits inoculated with 729pH6neo cells containing wild-type HTLV-II, which contained between 1.4 and 0.3 mean copies of provirus per cell. In contrast, the distribution and number of provirus copies were more limited in rabbits inoculated with 729pH6neo delta UT(6661-6984) cells containing UT-deleted HTLV-II; in most tissues, there was a fivefold to sevenfold reduction in mean provirus copies per cell as compared with rabbits inoculated with wild-type HTLV-II. All rabbits inoculated with control 729 cells remained negative for HTLV-II infection, as determined by the same techniques. It was

  13. Type I and Type II Interferon Coordinately Regulate Suppressive Dendritic Cell Fate and Function during Viral Persistence

    PubMed Central

    Cunningham, Cameron R.; Champhekar, Ameya; Tullius, Michael V.; Dillon, Barbara Jane; Zhen, Anjie; de la Fuente, Justin Rafael; Herskovitz, Jonathan; Elsaesser, Heidi; Snell, Laura M.; Wilson, Elizabeth B.; de la Torre, Juan Carlos; Kitchen, Scott G.; Horwitz, Marcus A.; Bensinger, Steven J.; Smale, Stephen T.; Brooks, David G.

    2016-01-01

    Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections. PMID:26808628

  14. A DNA vaccine encoding foot-and-mouth disease virus B and T-cell epitopes targeted to class II swine leukocyte antigens protects pigs against viral challenge.

    PubMed

    Borrego, Belén; Argilaguet, Jordi M; Pérez-Martín, Eva; Dominguez, Javier; Pérez-Filgueira, Mariano; Escribano, José M; Sobrino, Francisco; Rodriguez, Fernando

    2011-11-01

    Development of efficient and safer vaccines against foot-and-mouth disease virus (FMDV) is a must. Previous results obtained in our laboratory have demonstrated that DNA vaccines encoding B and T cell epitopes from type C FMDV, efficiently controlled virus replication in mice, while they did not protect against FMDV challenge in pigs, one of the FMDV natural hosts. The main finding of this work is the ability to improve the protection afforded in swine using a new DNA-vaccine prototype (pCMV-APCH1BTT), encoding FMDV B and T-cell epitopes fused to the single-chain variable fragment of the 1F12 mouse monoclonal antibody that recognizes Class-II Swine Leukocyte antigens. Half of the DNA-immunized pigs were fully protected upon viral challenge, while the remaining animals were partially protected, showing a delayed, shorter and milder disease than control pigs. Full protection in a given vaccinated-pig correlated with the induction of specific IFNγ-secreting T-cells, detectable prior to FMDV-challenge, together with a rapid development of neutralizing antibodies after viral challenge, pointing towards the relevance that both arms of the immune response can play in protection. Our results open new avenues for developing future FMDV subunit vaccines.

  15. IFITM Proteins Restrict Viral Membrane Hemifusion

    PubMed Central

    Golfetto, Ottavia; Bungart, Brittani; Li, Minghua; Ding, Shilei; He, Yuxian; Liang, Chen; Lee, James C.; Gratton, Enrico; Cohen, Fredric S.; Liu, Shan-Lu

    2013-01-01

    The interferon-inducible transmembrane (IFITM) protein family represents a new class of cellular restriction factors that block early stages of viral replication; the underlying mechanism is currently not known. Here we provide evidence that IFITM proteins restrict membrane fusion induced by representatives of all three classes of viral membrane fusion proteins. IFITM1 profoundly suppressed syncytia formation and cell-cell fusion induced by almost all viral fusion proteins examined; IFITM2 and IFITM3 also strongly inhibited their fusion, with efficiency somewhat dependent on cell types. Furthermore, treatment of cells with IFN also markedly inhibited viral membrane fusion and entry. By using the Jaagsiekte sheep retrovirus envelope and influenza A virus hemagglutinin as models for study, we showed that IFITM-mediated restriction on membrane fusion is not at the steps of receptor- and/or low pH-mediated triggering; instead, the creation of hemifusion was essentially blocked by IFITMs. Chlorpromazine (CPZ), a chemical known to promote the transition from hemifusion to full fusion, was unable to rescue the IFITM-mediated restriction on fusion. In contrast, oleic acid (OA), a lipid analog that generates negative spontaneous curvature and thereby promotes hemifusion, virtually overcame the restriction. To explore the possible effect of IFITM proteins on membrane molecular order and fluidity, we performed fluorescence labeling with Laurdan, in conjunction with two-photon laser scanning and fluorescence-lifetime imaging microscopy (FLIM). We observed that the generalized polarizations (GPs) and fluorescence lifetimes of cell membranes expressing IFITM proteins were greatly enhanced, indicating higher molecularly ordered and less fluidized membranes. Collectively, our data demonstrated that IFITM proteins suppress viral membrane fusion before the creation of hemifusion, and suggested that they may do so by reducing membrane fluidity and conferring a positive spontaneous

  16. Surface glycoproteins of the recently identified African Henipavirus promote viral entry and cell fusion in a range of human, simian and bat cell lines.

    PubMed

    Lawrence, Philip; Escudero Pérez, Beatriz; Drexler, Jan Felix; Corman, Victor Max; Müller, Marcel A; Drosten, Christian; Volchkov, Viktor

    2014-03-06

    The recent discovery of a wide range of henipavirus-like viruses circulating in Megabats in Africa raises the question as to the zoonotic potential of these pathogens given the high human mortality rates seen with their pathogenic relatives Nipah virus and Hendra virus. In the absence of cultured infectious African Henipavirus we have performed experiments with recombinant F and G glycoproteins from the representative African Henipavirus strain M74a aimed at estimating its cellular tropism and capacity to use similar receptors to its highly pathogenic counterparts. The ability of the M74a virus G surface protein to use the ubiquitous Ephrin B2 host cell receptor and its heterologous cross-compatibility with Nipah virus could be expected to impart upon this virus a reasonable potential for species spillover, although differences in fusion efficiency seen with the M74a virus F protein in certain cell lines could present a barrier for zoonotic transmission.

  17. Inhibition of the association of RNA polymerase II with the preinitiation complex by a viral transcriptional repressor.

    PubMed

    Lee, G; Wu, J; Luu, P; Ghazal, P; Flores, O

    1996-03-19

    Transcriptional repression is an important component of regulatory networks that govern gene expression. In this report, we have characterized the mechanisms by which the immediate early protein 2 (IE2 or IE86), a master transcriptional regulator of human cytomegalovirus, down-regulates its own expression. In vitro transcription and DNA binding experiments demonstrate that IE2 blocks specifically the association of RNA polymerase II with the preinitiation complex. Although, to our knowledge, this is the first report to describe a eukaryotic transcriptional repressor that selectively impedes RNA polymerase II recruitment, we present data that suggest that this type of repression might be widely used in the control of transcription by RNA polymerase II.

  18. The Fusion Loops of the Initial Prefusion Conformation of Herpes Simplex Virus 1 Fusion Protein Point Toward the Membrane.

    PubMed

    Fontana, Juan; Atanasiu, Doina; Saw, Wan Ting; Gallagher, John R; Cox, Reagan G; Whitbeck, J Charles; Brown, Lauren M; Eisenberg, Roselyn J; Cohen, Gary H

    2017-08-22

    All enveloped viruses, including herpesviruses, must fuse their envelope with the host membrane to deliver their genomes into target cells, making this essential step subject to interference by antibodies and drugs. Viral fusion is mediated by a viral surface protein that transits from an initial prefusion conformation to a final postfusion conformation. Strikingly, the prefusion conformation of the herpesvirus fusion protein, gB, is poorly understood. Herpes simplex virus (HSV), a model system for herpesviruses, causes diseases ranging from mild skin lesions to serious encephalitis and neonatal infections. Using cryo-electron tomography and subtomogram averaging, we have characterized the structure of the prefusion conformation and fusion intermediates of HSV-1 gB. To this end, we have set up a system that generates microvesicles displaying full-length gB on their envelope. We confirmed proper folding of gB by nondenaturing electrophoresis-Western blotting with a panel of monoclonal antibodies (MAbs) covering all gB domains. To elucidate the arrangement of gB domains, we labeled them by using (i) mutagenesis to insert fluorescent proteins at specific positions, (ii) coexpression of gB with Fabs for a neutralizing MAb with known binding sites, and (iii) incubation of gB with an antibody directed against the fusion loops. Our results show that gB starts in a compact prefusion conformation with the fusion loops pointing toward the viral membrane and suggest, for the first time, a model for gB's conformational rearrangements during fusion. These experiments further illustrate how neutralizing antibodies can interfere with the essential gB structural transitions that mediate viral entry and therefore infectivity.IMPORTANCE The herpesvirus family includes herpes simplex virus (HSV) and other human viruses that cause lifelong infections and a variety of diseases, like skin lesions, encephalitis, and cancers. As enveloped viruses, herpesviruses must fuse their envelope

  19. Viral pneumonia

    MedlinePlus

    ... Names Pneumonia - viral; Walking pneumonia - viral Images Lungs Respiratory system References Lee FE, Treanor JJ. Viral infections. In: Broaddus VC, Mason RJ, Ernst JD, et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...

  20. Iron(II) supramolecular helicates interfere with the HIV-1 Tat–TAR RNA interaction critical for viral replication

    NASA Astrophysics Data System (ADS)

    Malina, Jaroslav; Hannon, Michael J.; Brabec, Viktor

    2016-07-01

    The interaction between the HIV-1 transactivator protein Tat and TAR (transactivation responsive region) RNA, plays a critical role in HIV-1 transcription. Iron(II) supramolecular helicates were evaluated for their in vitro activity to inhibit Tat–TAR RNA interaction using UV melting studies, electrophoretic mobility shift assay, and RNase A footprinting. The results demonstrate that iron(II) supramolecular helicates inhibit Tat-TAR interaction at nanomolar concentrations by binding to TAR RNA. These studies provide a new insight into the biological potential of metallosupramolecular helicates.

  1. Fusion of Enveloped Viruses in Endosomes.

    PubMed

    White, Judith M; Whittaker, Gary R

    2016-06-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years, a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion-triggering mechanisms. A key take-home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Fusion of Enveloped Viruses in Endosomes

    PubMed Central

    White, Judith M.; Whittaker, Gary R.

    2016-01-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH, and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion triggering mechanisms. A key take home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors, and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. PMID:26935856

  3. Crystal Structure of Glycoprotein C from a Hantavirus in the Post-fusion Conformation.

    PubMed

    Willensky, Shmuel; Bar-Rogovsky, Hagit; Bignon, Eduardo A; Tischler, Nicole D; Modis, Yorgo; Dessau, Moshe

    2016-10-01

    Hantaviruses are important emerging human pathogens and are the causative agents of serious diseases in humans with high mortality rates. Like other members in the Bunyaviridae family their M segment encodes two glycoproteins, GN and GC, which are responsible for the early events of infection. Hantaviruses deliver their tripartite genome into the cytoplasm by fusion of the viral and endosomal membranes in response to the reduced pH of the endosome. Unlike phleboviruses (e.g. Rift valley fever virus), that have an icosahedral glycoprotein envelope, hantaviruses display a pleomorphic virion morphology as GN and GC assemble into spikes with apparent four-fold symmetry organized in a grid-like pattern on the viral membrane. Here we present the crystal structure of glycoprotein C (GC) from Puumala virus (PUUV), a representative member of the Hantavirus genus. The crystal structure shows GC as the membrane fusion effector of PUUV and it presents a class II membrane fusion protein fold. Furthermore, GC was crystallized in its post-fusion trimeric conformation that until now had been observed only in Flavi- and Togaviridae family members. The PUUV GC structure together with our functional data provides intriguing evolutionary and mechanistic insights into class II membrane fusion proteins and reveals new targets for membrane fusion inhibitors against these important pathogens.

  4. Crystal Structure of Glycoprotein C from a Hantavirus in the Post-fusion Conformation

    PubMed Central

    Willensky, Shmuel; Bignon, Eduardo A.; Tischler, Nicole D.; Dessau, Moshe

    2016-01-01

    Hantaviruses are important emerging human pathogens and are the causative agents of serious diseases in humans with high mortality rates. Like other members in the Bunyaviridae family their M segment encodes two glycoproteins, GN and GC, which are responsible for the early events of infection. Hantaviruses deliver their tripartite genome into the cytoplasm by fusion of the viral and endosomal membranes in response to the reduced pH of the endosome. Unlike phleboviruses (e.g. Rift valley fever virus), that have an icosahedral glycoprotein envelope, hantaviruses display a pleomorphic virion morphology as GN and GC assemble into spikes with apparent four-fold symmetry organized in a grid-like pattern on the viral membrane. Here we present the crystal structure of glycoprotein C (GC) from Puumala virus (PUUV), a representative member of the Hantavirus genus. The crystal structure shows GC as the membrane fusion effector of PUUV and it presents a class II membrane fusion protein fold. Furthermore, GC was crystallized in its post-fusion trimeric conformation that until now had been observed only in Flavi- and Togaviridae family members. The PUUV GC structure together with our functional data provides intriguing evolutionary and mechanistic insights into class II membrane fusion proteins and reveals new targets for membrane fusion inhibitors against these important pathogens. PMID:27783673

  5. Successful fusion of remote type II odontoid fracture using anterior screw fixation of the odontoid and rhBMP-2: report of two cases.

    PubMed

    Morgan, Jeremy P; Asfora, Wilson T

    2013-05-01

    Anterior screw fixation of the odontoid is contraindicated in remote type II fractures. The alternative surgical treatment consists of a posterior C1 to C2 or an occiput to C3 fusion, which is met with much resistance by patients as this option limits head motion, especially rotational movement. Furthermore, elderly patients may not be medically fit to undergo surgery of this magnitude. This report presents two remote type II odontoid fractures in elderly patients (67 and 73 years of age) who were successfully treated by means of anterior screw fixation of the odontoid along with an injection of recombinant human bone morphogenic protein (rhBMP-2) (Medtronic Inc.) into the fracture line with infiltration of the fibrous union tissue and adjacent anterior longitudinal ligament. To our knowledge, this is the first documented report of solid fusion of remote type II odontoid fracture treated with rhBMP-2 and anterior screw fixation. The authors believe that this technique may be a viable alternative for the treatment of failed odontoid fractures older than six months.

  6. Polymer-cushioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus.

    PubMed Central

    Wong, J Y; Park, C K; Seitz, M; Israelachvili, J

    1999-01-01

    We have created phospholipid bilayers supported on soft polymer "cushions" which act as deformable substrates (see accompanying paper, Wong, J. Y., J. Majewski, M. Seitz, C. K. Park, J. N. Israelachvili, and G. S. Smith. 1999. Biophys. J. 77:1445-1457). In contrast to "solid-supported" membranes, such "soft-supported" membranes can exhibit more natural (higher) fluidity. Our bilayer system was constructed by adsorption of small unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles onto polyethylenimine (PEI)-supported Langmuir-Blodgett lipid monolayers on mica. We used the surface forces apparatus (SFA) to investigate the long-range forces, adhesion, and fusion of two DMPC bilayers both above and below their main transition temperature (T(m) approximately 24 degrees C). Above T(m), hemi-fusion activation pressures of apposing bilayers were considerably smaller than for solid-supported bilayers, e.g., directly supported on mica. After separation, the bilayers naturally re-formed after short healing times. Also, for the first time, complete fusion of two fluid (liquid crystalline) phospholipid bilayers was observed in the SFA. Below T(m) (gel state), very high pressures were needed for hemi-fusion and the healing process became very slow. The presence of the polymer cushion significantly alters the interaction potential, e.g., long-range forces as well as fusion pressures, when compared to solid-supported systems. These fluid model membranes should allow the future study of integral membrane proteins under more physiological conditions. PMID:10465756

  7. A single amino acid change resulting in loss of fluorescence of eGFP in a viral fusion protein confers fitness and growth advantage to the recombinant vesicular stomatitis virus

    SciTech Connect

    Dinh, Phat X.; Panda, Debasis; Das, Phani B.; Das, Subash C.; Das, Anshuman; Pattnaik, Asit K.

    2012-10-25

    Using a recombinant vesicular stomatitis virus encoding eGFP fused in-frame with an essential viral replication protein, the phosphoprotein P, we show that during passage in culture, the virus mutates the nucleotide C289 within eGFP of the fusion protein PeGFP to A or T, resulting in R97S/C amino acid substitution and loss of fluorescence. The resultant non-fluorescent virus exhibits increased fitness and growth advantage over its fluorescent counterpart. The growth advantage of the non-fluorescent virus appears to be due to increased transcription and replication activities of the PeGFP protein carrying the R97S/C substitution. Further, our results show that the R97S/C mutation occurs prior to accumulation of mutations that can result in loss of expression of the gene inserted at the G-L gene junction. These results suggest that fitness gain is more important for the recombinant virus than elimination of expression of the heterologous gene.

  8. A single amino acid change resulting in loss of fluorescence of eGFP in a viral fusion protein confers fitness and growth advantage to the recombinant vesicular stomatitis virus.

    PubMed

    Dinh, Phat X; Panda, Debasis; Das, Phani B; Das, Subash C; Das, Anshuman; Pattnaik, Asit K

    2012-10-25

    Using a recombinant vesicular stomatitis virus encoding eGFP fused in-frame with an essential viral replication protein, the phosphoprotein P, we show that during passage in culture, the virus mutates the nucleotide C289 within eGFP of the fusion protein PeGFP to A or T, resulting in R97S/C amino acid substitution and loss of fluorescence. The resultant non-fluorescent virus exhibits increased fitness and growth advantage over its fluorescent counterpart. The growth advantage of the non-fluorescent virus appears to be due to increased transcription and replication activities of the PeGFP protein carrying the R97S/C substitution. Further, our results show that the R97S/C mutation occurs prior to accumulation of mutations that can result in loss of expression of the gene inserted at the G-L gene junction. These results suggest that fitness gain is more important for the recombinant virus than elimination of expression of the heterologous gene.

  9. Viral infection

    PubMed Central

    Puigdomènech, Isabel; de Armas-Rillo, Laura; Machado, José-David

    2011-01-01

    Viruses have developed different survival strategies in host cells by crossing cell-membrane compartments, during different steps of their viral life cycle. In fact, the non-regenerative viral membrane of enveloped viruses needs to encounter the dynamic cell-host membrane, during early steps of the infection process, in which both membranes fuse, either at cell-surface or in an endocytic compartment, to promote viral entry and infection. Once inside the cell, many viruses accomplish their replication process through exploiting or modulating membrane traffic, and generating specialized compartments to assure viral replication, viral budding and spreading, which also serve to evade the immune responses against the pathogen. In this review, we have attempted to present some data that highlight the importance of membrane dynamics during viral entry and replicative processes, in order to understand how viruses use and move through different complex and dynamic cell-membrane structures and how they use them to persist. PMID:21966556

  10. Purified JC virus T antigen derived from insect cells preferentially interacts with binding site II of the viral core origin under replication conditions.

    PubMed

    Bollag, B; Mackeen, P C; Frisque, R J

    1996-04-01

    The human polyomavirus JC virus (JCV) establishes persistent, asymptomatic infections in most individuals, but in severely immunocompromised hosts it may cause the fatal demyelinating brain disease progressive multifocal leukoencephalopathy. In cell culture JCV multiplies inefficiently and exhibits a narrow host range. This restricted behavior occurs, in part, at the level of DNA replication, which is regulated by JCV's multifunctional large tumor protein (TAg). To prepare purified JCV TAg (JCT) for biochemical analyses, the recombinant baculovirus B-JCT was generated by cotransfection of insect cells with wild-type baculovirus and the vector pVL-JCT(Int-) containing the JCT-coding sequence downstream of the efficient polyhedrin promoter. JCT expressed in infected cells was immunoaffinity purified using the anti-JCT monoclonal antibody PAb 2000. Characterization of the viral oncoprotein indicated that it exists in solution as a mixture of monomeric and oligomeric species. With the addition of ATP, the population of monomers decreased and that of hexamers and double hexamers increased. A DNA mobility shift assay indicated that origin binding occurred primarily with the double-hexamer form. A comparison of the specific DNA-binding activities of JCT and SV40 TAg (SVT) revealed that JCT generally exhibited greater affinity for binding site II relative to binding site I (B.S. I) of both viral origin regions, whereas SVT preferentially bound B.S. I. Furthermore, JCT bound nonviral DNA more efficiently than did SVT. These functional differences between the two TAgs may contribute to the reduced DNA replication potential of JCV in vitro, and to the virus' ability to establish persistent infections in vivo.

  11. Complete anatomic reduction and monosegmental fusion for lumbar spondylolisthesis of Grade II and higher: use of the minimally invasive "rocking" technique.

    PubMed

    Rajakumar, Deshpande V; Hari, Akshay; Krishna, Murali; Sharma, Ankit; Reddy, Manjunatha

    2017-08-01

    OBJECTIVE Different surgical approaches have been described for treatment of spondylolisthesis, including in situ fusions, reductions of various degrees, and inclusion of healthy adjacent segments into the fusion construct. To the authors' knowledge, there are only sparse reports describing consistent complete reduction and monosegmental transforaminal lumbar interbody fusion for spondylolisthesis using a minimally invasive technique. The authors assess the efficacy of this technique in the reduction of local deformity and correction of overall sagittal profile in single-level spondylolisthesis. METHODS This cohort study consists of a total of 36 consecutive patients treated over a period of 6 years. Patients with varying grades of lumbar spondylolisthesis (29 Meyerding Grade II and 7 Meyerding Grade III) were treated with operative reduction via minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) in which the "rocking" technique was used. The clinical outcomes were measured using the visual analog scale (VAS) for pain and the Revised Oswestry Disability Index (ODI) for low-back pain/dysfunction. Meyerding grade, pelvic incidence (PI), lumbar lordosis (LL), disc space angle (DSA), pelvic tilt (PT), and sacral slope (SS) were assessed to measure the radiological outcomes. These were reviewed for each patient for a minimum of 2 years. RESULTS At most recent follow-up, 94% of patients were pain free. There were 2 patients (6%) who had moderate pain (which corresponded to higher-grade of listhesis), but all showed an improvement in pain scores (p < 0.05). The mean VAS score improved from 6.5 (SD 1.5) preoperatively to 1.6 (SD 1.3) and the mean ODI score improved from 53.7 (SD 13.1) preoperatively to 22.5 (SD 15.5) at 2-year follow-up. All radiological parameters improved following surgery. Most significant improvement was noted for LL, DSA, and SS. Both LL and SS were found to decrease, while DSA increased postoperatively. PI remained relatively

  12. Viral arthritides.

    PubMed

    Outhred, Alexander C; Kok, Jen; Dwyer, Dominic E

    2011-05-01

    Viral infections may manifest as acute or chronic arthritis. Joint involvement arises from either direct infection of the joint, through an immunological response directed towards the virus or autoimmunity. Epidemiological clues to the diagnosis include geographic location and exposure to vector-borne, blood-borne or sexually transmitted viruses. Although not always possible, it is important to diagnose the pathogenic virus, usually by serology, nucleic acid tests or rarely, viral culture. In general, viral arthritides are self-limiting and treatment is targeted at symptomatic relief. This article focuses on the causes, clinical features, diagnosis and treatment of viral arthritides.

  13. Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene based vector.

    PubMed

    Anuradha, T Swathi; Jami, S K; Datla, R S; Kirti, P B

    2006-06-01

    We have generated putative promoter tagged transgenic lines in Arachis hypogaea cv JL-24 using cotyledonary node (CN) as an explant and a promoterless gus::nptII bifunctional fusion gene mediated by Agrobacterium transformation. MS medium fortified with 6-benzylaminopurine (BAP) at 4mg/l in combination with 0.1 mg/l alpha -napthaleneacetic acid (NAA) was the most effective out of the various BAP and NAA combinations tested in multiple shoot bud formation. Parameters enhancing genetic transformation viz. seedling age, Agrobacterium genetic background and co-cultivation periods were studied by using the binary vector p35SGUSINT. Genetic transformation with CN explants from 6-day-old seedlings co-cultivated with Agrobacterium GV2260 strain for 3 days resulted in high kanamycin resistant shoot induction percentage (45%); approximately 31% transformation frequency was achieved with p35S GUSINT in beta-glucuronidase (GUS) assays. Among the in vivo GUS fusions studied with promoterless gus::nptII construct, GUS-positive sectors occupied 38% of the total transient GUS percentage. We have generated over 141 putative T 0 plants by using the promoterless construct and transferred them to the field. Among these, 82 plants survived well in the green house and 5 plants corresponding to 3.54% showed stable integration of the fusion gene as evidenced by GUS, polymerase chain reaction (PCR) and Southern blot analyses. Twenty-four plants were positive for GUS showing either tissue-specific expression or blue spots in at least one plant part. The progeny of 15 T 0 plants indicated Mendelian inheritance pattern of segregation for single-copy integration. The tissue-specific GUS expression patterns were more or less similar in both T 0 and corresponding T 1 progeny plants. We present the differential patterns of GUS expression identified in the putative promoter-tagged transgenic lines in the present communication.

  14. Alphavirus Entry and Membrane Fusion

    PubMed Central

    Kielian, Margaret; Chanel-Vos, Chantal; Liao, Maofu

    2010-01-01

    The study of enveloped animal viruses has greatly advanced our understanding of the general properties of membrane fusion and of the specific pathways that viruses use to infect the host cell. The membrane fusion proteins of the alphaviruses and flaviviruses have many similarities in structure and function. As reviewed here, alphaviruses use receptor-mediated endocytic uptake and low pH-triggered membrane fusion to deliver their RNA genomes into the cytoplasm. Recent advances in understanding the biochemistry and structure of the alphavirus membrane fusion protein provide a clearer picture of this fusion reaction, including the protein’s conformational changes during fusion and the identification of key domains. These insights into the alphavirus fusion mechanism suggest new areas for experimental investigation and potential inhibitor strategies for anti-viral therapy. PMID:21546978

  15. Herpes simplex virus Membrane Fusion.

    PubMed

    Weed, Darin J; Nicola, Anthony V

    2017-01-01

    Herpes simplex virus mediates multiple distinct fusion events during infection. HSV entry is initiated by fusion of the viral envelope with either the limiting membrane of a host cell endocytic compartment or the plasma membrane. In the infected cell during viral assembly, immature, enveloped HSV particles in the perinuclear space fuse with the outer nuclear membrane in a process termed de-envelopment. A cell infected with some strains of HSV with defined mutations spread to neighboring cells by a fusion event called syncytium formation. Two experimental methods, the transient cell-cell fusion approach and fusion from without, are useful surrogate assays of HSV fusion. These five fusion processes are considered in terms of their requirements, mechanism, and regulation. The execution and modulation of these events require distinct yet often overlapping sets of viral proteins and host cell factors. The core machinery of HSV gB, gD, and the heterodimer gH/gL is required for most if not all of the HSV fusion mechanisms.

  16. MHC class II-alpha chain knockout mice support increased viral replication that is independent of their lack of MHC class II cell surface expression and associated immune function deficiencies.

    PubMed

    Alsharifi, Mohammed; Koskinen, Aulikki; Wijesundara, Danushka K; Bettadapura, Jayaram; Müllbacher, Arno

    2013-01-01

    MHCII molecules are heterodimeric cell surface proteins composed of an α and β chain. These molecules are almost exclusively expressed on thymic epithelium and antigen presenting cells (APCs) and play a central role in the development and function of CD4 T cells. Various MHC-II knockout mice have been generated including MHC-IIAα(-/-) (I-Aα(-/-)), MHC-IIAβ(-/-) (I-β(-/-)) and the double knockout (I-Aαxβ(-/-)). Here we report a very striking observation, namely that alphaviruses including the avirulent strain of Semliki Forest virus (aSFV), which causes asymptomatic infection in wild-type C57BL6/J (B6) mice, causes a very acute and lethal infection in I-Aα(-/-), but not in I-β(-/-) or I-Aαxβ(-/-), mice. This susceptibility to aSFV is associated with high virus titres in muscle, spleen, liver, and brain compared to B6 mice. In addition, I-Aα(-/-) mice show intact IFN-I responses in terms of IFN-I serum levels and IFN-I receptor expression and function. Radiation bone marrow chimeras of B6 mice reconstituted with I-Aα(-/-) bone marrow expressed B6 phenotype, whereas radiation chimeras of I-Aα(-/-) mice reconstituted with B6 bone marrow expressed the phenotype of high viral susceptibility. Virus replication experiments both in vivo and in vitro showed enhanced virus growth in tissues and cell cultures derived form I-Aα(-/-) compared to B6 mice. This enhanced virus replication is evident for other alpha-, flavi- and poxviruses and may be of great benefit to producers of viral vaccines. In conclusion, I-Aα(-/-) mice exhibit a striking susceptibility to virus infections independent of their defective MHC-II expression. Detailed genetic analysis will be carried out to characterise the underlining genetic defects responsible for the observed phenomenon.

  17. A bio-synthetic interface for discovery of viral entry mechanisms.

    SciTech Connect

    Gutzler, Mike; Maar, Dianna; Negrete, Oscar; Hayden, Carl C.; Sasaki, Darryl Yoshio; Stachowiak, Jeanne C.; Wang, Julia

    2010-09-01

    Understanding and defending against pathogenic viruses is an important public health and biodefense challenge. The focus of our LDRD project has been to uncover the mechanisms enveloped viruses use to identify and invade host cells. We have constructed interfaces between viral particles and synthetic lipid bilayers. This approach provides a minimal setting for investigating the initial events of host-virus interaction - (i) recognition of, and (ii) entry into the host via membrane fusion. This understanding could enable rational design of therapeutics that block viral entry as well as future construction of synthetic, non-proliferating sensors that detect live virus in the environment. We have observed fusion between synthetic lipid vesicles and Vesicular Stomatitis virus particles, and we have observed interactions between Nipah virus-like particles and supported lipid bilayers and giant unilamellar vesicles.

  18. The large groove found in the gH/gL structure is an important functional domain for Epstein-Barr virus fusion.

    PubMed

    Chen, Jia; Jardetzky, Theodore S; Longnecker, Richard

    2013-04-01

    Epstein-Barr virus (EBV) mediates viral entry into cells using four glycoproteins-gB, the gH/gL complex, and gp42-and fusion is cell type specific. gB and gH/gL are required for epithelial cell fusion; B cell fusion also requires gp42. To investigate functional domains within the gH/gL structure, we constructed site-directed EBV gH/gL mutants with alterations of residues located in a large groove that separates domain I (D-I) from domain II (D-II) within the gH/gL structure. We found that substitution of alanine for leucine 207 reduces both epithelial and B cell fusion and is accompanied by reduced gp42 binding. We also observed that substitution of alanine for arginine 152, histidine 154, or threonine 174 reduces fusion with epithelial cells but not with B cells. To test whether flexibility of the region between D-I and D-II of gH/gL could be important for membrane fusion activity and to allow potential interactions across the D-I/D-II groove, we mutated D-I amino acids V47, P48, and G49 to cysteine, allowing novel intersubunit disulfide bonds to form with the free C153 located in D-II. We found that the G49C mutant, predicted to bridge D-I and D-II with C153 of gH/gL, had normal B cell fusion activity but reduced epithelial cell fusion activity, which was partially restored by treatment with dithiothreitol. We conclude that structural rearrangements and/or interactions across the D-I/D-II groove of gH/gL are required for fusion with epithelial cells but not for fusion with B cells.

  19. The Large Groove Found in the gH/gL Structure Is an Important Functional Domain for Epstein-Barr Virus Fusion

    PubMed Central

    Chen, Jia; Jardetzky, Theodore S.

    2013-01-01

    Epstein-Barr virus (EBV) mediates viral entry into cells using four glycoproteins—gB, the gH/gL complex, and gp42—and fusion is cell type specific. gB and gH/gL are required for epithelial cell fusion; B cell fusion also requires gp42. To investigate functional domains within the gH/gL structure, we constructed site-directed EBV gH/gL mutants with alterations of residues located in a large groove that separates domain I (D-I) from domain II (D-II) within the gH/gL structure. We found that substitution of alanine for leucine 207 reduces both epithelial and B cell fusion and is accompanied by reduced gp42 binding. We also observed that substitution of alanine for arginine 152, histidine 154, or threonine 174 reduces fusion with epithelial cells but not with B cells. To test whether flexibility of the region between D-I and D-II of gH/gL could be important for membrane fusion activity and to allow potential interactions across the D-I/D-II groove, we mutated D-I amino acids V47, P48, and G49 to cysteine, allowing novel intersubunit disulfide bonds to form with the free C153 located in D-II. We found that the G49C mutant, predicted to bridge D-I and D-II with C153 of gH/gL, had normal B cell fusion activity but reduced epithelial cell fusion activity, which was partially restored by treatment with dithiothreitol. We conclude that structural rearrangements and/or interactions across the D-I/D-II groove of gH/gL are required for fusion with epithelial cells but not for fusion with B cells. PMID:23325693

  20. Need for tripeptidyl-peptidase II in major histocompatibility complex class I viral antigen processing when proteasomes are detrimental.

    PubMed

    Guil, Sara; Rodríguez-Castro, Marta; Aguilar, Francisco; Villasevil, Eugenia M; Antón, Luis C; Del Val, Margarita

    2006-12-29

    CD8(+) T lymphocytes recognize infected cells that display virus-derived antigenic peptides complexed with major histocompatibility complex class I molecules. Peptides are mainly byproducts of cellular protein turnover by cytosolic proteasomes. Cytosolic tripeptidyl-peptidase II (TPPII) also participates in protein degradation. Several peptidic epitopes unexpectedly do not require proteasomes, but it is unclear which proteases generate them. We studied antigen processing of influenza virus nucleoprotein epitope NP(147-155), an archetype epitope that is even destroyed by a proteasome-mediated mechanism. TPPII, with the assistance of endoplasmic reticulum trimming metallo-aminopeptidases, probably ERAAP (endoplasmic reticulum aminopeptidase associated with antigen processing), was crucial for nucleoprotein epitope generation both in the presence of functional proteasomes and when blocked by lactacystin, as shown with specific chemical inhibitors and gene silencing. Different protein contexts and subcellular targeting all allowed epitope processing by TPPII as well as trimming. The results show the plasticity of the cell's assortment of proteases for providing ligands for recognition by antiviral CD8(+) T cells. Our observations identify for the first time a set of proteases competent for antigen processing of an epitope that is susceptible to destruction by proteasomes.

  1. Pediatric cancer gone viral. Part II: potential clinical application of oncolytic herpes simplex virus-1 in children.

    PubMed

    Friedman, Gregory K; Beierle, Elizabeth A; Gillespie, George Yancey; Markert, James M; Waters, Alicia M; Chen, Chun-Yu; Denton, Nicholas L; Haworth, Kellie B; Hutzen, Brian; Leddon, Jennifer L; Streby, Keri A; Wang, Pin-Yi; Cripe, Timothy P

    Oncolytic engineered herpes simplex viruses (HSVs) possess many biologic and functional attributes that support their use in clinical trials in children with solid tumors. Tumor cells, in an effort to escape regulatory mechanisms that would impair their growth and progression, have removed many mechanisms that would have protected them from virus infection and eventual virus-mediated destruction. Viruses engineered to exploit this weakness, like mutant HSV, can be safely employed as tumor cell killers, since normal cells retain these antiviral strategies. Many preclinical studies and early phase trials in adults demonstrated that oncolytic HSV can be safely used and are highly effective in killing tumor cells that comprise pediatric malignancies, without generating the toxic side effects of nondiscriminatory chemotherapy or radiation therapy. A variety of engineered viruses have been developed and tested in numerous preclinical models of pediatric cancers and initial trials in patients are underway. In Part II of this review series, we examine the preclinical evidence to support the further advancement of oncolytic HSV in the pediatric population. We discuss clinical advances made to date in this emerging era of oncolytic virotherapy.

  2. Structure of a Dengue Virus Envelope Protein Late-Stage Fusion Intermediate

    PubMed Central

    Klein, Daryl E.; Choi, Jason L.

    2013-01-01

    The final stages of dengue virus fusion are thought to occur when the membrane-proximal stem drives the transmembrane anchor of the viral envelope protein (E) toward the fusion loop, buried in the target cell membrane. Crystal structures of E have lacked this essential stem region. We expressed and crystallized soluble mutant forms of the dengue virus envelope protein (sE) that include portions of the juxtamembrane stem. Their structures represent late-stage fusion intermediates. The proximal part of the stem has both intra- and intermolecular interactions, so the chain “zips up” along the trimer seam. The penultimate interaction we detected involves the conserved residue F402, which has hydrophobic contacts with a conserved surface on domain II. These interactions do not require any larger-scale changes in trimer packing. The techniques for expression and crystallization of sE containing stem reported here may allow further characterization of the final stages of flavivirus fusion. PMID:23236058

  3. Ready, Set, Fuse! The Coronavirus Spike Protein and Acquisition of Fusion Competence

    PubMed Central

    Heald-Sargent, Taylor; Gallagher, Tom

    2012-01-01

    Coronavirus-cell entry programs involve virus-cell membrane fusions mediated by viral spike (S) proteins. Coronavirus S proteins acquire membrane fusion competence by receptor interactions, proteolysis, and acidification in endosomes. This review describes our current understanding of the S proteins, their interactions with and their responses to these entry triggers. We focus on receptors and proteases in prompting entry and highlight the type II transmembrane serine proteases (TTSPs) known to activate several virus fusion proteins. These and other proteases are essential cofactors permitting coronavirus infection, conceivably being in proximity to cell-surface receptors and thus poised to split entering spike proteins into the fragments that refold to mediate membrane fusion. The review concludes by noting how understanding of coronavirus entry informs antiviral therapies. PMID:22590686

  4. A Recombinant Trivalent Fusion Protein F1–LcrV–HSP70(II) Augments Humoral and Cellular Immune Responses and Imparts Full Protection against Yersinia pestis

    PubMed Central

    Verma, Shailendra K.; Batra, Lalit; Tuteja, Urmil

    2016-01-01

    Plague is one of the most dangerous infections in humans caused by Yersinia pestis, a Gram-negative bacterium. Despite of an overwhelming research success, no ideal vaccine against plague is available yet. It is well established that F1/LcrV based vaccine requires a strong cellular immune response for complete protection against plague. In our earlier study, we demonstrated that HSP70(II) of Mycobacterium tuberculosis modulates the humoral and cellular immunity of F1/LcrV vaccine candidates individually as well as in combinations in a mouse model. Here, we made two recombinant constructs caf1–lcrV and caf1–lcrV–hsp70(II). The caf1 and lcrV genes of Y. pestis and hsp70 domain II of M. tuberculosis were amplified by polymerase chain reaction. Both the recombinant constructs caf1–lcrV and caf1–lcrV–hsp70(II) were cloned in pET28a vector and expressed in Escherichia coli. The recombinant fusion proteins F1–LcrV and F1–LcrV–HSP70(II) were purified using Ni-NTA columns and formulated with alum to evaluate the humoral and cell mediated immune responses in mice. The protective efficacies of F1–LcrV and F1–LcrV–HSP70(II) were determined following challenge of immunized mice with 100 LD50 of Y. pestis through intraperitoneal route. Significant differences were noticed in the titers of IgG and it’s isotypes, i.e., IgG1, IgG2b, and IgG3 in anti- F1–LcrV–HSP70(II) sera in comparison to anti-F1–LcrV sera. Similarly, significant differences were also noticed in the expression levels of IL-2, IFN-γ and TNF-α in splenocytes of F1–LcrV–HSP(II) immunized mice in comparison to F1–LcrV. Both F1–LcrV and F1–LcrV–HSP70(II) provided 100% protection. Our research findings suggest that F1–LcrV fused with HSP70 domain II of M. tuberculosis significantly enhanced the humoral and cellular immune responses in mouse model. PMID:27458447

  5. A Recombinant Trivalent Fusion Protein F1-LcrV-HSP70(II) Augments Humoral and Cellular Immune Responses and Imparts Full Protection against Yersinia pestis.

