Science.gov

Sample records for ii voltage sensor

  1. Voltage sensor and dielectric material

    DOEpatents

    Yakymyshyn, Christopher Paul; Yakymyshyn, Pamela Jane; Brubaker, Michael Allen

    2006-10-17

    A voltage sensor is described that consists of an arrangement of impedance elements. The sensor is optimized to provide an output ratio that is substantially immune to changes in voltage, temperature variations or aging. Also disclosed is a material with a large and stable dielectric constant. The dielectric constant can be tailored to vary with position or direction in the material.

  2. Voltage Sensors Monitor Harmful Static

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A tiny sensor, small enough to be worn on clothing, now monitors voltage changes near sensitive instruments after being created to alert Agency workers to dangerous static buildup near fuel operations and avionics. San Diego s Quasar Federal Systems received a Small Business Innovation Research (SBIR) contract from Kennedy Space Center to develop its remote voltage sensor (RVS), a dime-sized electrometer designed to measure triboelectric changes in the environment. One of the unique qualities of the RVS is that it can detect static at greater distances than previous devices, measuring voltage changes from a few centimeters to a few meters away, due to its much-improved sensitivity.

  3. Electro-Optical High-Voltage Sensors

    NASA Technical Reports Server (NTRS)

    Gottsche, Allan; Johnston, Alan R.

    1992-01-01

    Electro-optical sensors for measuring high voltages developed for use in automatically controlled power-distribution systems. Sensors connected to optoelectronic interrogating equipment by optical fibers. Because sensitive material and optical fibers are all dielectric, no problem in electrically isolating interrogating circuitry from high voltage, and no need for voltage dividers. Sensor signals transmitted along fibers immune to electromagnetic noise at radio and lower frequencies.

  4. Non-contact current and voltage sensor

    SciTech Connect

    Carpenter, Gary D; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C; Schappert, Michael A

    2014-03-25

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  5. Mapping the interaction site for the tarantula toxin hainantoxin-IV (β-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels.

    PubMed

    Cai, Tianfu; Luo, Ji; Meng, Er; Ding, Jiuping; Liang, Songping; Wang, Sheng; Liu, Zhonghua

    2015-06-01

    Peptide toxins often have pharmacological applications and are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a group of potential VGSC inhibitors have been reported from tarantula venoms, little is known about the mechanism of their interaction with VGSCs. In this study, we showed that hainantoxin-IV (β-TRTX-Hn2a, HNTX-IV in brief), a 35-residue peptide from Ornithoctonus hainana venom, preferentially inhibited rNav1.2, rNav1.3 and hNav1.7 compared with rNav1.4 and hNav1.5. hNav1.7 was the most sensitive to HNTX-IV (IC50∼21nM). In contrast to many other tarantula toxins that affect VGSCs, HNTX-IV at subsaturating concentrations did not alter activation and inactivation kinetics in the physiological range of voltages, while very large depolarization above +70mV could partially activate toxin-bound hNav1.7 channel, indicating that HNTX-IV acts as a gating modifier rather than a pore blocker. Site-directed mutagenesis indicated that the toxin bound to site 4, which was located on the extracellular S3-S4 linker of hNav1.7 domain II. Mutants E753Q, D816N and E818Q of hNav1.7 decreased toxin affinity for hNav1.7 by 2.0-, 3.3- and 130-fold, respectively. In silico docking indicated that a three-toed claw substructure formed by residues with close contacts in the interface between HNTX-IV and hNav1.7 domain II stabilized the toxin-channel complex, impeding movement of the domain II voltage sensor and inhibiting hNav1.7 activation. Our data provide structural details for structure-based drug design and a useful template for the design of highly selective inhibitors of a specific subtype of VGSCs. PMID:25218973

  6. Electro-optical voltage sensor head

    DOEpatents

    Woods, G.K.

    1998-03-24

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 6 figs.

  7. Electro-optical voltage sensor head

    DOEpatents

    Woods, Gregory K.

    1998-01-01

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  8. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2003-09-16

    A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

  9. Electro-optic voltage sensor head

    DOEpatents

    Crawford, T.M.; Davidson, J.R.; Woods, G.K.

    1999-08-17

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers. 6 figs.

  10. Electro-optic voltage sensor head

    DOEpatents

    Crawford, Thomas M.; Davidson, James R.; Woods, Gregory K.

    1999-01-01

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.

  11. Interface connections of a transmembrane voltage sensor.

    PubMed

    Freites, J Alfredo; Tobias, Douglas J; von Heijne, Gunnar; White, Stephen H

    2005-10-18

    Voltage-sensitive ion channels open and close in response to changes in transmembrane (TM) potential caused by the motion of the S4 voltage sensors. These sensors are alpha-helices that include four or more positively charged amino acids, most commonly arginine. The so-called paddle model, based on the high-resolution structure of the KvAP K+ channel [Jiang, et al. (2003) Nature 423, 33-41], posits that the S4 sensors move within the membrane bilayer in response to TM voltage changes. Direct exposure of S4 sensors to lipid is contrary to the classical expectation that the dielectric contrast between the membrane hydrocarbon core and water presents an insurmountable energetic penalty to burial of electric charges. Nevertheless, recent experiments have shown that a helix with the sequence of KvAP S4 can be inserted across the endoplasmic reticulum membrane. To reconcile this result with the classical energetics argument, we have carried out a molecular dynamics simulation of an isolated TM S4 helix in a lipid bilayer. The simulation reveals a stabilizing hydrogen-bonded network of water and lipid phosphates around the arginines that reduces the effective thickness of the bilayer hydrocarbon core to approximately 10 A in the vicinity of the helix. It suggests that bilayer phospholipids can adapt locally to strongly perturbing protein elements, causing the phospholipids to become a structural extension of the protein.

  12. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2002-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  13. Mutations in the Voltage Sensors of Domains I and II of Nav1.5 that are Associated with Arrhythmias and Dilated Cardiomyopathy Generate Gating Pore Currents

    PubMed Central

    Moreau, Adrien; Gosselin-Badaroudine, Pascal; Boutjdir, Mohamed; Chahine, Mohamed

    2015-01-01

    Voltage gated sodium channels (Nav) are transmembrane proteins responsible for action potential initiation. Mutations mainly located in the voltage sensor domain (VSD) of Nav1.5, the cardiac sodium channel, have been associated with the development of arrhythmias combined with dilated cardiomyopathy. Gating pore currents have been observed with three unrelated mutations associated with similar clinical phenotypes. However, gating pores have never been associated with mutations outside the first domain of Nav1.5. The aim of this study was to explore the possibility that gating pore currents might be caused by the Nav1.5 R225P and R814W mutations (R3, S4 in DI and DII, respectively), which are associated with rhythm disturbances and dilated cardiomyopathy. Nav1.5 WT and mutant channels were transiently expressed in tsA201 cells. The biophysical properties of the alpha pore currents and the presence of gating pore currents were investigated using the patch-clamp technique. We confirmed the previously reported gain of function of the alpha pores of the mutant channels, which mainly consisted of increased window currents mostly caused by shifts in the voltage dependence of activation. We also observed gating pore currents associated with the R225P and R814W mutations. This novel permeation pathway was open under depolarized conditions and remained temporarily open at hyperpolarized potentials after depolarization periods. Gating pore currents could represent a molecular basis for the development of uncommon electrical abnormalities and changes in cardiac morphology. We propose that this biophysical defect be routinely evaluated in the case of Nav1.5 mutations on the VSD. PMID:26733869

  14. Research and Experiments on a Unipolar Capacitive Voltage Sensor.

    PubMed

    Zhou, Qiang; He, Wei; Li, Songnong; Hou, Xingzhe

    2015-08-21

    Voltage sensors are an important part of the electric system. In service, traditional voltage sensors need to directly contact a high-voltage charged body. Sensors involve a large volume, complex insulation structures, and high design costs. Typically an iron core structure is adopted. As a result, ferromagnetic resonance can occur easily during practical application. Moreover, owing to the multilevel capacitor divider, the sensor cannot reflect the changes of measured voltage in time. Based on the electric field coupling principle, this paper designs a new voltage sensor; the unipolar structure design solves many problems of traditional voltage sensors like the great insulation design difficulty and high costs caused by grounding electrodes. A differential signal input structure is adopted for the detection circuit, which effectively restrains the influence of the common-mode interference signal. Through sensor modeling, simulation and calculations, the structural design of the sensor electrode was optimized, miniaturization of the sensor was realized, the voltage division ratio of the sensor was enhanced, and the phase difference of sensor measurement was weakened. The voltage sensor is applied to a single-phase voltage class line of 10 kV for testing. According to the test results, the designed sensor is able to meet the requirements of accurate and real-time measurement for voltage of the charged conductor as well as to provide a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system. Therefore, it can satisfy the development demands of the smart power grid.