    PubMed

    Verma, Shailendra K; Batra, Lalit; Tuteja, Urmil

    2016-01-01

    Plague is one of the most dangerous infections in humans caused by Yersinia pestis, a Gram-negative bacterium. Despite of an overwhelming research success, no ideal vaccine against plague is available yet. It is well established that F1/LcrV based vaccine requires a strong cellular immune response for complete protection against plague. In our earlier study, we demonstrated that HSP70(II) of Mycobacterium tuberculosis modulates the humoral and cellular immunity of F1/LcrV vaccine candidates individually as well as in combinations in a mouse model. Here, we made two recombinant constructs caf1-lcrV and caf1-lcrV-hsp70(II). The caf1 and lcrV genes of Y. pestis and hsp70 domain II of M. tuberculosis were amplified by polymerase chain reaction. Both the recombinant constructs caf1-lcrV and caf1-lcrV-hsp70(II) were cloned in pET28a vector and expressed in Escherichia coli. The recombinant fusion proteins F1-LcrV and F1-LcrV-HSP70(II) were purified using Ni-NTA columns and formulated with alum to evaluate the humoral and cell mediated immune responses in mice. The protective efficacies of F1-LcrV and F1-LcrV-HSP70(II) were determined following challenge of immunized mice with 100 LD50 of Y. pestis through intraperitoneal route. Significant differences were noticed in the titers of IgG and it's isotypes, i.e., IgG1, IgG2b, and IgG3 in anti- F1-LcrV-HSP70(II) sera in comparison to anti-F1-LcrV sera. Similarly, significant differences were also noticed in the expression levels of IL-2, IFN-γ and TNF-α in splenocytes of F1-LcrV-HSP(II) immunized mice in comparison to F1-LcrV. Both F1-LcrV and F1-LcrV-HSP70(II) provided 100% protection. Our research findings suggest that F1-LcrV fused with HSP70 domain II of M. tuberculosis significantly enhanced the humoral and cellular immune responses in mouse model.

  6. Establishment of the first WHO International Standard for etanercept, a TNF receptor II Fc fusion protein: Report of an international collaborative study.

    PubMed

    Wadhwa, Meenu; Bird, Chris; Dilger, Paula; Rigsby, Peter; Jia, Haiyan; Gross, Marie Emmanuelle Behr

    2017-03-10

    Etanercept, a recombinant human tumor necrosis factor (TNF) receptor Fc fusion protein is an effective treatment option in adults with rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis or plaque psoriasis and paediatrics with juvenile idiotypic arthritis and plaque psoriasis. Patent expiration in Europe and intense development of various etanercept products worldwide triggered a need for an international reference standard to facilitate determination of biological activity. Therefore, three candidate preparations of etanercept were lyophilized and evaluated in a multi-centre collaborative study comprising twenty eight laboratories from 15 countries for their suitability to serve as an international standard for the bioactivity of TNF receptor II Fc fusion proteins (international nonproprietary name, Etanercept). The preparations were tested for neutralization activity against the third TNF-α international standard (IS) in different in vitro cell-based assays, e.g., cytotoxicity, apoptosis and reporter gene methods. Regardless of the assay and the amount of TNF-α IS used, potency estimates for the different preparations were very similar. An indication of the inhibitory activity of etanercept in terms of the biological activity of the TNF-α IS based on ED50 data derived from a limited number of laboratories using a cytotoxicity assay was also derived. Results indicated that the candidate preparation coded 13/204 was stable and suitable to serve as an international standard for the biological activity of etanercept. Therefore, the preparation coded 13/204 was established by the WHO Expert Committee on Biological Standardization (ECBS) in 2015 as the WHO first International Standard for TNF receptor II Fc fusion protein (INN, etanercept) with an assigned in vitro bioactivity of 10,000IU per ampoule. It should be noted that this first-in-class international standard for a Fc fusion protein, available from the National Institute for Biological

  7. Big fusion, little fusion

    NASA Astrophysics Data System (ADS)

    Chen, Frank; ddtuttle

    2016-08-01

    In reply to correspondence from George Scott and Adam Costley about the Physics World focus issue on nuclear energy, and to news of construction delays at ITER, the fusion reactor being built in France.

  8. Selective Thoracic Fusion of Lenke I and II Curves Affects Sagittal Profiles But Not Sagittal or Spinopelvic Alignment: A Case-Control Study.

    PubMed

    Ries, Zachary; Harpole, Bethany; Graves, Christopher; Gnanapragasam, Gnanapradeep; Larson, Nyle; Weintstein, Stuart; Mendoza-Lattes, Sergio A

    2015-06-15

    Literature review and retrospective case-control study (level 3 evidence) examining 50 adolescent idiopathic scoliosis (AIS) (Lenke I or II curve) cases with 32 healthy controls of the same age. The sagittal profiles were measured preoperatively, 6 months, and 2 years after surgery and compared with those of age-matched controls at baseline. The purpose of this study is to compare baseline sagittal profiles of AIS Lenke I and II curves with age-matched healthy controls and at 6 months and 2 years after surgery, as well as with previously published reports. Sagittal alignment and profiles have gained significant attention in spinal deformity outcomes. The sagittal profile of patients with AIS has been previously reported, as well as the effects of surgical correction, with inconsistent results and no clear references to nonscoliotic controls. Baseline sagittal profiles of 50 patients presenting with Lenke I or II AIS curves treated with selective thoracic fusion were compared with 32 age-matched controls without spinal pathology. These values were also measured at 6 months and 2 years postoperatively to examine effects of selective thoracic fusion over time. Sagittal parameters examined include pelvic incidence, pelvic tilt, C7 plumb line (sagittal vertical alignment), thoracic kyphosis, and lumbar lordosis. A literature review was performed comparing previously published data. Data are presented as mean (95% confidence interval). P value of less than 0.05 was considered significant. Interobserver reliability (Cohen κ= 0.49-0.95). All demographic and preoperative sagittal alignment parameters were comparable between controls and patients with AIS prior to surgery. After selective thoracic fusion, thoracic kyphosis decreased significantly from baseline (25.4º [21.6-29.2] vs. 15.3º [12.8-17.8]; P < 0.001) at 6 months and at 2 years (10.3º [7.5-13.1]; P < 0.001). The lumbar lordosis significantly decreased at 6 months from baseline (54.5º [28.6-80.5] vs. 61.8º

  9. Viral arthritis

    MedlinePlus

    Infectious arthritis - viral ... Arthritis may be a symptom of many virus-related illnesses. It usually disappears on its own without ... the rubella vaccine, only a few people develop arthritis. No risk factors are known.

  10. Viral Meningitis

    MedlinePlus

    ... Resources for Healthcare Professionals Related Links Vaccine Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Viral Meningitis Language: ... Arboviruses Lymphocytic Choriomeningitis Virus Related Links Vaccine Schedules Preteen & Teen ... Disease Sepsis Language: English Spanish ...

  11. Two Novel Class II Hydrophobins from Trichoderma spp. Stimulate Enzymatic Hydrolysis of Poly(Ethylene Terephthalate) when Expressed as Fusion Proteins

    PubMed Central

    Espino-Rammer, Liliana; Ribitsch, Doris; Przylucka, Agnieszka; Marold, Annemarie; Greimel, Katrin J.; Herrero Acero, Enrique; Guebitz, Georg M.; Kubicek, Christian P.

    2013-01-01

    Poly(ethylene terephthalate) (PET) can be functionalized and/or recycled via hydrolysis by microbial cutinases. The rate of hydrolysis is however low. Here, we tested whether hydrophobins (HFBs), small secreted fungal proteins containing eight positionally conserved cysteine residues, are able to enhance the rate of enzymatic hydrolysis of PET. Species of the fungal genus Trichoderma have the most proliferated arsenal of class II hydrophobin-encoding genes among fungi. To this end, we studied two novel class II HFBs (HFB4 and HFB7) of Trichoderma. HFB4 and HFB7, produced in Escherichia coli as fusions to the C terminus of glutathione S-transferase, exhibited subtle structural differences reflected in hydrophobicity plots that correlated with unequal hydrophobicity and hydrophily, respectively, of particular amino acid residues. Both proteins exhibited a dosage-dependent stimulation effect on PET hydrolysis by cutinase from Humicola insolens, with HFB4 displaying an adsorption isotherm-like behavior, whereas HFB7 was active only at very low concentrations and was inhibitory at higher concentrations. We conclude that class II HFBs can stimulate the activity of cutinases on PET, but individual HFBs can display different properties. The present findings suggest that hydrophobins can be used in the enzymatic hydrolysis of aromatic-aliphatic polyesters such as PET. PMID:23645195

  12. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

    SciTech Connect

    Not Available

    1981-12-01

    This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs.

  13. Viral haemorrhagic septicaemia virus (VHSV) genotype II isolated from European river lamprey Lampetra fluviatilis in Finland during surveillance from 1999 to 2008.

    PubMed

    Gadd, Tuija; Jakava-Viljanen, Miia; Einer-Jensen, Katja; Ariel, Ellen; Koski, Perttu; Sihvonen, Liisa

    2010-02-17

    We examined the occurrence of viral haemorrhagic septicaemia virus (VHSV) in the main spawning stocks of wild European river lamprey Lampetra fluviatilis in the rivers of Finland from 1999 to 2008. Pooled samples of internal organs (kidney, liver and heart or brain) from 2621 lampreys were examined for the presence of VHSV by standard virological techniques. VHSV was isolated from 5 samples from the rivers Lestijoki and Kalajoki, which flow from Finland into the Bothnian Bay of the Baltic Sea. The presence of VHSV was confirmed by immunofluorescent antibody technique (IFAT), ELISA and RT-PCR. Phylogenetic analysis based on the full-length VHSV glycoprotein (G) gene sequence revealed that the isolates were most closely related to the VHSV strain isolated in 1996 from herring Clupea harengus and sprat Sprattus sprattus in the Eastern Gotland Basin of the Baltic Sea, and were therefore assigned to VHSV genotype II. The partial G gene sequences obtained (nt 1 to 672-1129) of all 5 lamprey VHSV isolates were identical, and so were the entire G genes (nt 1 to 1524) of 2 isolates sequenced. The virulence of one of the lamprey isolates was evaluated by an experimental infection trial in rainbow trout Oncorhynchus mykiss fry. No mortality was induced postinfection by waterborne and intraperitoneal challenge, respectively, while 2 genotype Id isolates originating from Finnish rainbow trout caused marked mortality under the same conditions. The infection in the European river lamprey is thought to be independent from the epidemic in farmed rainbow trout in Finnish brackish waters, because the isolates from rainbow trout were of a different genotype. This is the first report of VHSV found in the European river lamprey. The role of wild river lampreys in maintaining the infection in the marine environment remains unclear.

  14. Going Viral with Fluorescent Proteins.

    PubMed

    Costantini, Lindsey M; Snapp, Erik L

    2015-10-01

    Many longstanding questions about dynamics of virus-cell interactions can be answered by combining fluorescence imaging techniques with fluorescent protein (FP) tagging strategies. Successfully creating a FP fusion with a cellular or viral protein of interest first requires selecting the appropriate FP. However, while viral architecture and cellular localization often dictate the suitability of a FP, a FP's chemical and physical properties must also be considered. Here, we discuss the challenges of and offer suggestions for identifying the optimal FPs for studying the cell biology of viruses.

  15. Viral arthritis

    PubMed Central

    Marks, Michael; Marks, Jonathan L

    2016-01-01

    Acute-onset arthritis is a common clinical problem facing both the general clinician and the rheumatologist. A viral aetiology is though to be responsible for approximately 1% of all cases of acute arthritis with a wide range of causal agents recognised. The epidemiology of acute viral arthritis continues to evolve, with some aetiologies, such as rubella, becoming less common due to vaccination, while some vector-borne viruses have become more widespread. A travel history therefore forms an important part of the assessment of patients presenting with an acute arthritis. Worldwide, parvovirus B19, hepatitis B and C, HIV and the alphaviruses are among the most important causes of virally mediated arthritis. Targeted serological testing may be of value in establishing a diagnosis, and clinicians must also be aware that low-titre autoantibodies, such as rheumatoid factor and antinuclear antibody, can occur in the context of acute viral arthritis. A careful consideration of epidemiological, clinical and serological features is therefore required to guide clinicians in making diagnostic and treatment decisions. While most virally mediated arthritides are self-limiting some warrant the initiation of specific antiviral therapy. PMID:27037381

  16. Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus.

    PubMed

    Lavillette, Dimitri; Pécheur, Eve-Isabelle; Donot, Peggy; Fresquet, Judith; Molle, Jennifer; Corbau, Romuald; Dreux, Marlène; Penin, François; Cosset, François-Loïc

    2007-08-01

    Infection of eukaryotic cells by enveloped viruses requires the merging of viral and cellular membranes. Highly specific viral surface glycoproteins, named fusion proteins, catalyze this reaction by overcoming inherent energy barriers. Hepatitis C virus (HCV) is an enveloped virus that belongs to the genus Hepacivirus of the family Flaviviridae. Little is known about the molecular events that mediate cell entry and membrane fusion for HCV, although significant progress has been made due to recent developments in infection assays. Here, using infectious HCV pseudoparticles (HCVpp), we investigated the molecular basis of HCV membrane fusion. By searching for classical features of fusion peptides through the alignment of sequences from various HCV genotypes, we identified six regions of HCV E1 and E2 glycoproteins that present such characteristics. We introduced conserved and nonconserved amino acid substitutions in these regions and analyzed the phenotype of HCVpp generated with mutant E1E2 glycoproteins. This was achieved by (i) quantifying the infectivity of the pseudoparticles, (ii) studying the incorporation of E1E2 and their capacity to mediate receptor binding, and (iii) determining their fusion capacity in cell-cell and liposome/HCVpp fusion assays. We propose that at least three of these regions (i.e., at positions 270 to 284, 416 to 430, and 600 to 620) play a role in the membrane fusion process. These regions may contribute to the merging of viral and cellular membranes either by interacting directly with lipid membranes or by assisting the fusion process through their involvement in the conformational changes of the E1E2 complex at low pH.

  17. Mechanistic Insight into Bunyavirus-Induced Membrane Fusion from Structure-Function Analyses of the Hantavirus Envelope Glycoprotein Gc

    PubMed Central

    Stettner, Eva; Jeffers, Scott Allen; Pérez-Vargas, Jimena; Pehau-Arnaudet, Gerard; Tortorici, M. Alejandra; Jestin, Jean-Luc; England, Patrick; Tischler, Nicole D.; Rey, Félix A.

    2016-01-01

    Hantaviruses are zoonotic viruses transmitted to humans by persistently infected rodents, giving rise to serious outbreaks of hemorrhagic fever with renal syndrome (HFRS) or of hantavirus pulmonary syndrome (HPS), depending on the virus, which are associated with high case fatality rates. There is only limited knowledge about the organization of the viral particles and in particular, about the hantavirus membrane fusion glycoprotein Gc, the function of which is essential for virus entry. We describe here the X-ray structures of Gc from Hantaan virus, the type species hantavirus and responsible for HFRS, both in its neutral pH, monomeric pre-fusion conformation, and in its acidic pH, trimeric post-fusion form. The structures confirm the prediction that Gc is a class II fusion protein, containing the characteristic β-sheet rich domains termed I, II and III as initially identified in the fusion proteins of arboviruses such as alpha- and flaviviruses. The structures also show a number of features of Gc that are distinct from arbovirus class II proteins. In particular, hantavirus Gc inserts residues from three different loops into the target membrane to drive fusion, as confirmed functionally by structure-guided mutagenesis on the HPS-inducing Andes virus, instead of having a single “fusion loop”. We further show that the membrane interacting region of Gc becomes structured only at acidic pH via a set of polar and electrostatic interactions. Furthermore, the structure reveals that hantavirus Gc has an additional N-terminal “tail” that is crucial in stabilizing the post-fusion trimer, accompanying the swapping of domain III in the quaternary arrangement of the trimer as compared to the standard class II fusion proteins. The mechanistic understandings derived from these data are likely to provide a unique handle for devising treatments against these human pathogens. PMID:27783711

  18. Mechanistic Insight into Bunyavirus-Induced Membrane Fusion from Structure-Function Analyses of the Hantavirus Envelope Glycoprotein Gc.

    PubMed

    Guardado-Calvo, Pablo; Bignon, Eduardo A; Stettner, Eva; Jeffers, Scott Allen; Pérez-Vargas, Jimena; Pehau-Arnaudet, Gerard; Tortorici, M Alejandra; Jestin, Jean-Luc; England, Patrick; Tischler, Nicole D; Rey, Félix A

    2016-10-01

    Hantaviruses are zoonotic viruses transmitted to humans by persistently infected rodents, giving rise to serious outbreaks of hemorrhagic fever with renal syndrome (HFRS) or of hantavirus pulmonary syndrome (HPS), depending on the virus, which are associated with high case fatality rates. There is only limited knowledge about the organization of the viral particles and in particular, about the hantavirus membrane fusion glycoprotein Gc, the function of which is essential for virus entry. We describe here the X-ray structures of Gc from Hantaan virus, the type species hantavirus and responsible for HFRS, both in its neutral pH, monomeric pre-fusion conformation, and in its acidic pH, trimeric post-fusion form. The structures confirm the prediction that Gc is a class II fusion protein, containing the characteristic β-sheet rich domains termed I, II and III as initially identified in the fusion proteins of arboviruses such as alpha- and flaviviruses. The structures also show a number of features of Gc that are distinct from arbovirus class II proteins. In particular, hantavirus Gc inserts residues from three different loops into the target membrane to drive fusion, as confirmed functionally by structure-guided mutagenesis on the HPS-inducing Andes virus, instead of having a single "fusion loop". We further show that the membrane interacting region of Gc becomes structured only at acidic pH via a set of polar and electrostatic interactions. Furthermore, the structure reveals that hantavirus Gc has an additional N-terminal "tail" that is crucial in stabilizing the post-fusion trimer, accompanying the swapping of domain III in the quaternary arrangement of the trimer as compared to the standard class II fusion proteins. The mechanistic understandings derived from these data are likely to provide a unique handle for devising treatments against these human pathogens.

  19. Viral quasispecies.

    PubMed

    Andino, Raul; Domingo, Esteban

    2015-05-01

    New generation sequencing is greatly expanding the capacity to examine the composition of mutant spectra of viral quasispecies in infected cells and host organisms. Here we review recent progress in the understanding of quasispecies dynamics, notably the occurrence of intra-mutant spectrum interactions, and implications of fitness landscapes for virus adaptation and de-adaptation. Complementation or interference can be established among components of the same mutant spectrum, dependent on the mutational status of the ensemble. Replicative fitness relates to an optimal mutant spectrum that provides the molecular basis for phenotypic flexibility, with implications for antiviral therapy. The biological impact of viral fitness renders particularly relevant the capacity of new generation sequencing to establish viral fitness landscapes. Progress with experimental model systems is becoming an important asset to understand virus behavior in the more complex environments faced during natural infections.

  20. Viral quasispecies

    PubMed Central

    Andino, Raul; Domingo, Esteban

    2016-01-01

    New generation sequencing is greatly expanding the capacity to examine the composition of mutant spectra of viral quasispecies in infected cells and host organisms. Here we review recent progress in the understanding of quasispecies dynamics, notably the occurrence of intra-mutant spectrum interactions, and implications of fitness landscapes for virus adaptation and de-adaptation. Complementation or interference can be established among components of the same mutant spectrum, dependent on the mutational status of the ensemble. Replicative fitness relates to an optimal mutant spectrum that provides the molecular basis for phenotypic flexibility, with implications for antiviral therapy. The biological impact of viral fitness renders particularly relevant the capacity of new generation sequencing to establish viral fitness landscapes. Progress with experimental model systems is becoming an important asset to understand virus behavior in the more complex environments faced during natural infections. PMID:25824477

  1. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein

    PubMed Central

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-01-01

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the viral-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of HA tag addition varied with other fusion proteins, as parainfluenza virus 5 F-HA showed decreased surface expression and no stimulation in fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in modulation of the membrane fusion reaction promoted by these viral glycoproteins. PMID:21175223

  2. RAB-5- and DYNAMIN-1-Mediated Endocytosis of EFF-1 Fusogen Controls Cell-Cell Fusion

    PubMed Central

    Smurova, Ksenia; Podbilewicz, Benjamin

    2016-01-01

    Summary Cell-cell fusion plays essential roles during fertilization and organogenesis. Previous studies in C. elegans led to the identification of the eukaryotic fusion protein (EFF-1 fusogen), which has structural homology to class II viral fusogens. Transcriptional repression of EFF-1 ensures correct fusion fates, and overexpression of EFF-1 results in embryonic lethality. EFF-1 must be expressed on the surface of both fusing cells; however, little is known regarding how cells regulate EFF-1 surface exposure. Here, we report that EFF-1 is actively removed from the plasma membrane of epidermal cells by dynamin- and RAB-5-dependent endocytosis and accumulates in early endosomes. EFF-1 was transiently localized to apical domains of fusion-competent cells. Effective cell-cell fusion occurred only between pairs of cell membranes in which EFF-1 localized. Downregulation of dynamin or RAB-5 caused EFF-1 mislocalization to all apical membrane domains and excessive fusion. Thus, internalization of EFF-1 is a safety mechanism preventing excessive cell fusion. PMID:26854231

  3. Viral Hepatitis

    MedlinePlus

    ... with hepatitis? How does a pregnant woman pass hepatitis B virus to her baby? If I have hepatitis B, what does my baby need so that she ... Can I breastfeed my baby if I have hepatitis B? More information on viral hepatitis What is hepatitis? ...

  4. The MHC-II transactivator CIITA, a restriction factor against oncogenic HTLV-1 and HTLV-2 retroviruses: similarities and differences in the inhibition of Tax-1 and Tax-2 viral transactivators

    PubMed Central

    Forlani, Greta; Abdallah, Rawan; Accolla, Roberto S.; Tosi, Giovanna

    2013-01-01

    The activation of CD4+ T helper cells is strictly dependent on the presentation of antigenic peptides by MHC class II (MHC-II) molecules. MHC-II expression is primarily regulated at the transcriptional level by the AIR-1 gene product CIITA (class II transactivator). Thus, CIITA plays a pivotal role in the triggering of the adaptive immune response against pathogens. Besides this well known function, we recently found that CIITA acts as an endogenous restriction factor against HTLV-1 (human T cell lymphotropic virus type 1) and HTLV-2 oncogenic retroviruses by targeting their viral transactivators Tax-1 and Tax-2, respectively. Here we review our findings on CIITA-mediated inhibition of viral replication and discuss similarities and differences in the molecular mechanisms by which CIITA specifically counteracts the function of Tax-1 and Tax-2 molecules. The dual function of CIITA as a key regulator of adaptive and intrinsic immunity represents a rather unique example of adaptation of host-derived factors against pathogen infections during evolution. PMID:23986750

  5. Paramyxovirus Fusion and Entry: Multiple Paths to a Common End

    PubMed Central

    Chang, Andres; Dutch, Rebecca E.

    2012-01-01

    The paramyxovirus family contains many common human pathogenic viruses, including measles, mumps, the parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the zoonotic henipaviruses, Hendra and Nipah. While the expression of a type 1 fusion protein and a type 2 attachment protein is common to all paramyxoviruses, there is considerable variation in viral attachment, the activation and triggering of the fusion protein, and the process of viral entry. In this review, we discuss recent advances in the understanding of paramyxovirus F protein-mediated membrane fusion, an essential process in viral infectivity. We also review the role of the other surface glycoproteins in receptor binding and viral entry, and the implications for viral infection. Throughout, we concentrate on the commonalities and differences in fusion triggering and viral entry among the members of the family. Finally, we highlight key unanswered questions and how further studies can identify novel targets for the development of therapeutic treatments against these human pathogens. PMID:22590688

  6. Variability of Gross Tumor Volume Delineation in Head-and-Neck Cancer Using PET/CT Fusion, Part II: The Impact of a Contouring Protocol

    SciTech Connect

    Berson, Anthony M. Stein, Nicholas F.; Riegel, Adam C.; Destian, Sylvie; Ng, Tracy; Tena, Lawrence B.; Mitnick, Robin J.; Heiba, Sherif

    2009-04-01

    The purpose of this study was to assess the efficacy of a gross tumor volume (GTV) contouring protocol on interobserver variability between 4 physicians in positron emission therapy/computed tomography (PET/CT) treatment planning of head-and-neck cancer. A GTV contouring protocol for PET/CT treatment planning was developed utilizing 4 stages: Preliminary contouring on CT alone, determination of appropriate PET windowing, accurate image registration, and modification of CT contouring with correctly formatted PET/CT display and rules for modality disagreement. Two neuroradiologists and 2 radiation oncologists (designated as A, B, C, and D, respectively) were given a tutorial of PET/CT coregistered imaging individualized to their skill level, which included a step-by-step explanation of the protocol with clinical examples. Opportunities for questions and hands-on practice were given. The physicians were asked to re-contour 16 head-and-neck patients from Part I on PET/CT fusion imaging. Differences in volume magnitude were analyzed for statistical significance by analysis of variance (ANOVA) and paired t-tests ({alpha} < 0.05). Volume overlap was analyzed for statistical significance using Wilcoxon signed-rank tests ({alpha} < 0.05). Volume overlap increased significantly from Part I to Part II (p < 0.05). One previously significant difference between physicians disappeared with the protocol in place. The mean fusion volume of Physician C, however, remained significantly larger than that of Physician D (p < 0.01). This result is unchanged from Part I. The multidisciplinary contouring protocol significantly improved the coincidence of GTVs contoured by multiple physicians. The magnitudes of the volumes showed marginal improvement in consistency. Developing an institutional contouring protocol for PET/CT treatment planning is highly recommended to reduce interobserver variability.

  7. Poxvirus entry and membrane fusion

    SciTech Connect

    Moss, Bernard . E-mail: bmoss@nih.gov

    2006-01-05

    The study of poxvirus entry and membrane fusion has been invigorated by new biochemical and microscopic findings that lead to the following conclusions: (1) the surface of the mature virion (MV), whether isolated from an infected cell or by disruption of the membrane wrapper of an extracellular virion, is comprised of a single lipid membrane embedded with non-glycosylated viral proteins; (2) the MV membrane fuses with the cell membrane, allowing the core to enter the cytoplasm and initiate gene expression; (3) fusion is mediated by a newly recognized group of viral protein components of the MV membrane, which are conserved in all members of the poxvirus family; (4) the latter MV entry/fusion proteins are required for cell to cell spread necessitating the disruption of the membrane wrapper of extracellular virions prior to fusion; and furthermore (5) the same group of MV entry/fusion proteins are required for virus-induced cell-cell fusion. Future research priorities include delineation of the roles of individual entry/fusion proteins and identification of cell receptors.

  8. Human T-cell leukemia virus type II nucleotide sequences between env and the last exon of tax/rex are not required for viral replication or cellular transformation.

    PubMed

    Green, P L; Ross, T M; Chen, I S; Pettiford, S

    1995-01-01

    Human T-cell leukemia virus types I (HTLV-I) and II (HTLV-II) and bovine leukemia virus contain a region of approximately 600 nucleotides located 3' to the env gene and 5' to the last exon of the tax and rex regulatory genes. This region was originally termed nontranslated or untranslated (UT) since it did not appear to be expressed. Several studies have identified novel mRNAs in HTLV-I-, HTLV-II-, a bovine leukemia virus-infected cells that splice into open reading frames (ORFs) contained in the UT region and, thus, have the potential to produce proteins that might contribute to the biological properties of these viruses. The HTLV-II infectious molecular clone pH6neo has several ORFs in the UT region (nucleotides 6641 to 7213) and a large ORF which overlaps the third exon of tax/rex. To investigate the importance of these ORF-containing sequences on viral replication and transformation in cell culture, proviral clones containing deletions in UT (pH6neo delta UT) or a stop codon insertion mutation (pH6neoST) were constructed. Lymphoid cells were transfected with mutant proviral constructs, and stable cell clones, designated 729pH6neo delta UT and 729pH6neoST, were characterized. Viral protein production, reverse transcriptase activity, and the capacity to induce syncytia were indistinguishable from cells transfected with the wild-type clone. Finally, 729pH6neo delta UT- and 729pH6neoST-producer cells cocultured with primary blood T lymphocytes resulted in cellular transformation characteristic of HTLV. These results indicate that putative protein-coding sequences between env and the last exon of tax/rex are not required for viral replication or transformation in cell culture.

  9. Comparison of Anyplex II RV16 with the xTAG respiratory viral panel and Seeplex RV15 for detection of respiratory viruses.

    PubMed

    Kim, Hyun-Ki; Oh, Sung-Hee; Yun, Kyung Ah; Sung, Heungsup; Kim, Mi-Na

    2013-04-01

    A novel multiplex real-time PCR approach (Anyplex II RV16 [RV16]; Seegene, South Korea) was compared with a multiplex endpoint PCR kit (Seeplex RV15 ACE detection kit [RV15]; Seegene) and a liquid bead-based assay (xTAG respiratory viral panel [xTAG]; Abbott, United States). Of nasopharyngeal swabs or aspirates and bronchoalveolar lavage fluid samples submitted for RV15 testing, 199 retrospectively collected positive specimens and 283 prospectively collected specimens were further tested with RV16 and xTAG. A true-positive result was defined as a positive result from all three methods or RV16 and xTAG or RV15 and xTAG. For specimens with discrepant results, monoplex PCR and sequencing of the target viruses were performed. In total, 300 virus-positive specimens yielded 386 viruses. When the bocavirus results were excluded, the overall sensitivities of RV16, RV15, and xTAG were 95.2%, 93.3%, and 87.2%, respectively (95% confidence intervals, 93.0 to 97.4%, 90.8 to 95.8%, and 83.8 to 90.6%, respectively). RV16 was more sensitive than xTAG for coronavirus OC43/HKU1 (100% versus 26.1%; P < 0.0001) and adenovirus (100% versus 79.5%; P < 0.01) but was less sensitive than xTAG for rhinovirus/enterovirus (89.4% versus 97.9%; P < 0.05). RV16 demonstrated higher sensitivity than RV15 for the detection of adenovirus (100% versus 82.1%; P < 0.05). The specificities of all three methods ranged from 98.6% to 100%. Sequencing analysis of 64 rhinovirus-positive samples revealed that RV16 accurately differentiated between rhinovirus and enterovirus. RV16 most frequently missed rhinovirus C. In conclusion, the overall sensitivity of RV16 was better than that of xTAG. However, improvement of the sensitivity for rhinovirus is required.

  10. Spinal Fusion

    MedlinePlus

    ... concept of fusion is similar to that of welding in industry. Spinal fusion surgery, however, does not ... bone taken from the patient has a long history of use and results in predictable healing. Autograft ...

  11. Spinal Fusion

    MedlinePlus

    ... concept of fusion is similar to that of welding in industry. Spinal fusion surgery, however, does not ... bone taken from the patient has a long history of use and results in predictable healing. Autograft ...

  12. Immunogenetics of viral infections.

    PubMed

    Martin, Maureen P; Carrington, Mary

    2005-10-01

    The HLA class I and II genes encode molecules that lie at the heart of the acquired immune response against infectious diseases. Associations between these polymorphic loci and genetically complex infectious diseases have been historically elusive, in contrast to the more obvious HLA associations with autoimmune diseases. High resolution molecular typing of large, clinically well-defined cohorts has begun to uncover evidence for the influence of HLA diversity on diseases of viral etiology, such as those caused by HIV-1, hepatitis B virus, hepatitis C virus and human papilloma virus. Combinations of HLA and KIR also appear to affect outcome to viral infection, supporting a role for HLA class I diversity in the innate immune response in addition to the acquired immune response.

  13. Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion

    PubMed Central

    Russell, Charles J.; Jardetzky, Theodore S.; Lamb, Robert A.

    2001-01-01

    Peptides derived from heptad repeat regions adjacent to the fusion peptide and transmembrane domains of many viral fusion proteins form stable helical bundles and inhibit fusion specifically. Paramyxovirus SV5 fusion (F) protein-mediated fusion and its inhibition by the peptides N-1 and C-1 were analyzed. The temperature dependence of fusion by F suggests that thermal energy, destabilizing proline residues and receptor binding by the hemagglutinin–neuraminidase (HN) protein collectively contribute to F activation from a metastable native state. F-mediated fusion was reversibly arrested by low temperature or membrane-incorporated lipids, and the resulting F intermediates were characterized. N-1 inhibited an earlier F intermediate than C-1. Co-expression of HN with F lowered the temperature required to attain the N-1-inhibited intermediate, consistent with HN binding to its receptor stimulating a conformational change in F. C-1 bound and inhibited an intermediate of F that could be detected until a point directly preceding membrane merger. The data are consistent with C-1 binding a pre-hairpin intermediate of F and with helical bundle formation being coupled directly to membrane fusion. PMID:11483506

  14. Radioscapholunate Fusions

    PubMed Central

    McGuire, Duncan Thomas; Bain, Gregory Ian

    2012-01-01

    Radiocarpal fusions are performed for a variety of indications, most commonly for debilitating painful arthritis. The goal of a wrist fusion is to fuse the painful, diseased joints and to preserve motion through the healthy joints. Depending on the extent of the disease process, radiocarpal fusions may take the form of radiolunate, radioscapholunate, or total wrist fusions. Surgical techniques and instrumentation have advanced over the last few decades, and consequently the functional outcomes have improved and complications decreased. Techniques for partial carpal fusions have improved and now include distal scaphoid and triquetrum excision, which improves range of motion and fusion rates. In this article we discuss the various surgical techniques and fixation methods available and review the corresponding evidence in the literature. The authors' preferred surgical technique of radioscapholunate fusion with distal scaphoid and triquetrum excision is outlined. New implants and new concepts are also discussed. PMID:24179717

  15. Viral epigenetics.

    PubMed

    Milavetz, Barry I; Balakrishnan, Lata

    2015-01-01

    DNA tumor viruses including members of the polyomavirus, adenovirus, papillomavirus, and herpes virus families are presently the subject of intense interest with respect to the role that epigenetics plays in control of the virus life cycle and the transformation of a normal cell to a cancer cell. To date, these studies have primarily focused on the role of histone modification, nucleosome location, and DNA methylation in regulating the biological consequences of infection. Using a wide variety of strategies and techniques ranging from simple ChIP to ChIP-chip and ChIP-seq to identify histone modifications, nuclease digestion to genome wide next generation sequencing to identify nucleosome location, and bisulfite treatment to MeDIP to identify DNA methylation sites, the epigenetic regulation of these viruses is slowly becoming better understood. While the viruses may differ in significant ways from each other and cellular chromatin, the role of epigenetics appears to be relatively similar. Within the viral genome nucleosomes are organized for the expression of appropriate genes with relevant histone modifications particularly histone acetylation. DNA methylation occurs as part of the typical gene silencing during latent infection by herpesviruses. In the simple tumor viruses like the polyomaviruses, adenoviruses, and papillomaviruses, transformation of the cell occurs via integration of the virus genome such that the virus's normal regulation is disrupted. This results in the unregulated expression of critical viral genes capable of redirecting cellular gene expression. The redirected cellular expression is a consequence of either indirect epigenetic regulation where cellular signaling or transcriptional dysregulation occurs or direct epigenetic regulation where epigenetic cofactors such as histone deacetylases are targeted. In the more complex herpersviruses transformation is a consequence of the expression of the viral latency proteins and RNAs which again can

  16. Viral entry mechanisms: the increasing diversity of paramyxovirus entry

    PubMed Central

    Smith, Everett Clinton; Popa, Andreea; Chang, Andres; Masante, Cyril; Dutch, Rebecca Ellis

    2009-01-01

    The paramyxovirus family contains established human pathogens such as measles virus and human respiratory syncytial virus, and emerging pathogens including the Hendra and Nipah viruses and the recently identified human metapneumovirus. Two major envelope glycoproteins, the attachment protein and the fusion protein, promote the processes of viral attachment and virus-cell membrane fusion required for entry. While common mechanisms of fusion protein proteolytic activation and the mechanism of membrane fusion promotion have been shown in recent years, considerable diversity exists in the family related to receptor binding and the potential mechanisms of fusion triggering. PMID:19878307

  17. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion

    NASA Astrophysics Data System (ADS)

    Yang, Sung-Tae; Kiessling, Volker; Tamm, Lukas K.

    2016-04-01

    Lipids and proteins are organized in cellular membranes in clusters, often called `lipid rafts'. Although raft-constituent ordered lipid domains are thought to be energetically unfavourable for membrane fusion, rafts have long been implicated in many biological fusion processes. For the case of HIV gp41-mediated membrane fusion, this apparent contradiction can be resolved by recognizing that the interfaces between ordered and disordered lipid domains are the predominant sites of fusion. Here we show that line tension at lipid domain boundaries contributes significant energy to drive gp41-fusion peptide-mediated fusion. This energy, which depends on the hydrophobic mismatch between ordered and disordered lipid domains, may contribute tens of kBT to fusion, that is, it is comparable to the energy required to form a lipid stalk intermediate. Line-active compounds such as vitamin E lower line tension in inhomogeneous membranes, thereby inhibit membrane fusion, and thus may be useful natural viral entry inhibitors.

  18. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion.

    PubMed

    Yang, Sung-Tae; Kiessling, Volker; Tamm, Lukas K

    2016-04-26

    Lipids and proteins are organized in cellular membranes in clusters, often called 'lipid rafts'. Although raft-constituent ordered lipid domains are thought to be energetically unfavourable for membrane fusion, rafts have long been implicated in many biological fusion processes. For the case of HIV gp41-mediated membrane fusion, this apparent contradiction can be resolved by recognizing that the interfaces between ordered and disordered lipid domains are the predominant sites of fusion. Here we show that line tension at lipid domain boundaries contributes significant energy to drive gp41-fusion peptide-mediated fusion. This energy, which depends on the hydrophobic mismatch between ordered and disordered lipid domains, may contribute tens of kBT to fusion, that is, it is comparable to the energy required to form a lipid stalk intermediate. Line-active compounds such as vitamin E lower line tension in inhomogeneous membranes, thereby inhibit membrane fusion, and thus may be useful natural viral entry inhibitors.