  15. Research and Experiments on a Unipolar Capacitive Voltage Sensor

    PubMed Central

    Zhou, Qiang; He, Wei; Li, Songnong; Hou, Xingzhe

    2015-01-01

    Voltage sensors are an important part of the electric system. In service, traditional voltage sensors need to directly contact a high-voltage charged body. Sensors involve a large volume, complex insulation structures, and high design costs. Typically an iron core structure is adopted. As a result, ferromagnetic resonance can occur easily during practical application. Moreover, owing to the multilevel capacitor divider, the sensor cannot reflect the changes of measured voltage in time. Based on the electric field coupling principle, this paper designs a new voltage sensor; the unipolar structure design solves many problems of traditional voltage sensors like the great insulation design difficulty and high costs caused by grounding electrodes. A differential signal input structure is adopted for the detection circuit, which effectively restrains the influence of the common-mode interference signal. Through sensor modeling, simulation and calculations, the structural design of the sensor electrode was optimized, miniaturization of the sensor was realized, the voltage division ratio of the sensor was enhanced, and the phase difference of sensor measurement was weakened. The voltage sensor is applied to a single-phase voltage class line of 10 kV for testing. According to the test results, the designed sensor is able to meet the requirements of accurate and real-time measurement for voltage of the charged conductor as well as to provide a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system. Therefore, it can satisfy the development demands of the smart power grid. PMID:26307992

  16. Contributions of intracellular ions to kv channel voltage sensor dynamics.

    PubMed

    Goodchild, Samuel J; Fedida, David

    2012-01-01

    Voltage-sensing domains (VSDs) of Kv channels control ionic conductance through coupling of the movement of charged residues in the S4 segment to conformational changes at the cytoplasmic region of the pore domain, that allow K(+) ions to flow. Conformational transitions within the VSD are induced by changes in the applied voltage across the membrane field. However, several other factors not directly linked to the voltage-dependent movement of charged residues within the voltage sensor impact the dynamics of the voltage sensor, such as inactivation, ionic conductance, intracellular ion identity, and block of the channel by intracellular ligands. The effect of intracellular ions on voltage sensor dynamics is of importance in the interpretation of gating current measurements and the physiology of pore/voltage sensor coupling. There is a significant amount of variability in the reported kinetics of voltage sensor deactivation kinetics of Kv channels attributed to different mechanisms such as open state stabilization, immobilization, and relaxation processes of the voltage sensor. Here we separate these factors and focus on the causal role that intracellular ions can play in allosterically modulating the dynamics of Kv voltage sensor deactivation kinetics. These considerations are of critical importance in understanding the molecular determinants of the complete channel gating cycle from activation to deactivation.

  17. A Gating Charge Transfer Center in Voltage Sensors

    SciTech Connect

    Tao, X.; Lee, A; Limapichat, W; Dougherty, D; MacKinnon, R

    2010-01-01

    Voltage sensors regulate the conformations of voltage-dependent ion channels and enzymes. Their nearly switchlike response as a function of membrane voltage comes from the movement of positively charged amino acids, arginine or lysine, across the membrane field. We used mutations with natural and unnatural amino acids, electrophysiological recordings, and x-ray crystallography to identify a charge transfer center in voltage sensors that facilitates this movement. This center consists of a rigid cyclic 'cap' and two negatively charged amino acids to interact with a positive charge. Specific mutations induce a preference for lysine relative to arginine. By placing lysine at specific locations, the voltage sensor can be stabilized in different conformations, which enables a dissection of voltage sensor movements and their relation to ion channel opening.

  18. Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin.

    PubMed

    Cestèle, Sandrine; Yarov-Yarovoy, Vladimir; Qu, Yusheng; Sampieri, François; Scheuer, Todd; Catterall, William A

    2006-07-28

    Voltage sensing by voltage-gated sodium channels determines the electrical excitability of cells, but the molecular mechanism is unknown. beta-Scorpion toxins bind specifically to neurotoxin receptor site 4 and induce a negative shift in the voltage dependence of activation through a voltage sensor-trapping mechanism. Kinetic analysis showed that beta-scorpion toxin binds to the resting state, and subsequently the bound toxin traps the voltage sensor in the activated state in a voltage-dependent but concentration-independent manner. The rate of voltage sensor trapping can be fit by a two-step model, in which the first step is voltage-dependent and correlates with the outward gating movement of the IIS4 segment, whereas the second step is voltage-independent and results in shifted voltage dependence of activation of the channel. Mutations of Glu(779) in extracellular loop IIS1-S2 and both Glu(837) and Leu(840) in extracellular loop IIS3-S4 reduce the binding affinity of beta-scorpion toxin. Mutations of positively charged and hydrophobic amino acid residues in the IIS4 segment do not affect beta-scorpion toxin binding but alter voltage dependence of activation and enhance beta-scorpion toxin action. Structural modeling with the Rosetta algorithm yielded a three-dimensional model of the toxin-receptor complex with the IIS4 voltage sensor at the extracellular surface. Our results provide mechanistic and structural insight into the voltage sensor-trapping mode of scorpion toxin action, define the position of the voltage sensor in the resting state of the sodium channel, and favor voltage-sensing models in which the S4 segment spans the membrane in both resting and activated states.

  19. Structure and Function of the Voltage Sensor of Sodium Channels Probed by a β-Scorpion Toxin*S

    PubMed Central

    Cestèle, Sandrine; Yarov-Yarovoy, Vladimir; Qu, Yusheng; Sampieri, François; Scheuer, Todd; Catterall, William A.

    2006-01-01

    Voltage sensing by voltage-gated sodium channels determines the electrical excitability of cells, but the molecular mechanism is unknown. β-Scorpion toxins bind specifically to neurotoxin receptor site 4 and induce a negative shift in the voltage dependence of activation through a voltage sensor-trapping mechanism. Kinetic analysis showed that β-scorpion toxin binds to the resting state, and subsequently the bound toxin traps the voltage sensor in the activated state in a voltage-dependent but concentration-independent manner. The rate of voltage sensor trapping can be fit by a two-step model, in which the first step is voltage-dependent and correlates with the outward gating movement of the IIS4 segment, whereas the second step is voltage-independent and results in shifted voltage dependence of activation of the channel. Mutations of Glu779 in extracellular loop IIS1–S2 and both Glu837 and Leu840 in extracellular loop IIS3–S4 reduce the binding affinity of β-scorpion toxin. Mutations of positively charged and hydrophobic amino acid residues in the IIS4 segment do not affect β-scorpion toxin binding but alter voltage dependence of activation and enhance β-scorpion toxin action. Structural modeling with the Rosetta algorithm yielded a three-dimensional model of the toxin-receptor complex with the IIS4 voltage sensor at the extracellular surface. Our results provide mechanistic and structural insight into the voltage sensor-trapping mode of scorpion toxin action, define the position of the voltage sensor in the resting state of the sodium channel, and favor voltage-sensing models in which the S4 segment spans the membrane in both resting and activated states. PMID:16679310

  20. Gating-pore currents demonstrate selective and specific modulation of individual sodium channel voltage-sensors by biological toxins.

    PubMed

    Xiao, Yucheng; Blumenthal, Kenneth; Cummins, Theodore R

    2014-08-01

    Voltage-gated sodium channels are critical determinants of nerve and muscle excitability. Although numerous toxins and small molecules target sodium channels, identifying the mechanisms of action is challenging. Here we used gating-pore currents selectively generated in each of the voltage-sensors from the four α-subunit domains (DI-DIV) to monitor the activity of individual voltage-sensors and to investigate the molecular determinants of sodium channel pharmacology. The tarantula toxin huwentoxin-IV (HWTX-IV), which inhibits sodium channel current, exclusively enhanced inward gating-pore currents through the DII voltage-sensor. By contrast, the tarantula toxin ProTx-II, which also inhibits sodium channel currents, altered the gating-pore currents in multiple voltage-sensors in a complex manner. Thus, whereas HWTX-IV inhibits central-pore currents by selectively trapping the DII voltage-sensor in the resting configuration, ProTx-II seems to inhibit central-pore currents by differentially altering the configuration of multiple voltage-sensors. The sea anemone toxin anthopleurin B, which impairs open-channel inactivation, exclusively enhanced inward gating-pore currents through the DIV voltage-sensor. This indicates that trapping the DIV voltage-sensor in the resting configuration selectively impairs open-channel inactivation. Furthermore, these data indicate that although activation of all four voltage-sensors is not required for central-pore current generation, activation of the DII voltage-sensor is crucial. Overall, our data demonstrate that gating-pore currents can determine the mechanism of action for sodium channel gating modifiers with high precision. We propose this approach could be adapted to identify the molecular mechanisms of action for gating modifiers of various voltage-gated ion channels.

  1. Gating-Pore Currents Demonstrate Selective and Specific Modulation of Individual Sodium Channel Voltage-Sensors by Biological Toxins

    PubMed Central

    Xiao, Yucheng; Blumenthal, Kenneth

    2014-01-01

    Voltage-gated sodium channels are critical determinants of nerve and muscle excitability. Although numerous toxins and small molecules target sodium channels, identifying the mechanisms of action is challenging. Here we used gating-pore currents selectively generated in each of the voltage-sensors from the four α-subunit domains (DI–DIV) to monitor the activity of individual voltage-sensors and to investigate the molecular determinants of sodium channel pharmacology. The tarantula toxin huwentoxin-IV (HWTX-IV), which inhibits sodium channel current, exclusively enhanced inward gating-pore currents through the DII voltage-sensor. By contrast, the tarantula toxin ProTx-II, which also inhibits sodium channel currents, altered the gating-pore currents in multiple voltage-sensors in a complex manner. Thus, whereas HWTX-IV inhibits central-pore currents by selectively trapping the DII voltage-sensor in the resting configuration, ProTx-II seems to inhibit central-pore currents by differentially altering the configuration of multiple voltage-sensors. The sea anemone toxin anthopleurin B, which impairs open-channel inactivation, exclusively enhanced inward gating-pore currents through the DIV voltage-sensor. This indicates that trapping the DIV voltage-sensor in the resting configuration selectively impairs open-channel inactivation. Furthermore, these data indicate that although activation of all four voltage-sensors is not required for central-pore current generation, activation of the DII voltage-sensor is crucial. Overall, our data demonstrate that gating-pore currents can determine the mechanism of action for sodium channel gating modifiers with high precision. We propose this approach could be adapted to identify the molecular mechanisms of action for gating modifiers of various voltage-gated ion channels. PMID:24898004

  2. Gating-pore currents demonstrate selective and specific modulation of individual sodium channel voltage-sensors by biological toxins.