  19. A Review of Data Fusion Techniques

    PubMed Central

    2013-01-01

    The integration of data and knowledge from several sources is known as data fusion. This paper summarizes the state of the data fusion field and describes the most relevant studies. We first enumerate and explain different classification schemes for data fusion. Then, the most common algorithms are reviewed. These methods and algorithms are presented using three different categories: (i) data association, (ii) state estimation, and (iii) decision fusion. PMID:24288502

  20. A review of data fusion techniques.

    PubMed

    Castanedo, Federico

    2013-01-01

    The integration of data and knowledge from several sources is known as data fusion. This paper summarizes the state of the data fusion field and describes the most relevant studies. We first enumerate and explain different classification schemes for data fusion. Then, the most common algorithms are reviewed. These methods and algorithms are presented using three different categories: (i) data association, (ii) state estimation, and (iii) decision fusion.

  1. Modes of Paramyxovirus Fusion: a Henipavirus perspective

    PubMed Central

    Lee, Benhur; Akyol-Ataman, Zeynep

    2011-01-01

    Henipavirus is a new genus of paramyxovirus that uses protein-based receptors (EphrinB2 and EphrinB3) for virus entry. Paramyxovirus entry requires the coordinated action of the fusion (F) and attachment viral envelope glycoproteins. Receptor binding to the attachment protein triggers F to undergo a conformational cascade that results in membrane fusion. The accumulation of structural and functional studies on many paramyxoviral fusion and attachment proteins, including recent structures of Nipah and Hendra virus G bound and unbound to cognate ephrinB receptors, indicate that henipavirus entry and fusion differs mechanistically from paramyxoviruses that use glycan-based receptors. PMID:21511478

  2. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion

    SciTech Connect

    Schowalter, Rachel M.; Wurth, Mark A.; Aguilar, Hector C.; Lee, Benhur; Moncman, Carole L.; McCann, Richard O.; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2006-07-05

    The paramyxovirus fusion protein (F) promotes fusion of the viral envelope with the plasma membrane of target cells as well as cell-cell fusion. The plasma membrane is closely associated with the actin cytoskeleton, but the role of actin dynamics in paramyxovirus F-mediated membrane fusion is unclear. We examined cell-cell fusion promoted by two different paramyxovirus F proteins in three cell types in the presence of constitutively active Rho family GTPases, major cellular coordinators of actin dynamics. Reporter gene and syncytia assays demonstrated that expression of either Rac1{sup V12} or Cdc42{sup V12} could increase cell-cell fusion promoted by the Hendra or SV5 glycoproteins, though the effect was dependent on the cell type expressing the viral glycoproteins. In contrast, RhoA{sup L63} decreased cell-cell fusion promoted by Hendra glycoproteins but had little affect on SV5 F-mediated fusion. Also, data suggested that GTPase activation in the viral glycoprotein-containing cell was primarily responsible for changes in fusion. Additionally, we found that activated Cdc42 promoted nuclear rearrangement in syncytia.

  3. Temporary fusionless posterior occipitocervical fixation for a proximal junctional type II odontoid fracture after previous C2-pelvis fusion: case report, description of a new surgical technique, and review of the literature.

    PubMed

    Theologis, Alexander A; Deviren, Vedat; Tay, Bobby

    2017-05-01

    Axial fractures in patients with a previous C2-pelvis posterior instrumented fusion are rare and may be challenging to manage. Motion preservation in the axial spine for these patients is important, as the C1-2 and Occipit-C1 joints are their only remaining mobile spinal segments. In this unique report, we present for the first time the use of a fusionless occipitocervical operation for the treatment of a type II odontoid fracture and unilateral C2 pars fracture adjacent to a previous C2-pelvis posterior instrumented fusion. Case report. Three years after proximal extension of a T3-pelvis posterior instrumented fusion to C2, the patient sustained a displaced odontoid fracture and unilateral C2 pars fracture after a mechanical fall. She underwent fracture stabilization with extension of instrumentation to the occiput. No attempt at fusion was performed. Post-operatively, she was distraught by severely limited neck range of motion, which was reflected in worsening of health-related quality of life (HRQoL) scores. The fracture healed uneventfully after which the instrumentation from the occiput and C1 were removed, which resulted in improvement of neck range of motion. Two years post-operatively, HRQoL scores showed minimal neck disability (NDI 12), no neck or arm pain (VAS 0), and outstanding general health (EQ-5D 85 out of 100, SF-36 PCS 35.3, SF-36 MCS 41.1). In this one patient, instrumentation without fusion allowed for successful and timely union of a displaced odontoid fracture in a patient with a previous C2-pelvis fusion. Axial range of motion was preserved after instrumentation removal.

  4. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-04-20

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  5. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-02-22

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  6. Targeting of a Nuclease to Murine Leukemia Virus Capsids Inhibits Viral Multiplication

    NASA Astrophysics Data System (ADS)

    Natsoulis, Georges; Seshaiah, Partha; Federspiel, Mark J.; Rein, Alan; Hughes, Stephen H.; Boeke, Jef D.

    1995-01-01

    Capsid-targeted viral inactivation is an antiviral strategy in which toxic fusion proteins are targeted to virions, where they inhibit viral multiplication by destroying viral components. These fusion proteins consist of a virion structural protein moiety and an enzymatic moiety such as a nuclease. Such fusion proteins can severely inhibit transposition of yeast retrotransposon Ty1, an element whose transposition mechanistically resembles retroviral multiplication. We demonstrate that expression of a murine retrovirus capsid-staphylococcal nuclease fusion protein inhibits multiplication of the corresponding murine leukemia virus by 30- to 100-fold. Staphylococcal nuclease is apparently inactive intracellularly and hence nontoxic to the host cell, but it is active extracellularly because of its requirement for high concentrations of Ca2+ ions. Virions assembled in and shed from cells expressing the fusion protein contain very small amounts of intact viral RNA, as would be predicted for nuclease-mediated inhibition of viral multiplication.

  7. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    SciTech Connect

    Bernard, Eric; Simmons, Graham; Chazal, Nathalie; and others

    2015-02-15

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV.

  8. Viral Miniproteins

    PubMed Central

    DiMaio, Daniel

    2015-01-01

    Many viruses encode short transmembrane proteins that play vital roles in virus replication or virulence. Because these proteins are often less than 50 amino acids long and not homologous to cellular proteins, their open reading frames were often overlooked during the initial annotation of viral genomes. Some of these proteins oligomerize in membranes and form ion channels. Other miniproteins bind to cellular transmembrane proteins and modulate their activity, whereas still others have an unknown mechanism of action. Based on the underlying principles of transmembrane miniprotein structure, it is possible to build artificial small transmembrane proteins that modulate a variety of biological processes. These findings suggest that short transmembrane proteins provide a versatile mechanism to regulate a wide range of cellular activities, and we speculate that cells also express many similar proteins that have not yet been discovered. PMID:24742054

  9. Viral Carcinogenesis.

    PubMed

    Smith, A J; Smith, L A

    2016-01-01

    Cancer has been recognized for thousands of years. Egyptians believed that cancer occurred at the will of the gods. Hippocrates believed human disease resulted from an imbalance of the four humors: blood, phlegm, yellow bile, and black bile with cancer being caused by excess black bile. The lymph theory of cancer replaced the humoral theory and the blastema theory replaced the lymph theory. Rudolph Virchow was the first to recognize that cancer cells like all cells came from other cells and believed chronic irritation caused cancer. At the same time there was a belief that trauma caused cancer, though it never evolved after many experiments inducing trauma. The birth of virology occurred in 1892 when Dimitri Ivanofsky demonstrated that diseased tobacco plants remained infective after filtering their sap through a filter that trapped bacteria. Martinus Beijerinck would call the tiny infective agent a virus and both Dimitri Ivanofsky and Marinus Beijerinck would become the fathers of virology. Not to long thereafter, Payton Rous founded the field of tumor virology in 1911 with his discovery of a transmittable sarcoma of chickens by what would come to be called Rous sarcoma virus or RSV for short. The first identified human tumor virus was the Epstein-Barr virus (EBV), named after Tony Epstein and Yvonne Barr who visualized the virus particles in Burkitt's lymphoma cells by electron microscopy in 1965. Since that time, many viruses have been associated with carcinogenesis including the most studied, human papilloma virus associated with cervical carcinoma, many other anogenital carcinomas, and oropharyngeal carcinoma. The World Health Organization currently estimates that approximately 22% of worldwide cancers are attributable to infectious etiologies, of which viral etiologies is estimated at 15-20%. The field of tumor virology/viral carcinogenesis has not only identified viruses as etiologic agents of human cancers, but has also given molecular insights to all human

  10. Unenhanced Cone Beam Computed Tomography and Fusion Imaging in Direct Percutaneous Sac Injection for Treatment of Type II Endoleak: Technical Note

    SciTech Connect

    Carrafiello, Gianpaolo Ierardi, Anna Maria; Radaelli, Alessandro; Marchi, Giuseppe De; Floridi, Chiara; Piffaretti, Gabriele; Federico, Fontana

    2016-03-15

    AimTo evaluate safety, feasibility, technical success, and clinical success of direct percutaneous sac injection (DPSI) for the treatment of type II endoleaks (T2EL) using anatomical landmarks on cone beam computed tomography (CBCT) and fusion imaging (FI).Materials and MethodsEight patients with T2EL were treated with DPSI using CBCT as imaging guidance. Anatomical landmarks on unenhanced CBCT were used for referencing T2EL location in the first five patients, while FI between unenhanced CBCT and pre-procedural computed tomography angiography (CTA) was used in the remaining three patients. Embolization was performed with thrombin, glue, and ethylene–vinyl alcohol copolymer. Technical and clinical success, iodinated contrast utilization, procedural time, fluoroscopy time, and mean radiation dose were registered.ResultsDPSI was technically successful in all patients: the needle was correctly positioned at the first attempt in six patients, while in two of the first five patients the needle was repositioned once. Neither minor nor major complications were registered. Average procedural time was 45 min and the average administered iodinated contrast was 13 ml. Mean radiation dose of the procedure was 60.43 Gy cm{sup 2} and mean fluoroscopy time was 18 min. Clinical success was achieved in all patients (mean follow-up of 36 months): no sign of T2EL was reported in seven patients until last CT follow-up, while it persisted in one patient with stability of sac diameter.ConclusionsDPSI using unenhanced CBCT and FI is feasible and provides the interventional radiologist with an accurate and safe alternative to endovascular treatment with limited iodinated contrast utilization.

  11. A recombinant fusion protein displaying murine and human MHC class I- and II-specific epitopes protects against Leishmania amazonensis infection.

    PubMed

    Martins, Vívian T; Lage, Daniela P; Duarte, Mariana C; Carvalho, Ana Maria R S; Costa, Lourena E; Mendes, Tiago A O; Vale, Danniele L; Menezes-Souza, Daniel; Roatt, Bruno M; Tavares, Carlos A P; Soto, Manuel; Coelho, Eduardo A F

    2017-03-01

    Tegumentary leishmaniasis (TL) constitutes a major public health problem with significant morbidity worldwide. Synthetic peptide-based vaccines are attractive candidates to protect against leishmaniasis, since T cell-specific epitopes can be delivery to antigen-presenting cells, leading to the generation of a Th1 cell-mediated immunity. In this context, the present study aims to evaluate the immunogenicity and protective efficacy of a vaccine composed of major histocompatibility complex class I and II-restricted epitopes derived from four Leishmania infantum proteins to protect mice against Leishmania amazonensis infection. This recombinant fusion protein was administered in BALB/c mice alone or with saponin. As controls, animals received saline or saponin. In the results, the administration of the recombinant protein plus saponin induced a specific IFN-γ, IL-12 and GM-CSF production, as well as high IgG2a isotype antibody levels, which protected mice against a challenge using L. amazonensis promastigotes. Lower parasite burden was found in the infected footpads, liver, spleen and draining lymph node of vaccinated mice, when compared to those from the control groups. In addition, protection was associated with a lower IL-4 and IL-10 response, which was accompanied by the antileishmanial nitrite production by spleen cells of the animals. Interestingly, the recombinant protein administered alone induced a partial protection against challenge. In conclusion, this study shows a new vaccine candidate based on T cell-specific epitopes that was able to induce protection against L. amazonensis infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. "Polarized" Fusion

    NASA Astrophysics Data System (ADS)

    Schieck, Hans Paetz Gen.

    Increasing energy demand in view of limited supply, as well as environmental and nuclear-safety concerns leading to increased emphasis on renewable energy sources such as solar or wind energy are expected to focus public and scientific interest increasingly also on fusion energy. With the decision to build ITER (low-density magnetic confinement) and also continuing research on (high-density) inertial-confinement fusion (cf. the inauguration of the laser fusion facility at the Lawrence Livermore National Laboratory) prospects of fusion energy have probably entered a new era.

  13. Developing a Model Fusion Center to Enhance Information Sharing

    DTIC Science & Technology

    2011-12-01

    LITERATURE REVIEW .........................................................................................21 A. OFFICIAL DOCUMENTS RELATING TO FUSION...DOCUMENTS RELATING TO FUSION CENTERS The first category of literature reviewed looks at official documents that discuss the role of fusion centers...operations to enhance terrorism and crime prevention. 21 II. LITERATURE REVIEW There have been numerous documents written concerning fusion centers

  14. Plasma fusion and cold fusion

    SciTech Connect

    Hideo, Kozima

    1996-12-31

    Fundamental problems of plasma fusion (controlled thermonuclear fusion) due to the contradicting demands of the magnetic confinement of plasma and suppression of instabilities occurring on and in plasma are surveyed in contrast with problems of cold fusion. Problems in cold fusion due to the complicated constituents and types of force are explained. Typical cold fusion events are explained by a model based on the presence of trapped neutrons in cold fusion materials. The events include Pons-Fleishmann effect, tritium anomaly, helium 4 production, and nuclear transmutation. Fundamental hypothesis of the model is an effectiveness of a new concept--neutron affinity of elements. The neutron affinity is defined and some bases supporting it are explained. Possible justification of the concept by statistical approach is given.

  15. Mutagenesis and nuclear magnetic resonance analyses of the fusion peptide of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus F protein.

    PubMed

    Tan, Ying; Jiang, Ling; Wang, Manli; Yin, Feifei; Deng, Fei; Liu, Maili; Hu, Zhihong; Wang, Hualin

    2008-08-01

    The entry of enveloped viruses into cells is normally mediated by fusion between viral and cellular membranes, in which the fusion peptide plays a crucial role. The fusion peptides of group II nucleopolyhedrovirus (NPV) F proteins are quite conserved, with a hydrophobic region located at the N terminal of the F(1) fragment. For this report, we used mutagenesis and nuclear magnetic resonance (NMR) to study the structure and function of the fusion peptide of the Helicoverpa armigera single-nucleocapsid NPV (HearNPV) F protein (HaF). Five mutations in the fusion peptide of HaF, N(1)G, N(1)L, I(2)N, G(3)L, and D(11)L, were generated separately, and the mutated f genes were transformed into the f-null HearNPV bacmid. The mutations N(1)L, I(2)N, and D(11)L were found to completely abolish the ability of the recombinant bacmids to produce infectious budded virus, while the mutations N(1)G and G(3)L did not. The low-pH-induced envelope fusion assay demonstrated that the N(1)G substitution increased the fusogenicity of HaF, while the G(3)L substitution reduced its fusogenicity. NMR spectroscopy was used to determine the structure of a synthetic fusion peptide of HaF in the presence of sodium dodecyl sulfate micelles at pH 5.0. The fusion peptide appeared to be an amphiphilic structure composed of a flexible coil in the N terminus from N(1) to N(5), a 3(10)-helix from F(6) to G(8), a turn at S(9), and a regular alpha-helix from V(10) to D(19). The data provide the first NMR structure of a baculovirus fusion peptide and allow us to further understand the relationship of structure and function of the fusion peptide.

  16. HIV-1 proteins in infected cells determine the presentation of viral peptides by HLA class I and class II molecules and the nature of the cellular and humoral antiviral immune responses--a review.

    PubMed

    Becker, Y

    1994-07-01

    The goals of molecular virology and immunology during the second half of the 20th century have been to provide the conceptual approaches and the tools for the development of safe and efficient virus vaccines for the human population. The success of the vaccination approach to prevent virus epidemics was attributed to the ability of inactivated and live virus vaccines to induce a humoral immune response and to produce antiviral neutralizing antibodies in the vaccinees. The successful development of antiviral vaccines and their application to most of the human population led to a marked decrease in virus epidemics around the globe. Despite this remarkable achievement, the developing epidemics of HIV-caused AIDS (accompanied by activation of latent herpesviruses in AIDS patients), epidemics of Dengue fever, and infections with respiratory syncytial virus may indicate that conventional approaches to the development of virus vaccines that induce antiviral humoral responses may not suffice. This may indicate that virus vaccines that induce a cellular immune response, leading to the destruction of virus-infected cells by CD8+ cytotoxic T cells (CTLs), may be needed. Antiviral CD8+ CTLs are induced by viral peptides presented within the peptide binding grooves of HLA class I molecules present on the surface of infected cells. Studies in the last decade provided an insight into the presentation of viral peptides by HLA class I molecules to CD8+ T cells. These studies are here reviewed, together with a review of the molecular events of virus replication, to obtain an overview of how viral peptides associate with the HLA class I molecules. A similar review is provided on the molecular pathway by which viral proteins, used as subunit vaccines or inactivated virus particles, are taken up by endosomes in the endosome pathway and are processed by proteolytic enzymes into peptides that interact with HLA class II molecules during their transport to the plasma membrane of antigen

  17. A p6Pol-protease fusion protein is present in mature particles of human immunodeficiency virus type 1.

    PubMed Central

    Almog, N; Roller, R; Arad, G; Passi-Even, L; Wainberg, M A; Kotler, M

    1996-01-01

    Human immunodeficiency virus type 1 (HIV-1) protease (PR) and p6(Pol) are translated as part of the Gag-Pol polyprotein after a ribosomal frameshift. PR is essential to virus replication and is responsible for cleaving Gag and Gag-Pol precursors, but the role of p6(Pol) in HIV-1 infection is poorly understood. Here, we report that (i) PR is present in mature HIV-1 virions primarily as a p6(Pol)-PR fusion protein; (ii) HIV-1 PR cleaves viral precursor proteins expressed in bacterial cells at the Phe-Leu bond (positions 1639 to 1642) located at the junction of the NC and p6(Pol) proteins, releasing the p6(Pol)-PR fusion protein; and (iii) purified p6(Pol)-PR fusion protein undergoes autocleavage in vitro at at least three sites. PMID:8794372

  18. Image fusion

    NASA Technical Reports Server (NTRS)

    Pavel, M.

    1993-01-01

    The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.

  19. Hemagglutinin Spatial Distribution Shifts in Response to Cholesterol in the Influenza Viral Envelope

    PubMed Central

    Domanska, Marta K.; Dunning, Rebecca A.; Dryden, Kelly A.; Zawada, Katarzyna E.; Yeager, Mark; Kasson, Peter M.

    2015-01-01

    Influenza virus delivers its genome to the host cytoplasm via a process of membrane fusion mediated by the viral hemagglutinin protein. Optimal fusion likely requires multiple hemagglutinin trimers, so the spatial distribution of hemagglutinin on the viral envelope may influence fusion mechanism. We have previously shown that moderate depletion of cholesterol from the influenza viral envelope accelerates fusion kinetics even though it decreases fusion efficiency, both in a reversible manner. Here, we use electron cryo-microscopy to measure how the hemagglutinin lateral density in the viral envelope changes with cholesterol extraction. We extract this information by measuring the radial distribution function of electron density in >4000 viral images per sample, assigning hemagglutinin density by comparing images with and without anti-HA Fab bound. On average, hemagglutinin trimers move closer together: we estimate that the typical trimer-trimer spacing reduces from 94 to 84 Å when ∼90% of cholesterol is removed from the viral membrane. Upon restoration of viral envelope cholesterol, this spacing once again expands. This finding can qualitatively explain the observed changes to fusion kinetics: contemporary models from single-virus microscopy are that fusion requires the engagement of several hemagglutinin trimers in close proximity. If removing cholesterol increases the lateral density of hemagglutinin, this should result in an increase in the rate of fusion. PMID:26536268

  20. Hemagglutinin Spatial Distribution Shifts in Response to Cholesterol in the Influenza Viral Envelope.

    PubMed

    Domanska, Marta K; Dunning, Rebecca A; Dryden, Kelly A; Zawada, Katarzyna E; Yeager, Mark; Kasson, Peter M

    2015-11-03

    Influenza virus delivers its genome to the host cytoplasm via a process of membrane fusion mediated by the viral hemagglutinin protein. Optimal fusion likely requires multiple hemagglutinin trimers, so the spatial distribution of hemagglutinin on the viral envelope may influence fusion mechanism. We have previously shown that moderate depletion of cholesterol from the influenza viral envelope accelerates fusion kinetics even though it decreases fusion efficiency, both in a reversible manner. Here, we use electron cryo-microscopy to measure how the hemagglutinin lateral density in the viral envelope changes with cholesterol extraction. We extract this information by measuring the radial distribution function of electron density in >4000 viral images per sample, assigning hemagglutinin density by comparing images with and without anti-HA Fab bound. On average, hemagglutinin trimers move closer together: we estimate that the typical trimer-trimer spacing reduces from 94 to 84 Å when ∼90% of cholesterol is removed from the viral membrane. Upon restoration of viral envelope cholesterol, this spacing once again expands. This finding can qualitatively explain the observed changes to fusion kinetics: contemporary models from single-virus microscopy are that fusion requires the engagement of several hemagglutinin trimers in close proximity. If removing cholesterol increases the lateral density of hemagglutinin, this should result in an increase in the rate of fusion.

  1. Crystal Structure of West Nile Virus Envelope Glycoprotein Reveals Viral Surface Epitopes

    SciTech Connect

    Kanai,R.; Kar, K.; Anthony, K.; Gould, L.; Ledizet, M.; Fikrig, E.; Marasco, W.; Koski, R.; Modis, Y.

    2006-01-01

    West Nile virus, a member of the Flavivirus genus, causes fever that can progress to life-threatening encephalitis. The major envelope glycoprotein, E, of these viruses mediates viral attachment and entry by membrane fusion. We have determined the crystal structure of a soluble fragment of West Nile virus E. The structure adopts the same overall fold as that of the E proteins from dengue and tick-borne encephalitis viruses. The conformation of domain II is different from that in other prefusion E structures, however, and resembles the conformation of domain II in postfusion E structures. The epitopes of neutralizing West Nile virus-specific antibodies map to a region of domain III that is exposed on the viral surface and has been implicated in receptor binding. In contrast, we show that certain recombinant therapeutic antibodies, which cross-neutralize West Nile and dengue viruses, bind a peptide from domain I that is exposed only during the membrane fusion transition. By revealing the details of the molecular landscape of the West Nile virus surface, our structure will assist the design of antiviral vaccines and therapeutics.

  2. Crystal Structure of West Nile Virus Envelope Glycoprotein Reveals Viral Surface Epitopes▿

    PubMed Central

    Kanai, Ryuta; Kar, Kalipada; Anthony, Karen; Gould, L. Hannah; Ledizet, Michel; Fikrig, Erol; Marasco, Wayne A.; Koski, Raymond A.; Modis, Yorgo

    2006-01-01

    West Nile virus, a member of the Flavivirus genus, causes fever that can progress to life-threatening encephalitis. The major envelope glycoprotein, E, of these viruses mediates viral attachment and entry by membrane fusion. We have determined the crystal structure of a soluble fragment of West Nile virus E. The structure adopts the same overall fold as that of the E proteins from dengue and tick-borne encephalitis viruses. The conformation of domain II is different from that in other prefusion E structures, however, and resembles the conformation of domain II in postfusion E structures. The epitopes of neutralizing West Nile virus-specific antibodies map to a region of domain III that is exposed on the viral surface and has been implicated in receptor binding. In contrast, we show that certain recombinant therapeutic antibodies, which cross-neutralize West Nile and dengue viruses, bind a peptide from domain I that is exposed only during the membrane fusion transition. By revealing the details of the molecular landscape of the West Nile virus surface, our structure will assist the design of antiviral vaccines and therapeutics. PMID:16943291

  3. Viral Parkinsonism

    PubMed Central

    Jang, Haeman; Boltz, David A.; Webster, Robert G.; Smeyne, Richard Jay

    2015-01-01

    Parkinson's disease is a debilitating neurological disorder characterized that affects 1-2% of the adult population over 55 years of age. For the vast majority of cases, the etiology of this disorder is unknown, although it is generally accepted that there is a genetic susceptibility to any number of environmental agents. One such agent may be viruses. It has been shown that numerous viruses can enter the nervous system, i.e. they are neurotropic, and induce a number of encephalopathies. One of the secondary consequences of these encephalopathies can be parkinsonism, that is both transient as well as permanent. One of the most highlighted and controversial cases of viral parkinsonism is that which followed the 1918 influenza outbreak and the subsequent induction of von Economo's encephalopathy. In this review, we discuss the neurological sequelae of infection by influenza virus as well as that of other viruses known to induce parkinsonism including Coxsackie, Japanese encephalitis B, St. Louis, West Nile and HIV viruses. PMID:18760350

  4. The Second Receptor Binding Site of the Globular Head of the Newcastle Disease Virus Hemagglutinin-Neuraminidase Activates the Stalk of Multiple Paramyxovirus Receptor Binding Proteins To Trigger Fusion

    PubMed Central

    Salah, Zuhair; DeVito, Ilaria; Talekar, Aparna; Palmer, Samantha G.; Xu, Rui; Wilson, Ian A.

    2012-01-01

    The hemagglutinin-neuraminidase (HN) protein of paramyxoviruses carries out three distinct activities contributing to the ability of HN to promote viral fusion and entry: receptor binding, receptor cleavage (neuraminidase), and activation of the fusion protein. The relationship between receptor binding and fusion triggering functions of HN are not fully understood. For Newcastle disease virus (NDV), one bifunctional site (site I) on HN′s globular head can mediate both receptor binding and neuraminidase activities, and a second site (site II) in the globular head is also capable of mediating receptor binding. The receptor analog, zanamivir, blocks receptor binding and cleavage activities of NDV HN′s site I while activating receptor binding by site II. Comparison of chimeric proteins in which the globular head of NDV HN is connected to the stalk region of either human parainfluenza virus type 3 (HPIV3) or Nipah virus receptor binding proteins indicates that receptor binding to NDV HN site II not only can activate its own fusion (F) protein but can also activate the heterotypic fusion proteins. We suggest a general model for paramyxovirus fusion activation in which receptor engagement at site II plays an active role in F activation. PMID:22438532

  5. Measles virus transmembrane fusion protein synthesized de novo or presented in immunostimulating complexes is endogenously processed for HLA class I- and class II-restricted cytotoxic T cell recognition

    PubMed Central

    1992-01-01

    The routes used by antigen-presenting cells (APC) to convert the transmembrane fusion glycoprotein (F) of measles virus (MV) to HLA class I and class II presentable peptides have been examined, using cloned cytotoxic T lymphocytes in functional assays. Presentation by Epstein-Barr virus-transformed B lymphoblastoid cell lines was achieved using live virus, ultraviolet light-inactivated virus, and purified MV- F delivered either as such or incorporated in immunostimulating complexes (MV-F-ISCOM). Only live virus and MV-F-ISCOM allow presentation by class I molecules, while all antigen preparations permit class II-restricted presentation. We observe presentation of MV- F from live virus and as MV-F-ISCOM by class II molecules in a fashion that is not perturbed by chloroquine. Our studies visualize novel presentation pathways of type I transmembrane proteins. PMID:1613454

  6. Rabies Virus-Induced Membrane Fusion Pathway

    PubMed Central

    Gaudin, Yves

    2000-01-01

    Fusion of rabies virus with membranes is triggered at low pH and is mediated by the viral glycoprotein (G). The rabies virus-induced fusion pathway was studied by investigating the effects of exogenous lipids having various dynamic molecular shapes on the fusion process. Inverted cone-shaped lysophosphatidylcholines (LPCs) blocked fusion at a stage subsequent to fusion peptide insertion into the target membrane. Consistent with the stalk-hypothesis, LPC with shorter alkyl chains inhibited fusion at lower membrane concentrations and this inhibition was compensated by the presence of oleic acid. However, under suboptimal fusion conditions, short chain LPCs, which were translocated in the inner leaflet of the membranes, considerably reduced the lag time preceding membrane merging, resulting in faster kinetics of fusion. This indicated that the rate limiting step for fusion is the formation of a fusion pore in a diaphragm of restricted hemifusion. The previously described cold-stabilized prefusion complex was also characterized. This intermediate is at a well-advanced stage of the fusion process when the hemifusion diaphragm is destabilized, but lipid mixing is still restricted, probably by a ring-like complex of glycoproteins. I provide evidence that this state has a dynamic character and that its lipid organization can reverse back to two lipid bilayers. PMID:10931871

  7. The Dark Side of Cell Fusion

    PubMed Central

    Bastida-Ruiz, Daniel; Van Hoesen, Kylie; Cohen, Marie

    2016-01-01

    Cell fusion is a physiological cellular process essential for fertilization, viral entry, muscle differentiation and placental development, among others. In this review, we will highlight the different cancer cell-cell fusions and the advantages obtained by these fusions. We will specially focus on the acquisition of metastatic features by cancer cells after fusion with bone marrow-derived cells. The mechanism by which cancer cells fuse with other cells has been poorly studied thus far, but the presence in several cancer cells of syncytin, a trophoblastic fusogen, leads us to a cancer cell fusion mechanism similar to the one used by the trophoblasts. The mechanism by which cancer cells perform the cell fusion could be an interesting target for cancer therapy. PMID:27136533

  8. Mechanical tension drives cell membrane fusion.

    PubMed

    Kim, Ji Hoon; Ren, Yixin; Ng, Win Pin; Li, Shuo; Son, Sungmin; Kee, Yee-Seir; Zhang, Shiliang; Zhang, Guofeng; Fletcher, Daniel A; Robinson, Douglas N; Chen, Elizabeth H

    2015-03-09

    Membrane fusion is an energy-consuming process that requires tight juxtaposition of two lipid bilayers. Little is known about how cells overcome energy barriers to bring their membranes together for fusion. Previously, we have shown that cell-cell fusion is an asymmetric process in which an "attacking" cell drills finger-like protrusions into the "receiving" cell to promote cell fusion. Here, we show that the receiving cell mounts a Myosin II (MyoII)-mediated mechanosensory response to its invasive fusion partner. MyoII acts as a mechanosensor, which directs its force-induced recruitment to the fusion site, and the mechanosensory response of MyoII is amplified by chemical signaling initiated by cell adhesion molecules. The accumulated MyoII, in turn, increases cortical tension and promotes fusion pore formation. We propose that the protrusive and resisting forces from fusion partners put the fusogenic synapse under high mechanical tension, which helps to overcome energy barriers for membrane apposition and drives cell membrane fusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Functional relevance of transmembrane domains in membrane fusion.

    PubMed

    Nikolaus, Jörg; Herrmann, Andreas

    2012-11-01

    Membrane fusion is ubiquitous in life. Fusion of biological membranes is mediated by specialized fusion proteins anchored to the bilayers destined to fuse. Here we describe these proteins as being instrumental in viral, intracellular and developmental fusion. Next, we review experimental and theoretical evidence that points to fusion in the different systems as following a common 'fusion through hemifusion' pathway. We also focus on the structure and dynamics of the transmembrane segment that anchors the fusion proteins to the bilayer, and its role in driving fusion. In particular, we highlight the influence of this single segment on the surrounding membrane lipids and on the overall shape of the membrane along the way to fusion.

  10. Long noncoding RNAs in viral infections

    PubMed Central

    Fortes, Puri; Morris, Kevin

    2015-01-01

    Viral infections induce strong modifications in the cell transcriptome. Among the RNAs whose expression is altered by infection are long noncoding RNAs (lncRNAs). LncRNAs are transcripts with potential to function as RNA molecules. Infected cells may express viral lncRNAs, cellular lncRNAs and chimeric lncRNAs formed by viral and cellular sequences. Some viruses express viral lncRNAs whose function is essential for viral viability. They are transcribed by polymerase II or III and some of them can be processed by unique maturation steps performed by host cell machineries. Some viral lncRNAs control transcription, stability or translation of cellular and viral genes. Surprisingly, similar functions can be exerted by cellular lncRNAs induced by infection. Expression of cellular lncRNAs may be altered in response to viral replication or viral protein expression. However, many cellular lncRNAs respond to the antiviral pathways induced by infection. In fact, many lncRNAs function as positive or negative regulators of the innate antiviral response. Our current knowledge about the identity and function of lncRNAs in infected cells is very limited. However, research into this field has already helped in the identification of novel cellular pathways and may help in the development of therapeutic tools for the treatment of viral infections, autoimmune diseases, neurological disorders and cancer. PMID:26454188

  11. Membrane penetration of Sendai virus glycoproteins during the early stages of fusion with liposomes as determined by hydrophobic photoaffinity labeling

    SciTech Connect

    Novick, S.L.; Hoekstra, D.

    1988-10-01

    The hydrophobic photoaffinity label 3-(trifluoromethyl)-3-(m-(/sup 125/I)iodophenyl)diazirine was used to label Sendai virus proteins during fusion with cardiolipin and phosphatidylserine liposomes. Preferential labeling of the viral fusion protein during the initial stages of fusion demonstrated that this protein interacts with the hydrophobic core of the target membrane as an initiating event of virus-liposome fusion. Labeling showed time, temperature, and pH dependence consistent with earlier fluorescent measurements of fusion kinetics. The present method provides conclusive evidence supporting the hypothesis that hydrophobic interaction of the fusion protein with the target bilayer is an initial event in the fusion mechanism of viral membranes.

  12. Role of Metastability and Acidic pH in Membrane Fusion by Tick-Borne Encephalitis Virus

    PubMed Central

    Stiasny, Karin; Allison, Steven L.; Mandl, Christian W.; Heinz, Franz X.

    2001-01-01

    The envelope protein E of the flavivirus tick-borne encephalitis (TBE) virus is, like the alphavirus E1 protein, a class II viral fusion protein that differs structurally and probably mechanistically from class I viral fusion proteins. The surface of the native TBE virion is covered by an icosahedrally symmetrical network of E homodimers, which mediate low-pH-induced fusion in endosomes. At the pH of fusion, the E homodimers are irreversibly converted to a homotrimeric form, which we have found by intrinsic fluorescence measurements to be more stable than the native dimers. Thus, the TBE virus E protein is analogous to the prototypical class I fusion protein, the influenza virus hemagglutinin (HA), in that it is initially synthesized in a metastable state that is energetically poised to be converted to the fusogenic state by exposure to low pH. However, in contrast to what has been observed with influenza virus HA, this transition could not be triggered by input of heat energy alone and membrane fusion could be induced only when the virus was exposed to an acidic pH. In a previous study we showed that the dimer-to-trimer transition appears to be a two-step process involving a reversible dissociation of the dimer followed by an irreversible trimerization of the dissociated monomeric subunits. Because the dimer-monomer equilibrium in the first step apparently depends on the protonation state of E, the lack of availability of monomers for the trimerization step at neutral pH could explain why low pH is essential for fusion in spite of the metastability of the native E dimer. PMID:11462011

  13. Cellular and humoral immune reactions in chronic active liver disease. II. Lymphocyte subsets and viral antigens in liver biopsies of patients with acute and chronic hepatitis B.

    PubMed Central

    Eggink, H F; Houthoff, H J; Huitema, S; Wolters, G; Poppema, S; Gips, C H

    1984-01-01

    The characteristics and distribution of the inflammatory infiltrate in liver biopsies of 25 patients with hepatitis B viral (HBV) infection were studied in relation to the distribution and expression of HBV antigens. Mononuclear subsets were characterized with monoclonal (OKT, OKM, Leu) antibodies to surface antigens. For the demonstration of viral antigens directly conjugated antibodies to surface (HBsAg), core (HBcAg) and 'e' (HBeAg) antigen were used. For the study of mutual relations all methods were performed on serial cut tissue sections. In chronic active hepatitis B (CAH-B, n = 12) OKT8+ lymphocytes of T cell origin were the only cell type present in areas with liver cell degeneration and T cell cytotoxicity appears to be the only immune mechanism. In chronic persistent hepatitis B (CPH-B, n = 7) the only conspicuous feature was the presence of many Leu 3+ lymphocytes of the helper/inducer population in the portal tracts. In acute hepatitis B (AHB, n = 6) OKT8+ cells of non-T origin (OKT1-,3-) and Leu 7+ cells of presumed natural killer (NK) potential predominated in the areas with liver cell necrosis, and non-T cell cytotoxicity appears to be the predominant immune mechanism. In none of these disease entities a positive spatial relation could be established between the cytotoxic cells and the demonstrable expression of HBV antigens in hepatocytes. It is concluded that differences in immunological reaction pattern may explain the different course in the three forms of HBV infection studied. Images Fig. 1 Fig. 2 PMID:6713726

  14. Global transcriptomic profiling of bovine endometrial immune response in vitro. II. Effect of bovine viral diarrhea virus on the endometrial response to lipopolysaccharide.

    PubMed

    Oguejiofor, Chike F; Cheng, Zhangrui; Abudureyimu, Ayimuguli; Anstaett, Olivia L; Brownlie, Joe; Fouladi-Nashta, Ali A; Wathes, D Claire

    2015-10-01

    Infection with noncytopathic bovine viral diarrhea virus (ncpBVDV) is associated with uterine disease and infertility. This study investigated the influence of ncpBVDV on immune functions of the bovine endometrium by testing the response to bacterial lipopolysaccharide (LPS). Primary cultures of mixed epithelial and stromal cells were divided into four treatment groups (control [CONT], BVDV, CONT+LPS, and BVDV+LPS) and infected with ncpBVDV for 4 days followed by treatment with LPS for 6 h. Whole-transcriptomic gene expression was measured followed by Ingenuity Pathway Analysis. Differential expression of 184 genes was found between CONT and BVDV treatments, showing interplay between induction and inhibition of responses. Up-regulation of TLR3, complement, and chemotactic and TRIM factors by ncpBVDV all suggested an ongoing immune response to viral infection. Down-regulation of inflammatory cytokines, chemokines, CXCR4, and serine proteinase inhibitors suggested mechanisms by which ncpBVDV may simultaneously counter the host response. Comparison between BVDV+LPS and CONT+LPS treatments showed 218 differentially expressed genes. Canonical pathway analysis identified the key importance of interferon signaling. Top down-regulated genes were RSAD2, ISG15, BST2, MX2, OAS1, USP18, IFIT3, IFI27, SAMD9, IFIT1, and DDX58, whereas TRIM56, C3, and OLFML1 were most up-regulated. Many of these genes are also regulated by IFNT during maternal recognition of pregnancy. Many innate immune genes that typically respond to LPS were inhibited by ncpBVDV, including those involved in pathogen recognition, inflammation, interferon response, chemokines, tissue remodeling, cell migration, and cell death/survival. Infection with ncpBVDV can thus compromise immune function and pregnancy recognition, thereby potentially predisposing infected cows to postpartum bacterial endometritis and reduced fertility.

  15. MHC Class II–Alpha Chain Knockout Mice Support Increased Viral Replication That Is Independent of Their Lack of MHC Class II Cell Surface Expression and Associated Immune Function Deficiencies

    PubMed Central

    Alsharifi, Mohammed; Koskinen, Aulikki; Wijesundara, Danushka K.; Bettadapura, Jayaram; Müllbacher, Arno

    2013-01-01

    MHCII molecules are heterodimeric cell surface proteins composed of an α and β chain. These molecules are almost exclusively expressed on thymic epithelium and antigen presenting cells (APCs) and play a central role in the development and function of CD4 T cells. Various MHC-II knockout mice have been generated including MHC-IIAα-/- (I-Aα-/-), MHC-IIAβ-/- (I-β-/-) and the double knockout (I-Aαxβ-/-). Here we report a very striking observation, namely that alphaviruses including the avirulent strain of Semliki Forest virus (aSFV), which causes asymptomatic infection in wild-type C57BL6/J (B6) mice, causes a very acute and lethal infection in I-Aα-/-, but not in I-β-/- or I-Aαxβ-/-, mice. This susceptibility to aSFV is associated with high virus titres in muscle, spleen, liver, and brain compared to B6 mice. In addition, I-Aα-/- mice show intact IFN-I responses in terms of IFN-I serum levels and IFN-I receptor expression and function. Radiation bone marrow chimeras of B6 mice reconstituted with I-Aα-/- bone marrow expressed B6 phenotype, whereas radiation chimeras of I-Aα-/- mice reconstituted with B6 bone marrow expressed the phenotype of high viral susceptibility. Virus replication experiments both in vivo and in vitro showed enhanced virus growth in tissues and cell cultures derived form I-Aα-/- compared to B6 mice. This enhanced virus replication is evident for other alpha-, flavi- and poxviruses and may be of great benefit to producers of viral vaccines. In conclusion, I-Aα-/- mice exhibit a striking susceptibility to virus infections independent of their defective MHC-II expression. Detailed genetic analysis will be carried out to characterise the underlining genetic defects responsible for the observed phenomenon. PMID:23840854

  16. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  17. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  18. Human viral cardiomyopathy.

    PubMed

    Maisch, Bernhard; Ristic, Arsen D; Portig, Irene; Pankuweit, Sabine

    2003-01-01

    Viral infection of the heart is relatively common, usually asymptomatic and has a spontaneous and complete resolution. It can, however, in rare cases, lead to substantial cardiac damage, development of viral cardiomyopathy and congestive heart failure. Viral cardiomyopathy is defined as viral persistence in a dilated heart. It may be accompanied by myocardial inflammation and then termed inflammatory viral cardiomyopathy (or viral myocarditis with cardiomegaly). If no inflammation is observed in the biopsy of a dilated heart (<14 lymphocytes and macrophages/mm ) the term viral cardiomyopathy or viral persistence in dilated cardiomyopathy should be applied. The diagnosis of myocarditis and viral cardiomyopathy can be made only by endomyocardial biopsy, implementing the WHO/WHF criteria, and PCR techniques for identification of viral genome. The most frequent cardiotropic viruses detected by endomyocardial biopsy are Parvo B19, enteroviruses, adenoviruses, cytomegalovirus, and less frequently Epstein-Barr virus, and influenza virus.

  19. Viral quasispecies evolution.

    PubMed

    Domingo, Esteban; Sheldon, Julie; Perales, Celia

    2012-06-01

    Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.

  20. Viral Quasispecies Evolution

    PubMed Central

    Sheldon, Julie; Perales, Celia

    2012-01-01

    Summary: Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory. PMID:22688811

  1. Elicitation of anti-Sendai virus cytotoxic T lymphocytes by viral and H-2 antigens incorporated into the same lipid bilayer by membrane fusion and by reconstitution into liposomes.

    PubMed

    Hale, A H; Lyles, D S; Fan, D P

    1980-02-01

    We have investigated the minimal molecular requirements for elicitation of anti-Sendai virus cytotoxic T lymphocytes (CTL), and the minimal molecular requirements for the recognition and lysis processes associated with anti-Sendai virus CTL-target cell interactions. This report demonstrates a) that the hemagglutinin-neuraminidase and/or fusion glycoproteins of Sendai virus can elicit anti-Sendai virus CTL and b) that these glycoproteins and H-2 antigens must be within the same membrane lipid bilayer for effective elicitation of anti-Sendai-virus CTL and for effective recognition and lysis of target cells by anti-Sendai virus CTL.

  2. A dendritic nano-sized hexanuclear ruthenium(II) complex as a one- and two-photon luminescent tracking non-viral gene vector

    PubMed Central

    Qiu, Kangqiang; Yu, Bole; Huang, Huaiyi; Zhang, Pingyu; Huang, Juanjuan; Zou, Shanshan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2015-01-01

    Fluorescent tracking gene delivery could provide us with a better understanding of the critical steps in the transfection process. However, for in vivo tracking applications, a small diameter (<10 nm) is one of the rigorous requirements for tracking vectors. Herein, we have demonstrated a new paradigm for two-photon tracking gene delivery based on a dendritic nano-sized hexanuclear ruthenium(II) polypyridyl complex. Because this metallodendrimer has a multivalent periphery, the complex, which is 6.1 nm, showed high stability and excellent dispersibility and could stepwise condense DNA in vitro. With the outstanding photochemical properties of Ru(II) polypyridyl, this complex could track gene delivery in vivo using one- and two-photon imaging. PMID:26185052

  3. Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures

    SciTech Connect

    Lamb, Robert A. . E-mail: ralamb@northwestern.edu; Paterson, Reay G.; Jardetzky, Theodore S.

    2006-01-05

    Paramyxoviruses enter cells by fusion of their lipid envelope with the target cell plasma membrane. Fusion of the viral membrane with the plasma membrane allows entry of the viral genome into the cytoplasm. For paramyxoviruses, membrane fusion occurs at neutral pH, but the trigger mechanism that controls the viral entry machinery such that it occurs at the right time and in the right place remains to be elucidated. Two viral glycoproteins are key to the infection process-an attachment protein that varies among different paramyxoviruses and the fusion (F) protein, which is found in all paramyxoviruses. For many of the paramyxoviruses (parainfluenza viruses 1-5, mumps virus, Newcastle disease virus and others), the attachment protein is the hemagglutinin/neuraminidase (HN) protein. In the last 5 years, atomic structures of paramyxovirus F and HN proteins have been reported. The knowledge gained from these structures towards understanding the mechanism of viral membrane fusion is described.

  4. The La-related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes

    PubMed Central

    Markert, Andreas; Grimm, Michael; Martinez, Javier; Wiesner, Julia; Meyerhans, Andreas; Meyuhas, Oded; Sickmann, Albert; Fischer, Utz

    2008-01-01

    The positive transcription elongation factor b (P-TEFb) is a heterodimeric complex composed of cyclin-dependent kinase 9 and its regulator cyclin T1/2. It stimulates transcription elongation by phosphorylation of serine 2 residues in the carboxy-terminal domain of polymerase II. 7SK RNA and HEXIM proteins can antagonize transcriptional stimulation by sequestering P-TEFb in a catalytically inactive ribonucleoprotein (RNP). Here, we show that the previously uncharacterized La-related protein 7 (LARP7) has a role in 7SK-mediated regulation of transcription. LARP7 binds to the highly conserved 3′-terminal U-rich stretch of 7SK RNA and is an integral part of the 7SK RNP. On stimulation, LARP7 remains associated with 7SK RNA, whereas P-TEFb is released. Interestingly, reduction of LARP7 by RNA interference enhances transcription from cellular polymerase II promoters, as well as a TAT-dependent HIV-1 promoter. Thus, LARP7 is a negative transcriptional regulator of polymerase II genes, acting by means of the 7SK RNP system. PMID:18483487

  5. Natural microbiota in viral and helminth infections. Addendum to: Personalized vaccination. II. The role of natural microbiota in a vaccine-induced immunity.

    PubMed

    Grzybowski, Marcin M; Długońska, Henryka

    2012-01-01

    Numerous original and review papers have emerged over recent years concerning the natural microbiota and its interaction with the mammal host's body. This addendum supplements in short our previous review article on the role of microbiota in the host immunity paying, particular attention to such essential aspects as the composition and role of gut microbiota in viral infections as well as the interplay between the microbiota and the macrofauna inhabiting the mammalian gastrointestinal tract. The host immune system, commensal microbiota and macrofauna are elements of an integrated system in which the relationships are bidirectional. As demonstrated in the article, virus or helminth infection alters the composition of commensal gut microbiota but, in turn, commensal microbiota influences the fate of a virus or helminth infection. Natural microbiota located on external and internal surfaces of the host body is a prominent element of its health and condition, including the functioning of the immune system. The gastrointestinal tract harbors the highest number and the greatest diversity of microbial organisms, so the studies presented in the article regard gut microbiota.

  6. Synthetic peptides of the E2 glycoprotein of Venezuelan equine encephalomyelitis virus. II. Antibody to the amino terminus protects animals by limiting viral replication.

    PubMed

    Hunt, A R; Short, W A; Johnson, A J; Bolin, R A; Roehrig, J T

    1991-11-01

    A peptide composed of the amino-terminal 25 amino acids of the E2 glycoprotein of the virulent Trinidad donkey (TRD) strain of Venezuelan equine encephalomyelitis virus was found to protect peptide-immunized mice from lethal TRD virus challenge (Hunt et al., 1990). Viral growth in peptide-immunized animals was found to be limited in comparison to that in nonimmunized controls. Although both treated and control groups of mice responded to virus challenge by producing neutralizing antibody, only immunized mice with preexisting antipeptide antibody survived. Polyclonal antipeptide sera as well as a monoclonal antipeptide antibody were able to passively protect naive mice from TRD virus challenge, despite the fact that these antibodies were nonneutralizing. Passive transfer of antipeptide antibody to immunosuppressed recipients was not protective, thus indicating that survival of TRD virus challenge required an in situ immune response as well as preexisting antipeptide antibody. Binding studies of both polyclonal and monoclonal antipeptide antibodies indicated that they recognize only epitopes present on virus-infected cells or denatured virus.

  7. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms.

    PubMed Central

    Siegel, D P; Epand, R M

    1997-01-01

    We studied the mechanism of the lamellar-to-inverted hexagonal (L alpha/H[II]) phase transition, using time-resolved cryotransmission electron microscopy (TRC-TEM), 31P-NMR, and differential scanning calorimetry. The transition was initiated in dispersions of large unilamellar vesicles of dipalmitoleoyl phosphatidylethanolamine (DiPoPE). We present evidence that the transition proceeds in three steps. First, many small connections form between apposed membranes. Second, the connections aggregate within the planes of the bilayers, forming arrays with hexagonal order in some projections. Third, these quasihexagonal structures elongate into small domains of H(II) phase, acquiring lipid molecules by diffusion from contiguous bilayers. A previously proposed membrane fusion mechanism rationalizes these results. The modified stalk theory predicts that the L alpha/H(II) phase transition involves some of the same intermediate structures as membrane fusion. The small interbilayer connections observed via TRC-TEM are compatible with the structure of a critical intermediate in the modified stalk mechanism: the trans monolayer contact (TMC). The theory predicts that 1) TMCs should form starting at tens of degrees below TH; 2) when TMCs become sufficiently numerous, they should aggregate into transient arrays like the quasihexagonal arrays observed here by TRC-TEM; and 3) these quasihexagonal arrays can then elongate directly into H(II) phase domains. These predictions rationalize the principal features of our data, which are incompatible with the other transition mechanisms proposed to date. Thus these results support the modified stalk mechanism for both membrane fusion and the L alpha/H(II) phase transition. We also discuss some implications of the modified stalk theory for fusion in protein-containing systems. Specifically, we point out that recent data on the effects of hydrophobic peptides and viral fusion peptides on lipid phase behavior are consistent with an effect of

  8. Structural characterization of Mumps virus fusion protein core

    SciTech Connect

    Liu Yueyong; Xu Yanhui; Lou Zhiyong; Zhu Jieqing; Hu Xuebo; Gao, George F.; Qiu Bingsheng . E-mail: Qiubs@sun.im.ac.cn; Rao Zihe . E-mail: raozh@xtal.tsinghua.edu.cn; Tien, Po . E-mail: tienpo@sun.im.ac.cn

    2006-09-29

    The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus, forms typical 3-4-4-4-3 spacing. The similar charecterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins.

  9. Conceptual design of a laser-fusion power plant. Part II. Two technical options: 1. JADE reactor; 2. Heat transfer by heat pipes

    SciTech Connect

    Not Available

    1981-07-01

    A laser fusion reactor concept is described that employs liquid metal walls. The concept envisions a porous medium, called the JADE, of specific geometry lining the reactor cavity. Some advantages and disadvantages of the concept are pointed out. The possibility of using heat pipes for passive cooling in ICF reactors is discussed. Some of the problems are outlined. (MOW)

  10. Induction of cross-priming of naive CD8+ T lymphocytes by recombinant bacillus Calmette-Guerin that secretes heat shock protein 70-major membrane protein-II fusion protein.

    PubMed

    Mukai, Tetsu; Maeda, Yumi; Tamura, Toshiki; Matsuoka, Masanori; Tsukamoto, Yumiko; Makino, Masahiko

    2009-11-15

    Because Mycobacterium bovis bacillus Calmette-Guérin (BCG) unconvincingly activates human naive CD8(+) T cells, a rBCG (BCG-70M) that secretes a fusion protein comprising BCG-derived heat shock protein (HSP)70 and Mycobacterium leprae-derived major membrane protein (MMP)-II, one of the immunodominant Ags of M. leprae, was newly constructed to potentiate the ability of activating naive CD8(+) T cells through dendritic cells (DC). BCG-70M secreted HSP70-MMP-II fusion protein in vitro, which stimulated DC to produce IL-12p70 through TLR2. BCG-70M-infected DC activated not only memory and naive CD8(+) T cells, but also CD4(+) T cells of both types to produce IFN-gamma. The activation of these naive T cells by BCG-70M was dependent on the MHC and CD86 molecules on BCG-70M-infected DC, and was significantly inhibited by pretreatment of DC with chloroquine. Both brefeldin A and lactacystin significantly inhibited the activation of naive CD8(+) T cells by BCG-70M through DC. Thus, the CD8(+) T cell activation may be induced by cross-presentation of Ags through a TAP- and proteosome-dependent cytosolic pathway. When naive CD8(+) T cells were stimulated by BCG-70M-infected DC in the presence of naive CD4(+) T cells, CD62L(low)CD8(+) T cells and perforin-producing CD8(+) T cells were efficiently produced. MMP-II-reactive CD4(+) and CD8(+) memory T cells were efficiently produced in C57BL/6 mice by infection with BCG-70M. These results indicate that BCG-70M activated DC, CD4(+) T cells, and CD8(+) T cells, and the combination of HSP70 and MMP-II may be useful for inducing better T cell activation.

  11. Mode of death and hospitalization from the Second Follow-up Serial Infusions of Nesiritide (FUSION II) trial and comparison of clinical events committee adjudicated versus investigator reported outcomes.

    PubMed

    O'Connor, Christopher M; Fiuzat, Mona; Lindenfeld, Joann; Miller, Alan; Lombardi, Carlo; Carson, Peter; Shaw, Linda K; Wang, Li-Joy; Connolly, Patricia; Mills, Roger; Yancy, Clyde; Mahaffey, Kenneth

    2011-11-15

    The aim of this study was to evaluate the mode of death and hospitalizations in advanced heart failure (HF) patients with renal dysfunction and to examine the rate of concordance between events reported by the clinical events committee and site investigators (using case report forms) in the Second Follow-Up Serial Infusions of Nesiritide (FUSION II) trial. Little is known about the cause of death and hospitalization in patients with advanced HF. FUSION II was a randomized, double-blind, placebo-controlled trial evaluating outpatient nesiritide infusions versus placebo, with 911 patients with advanced HF (New York Heart Association class III or IV) and renal dysfunction enrolled. There were 151 deaths and 1,041 hospitalizations at 24 weeks. The clinical events committee classified events as cardiac, renal, cardiorenal, other or noncardiovascular, or unknown. Kappa statistics and McNemar tests were used to assess agreement (overall and by individual modes of death and hospitalization indications). In conclusion, the most common cause of death or hospitalization was cardiac related, with 70% of deaths and 60% of hospitalizations due to cardiac causes. There was 74% agreement (26% disagreement) on cardiac cause of death (κ = 0.40, McNemar p = 0.001) and 75% agreement (25% disagreement) between the investigators and the clinical events committee on cardiac classification for hospitalization (κ = 0.49, McNemar p <0.0001).

  12. Membrane fusion mediated by coiled coils: a hypothesis.

    PubMed Central

    Bentz, J

    2000-01-01

    A molecular model of the low-pH-induced membrane fusion by influenza hemagglutinin (HA) is proposed based upon the hypothesis that the conformational change to the extended coiled coil creates a high-energy hydrophobic membrane defect in the viral envelope or HA expressing cell. It is known that 1) an aggregate of at least eight HAs is required at the fusion site, yet only two or three of these HAs need to undergo the "essential" conformational change for the first fusion pore to form (Bentz, J. 2000. Biophys. J. 78:000-000); 2) the formation of the first fusion pore signifies a stage of restricted lipid flow into the nascent fusion site; and 3) some HAs can partially insert their fusion peptides into their own viral envelopes at low pH. This suggests that the committed step for HA-mediated fusion begins with a tightly packed aggregate of HAs whose fusion peptides are inserted into their own viral envelope, which causes restricted lateral lipid flow within the HA aggregate. The transition of two or three HAs in the center of the aggregate to the extended coiled coil extracts the fusion peptide and creates a hydrophobic defect in the outer monolayer of the virion, which is stabilized by the closely packed HAs. These HAs are inhibited from diffusing away from the site to admit lateral lipid flow, in part because that would initially increase the surface area of hydrophobic exposure. The other obvious pathway to heal this hydrophobic defect, or some descendent, is recruitment of lipids from the outer monolayer of the apposed target membrane, i.e., fusion. Other viral fusion proteins and the SNARE fusion protein complex appear to fit within this hypothesis. PMID:10653801

  13. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni.

    PubMed

    O'Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Carlos Salazar, Juan; Montero, David

    2015-01-01

    In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral(®)), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed.

  14. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni

    PubMed Central

    O’Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Carlos Salazar, Juan; Montero, David

    2015-01-01

    In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral®), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed. PMID:25715096

  15. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  16. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability.

    PubMed

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca

    2017-04-07

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726-35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Viral Skin Diseases.

    PubMed

    Ramdass, Priya; Mullick, Sahil; Farber, Harold F

    2015-12-01

    In the vast world of skin diseases, viral skin disorders account for a significant percentage. Most viral skin diseases present with an exanthem (skin rash) and, oftentimes, an accompanying enanthem (lesions involving the mucosal membrane). In this article, the various viral skin diseases are explored, including viral childhood exanthems (measles, rubella, erythema infectiosum, and roseola), herpes viruses (herpes simplex virus, varicella zoster virus, Kaposi sarcoma herpes virus, viral zoonotic infections [orf, monkeypox, ebola, smallpox]), and several other viral skin diseases, such as human papilloma virus, hand, foot, and mouth disease, molluscum contagiosum, and Gianotti-Crosti syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. F(ab')2 fragment of a gp41 NHR-trimer-induced IgM monoclonal antibody neutralizes HIV-1 infection and blocks viral fusion by targeting the conserved gp41 pocket.

    PubMed

    Lu, Lu; Wei, Meili; Chen, Yanxia; Xiong, Weiliang; Yu, Fei; Qi, Zhi; Jiang, Shibo; Pan, Chungen

    2013-11-01

    Using a recombinant protein N46FdFc that mimics the HIV-1 gp41 N-helix trimer to immunize mice, we identified the first IgM monoclonal antibody 18D3 that specifically bound to the conserved gp41 pocket. Its F(ab')2 fragment potently inhibited HIV-1 Env-mediated cell-cell fusion and neutralized infection by laboratory-adapted and primary HIV-1 isolates with different subtypes and tropism, including the T20-resistant variants. This F(ab')2 fragment can be used to develop a bispecific broad neutralizing monoclonal antibody or HIV-1 inactivator as a novel immunotherapeutic for treatment and prevention of HIV-1 infection.

  19. Control of mechanically activated polymersome fusion: Factors affecting fusion

    SciTech Connect

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the size of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.

  20. Control of mechanically activated polymersome fusion: Factors affecting fusion

    DOE PAGES

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less

  1. Vaccination with a Fusion Protein That Introduces HIV-1 Gag Antigen into a Multitrimer CD40L Construct Results in Enhanced CD8+ T Cell Responses and Protection from Viral Challenge by Vaccinia-Gag

    PubMed Central

    Gupta, Sachin; Termini, James M.; Raffa, Francesca N.; Williams, Cindi-Ann; Kornbluth, Richard S.

    2014-01-01

    CD40 ligand (CD40L, CD154) is a membrane protein that is important for the activation of dendritic cells (DCs) and DC-induced CD8+ T cell responses. To be active, CD40L must cluster CD40 receptors on responding cells. To produce a soluble form of CD40L that clusters CD40 receptors necessitates the use of a multitrimer construct. With this in mind, a tripartite fusion protein was made from surfactant protein D (SPD), HIV-1 Gag as a test antigen, and CD40L, where SPD serves as a scaffold for the multitrimer protein complex. This SPD-Gag-CD40L protein activated CD40-bearing cells and bone marrow-derived DCs in vitro. Compared to a plasmid for Gag antigen alone (pGag), DNA vaccination of mice with pSPD-Gag-CD40L induced an increased number of Gag-specific CD8+ T cells with increased avidity for major histocompatibility complex class I-restricted Gag peptide and improved vaccine-induced protection from challenge by vaccinia-Gag virus. The importance of the multitrimeric nature of the complex was shown using a plasmid lacking the N terminus of SPD that produced a single trimer fusion protein. This plasmid, pTrimer-Gag-CD40L, was only weakly active on CD40-bearing cells and did not elicit strong CD8+ T cell responses or improve protection from vaccinia-Gag challenge. An adenovirus 5 (Ad5) vaccine incorporating SPD-Gag-CD40L was much stronger than Ad5 expressing Gag alone (Ad5-Gag) and induced complete protection (i.e., sterilizing immunity) from vaccinia-Gag challenge. Overall, these results show the potential of a new vaccine design in which antigen is introduced into a construct that expresses a multitrimer soluble form of CD40L, leading to strongly protective CD8+ T cell responses. PMID:24227853

  2. A generic screening platform for inhibitors of virus induced cell fusion using cellular electrical impedance

    PubMed Central

    Watterson, Daniel; Robinson, Jodie; Chappell, Keith J.; Butler, Mark S.; Edwards, David J.; Fry, Scott R.; Bermingham, Imogen M.; Cooper, Matthew A.; Young, Paul R.

    2016-01-01

    Fusion of the viral envelope with host cell membranes is an essential step in the life cycle of all enveloped viruses. Despite such a clear target for antiviral drug development, few anti-fusion drugs have progressed to market. One significant hurdle is the absence of a generic, high-throughput, reproducible fusion assay. Here we report that real time, label-free measurement of cellular electrical impedance can quantify cell-cell fusion mediated by either individually expressed recombinant viral fusion proteins, or native virus infection. We validated this approach for all three classes of viral fusion and demonstrated utility in quantifying fusion inhibition using antibodies and small molecule inhibitors specific for dengue virus and respiratory syncytial virus. PMID:26976324

  3. Viral Hemorrhagic Fevers

    MedlinePlus

    ... The CDC Cancel Submit Search The CDC Viral Hemorrhagic Fevers (VHFs) Note: Javascript is disabled or is not ... please visit this page: About CDC.gov . Viral Hemorrhagic Fevers (VHFs) Virus Families Arenaviruses Old World/New World ...

  4. Viral capsids as MRI contrast agents.

    PubMed

    Liepold, Lars; Anderson, Stasia; Willits, Deborah; Oltrogge, Luke; Frank, Joseph A; Douglas, Trevor; Young, Mark

    2007-11-01

    Viral capsids have the potential for combined cell/tissue targeting, drug delivery, and imaging. Described here is the development of a viral capsid as an efficient and potentially relevant MRI contrast agent. Two approaches are outlined to fuse high affinity Gd(3+) chelating moieties to the surface of the cowpea chlorotic mottle virus (CCMV) capsid. In the first approach, a metal binding peptide has been genetically engineered into the subunit of CCMV. In a second approach gadolinium-tetraazacyclododecane tetraacetic acid (GdDOTA) was attached to CCMV by reactions with endogenous lysine residues on the surface of the viral capsid. T(1) and T(2) ionic relaxivity rates for the genetic fusion particle were R1 = 210 and R2 = 402 mM(-1)s(-1) (R2 at 56 MHz) and for CCMV functionalized with GdDOTA were R1 = 46 and R2 = 142 mM(-1)s(-1) at 61 MHz. The relaxivities per intact capsid for the genetic fusion were R1 = 36,120 and R2 = 69,144 mM(-1)s(-1) (R2 at 56 MHz) and for the GdDOTA CCMV construct were R1 = 2,806 and R2 = 8,662 mM(-1)s(-1) at 61 MHz. The combination of high relaxivity, stable Gd(3+) binding, and large Gd(3+) payloads indicates the potential of viral capsids as high-performance contrast agents. Copyright 2007 Wiley-Liss, Inc.

  5. Inertial electrostatic confinement and nuclear fusion in the interelectrode plasma of a nanosecond vacuum discharge. II: Particle-in-cell simulations

    SciTech Connect

    Kurilenkov, Yu. K.; Tarakanov, V. P.; Gus'kov, S. Yu.

    2010-12-15

    Results of particle-in-sell simulations of ion acceleration by using the KARAT code in a cylindrical geometry in the problem formulation corresponding to an actual experiment with a low-energy vacuum discharge with a hollow cathode are presented. The fundamental role of the formed virtual cathode is analyzed. The space-time dynamics of potential wells related to the formation of the virtual cathode is discussed. Quasi-steady potential wells (with a depth of {approx}80% of the applied voltage) cause acceleration of deuterium ions to energies about the electron beam energy ({approx}50 keV). In the well, a quasi-isotropic velocity distribution function of fast ions forms. The results obtained are compared with available data on inertial electrostatic confinement fusion (IECF). In particular, similar correlations between the structure of potential wells and the neutron yield, as well as the scaling of the fusion power density, which increases with decreasing virtual cathode radius and increasing potential well depth, are considered. The chosen electrode configuration and potential well parameters provide power densities of nuclear DD fusion in a nanosecond vacuum discharge noticeably higher than those achieved in other similar IECF systems.

  6. Structural Basis for Broad Detection of Genogroup II Noroviruses by a Monoclonal Antibody That Binds to a Site Occluded in the Viral Particle

    SciTech Connect

    Hansmana, Grant S.; Taylor, David W.; Smith, Thomas J.; McLellan, Jason S.; Georgiev, Ivelin; Tame, Jeremy R.H.; Park, Sam-Yong; Yamazaki, Makoto; Gondaira, Fumio; Miki, Motohiro; Katayama, Kazuhiko; Murata, Kazuyoshi; Kwong, Peter D.

    2012-03-13

    Human noroviruses are genetically and antigenically highly divergent. Monoclonal antibodies raised in mice against one kind of norovirus virus-like particle (VLP), however, were found to have broad recognition. In this study, we present the crystal structure of the antigen-binding fragment (Fab) for one of these broadly reactive monoclonal antibodies, 5B18, in complex with the capsid-protruding domain from a genogroup II genotype 10 (GII.10) norovirus at 3.3-{angstrom} resolution and, also, the cryo-electron microscopy structure of the GII.10 VLP at {approx}10-{angstrom} resolution. The GII.10 VLP structure was more similar in overall architecture to the GV.1 murine norovirus virion than to the prototype GI.1 human norovirus VLP, with the GII.10 protruding domain raised {approx}15 {angstrom} off the shell domain and rotated {approx}40{sup o} relative to the GI.1 protruding domain. In the crystal structure, the 5B18 Fab bound to a highly conserved region of the protruding domain. Based on the VLP structure, this region is involved in interactions with other regions of the capsid and is buried in the virus particle. Despite the occluded nature of the recognized epitope in the VLP structure, enzyme-linked immunosorbent assay (ELISA) binding suggested that the 5B18 antibody was able to capture intact VLPs. Together, the results provide evidence that the norovirus particle is capable of extreme conformational flexibility, which may allow for antibody recognition of conserved surfaces that would otherwise be buried on intact particles.

  7. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  8. Two-Year Comparative Outcomes of MIS Lateral and MIS Transforaminal Interbody Fusion in the Treatment of Degenerative Spondylolisthesis: Part II: Radiographic Findings.

    PubMed

    Isaacs, Robert E; Sembrano, Jonathan N; Tohmeh, Antoine G

    2016-04-01

    Prospective, multicenter, institutional review board approved study with randomized and observational study arms. The purpose of this study was to compare radiographic outcomes between minimally invasive transforaminal (MIS TLIF) or MIS lateral interbody fusion (XLIF) in the treatment of patients with low-grade degenerative spondylolisthesis with stenosis through 2-year postoperative. Few reports exist comparing different MIS approaches directly in the treatment of similar pathology, as most studies report differences between MIS and open procedures. A total of 55 patients undergoing surgical treatment for degenerative spondylolisthesis with spinal stenosis at one or two contiguous levels between L1 and L5 were enrolled. Twenty-nine patients were treated with XLIF and 26 patients were treated with MIS TLIF. Disc height was significantly improved from preoperative at all postoperative time points in both groups, though the XLIF group experienced less subsidence and resultant loss of disc height than the MIS TLIF group by 24-month postoperative (P = 0.002). Postoperative change in central canal area was statistically greater in the MIS TLIF compared with the XLIF group (43.1 mmvs. 4.1 mm, P = 0.028). At several postoperative time points, foraminal height and area on the ipsilateral side and foraminal height on the contralateral side to the approach were significantly increased postoperatively in the XLIF group, and the magnitude of ipsilateral height increase was greater than in the MIS TLIF cohort (P < 0.05).Using fusion criteria of <3° range of motion and <3 mm translation on plain radiographs, 100% of patients in both groups were solidly fused at 24-month postoperative. Using computed tomography fusion criteria of presence of intervertebral bridging bone, 100% (32/32) of XLIF levels and 96% (25/26) of MIS TLIF levels were solidly bridged (P = 0.448). Different mechanisms of stenosis correction (direct vs. indirect) between the MIS TLIF and

  9. Viral load, gene expression and mapping of viral integration sites in HPV16-associated HNSCC cell lines

    PubMed Central

    Olthof, Nadine C.; Huebbers, Christian U.; Kolligs, Jutta; Henfling, Mieke; Ramaekers, Frans C.S.; Cornet, Iris; van Lent-Albrechts, Josefa A.; Stegmann, Sander P.A.; Silling, Steffi; Wieland, Ulrike; Carey, Thomas E.; Walline, Heather M.; Gollin, Susanne M.; Hoffmann, Thomas K.; de Winter, Johan; Kremer, Bernd; Klussmann, Jens-Peter; Speel, Ernst-Jan M.

    2017-01-01

    HPV-related HNSCC generally have a better prognosis than HPV-negative HNSCC. However, a subgroup of HPV-positive tumors with poor prognosis has been recognized, particularly related to smoking, EGFR overexpression and chromosomal instability. Viral integration into the host genome might contribute to carcinogenesis, as is shown for cervical carcinomas. Therefore, all HPV16-positive HNSCC cell lines currently available have been carefully analysed for viral and host genome parameters. The viral integration status, viral load, viral gene expression and the presence of aneusomies was evaluated in the cell lines UD-SCC-2, UM-SCC-047, UM-SCC-104, UPCI:SCC090, UPCI:SCC152, UPCI:SCC154 and 93VU147T. HPV integration was examined using FISH, APOT-PCR and DIPS-PCR. Viral load and the expression of the viral genes E2, E6 and E7 were determined via quantitative PCR. All cell lines showed integration-specific staining patterns and signals indicating transcriptional activity using FISH. APOT- and DIPS-PCR identified integration-derived fusion products in six cell lines, and only episomal products for UM-SCC-104. Despite the observed differences in viral load and the number of viral integration sites, this did not relate to the identified viral oncogene expression. Furthermore, cell lines exhibited EGFR expression, and aneusomy (except UPCI:SCC154). In conclusion, all HPV16-positive HNSCC cell lines showed integrated and/or episomal viral DNA that is transcriptionally active, although viral oncogene expression was independent of viral copy number and the number of viral integration sites. Because these cell lines also contain EGFR expression and aneusomy, which are parameters of poor prognosis, they should be considered suitable model systems for the development of new antiviral therapies. PMID:25082736

  10. Viral load, gene expression and mapping of viral integration sites in HPV16-associated HNSCC cell lines.

    PubMed

    Olthof, Nadine C; Huebbers, Christian U; Kolligs, Jutta; Henfling, Mieke; Ramaekers, Frans C S; Cornet, Iris; van Lent-Albrechts, Josefa A; Stegmann, Alexander P A; Silling, Steffi; Wieland, Ulrike; Carey, Thomas E; Walline, Heather M; Gollin, Susanne M; Hoffmann, Thomas K; de Winter, Johan; Kremer, Bernd; Klussmann, Jens P; Speel, Ernst-Jan M

    2015-03-01

    HPV-related HNSCC generally have a better prognosis than HPV-negative HNSCC. However, a subgroup of HPV-positive tumors with poor prognosis has been recognized, particularly related to smoking, EGFR overexpression and chromosomal instability. Viral integration into the host genome might contribute to carcinogenesis, as is shown for cervical carcinomas. Therefore, all HPV16-positive HNSCC cell lines currently available have been carefully analyzed for viral and host genome parameters. The viral integration status, viral load, viral gene expression and the presence of aneusomies was evaluated in the cell lines UD-SCC-2, UM-SCC-047, UM-SCC-104, UPCI:SCC090, UPCI:SCC152, UPCI:SCC154 and 93VU147T. HPV integration was examined using FISH, APOT-PCR and DIPS-PCR. Viral load and the expression of the viral genes E2, E6 and E7 were determined via quantitative PCR. All cell lines showed integration-specific staining patterns and signals indicating transcriptional activity using FISH. APOT- and DIPS-PCR identified integration-derived fusion products in six cell lines and only episomal products for UM-SCC-104. Despite the observed differences in viral load and the number of viral integration sites, this did not relate to the identified viral oncogene expression. Furthermore, cell lines exhibited EGFR expression and aneusomy (except UPCI:SCC154). In conclusion, all HPV16-positive HNSCC cell lines showed integrated and/or episomal viral DNA that is transcriptionally active, although viral oncogene expression was independent of viral copy number and the number of viral integration sites. Because these cell lines also contain EGFR expression and aneusomy, which are parameters of poor prognosis, they should be considered suitable model systems for the development of new antiviral therapies.

  11. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell-cell fusion

    PubMed Central

    Wurth, Mark A.; Schowalter, Rachel M.; Smith, Everett Clinton; Moncman, Carole L.; Dutch, Rebecca Ellis; McCann, Richard O.

    2010-01-01

    Paramyxovirus fusion (F) proteins promote both virus-cell fusion, required for viral entry, and cell-cell fusion, resulting in syncytia formation. We used the F-actin stabilizing drug, jasplakinolide, and the G-actin sequestrant, latrunculin A, to examine the role of actin dynamics in cell-cell fusion mediated by the parainfluenza virus 5 (PIV5) F protein. Jasplakinolide treatment caused a dose-dependent increase in cell-cell fusion as measured by both syncytia and reporter gene assays, and latrunculin A treatment also resulted in fusion stimulation. Treatment with jasplakinolide or latrunculin A partially rescued a fusion pore opening defect caused by deletion of the PIV5 F protein cytoplasmic tail, but these drugs had no effect on fusion inhibited at earlier stages by either temperature arrest or by a PIV5 heptad repeat peptide. These data suggest that the cortical actin cytoskeleton is an important regulator of fusion pore enlargement, an energetically costly stage of viral fusion protein-mediated membrane merger. PMID:20537366

  12. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell-cell fusion

    SciTech Connect

    Wurth, Mark A.; Schowalter, Rachel M.; Smith, Everett Clinton; Moncman, Carole L.; Ellis Dutch, Rebecca; McCann, Richard O.

    2010-08-15

    Paramyxovirus fusion (F) proteins promote both virus-cell fusion, required for viral entry, and cell-cell fusion, resulting in syncytia formation. We used the F-actin stabilizing drug, jasplakinolide, and the G-actin sequestrant, latrunculin A, to examine the role of actin dynamics in cell-cell fusion mediated by the parainfluenza virus 5 (PIV5) F protein. Jasplakinolide treatment caused a dose-dependent increase in cell-cell fusion as measured by both syncytia and reporter gene assays, and latrunculin A treatment also resulted in fusion stimulation. Treatment with jasplakinolide or latrunculin A partially rescued a fusion pore opening defect caused by deletion of the PIV5 F protein cytoplasmic tail, but these drugs had no effect on fusion inhibited at earlier stages by either temperature arrest or by a PIV5 heptad repeat peptide. These data suggest that the cortical actin cytoskeleton is an important regulator of fusion pore enlargement, an energetically costly stage of viral fusion protein-mediated membrane merger.