    PubMed

    Xiao, Yucheng; Blumenthal, Kenneth; Cummins, Theodore R

    2014-08-01

    Voltage-gated sodium channels are critical determinants of nerve and muscle excitability. Although numerous toxins and small molecules target sodium channels, identifying the mechanisms of action is challenging. Here we used gating-pore currents selectively generated in each of the voltage-sensors from the four α-subunit domains (DI-DIV) to monitor the activity of individual voltage-sensors and to investigate the molecular determinants of sodium channel pharmacology. The tarantula toxin huwentoxin-IV (HWTX-IV), which inhibits sodium channel current, exclusively enhanced inward gating-pore currents through the DII voltage-sensor. By contrast, the tarantula toxin ProTx-II, which also inhibits sodium channel currents, altered the gating-pore currents in multiple voltage-sensors in a complex manner. Thus, whereas HWTX-IV inhibits central-pore currents by selectively trapping the DII voltage-sensor in the resting configuration, ProTx-II seems to inhibit central-pore currents by differentially altering the configuration of multiple voltage-sensors. The sea anemone toxin anthopleurin B, which impairs open-channel inactivation, exclusively enhanced inward gating-pore currents through the DIV voltage-sensor. This indicates that trapping the DIV voltage-sensor in the resting configuration selectively impairs open-channel inactivation. Furthermore, these data indicate that although activation of all four voltage-sensors is not required for central-pore current generation, activation of the DII voltage-sensor is crucial. Overall, our data demonstrate that gating-pore currents can determine the mechanism of action for sodium channel gating modifiers with high precision. We propose this approach could be adapted to identify the molecular mechanisms of action for gating modifiers of various voltage-gated ion channels. PMID:24898004

  3. Electro-optic voltage sensor with beam splitting

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.; Davidson, James R.; Crawford, Thomas M.

    2002-01-01

    The invention is a miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware typically found in the prior art. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  4. Electro-optic voltage sensor with Multiple Beam Splitting

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.; Crawford, Thomas M.; Davidson, James R.

    2000-01-01

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  5. Electrooptic polymer voltage sensor and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Gottsche, Allan (Inventor); Perry, Joseph W. (Inventor)

    1993-01-01

    An optical voltage sensor utilizing an electrooptic polymer is disclosed for application to electric power distribution systems. The sensor, which can be manufactured at low cost in accordance with a disclosed method, measures voltages across a greater range than prior art sensors. The electrooptic polymer, which replaces the optical crystal used in prior art sensors, is sandwiched directly between two high voltage electrodes. Voltage is measured by fiber optical means, and no voltage division is required. The sample of electrooptic polymer is fabricated in a special mold and later mounted in a sensor housing. Alternatively, mold and sensor housing may be identical. The sensor housing is made out of a machinable polymeric material and is equipped with two opposing optical windows. The optical windows are mounted in the bottom of machined holes in the wall of the mold. These holes provide for mounting of the polarizing optical components and for mounting of the fiber optic connectors. One connecting fiber is equipped with a light emitting diode as a light source. Another connecting fiber is equipped with a photodiode as a detector.

  6. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.

    1999-01-01

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  7. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Woods, G.K.; Renak, T.W.

    1999-04-06

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 18 figs.

  8. Functional heterogeneity of the four voltage sensors of a human L-type calcium channel

    PubMed Central

    Pantazis, Antonios; Savalli, Nicoletta; Sigg, Daniel; Neely, Alan; Olcese, Riccardo

    2014-01-01

    Excitation-evoked Ca2+ influx is the fastest and most ubiquitous chemical trigger for cellular processes, including neurotransmitter release, muscle contraction, and gene expression. The voltage dependence and timing of Ca2+ entry are thought to be functions of voltage-gated calcium (CaV) channels composed of a central pore regulated by four nonidentical voltage-sensing domains (VSDs I–IV). Currently, the individual voltage dependence and the contribution to pore opening of each VSD remain largely unknown. Using an optical approach (voltage-clamp fluorometry) to track the movement of the individual voltage sensors, we discovered that the four VSDs of CaV1.2 channels undergo voltage-evoked conformational rearrangements, each exhibiting distinct voltage- and time-dependent properties over a wide range of potentials and kinetics. The voltage dependence and fast kinetic components in the activation of VSDs II and III were compatible with the ionic current properties, suggesting that these voltage sensors are involved in CaV1.2 activation. This view is supported by an obligatory model, in which activation of VSDs II and III is necessary to open the pore. When these data were interpreted in view of an allosteric model, where pore opening is intrinsically independent but biased by VSD activation, VSDs II and III were each found to supply ∼50 meV (∼2 kT), amounting to ∼85% of the total energy, toward stabilizing the open state, with a smaller contribution from VSD I (∼16 meV). VSD IV did not appear to participate in channel opening. PMID:25489110

  9. Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology

    PubMed Central

    Catterall, William A.

    2010-01-01

    Voltage-gated ion channels generate electrical signals in species from bacteria to man. Their voltage-sensing modules are responsible for initiation of action potentials and graded membrane potential changes in response to synaptic input and other physiological stimuli. Extensive structure-function studies, structure determination, and molecular modeling are now converging on a sliding-helix mechanism for electromechanical coupling in which outward movement of gating charges in the S4 transmembrane segments catalyzed by sequential formation of ion pairs pulls the S4-S5 linker, bends the S6 segment, and opens the pore. Impairment of voltage-sensor function by mutations in Na+ channels contributes to several ion channelopathies, and gating pore current conducted by mutant voltage sensors in NaV1.4 channels is the primary pathophysiological mechanism in Hypokalemic Periodic Paralysis. The emerging structural model for voltage sensor function opens the way to development of a new generation of ionchannel drugs that act on voltage sensors rather than blocking the pore. PMID:20869590

  10. Time varying voltage combustion control and diagnostics sensor

    DOEpatents

    Chorpening, Benjamin T.; Thornton, Jimmy D.; Huckaby, E. David; Fincham, William

    2011-04-19

    A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

  11. Phosphatidic acid modulation of Kv channel voltage sensor function.

    PubMed

    Hite, Richard K; Butterwick, Joel A; MacKinnon, Roderick

    2014-01-01

    Membrane phospholipids can function as potent regulators of ion channel function. This study uncovers and investigates the effect of phosphatidic acid on Kv channel gating. Using the method of reconstitution into planar lipid bilayers, in which protein and lipid components are defined and controlled, we characterize two effects of phosphatidic acid. The first is a non-specific electrostatic influence on activation mediated by electric charge density on the extracellular and intracellular membrane surfaces. The second is specific to the presence of a primary phosphate group, acts only through the intracellular membrane leaflet and depends on the presence of a particular arginine residue in the voltage sensor. Intracellular phosphatidic acid accounts for a nearly 50 mV shift in the midpoint of the activation curve in a direction consistent with stabilization of the voltage sensor's closed conformation. These findings support a novel mechanism of voltage sensor regulation by the signaling lipid phosphatidic acid. PMID:25285449

  12. High-voltage pixel sensors for ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  13. Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2012-01-01

    We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 C. The previously observed maximum drift of +/- 10 mV of the reference offset voltage at 600 C was reduced to within +/- 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructure and phase changes occurring within the contact metallization, as analyzed by Auger electron spectroscopy and field emission scanning electron microscopy. The results have helped to identify the upper temperature reliable operational limit of this particular metallization scheme to be 605 C.

  14. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions

    PubMed Central

    Sung, Uhna; Sepehri-Rad, Masoud; Piao, Hong Hua; Jin, Lei; Hughes, Thomas; Cohen, Lawrence B.; Baker, Bradley J.

    2015-01-01

    FRET (Förster Resonance Energy Transfer)-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP) voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different “Nabi1” constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms) and signal decay (~3 ms). We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP) and mRuby2 (acceptor FP) to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz. PMID:26587834

  15. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions.

    PubMed

    Sung, Uhna; Sepehri-Rad, Masoud; Piao, Hong Hua; Jin, Lei; Hughes, Thomas; Cohen, Lawrence B; Baker, Bradley J

    2015-01-01

    FRET (Förster Resonance Energy Transfer)-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP) voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different "Nabi1" constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms) and signal decay (~3 ms). We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP) and mRuby2 (acceptor FP) to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz. PMID:26587834

  16. Optical fiber voltage sensors for broad temperature ranges

    NASA Technical Reports Server (NTRS)

    Rose, A. H.; Day, G. W.

    1992-01-01

    We describe the development of an optical fiber ac voltage sensor for aircraft and spacecraft applications. Among the most difficult specifications to meet for this application is a temperature stability of +/- 1 percent from -65 C to +125 C. This stability requires a careful selection of materials, components, and optical configuration with further compensation using an optical-fiber temperature sensor located near the sensing element. The sensor is a polarimetric design, based on the linear electro-optic effect in bulk Bi4Ge3O12. The temperature sensor is also polarimetric, based on the temperature dependence of the birefringence of bulk SiO2. The temperature sensor output is used to automatically adjust the calibration of the instrument.

  17. Engineering of a Genetically Encodable Fluorescent Voltage Sensor Exploiting Fast Ci-VSP Voltage-Sensing Movements

    PubMed Central

    Lundby, Alicia; Mutoh, Hiroki; Dimitrov, Dimitar; Akemann, Walther; Knöpfel, Thomas

    2008-01-01

    Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement (‘gating’ current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP) in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs. PMID:18575613

  18. Structural interactions of a voltage sensor toxin with lipid membranes

    PubMed Central

    Mihailescu, Mihaela; Krepkiy, Dmitriy; Milescu, Mirela; Gawrisch, Klaus; Swartz, Kenton J.; White, Stephen

    2014-01-01

    Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor. PMID:25453087

  19. Structural interactions of a voltage sensor toxin with lipid membranes.

    PubMed

    Mihailescu, Mihaela; Krepkiy, Dmitriy; Milescu, Mirela; Gawrisch, Klaus; Swartz, Kenton J; White, Stephen

    2014-12-16

    Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor. PMID:25453087

  20. Voltage-Biased Magnetic Sensors Based on Tuned Varistors

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.; Stapleton, William. A.; Sutanto, Ivan; Shamsuzzoha, M.