  13. Influenza Virus-Mediated Membrane Fusion: Determinants of Hemagglutinin Fusogenic Activity and Experimental Approaches for Assessing Virus Fusion

    PubMed Central

    Hamilton, Brian S.; Whittaker, Gary R.; Daniel, Susan

    2012-01-01

    Hemagglutinin (HA) is the viral protein that facilitates the entry of influenza viruses into host cells. This protein controls two critical aspects of entry: virus binding and membrane fusion. In order for HA to carry out these functions, it must first undergo a priming step, proteolytic cleavage, which renders it fusion competent. Membrane fusion commences from inside the endosome after a drop in lumenal pH and an ensuing conformational change in HA that leads to the hemifusion of the outer membrane leaflets of the virus and endosome, the formation of a stalk between them, followed by pore formation. Thus, the fusion machinery is an excellent target for antiviral compounds, especially those that target the conserved stem region of the protein. However, traditional ensemble fusion assays provide a somewhat limited ability to directly quantify fusion partly due to the inherent averaging of individual fusion events resulting from experimental constraints. Inspired by the gains achieved by single molecule experiments and analysis of stochastic events, recently-developed individual virion imaging techniques and analysis of single fusion events has provided critical information about individual virion behavior, discriminated intermediate fusion steps within a single virion, and allowed the study of the overall population dynamics without the loss of discrete, individual information. In this article, we first start by reviewing the determinants of HA fusogenic activity and the viral entry process, highlight some open questions, and then describe the experimental approaches for assaying fusion that will be useful in developing the most effective therapies in the future. PMID:22852045

  14. Deconstruction of biophysical function in the HIV fusion peptide

    NASA Astrophysics Data System (ADS)

    Bong, Dennis

    2011-03-01

    We have synthesized a library of variants of the 23-residue fusion peptide domain found at the N -terminus of gp-41 glycoprotein of HIV. This sequence is critical for viral infectivity and is thought to be central in the membrane fusion of viral envelope with the host endosomal membrane. There has been extensive discussion in the literature regarding the mechanism by which this viral fusion sequence initiates membrane fusion, with importance placed on glycine-content, particular oligomeric states and secondary structure; both helical and sheet structures have been proposed to be the active fusogenic structure. Our library was designed to address the biophysical importance of secondary structure, peptide flexibility, glycine content and location as well as the nature of the membrane anchor. Each member of this library also bears a positively charged hexapeptide at the C -terminus for solubility and to facilitate binding to negatively charged membranes. We assayed each peptide for its ability to induce lipid-mixing and lysis in both large and giant unilamellar vesicles, and searched for correlations between aggregated peptides and heightened activity. We find that the information encoded in the viral fusion peptide required for may be greatly simplified: glycine is not required for fusion, aggregation is not correlated with activity, and any peptide within a window of hydrophobicity can be an effective fusion catalyst. Given the wide range of sequences which may be effective in catalyzing vesicle membrane fusion, it appears highly unlikely that a particular stably folded secondary structure is important for fusion. Rather, our data show that many flexible, linear, minimally hydrophobic peptides may achieve the biophysical function of fusion. This research was supported in part by an NSF-CAREER award to D.B.

  15. HIV Entry and Envelope Glycoprotein-mediated Fusion*

    PubMed Central

    Blumenthal, Robert; Durell, Stewart; Viard, Mathias

    2012-01-01

    HIV entry involves binding of the trimeric viral envelope glycoprotein (Env) gp120/gp41 to cell surface receptors, which triggers conformational changes in Env that drive the membrane fusion reaction. The conformational landscape that the lipids and Env navigate en route to fusion has been examined by biophysical measurements on the microscale, whereas electron tomography, x-rays, and NMR have provided insights into the process on the nanoscale and atomic scale. However, the coupling between the lipid and protein pathways that give rise to fusion has not been resolved. Here, we discuss the known and unknown about the overall HIV Env-mediated fusion process. PMID:23043104

  16. Modes of paramyxovirus fusion: a Henipavirus perspective.

    PubMed

    Lee, Benhur; Ataman, Zeynep Akyol

    2011-08-01

    Henipavirus is a new genus of Paramyxoviridae that uses protein-based receptors (ephrinB2 and ephrinB3) for virus entry. Paramyxovirus entry requires the coordinated action of the fusion (F) and attachment viral envelope glycoproteins. Receptor binding to the attachment protein triggers F to undergo a conformational cascade that results in membrane fusion. The accumulation of structural and functional studies on many paramyxoviral fusion and attachment proteins, including the recent elucidation of structures of Nipah virus (NiV) and Hendra virus (HeV) G glycoproteins bound and unbound to cognate ephrinB receptors, indicate that henipavirus entry and fusion could differ mechanistically from paramyxoviruses that use glycan-based receptors.

  17. Fusion Power Demonstration III

    SciTech Connect

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  18. ApoA-II directs morphogenetic movements of zebrafish embryo by preventing chromosome fusion during nuclear division in yolk syncytial layer.

    PubMed

    Zhang, Ting; Yao, Shaohua; Wang, Ping; Yin, Chaoran; Xiao, Chun; Qian, Meilin; Liu, Donghui; Zheng, Lemin; Meng, Wentong; Zhu, Hongyan; Liu, Jin; Xu, Hong; Mo, Xianming

    2011-03-18

    The high density lipoprotein (HDL) represents a class of lipid- and protein-containing particles and consists of two major apolipoproteins apoA-I and apoA-II. ApoA-II has been shown to be involved in the pathogenesis of insulin resistance, adiposity, diabetes, and metabolic syndrome. In embryo, apoa2 mRNAs are abundant in the liver, brain, lung, placenta, and in fish yolk syncytial layer (YSL), suggesting that apoa2 may perform a function during embryonic development. Here we find out that apoa2 modulates zebrafish embryonic development by regulating the organization of YSL. Disruption of apoa2 function in zebrafish caused chromosome fusing, which strongly blocked YSL nuclear division, inducing disorders in YSL organization and finally disturbing the embryonic epiboly. Purified native human apoA-II was able specifically to rescue the defects and induced nuclear division in zebrafish embryos and in human HeLa cells. The C terminus of apoA-II was required for the proper chromosome separation during nuclear division of YSL in zebrafish embryos and in human HeLa cells. Our data indicate that organization of YSL is required for blastoderm patterning and morphogenesis and suggest that apolipoprotein apoA-II is a novel factor of nuclear division in YSL involved in the regulation of early zebrafish embryonic morphogenesis and in mammalian cells for proliferation.

  19. Multiepitope Fusion Antigen Induces Broadly Protective Antibodies That Prevent Adherence of Escherichia coli Strains Expressing Colonization Factor Antigen I (CFA/I), CFA/II, and CFA/IV

    PubMed Central

    Ruan, Xiaosai; Knudsen, David E.; Wollenberg, Katie M.

    2014-01-01

    Diarrhea is the second leading cause of death in children younger than 5 years and continues to be a major threat to global health. Enterotoxigenic Escherichia coli (ETEC) strains are the most common bacteria causing diarrhea in developing countries. ETEC strains are able to attach to host small intestinal epithelial cells by using bacterial colonization factor antigen (CFA) adhesins. This attachment helps to initiate the diarrheal disease. Vaccines that induce antiadhesin immunity to block adherence of ETEC strains that express immunologically heterogeneous CFA adhesins are expected to protect against ETEC diarrhea. In this study, we created a CFA multiepitope fusion antigen (MEFA) carrying representative epitopes of CFA/I, CFA/II (CS1, CS2, and CS3), and CFA/IV (CS4, CS5, and CS6), examined its immunogenicity in mice, and assessed the potential of this MEFA as an antiadhesin vaccine against ETEC. Mice intraperitoneally immunized with this CFA MEFA exhibited no adverse effects and developed immune responses to CFA/I, CFA/II, and CFA/IV adhesins. Moreover, after incubation with serum of the immunized mice, ETEC or E. coli strains expressing CFA/I, CFA/II, or CFA/IV adhesins were significantly inhibited in adherence to Caco-2 cells. Our results indicated this CFA MEFA elicited antibodies that not only cross-reacted to CFA/I, CFA/II and CFA/IV adhesins but also broadly inhibited adherence of E. coli strains expressing these seven adhesins and suggested that this CFA MEFA could be a candidate to induce broad-spectrum antiadhesin protection against ETEC diarrhea. Additionally, this antigen construction approach (creating an MEFA) may be generally used in vaccine development against heterogenic pathogens. PMID:24351757

  20. Multiepitope fusion antigen induces broadly protective antibodies that prevent adherence of Escherichia coli strains expressing colonization factor antigen I (CFA/I), CFA/II, and CFA/IV.

    PubMed

    Ruan, Xiaosai; Knudsen, David E; Wollenberg, Katie M; Sack, David A; Zhang, Weiping

    2014-02-01

    Diarrhea is the second leading cause of death in children younger than 5 years and continues to be a major threat to global health. Enterotoxigenic Escherichia coli (ETEC) strains are the most common bacteria causing diarrhea in developing countries. ETEC strains are able to attach to host small intestinal epithelial cells by using bacterial colonization factor antigen (CFA) adhesins. This attachment helps to initiate the diarrheal disease. Vaccines that induce antiadhesin immunity to block adherence of ETEC strains that express immunologically heterogeneous CFA adhesins are expected to protect against ETEC diarrhea. In this study, we created a CFA multiepitope fusion antigen (MEFA) carrying representative epitopes of CFA/I, CFA/II (CS1, CS2, and CS3), and CFA/IV (CS4, CS5, and CS6), examined its immunogenicity in mice, and assessed the potential of this MEFA as an antiadhesin vaccine against ETEC. Mice intraperitoneally immunized with this CFA MEFA exhibited no adverse effects and developed immune responses to CFA/I, CFA/II, and CFA/IV adhesins. Moreover, after incubation with serum of the immunized mice, ETEC or E. coli strains expressing CFA/I, CFA/II, or CFA/IV adhesins were significantly inhibited in adherence to Caco-2 cells. Our results indicated this CFA MEFA elicited antibodies that not only cross-reacted to CFA/I, CFA/II and CFA/IV adhesins but also broadly inhibited adherence of E. coli strains expressing these seven adhesins and suggested that this CFA MEFA could be a candidate to induce broad-spectrum antiadhesin protection against ETEC diarrhea. Additionally, this antigen construction approach (creating an MEFA) may be generally used in vaccine development against heterogenic pathogens.

  1. [Analytical biotechnology of recombinant peptides and proteins. II. Primary structure of the fusion protein containing human proinsulin and optimization of its proteolysis by trypsin].

    PubMed

    Sergeev, N V; Glukhova, N S; Nazimov, I V; Guliaev, V A; Donetskiĭ, I A; Miroshnikov, A I

    2000-07-01

    The kinetics of trypsin proteolysis of the fusion protein (FP) containing human proinsulin was studied by a set of analytical micromethods. These were the microcolumn reversed-phase HPLC and the qualitative identification by MALDI-TOF mass spectrometry and amino acid sequencing. The first stage of the proteolysis was shown to be the cleavage of FP into the leader fragment and proinsulin. The subsequent splitting off of C-peptide from proinsulin results in the formation of ArgB31-ArgB32-insulin. The effect of temperature on the formation of de-ThrB30-insulin, a by-product, was also studied. The structure of FP was confirmed by the peptide mapping technique, and the leader fragment was shown to contain no N-terminal Met residue.

  2. Structural and functional properties of an unusual internal fusion peptide in a nonenveloped virus membrane fusion protein.

    PubMed

    Shmulevitz, Maya; Epand, Raquel F; Epand, Richard M; Duncan, Roy

    2004-03-01

    The avian and Nelson Bay reoviruses are two of only a limited number of nonenveloped viruses capable of inducing cell-cell membrane fusion. These viruses encode the smallest known membrane fusion proteins (p10). We now show that a region of moderate hydrophobicity we call the hydrophobic patch (HP), present in the small N-terminal ectodomain of p10, shares the following characteristics with the fusion peptides of enveloped virus fusion proteins: (i) an abundance of glycine and alanine residues, (ii) a potential amphipathic secondary structure, (iii) membrane-seeking characteristics that correspond to the degree of hydrophobicity, and (iv) the ability to induce lipid mixing in a liposome fusion assay. The p10 HP is therefore predicted to provide a function in the mechanism of membrane fusion similar to those of the fusion peptides of enveloped virus fusion peptides, namely, association with and destabilization of opposing lipid bilayers. Mutational and biophysical analysis suggested that the internal fusion peptide of p10 lacks alpha-helical content and exists as a disulfide-stabilized loop structure. Similar kinked structures have been reported in the fusion peptides of several enveloped virus fusion proteins. The preservation of a predicted loop structure in the fusion peptide of this unusual nonenveloped virus membrane fusion protein supports an imperative role for a kinked fusion peptide motif in biological membrane fusion.

  3. Fulminant viral hepatitis.

    PubMed

    Jayakumar, Saumya; Chowdhury, Raiyan; Ye, Carrie; Karvellas, Constantine J

    2013-07-01

    Acute liver failure (ALF) is a condition wherein the previously healthy liver rapidly deteriorates, resulting in jaundice, encephalopathy, and coagulopathy. There are approximately 2000 cases per year of ALF in the United States. Viral causes (fulminant viral hepatitis [FVH]) are the predominant cause of ALF in developing countries. Given the ease of spread of viral hepatitis and the high morbidity and mortality associated with ALF, a systematic approach to the diagnosis and treatment of FVH is required. In this review, the authors describe the viral causes of ALF and review the intensive care unit management of patients with FVH. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Capsid-Targeted Viral Inactivation: A Novel Tactic for Inhibiting Replication in Viral Infections

    PubMed Central

    Zhang, Xingcui; Jia, Renyong; Zhou, Jiakun; Wang, Mingshu; Yin, Zhongqiong; Cheng, Anchun

    2016-01-01

    Capsid-targeted viral inactivation (CTVI), a conceptually powerful new antiviral strategy, is attracting increasing attention from researchers. Specifically, this strategy is based on fusion between the capsid protein of a virus and a crucial effector molecule, such as a nuclease (e.g., staphylococcal nuclease, Barrase, RNase HI), lipase, protease, or single-chain antibody (scAb). In general, capsid proteins have a major role in viral integration and assembly, and the effector molecule used in CTVI functions to degrade viral DNA/RNA or interfere with proper folding of viral key proteins, thereby affecting the infectivity of progeny viruses. Interestingly, such a capsid–enzyme fusion protein is incorporated into virions during packaging. CTVI is more efficient compared to other antiviral methods, and this approach is promising for antiviral prophylaxis and therapy. This review summarizes the mechanism and utility of CTVI and provides some successful applications of this strategy, with the ultimate goal of widely implementing CTVI in antiviral research. PMID:27657114

  5. pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs.

    PubMed

    Gerlach, Thomas; Hensen, Luca; Matrosovich, Tatyana; Bergmann, Janina; Winkler, Michael; Peteranderl, Christin; Klenk, Hans-Dieter; Weber, Friedemann; Herold, Susanne; Pöhlmann, Stefan; Matrosovich, Mikhail

    2017-06-01

    The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins.IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN

  6. Plasma Potential Measurements by the Heavy Ion Beam Probe Diagnostic in Fusion Plasmas: Biasing Experiments in the TJ-II Stellarator and T-10 Tokamak

    SciTech Connect

    Melnikov, A.V.; Hidalgo, C.; Eliseev, L.G.

    2004-09-15

    The effect of edge biasing on plasma potential was investigated in the TJ-II stellarator and the T-10 tokamak. The Heavy Ion Beam Probe (HIBP) diagnostic, a unique tool for studying the core potential directly, was used in both machines. Experiments in TJ-II show that it is possible to modify the global confinement and edge plasma parameters with limiter biasing, illustrating the direct impact of radial electric fields on TJ-II confinement properties. For the first time it was shown that the plasma column in a stellarator can be charged as a whole for a hot, near-reactor-relevant plasma. The plasma potential and electric fields evolve on two different characteristic time scales. Although the experimental conditions in the two machines have many important differences, the basic features of plasma potential behavior have some similarities: The potential response has the same polarity and scale as the biasing voltage, and the fluctuations are suppressed near the electrode/limiter region. However, whereas both edge and core plasma potential are affected by biasing in TJ-II, the potential changes mainly near the biased electrode in T-10.

  7. Dual Wavelength Imaging Allows Analysis of Membrane Fusion of Influenza Virus inside Cells

    PubMed Central

    Sakai, Tatsuya; Ohuchi, Masanobu; Imai, Masaki; Mizuno, Takafumi; Kawasaki, Kazunori; Kuroda, Kazumichi; Yamashina, Shohei

    2006-01-01

    Influenza virus hemagglutinin (HA) is a determinant of virus infectivity. Therefore, it is important to determine whether HA of a new influenza virus, which can potentially cause pandemics, is functional against human cells. The novel imaging technique reported here allows rapid analysis of HA function by visualizing viral fusion inside cells. This imaging was designed to detect fusion changing the spectrum of the fluorescence-labeled virus. Using this imaging, we detected the fusion between a virus and a very small endosome that could not be detected previously, indicating that the imaging allows highly sensitive detection of viral fusion. PMID:16439557

  8. The Fusion Energy Option

    NASA Astrophysics Data System (ADS)

    Dean, Stephen O.

    2004-06-01

    Presentations from a Fusion Power Associates symposium, The Fusion Energy Option, are summarized. The topics include perspectives on fossil fuel reserves, fusion as a source for hydrogen production, status and plans for the development of inertial fusion, planning for the construction of the International Thermonuclear Experimental Reactor, status and promise of alternate approaches to fusion and the need for R&D now on fusion technologies.

  9. Bats as Viral Reservoirs.

    PubMed

    Hayman, David T S

    2016-09-29

    Bats are hosts of a range of viruses, including ebolaviruses, and many important human viral infections, such as measles and mumps, may have their ancestry traced back to bats. Here, I review viruses of all viral families detected in global bat populations. The viral diversity in bats is substantial, and viruses with all known types of genomic structures and replication strategies have been discovered in bats. However, the discovery of viruses is not geographically even, with some apparently undersampled regions, such as South America. Furthermore, some bat families, including those with global or wide distributions such as Emballonuridae and Miniopteridae, are underrepresented on viral databases. Future studies, including those that address these sampling gaps along with those that develop our understanding of viral-host relationships, are highlighted.

  10. Viral Disease Networks?

    NASA Astrophysics Data System (ADS)

    Gulbahce, Natali; Yan, Han; Vidal, Marc; Barabasi, Albert-Laszlo

    2010-03-01

    Viral infections induce multiple perturbations that spread along the links of the biological networks of the host cells. Understanding the impact of these cascading perturbations requires an exhaustive knowledge of the cellular machinery as well as a systems biology approach that reveals how individual components of the cellular system function together. Here we describe an integrative method that provides a new approach to studying virus-human interactions and its correlations with diseases. Our method involves the combined utilization of protein - protein interactions, protein -- DNA interactions, metabolomics and gene - disease associations to build a ``viraldiseasome''. By solely using high-throughput data, we map well-known viral associated diseases and predict new candidate viral diseases. We use microarray data of virus-infected tissues and patient medical history data to further test the implications of the viral diseasome. We apply this method to Epstein-Barr virus and Human Papillomavirus and shed light into molecular development of viral diseases and disease pathways.

  11. [Viral hepatitis during pregnancy].

    PubMed

    Gutkowski, Krzysztof; Gutkowska, Dorota; Lepiech, Jacek

    2006-10-01

    Viral hepatitis is one of the most common liver diseases appearing during pregnancy. Prevention against hepatotropic viruses is restricted due to lack of vaccines being effective in induction of efficient immunization in the majority of these microorganisms. In general, there is no possibility of active immunization against hepatotropic viruses except type A and B viral hepatitis. An issue of viral hepatitis in pregnancy as an aspect of potential risk factor connected with infection of pregnant women and a fetus has been described in this paper. Furthermore, the most important topics in the field of the epidemiology, prophylaxis and possible treatment options of viral hepatitis A, B, C, D, E and G have been discussed. The newest reports of pregnant women lamivudine therapy as a preventive treatment against vertical transmission during delivery have been reviewed. Rarly diagnosed viral hepatitis caused by herpes simplex virus, cytomegalovirus, Epstein-Barr virus and adenoviruses have been characterized as well.

  12. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion

    PubMed Central

    Yang, Sung-Tae; Kiessling, Volker; Tamm, Lukas K.

    2016-01-01

    Lipids and proteins are organized in cellular membranes in clusters, often called ‘lipid rafts'. Although raft-constituent ordered lipid domains are thought to be energetically unfavourable for membrane fusion, rafts have long been implicated in many biological fusion processes. For the case of HIV gp41-mediated membrane fusion, this apparent contradiction can be resolved by recognizing that the interfaces between ordered and disordered lipid domains are the predominant sites of fusion. Here we show that line tension at lipid domain boundaries contributes significant energy to drive gp41-fusion peptide-mediated fusion. This energy, which depends on the hydrophobic mismatch between ordered and disordered lipid domains, may contribute tens of kBT to fusion, that is, it is comparable to the energy required to form a lipid stalk intermediate. Line-active compounds such as vitamin E lower line tension in inhomogeneous membranes, thereby inhibit membrane fusion, and thus may be useful natural viral entry inhibitors. PMID:27113279

  13. Revitalizing Fusion via Fission Fusion

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  14. BEATRIX-II Program: ANNEX-III to IEA implementing agreement for a programme of research and development on radiation damage in fusion materials

    SciTech Connect

    Slagle, O.D.; Hollenberg, G.W.

    1992-12-01

    The BEATRIX-II experiment is an International Energy Agency (IEA) sponsored collaborative experiment between Japan, Canada, and the United States. This is an in situ tritium recovery experiment conducted to evaluate the performance of ceramic solid breeder materials in a fast neutron environment to high burnup levels. The experiment was carried out in the Fast Flux Test Facility (FFTF), located on the Hanford site near Richland, Washington, and was operated by Westinghouse Hanford Company (WHC). Pacific Northwest Laboratory, Richland (PNL), Richland, Washington, together with the Japan Atomic Energy Research Institute (JAERI) and Atomic Energy of Canada Limited (AECL) Research are conducting the experiment. The objective of the BEATRIX-II experiment is to design, conduct, and evaluate the in situ recovery of tritium from solid breeder materials during neutron irradiation in the FFTF. During the experiment, the performance of candidate solid breeder materials is continuously monitored with respect to temperature stability and tritium release. The phase I experiment was irradiated to lithium burnups of 5% while the goal for Phase II was to irradiate to burnups as high as 8%.

  15. Virion-targeted viral inactivation: new therapy against viral infection.

    PubMed

    Okui, N; Kitamura, Y; Kobayashi, N; Sakuma, R; Ishikawa, T; Kitamura, T

    2001-01-01

    Acquired immune deficiency syndrome (AIDS) is resistant to all current therapy. Gene therapy is an attractive alternative or additive to current, unsatisfactory AIDS therapy. To develop an antiviral molecule targeting viral integrase (HIV IN), we generated a single-chain antibody, termed scAb, which interacted with human immunodeficiency virus type 1 (HIV-1) IN and inhibited virus replication at the integration step when expressed intracellularly. To reduce infectivity from within the virus particles, we made expression plasmids (pC-scAbE-Vpr, pC-scAbE-CA, and pC-scAbE-WXXF), which expressed the anti-HIV IN scAb fused to the N-terminus of HIV-1-associated accessory protein R (Vpr), capsid protein (CA), and specific binding motif to Vpr (WXXF), respectively. All fusion proteins were tagged with a nine-amino acid peptide derived from influenza virus hemagglutinin (HA) at the C terminus. The fusion molecules, termed scAbE-Vpr, scAbE-CA, and scAbE-WXXF, interacted specifically with HIV IN immobilized on a nitrocellulose membrane. Immunoblot analysis showed that scAbE-Vpr, scAbE-CA, and scAbE-WXXF were incorporated into the virions produced by cotransfection of 293T cells with HIV-1 infectious clone DNA (pLAI) and pC-scAbE-Vpr, pC-scAbE-WXXF. A multinuclear activation galactosidase indicator (MAGI) assay revealed that the virions released from 293T cells cotransfected with pLAI and pC-scAbE-Vpr, pC-scAbE-WXXF had as little 1000-fold of the infectivity of the control wild-type virions, which were produced from the 293T cells transfected with pLAI alone. Furthermore, the virions produced from the 293T cells cotransfected with pLAI and an scAb expression vector (pC-scAb) showed only 1% of the infectivity of the control HIV-1 in a MAGI assay, although scAb was not incorporated into the virions. In either instance, the total quantity of the progeny virions released from the transfected 293T cells and the patterns of the virion proteins were hardly affected by the presence of

  16. Membrane bending energy and fusion pore kinetics in Ca(2+)-triggered exocytosis.

    PubMed

    Zhang, Zhen; Jackson, Meyer B

    2010-06-02

    A fusion pore composed of lipid is an obligatory kinetic intermediate of membrane fusion, and its formation requires energy to bend membranes into highly curved shapes. The energetics of such deformations in viral fusion is well established, but the role of membrane bending in Ca(2+)-triggered exocytosis remains largely untested. Amperometry recording showed that during exocytosis in chromaffin and PC12 cells, fusion pores formed by smaller vesicles dilated more rapidly than fusion pores formed by larger vesicles. The logarithm of 1/(fusion pore lifetime) varied linearly with vesicle curvature. The vesicle size dependence of fusion pore lifetime quantitatively accounted for the nonexponential fusion pore lifetime distribution. Experimentally manipulating vesicle size failed to alter the size dependence of fusion pore lifetime. Manipulations of membrane spontaneous curvature altered this dependence, and applying the curvature perturbants to the opposite side of the membrane reversed their effects. These effects of curvature perturbants were opposite to those seen in viral fusion. These results indicate that during Ca(2+)-triggered exocytosis membrane bending opposes fusion pore dilation rather than fusion pore formation. Ca(2+)-triggered exocytosis begins with a proteinaceous fusion pore with less stressed membrane, and becomes lipidic as it dilates, bending membrane into a highly curved shape. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Pseudorabies virus glycoproteins gII and gp50 are essential for virus penetration.

    PubMed Central

    Rauh, I; Mettenleiter, T C

    1991-01-01

    Pseudorabies virus (PrV) glycoproteins gII and gp50 are major constituents of the viral envelope and targets of neutralizing monoclonal antibodies. Both are homologs of essential glycoproteins found in herpes simplex virus, gB (gII) and gD (gp50). We recently isolated a gII-negative PrV deletion mutant on complementing cell lines and established the essential character of gII for PrV replication (I. Rauh, F. Weiland, F. Fehler, G. Keil, and T.C. Mettenleiter, J. Virol. 65: 621-631, 1991). In this report, we describe the isolation of a gp50-negative PrV mutant after constructing cell lines that constitutively express gp50 and phenotypically complement the gp50 defect. Analysis of the gp50- mutant proved that gp50 is essential for PrV replication. Further studies showed that both gII and gp50 are required for viral penetration into target cells. The penetration defect in the gII and gp50 deletion mutants could be overcome by experimental polyethylene glycol-induced membrane fusion. Surprisingly, whereas gII proved to be essential for both penetration and cell-cell spread of the virus, gp50 was required only for penetration and appeared dispensable for direct cell-cell spread. Images PMID:1654444

  18. Two single mutations in the fusion protein of Newcastle disease virus confer hemagglutinin-neuraminidase independent fusion promotion and attenuate the pathogenicity in chickens

    USDA-ARS?s Scientific Manuscript database

    The fusion (F) protein of Newcastle disease virus (NDV) plays an important role in viral infection and pathogenicity through mediating membrane fusion between the virion and host cells in the presence of the hemagglutinin-neuraminidase (HN). Previously, we obtained a velogenic NDV genotype VII muta...

  19. Dual Split Protein (DSP) Assay to Monitor Cell-Cell Membrane Fusion.

    PubMed

    Nakane, Shuhei; Matsuda, Zene

    2015-01-01

    Fusion between viral and cellular membranes is the essential first step in infection of enveloped viruses. This step is mediated by viral envelope glycoproteins (Env) that recognize cellular receptors. The membrane fusion between the effector cells expressing viral Env and the target cells expressing its receptors can be monitored by several methods. We have recently developed a pair of chimeric reporter protein composed of split Renilla luciferase (RL) and split GFP. We named this reporter dual split protein (DSP), since it recovers both RL and GFP activities upon self reassociation. By using DSP, pore formation and content mixing between the effector and target cells can be monitored upon the recovery of RL and GFP activities after the membrane fusion. This quick assay provides quantitative as well as spatial information about membrane fusion mediated by viral Env.

  20. Public Relations on Fusion in Europe

    NASA Astrophysics Data System (ADS)

    Ongena, J.; van Oost, G.; Paris, P. J.

    2000-10-01

    A summary will be presented of PR efforts on fusion energy research in Europe. A 3-D movie of a fusion research experimental reactor has been realized at the start of this year. It has been made entirely on virtual animation basis. Two versions exists, a short version of 3 min., as a video clip, and a longer version of nearly 8 min. Both could be viewed in 3D, using special projections and passive glasses or in normal VHS video projections. A new CD-ROM for individual and classroom use will be presented, discussing (i) the different energy forms, (ii) general principles of fusion, (iii) current research efforts and (iv) future prospects of fusion. This CD-ROM is now produced in English, German, French, Spanish, Italian and Portuguese Several new brochures and leaflets intended to increase the public awareness on fusion in Europe will be on display.

  1. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume II. Detailed technical plan. Revision 2

    SciTech Connect

    Not Available

    1982-08-01

    The four sections which comprise Part II describe in detail the technical basis for each of the four Program Elements (PE's) of the FWBS Engineering Technology Program (ETP). Each PE is planned to be executed in a number of phases. The purpose of the DTP's is to delineate detailed near-term research, development, and testing required to establish a FWBS engineering data base. Optimum testing strategies and construction of test facilities where needed are identified. The DTP's are based on guidelines given by Argonne National Laboratory which included the basic programmatic goals and the requirements for the types of tests and test conditions.

  2. BEATRIX-II Program, January 1989--December 1989: ANNEX-III to IEA implementing agreement for a programme of research and development on radiation damage in fusion materials

    SciTech Connect

    Slagle, O.D.; Hollenberg, G.W.

    1990-10-01

    BEATRIX-II is an International Energy Agency (IEA) sponsored collaborative experiment among Japan, Canada, and the United States. The purpose of the experiment is to evaluate the performance of ceramic solid breeder materials in a fast neutron environment. To do this, an in-situ tritium recovery experiment is being conducted in the Fast Flux Test Facility (FFTF), located on the Hanford site near Richland, Washington, and operated by Westinghouse Hanford Company (WHC). The Pacific Northwest Laboratory (PNL), Richland, Washington, together with the Japan Atomic Energy Research Institute (JAERI) and Atomic Energy of Canada Limited (AECL) are responsible for conducting the experiment.

  3. Unusual Fusion Proteins of HIV-1

    PubMed Central

    Langer, Simon; Sauter, Daniel

    2017-01-01

    Despite its small genome size, the Human Immunodeficiency Virus 1 (HIV-1) is one of the most successful pathogens and has infected more than 70 million people worldwide within the last decades. In total, HIV-1 expresses 16 canonical proteins from only nine genes within its 10 kb genome. Expression of the structural genes gag, pol, and env, the regulatory genes rev and tat and the accessory genes vpu, nef, vpr, and vif enables assembly of the viral particle, regulates viral gene transcription, and equips the virus to evade or counteract host immune responses. In addition to the canonically expressed proteins, a growing number of publications describe the existence of non-canonical fusion proteins in HIV-1 infected cells. Most of them are encoded by the tat-env-rev locus. While the majority of these fusion proteins (e.g., TNV/p28tev, p186Drev, Tat1-Rev2, Tat^8c, p17tev, or Ref) are the result of alternative splicing events, Tat-T/Vpt is produced upon programmed ribosomal frameshifting, and a Rev1-Vpu fusion protein is expressed due to a nucleotide polymorphism that is unique to certain HIV-1 clade A and C strains. A better understanding of the expression and activity of these non-canonical viral proteins will help to dissect their potential role in viral replication and reveal how HIV-1 optimized the coding potential of its genes. The goal of this review is to provide an overview of previously described HIV-1 fusion proteins and to summarize our current knowledge of their expression patterns and putative functions. PMID:28119676

  4. Fusion of Images from Dissimilar Sensor Systems

    DTIC Science & Technology

    2004-12-01

    based fusion concepts and presents results demonstrating the robustness of the approach. Final remarks are provided in Chapter V. 3 II. BACKGROUND A...multiresolution analysis” methods. Image fusion by the statistical and numerical approach utilizes methods such as Principal Component Analysis ( PCA ) and...represent the pixel intensities in LWIR and MWIR sensors respectively. They are statistically decomposed using PCA into orthogonal components L1’ and

  5. Viruses and viral proteins.

    PubMed

    Verdaguer, Nuria; Ferrero, Diego; Murthy, Mathur R N

    2014-11-01

    For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes.

  6. Viruses and viral proteins

    PubMed Central

    Verdaguer, Nuria; Ferrero, Diego; Murthy, Mathur R. N.

    2014-01-01

    For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes. PMID:25485129

  7. Multi-unit inertial fusion plants based on HYLIFE-II, with shared heavy-ion RIA driver and target factory, producing electricity and hydrogen fuel

    SciTech Connect

    Logan, G.; Moir, R.; Hoffman, M.

    1994-05-05

    Following is a modification of the IFEFUEL systems code, called IFEFUEL2, to treat specifically the HYLIFE-II target chamber concept. The same improved Recirculating Induction Accelerator (RIA) energy scaling model developed recently by Bieri is used in this survey of the economics of multi-unit IFE plants producing both electricity and hydrogen fuel. Reference cases will assume conventional HI-indirect target gains for a 2 mm spot, and improved HYLIFE-II BoP models as per Hoffman. Credits for improved plant availability and lower operating costs due to HYLIFE-II`s 30-yr target chamber lifetime are included, as well as unit cost reductions suggested by Delene to credit greater {open_quotes}learning curve{close_quotes} benefits for the duplicated portions of a multi-unit plant. To illustrate the potential impact of more advanced assumptions, additional {open_quotes}advanced{close_quotes} cases will consider the possible benefits of an MHD + Steam BoP, where direct MHD conversion of plasma from baseball-size LiH target blanket shells is assumed to be possible in a new (as yet undesigned) liquid Flibe-walled target chamber, together and separately, with advanced, higher-gain heavy-ion targets with Fast Ignitors. These runs may help decide the course of a possible future {open_quotes}HYLIFE-III{close_quotes} IFE study. Beam switchyard and final focusing system costs per target chamber are assumed to be consistent with single-sided illumination, for either {open_quotes}conventional{close_quotes} or {open_quotes}advanced{close_quotes} indirect target gain assumptions. Target costs are scaled according to the model by Woodworth. In all cases, the driver energy and rep rate for each chosen number of target chambers and total plant output will be optimized to minimize the cost of electricity (CoE) and the associated cost of hydrogen (CoH), using a relationship between CoE and CoH to be presented in the next section.

  8. Fusion energy

    NASA Astrophysics Data System (ADS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the Max Planck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989 to 1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R and D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R and D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  9. Fusion energy

    SciTech Connect

    Not Available

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  10. Viral hemorrhagic septicemia

    USGS Publications Warehouse

    Batts, William N.; Winton, James R.

    2012-01-01

    Viral hemorrhagic septicemia (VHS) is one of the most important viral diseases of finfish worldwide. In the past, VHS was thought to affect mainly rainbow trout Oncorhynchus mykiss reared at freshwater facilities in Western Europe where it was known by various names including Egtved disease and infectious kidney swelling and liver degeneration (Wolf 1988). Today, VHS is known as an important source of mortality for cultured and wild fish in freshwater and marine environments in several regions of the northern hemisphere (Dixon 1999; Gagné et al. 2007; Kim and Faisal 2011; Lumsden et al. 2007; Marty et al. 1998, 2003; Meyers and Winton 1995; Skall et al. 2005b; Smail 1999; Takano et al. 2001). Viral hemorrhagic septicemia is caused by the fish rhabdovirus, viral hemorrhagic septicemia virus (VHSV), a member of the genus Novirhabdovirus of the family Rhabdoviridae

  11. Viral quasispecies complexity measures.

    PubMed

    Gregori, Josep; Perales, Celia; Rodriguez-Frias, Francisco; Esteban, Juan I; Quer, Josep; Domingo, Esteban

    2016-06-01

    Mutant spectrum dynamics (changes in the related mutants that compose viral populations) has a decisive impact on virus behavior. The several platforms of next generation sequencing (NGS) to study viral quasispecies offer a magnifying glass to study viral quasispecies complexity. Several parameters are available to quantify the complexity of mutant spectra, but they have limitations. Here we critically evaluate the information provided by several population diversity indices, and we propose the introduction of some new ones used in ecology. In particular we make a distinction between incidence, abundance and function measures of viral quasispecies composition. We suggest a multidimensional approach (complementary information contributed by adequately chosen indices), propose some guidelines, and illustrate the use of indices with a simple example. We apply the indices to three clinical samples of hepatitis C virus that display different population heterogeneity. Areas of virus biology in which population complexity plays a role are discussed.

  12. Mechanisms of viral mutation.

    PubMed

    Sanjuán, Rafael; Domingo-Calap, Pilar

    2016-12-01

    The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.

  13. Modeling Viral Spread

    PubMed Central

    Graw, Frederik; Perelson, Alan S.

    2016-01-01

    The way in which a viral infection spreads within a host is a complex process that is not well understood. Different viruses, such as human immunodeficiency virus type 1 and hepatitis C virus, have evolved different strategies, including direct cell-to-cell transmission and cell-free transmission, to spread within a host. To what extent these two modes of transmission are exploited in vivo is still unknown. Mathematical modeling has been an essential tool to get a better systematic and quantitative understanding of viral processes that are difficult to discern through strictly experimental approaches. In this review, we discuss recent attempts that combine experimental data and mathematical modeling in order to determine and quantify viral transmission modes. We also discuss the current challenges for a systems-level understanding of viral spread, and we highlight the promises and challenges that novel experimental techniques and data will bring to the field. PMID:27618637

  14. The Human Metapneumovirus Fusion Protein Mediates Entry via an Interaction with RGD-Binding Integrins

    PubMed Central

    Cox, Reagan G.; Livesay, S. Brent; Johnson, Monika; Ohi, Melanie D.

    2012-01-01

    Paramyxoviruses use a specialized fusion protein to merge the viral envelope with cell membranes and initiate infection. Most paramyxoviruses require the interaction of two viral proteins to enter cells; an attachment protein binds cell surface receptors, leading to the activation of a fusion (F) protein that fuses the viral envelope and host cell plasma membrane. In contrast, human metapneumovirus (HMPV) expressing only the F protein is replication competent, suggesting a primary role for HMPV F in attachment and fusion. We previously identified an invariant arginine-glycine-aspartate (RGD) motif in the HMPV F protein and showed that the RGD-binding integrin αVβ1-promoted HMPV infection. Here we show that both HMPV F-mediated binding and virus entry depend upon multiple RGD-binding integrins and that HMPV F can mediate binding and fusion in the absence of the viral attachment (G) protein. The invariant F-RGD motif is critical for infection, as an F-RAE virus was profoundly impaired. Further, F-integrin binding is required for productive viral RNA transcription, indicating that RGD-binding integrins serve as receptors for the HMPV fusion protein. Thus, HMPV F is triggered to induce virus-cell fusion by interactions with cellular receptors in a manner that is independent of the viral G protein. These results suggest a stepwise mechanism of HMPV entry mediated by the F protein through its interactions with cellular receptors, including RGD-binding integrins. PMID:22933271

  15. Structure-revealing data fusion.

    PubMed

    Acar, Evrim; Papalexakis, Evangelos E; Gürdeniz, Gözde; Rasmussen, Morten A; Lawaetz, Anders J; Nilsson, Mathias; Bro, Rasmus

    2014-07-12

    Analysis of data from multiple sources has the potential to enhance knowledge discovery by capturing underlying structures, which are, otherwise, difficult to extract. Fusing data from multiple sources has already proved useful in many applications in social network analysis, signal processing and bioinformatics. However, data fusion is challenging since data from multiple sources are often (i) heterogeneous (i.e., in the form of higher-order tensors and matrices), (ii) incomplete, and (iii) have both shared and unshared components. In order to address these challenges, in this paper, we introduce a novel unsupervised data fusion model based on joint factorization of matrices and higher-order tensors. While the traditional formulation of coupled matrix and tensor factorizations modeling only shared factors fails to capture the underlying structures in the presence of both shared and unshared factors, the proposed data fusion model has the potential to automatically reveal shared and unshared components through modeling constraints. Using numerical experiments, we demonstrate the effectiveness of the proposed approach in terms of identifying shared and unshared components. Furthermore, we measure a set of mixtures with known chemical composition using both LC-MS (Liquid Chromatography - Mass Spectrometry) and NMR (Nuclear Magnetic Resonance) and demonstrate that the structure-revealing data fusion model can (i) successfully capture the chemicals in the mixtures and extract the relative concentrations of the chemicals accurately, (ii) provide promising results in terms of identifying shared and unshared chemicals, and (iii) reveal the relevant patterns in LC-MS by coupling with the diffusion NMR data. We have proposed a structure-revealing data fusion model that can jointly analyze heterogeneous, incomplete data sets with shared and unshared components and demonstrated its promising performance as well as potential limitations on both simulated and real data.