    2015-04-01

    In this paper, we explore the possibility of finding practical applications when the nonlinear current-voltage ( I- V) characteristics of a varistor are modified by the application of external magnetic fields. With this goal in mind, varistors based on a pseudobrookite oxide semiconductor have been studied. Pseudobrookite (PsB) is a wide bandgap n-type semiconductor with the bandgap of 2.77 eV. It is also weakly ferromagnetic. The "voltage-dependent resistor" (VDR) mode of the magnetically-tuned pseudobrookite varistors offers an opportunity to advance magnetic sensor technology. The resistive and magnetoresistive parameters of PsB VDRs exhibit good responses to applied magnetic fields and they can therefore be the basis for the fabrication of simple yet practical magnetic sensors. These sensors can cover the range of magnetic fields between 0 and 4500 Oe with good accuracy, and could possibly be considered as a substitute for Hall Effect-based sensors for many applications. Also, due to their simple structure, they would be rugged and not susceptible to abuses. They may also be suitable for applications in hazardous environments such as high temperatures and atmospheres having the presence of radiation, such as neutrons, protons, etc. It is also possible that these novel sensors could be suitable for geological applications such as in well logging in search of energy sources.

  1. A vesicle-trafficking protein commandeers Kv channel voltage sensors for voltage-dependent secretion.

    PubMed

    Grefen, Christopher; Karnik, Rucha; Larson, Emily; Lefoulon, Cécile; Wang, Yizhou; Waghmare, Sakharam; Zhang, Ben; Hills, Adrian; Blatt, Michael R

    2015-01-01

    Growth in plants depends on ion transport for osmotic solute uptake and secretory membrane trafficking to deliver material for wall remodelling and cell expansion. The coordination of these processes lies at the heart of the question, unresolved for more than a century, of how plants regulate cell volume and turgor. Here we report that the SNARE protein SYP121 (SYR1/PEN1), which mediates vesicle fusion at the Arabidopsis plasma membrane, binds the voltage sensor domains (VSDs) of K(+) channels to confer a voltage dependence on secretory traffic in parallel with K(+) uptake. VSD binding enhances secretion in vivo subject to voltage, and mutations affecting VSD conformation alter binding and secretion in parallel with channel gating, net K(+) concentration, osmotic content and growth. These results demonstrate a new and unexpected mechanism for secretory control, in which a subset of plant SNAREs commandeer K(+) channel VSDs to coordinate membrane trafficking with K(+) uptake for growth.

  2. Design and Simulation Test of an Open D-Dot Voltage Sensor.

    PubMed

    Bai, Yunjie; Wang, Jingang; Wei, Gang; Yang, Yongming

    2015-09-17

    Nowadays, sensor development focuses on miniaturization and non-contact measurement. According to the D-dot principle, a D-dot voltage sensor with a new structure was designed based on the differential D-dot sensor with a symmetrical structure, called an asymmetric open D-dot voltage sensor. It is easier to install. The electric field distribution of the sensor was analyzed through Ansoft Maxwell and an open D-dot voltage sensor was designed. This open D-voltage sensor is characteristic of accessible insulating strength and small electric field distortion. The steady and transient performance test under 10 kV-voltage reported satisfying performances of the designed open D-dot voltage sensor. It conforms to requirements for a smart grid measuring sensor in intelligence, miniaturization and facilitation.

  3. Design and Simulation Test of an Open D-Dot Voltage Sensor

    PubMed Central

    Bai, Yunjie; Wang, Jingang; Wei, Gang; Yang, Yongming

    2015-01-01

    Nowadays, sensor development focuses on miniaturization and non-contact measurement. According to the D-dot principle, a D-dot voltage sensor with a new structure was designed based on the differential D-dot sensor with a symmetrical structure, called an asymmetric open D-dot voltage sensor. It is easier to install. The electric field distribution of the sensor was analyzed through Ansoft Maxwell and an open D-dot voltage sensor was designed. This open D-voltage sensor is characteristic of accessible insulating strength and small electric field distortion. The steady and transient performance test under 10 kV-voltage reported satisfying performances of the designed open D-dot voltage sensor. It conforms to requirements for a smart grid measuring sensor in intelligence, miniaturization and facilitation. PMID:26393590

  4. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Davidson, James R.; Crawford, Thomas M.; Seifert, Gary D.

    2002-03-26

    A miniature electro-optic voltage sensor and system capable of accurate operation at high voltages has a sensor body disposed in an E-field. The body receives a source beam of electromagnetic radiation. A polarization beam displacer separates the source light beam into two beams with orthogonal linear polarizations. A wave plate rotates the linear polarization to rotated polarization. A transducer utilizes Pockels electro-optic effect and induces a differential phase shift on the major and minor axes of the rotated polarization in response to the E-field. A prism redirects the beam back through the transducer, wave plate, and polarization beam displacer. The prism also converts the rotated polarization to circular or elliptical polarization. The wave plate rotates the major and minor axes of the circular or elliptical polarization to linear polarization. The polarization beam displacer separates the beam into two beams of orthogonal linear polarization representing the major and minor axes. The system may have a transmitter for producing the beam of electro-magnetic radiation; a detector for converting the two beams into electrical signals; and a signal processor for determining the voltage.

  5. Monitoring Brain Activity with Protein Voltage and Calcium Sensors

    PubMed Central

    Storace, Douglas A.; Braubach, Oliver R.; Jin, Lei; Cohen, Lawrence B.; Sung, Uhna

    2015-01-01

    Understanding the roles of different cell types in the behaviors generated by neural circuits requires protein indicators that report neural activity with high spatio-temporal resolution. Genetically encoded fluorescent protein (FP) voltage sensors, which optically report the electrical activity in distinct cell populations, are, in principle, ideal candidates. Here we demonstrate that the FP voltage sensor ArcLight reports odor-evoked electrical activity in the in vivo mammalian olfactory bulb in single trials using both wide-field and 2-photon imaging. ArcLight resolved fast odorant-responses in individual glomeruli, and distributed odorant responses across a population of glomeruli. Comparisons between ArcLight and the protein calcium sensors GCaMP3 and GCaMP6f revealed that ArcLight had faster temporal kinetics that more clearly distinguished activity elicited by individual odorant inspirations. In contrast, the signals from both GCaMPs were a saturating integral of activity that returned relatively slowly to the baseline. ArcLight enables optical electrophysiology of mammalian neuronal population activity in vivo. PMID:25970202

  6. Monitoring brain activity with protein voltage and calcium sensors.

    PubMed

    Storace, Douglas A; Braubach, Oliver R; Jin, Lei; Cohen, Lawrence B; Sung, Uhna

    2015-05-13

    Understanding the roles of different cell types in the behaviors generated by neural circuits requires protein indicators that report neural activity with high spatio-temporal resolution. Genetically encoded fluorescent protein (FP) voltage sensors, which optically report the electrical activity in distinct cell populations, are, in principle, ideal candidates. Here we demonstrate that the FP voltage sensor ArcLight reports odor-evoked electrical activity in the in vivo mammalian olfactory bulb in single trials using both wide-field and 2-photon imaging. ArcLight resolved fast odorant-responses in individual glomeruli, and distributed odorant responses across a population of glomeruli. Comparisons between ArcLight and the protein calcium sensors GCaMP3 and GCaMP6f revealed that ArcLight had faster temporal kinetics that more clearly distinguished activity elicited by individual odorant inspirations. In contrast, the signals from both GCaMPs were a saturating integral of activity that returned relatively slowly to the baseline. ArcLight enables optical electrophysiology of mammalian neuronal population activity in vivo.

  7. Voltage-Current Characteristics of Plasma Pressure Sensor

    NASA Astrophysics Data System (ADS)

    Matlis, Eric; Corke, Thomas; Marshall, Curtis; Gogineni, Sivaram; University of Notre Dame Team; Spectral Energies Team

    2012-11-01

    A pressure sensor based on the use of plasma as the sensing element is being developed. This is an AC-driven, continuous-wave plasma which is encapsulated between two metallic bare electrodes with a small air gap on the order of 0.03 mm. The sensor uses a non-equilibrium discharge at less than 20 Watts of power. This devices features an amplitude modulated carrier to measure both mean and dynamic pressure. The frequency response is limited only by the carrier frequency which can be as high as 1 MHz. Glow-to-Arc transition is controlled with the use of a capacitive and resistive circuit in series with the discharge. A pressure chamber is used to document the plasma power characteristics as the ambient pressure is controlled from atmospheric to 100 psi. Plasma power is controlled so as to maintain the plasma in the normal and abnormal glow regimes. The phase angle between voltage and current is recorded as a function of pressure. This analysis will aid in the development of a feedback control and calibration of the pressure sensor. NavAir SBIR.

  8. Non-contact current and voltage sensor having detachable housing incorporating multiple ferrite cylinder portions

    DOEpatents

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C.; Schappert, Michael A.

    2016-04-26

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing formed from two portions that mechanically close around the wire and that contain the current and voltage sensors. The current sensor is a ferrite cylinder formed from at least three portions that form the cylinder when the sensor is closed around the wire with a hall effect sensor disposed in a gap between two of the ferrite portions along the circumference to measure current. A capacitive plate or wire is disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  9. Proton currents constrain structural models of voltage sensor activation

    PubMed Central

    Randolph, Aaron L; Mokrab, Younes; Bennett, Ashley L; Sansom, Mark SP; Ramsey, Ian Scott

    2016-01-01

    The Hv1 proton channel is evidently unique among voltage sensor domain proteins in mediating an intrinsic ‘aqueous’ H+ conductance (GAQ). Mutation of a highly conserved ‘gating charge’ residue in the S4 helix (R1H) confers a resting-state H+ ‘shuttle’ conductance (GSH) in VGCs and Ci VSP, and we now report that R1H is sufficient to reconstitute GSH in Hv1 without abrogating GAQ. Second-site mutations in S3 (D185A/H) and S4 (N4R) experimentally separate GSH and GAQ gating, which report thermodynamically distinct initial and final steps, respectively, in the Hv1 activation pathway. The effects of Hv1 mutations on GSH and GAQ are used to constrain the positions of key side chains in resting- and activated-state VS model structures, providing new insights into the structural basis of VS activation and H+ transfer mechanisms in Hv1. DOI: http://dx.doi.org/10.7554/eLife.18017.001 PMID:27572256

  10. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.

    PubMed

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-12-30

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  11. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line

    PubMed Central

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-01-01

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid. PMID:26729119

  12. Direct Interaction between the Voltage Sensors Produces Cooperative Sustained Deactivation in Voltage-gated H+ Channel Dimers.

    PubMed

    Okuda, Hiroko; Yonezawa, Yasushige; Takano, Yu; Okamura, Yasushi; Fujiwara, Yuichiro

    2016-03-11

    The voltage-gated H(+) channel (Hv) is a voltage sensor domain-like protein consisting of four transmembrane segments (S1-S4). The native Hv structure is a homodimer, with the two channel subunits functioning cooperatively. Here we show that the two voltage sensor S4 helices within the dimer directly cooperate via a π-stacking interaction between Trp residues at the middle of each segment. Scanning mutagenesis showed that Trp situated around the original position provides the slow gating kinetics characteristic of the dimer's cooperativity. Analyses of the Trp mutation on the dimeric and monomeric channel backgrounds and analyses with tandem channel constructs suggested that the two Trp residues within the dimer are functionally coupled during Hv deactivation but are less so during activation. Molecular dynamics simulation also showed direct π-stacking of the two Trp residues. These results provide new insight into the cooperative function of voltage-gated channels, where adjacent voltage sensor helices make direct physical contact and work as a single unit according to the gating process. PMID:26755722

  13. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom

    NASA Astrophysics Data System (ADS)

    Lee, Seok-Yong; MacKinnon, Roderick

    2004-07-01

    Venomous animals produce small protein toxins that inhibit ion channels with high affinity. In several well-studied cases the inhibitory proteins are water-soluble and bind at a channel's aqueous-exposed extracellular surface. Here we show that a voltage-sensor toxin (VSTX1) from the Chilean Rose Tarantula (Grammostola spatulata) reaches its target by partitioning into the lipid membrane. Lipid membrane partitioning serves two purposes: to localize the toxin in the membrane where the voltage sensor resides and to exploit the free energy of partitioning to achieve apparent high-affinity inhibition. VSTX1, small hydrophobic poisons and anaesthetic molecules reveal a common theme of voltage sensor inhibition through lipid membrane access. The apparent requirement for such access is consistent with the recent proposal that the sensor in voltage-dependent K+ channels is located at the membrane-protein interface.

  14. A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a.

    PubMed

    Bende, Niraj S; Dziemborowicz, Sławomir; Mobli, Mehdi; Herzig, Volker; Gilchrist, John; Wagner, Jordan; Nicholson, Graham M; King, Glenn F; Bosmans, Frank

    2014-07-11

    β-Diguetoxin-Dc1a (Dc1a) is a toxin from the desert bush spider Diguetia canities that incapacitates insects at concentrations that are non-toxic to mammals. Dc1a promotes opening of German cockroach voltage-gated sodium (Nav) channels (BgNav1), whereas human Nav channels are insensitive. Here, by transplanting commonly targeted S3b-S4 paddle motifs within BgNav1 voltage sensors into Kv2.1, we find that Dc1a interacts with the domain II voltage sensor. In contrast, Dc1a has little effect on sodium currents mediated by PaNav1 channels from the American cockroach even though their domain II paddle motifs are identical. When exploring regions responsible for PaNav1 resistance to Dc1a, we identified two residues within the BgNav1 domain II S1-S2 loop that when mutated to their PaNav1 counterparts drastically reduce toxin susceptibility. Overall, our results reveal a distinct region within insect Nav channels that helps determine Dc1a sensitivity, a concept that will be valuable for the design of insect-selective insecticides.

  15. A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a

    NASA Astrophysics Data System (ADS)

    Bende, Niraj S.; Dziemborowicz, Sławomir; Mobli, Mehdi; Herzig, Volker; Gilchrist, John; Wagner, Jordan; Nicholson, Graham M.; King, Glenn F.; Bosmans, Frank

    2014-07-01

    β-Diguetoxin-Dc1a (Dc1a) is a toxin from the desert bush spider Diguetia canities that incapacitates insects at concentrations that are non-toxic to mammals. Dc1a promotes opening of German cockroach voltage-gated sodium (Nav) channels (BgNav1), whereas human Nav channels are insensitive. Here, by transplanting commonly targeted S3b-S4 paddle motifs within BgNav1 voltage sensors into Kv2.1, we find that Dc1a interacts with the domain II voltage sensor. In contrast, Dc1a has little effect on sodium currents mediated by PaNav1 channels from the American cockroach even though their domain II paddle motifs are identical. When exploring regions responsible for PaNav1 resistance to Dc1a, we identified two residues within the BgNav1 domain II S1-S2 loop that when mutated to their PaNav1 counterparts drastically reduce toxin susceptibility. Overall, our results reveal a distinct region within insect Nav channels that helps determine Dc1a sensitivity, a concept that will be valuable for the design of insect-selective insecticides.

  16. A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a

    PubMed Central

    Bende, Niraj S; Dziemborowicz, Slawomir; Mobli, Mehdi; Herzig, Volker; Gilchrist, John; Wagner, Jordan; Nicholson, Graham M; King, Glenn F; Bosmans, Frank

    2014-01-01

    β-Diguetoxin-Dc1a (Dc1a) is a toxin from the desert bush spider Diguetia canities that incapacitates insects at concentrations that are non-toxic to mammals. Dc1a promotes opening of German cockroach voltage-gated sodium (Nav) channels (BgNav1), whereas human Nav channels are insensitive. Here, by transplanting commonly targeted S3b-S4 paddle motifs within BgNav1 voltage sensors into Kv2.1, we find that Dc1a interacts with the domain II voltage sensor. In contrast, Dc1a has little effect on sodium currents mediated by PaNav1 channels from the American cockroach even though their domain II paddle motifs are identical. When exploring regions responsible for PaNav1 resistance to Dc1a, we identified two residues within the BgNav1 domain II S1–S2 loop that when mutated to their PaNav1 counterparts drastically reduce toxin susceptibility. Overall, our results reveal a distinct region within insect Nav channels that helps determine Dc1a sensitivity, aconcept that will be valuable for the design of insect-selective insecticides. PMID:25014760

  17. Results of the 2015 testbeam of a 180 nm AMS High-Voltage CMOS sensor prototype

    NASA Astrophysics Data System (ADS)

    Benoit, M.; Bilbao de Mendizabal, J.; Casse, G.; Chen, H.; Chen, K.; Di Bello, F. A.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Iacobucci, G.; Lanni, F.; Liu, H.; Meloni, F.; Meng, L.; Miucci, A.; Muenstermann, D.; Nessi, M.; Perić, I.; Rimoldi, M.; Ristic, B.; Barrero Pinto, M. Vicente; Vossebeld, J.; Weber, M.; Wu, W.; Xu, L.

    2016-07-01

    Active pixel sensors based on the High-Voltage CMOS technology are being investigated as a viable option for the future pixel tracker of the ATLAS experiment at the High-Luminosity LHC. This paper reports on the testbeam measurements performed at the H8 beamline of the CERN Super Proton Synchrotron on a High-Voltage CMOS sensor prototype produced in 180 nm AMS technology. Results in terms of tracking efficiency and timing performance, for different threshold and bias conditions, are shown.

  18. Normal-zone detection in tokamak superconducting magnets with Co- wound voltage sensors

    SciTech Connect

    Martovetsky, N.N.; Chaplin, M.R.

    1995-06-08

    This paper discusses advantages and disadvantages of different locations of co-wound voltage sensors for quench detection in tokamak magnets with a cable-in-conduit conductor. The voltage sensor locations are analyzed and estimates of the anticipated noise vs. dB/dt are derived for transverse, parallel, and self fields. The LLNL Noise Rejection Experiment, also described here, is designed to verify theoretical expectations on a copper cable exposed to these fields that will simulate the tokamak field environment.

  19. TAMDAR Sensor Validation in 2003 AIRS II

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Murray, John J.; Anderson, Mark V.; Mulally, Daniel J.; Jensen, Kristopher R.; Grainger, Cedric A.; Delene, David J.

    2005-01-01

    This study entails an assessment of TAMDAR in situ temperature, relative humidity and winds sensor data from seven flights of the UND Citation II. These data are undergoing rigorous assessment to determine their viability to significantly augment domestic Meteorological Data Communications Reporting System (MDCRS) and the international Aircraft Meteorological Data Reporting (AMDAR) system observational databases to improve the performance of regional and global numerical weather prediction models. NASA Langley Research Center participated in the Second Alliance Icing Research Study from November 17 to December 17, 2003. TAMDAR data taken during this period is compared with validation data from the UND Citation. The data indicate acceptable performance of the TAMDAR sensor when compared to measurements from the UND Citation research instruments.

  20. Advanced Sensors for Accurate, Broadband AC Voltage Metrology

    NASA Astrophysics Data System (ADS)

    Lipe, Thomas E.; Kinard, Joseph R.; Novotny, Donald B.; Sims, June E.

    2013-06-01

    We report on advances in ac voltage metrology made possible by a new generation of Multijunction Thermal Converters (MJTCs). Although intended for use primarily in high-frequency (1 MHz to 100 MHz) metrology, their exceptional low-frequency qualities, combined with a large dynamic range, makes these MJTCs excellent devices for the frequency range 10 Hz to 100 MHz at voltages from 1 V to 20 V, depending on the design. We anticipate that these devices will form the future basis for ac voltage metrology at the National Institute of Standards and Technology (NIST).