  16. Microvesicles and viral infection.

    PubMed

    Meckes, David G; Raab-Traub, Nancy

    2011-12-01

    Cells secrete various membrane-enclosed microvesicles from their cell surface (shedding microvesicles) and from internal, endosome-derived membranes (exosomes). Intriguingly, these vesicles have many characteristics in common with enveloped viruses, including biophysical properties, biogenesis, and uptake by cells. Recent discoveries describing the microvesicle-mediated intercellular transfer of functional cellular proteins, RNAs, and mRNAs have revealed additional similarities between viruses and cellular microvesicles. Apparent differences include the complexity of viral entry, temporally regulated viral expression, and self-replication proceeding to infection of new cells. Interestingly, many virally infected cells secrete microvesicles that differ in content from their virion counterparts but may contain various viral proteins and RNAs. For the most part, these particles have not been analyzed for their content or functions during viral infection. However, early studies of microvesicles (L-particles) secreted from herpes simplex virus-infected cells provided the first evidence of microvesicle-mediated intercellular communication. In the case of Epstein-Barr virus, recent evidence suggests that this tumorigenic herpesvirus also utilizes exosomes as a mechanism of cell-to-cell communication through the transfer of signaling competent proteins and functional microRNAs to uninfected cells. This review focuses on aspects of the biology of microvesicles with an emphasis on their potential contributions to viral infection and pathogenesis.

  17. Microvesicles and Viral Infection▿

    PubMed Central

    Meckes, David G.; Raab-Traub, Nancy

    2011-01-01

    Cells secrete various membrane-enclosed microvesicles from their cell surface (shedding microvesicles) and from internal, endosome-derived membranes (exosomes). Intriguingly, these vesicles have many characteristics in common with enveloped viruses, including biophysical properties, biogenesis, and uptake by cells. Recent discoveries describing the microvesicle-mediated intercellular transfer of functional cellular proteins, RNAs, and mRNAs have revealed additional similarities between viruses and cellular microvesicles. Apparent differences include the complexity of viral entry, temporally regulated viral expression, and self-replication proceeding to infection of new cells. Interestingly, many virally infected cells secrete microvesicles that differ in content from their virion counterparts but may contain various viral proteins and RNAs. For the most part, these particles have not been analyzed for their content or functions during viral infection. However, early studies of microvesicles (L-particles) secreted from herpes simplex virus-infected cells provided the first evidence of microvesicle-mediated intercellular communication. In the case of Epstein-Barr virus, recent evidence suggests that this tumorigenic herpesvirus also utilizes exosomes as a mechanism of cell-to-cell communication through the transfer of signaling competent proteins and functional microRNAs to uninfected cells. This review focuses on aspects of the biology of microvesicles with an emphasis on their potential contributions to viral infection and pathogenesis. PMID:21976651

  18. Immigration and viral hepatitis.

    PubMed

    Sharma, Suraj; Carballo, Manuel; Feld, Jordan J; Janssen, Harry L A

    2015-08-01

    WHO estimates reveal that the global prevalence of viral hepatitis may be as high as 500 million, with an annual mortality rate of up to 1.3 million individuals. The majority of this global burden of disease is borne by nations of the developing world with high rates of vertical and iatrogenic transmission of HBV and HCV, as well as poor access to healthcare. In 2013, 3.2% of the global population (231 million individuals) migrated into a new host nation. Migrants predominantly originate from the developing countries of the south, into the developed economies of North America and Western Europe. This mass migration of individuals from areas of high-prevalence of viral hepatitis poses a unique challenge to the healthcare systems of the host nations. Due to a lack of universal standards for screening, vaccination and treatment of viral hepatitis, the burden of chronic liver disease and hepatocellular carcinoma continues to increase among migrant populations globally. Efforts to increase case identification and treatment among migrants have largely been limited to small outreach programs in urban centers, such that the majority of migrants with viral hepatitis continue to remain unaware of their infection. This review summarizes the data on prevalence of viral hepatitis and burden of chronic liver disease among migrants, current standards for screening and treatment of immigrants and refugees, and efforts to improve the identification and treatment of viral hepatitis among migrants.

  19. NCBI viral genomes resource.

    PubMed

    Brister, J Rodney; Ako-Adjei, Danso; Bao, Yiming; Blinkova, Olga

    2015-01-01

    Recent technological innovations have ignited an explosion in virus genome sequencing that promises to fundamentally alter our understanding of viral biology and profoundly impact public health policy. Yet, any potential benefits from the billowing cloud of next generation sequence data hinge upon well implemented reference resources that facilitate the identification of sequences, aid in the assembly of sequence reads and provide reference annotation sources. The NCBI Viral Genomes Resource is a reference resource designed to bring order to this sequence shockwave and improve usability of viral sequence data. The resource can be accessed at http://www.ncbi.nlm.nih.gov/genome/viruses/ and catalogs all publicly available virus genome sequences and curates reference genome sequences. As the number of genome sequences has grown, so too have the difficulties in annotating and maintaining reference sequences. The rapid expansion of the viral sequence universe has forced a recalibration of the data model to better provide extant sequence representation and enhanced reference sequence products to serve the needs of the various viral communities. This, in turn, has placed increased emphasis on leveraging the knowledge of individual scientific communities to identify important viral sequences and develop well annotated reference virus genome sets. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by US Government employees and is in the public domain in the US.

  20. NCBI Viral Genomes Resource

    PubMed Central

    Brister, J. Rodney; Ako-adjei, Danso; Bao, Yiming; Blinkova, Olga

    2015-01-01

    Recent technological innovations have ignited an explosion in virus genome sequencing that promises to fundamentally alter our understanding of viral biology and profoundly impact public health policy. Yet, any potential benefits from the billowing cloud of next generation sequence data hinge upon well implemented reference resources that facilitate the identification of sequences, aid in the assembly of sequence reads and provide reference annotation sources. The NCBI Viral Genomes Resource is a reference resource designed to bring order to this sequence shockwave and improve usability of viral sequence data. The resource can be accessed at http://www.ncbi.nlm.nih.gov/genome/viruses/ and catalogs all publicly available virus genome sequences and curates reference genome sequences. As the number of genome sequences has grown, so too have the difficulties in annotating and maintaining reference sequences. The rapid expansion of the viral sequence universe has forced a recalibration of the data model to better provide extant sequence representation and enhanced reference sequence products to serve the needs of the various viral communities. This, in turn, has placed increased emphasis on leveraging the knowledge of individual scientific communities to identify important viral sequences and develop well annotated reference virus genome sets. PMID:25428358

  1. CONSTRUCTION AND EXPRESSION OF DERMATOPHAGOIDES PTERONYSSINUS GROUP 1 MAJOR ALLERGEN T CELL FUSION EPITOPE PEPTIDE VACCINE VECTOR BASED ON THE MHC II PATHWAY.

    PubMed

    Li, Chaopin; Zhao, Beibei; Jiang, Yuxin; Diao, Jidong; Li, Na; Lu, Wei

    2015-11-01

    Antecedentes y objetivo: el Dermatophagoides peteronyssinus es uno de los principales ácaros del polvo doméstico responsables del asma alérgica que se pueden administrar provisionalmente para una inmunoterapia específica. El presente estudio busca construir un vector que codifique epítopos de células T del grupo de alérgenos principal, el Grupo 1 de Dermatophagoides pteronyssinus como una vacuna suministrada mediante la vía MHC de clase II. Métodos: se sintetizaron las secuencias de nucleótidos de los 3 genes objetivo, incluyendo TAT, IhC y el fragmento recombinante de Der p 1 encargado de codificar 3 epítopos de célula T. Después de la amplificación de los 3 fragmentos objetivo por PCR y digestión con endonucleasas de restricción correspondientes, el gen recombinante TAT-IhC-Der p 1-3T se ligó usando T4 DNA ligasa y se insertó en el vector de expresión procariota pET28a (+) para construir el plásmido recombinante pET 28a (+)-TAT-IHC-Der p 1-3T, que se confirmó por digestión con endonucleasas de restricción y secuenciación. El vector recombinante se transformó en E. coli cepa BL21 (DE3) y se indujo con IPTG, y la proteína inducida TATIHC- Der p1-3T se detectó mediante SDS-PAGE. Después de la purificación, la proteina recombinante se confirmó por análisis de inmunotransferencia (Western blot) y se probó su alergenicidad usando el ensayo de unión a IgE. Resultados: el plásmido recombinante pET-28a-TATIHCDer p1-3T se construyó con éxito, se confirmó por digestión con endonucleasas de restricción y la secuenciación y la expresión de la proteína recombinante TAT-IHCDer p1-3T fue inducida en E. coli. Purificación con éxito verificada mediante Western blot de la proteína objetivo, que mostró una capacidad de unión a IgE más fuerte que Der p1. Conclusión: hemos construido con éxito el vector de expresión recombinante pET-28a-TAT-IHC-Der p1-3T que expresa una vacuna de epítopo de células T administrada por vía MHC II con

  2. Role of the synaptobrevin C terminus in fusion pore formation

    PubMed Central

    Ngatchou, Annita N.; Kisler, Kassandra; Fang, Qinghua; Walter, Alexander M.; Zhao, Ying; Bruns, Dieter; Sørensen, Jakob B.; Lindau, Manfred

    2010-01-01

    Neurotransmitter release is mediated by the SNARE proteins synaptobrevin II (sybII, also known as VAMP2), syntaxin, and SNAP-25, generating a force transfer to the membranes and inducing fusion pore formation. However, the molecular mechanism by which this force leads to opening of a fusion pore remains elusive. Here we show that the ability of sybII to support exocytosis is inhibited by addition of one or two residues to the sybII C terminus depending on their energy of transfer from water to the membrane interface, following a Boltzmann distribution. These results suggest that following stimulation, the SNARE complex pulls the C terminus of sybII deeper into the vesicle membrane. We propose that this movement disrupts the vesicular membrane continuity leading to fusion pore formation. In contrast to current models, the experiments suggest that fusion pore formation begins with molecular rearrangements at the intravesicular membrane leaflet and not between the apposed cytoplasmic leaflets. PMID:20937897

  3. A Mechanistic Paradigm for Broad-Spectrum Antivirals that Target Virus-Cell Fusion

    PubMed Central

    Hollmann, Axel; Tanner, Lukas B.; Akyol Ataman, Zeynep; Yun, Tatyana; Shui, Guanghou; Aguilar, Hector C.; Zhang, Dong; Meriwether, David; Roman-Sosa, Gleyder; Robinson, Lindsey R.; Juelich, Terry L.; Buczkowski, Hubert; Chou, Sunwen; Castanho, Miguel A. R. B.; Wolf, Mike C.; Smith, Jennifer K.; Banyard, Ashley; Kielian, Margaret; Reddy, Srinivasa; Wenk, Markus R.; Selke, Matthias; Santos, Nuno C.; Freiberg, Alexander N.; Jung, Michael E.; Lee, Benhur

    2013-01-01

    LJ001 is a lipophilic thiazolidine derivative that inhibits the entry of numerous enveloped viruses at non-cytotoxic concentrations (IC50≤0.5 µM), and was posited to exploit the physiological difference between static viral membranes and biogenic cellular membranes. We now report on the molecular mechanism that results in LJ001's specific inhibition of virus-cell fusion. The antiviral activity of LJ001 was light-dependent, required the presence of molecular oxygen, and was reversed by singlet oxygen (1O2) quenchers, qualifying LJ001 as a type II photosensitizer. Unsaturated phospholipids were the main target modified by LJ001-generated 1O2. Hydroxylated fatty acid species were detected in model and viral membranes treated with LJ001, but not its inactive molecular analog, LJ025. 1O2-mediated allylic hydroxylation of unsaturated phospholipids leads to a trans-isomerization of the double bond and concurrent formation of a hydroxyl group in the middle of the hydrophobic lipid bilayer. LJ001-induced 1O2-mediated lipid oxidation negatively impacts on the biophysical properties of viral membranes (membrane curvature and fluidity) critical for productive virus-cell membrane fusion. LJ001 did not mediate any apparent damage on biogenic cellular membranes, likely due to multiple endogenous cytoprotection mechanisms against phospholipid hydroperoxides. Based on our understanding of LJ001's mechanism of action, we designed a new class of membrane-intercalating photosensitizers to overcome LJ001's limitations for use as an in vivo antiviral agent. Structure activity relationship (SAR) studies led to a novel class of compounds (oxazolidine-2,4-dithiones) with (1) 100-fold improved in vitro potency (IC50<10 nM), (2) red-shifted absorption spectra (for better tissue penetration), (3) increased quantum yield (efficiency of 1O2 generation), and (4) 10–100-fold improved bioavailability. Candidate compounds in our new series moderately but significantly (p≤0.01) delayed the

  4. A combination HIV reporter virus system for measuring post-entry event efficiency and viral outcome in primary CD4+ T cell subsets.

    PubMed

    Tilton, Carisa A; Tabler, Caroline O; Lucera, Mark B; Marek, Samantha L; Haqqani, Aiman A; Tilton, John C

    2014-01-01

    Fusion between the viral membrane of human immunodeficiency virus (HIV) and the host cell marks the end of the HIV entry process and the beginning of a series of post-entry events including uncoating, reverse transcription, integration, and viral gene expression. The efficiency of post-entry events can be modulated by cellular factors including viral restriction factors and can lead to several distinct outcomes: productive, latent, or abortive infection. Understanding host and viral proteins impacting post-entry event efficiency and viral outcome is critical for strategies to reduce HIV infectivity and to optimize transduction of HIV-based gene therapy vectors. Here, we report a combination reporter virus system measuring both membrane fusion and viral promoter-driven gene expression. This system enables precise determination of unstimulated primary CD4+ T cell subsets targeted by HIV, the efficiency of post-entry viral events, and viral outcome and is compatible with high-throughput screening and cell-sorting methods.

  5. Fish viral infections in northwest of Spain.

    PubMed

    Ledo, A; Lupiani, B; Dopazo, C P; Toranzo, A E; Barja, J L

    1990-06-01

    During a three years survey, a total of 149 samples from 20 farms of rainbow trout, salmon and turbot were examined for the presence of virus with the purpose to study the viral infections affecting cultured fish and their incidence in the fishfarms of Northwestern Spain. Infectious pancreatic necrosis virus (IPNV) was the only viral agent isolated from salmonid fish. Fry and fingerlings of trout showed the highest infection rate (24%). This virus was not detected in broodstock or embryonated eggs, although it was isolated from ovaric and seminal fluids and from juvenile carriers. From 24 samples of salmon analyzed, IPNV was only detected in one sample of juveniles. Examination of turbot led the isolation of a new virus belonging to the reoviridae family, which affected to the ongrowing population. All of the IPNV tested belonged to serotype Sp regardless of the origin of the trout stocks. During the monitorization of imported embryonated eggs, no virus was detected from any of the samples. However, in some case, IPNV was isolated when testing the fry obtained in our laboratory from those samples of imported eggs. Our findings indicate that: i) the analysis of fingerlings increase the probability to detect viral infections allowing us an optimal control of importations, and ii) most of the viral infections of fish take place in the own fish farms. The detection of mixed viral and bacterial infections emphasize the importance of carrying out an integral microbiological analysis to determine the causal agent(s) of fish mortalities.

  6. Viral genetic variation accounts for a third of variability in HIV-1 set-point viral load in Europe

    PubMed Central

    Wymant, Chris; Cornelissen, Marion; Gall, Astrid; Bakker, Margreet; Bezemer, Daniela; Hall, Matthew; Hillebregt, Mariska; Ong, Swee Hoe; Albert, Jan; Bannert, Norbert; Fellay, Jacques; Fransen, Katrien; Gourlay, Annabelle J.; Grabowski, M. Kate; Gunsenheimer-Bartmeyer, Barbara; Günthard, Huldrych F.; Kivelä, Pia; Kouyos, Roger; Laeyendecker, Oliver; Liitsola, Kirsi; Meyer, Laurence; Porter, Kholoud; Ristola, Matti; van Sighem, Ard; Vanham, Guido; Berkhout, Ben; Kellam, Paul; Reiss, Peter; Fraser, Christophe

    2017-01-01

    HIV-1 set-point viral load—the approximately stable value of viraemia in the first years of chronic infection—is a strong predictor of clinical outcome and is highly variable across infected individuals. To better understand HIV-1 pathogenesis and the evolution of the viral population, we must quantify the heritability of set-point viral load, which is the fraction of variation in this phenotype attributable to viral genetic variation. However, current estimates of heritability vary widely, from 6% to 59%. Here we used a dataset of 2,028 seroconverters infected between 1985 and 2013 from 5 European countries (Belgium, Switzerland, France, the Netherlands and the United Kingdom) and estimated the heritability of set-point viral load at 31% (CI 15%–43%). Specifically, heritability was measured using models of character evolution describing how viral load evolves on the phylogeny of whole-genome viral sequences. In contrast to previous studies, (i) we measured viral loads using standardized assays on a sample collected in a strict time window of 6 to 24 months after infection, from which the viral genome was also sequenced; (ii) we compared 2 models of character evolution, the classical “Brownian motion” model and another model (“Ornstein–Uhlenbeck”) that includes stabilising selection on viral load; (iii) we controlled for covariates, including age and sex, which may inflate estimates of heritability; and (iv) we developed a goodness of fit test based on the correlation of viral loads in cherries of the phylogenetic tree, showing that both models of character evolution fit the data well. An overall heritability of 31% (CI 15%–43%) is consistent with other studies based on regression of viral load in donor–recipient pairs. Thus, about a third of variation in HIV-1 virulence is attributable to viral genetic variation. PMID:28604782

  7. Viral genetic variation accounts for a third of variability in HIV-1 set-point viral load in Europe.

    PubMed

    Blanquart, François; Wymant, Chris; Cornelissen, Marion; Gall, Astrid; Bakker, Margreet; Bezemer, Daniela; Hall, Matthew; Hillebregt, Mariska; Ong, Swee Hoe; Albert, Jan; Bannert, Norbert; Fellay, Jacques; Fransen, Katrien; Gourlay, Annabelle J; Grabowski, M Kate; Gunsenheimer-Bartmeyer, Barbara; Günthard, Huldrych F; Kivelä, Pia; Kouyos, Roger; Laeyendecker, Oliver; Liitsola, Kirsi; Meyer, Laurence; Porter, Kholoud; Ristola, Matti; van Sighem, Ard; Vanham, Guido; Berkhout, Ben; Kellam, Paul; Reiss, Peter; Fraser, Christophe

    2017-06-01

    HIV-1 set-point viral load-the approximately stable value of viraemia in the first years of chronic infection-is a strong predictor of clinical outcome and is highly variable across infected individuals. To better understand HIV-1 pathogenesis and the evolution of the viral population, we must quantify the heritability of set-point viral load, which is the fraction of variation in this phenotype attributable to viral genetic variation. However, current estimates of heritability vary widely, from 6% to 59%. Here we used a dataset of 2,028 seroconverters infected between 1985 and 2013 from 5 European countries (Belgium, Switzerland, France, the Netherlands and the United Kingdom) and estimated the heritability of set-point viral load at 31% (CI 15%-43%). Specifically, heritability was measured using models of character evolution describing how viral load evolves on the phylogeny of whole-genome viral sequences. In contrast to previous studies, (i) we measured viral loads using standardized assays on a sample collected in a strict time window of 6 to 24 months after infection, from which the viral genome was also sequenced; (ii) we compared 2 models of character evolution, the classical "Brownian motion" model and another model ("Ornstein-Uhlenbeck") that includes stabilising selection on viral load; (iii) we controlled for covariates, including age and sex, which may inflate estimates of heritability; and (iv) we developed a goodness of fit test based on the correlation of viral loads in cherries of the phylogenetic tree, showing that both models of character evolution fit the data well. An overall heritability of 31% (CI 15%-43%) is consistent with other studies based on regression of viral load in donor-recipient pairs. Thus, about a third of variation in HIV-1 virulence is attributable to viral genetic variation.

  8. Review of fusion synfuels

    SciTech Connect

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  9. Production of Uninfectious Human Immunodeficiency Virus Type 1 Containing Viral Protein R Fused to a Single-Chain Antibody against Viral Integrase

    PubMed Central

    Okui, Nobuo; Kobayashi, Noriko; Kitamura, Yoshihiro

    1998-01-01

    A single-chain antibody (scAb) against human immunodeficiency virus type 1 (HIV-1) integrase was expressed as a fusion protein of scAb and HIV-1 viral protein R (Vpr), together with the HIV-1 genome, in human 293T cells. The expression did not affect virion production much but markedly reduced the infectivity of progeny virions. The fusion protein was found to be incorporated into the virions. The incorporation appears to account for the reduced infectivity. PMID:9658154

  10. [Viral drug resistance].

    PubMed

    Dudman, Susanne Gjeruldsen; Stene-Johansen, Kathrine; Vik, Inger Sofie Samdal

    2008-11-20

    More and more viral infections are treated with antiviral drugs, and resistance against these drugs is steadily increasing. Our aim is to give a general understanding of viral resistance and its clinical significance. This article is based on review of published literature on the subject, international recommendations and our own experience as a national reference laboratory for hepatitis viruses. Development of viral resistance is an increasing problem with long-term treatment of both latent and chronic viral infections and may be one of the reasons for clinical treatment failure. Susceptibility testing is therefore an important diagnostic tool in cases of suspected failure during antiviral treatment, and is also necessary for customising of treatment to each individual patient. In Norway, susceptibility testing is offered for HIV, HBV, CMV and influenza, whereas systematic surveillance for the time being is only performed on HIV and influenza resistance. Surveillance on viral resistance is necessary in order to choose the adequate empirical therapy and to monitor the spread of resistant virus in the population. Prevalence of resistance can be limited with infection control measures and appropriate antiviral treatment, especially used in combinations of effective drugs directed at different enzymes and proteins within the virus.

  11. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  12. Acute viral myocarditis

    PubMed Central

    Dennert, Robert; Crijns, Harry J.; Heymans, Stephane

    2008-01-01

    Acute myocarditis is one of the most challenging diagnosis in cardiology. At present, no diagnostic gold standard is generally accepted, due to the insensitivity of traditional diagnostic tests. This leads to the need for new diagnostic approaches, which resulted in the emergence of new molecular tests and a more detailed immunohistochemical analysis of endomyocardial biopsies. Recent findings using these new diagnostic tests resulted in increased interest in inflammatory cardiomyopathies and a better understanding of its pathophysiology, the recognition in overlap of virus-mediated damage, inflammation, and autoimmune dysregulation. Novel results also pointed towards a broader spectrum of viral genomes responsible for acute myocarditis, indicating a shift of enterovirus and adenovirus to parvovirus B19 and human herpes virus 6. The present review proposes a general diagnostic approach, focuses on the viral aetiology and associated autoimmune processes, and reviews treatment options for patients with acute viral myocarditis. PMID:18617482

  13. [Vasculitis and viral infection].

    PubMed

    Martínez Aguilar, N E; Guido Bayardo, R; Vargas Camaño, M E; Compañ González, D; Miranda Feria, A J

    1997-01-01

    Viruses have been implicated in vasculitis. To determine activity of viral infection associated with vasculitis. 17 patients with vasculitis had been in immunological and antiviral antibodies evaluation. Twenty five healthy controls sex and age matched with hematic biometry (BH) and AA. All subjects were negative to HIV and HBV. Viral activity was demonstrated in eight patients; vascular purpura (5), Takayasu disease (1), polyarteritis nodosa (1), erythema nodosum (1). None subject of control group had IgM activity. Antibodies response of IgG in patients were of lesser intensity than in control group. 14 abnormalities in BH were found in patients and 4 in control group. Immune response in patients, measured by lymphocyte subpopulations and circulating immune complexes was abnormal. In conclusion 47% showed viral activity, but the dominant feature was abnormal immune response in 82%.

  14. Viral infections and allergies.

    PubMed

    Xepapadaki, Paraskevi; Papadopoulos, Nikolaos G

    2007-01-01

    Respiratory viral infections have been implicated in the origin of, protection from and exacerbation of allergy-related symptoms in a variety of ways. Viral infections are closely linked to infantile wheezing. Severe bronchiolitis in early infancy may predispose to chronic childhood asthma as well as allergic sensitization; alternatively it could represent a marker of susceptible individuals. In contrast, repeated mild infections in early life may have a protective role in the development of asthma or atopy by driving the immune system towards Th1 responses. However, evidence on this hypothesis is not consistent as far as respiratory viruses are concerned. Several factors, including the presence of an atopic environment, timing of exposure and severity of the infection, interactively contribute to the allergy-infection relationship. In the present report, recent data on the role of viral infections in the development and progression of allergy and asthma are reviewed.

  15. Advances in viral oncology

    SciTech Connect

    Klein, G.

    1987-01-01

    Volume 6 of Advances in Viral Oncology presents experimental approaches to multifactorial interactions in tumor development. Included are in-depth analyses of malignant phenotypes by oncogene complementation, as well as studies of complementary interactions among DNA viral oncogenes; multiple cell-derived sequences in single retroviral genomes; and sequences that influence the transforming activity and expression of the mos oncogene. The genetic regulation of tumorigenic expression in somatic cell hybrids, the inhibition of oncogenes by cellular genes, and the interaction of genes that favor and genes that suppress tumorigenesis are examined in detail. The book concludes with a study of the relationship of oncogenes to the evolution of the metastatic phenotype.

  16. Viral apoptotic mimicry.

    PubMed

    Amara, Ali; Mercer, Jason

    2015-08-01

    As opportunistic pathogens, viruses have evolved many elegant strategies to manipulate host cells for infectious entry and replication. Viral apoptotic mimicry, defined by the exposure of phosphatidylserine - a marker for apoptosis - on the pathogen surface, is emerging as a common theme used by enveloped viruses to promote infection. Focusing on the four best described examples (vaccinia virus, dengue virus, Ebola virus and pseudotyped lentivirus), we summarize our current understanding of apoptotic mimicry as a mechanism for virus entry, binding and immune evasion. We also describe recent examples of non-enveloped viruses that use this mimicry strategy, and discuss future directions and how viral apoptotic mimicry could be targeted therapeutically.

  17. Sequential conformational rearrangements in flavivirus membrane fusion

    PubMed Central

    Chao, Luke H; Klein, Daryl E; Schmidt, Aaron G; Peña, Jennifer M; Harrison, Stephen C

    2014-01-01

    The West Nile Virus (WNV) envelope protein, E, promotes membrane fusion during viral cell entry by undergoing a low-pH triggered conformational reorganization. We have examined the mechanism of WNV fusion and sought evidence for potential intermediates during the conformational transition by following hemifusion of WNV virus-like particles (VLPs) in a single particle format. We have introduced specific mutations into E, to relate their influence on fusion kinetics to structural features of the protein. At the level of individual E subunits, trimer formation and membrane engagement of the threefold clustered fusion loops are rate-limiting. Hemifusion requires at least two adjacent trimers. Simulation of the kinetics indicates that availability of competent monomers within the contact zone between virus and target membrane makes trimerization a bottleneck in hemifusion. We discuss the implications of the model we have derived for mechanisms of membrane fusion in other contexts. DOI: http://dx.doi.org/10.7554/eLife.04389.001 PMID:25479384

  18. Forecasting Chronic Diseases Using Data Fusion.

    PubMed

    Acar, Evrim; Gürdeniz, Gözde; Savorani, Francesco; Hansen, Louise; Olsen, Anja; Tjønneland, Anne; Dragsted, Lars Ove; Bro, Rasmus

    2017-07-07

    Data fusion, that is, extracting information through the fusion of complementary data sets, is a topic of great interest in metabolomics because analytical platforms such as liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy commonly used for chemical profiling of biofluids provide complementary information. In this study, with a goal of forecasting acute coronary syndrome (ACS), breast cancer, and colon cancer, we jointly analyzed LC-MS, NMR measurements of plasma samples, and the metadata corresponding to the lifestyle of participants. We used supervised data fusion based on multiple kernel learning and exploited the linearity of the models to identify significant metabolites/features for the separation of healthy referents and the cases developing a disease. We demonstrated that (i) fusing LC-MS, NMR, and metadata provided better separation of ACS cases and referents compared with individual data sets, (ii) NMR data performed the best in terms of forecasting breast cancer, while fusion degraded the performance, and (iii) neither the individual data sets nor their fusion performed well for colon cancer. Furthermore, we showed the strengths and limitations of the fusion models by discussing their performance in terms of capturing known biomarkers for smoking and coffee. While fusion may improve performance in terms of separating certain conditions by jointly analyzing metabolomics and metadata sets, it is not necessarily always the best approach as in the case of breast cancer.

  19. Endoscopic Accessory Navicular Synchondrosis Fusion.

    PubMed

    Lui, Tun Hing

    2016-12-01

    The accessory navicular bone is one of the most common accessory ossicles of the foot. Fewer than 1% of accessory navicular bones are symptomatic, and most of these are type II accessory navicular bones. A separation of the synchondrosis is considered one of the main causes of pain. After an injury to the synchondrosis has resulted in a chondro-osseous disruption, the combined forces of tension and shear from the posterior tibial tendon and the foot aggravate the injury and prevent it from healing. Fusion of the synchondrosis is a logical surgical treatment option if the pain is recalcitrant to conservative measures. The purpose of this technical note is to report an endoscopic approach to achieve fusion. It has the advantages of better cosmesis, less scar pain, less risk of nonunion, and potential to examine the tibialis posterior tendon and the talonavicular joint.

  20. Perspectives on Magnetized Target Fusion Power Plants

    NASA Astrophysics Data System (ADS)

    Miller, R. L.

    2007-06-01

    One approach to Magnetized Target Fusion (MTF) builds upon the ongoing experimental effort (FRX-L) to generate a Field Reversed Configuration (FRC) target plasma suitable for translation and cylindrical-liner (i.e., converging flux conserver) implosion. Numerical modeling is underway to elucidate key performance drivers for possible future power-plant extrapolations. The fusion gain, Q (ratio of DT fusion yield to the sum of initial liner kinetic energy plus plasma formation energy), sets the power-plant duty cycle for a nominal design electric power [ e.g. 1,000 MWe(net)]. A pulsed MTF power plant of this type derives from the historic Fast Liner Reactor (FLR) concept and shares attributes with the recent Inertial Fusion Energy (IFE) Z-pinch and laser-driven pellet HYLIFE-II conceptual designs.

  1. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    SciTech Connect

    Hashem, Anwar M.; Van Domselaar, Gary; Li, Changgui; Wang, Junzhi; She, Yi-Min; Cyr, Terry D.; Sui, Jianhua; He, Runtao; Marasco, Wayne A.; Li, Xuguang

    2010-12-10

    Research highlights: {yields} The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. {yields} Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. {yields} The universal antibodies cross-neutralize different influenza A subtypes. {yields} The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  2. Magneto-Inertial Fusion

    SciTech Connect

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; Grabowski, T. C.; Degnan, J. H.; Domonkos, M.; Turchi, P. J.; Campbell, E. M.; Sinars, D. B.; Herrmann, M. C.; Betti, R.; Bauer, B. S.; Lindemuth, I. R.; Siemon, R. E.; Miller, R. L.; Laberge, M.; Delage, M.

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  3. Cold fusion coatings

    SciTech Connect

    Wachtler, W.R.

    1993-12-31

    Historically, fusion of metals was accomplished through the use of heat. Cold fusion has become a reality with metal to metal fusion occurring at room temperature. The basics of this new technology which can be done in tank, brush or solid form is covered in this paper.

  4. Hot and cold fusion

    SciTech Connect

    Not Available

    1990-08-01

    This article presents an overview of research in cold fusion research and development in cold fusion at the Tokomak Fusion Test Reactor at the Princeton Plasma Physics Lab, and at the inertial containment facility at Lawrence Livermore National Lab. is described.

  5. Magneto-Inertial Fusion

    DOE PAGES

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; ...

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). Furthermore, the status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  6. Cluster-impact fusion

    SciTech Connect

    Echenique, P.M.; Manson, J.R.; Ritchie, R.H. )

    1990-03-19

    We present a model for the cluster-impact-fusion experiments of Buehler, Friedlander, and Friedman, Calculated fusion rates as a function of bombarding energy for constant cluster size agree well with experiment. The dependence of the fusion rate on cluster size at fixed bombarding energy is explained qualitatively. The role of correlated, coherent collisions in enhanced energy loss by clusters is emphasized.

  7. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  8. Inhibition of Sendai virus fusion with phospholipid vesicles and human erythrocyte membranes by hydrophobic peptides

    SciTech Connect

    Kelsey, D.R.; Flanagan, T.D.; Young, J.E.; Yeagle, P.L. )

    1991-06-01

    Hydrophobic di- and tripeptides which are capable of inhibiting enveloped virus infection of cells are also capable of inhibiting at least three different types of membrane fusion events. Large unilamellar vesicles (LUV) of N-methyl dioleoylphosphatidylethanolamine (N-methyl DOPE), containing encapsulated 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and/or p-xylene bis(pyridinium bromide) (DPX), were formed by extrusion. Vesicle fusion and leakage were then monitored with the ANTS/DPX fluorescence assay. Sendai virus fusion with lipid vesicles and Sendai virus fusion with human erythrocyte membranes were measured by following the relief of fluorescence quenching of virus labeled with octadecylrhodamine B chloride (R18). This study found that the effectiveness of the peptides carbobenzoxy-L-Phe-L-Phe (Z-L-Phe-L-Phe), Z-L-Phe, Z-D-Phe, and Z-Gly-L-Phe-L-Phe in inhibiting N-methyl DOPE LUV fusion or fusion of virus with N-methyl DOPE LUV also paralleled their reported ability to block viral infectivity. Furthermore, Z-D-Phe-L-PheGly and Z-Gly-L-Phe inhibited Sendai virus fusion with human erythrocyte membranes with the same relative potency with which they inhibited vesicle-vesicle and virus-vesicle fusion. The evidence suggests a mechanism by which these peptides exert their inhibition of plaque formation by enveloped viruses. This class of inhibitors apparently acts by inhibiting fusion of the viral envelope with the target cell membrane, thereby preventing viral infection. The physical pathway by which these peptides inhibit membrane fusion was investigated. {sup 31}P nuclear magnetic resonance (NMR) of proposed intermediates in the pathway for membrane fusion in LUV revealed that the potent fusion inhibitor Z-D-Phe-L-PheGly selectively altered the structure (or dynamics) of the hypothesized fusion intermediates and that the poor inhibitor Z-Gly-L-Phe did not.

  9. Viral diseases of the rabbit.

    PubMed

    Krogstad, Aric P; Simpson, Janet E; Korte, Scott W

    2005-01-01

    Viral disease in the rabbit is encountered infrequently by the clinical practitioner; however, several viral diseases were reported to occur in this species. Viral diseases that are described in the rabbit primarily may affect the integument, gastrointestinal tract or, central nervous system or maybe multi-systemic in nature. Rabbit viral diseases range from oral papillomatosis, with benign clinical signs, to rabbit hemorrhagic disease and myxomatosis, which may result in significant clinical disease and mortality. The wild rabbit may serve as a reservoir for disease transmission for many of these viral agents. In general, treatment of viral disease in the rabbit is supportive in nature.

  10. Residue-level resolution of alphavirus envelope protein interactions in pH-dependent fusion

    PubMed Central

    Zeng, Xiancheng; Mukhopadhyay, Suchetana; Brooks, Charles L.

    2015-01-01

    Alphavirus envelope proteins, organized as trimers of E2–E1 heterodimers on the surface of the pathogenic alphavirus, mediate the low pH-triggered fusion of viral and endosomal membranes in human cells. The lack of specific treatment for alphaviral infections motivates our exploration of potential antiviral approaches by inhibiting one or more fusion steps in the common endocytic viral entry pathway. In this work, we performed constant pH molecular dynamics based on an atomic model of the alphavirus envelope with icosahedral symmetry. We have identified pH-sensitive residues that cause the largest shifts in thermodynamic driving forces under neutral and acidic pH conditions for various fusion steps. A series of conserved interdomain His residues is identified to be responsible for the pH-dependent conformational changes in the fusion process, and ligand binding sites in their vicinity are anticipated to be potential drug targets aimed at inhibiting viral infections. PMID:25646410

  11. Residue-level resolution of alphavirus envelope protein interactions in pH-dependent fusion.

    PubMed

    Zeng, Xiancheng; Mukhopadhyay, Suchetana; Brooks, Charles L

    2015-02-17

    Alphavirus envelope proteins, organized as trimers of E2-E1 heterodimers on the surface of the pathogenic alphavirus, mediate the low pH-triggered fusion of viral and endosomal membranes in human cells. The lack of specific treatment for alphaviral infections motivates our exploration of potential antiviral approaches by inhibiting one or more fusion steps in the common endocytic viral entry pathway. In this work, we performed constant pH molecular dynamics based on an atomic model of the alphavirus envelope with icosahedral symmetry. We have identified pH-sensitive residues that cause the largest shifts in thermodynamic driving forces under neutral and acidic pH conditions for various fusion steps. A series of conserved interdomain His residues is identified to be responsible for the pH-dependent conformational changes in the fusion process, and ligand binding sites in their vicinity are anticipated to be potential drug targets aimed at inhibiting viral infections.