  1. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    SciTech Connect

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  2. Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels

    PubMed Central

    Lau, Carus H. Y.; King, Glenn F.; Mobli, Mehdi

    2016-01-01

    Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating, and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels. PMID:27677715

  3. Planar LTCC transformers for high voltage flyback converters: Part II.

    SciTech Connect

    Schofield, Daryl; Schare, Joshua M., Ph.D.; Slama, George; Abel, David

    2009-02-01

    This paper is a continuation of the work presented in SAND2007-2591 'Planar LTCC Transformers for High Voltage Flyback Converters'. The designs in that SAND report were all based on a ferrite tape/dielectric paste system originally developed by NASCENTechnoloy, Inc, who collaborated in the design and manufacturing of the planar LTCC flyback converters. The output/volume requirements were targeted to DoD application for hard target/mini fuzing at around 1500 V for reasonable primary peak currents. High voltages could be obtained but with considerable higher current. Work had begun on higher voltage systems and is where this report begins. Limits in material properties and processing capabilities show that the state-of-the-art has limited our practical output voltage from such a small part volume. In other words, the technology is currently limited within the allowable funding and interest.

  4. KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps

    NASA Astrophysics Data System (ADS)

    Barro-Soria, Rene; Rebolledo, Santiago; Liin, Sara I.; Perez, Marta E.; Sampson, Kevin J.; Kass, Robert S.; Larsson, H. Peter

    2014-04-01

    The functional properties of KCNQ1 channels are highly dependent on associated KCNE-β subunits. Mutations in KCNQ1 or KCNE subunits can cause congenital channelopathies, such as deafness, cardiac arrhythmias and epilepsy. The mechanism by which KCNE1-β subunits slow the kinetics of KCNQ1 channels is a matter of current controversy. Here we show that KCNQ1/KCNE1 channel activation occurs in two steps: first, mutually independent voltage sensor movements in the four KCNQ1 subunits generate the main gating charge movement and underlie the initial delay in the activation time course of KCNQ1/KCNE1 currents. Second, a slower and concerted conformational change of all four voltage sensors and the gate, which opens the KCNQ1/KCNE1 channel. Our data show that KCNE1 divides the voltage sensor movement into two steps with widely different voltage dependences and kinetics. The two voltage sensor steps in KCNQ1/KCNE1 channels can be pharmacologically isolated and further separated by a disease-causing mutation.

  5. Voltage dependence of Hodgkin-Huxley rate functions for a multistage K+ channel voltage sensor within a membrane

    NASA Astrophysics Data System (ADS)

    Vaccaro, S. R.

    2014-11-01

    The activation of a K+channel sensor in two sequential stages during a voltage clamp may be described as the translocation of a Brownian particle in an energy landscape with two large barriers between states. A solution of the Smoluchowski equation for a square-well approximation to the potential function of the S4 voltage sensor satisfies a master equation and has two frequencies that may be determined from the forward and backward rate functions. When the higher-frequency terms have small amplitude, the solution reduces to the relaxation of a rate equation, where the derived two-state rate functions are dependent on the relative magnitude of the forward rates (α and γ ) and the backward rates (β and δ ) for each stage. In particular, the voltage dependence of the Hodgkin-Huxley rate functions for a K+channel may be derived by assuming that the rate functions of the first stage are large relative to those of the second stage—α ≫γ and β ≫δ . For a Shaker IR K+ channel, the first forward and backward transitions are rate limiting (α <γ and δ ≪β ), and for an activation process with either two or three stages, the derived two-state rate functions also have a voltage dependence that is of a similar form to that determined for the squid axon. The potential variation generated by the interaction between a two-stage K+ ion channel and a noninactivating Na+ ion channel is determined by the master equation for K+channel activation and the ionic current equation when the Na+channel activation time is small, and if β ≪δ and α ≪γ , the system may exhibit a small amplitude oscillation between spikes, or mixed-mode oscillation, in which the slow closed state modulates the K+ ion channel conductance in the membrane.

  6. Investigation of leakage current and breakdown voltage in irradiated double-sided 3D silicon sensors

    NASA Astrophysics Data System (ADS)

    Dalla Betta, G.-F.; Ayllon, N.; Boscardin, M.; Hoeferkamp, M.; Mattiazzo, S.; McDuff, H.; Mendicino, R.; Povoli, M.; Seidel, S.; Sultan, D. M. S.; Zorzi, N.

    2016-09-01

    We report on an experimental study aimed at gaining deeper insight into the leakage current and breakdown voltage of irradiated double-sided 3D silicon sensors from FBK, so as to improve both the design and the fabrication technology for use at future hadron colliders such as the High Luminosity LHC. Several 3D diode samples of different technologies and layout are considered, as well as several irradiations with different particle types. While the leakage current follows the expected linear trend with radiation fluence, the breakdown voltage is found to depend on both the bulk damage and the surface damage, and its values can vary significantly with sensor geometry and process details.

  7. KCNE3 acts by promoting voltage sensor activation in KCNQ1

    PubMed Central

    Barro-Soria, Rene; Perez, Marta E.; Larsson, H. Peter

    2015-01-01

    KCNE β-subunits assemble with and modulate the properties of voltage-gated K+ channels. In the colon, stomach, and kidney, KCNE3 coassembles with the α-subunit KCNQ1 to form K+ channels important for K+ and Cl− secretion that appear to be voltage-independent. How KCNE3 subunits turn voltage-gated KCNQ1 channels into apparent voltage-independent KCNQ1/KCNE3 channels is not completely understood. Different mechanisms have been proposed to explain the effect of KCNE3 on KCNQ1 channels. Here, we use voltage clamp fluorometry to determine how KCNE3 affects the voltage sensor S4 and the gate of KCNQ1. We find that S4 moves in KCNQ1/KCNE3 channels, and that inward S4 movement closes the channel gate. However, KCNE3 shifts the voltage dependence of S4 movement to extreme hyperpolarized potentials, such that in the physiological voltage range, the channel is constitutively conducting. By separating S4 movement and gate opening, either by a mutation or PIP2 depletion, we show that KCNE3 directly affects the S4 movement in KCNQ1. Two negatively charged residues of KCNE3 (D54 and D55) are found essential for the effect of KCNE3 on KCNQ1 channels, mainly exerting their effects by an electrostatic interaction with R228 in S4. Our results suggest that KCNE3 primarily affects the voltage-sensing domain and only indirectly affects the gate. PMID:26668384

  8. Hybrid voltage sensor imaging of electrical activity from neurons in hippocampal slices from transgenic mice

    PubMed Central

    Wang, Dongsheng; McMahon, Shane; Zhang, Zhen

    2012-01-01

    Gene targeting with genetically encoded optical voltage sensors brings the methods of voltage imaging to genetically defined neurons and offers a method of studying circuit activity in these selected populations. The present study reports the targeting of genetically encoded hybrid voltage sensors (hVOS) to neurons in transgenic mice. The hVOS family of probes employs a membrane-targeted fluorescent protein, which generates voltage-dependent fluorescence changes in the presence of dipicrylamine (DPA) as the result of a voltage-dependent optical interaction between the two molecules. We generated transgenic mice with two different high-performance hVOS probes under control of a neuron-specific thy-1 promoter. Hippocampal slices from these animals present distinct spatial patterns of expression, and electrical stimulation evoked fluorescence changes as high as 3%. Glutamate receptor and Na+ channel antagonists blocked these responses. One hVOS probe tested here harbors an axonal targeting motif (from GAP-43) and shows preferential expression in axons; this probe can thus report axonal voltage changes. Voltage imaging in transgenic mice expressing hVOS probes opens the door to the study of functional activity in genetically defined populations of neurons in intact neural circuits. PMID:22993267

  9. Targeting the voltage sensor of Kv7.2 voltage-gated K+ channels with a new gating-modifier

    PubMed Central

    Peretz, Asher; Pell, Liat; Gofman, Yana; Haitin, Yoni; Shamgar, Liora; Patrich, Eti; Kornilov, Polina; Gourgy-Hacohen, Orit; Ben-Tal, Nir; Attali, Bernard

    2010-01-01

    The pore and gate regions of voltage-gated cation channels have been often targeted with drugs acting as channel modulators. In contrast, the voltage-sensing domain (VSD) was practically not exploited for therapeutic purposes, although it is the target of various toxins. We recently designed unique diphenylamine carboxylates that are powerful Kv7.2 voltage-gated K+ channel openers or blockers. Here we show that a unique Kv7.2 channel opener, NH29, acts as a nontoxin gating modifier. NH29 increases Kv7.2 currents, thereby producing a hyperpolarizing shift of the activation curve and slowing both activation and deactivation kinetics. In neurons, the opener depresses evoked spike discharges. NH29 dampens hippocampal glutamate and GABA release, thereby inhibiting excitatory and inhibitory postsynaptic currents. Mutagenesis and modeling data suggest that in Kv7.2, NH29 docks to the external groove formed by the interface of helices S1, S2, and S4 in a way that stabilizes the interaction between two conserved charged residues in S2 and S4, known to interact electrostatically, in the open state of Kv channels. Results indicate that NH29 may operate via a voltage-sensor trapping mechanism similar to that suggested for scorpion and sea-anemone toxins. Reflecting the promiscuous nature of the VSD, NH29 is also a potent blocker of TRPV1 channels, a feature similar to that of tarantula toxins. Our data provide a structural framework for designing unique gating-modifiers targeted to the VSD of voltage-gated cation channels and used for the treatment of hyperexcitability disorders. PMID:20713704

  10. Motility voltage sensor of the outer hair cell resides within the lateral plasma membrane.

    PubMed Central

    Huang, G; Santos-Sacchi, J

    1994-01-01

    The outer hair cell (OHC) from the organ of Corti is believed to be responsible for the mammal's exquisite sense of hearing. A membrane-based motile response of this cell underlies the initial processing of acoustic energy. The voltage-dependent capacitance of the OHC, possibly reflecting charge movement of the motility voltage sensor, was measured in cells during intracellular dialysis of trypsin under whole cell voltage clamp. Within 10 min after dialysis, light and electron microscopic examination revealed that the subplasmalemmal structures, including the cytoskeletal framework and subsurface cisternae, were disrupted and/or detached from adjacent plasma membrane. Dialysis of heat-inactivated trypsin produced no changes in cell structure. Simultaneous measures of linear and nonlinear membrane capacitance revealed minimal changes, indicating that contributions by subsurface structures to the generation of the nonlinear capacitance are unlikely. This study strongly suggests that voltage-dependent charge movement in the OHC reflects properties of the force generator's voltage sensor and that the sensor/motor resides solely within the lateral plasma membrane. Images PMID:7991617

  11. Observation of pressure stimulated voltages in rocks using an electric potential sensor

    SciTech Connect

    Aydin, A.; Prance, R. J.; Prance, H.; Harland, C. J.

    2009-09-21

    Recent interest in the electrical activity in rock and the use of electric field transients as candidates for earthquake precursors has led to studies of pressure stimulated currents in laboratory samples. In this paper, an electric field sensor is used to measure directly the voltages associated with these currents. Stress was applied as uniaxial compression to marble and granite at an approximately constant rate. In contrast with the small pressure stimulated currents previously measured, large voltage signals are reported. Polarity reversal of the signal was observed immediately before fracture for the marble, in agreement with previous pressure stimulated current studies.

  12. Voltage-sensor transitions of the inward-rectifying K+ channel KAT1 indicate a latching mechanism biased by hydration within the voltage sensor.

    PubMed

    Lefoulon, Cécile; Karnik, Rucha; Honsbein, Annegret; Gutla, Paul Vijay; Grefen, Christopher; Riedelsberger, Janin; Poblete, Tomás; Dreyer, Ingo; Gonzalez, Wendy; Blatt, Michael R

    2014-10-01

    The Kv-like (potassium voltage-dependent) K(+) channels at the plasma membrane, including the inward-rectifying KAT1 K(+) channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K(+) homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K(+) channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-directed mutagenesis to explore residues that are thought to form two electrostatic countercharge centers on either side of a conserved phenylalanine (Phe) residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the countercharge centers favored the open channel. Modeling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in the context of the effects on hydration of amino acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel. PMID:25185120

  13. Voltage-sensor transitions of the inward-rectifying K+ channel KAT1 indicate a latching mechanism biased by hydration within the voltage sensor.

    PubMed

    Lefoulon, Cécile; Karnik, Rucha; Honsbein, Annegret; Gutla, Paul Vijay; Grefen, Christopher; Riedelsberger, Janin; Poblete, Tomás; Dreyer, Ingo; Gonzalez, Wendy; Blatt, Michael R

    2014-10-01

    The Kv-like (potassium voltage-dependent) K(+) channels at the plasma membrane, including the inward-rectifying KAT1 K(+) channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K(+) homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K(+) channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-directed mutagenesis to explore residues that are thought to form two electrostatic countercharge centers on either side of a conserved phenylalanine (Phe) residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the countercharge centers favored the open channel. Modeling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in the context of the effects on hydration of amino acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel.

  14. Voltage-Sensor Transitions of the Inward-Rectifying K+ Channel KAT1 Indicate a Latching Mechanism Biased by Hydration within the Voltage Sensor1[W][OPEN

    PubMed Central

    Lefoulon, Cécile; Karnik, Rucha; Honsbein, Annegret; Gutla, Paul Vijay; Grefen, Christopher; Riedelsberger, Janin; Poblete, Tomás; Dreyer, Ingo; Gonzalez, Wendy; Blatt, Michael R.

    2014-01-01

    The Kv-like (potassium voltage-dependent) K+ channels at the plasma membrane, including the inward-rectifying KAT1 K+ channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K+ homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K+ channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-directed mutagenesis to explore residues that are thought to form two electrostatic countercharge centers on either side of a conserved phenylalanine (Phe) residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the countercharge centers favored the open channel. Modeling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in the context of the effects on hydration of amino acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel. PMID:25185120

  15. A Bragg grating tunable filter based on temperature control system to demodulate a voltage sensor

    NASA Astrophysics Data System (ADS)

    Ribeiro, Bessie A.; Werneck, Marcelo M.; de Nazaré, Fabio B. V.; Gonçalves, Marceli N.

    2015-09-01

    This work presents an innovative automated Fiber Bragg Grating (FBG) based tunable optical filter (TOF) controlled by temperature to be used in temperature compensating schemes in FBG sensing set-ups. Mechanical and electronic aspects are discussed, and the implemented FBG-TOF viability and reliability in sensing systems are showed. The system was employed to demodulate a high voltage AC signal applied to a FBG-PZT sensor, showing good linearity and sensitivity.

  16. Co-wound voltage sensor R&D for TPX magnets

    SciTech Connect

    Chaplin, M.R.; Martovetsky, N.N.; Zbasnik, J.

    1995-09-29

    The Tokamak Physics Experiment (TPX) will be the first tokamak to use superconducting cable-in-conduit-conductors (CICC) in all Poloidal Field (PF) & Toroidal Field (TF) magnets. Conventional quench detection, the measurement of small resistive normal-zone voltages (<1 V) in the magnets will be complicated by the presence of large inductive voltages (>4 kV). In the quench detection design for TPX, we have considered several different locations for internal co-wound voltage sensors in the cable cross-section as the primary mechanism to cancel this inductive noise. The Noise Rejection Experiment (NRE) at LLNL and the Noise Injection Experiment (NIE) at MIT have been designed to evaluate which internal locations will produce the best inductive-noise cancellation, and provide us with experimental data to calibrate analysis codes. The details of the experiments and resulting data are presented.

  17. Optimal dynamic voltage scaling for wireless sensor nodes with real-time constraints

    NASA Astrophysics Data System (ADS)

    Cassandras, Christos G.; Zhuang, Shixin

    2005-11-01

    Sensors are increasingly embedded in manufacturing systems and wirelessly networked to monitor and manage operations ranging from process and inventory control to tracking equipment and even post-manufacturing product monitoring. In building such sensor networks, a critical issue is the limited and hard to replenish energy in the devices involved. Dynamic voltage scaling is a technique that controls the operating voltage of a processor to provide desired performance while conserving energy and prolonging the overall network's lifetime. We consider such power-limited devices processing time-critical tasks which are non-preemptive, aperiodic and have uncertain arrival times. We treat voltage scaling as a dynamic optimization problem whose objective is to minimize energy consumption subject to hard or soft real-time execution constraints. In the case of hard constraints, we build on prior work (which engages a voltage scaling controller at task completion times) by developing an intra-task controller that acts at all arrival times of incoming tasks. We show that this optimization problem can be decomposed into two simpler ones whose solution leads to an algorithm that does not actually require solving any nonlinear programming problems. In the case of soft constraints, this decomposition must be partly relaxed, but it still leads to a scalable (linear in the number of tasks) algorithm. Simulation results are provided to illustrate performance improvements in systems with intra-task controllers compared to uncontrolled systems or those using inter-task control.

  18. EVA Glove Sensor Feasbility II Abstract

    NASA Technical Reports Server (NTRS)

    Melone, Kate

    2014-01-01

    The main objectives for the glove project include taking various measurements from human subjects during and after they perform different tasks in the glove box, acquiring data from these tests and determining the accuracy of these results, interpreting and analyzing this data, and using the data to better understand how hand injuries are caused during EVAs.1 Some of these measurements include force readings, temperature readings, and micro-circulatory blood flow.1 The three glove conditions tested were ungloved (a comfort glove was worn to house the sensors), Series 4000, and Phase VI. The general approach/procedure for the glove sensor feasibility project is as follows: 1. Prepare test subject for testing. This includes attaching numerous sensors (approximately 50) to the test subject, wiring, and weaving the sensors and wires in the glove which helps to keep everything together. This also includes recording baseline moisture data using the Vapometer and MoistSense. 2. Pressurizing the glove box. Once the glove box is pressurized to the desired pressure (4.3 psid), testing can begin. 3. Testing. The test subject will perform a series of tests, some of which include pinching a load cell, making a fist, pushing down on a force plate, and picking up metal pegs, rotating them 90 degrees, and placing them back in the peg board. 4. Post glove box testing data collection. After the data is collected from inside the glove box, the Vapometer and MoistSense device will be used to collect moisture data from the subject's hand. 5. Survey. At the conclusion of testing, he/she will complete a survey that asks questions pertaining to comfort/discomfort levels of the glove, glove sizing, as well as offering any additional feedback.