  12. A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515.

    PubMed

    Bradley, Jeffrey; Bae, Kyounghwa; Choi, Noah; Forster, Ken; Siegel, Barry A; Brunetti, Jacqueline; Purdy, James; Faria, Sergio; Vu, Toni; Thorstad, Wade; Choy, Hak

    2012-01-01

    Radiation Therapy Oncology Group (RTOG) 0515 is a Phase II prospective trial designed to quantify the impact of positron emission tomography (PET)/computed tomography (CT) compared with CT alone on radiation treatment plans (RTPs) and to determine the rate of elective nodal failure for PET/CT-derived volumes. Each enrolled patient underwent definitive radiation therapy for non-small-cell lung cancer (≥ 60 Gy) and had two RTP datasets generated: gross tumor volume (GTV) derived with CT alone and with PET/CT. Patients received treatment using the PET/CT-derived plan. The primary end point, the impact of PET/CT fusion on treatment plans was measured by differences of the following variables for each patient: GTV, number of involved nodes, nodal station, mean lung dose (MLD), volume of lung exceeding 20 Gy (V20), and mean esophageal dose (MED). Regional failure rate was a secondary end point. The nonparametric Wilcoxon matched-pairs signed-ranks test was used with Bonferroni adjustment for an overall significance level of 0.05. RTOG 0515 accrued 52 patients, 47 of whom are evaluable. The follow-up time for all patients is 12.9 months (2.7-22.2). Tumor staging was as follows: II = 6%; IIIA = 40%; and IIIB = 54%. The GTV was statistically significantly smaller for PET/CT-derived volumes (98.7 vs. 86.2 mL; p < 0.0001). MLDs for PET/CT plans were slightly lower (19 vs. 17.8 Gy; p = 0.06). There was no significant difference in the number of involved nodes (2.1 vs. 2.4), V20 (32% vs. 30.8%), or MED (28.7 vs. 27.1 Gy). Nodal contours were altered by PET/CT for 51% of patients. One patient (2%) has developed an elective nodal failure. PET/CT-derived tumor volumes were smaller than those derived by CT alone. PET/CT changed nodal GTV contours in 51% of patients. The elective nodal failure rate for GTVs derived by PET/CT is quite low, supporting the RTOG standard of limiting the target volume to the primary tumor and involved nodes. Copyright © 2012 Elsevier Inc. All rights

  13. A Phase II Comparative Study of Gross Tumor Volume Definition With or Without PET/CT Fusion in Dosimetric Planning for Non-Small-Cell Lung Cancer (NSCLC): Primary Analysis of Radiation Therapy Oncology Group (RTOG) 0515

    SciTech Connect

    Bradley, Jeffrey; Bae, Kyounghwa; Choi, Noah; Forster, Ken; Siegel, Barry A.; Brunetti, Jacqueline; Purdy, James; Faria, Sergio; Vu, Toni; Thorstad, Wade; Choy, Hak

    2012-01-01

    Background: Radiation Therapy Oncology Group (RTOG) 0515 is a Phase II prospective trial designed to quantify the impact of positron emission tomography (PET)/computed tomography (CT) compared with CT alone on radiation treatment plans (RTPs) and to determine the rate of elective nodal failure for PET/CT-derived volumes. Methods: Each enrolled patient underwent definitive radiation therapy for non-small-cell lung cancer ({>=}60 Gy) and had two RTP datasets generated: gross tumor volume (GTV) derived with CT alone and with PET/CT. Patients received treatment using the PET/CT-derived plan. The primary end point, the impact of PET/CT fusion on treatment plans was measured by differences of the following variables for each patient: GTV, number of involved nodes, nodal station, mean lung dose (MLD), volume of lung exceeding 20 Gy (V20), and mean esophageal dose (MED). Regional failure rate was a secondary end point. The nonparametric Wilcoxon matched-pairs signed-ranks test was used with Bonferroni adjustment for an overall significance level of 0.05. Results: RTOG 0515 accrued 52 patients, 47 of whom are evaluable. The follow-up time for all patients is 12.9 months (2.7-22.2). Tumor staging was as follows: II = 6%; IIIA = 40%; and IIIB = 54%. The GTV was statistically significantly smaller for PET/CT-derived volumes (98.7 vs. 86.2 mL; p < 0.0001). MLDs for PET/CT plans were slightly lower (19 vs. 17.8 Gy; p = 0.06). There was no significant difference in the number of involved nodes (2.1 vs. 2.4), V20 (32% vs. 30.8%), or MED (28.7 vs. 27.1 Gy). Nodal contours were altered by PET/CT for 51% of patients. One patient (2%) has developed an elective nodal failure. Conclusions: PET/CT-derived tumor volumes were smaller than those derived by CT alone. PET/CT changed nodal GTV contours in 51% of patients. The elective nodal failure rate for GTVs derived by PET/CT is quite low, supporting the RTOG standard of limiting the target volume to the primary tumor and involved nodes.

  14. HIV Fusion Peptide Penetrates, Disorders, and Softens T-Cell Membrane Mimics

    PubMed Central

    Tristram-Nagle, Stephanie; Chan, Rob; Kooijman, Edgar; Uppamoochikkal, Pradeep; Qiang, Wei; Weliky, David P.; Nagle, John F.

    2010-01-01

    This work investigates the interaction of N-terminal gp41 fusion peptide (FP) of human immunodeficiency virus type 1 (HIV-1) with model membranes in order to elucidate how FP leads to fusion of HIV and T-cell membranes. FP constructs were (i) wild-type FP23 (23 N-terminal amino acids of gp41), (ii) water-soluble monomeric FP that adds six lysines on the C-terminus of FP23 (FPwsm), and (iii) the C-terminus covalently linked trimeric version (FPtri) of FPwsm. Model membranes were (i) LM3 (a T-cell mimic), (ii) 1,2-dioleoyl-sn-glycero-3-phosphocholine, (iii) 1,2-dioleoyl-sn-glycero-3-phosphocholine/30 mol% cholesterol, (iv) 1,2-dierucoyl-sn-glycero-3-phosphocholine, and (v) 1,2-dierucoyl-sn-glycero-3-phosphocholine/30 mol% cholesterol. Diffuse synchrotron low-angle x-ray scattering from fully hydrated samples, supplemented by volumetric data, showed that FP23 and FPtri penetrate into the hydrocarbon region and cause membranes to thin. Depth of penetration appears to depend upon a complex combination of factors including bilayer thickness, presence of cholesterol, and electrostatics. X-ray data showed an increase in curvature in hexagonal phase 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, which further indicates that FP23 penetrates into the hydrocarbon region rather than residing in the interfacial headgroup region. Low-angle x-ray scattering data also yielded the bending modulus KC, a measure of membrane stiffness, and wide-angle x-ray scattering yielded the Sxray orientational order parameter. Both FP23 and FPtri decreased KC and Sxray considerably, while the weak effect of FPwsm suggests that it did not partition strongly into LM3 model membranes. Our results are consistent with the HIV FP disordering and softening the T-cell membrane, thereby lowering the activation energy for viral membrane fusion. PMID:20655315

  15. Marine Viral Pathogens.

    DTIC Science & Technology

    2007-11-02

    toxin producing microalgae (Raphidophyceae). Although we have not definitively shown that the pathogen is viral, it has many characteristics that...Society America, Miami, FL, June 1994. 40.Hennes, K.P. and C.A. Suttle. 1994. The use of cyanine dyes for quantifying free viruses in natural water

  16. Leafhopper viral pathogens

    USDA-ARS?s Scientific Manuscript database

    Four newly discovered viral pathogens in leafhopper vectors of Pierce’s disease of grapes, have been shown to replicate in sharpshooter leafhoppers; the glassy-winged sharpshooter, GWSS, Homalodisca vitripennis, and Oncometopia nigricans (Hemiptera: Cicadellidae). The viruses were classified as memb...

  17. BIOMARKERS OF VIRAL EXPOSURE

    EPA Science Inventory

    Viral and protozoan pathogens associated with raw sludge can cause encephalitis, gastroenteritis, hepatitis, myocarditis, and a number of other diseases. Raw sludge that has been treated to reduce these pathogens can be used for land application according to the regulations spec...

  18. BIOMARKERS OF VIRAL EXPOSURE

    EPA Science Inventory

    Viral and protozoan pathogens associated with raw sludge can cause encephalitis, gastroenteritis, hepatitis, myocarditis, and a number of other diseases. Raw sludge that has been treated to reduce these pathogens can be used for land application according to the regulations spec...

  19. Metatranscriptomic analysis of extremely halophilic viral communities

    PubMed Central

    Santos, Fernando; Moreno-Paz, Mercedes; Meseguer, Inmaculada; López, Cristina; Rosselló-Mora, Ramon; Parro, Víctor; Antón, Josefa

    2011-01-01

    Hypersaline environments harbour the highest number of viruses reported for aquatic environments. In crystallizer ponds from solar salterns, haloviruses coexist with extremely halophilic Archaea and Bacteria and present a high diversity although little is known about their activity. In this work, we analyzed the viral expression in one crystallizer using a metatranscriptomic approach in which clones from a metaviromic library were immobilized in a microarray and used as probes against total mRNA extracted from the hypersaline community. This approach has two advantages: (i) it overcomes the fact that there is no straightforward, unambiguous way to extract viral mRNA from bulk mRNAs and (ii) it makes the sequencing of all mRNAs unnecessary. Transcriptomic data indicated that the halovirus assemblage was highly active at the time of sampling and the viral groups with the highest expression levels were those related to high GC content haloarchaea and Salinibacter representatives, which are minor components in the environment. Moreover, the changes in the viral expression pattern and in the numbers of free viral particles were analyzed after submitting the samples to two stress conditions: ultraviolet-radiation and dilution. Results showed that Archaea were more sensitive than Bacteria to these stress conditions. The overexpression in the predicted archaeal virus fraction raised and the total numbers of free viruses increased. Furthermore, we identified some very closely related viral clones, displaying single-nucleotide polymorphisms, which were expressed only under certain conditions. These clones could be part of very closely related virus genomes for which we propose the term ‘ecoviriotypes'. PMID:21490689

  20. Mechanisms of coronavirus cell entry mediated by the viral spike protein.

    PubMed

    Belouzard, Sandrine; Millet, Jean K; Licitra, Beth N; Whittaker, Gary R

    2012-06-01

    Coronaviruses are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. To deliver their nucleocapsid into the host cell, they rely on the fusion of their envelope with the host cell membrane. The spike glycoprotein (S) mediates virus entry and is a primary determinant of cell tropism and pathogenesis. It is classified as a class I fusion protein, and is responsible for binding to the receptor on the host cell as well as mediating the fusion of host and viral membranes-A process driven by major conformational changes of the S protein. This review discusses coronavirus entry mechanisms focusing on the different triggers used by coronaviruses to initiate the conformational change of the S protein: receptor binding, low pH exposure and proteolytic activation. We also highlight commonalities between coronavirus S proteins and other class I viral fusion proteins, as well as distinctive features that confer distinct tropism, pathogenicity and host interspecies transmission characteristics to coronaviruses.

  1. Magnetized target fusion and fusion propulsion

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Ronald C.

    2002-01-01

    Magnetized target fusion (MTF) is a thermonuclear fusion concept that is intermediate between the two mainline approaches, magnetic confinement and inertial confinement fusion (MCF and ICF). MTF incorporates some aspects of each and offers advantages over each of the mainline approaches. First, it provides a means of reducing the driver power requirements, thereby admitting a wider range of drivers than ICF. Second, the magnetic field is only used for insulation, not confinement, and the plasma is wall confined, so that plasma instabilities are traded in for hydrodynamic instabilities. However, the degree of compression required to reach fusion condition is lower than for ICF, so that hydrodynamic instabilities are much less threatening. The standoff driver innovation proposes to dynamically form the target plasma and a gaseous shell that compresses and confines the target plasma. Therefore, fusion target fabrication is traded in for a multiplicity of plasma guns, which must work in synchrony. The standoff driver embodiment of MTF leads to a fusion propulsion system concept that is potentially compact and lightweight. We will discuss the underlying physics of MTF and some of the details of the fusion propulsion concept using the standoff driver approach. We discuss here the optimization of an MTF target design for space propulsion. .

  2. Retrovirus Epidemiology Donor Study-II (REDS-II)

    ClinicalTrials.gov

    2016-04-14

    Acquired Immunodeficiency Syndrome; Blood Donors; Blood Transfusion; HIV Infections; HIV-1; HIV-2; HTLV-I; HTLV-II; Retroviridae Infections; Hepatitis, Viral, Human; Hepatitis B; Hepacivirus; West Nile Virus

  3. Universal antibodies and their applications to the quantitative determination of virtually all subtypes of the influenza A viral hemagglutinins.

    PubMed

    Chun, Stella; Li, Changgui; Van Domselaar, Gary; Wang, Junzhi; Farnsworth, Aaron; Cui, Xiaoyu; Rode, Harold; Cyr, Terry D; He, Runtao; Li, Xuguang

    2008-11-11

    The fusion peptide is the only universally conserved sequence in the hemagglutinins of all 16 subtypes of influenza A and two genetic lineages of influenza B viruses. Here, peptides selected by bioinformatics approach were modified and conjugated to overcome serious technical hurdles such as the high hydrophobicity and weak immunogenicity of the viral fusion peptides. Antibodies generated against fusion peptides demonstrated remarkable specificity against the viral sequences and robustness of quantitatively analyzing the viral hemagglutinins even under stringent conditions. As quantitatively revealed by antibody-binding experiments, the fusion peptides of diverse hemagglutinins are exposed to the same degree upon unfolding at neutral pH to the physiologically fusogenic state. To our knowledge, this is the first report on the quantitative determination of virtually all influenza vaccines using a single universal antibody.

  4. Structural changes of envelope proteins during alphavirus fusion

    SciTech Connect

    Li, Long; Jose, Joyce; Xiang, Ye; Kuhn, Richard J.; Rossmann, Michael G.

    2010-12-08

    Alphaviruses are enveloped RNA viruses that have a diameter of about 700 {angstrom} and can be lethal human pathogens. Entry of virus into host cells by endocytosis is controlled by two envelope glycoproteins, E1 and E2. The E2-E1 heterodimers form 80 trimeric spikes on the icosahedral virus surface, 60 with quasi-three-fold symmetry and 20 coincident with the icosahedral three-fold axes arranged with T = 4 quasi-symmetry. The E1 glycoprotein has a hydrophobic fusion loop at one end and is responsible for membrane fusion. The E2 protein is responsible for receptor binding and protects the fusion loop at neutral pH. The lower pH in the endosome induces the virions to undergo an irreversible conformational change in which E2 and E1 dissociate and E1 forms homotrimers, triggering fusion of the viral membrane with the endosomal membrane and then releasing the viral genome into the cytoplasm. Here we report the structure of an alphavirus spike, crystallized at low pH, representing an intermediate in the fusion process and clarifying the maturation process. The trimer of E2-E1 in the crystal structure is similar to the spikes in the neutral pH virus except that the E2 middle region is disordered, exposing the fusion loop. The amino- and carboxy-terminal domains of E2 each form immunoglobulin-like folds, consistent with the receptor attachment properties of E2.

  5. Herpes viral culture of lesion

    MedlinePlus

    ... virus; Herpes simplex virus culture Images Viral lesion culture References Costello M, Sabatini LM, Yungbluth M. Viral infections. In: McPherson RA, Pincus MR, eds. Henry's Clinical Diagnosis and Management by Laboratory Methods . 22nd ed. Philadelphia, PA: Elsevier ...

  6. Cytoplasmic RNA Granules and Viral Infection

    PubMed Central

    Tsai, Wei-Chih; Lloyd, Richard E.

    2016-01-01

    RNA granules are dynamic cellular structures essential for proper gene expression and homeostasis. The two principle types of cytoplasmic RNA granules are stress granules (SGs), which contain stalled translation initiation complexes, and processing bodies (P-bodies, PBs), which concentrate factors involved in mRNA degradation. RNA granules are associated with gene silencing of transcripts, thus, viruses repress RNA granule functions to favor replication. This review discusses the breadth of viral interactions with cytoplasmic RNA granules, focusing on mechanisms that modulate the functions of RNA granules and that typically promote viral replication. Currently mechanisms for virus manipulation of RNA granules can be loosely grouped into three non-exclusive categories; i) cleavage of key RNA granule factors, ii) regulation of PKR activation and iii) co-opting RNA granule factors for new roles in viral replication. Viral repression of RNA granules supports productive infection by inhibiting their gene silencing functions and counteracting their role in linking stress sensing with innate immune activation. PMID:26958719

  7. Conserved leucine residue in the head region of morbillivirus fusion protein regulates the large conformational change during fusion activity.

    PubMed

    Plattet, Philippe; Langedijk, Johannes P M; Zipperle, Ljerka; Vandevelde, Marc; Orvell, Claes; Zurbriggen, Andreas

    2009-09-29

    Paramyxovirus cell entry is controlled by the concerted action of two viral envelope glycoproteins, the fusion (F) and the receptor-binding (H) proteins, which together with a cell surface receptor mediate plasma membrane fusion activity. The paramyxovirus F protein belongs to class I viral fusion proteins which typically contain two heptad repeat regions (HR). Particular to paramyxovirus F proteins is a long intervening sequence (IS) located between both HR domains. To investigate the role of the IS domain in regulating fusogenicity, we mutated in the canine distemper virus (CDV) F protein IS domain a highly conserved leucine residue (L372) previously reported to cause a hyperfusogenic phenotype. Beside one F mutant, which elicited significant defects in processing, transport competence, and fusogenicity, all remaining mutants were characterized by enhanced fusion activity despite normal or slightly impaired processing and cell surface targeting. Using anti-CDV-F monoclonal antibodies, modified conformational F states were detected in F mutants compared to the parental protein. Despite these structural differences, coimmunoprecipitation assays did not reveal any drastic modulation in F/H avidity of interaction. However, we found that F mutants had significantly enhanced fusogenicity at low temperature only, suggesting that they folded into conformations requiring less energy to activate fusion. Together, these data provide strong biochemical and functional evidence that the conserved leucine 372 at the base of the HRA coiled-coil of F(wt) controls the stabilization of the prefusogenic state, restraining the conformational switch and thereby preventing extensive cell-cell fusion activity.

  8. Fusion between a content labelled liposome and an enveloped virus particle

    NASA Astrophysics Data System (ADS)

    Wessels, Laura; Weninger, Keith

    2008-10-01

    Membrane fusion is critical during enveloped virus entry into cells for release of the viral genome to the cell. We have developed a fluorescence assay to observe individual virus particles fusing with immobilized liposomes. Dye encapsulated inside a liposome will be released into the virus particle's interior through a fusion pore that is created between the liposome's bilayer and the viral envelope. We used Total Internal Reflection Microscopy (TIRFM) to observe fusion between a liposome with calcein in the intravescular buffer and an influenza particle. A sudden buffer exchange to acidic pH is used to trigger the fusion event. TIRFM allows a time resolution of ˜100ms. We plan to use confocal microscopy to improve the time resolution of our measurements of the opening of the fusion pore.

  9. Internalization and fusion mechanism of vesicular stomatitis virus and related rhabdoviruses

    PubMed Central

    Sun, Xiangjie; Roth, Shoshannah L; Bialecki, Michele A; Whittaker, Gary R

    2013-01-01

    Members of the Rhabdoviridae infect a wide variety of animals and plants, and are the causative agents of many important diseases. Rhabdoviruses enter host cells following internalization into endosomes, with the glycoprotein (G protein) mediating both receptor binding to host cells and fusion with the cellular membrane. The recently solved crystal structure of vesicular stomatitis virus G has allowed considerable insight into the mechanism of rhabdovirus entry, in particular the low pH-dependent conformational changes that lead to fusion activation. Rhabdovirus entry shows several distinct features compared with other enveloped viruses; first, the entry process appears to consist of two distinct fusion events, initial fusion into vesicles within endosomes followed by back-fusion into the cytosol; second, the conformational changes in the G protein that lead to fusion activation are reversible; and third, the G protein is structurally distinct from other viral fusion proteins and is not proteolytically cleaved. The internalization and fusion mechanisms of rhabdoviruses are discussed in this article, with a focus on viral systems where the G protein has been studied extensively: vesicular stomatitis virus and rabies virus, as well as viral hemorrhagic septicemia virus. PMID:23516023

  10. Viral Vector Production: Adenovirus.

    PubMed

    Kim, Julius W; Morshed, Ramin A; Kane, J Robert; Auffinger, Brenda; Qiao, Jian; Lesniak, Maciej S

    2016-01-01

    Adenoviral vectors have proven to be valuable resources in the development of novel therapies aimed at targeting pathological conditions of the central nervous system, including Alzheimer's disease and neoplastic brain lesions. Not only can some genetically engineered adenoviral vectors achieve remarkably efficient and specific gene delivery to target cells, but they also may act as anticancer agents by selectively replicating within cancer cells.Due to the great interest in using adenoviral vectors for various purposes, the need for a comprehensive protocol for viral vector production is especially apparent. Here, we describe the process of generating an adenoviral vector in its entirety, including the more complex process of adenoviral fiber modification to restrict viral tropism in order to achieve more efficient and specific gene delivery.

  11. Viral Membrane Scission

    PubMed Central

    Rossman, Jeremy S.; Lamb, Robert A.

    2014-01-01

    Virus budding is a complex, multistep process in which viral proteins make specific alterations in membrane curvature. Many different viral proteins can deform the membrane and form a budding virion, but very few can mediate membrane scission to complete the budding process. As a result, enveloped viruses have developed numerous ways of facilitating membrane scission, including hijacking host cellular scission machinery and expressing their own scission proteins. These proteins mediate scission in very different ways, though the biophysical mechanics underlying their actions may be similar. In this review, we explore the mechanisms of membrane scission and the ways in which enveloped viruses use these systems to mediate the release of budding virions. PMID:24099087

  12. Enhanced chemical weapon warning via sensor fusion

    NASA Astrophysics Data System (ADS)

    Flaherty, Michael; Pritchett, Daniel; Cothren, Brian; Schwaiger, James

    2011-05-01

    Torch Technologies Inc., is actively involved in chemical sensor networking and data fusion via multi-year efforts with Dugway Proving Ground (DPG) and the Defense Threat Reduction Agency (DTRA). The objective of these efforts is to develop innovative concepts and advanced algorithms that enhance our national Chemical Warfare (CW) test and warning capabilities via the fusion of traditional and non-traditional CW sensor data. Under Phase I, II, and III Small Business Innovative Research (SBIR) contracts with DPG, Torch developed the Advanced Chemical Release Evaluation System (ACRES) software to support non real-time CW sensor data fusion. Under Phase I and II SBIRs with DTRA in conjunction with the Edgewood Chemical Biological Center (ECBC), Torch is using the DPG ACRES CW sensor data fuser as a framework from which to develop the Cloud state Estimation in a Networked Sensor Environment (CENSE) data fusion system. Torch is currently developing CENSE to implement and test innovative real-time sensor network based data fusion concepts using CW and non-CW ancillary sensor data to improve CW warning and detection in tactical scenarios.

  13. Materials research for fusion

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to <2 MeV on average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  14. Fission-reactor experiments for fusion-materials research

    SciTech Connect

    Grossbeck, M.L.; Bloom, E.E.; Woods, J.W.; Vitek, J.M.; Thomas, K.R.

    1982-01-01

    The US Fusion Materials Program makes extensive use of fission reactors to study the effects of simulated fusion environments on materials and to develop improved alloys for fusion reactor service. The fast reactor, EBR-II, and the mixed spectrum reactors, HFIR and ORR, are all used in the fusion program. The HFIR and ORR produce helium from transmutations of nickel in a two-step thermal neutron absorption reaction beginning with /sup 58/Ni, and the fast neutrons in these reactors produce atomic displacements. The simultaneous effects of these phenomena produce damage similar to the very high energy neutrons of a fusion reactor. This paper describes irradiation capsules for mechanical property specimens used in the HFIR and the ORR. A neutron spectral tailoring experiment to achieve the fusion reactor He:dpa ratio will be discussed.

  15. Beyond Viral Neutralization.

    PubMed

    Lewis, George K; Pazgier, Marzena; Evans, David; Ferrari, Guido; Bournazos, Stylianos; Parsons, Matthew S; Bernard, Nicole F; Finzi, Andrés

    2017-01-13

    It has been known for more than 30 years that Human Immunodeficiency Virus 1 (HIV-1) infection drives a very potent B cell response resulting in the production of anti-HIV-1 antibodies targeting several viral proteins, particularly its envelope glycoproteins (Env). Env epitopes are exposed on the surfaces of viral particles and infected cells where they are targets of potentially protective antibodies. These antibodies can interdict infection by neutralization and there is strong evidence suggesting that Fc-mediated effector function can also contribute to protection. Current evidence suggests that Fc-mediated effector function plays a role in protection against infection by broadly neutralizing antibodies (bnAbs) and it might be important for protection by non-neutralizing antibodies. Fc-mediated effector function includes diverse mechanisms that include antibody-dependent cellular cytotoxicity (ADCC), antibody-mediated complement activation (ADC), antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cell-mediated virus inhibition (ADCVI), antibody-mediated trancytosis inhibition, and antibody-mediated virus opsonization. All these functions could be beneficial in fighting viral infections including HIV-1. In this perspective, we discuss the latest developments for ADCC responses discussed at the HIVR4P satellite session on non-neutralizing antibodies, with emphasis on the mechanisms of ADCC resistance employed by HIV-1, the structural basis of epitopes recognized by antibodies that mediate ADCC, NK-cell education and ADCC, and murine models to study ADCC against HIV-1.

  16. Analysis of the Subunit Stoichiometries in Viral Entry

    PubMed Central

    Magnus, Carsten; Regoes, Roland R.

    2012-01-01

    Virions of the Human Immunodeficiency Virus (HIV) infect cells by first attaching with their surface spikes to the CD4 receptor on target cells. This leads to conformational changes in the viral spikes, enabling the virus to engage a coreceptor, commonly CCR5 or CXCR4, and consecutively to insert the fusion peptide into the cellular membrane. Finally, the viral and the cellular membranes fuse. The HIV spike is a trimer consisting of three identical heterodimers composed of the gp120 and gp41 envelope proteins. Each of the gp120 proteins in the trimer is capable of attaching to the CD4 receptor and the coreceptor, and each of the three gp41 units harbors a fusion domain. It is still under debate how many of the envelope subunits within a given trimer have to bind to the CD4 receptors and to the coreceptors, and how many gp41 protein fusion domains are required for fusion. These numbers are referred to as subunit stoichiometries. We present a mathematical framework for estimating these parameters individually by analyzing infectivity assays with pseudotyped viruses. We find that the number of spikes that are engaged in mediating cell entry and the distribution of the spike number play important roles for the estimation of the subunit stoichiometries. Our model framework also shows why it is important to subdivide the question of the number of functional subunits within one trimer into the three different subunit stoichiometries. In a second step, we extend our models to study whether the subunits within one trimer cooperate during receptor binding and fusion. As an example for how our models can be applied, we reanalyze a data set on subunit stoichiometries. We find that two envelope proteins have to engage with CD4-receptors and coreceptors and that two fusion proteins must be revealed within one trimer for viral entry. Our study is motivated by the mechanism of HIV entry but the experimental technique and the model framework can be extended to other viral systems

  17. Fusogenic activity of reconstituted newcastle disease virus envelopes: a role for the hemagglutinin-neuraminidase protein in the fusion process.

    PubMed

    Cobaleda, C; Muñoz-Barroso, I; Sagrera, A; Villar, E

    2002-04-01

    Enveloped viruses, such as newcastle disease virus (NDV), make their entry into the host cell by membrane fusion. In the case of NDV, the fusion step requires both transmembrane hemagglutinin-neuraminidase (HN) and fusion (F) viral envelope glycoproteins. The HN protein should show fusion promotion activity. To date, the nature of HN-F interactions is a controversial issue. In this work, we aim to clarify the role of the HN glycoprotein in the membrane fusion step. Four types of reconstituted detergent-free NDV envelopes were used, on differing in their envelope protein contents. Fusion of the different virosomes and erythrocyte ghosts was monitored using the octadecyl rhodamine B chloride assay. Only the reconstituted envelopes having the F protein, even in the absence of HN protein, displayed residual fusion activity. Treatment of such virosomes with denaturing agents affecting the F protein abolished fusion, indicating that the fusion detected was viral protein-dependent. Interestingly, the rate of fusion in the reconstituted systems was similar to that of intact viruses in the presence of the inhibitor of HN sialidase activity 2,3-dehydro-2-deoxy-N-acetylneuraminic acid. The results show that the residual fusion activity detected in the reconstituted systems was exclusively due to F protein activity, with no contribution from the fusion promotion activity of HN protein.

  18. Engineering of a parainfluenza virus type 5 fusion protein (PIV-5 F): development of an autonomous and hyperfusogenic protein by a combinational mutagenesis approach.

    PubMed

    Terrier, O; Durupt, F; Cartet, G; Thomas, L; Lina, B; Rosa-Calatrava, M

    2009-12-01

    The entry of enveloped viruses into host cells is accomplished by fusion of the viral envelope with the target cell membrane. For the paramyxovirus parainfluenza virus type 5 (PIV-5), this fusion involves an attachment protein (HN) and a class I viral fusion protein (F). We investigated the effect of 20 different combinations of 12 amino-acid substitutions within functional domains of the PIV-5 F glycoprotein, by performing cell surface expression measurements, quantitative fusion and syncytia assays. We found that combinations of mutations conferring an autonomous phenotype with mutations leading to an increased fusion activity were compatible and generated functional PIV-5 F proteins. The addition of mutations in the heptad-repeat domains led to both autonomous and hyperfusogenic phenotypes, despite the low cell surface expression of the corresponding mutants. Such engineering approach may prove useful not only for deciphering the fundamental mechanism behind viral-mediated membrane fusion but also in the development of potential therapeutic applications.

  19. Molecular mechanism of respiratory syncytial virus fusion inhibitors

    SciTech Connect

    Battles, Michael B.; Langedijk, Johannes P.; Furmanova-Hollenstein, Polina; Chaiwatpongsakorn, Supranee; Costello, Heather M.; Kwanten, Leen; Vranckx, Luc; Vink, Paul; Jaensch, Steffen; Jonckers, Tim H. M.; Koul, Anil; Arnoult, Eric; Peeples, Mark E.; Roymans, Dirk; McLellan, Jason S.

    2015-12-07

    Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. In this paper, we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitors or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Finally and collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors.

  20. Molecular mechanism of respiratory syncytial virus fusion inhibitors

    PubMed Central

    Battles, Michael B; Langedijk, Johannes P; Furmanova-Hollenstein, Polina; Chaiwatpongsakorn, Supranee; Costello, Heather M; Kwanten, Leen; Vranckx, Luc; Vink, Paul; Jaensch, Steffen; Jonckers, Tim H M; Koul, Anil; Arnoult, Eric; Peeples, Mark E; Roymans, Dirk; McLellan, Jason S

    2016-01-01

    Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. Here we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitors or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors. PMID:26641933

  1. Optimizing Viral Discovery in Bats

    PubMed Central

    Young, Cristin C. W.; Olival, Kevin J.

    2016-01-01

    Viral discovery studies in bats have increased dramatically over the past decade, yet a rigorous synthesis of the published data is lacking. We extract and analyze data from 93 studies published between 2007–2013 to examine factors that increase success of viral discovery in bats, and specific trends and patterns of infection across host taxa and viral families. Over the study period, 248 novel viruses from 24 viral families have been described. Using generalized linear models, at a study level we show the number of host species and viral families tested best explained number of viruses detected. We demonstrate that prevalence varies significantly across viral family, specimen type, and host taxonomy, and calculate mean PCR prevalence by viral family and specimen type across all studies. Using a logistic model, we additionally identify factors most likely to increase viral detection at an individual level for the entire dataset and by viral families with sufficient sample sizes. Our analysis highlights major taxonomic gaps in recent bat viral discovery efforts and identifies ways to improve future viral pathogen detection through the design of more efficient and targeted sample collection and screening approaches. PMID:26867024

  2. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  3. Liposome reconstitution of a minimal protein-mediated membrane fusion machine

    PubMed Central

    Top, Deniz; de Antueno, Roberto; Salsman, Jayme; Corcoran, Jennifer; Mader, Jamie; Hoskin, David; Touhami, Ahmed; Jericho, Manfred H; Duncan, Roy

    2005-01-01

    Biological membrane fusion is dependent on protein catalysts to mediate localized restructuring of lipid bilayers. A central theme in current models of protein-mediated membrane fusion involves the sequential refolding of complex homomeric or heteromeric protein fusion machines. The structural features of a new family of fusion-associated small transmembrane (FAST) proteins appear incompatible with existing models of membrane fusion protein function. While the FAST proteins function to induce efficient cell–cell fusion when expressed in transfected cells, it was unclear whether they function on their own to mediate membrane fusion or are dependent on cellular protein cofactors. Using proteoliposomes containing the purified p14 FAST protein of reptilian reovirus, we now show via liposome–cell and liposome–liposome fusion assays that p14 is both necessary and sufficient for membrane fusion. Stoichiometric and kinetic analyses suggest that the relative efficiency of p14-mediated membrane fusion rivals that of the more complex cellular and viral fusion proteins, making the FAST proteins the simplest known membrane fusion machines. PMID:16079913

  4. Cholesterol Mediates Membrane Curvature during Fusion Events

    NASA Astrophysics Data System (ADS)

    Ivankin, Andrey; Kuzmenko, Ivan; Gidalevitz, David

    2012-06-01

    Biomembranes undergo extensive shape changes as they perform vital cellular functions. The mechanisms by which lipids and proteins control membrane curvature remain unclear. We use x-ray reflectivity, grazing incidence x-ray diffraction, and epifluorescence microscopy to study binding of HIV-1 glycoprotein gp41’s membrane-bending domain to DPPC/cholesterol monolayers of various compositions at the air-liquid interface. The results offer a new insight into how membrane curvature could be regulated by cholesterol during fusion of the viral lipid envelope and the host cell membranes.

  5. The current status and challenges in the development of fusion inhibitors as therapeutics for HIV-1 infection.

    PubMed

    Tan, Jian Jun; Ma, Xue Ting; Liu, Chang; Zhang, Xiao Yi; Wang, Cun Xin

    2013-01-01

    HIV-1 membrane fusion as a part of the process of viral entry in the target cells is facilitated by gp41 and gp120, which are encoded by Env gene of HIV-1. Based on the structure and the mechanism researches, new treatment options targeting HIV-1 entry process have been proposed. Enfuvirtide, which mimics amino acid sequences of viral envelope glycoprotein gp41, is the first HIV-1 fusion inhibitor approved by FDA. Although it fulfills vital functions by binding to gp41 and abolishing the membrane fusion reaction when used in combination, it could induce drug resistant virus variants. Currently, a number of design and modification schemes have been presented, a large number of prospective fusion peptides have emerged. For these fusion inhibitors, multiple mutations in gp41 have been associated with the loss of susceptibility to agents. This review reported the current developments and innovative designs of HIV-1 membrane fusion inhibitors.

  6. Fusion: The controversy continues

    SciTech Connect

    1989-07-01

    Nuclear fusion-the power of the stars that promises mankind an inexhaustible supply of energy-seems concurrently much closer and still distant this month. The recent flurry of announcements concerning the achievement of a cold fusion reaction has-if nothing else-underscored the historic importance of the basic fusion reaction which uses hydrogen ions to fuel an energy-producing reaction.

  7. Still wishful on fusion

    NASA Astrophysics Data System (ADS)

    Evans, John

    2009-08-01

    In Cris W Barnes' review of Charles Seife's book Sun in a Bottle: The Strange History of Fusion and the Art of Wishful Thinking (May pp42-43), Barnes, as a member of the fusion community, admits to "wishful thinking" on the basis that "a strong and exciting vision always helps focus and drive effort". This may be true, but wishful thinking has also distorted and ignored several aspects of the fusion dream.

  8. Fusion activity of HIV gp41 fusion domain is related to its secondary structure and depth of membrane insertion in a cholesterol-dependent fashion.

    PubMed

    Lai, Alex L; Moorthy, Anna Eswara; Li, Yinling; Tamm, Lukas K

    2012-04-20

    The human immunodeficiency virus (HIV) gp41 fusion domain plays a critical role in membrane fusion during viral entry. A thorough understanding of the relationship between the structure and the activity of the fusion domain in different lipid environments helps to formulate mechanistic models on how it might function in mediating membrane fusion. The secondary structure of the fusion domain in small liposomes composed of different lipid mixtures was investigated by circular dichroism spectroscopy.  The fusion domain formed an α-helix in membranes containing less than 30 mol% cholesterol and  formed β-sheet secondary structure in membranes containing ≥30 mol% cholesterol. EPR spectra of spin-labeled fusion domains also indicated different conformations in membranes with and without cholesterol. Power saturation EPR data were further used to determine the orientation and depth of α-helical fusion domains in lipid bilayers. Fusion and membrane perturbation activities of the gp41 fusion domain were measured by lipid mixing and contents leakage. The fusion domain fused membranes in both its helical form and its β-sheet form. High cholesterol, which induced β-sheets, promoted fusion; however, acidic lipids, which promoted relatively deep membrane insertion as an α-helix, also induced fusion. The results indicate that the structure of the HIV gp41 fusion domain is plastic and depends critically on the lipid environment. Provided that their membrane insertion is deep, α-helical and β-sheet conformations contribute to membrane fusion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Magnetic-confinement fusion

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  10. Advanced fusion diagnostics

    NASA Astrophysics Data System (ADS)

    Moses, K. G.

    1993-07-01

    Key among various issues of ignited plasmas is understanding the physics of energy transfer between thermal plasma particles and magnetically confined, highly energetic charged ions in a tokamak device. The superthermal particles are products of fusion reactions. The efficiency of energy transfer by collisions, from charged fusion products (e.g., (alpha)-particles) to plasma ions, grossly determines whether or not plasma conditions are self-sustaining without recourse to auxiliary heating. Furthermore, should energy transfer efficiency be poor, and substantial auxiliary heating power is required to maintain reacting conditions within the plasma, economics may preclude commercial viability of fusion reactors. The required charged fusion product information is contained in the energy distribution function of these particles. Knowledge of temporal variations of the superthermal particle energy distribution function could be used by a fusion reactor control system to balance plasma conditions between thermal runaway and a modicum of fusion product energy transfer. Therefore, diagnostics providing data on the dynamical transfer of alpha-particle and other charged fusion product energy to the plasma ions are essential elements for a fusion reactor control system to insure that proper plasma conditions are maintained. The objective of this work is to assess if spectral analysis of RF radiation emitted by charged fusion products confined in a magnetized plasma, called ion cyclotron emission (ICE), can reveal the vital data of the distribution function of the superthermal particles.

  11. Magnetic fusion reactor economics

    SciTech Connect

    Krakowski, R.A.

    1995-12-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

  12. Test design description for the Fusion Materials Open Test Assembly (Fusion MOTA-2A): Volume 1A, Part 1

    SciTech Connect

    Bauer, R.E.

    1988-11-01

    This document encompasses the test requirements, hardware design, fabrication, and safety analysis for the Fusion Materials Open Test Assembly experiment for irradiation in FFTF Cycle 11 (Fusion MOTA-2A). Fusion MOTA is equally shared by the US Fusion Material (DOE), Japanese Fusion Materials (MONBUSHO), and BEATRIX-II (IEA) programs. In the interest of providing optimum use of the irradiation space in the Fusion MOTA-2A and LMR MOTA-1G, eight of the Fusion MOTA canisters will be placed in MOTA-1G and an equal number of LMR canisters placed in Fusion MOTA-2A (Powell/Doran 1988). This eliminates the need to process Fusion MOTA-2A through the IEM cell prior to insertion for FFTF Cycle 11A. The LMR MOTA design and safety analysis (Greenslade 1984) is the basis for much of this design and safety analysis report. This design description and safety analysis for the Fusion MOTA-2A is presented per the outline given in Chapter IV of the FTR User`s Guide (Taylor 1978). 35 refs., 17 figs., 9 tabs.

  13. Structural and Nonstructural Viral Proteins Are Targets of T-Helper Immune Response against Human Respiratory Syncytial Virus.

    PubMed

    Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Mir, Carmen; Gebe, John A; Admon, Arie; López, Daniel

    2016-06-01

    Proper antiviral humoral and cellular immune responses require previous recognition of viral antigenic peptides that are bound to HLA class II molecules, which are exposed on the surface of antigen-presenting cells. The helper immune response is critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, a virus with severe health risk in infected pediatric, immunocompromised, and elderly populations. In this study, using a mass spectrometry analysis of complex HLA class II-bound peptide pools that were isolated from large amounts of HRSV-infected cells, 19 naturally processed HLA-DR ligands, most of them included in a complex nested set of peptides, were identified. Both the immunoprevalence and the immunodominance of the HLA class II response to HRSV were focused on one nonstructural (NS1) and two structural (matrix and mainly fusion) proteins of the infective virus. These findings have clear implications for analysis of the helper immune response as well as for antiviral vaccine design.

  14. Structural and Nonstructural Viral Proteins Are Targets of T-Helper Immune Response against Human Respiratory Syncytial Virus*

    PubMed Central

    Barriga, Alejandro; Barnea, Eilon; Mir, Carmen; Gebe, John A.; Admon, Arie

    2016-01-01

    Proper antiviral humoral and cellular immune responses require previous recognition of viral antigenic peptides that are bound to HLA class II molecules, which are exposed on the surface of antigen-presenting cells. The helper immune response is critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, a virus with severe health risk in infected pediatric, immunocompromised, and elderly populations. In this study, using a mass spectrometry analysis of complex HLA class II-bound peptide pools that were isolated from large amounts of HRSV-infected cells, 19 naturally processed HLA-DR ligands, most of them included in a complex nested set of peptides, were identified. Both the immunoprevalence and the immunodominance of the HLA class II response to HRSV were focused on one nonstructural (NS1) and two structural (matrix and mainly fusion) proteins of the infective virus. These findings have clear implications for analysis of the helper immune response as well as for antiviral vaccine design. PMID:27090790

  15. Trimeric Transmembrane Domain Interactions in Paramyxovirus Fusion Proteins

    PubMed Central

    Smith, Everett Clinton; Smith, Stacy E.; Carter, James R.; Webb, Stacy R.; Gibson, Kathleen M.; Hellman, Lance M.; Fried, Michael G.; Dutch, Rebecca Ellis

    2013-01-01

    Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion. PMID:24178297

  16. Viral surveillance and discovery.

    PubMed

    Lipkin, Walter Ian; Firth, Cadhla

    2013-04-01

    The field of virus discovery has burgeoned with the advent of high throughput sequencing platforms and bioinformatics programs that enable rapid identification and molecular characterization of known and novel agents, investments in global microbial surveillance that include wildlife and domestic animals as well as humans, and recognition that viruses may be implicated in chronic as well as acute diseases. Here we review methods for viral surveillance and discovery, strategies and pitfalls in linking discoveries to disease, and identify opportunities for improvements in sequencing instrumentation and analysis, the use of social media and medical informatics that will further advance clinical medicine and public health. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Diagnosis of viral hepatitis.

    PubMed

    Easterbrook, Philippa J; Roberts, Teri; Sands, Anita; Peeling, Rosanna

    2017-05-01

    Chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections and HIV-HBV and HCV coinfection are major causes of chronic liver disease worldwide. Testing and diagnosis is the gateway for access to both treatment and prevention services, but there remains a large burden of undiagnosed infection globally. We review the global epidemiology, key challenges in the current hepatitis testing response, new tools to support the hepatitis global response (2016-2020 Global Hepatitis Health Sector strategy, and 2017 WHO guidelines on hepatitis testing) and future directions and innovations in hepatitis diagnostics. Key challenges in the current hepatitis testing response include lack of quality-assured serological and low-cost virological in-vitro diagnostics, limited facilities for testing, inadequate data to guide country-specific hepatitis testing approaches, stigmatization of those with or at risk of viral hepatitis and lack of guidelines on hepatitis testing for resource-limited settings. The new Global Hepatitis Health Sector strategy sets out goals for elimination of viral hepatitis as a public health threat by 2030 and gives outcome targets for reductions in new infections and mortality, as well as service delivery targets that include testing, diagnosis and treatment. The 2017 WHO hepatitis testing guidelines for adults, adolescents and children in low-income and middle-income countries outline the public health approach to strengthen and expand current testing practices for viral hepatitis and addresses who to test (testing approaches), which serological and virological assays to use (testing strategies) as well as interventions to promote linkage to prevention and care. Future directions and innovations in hepatitis testing include strategies to improve access such as through use of existing facility and community-based testing opportunities for hepatitis testing, near-patient or point-of-care assays for virological markers (nucleic acid testing and HCV

  18. Understanding Image Virality

    DTIC Science & Technology

    2015-06-08

    of images that is most similar to ours is the concurrently introduced viral meme generator of Wang et al., that combines NLP and Computer Vision (low...from what we might expect at a first glance. An analogous scenario researched in NLP is understanding the semantics of “That’s what she said!” jokes...and will require NLP and Computer Vision for understanding. 4.1. Intrinsic context We first examine whether humans and machines can pre- dict just by

  19. Diagnosis of viral hepatitis

    PubMed Central

    Easterbrook, Philippa J.; Roberts, Teri; Sands, Anita; Peeling, Rosanna

    2017-01-01

    Purpose of review Chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections and HIV–HBV and HCV coinfection are major causes of chronic liver disease worldwide. Testing and diagnosis is the gateway for access to both treatment and prevention services, but there remains a large burden of undiagnosed infection globally. We review the global epidemiology, key challenges in the current hepatitis testing response, new tools to support the hepatitis global response (2016–2020 Global Hepatitis Health Sector strategy, and 2017 WHO guidelines on hepatitis testing) and future directions and innovations in hepatitis diagnostics. Recent findings Key challenges in the current hepatitis testing response include lack of quality-assured serological and low-cost virological in-vitro diagnostics, limited facilities for testing, inadequate data to guide country-specific hepatitis testing approaches, stigmatization of those with or at risk of viral hepatitis and lack of guidelines on hepatitis testing for resource-limited settings. The new Global Hepatitis Health Sector strategy sets out goals for elimination of viral hepatitis as a public health threat by 2030 and gives outcome targets for reductions in new infections and mortality, as well as service delivery targets that include testing, diagnosis and treatment. The 2017 WHO hepatitis testing guidelines for adults, adolescents and children in low-income and middle-income countries outline the public health approach to strengthen and expand current testing practices for viral hepatitis and addresses who to test (testing approaches), which serological and virological assays to use (testing strategies) as well as interventions to promote linkage to prevention and care. Summary Future directions and innovations in hepatitis testing include strategies to improve access such as through use of existing facility and community-based testing opportunities for hepatitis testing, near-patient or point-of-care assays for

  20. Cell fusion and nuclear fusion in plants.

    PubMed

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The Multifaceted Role of SNARE Proteins in Membrane Fusion

    PubMed Central

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A.

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined. PMID:28163686

  2. The Multifaceted Role of SNARE Proteins in Membrane Fusion.

    PubMed

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.

  3. Magnetic fusion energy plasma interactive and high heat flux components. Volume II. Technical assessment of the critical issues and problem areas in high heat flux materials and component development

    SciTech Connect

    Abdou, M.A.; Boyd, R.D.; Easor, J.R.; Gauster, W.B.; Gordon, J.D.; Mattas, R.F.; Morgan, G.D.; Ulrickson, M.A,; Watson, R.D.; Wolfer, W.G,

    1984-06-01

    A technical assessment of the critical issues and problem areas for high heat flux materials and components (HHFMC) in magnetic fusion devices shows these problems to be of critical importance for the successful operation of near-term fusion experiments and for the feasibility and attractiveness of long-term fusion reactors. A number of subgroups were formed to assess the critical HHFMC issues along the following major lines: (1) source conditions, (2) systems integration, (3) materials and processes, (4) thermal hydraulics, (5) thermomechanical response, (6) electromagnetic response, (7) instrumentation and control, and (8) test facilities. The details of the technical assessment are presented in eight chapters. The primary technical issues and needs for each area are highlighted.

  4. The role of the membrane-spanning domain sequence in glycoprotein-mediated membrane fusion.

    PubMed

    Taylor, G M; Sanders, D A

    1999-09-01

    The role of glycoprotein membrane-spanning domains in the process of membrane fusion is poorly understood. It has been demonstrated that replacing all or part of the membrane-spanning domain of a viral fusion protein with sequences that encode signals for glycosylphosphatidylinositol linkage attachment abrogates membrane fusion activity. It has been suggested, however, that the actual amino acid sequence of the membrane-spanning domain is not critical for the activity of viral fusion proteins. We have examined the function of Moloney murine leukemia virus envelope proteins with substitutions in the membrane-spanning domain. Envelope proteins bearing substitutions for proline 617 are processed and incorporated into virus particles normally and bind to the viral receptor. However, they possess greatly reduced or undetectable capacities for the promotion of membrane fusion and infectious virus particle formation. Our results imply a direct role for the residues in the membrane-spanning domain of the murine leukemia virus envelope protein in membrane fusion and its regulation. They also support the thesis that membrane-spanning domains possess a sequence-dependent function in other protein-mediated membrane fusion events.

  5. The compound DATEM inhibits respiratory syncytial virus fusion activity with epithelial cells.

    PubMed

    Ohki, Shinpei; Liu, Jin-Zhou; Schaller, Joseph; Welliver, Robert C

    2003-04-01

    The effect of diacetyltartaric acid esters of mono and diglycerides (DATEM) on fusion of respiratory syncytial virus (RSV) with HEp-2 cells was studied using the R18 fluorescence dequenching fusion assay. At DATEM concentrations less than 2.0 microg/ml, the inhibition of fusion increased with the concentration of DATEM. At 2 microg/ml of DATEM, the fusion was suppressed by 80-90%. Studies examining possible mechanism of fusion-inhibition indicated that DATEM was likely adsorbed onto lipid membranes of both viral envelope and target cell membranes. Quantitative measurements of DATEM adsorption onto membranes were also performed using lipid monolayers and vesicles. The surface pressure of lipid monolayer formed at the air/aqueous interface increased as the concentration of DATEM in the monolayer subphase increased, suggesting that DATEM was inserted into the monolayer. As the concentration of DATEM in vesicle suspensions increased, electrophoretic mobility of initially uncharged lipid vesicles also increased, reflective of increased negative charge at vesicle surfaces. These results strongly suggest that the insertion of DATEM onto membranes inhibited viral fusion. DATEM may prove to be effective in limiting the infectivity of RSV by interference with the fusion of the viral envelope with target cell membranes.

  6. Enterovirus 71-induced autophagy increases viral replication and pathogenesis in a suckling mouse model

    PubMed Central

    2014-01-01

    Background We previously reported that Enterovirus 71 (EV71) infection activates autophagy, which promotes viral replication both in vitro and in vivo. In the present study we further investigated whether EV71 infection of neuronal SK-N-SH cells induces an autophagic flux. Furthermore, the effects of autophagy on EV71-related pathogenesis and viral load were evaluated after intracranial inoculation of mouse-adapted EV71 (MP4 strain) into 6-day-old ICR suckling mice. Results We demonstrated that in EV71-infected SK-N-SH cells, EV71 structural protein VP1 and nonstructural protein 2C co-localized with LC3 and mannose-6-phosphate receptor (MPR, endosome marker) proteins by immunofluorescence staining, indicating amphisome formation. Together with amphisome formation, EV71 induced an autophagic flux, which could be blocked by NH4Cl (inhibitor of acidification) and vinblastine (inhibitor of fusion), as demonstrated by Western blotting. Suckling mice intracranially inoculated with EV71 showed EV71 VP1 protein expression (representing EV71 infection) in the cerebellum, medulla, and pons by immunohistochemical staining. Accompanied with these infected brain tissues, increased expression of LC3-II protein as well as formation of LC3 aggregates, autophagosomes and amphisomes were detected. Amphisome formation, which was confirmed by colocalization of EV71-VP1 protein or LC3 puncta and the endosome marker protein MPR. Thus, EV71-infected suckling mice (similar to EV71-infected SK-N-SH cells) also show an autophagic flux. The physiopathological parameters of EV71-MP4 infected mice, including body weight loss, disease symptoms, and mortality were increased compared to those of the uninfected mice. We further blocked EV71-induced autophagy with the inhibitor 3-methyladenine (3-MA), which attenuated the disease symptoms and decreased the viral load in the brain tissues of the infected mice. Conclusions In this study, we reveal that EV71 infection of suckling mice induces an

  7. Enterovirus 71-induced autophagy increases viral replication and pathogenesis in a suckling mouse model.

    PubMed

    Lee, Ying-Ray; Wang, Po-Shun; Wang, Jen-Ren; Liu, Hsiao-Sheng

    2014-08-20

    We previously reported that Enterovirus 71 (EV71) infection activates autophagy, which promotes viral replication both in vitro and in vivo. In the present study we further investigated whether EV71 infection of neuronal SK-N-SH cells induces an autophagic flux. Furthermore, the effects of autophagy on EV71-related pathogenesis and viral load were evaluated after intracranial inoculation of mouse-adapted EV71 (MP4 strain) into 6-day-old ICR suckling mice. We demonstrated that in EV71-infected SK-N-SH cells, EV71 structural protein VP1 and nonstructural protein 2C co-localized with LC3 and mannose-6-phosphate receptor (MPR, endosome marker) proteins by immunofluorescence staining, indicating amphisome formation. Together with amphisome formation, EV71 induced an autophagic flux, which could be blocked by NH₄Cl (inhibitor of acidification) and vinblastine (inhibitor of fusion), as demonstrated by Western blotting. Suckling mice intracranially inoculated with EV71 showed EV71 VP1 protein expression (representing EV71 infection) in the cerebellum, medulla, and pons by immunohistochemical staining. Accompanied with these infected brain tissues, increased expression of LC3-II protein as well as formation of LC3 aggregates, autophagosomes and amphisomes were detected. Amphisome formation, which was confirmed by colocalization of EV71-VP1 protein or LC3 puncta and the endosome marker protein MPR. Thus, EV71-infected suckling mice (similar to EV71-infected SK-N-SH cells) also show an autophagic flux. The physiopathological parameters of EV71-MP4 infected mice, including body weight loss, disease symptoms, and mortality were increased compared to those of the uninfected mice. We further blocked EV71-induced autophagy with the inhibitor 3-methyladenine (3-MA), which attenuated the disease symptoms and decreased the viral load in the brain tissues of the infected mice. In this study, we reveal that EV71 infection of suckling mice induces an amphisome formation accompanied

  8. Exosome Biogenesis, Regulation, and Function in Viral Infection

    PubMed Central

    Alenquer, Marta; Amorim, Maria João

    2015-01-01

    Exosomes are extracellular vesicles released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during the process of MVB formation. Exosomes were shown to contain selectively sorted functional proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the physiology of the healthy and diseased organism. Challenges in the field include the identification of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and the understanding of the underlying processes directing MVBs for degradation or fusion with the plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in its early years. Although still controversial, exosomes can, in principle, incorporate any functional factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation. This review initially focuses on the composition and biogenesis of exosomes. It then explores the regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system, which is tightly regulated and able to respond to several stimuli that lead to alterations in the composition of its sub-compartments. We discuss the current knowledge of how these changes affect exosomal release. We then summarize how different viruses exploit specific proteins of endocytic sub-compartments and speculate that it could interfere with exosome function, although no direct link between viral usage of the endocytic system and exosome release has yet been reported. Many recent reports have ascribed functions to exosomes released from cells infected with a variety of animal viruses, including viral spread, host immunity, and manipulation of the microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes in viral infections, understanding what regulates their composition and levels, and

  9. Exosome Biogenesis, Regulation, and Function in Viral Infection.

    PubMed

    Alenquer, Marta; Amorim, Maria João

    2015-09-17

    Exosomes are extracellular vesicles released upon fusion of multivesicular bodies(MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during the process of MVB formation. Exosomes were shown to contain selectively sorted functional proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the physiology of the healthy and diseased organism. Challenges in the field include the identification of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and the understanding of the underlying processes directing MVBs for degradation or fusion with the plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in its early years. Although still controversial, exosomes can, in principle, incorporate any functional factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation.This review initially focuses on the composition and biogenesis of exosomes. It then explores the regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system,which is tightly regulated and able to respond to several stimuli that lead to alterations in the composition of its sub-compartments. We discuss the current knowledge of how these changes affect exosomal release. We then summarize how different viruses exploit specific proteins of endocytic sub-compartments and speculate that it could interfere with exosome function, although no direct link between viral usage of the endocytic system and exosome release has yet been reported. Many recent reports have ascribed functions to exosomes released from cells infected with a variety of animal viruses, including viral spread, host immunity, and manipulation of the microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes in viral infections, understanding what regulates their composition and levels, and

  10. Measuring Experiential Avoidance in Adults: The Avoidance and Fusion Questionnaire

    ERIC Educational Resources Information Center

    Schmalz, Jonathan E.; Murrell, Amy R.

    2010-01-01

    To date, general levels of experiential avoidance are primarily measured by the Acceptance and Action Questionnaire-II (AAQ-II), but it includes items of questionable comprehensibility. The Avoidance and Fusion Questionnaire for Youth (AFQ-Y), previously validated as a measure of experiential avoidance with children and adolescents, was…

  11. Autographa californica multiple nucleopolyhedrovirus GP64 protein: Analysis of domain I and V amino acid interactions and membrane fusion activity

    SciTech Connect

    Yu, Qianlong; Blissard, Gary W.; Liu, Tong-Xian; Li, Zhaofei

    2016-01-15

    The Autographa californica multiple nucleopolyhedrovirus GP64 is a class III viral fusion protein. Although the post-fusion structure of GP64 has been solved, its pre-fusion structure and the detailed mechanism of conformational change are unknown. In GP64, domain V is predicted to interact with two domain I segments that flank fusion loop 2. To evaluate the significance of the amino acids involved in these interactions, we examined 24 amino acid positions that represent interacting and conserved residues within domains I and V. In several cases, substitution of a single amino acid involved in a predicted interaction disrupted membrane fusion activity, but no single amino acid pair appears to be absolutely required. We identified 4 critical residues in domain V (G438, W439, T452, and T456) that are important for membrane fusion, and two residues (G438 and W439) that appear to be important for formation or stability of the pre-fusion conformation of GP64. - Highlights: • The baculovirus envelope glycoprotein GP64 is a class III viral fusion protein. • The detailed mechanism of conformational change of GP64 is unknown. • We analyzed 24 positions that might stabilize the post-fusion structure of GP64. • We identified 4 residues in domain V that were critical for membrane fusion. • Two residues are critical for formation of the pre-fusion conformation of GP64.

  12. Human viral gastroenteritis.

    PubMed Central

    Christensen, M L

    1989-01-01

    During the last 15 years, several different groups of fastidious viruses that are responsible for a large proportion of acute viral gastroenteritis cases have been discovered by the electron microscopic examination of stool specimens. This disease is one of the most prevalent and serious clinical syndromes seen around the world, especially in children. Rotaviruses, in the family Reoviridae, and fastidious fecal adenoviruses account for much of the viral gastroenteritis in infants and young children, whereas the small caliciviruses and unclassified astroviruses, and possibly enteric coronaviruses, are responsible for significantly fewer cases overall. In addition to electron microscopy, enzyme immunoassays and other rapid antigen detection systems have been developed to detect rotaviruses and fastidious fecal adenoviruses in the stool specimens of both nonhospitalized patients and those hospitalized for dehydration and electrolyte imbalance. Experimental rotavirus vaccines have also been developed, due to the prevalence and seriousness of rotavirus infection. The small, unclassified Norwalk virus and morphologically similar viruses are responsible for large and small outbreaks of acute gastroenteritis in older children, adolescents, and adults. Hospitalization of older patients infected with these viruses is usually not required, and their laboratory diagnoses have been limited primarily to research laboratories. Images PMID:2644024

  13. Viral infections of rabbits.

    PubMed

    Kerr, Peter J; Donnelly, Thomas M

    2013-05-01

    Viral diseases of rabbits have been used historically to study oncogenesis (e.g. rabbit fibroma virus, cottontail rabbit papillomavirus) and biologically to control feral rabbit populations (e.g. myxoma virus). However, clinicians seeing pet rabbits in North America infrequently encounter viral diseases although myxomatosis may be seen occasionally. The situation is different in Europe and Australia, where myxomatosis and rabbit hemorrhagic disease are endemic. Advances in epidemiology and virology have led to detection of other lapine viruses that are now recognized as agents of emerging infectious diseases. Rabbit caliciviruses, related to rabbit hemorrhagic disease, are generally avirulent, but lethal variants are being identified in Europe and North America. Enteric viruses including lapine rotavirus, rabbit enteric coronavirus and rabbit astrovirus are being acknowledged as contributors to the multifactorial enteritis complex of juvenile rabbits. Three avirulent leporid herpesviruses are found in domestic rabbits. A fourth highly pathogenic virus designated leporid herpesvirus 4 has been described in Canada and Alaska. This review considers viruses affecting rabbits by their clinical significance. Viruses of major and minor clinical significance are described, and viruses of laboratory significance are mentioned. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. [Viral safety of biologicals].

    PubMed

    Barin, F

    2008-06-01

    The viral safety of biologicals, either human blood derivatives or animal products or recombinant proteins issued from biotechnology, relies on the quality of the starting material, the manufacturing process and, if necessary, the control of the final product. The quality of the starting material is highly guaranteed for blood derivatives due to the individual screening for specific markers (antigens, genome, antibodies) for major blood borne viruses such as hepatitis B and C viruses (HBV, HCV) and human immunodeficiency virus (HIV). It can be reinforced by the detection through amplification procedures (polymerase chain reaction) in the plasma pool of genomes from viruses that have been implicated in contaminations of blood derivatives in the past (parvovirus B19, hepatitis A virus). The association in the manufacturing process of different steps dedicated to purification of plasma proteins (partitioning), virus inactivation (solvent/detergent treatment, heat inactivation) or specific procedures allowing virus removal (nanofiltration) allows to reduce the viral risk very efficiently. The validation studies using scaled down systems and model viruses allow to evaluate the virus safety of any product quantitatively. The aim of these procedures is to guarantee the lack of infectivity due to any virus, either known or unknown.

  15. Saliva and viral infections.

    PubMed

    Corstjens, Paul L A M; Abrams, William R; Malamud, Daniel

    2016-02-01

    Over the last 10 years there have been only a handful of publications dealing with the oral virome, which is in contrast to the oral microbiome, an area that has seen considerable interest. Here, we survey viral infections in general and then focus on those viruses that are found in and/or are transmitted via the oral cavity; norovirus, rabies, human papillomavirus, Epstein-Barr virus, herpes simplex viruses, hepatitis C virus, and HIV. Increasingly, viral infections have been diagnosed using an oral sample (e.g. saliva mucosal transudate or an oral swab) instead of blood or urine. The results of two studies using a rapid and semi-quantitative lateral flow assay format demonstrating the correlation of HIV anti-IgG/sIgA detection with saliva and serum samples are presented. When immediate detection of infection is important, point-of-care devices that obtain a non-invasive sample from the oral cavity can be used to provide a first line diagnosis to assist in determining appropriate counselling and therapeutic path for an increasing number of diseases.

  16. [Prevention of viral hepatitis].

    PubMed

    Bruguera, Miguel

    2006-12-01

    Prevention of viral hepatitis infection involves health measures designed to avert transmission of viral agents and promote the use of gammaglobulin and vaccines. The availability of safe drinking water and improvements in quality of life result in better individual hygiene; these factors have had the greatest impact on hepatitis A prevention. Serum gammaglobulin administration has been replaced by vaccinations for pre-exposure, and to a great extent for post-exposure prophylaxis because of the progressively lower anti-HAV content of gammaglobulin and the short duration of the protective effect. Universal vaccination in childhood is the recommended measure for controlling hepatitis A. Adults belonging to high-risk groups should also undergo vaccination. The incidence of hepatitis B has decreased worldwide because of universal vaccination programs, initiated in preadolescence and childhood. Prevention of hepatitis C requires control of situations in which there is a likelihood of parenteral infection with the virus. Post-transfusion hepatitis has been virtually eradicated, but considerable effort is still needed to prevent nosocomial hepatitis.

  17. Progress toward fusion with light ions

    SciTech Connect

    1980-01-01

    New results in target design, beam generation and transport, and pulse power technology have led to a program shift stressing light ion-driven inertial confinement fusion. According to present estimates, a gain ten fusion pellet will require at least one megajoule and approx. 100 TW power input. Progress in ion sources has resulted in beam power density of approx. 1 TW/cm/sup 2/, a factor of ten increase over the last year, and cylindrical implosion experiments have been performed. Other experiments have demonstrated the ability to transport ion and electron beams with high efficiency and have confirmed numerical predictions on the properties of beam transport channels converging at a target. These developments together with improvements in pulse power technology allow us to project that the 72 beam, 100 TW Particle Beam Fusion Accelerator, PBFA-II will attain target output energy equal to stored energy in the accelerator.

  18. Two Horizons of Fusion

    ERIC Educational Resources Information Center

    Lo, Mun Ling; Chik, Pakey Pui Man

    2016-01-01

    In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…

  19. Controlled Nuclear Fusion.

    ERIC Educational Resources Information Center

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  20. Two Horizons of Fusion

    ERIC Educational Resources Information Center

    Lo, Mun Ling; Chik, Pakey Pui Man

    2016-01-01

    In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…

  1. Fusion of Polarized Deuterons

    NASA Astrophysics Data System (ADS)

    Hofmann, H. M.; Fick, D.

    1984-06-01

    The nuclear physics aspects of the d-d reactions initiated by low-energy polarized deuterons are discussed. It is shown that the use of polarized deuterons does not suppress the fusion of deuterons with deuterons and hence does not suppress neutron production. Therefore a recently proposed "neutron-free" d-3He fusion reactor is unlikely to work.

  2. Fusion Science Education Outreach

    NASA Astrophysics Data System (ADS)

    Danielson, C. A.; DIII-D Education Group

    1996-11-01

    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  3. Antiproton catalyzed fusion

    SciTech Connect

    Morgan, D.L. Jr.; Perkins, L.J.; Haney, S.W.

    1995-05-15

    Because of the potential application to power production, it is important to investigate a wide range of possible means to achieve nuclear fusion, even those that may appear initially to be infeasible. In antiproton catalyzed fusion, the negative antiproton shields the repulsion between the positively charged nuclei of hydrogen isotopes, thus allowing a much higher level of penetration through the repulsive Coulomb barrier, and thereby greatly enhancing the fusion cross section. Because of their more compact wave function, the more massive antiprotons offer considerably more shielding than do negative muons. The effects of the shielding on fusion cross sections are most predominate, at low energies. If the antiproton could exist in the ground state with a nucleus for a sufficient time without annihilating, the fusion cross sections are so enhanced that at room temperature energies, values up to about 1,000 barns (that for d+t) would be possible. Unfortunately, the cross section for antiproton annihilation with the incoming nucleus is even higher. A model that provides an upper bound for the fusion to annihilation cross section for all relevant energies indicates that each antiproton will catalyze no more than about one fusion. Because the energy required to make one antiproton greatly exceeds the fusion energy that is released, this level of catalysis is far from adequate for power production.

  4. Fusion Power Deployment

    SciTech Connect

    J.A. Schmidt; J.M. Ogden

    2002-02-06

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

  5. FUSION-COMPETENT STATE INDUCED BY A C-TERMINAL HIV-1 FUSION PEPTIDE IN CHOLESTEROL-RICH MEMBRANES

    PubMed Central

    Apellániz, Beatriz; Nieva, José L.

    2015-01-01

    The replicative cycle of the Human Immunodeficiency Virus type-1 begins after fusion of the viral and target-cell membranes. The envelope glycoprotein gp41 transmembrane subunit contains conserved hydrophobic domains that engage and perturb the merging lipid bilayers. In this work, we have characterized the fusion-committed state generated in vesicles by CpreTM, a synthetic peptide derived from the sequence connecting the membrane-proximal external region (MPER) and the transmembrane domain (TMD) of gp41. Pre-loading cholesterol-rich vesicles with CpreTM rendered them competent for subsequent lipid-mixing with fluorescently-labeled target vesicles. Highlighting the physiological relevance of the lasting fusion-competent state, the broadly neutralizing antibody 4E10 bound to the CpreTM-primed vesicles and inhibited lipid-mixing. Heterotypic fusion assays disclosed dependence on the lipid composition of the vesicles that acted either as virus or cell membrane surrogates. Lipid-mixing exhibited above all a critical dependence on the cholesterol content in those experiments. We infer that the fusion-competent state described herein resembles bona-fide perturbations generated by the pre-hairpin MPER-TMD connection within the viral membrane. PMID:25617671

  6. Electropionics and fusion

    SciTech Connect

    Kenny, J.P. )

    1991-05-01

    This paper reports on the electropionic mass formula which does not differentiate between nuclei and elementary particles, but gives the deuteron a unique bifurcated space-time description. This hints at fusion products produced by anomalous intermediate mass states of 3026, 3194, and 3515 MeV/c{sup 2} that then decay to produce energy. Another unique possibility in electropionics is that no fusion of deuterons occurs, but the deuteron is changed by electron capture into a D-meson that then decays to produce observed cold fusion energies. All these cold fusion electropionic reactions violate baryon conservation but do produce energy yields consistent with reported cold fusion decay products and energy levels.

  7. Plate augmentation in anterior cervical discectomy and fusion with cage for degenerative cervical spinal disorders

    PubMed Central

    Song, Kyung-Jin; Taghavi, Cyrus E.; Hsu, Margaret S.; Kim, Gyu-Hyung; Song, Ji-Hoon

    2010-01-01

    Anterior cervical discectomy and fusion (ACDF) with cage alone (ACDF-C) is associated with a significant incidence of subsidence, local kyphosis, and migration. The use of concurrent plate augmentation may decrease the incidence of these complications while improving the fusion rate. The purpose of the study is to present our results with ACDF with cage and plate augmentation (ACDF-CPA) and to compare these results to previous reports of outcomes following ACDF-C. We evaluated the radiologic and clinical parameters of 83 patients (266 fusion sites) who had an ACDF-CPA between March 2002 and May 2006. Radiologic parameters included fusion rate, fusion time, fusion type, site of pseudoarthrosis and rate and degree of subsidence. Clinical parameters included complications and overall outcomes assessed with Robinson’s criteria; 79 of 83 patients showed bony fusion (95.1%) at last follow-up postoperatively, and there was no significant difference in fusion rate between the number of fusion levels. Type I (pseudoarthrosis) was noticed in 9 patients (12 fusion sites), type II in 14 (19 fusion sites), and type III in 60 (235 fusion sites). Five type I and all type II fusions converged into type III by the last follow-up; 76 of 83 patients (91.6%) experienced good clinical outcomes. Pseudoarthrosis occurred more commonly in more proximal locations, and the subsidence rate was significantly greater in two-level fusions when compared with single-level fusions (P = 0.046). There were four metal-related complications. Plate augmentation in one- or two-level anterior cervical fusions for degenerative cervical spine disorders may improve fusion rates and reduce subsidence and complication rates, resulting in improved clinical outcomes. PMID:20376680

  8. Viral noncoding RNAs: more surprises

    PubMed Central

    Tycowski, Kazimierz T.; Guo, Yang Eric; Lee, Nara; Moss, Walter N.; Vallery, Tenaya K.; Xie, Mingyi

    2015-01-01

    Eukaryotic cells produce several classes of long and small noncoding RNA (ncRNA). Many DNA and RNA viruses synthesize their own ncRNAs. Like their host counterparts, viral ncRNAs associate with proteins that are essential for their stability, function, or both. Diverse biological roles—including the regulation of viral replication, viral persistence, host immune evasion, and cellular transformation—have been ascribed to viral ncRNAs. In this review, we focus on the multitude of functions played by ncRNAs produced by animal viruses. We also discuss their biogenesis and mechanisms of action. PMID:25792595

  9. VPDB: Viral Protein Structural Database

    PubMed Central

    Sharma, Om Prakash; Jadhav, Ankush; Hussain, Afzal; Kumar, Muthuvel Suresh

    2011-01-01

    Viral Protein Database is an interactive database for three dimensional viral proteins. Our aim is to provide a comprehensive resource to the community of structural virology, with an emphasis on the description of derived data from structural biology. Currently, VPDB includes ˜1,670 viral protein structures from >277 viruses with more than 465 virus strains. The whole database can be easily accessed through the user convenience text search. Interactivity has been enhanced by using Jmol, WebMol and Strap to visualize the viral protein molecular structure. Availability The database is available for free at http://www.vpdb.bicpu.edu.in PMID:21769196

  10. Viral RNA Degradation and Diffusion Act as a Bottleneck for the Influenza A Virus Infection Efficiency

    PubMed Central

    Jolmes, Fabian; Welke, Robert-William; Klipp, Edda; Herrmann, Andreas; Flöttmann, Max

    2016-01-01

    After endocytic uptake, influenza viruses transit early endosomal compartments and eventually reach late endosomes. There, the viral glycoprotein hemagglutinin (HA) triggers fusion between endosomal and viral membrane, a critical step that leads to release of the viral segmented genome destined to reach the cell nucleus. Endosomal maturation is a complex process involving acidification of the endosomal lumen as well as endosome motility along microtubules. While the pH drop is clearly critical for the conformational change and membrane fusion activity of HA, the effect of intracellular transport dynamics on the progress of infection remains largely unclear. In this study, we developed a comprehensive mathematical model accounting for the first steps of influenza virus infection. We calibrated our model with experimental data and challenged its predictions using recombinant viruses with altered pH sensitivity of HA. We identified the time point of virus-endosome fusion and thereby the diffusion distance of the released viral genome to the nucleus as a critical bottleneck for efficient virus infection. Further, we concluded and supported experimentally that the viral RNA is subjected to cytosolic degradation strongly limiting the probability of a successful genome import into the nucleus. PMID:27780209

  11. Genetic Control of Fusion Pore Expansion in the Epidermis of Caenorhabditis elegans

    PubMed Central

    Gattegno, Tamar; Mittal, Aditya; Valansi, Clari; Nguyen, Ken C.Q.; Hall, David H.; Chernomordik, Leonid V.

    2007-01-01

    Developmental cell fusion is found in germlines, muscles, bones, placentae, and stem cells. In Caenorhabditis elegans 300 somatic cells fuse during development. Although there is extensive information on the early intermediates of viral-induced and intracellular membrane fusion, little is known about late stages in membrane fusion. To dissect the pathway of cell fusion in C. elegans embryos, we use genetic and kinetic analyses using live-confocal and electron microscopy. We simultaneously monitor the rates of multiple cell fusions in developing embryos and find kinetically distinct stages of initiation and completion of membrane fusion in the epidermis. The stages of cell fusion are differentially blocked or retarded in eff-1 and idf-1 mutants. We generate kinetic cell fusion maps for embryos grown at different temperatures. Different sides of the same cell differ in their fusogenicity: the left and right membrane domains are fusion-incompetent, whereas the anterior and posterior membrane domains fuse with autonomous kinetics in embryos. All but one cell pair can initiate the formation of the largest syncytium. The first cell fusion does not trigger a wave of orderly fusions in either direction. Ultrastructural studies show that epidermal syncytiogenesis require eff-1 activities to initiate and expand membrane merger. PMID:17229888

  12. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody

    SciTech Connect

    Kong, Rui; Xu, Kai; Zhou, Tongqing; Acharya, Priyamvada; Lemmin, Thomas; Liu, Kevin; Ozorowski, Gabriel; Taft, Justin D.; Bailer, Robert T.; Cale, Evan M.; Chen, Lei; Choi, Chang W.; Chuang, Gwo-Yu; Doria-Rose, Nicole A.; Druz, Aliaksandr; Georgiev, Ivelin S.; Gorman, Jason; Huang, Jinghe; Joyce, M. Gordon; Louder, Mark K.; Ma, Xiaochu; McKee, Krisha; O'Dell, Sijy; Pancera, Marie; Yang, Yongping; Blanchard, Scott C.; Mothes, Walther; Burton, Dennis R.; Koff, Wayne C.; Connors, Mark; Ward, Andrew B.; Mascola, John R.

    2016-05-13

    The HIV-1 fusion peptide, comprising 15 to 20 hydrophobic residues at the N terminus of the Env-gp41 subunit, is a critical component of the virus-cell entry machinery. In this paper, we report the identification of a neutralizing antibody, N123-VRC34.01, which targets the fusion peptide and blocks viral entry by inhibiting conformational changes in gp120 and gp41 subunits of Env required for entry. Crystal structures of N123-VRC34.01 liganded to the fusion peptide, and to the full Env trimer, revealed an epitope consisting of the N-terminal eight residues of the gp41 fusion peptide and glycan N88 of gp120, and molecular dynamics showed that the N-terminal portion of the fusion peptide can be solvent-exposed. Finally, these results reveal the fusion peptide to be a neutralizing antibody epitope and thus a target for vaccine design.

  13. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody

    SciTech Connect

    Kong, Rui; Xu, Kai; Zhou, Tongqing; Acharya, Priyamvada; Lemmin, Thomas; Liu, Kevin; Ozorowski, Gabriel; Taft, Justin D.; Bailer, Robert T.; Cale, Evan M.; Chen, Lei; Choi, Chang W.; Chuang, Gwo-Yu; Doria-Rose, Nicole A.; Druz, Aliaksandr; Georgiev, Ivelin S.; Gorman, Jason; Huang, Jinghe; Joyce, M. Gordon; Louder, Mark K.; Ma, Xiaochu; McKee, Krisha; O'Dell, Sijy; Pancera, Marie; Yang, Yongping; Blanchard, Scott C.; Mothes, Walther; Burton, Dennis R.; Koff, Wayne C.; Connors, Mark; Ward, Andrew B.; Mascola, John R.

    2016-05