  19. Structural Dynamics of an Isolated-Voltage Sensor Domain in Lipid Bilayer

    PubMed Central

    Chakrapani, Sudha; Cuello, Luis G.; Cortes, Marien D.; Perozo, Eduardo

    2009-01-01

    Summary A strong interplay between the voltage-sensor domain (VSD) and the pore domain (PD) underlies voltage-gated channel functions. In a few voltage-sensitive proteins, the VSD has been shown to function without a canonical PD, although its structure and oligomeric state remain unknown. Here using EPR spectroscopy we show that the isolated-VSD of KvAP can remain monomeric in reconstituted bilayer and retain a transmembrane conformation. We find that water-filled crevices extend deep into the membrane around S3, a scaffold conducive to transport of proton/cations is intrinsic to the VSD. Differences in solvent accessibility in comparison to the full-length KvAP, allowed us to define an interacting footprint of the PD on the VSD. This interaction is centered around S1 and S2 and shows a rotation of 70–100° relative to Kv1.2-Kv2.1 chimera. Sequence-conservation patterns in Kv channels, Hv channels and voltage-sensitive phosphatases reveal several near-universal features suggesting a common molecular architecture for all VSDs. PMID:18334215

  20. MoS{sub 2} oxygen sensor with gate voltage stress induced performance enhancement

    SciTech Connect

    Tong, Yu; Lin, Zhenhua; Thong, John T. L.; Chan, Daniel S. H.; Zhu, Chunxiang

    2015-09-21

    Two-dimensional (2D) materials have recently attracted wide attention and rapidly established themselves in various applications. In particular, 2D materials are regarded as promising building blocks for gas sensors due to their high surface-to-volume ratio, ease in miniaturization, and flexibility in enabling wearable electronics. Compared with other 2D materials, MoS{sub 2} is particularly intriguing because it has been widely researched and exhibits semiconducting behavior. Here, we have fabricated MoS{sub 2} resistor based O{sub 2} sensors with a back gate configuration on a 285 nm SiO{sub 2}/Si substrate. The effects of applying back gate voltage stress on O{sub 2} sensing performance have been systematically investigated. With a positive gate voltage stress, the sensor response improves and the response is improved to 29.2% at O{sub 2} partial pressure of 9.9 × 10{sup −5} millibars with a +40 V back-gate bias compared to 21.2% at O{sub 2} partial pressure of 1.4 × 10{sup −4} millibars without back-gate bias; while under a negative gate voltage stress of −40 V, a fast and full recovery can be achieved at room temperature. In addition, a method in determining O{sub 2} partial pressure with a detectability as low as 6.7 × 10{sup −7} millibars at a constant vacuum pressure is presented and its potential as a vacuum gauge is briefly discussed.

  1. A mechanical method to tuning a FBG-PZT voltage sensor

    NASA Astrophysics Data System (ADS)

    Ribeiro, Bessie A.; Werneck, Marcelo M.

    2015-09-01

    When using a Fiber Bragg Grating (FBG) for strain measurements it is always necessary to compensate the FBG against temperature fluctuations. In this paper it is shown an innovative method for mechanically compensating an FBG in a high voltage measurement application using an FBG-PZT sensor. The system takes advantage of a mechanical assembly that, as the PZT displaces, the screw where the FBG is bonded on displace in the opposite direction, keeping the FBG length constant. A theoretical analysis is done and experimental results are shown.

  2. A novel bioelectrochemical BOD sensor operating with voltage input.

    PubMed

    Modin, Oskar; Wilén, Britt-Marie

    2012-11-15

    Biochemical oxygen demand (BOD) is a measure of biodegradable compounds in water and is, for example, a common parameter to design and assess the performance of wastewater treatment plants. The conventional method to measure BOD is time consuming (5 or 7 days) and requires trained personnel. Bioelectrochemical BOD sensors designed as microbial fuel cells (MFCs), which are systems where bacteria convert organic matter into an electrical current, have emerged as an alternative to the conventional technique. In this study, a new type of bioelectrochemical BOD sensor with features that overcome some of the limitations of current MFC-type designs was developed: (1) An external voltage was applied to overcome internal resistances and allow bacteria to generate current at their full capacity, and (2) the ion exchange membrane was omitted to avoid pH shifts that would otherwise limit the applicability of the sensor for wastewaters with low alkalinity. The sensor was calibrated with an aerated nutrient medium containing acetate as the BOD source. Linear correlation (R(2) = 0.97) with charge was obtained for BOD concentrations ranging from 32 to 1280 mg/L in a reaction time of 20 h. Lowering the reaction time to 5 h resulted in lowering the measurable BOD concentration range to 320 mg/L (R(2) = 0.99). Propionate, glucose, and ethanol could also be analyzed by the sensor that was acclimated to acetate. The study demonstrates a way to design more robust and simple bioelectrochemical BOD sensors that do not suffer from the usual limitations of MFCs (high internal resistance and pH shifts).

  3. KCNE1 Constrains the Voltage Sensor of Kv7.1 K+ Channels

    PubMed Central

    Yisharel, Ilanit; Malka, Eti; Schottelndreier, Hella; Peretz, Asher; Paas, Yoav; Attali, Bernard

    2008-01-01

    Kv7 potassium channels whose mutations cause cardiovascular and neurological disorders are members of the superfamily of voltage-gated K+ channels, comprising a central pore enclosed by four voltage-sensing domains (VSDs) and sharing a homologous S4 sensor sequence. The Kv7.1 pore-forming subunit can interact with various KCNE auxiliary subunits to form K+ channels with very different gating behaviors. In an attempt to characterize the nature of the promiscuous gating of Kv7.1 channels, we performed a tryptophan-scanning mutagenesis of the S4 sensor and analyzed the mutation-induced perturbations in gating free energy. Perturbing the gating energetics of Kv7.1 bias most of the mutant channels towards the closed state, while fewer mutations stabilize the open state or the inactivated state. In the absence of auxiliary subunits, mutations of specific S4 residues mimic the gating phenotypes produced by co-assembly of Kv7.1 with either KCNE1 or KCNE3. Many S4 perturbations compromise the ability of KCNE1 to properly regulate Kv7.1 channel gating. The tryptophan-induced packing perturbations and cysteine engineering studies in S4 suggest that KCNE1 lodges at the inter-VSD S4-S1 interface between two adjacent subunits, a strategic location to exert its striking action on Kv7.1 gating functions. PMID:18398469

  4. Design, experiments and simulation of voltage transformers on the basis of a differential input D-dot sensor.

    PubMed

    Wang, Jingang; Gao, Can; Yang, Jie

    2014-07-17

    Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid.

  5. Design, Experiments and Simulation of Voltage Transformers on the Basis of a Differential Input D-dot Sensor

    PubMed Central

    Wang, Jingang; Gao, Can; Yang, Jie

    2014-01-01

    Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid. PMID:25036333

  6. Sensors, Volume 3, Part II, Chemical and Biochemical Sensors Part II

    NASA Astrophysics Data System (ADS)

    Göpel, Wolfgang; Jones, T. A.; Kleitz, Michel; Lundström, Ingemar; Seiyama, Tetsuro

    1997-06-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This is the second of two volumes focusing on chemical and biochemical sensors. It includes a detailed description of biosensors which often make use of transducer properties of the basic sensors and usually have additional biological components. This volume provides a unique overview of the applications, the possibilities and limitations of sensors in comparison with conventional instrumentation in analytical chemistry. Specific facettes of applications are presented by specialists from different fields including environmental, biotechnological, medical, or chemical process control. This book is an indispensable reference work for both specialits and newcomers, researchers and developers.

  7. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    PubMed Central

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I; Lindahl, Erik; Elinder, Fredrik

    2016-01-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions – a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel. PMID:27278891

  8. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    NASA Astrophysics Data System (ADS)

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I.; Lindahl, Erik; Elinder, Fredrik

    2016-06-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions - a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel.

  9. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    NASA Astrophysics Data System (ADS)

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I.; Lindahl, Erik; Elinder, Fredrik

    2016-06-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions – a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel.

  10. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation.

    PubMed

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I; Lindahl, Erik; Elinder, Fredrik

    2016-01-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions - a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd(2+) bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K(+) coordination, a hallmark for C-type inactivation. An engineered Cd(2+) bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel. PMID:27278891

  11. The activated state of a sodium channel voltage sensor in a membrane environment

    PubMed Central

    Chakrapani, Sudha; Sompornpisut, Pornthep; Intharathep, Pathumwadee; Roux, Benoît; Perozo, Eduardo

    2010-01-01

    Direct structural insights on the fundamental mechanisms of permeation, selectivity, and gating remain unavailable for the Na+ and Ca2+ channel families. Here, we report the spectroscopic structural characterization of the isolated Voltage-Sensor Domain (VSD) of the prokaryotic Na+ channel NaChBac in a lipid bilayer. Site-directed spin-labeling and EPR spectroscopy were carried out for 118 mutants covering all of the VSD. EPR environmental data were used to unambiguously assign the secondary structure elements, define membrane insertion limits, and evaluate the activated conformation of the isolated-VSD in the membrane using restrain-driven molecular dynamics simulations. The overall three-dimensional fold of the NaChBac-VSD closely mirrors those seen in KvAP, Kv1.2, Kv1.2-2.1 chimera, and MlotiK1. However, in comparison to the membrane-embedded KvAP-VSD, the structural dynamics of the NaChBac-VSD reveals a much tighter helix packing, with subtle differences in the local environment of the gating charges and their interaction with the rest of the protein. Using cell complementation assays we show that the NaChBac-VSD can provide a conduit to the transport of ions in the resting or “down” conformation, a feature consistent with our EPR water accessibility measurements in the activated or “up” conformation. These results suggest that the overall architecture of VSD’s is remarkably conserved among K+ and Na+ channels and that pathways for gating-pore currents may be intrinsic to most voltage-sensors. Cell complementation assays also provide information about the putative location of the gating charges in the “down/resting” state and hence a glimpse of the extent of conformational changes during activation. PMID:20207950

  12. RADLAC II/SMILE performance with a magnetically insulated voltage adder

    SciTech Connect

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Crist, C.E.; Poukey, J.W.; Prestwich, K.R.; Turman, B.N. ); Struve, K.; Welch, D. )

    1991-01-01

    A 12.5-m long Self Magnetically Insulated Transmission LinE (SMILE) that sums the voltages of 8, 2-MV pulse forming lines was installed in the RADLAC-II linear induction accelerator. The magnetic insulation criteria was calculated using parapotential flow theory and found to agree with MAGIC simulations. High quality annular beams with {beta}{perpendicular} {le} 0.1 and a radius r{sub b} < 2 cm were measured for currents of 50--100-kA extracted from a magnetic immersed foilless diode. These parameters were achieved with 11 to 15-MV accelerating voltages and 6 to 16-kG diode magnetic field. The experimental results exceeded our design expectations and are in good agreement with code simulations. 6 refs., 6 figs., 1 tab.

  13. The Shaker K+ Channel S4 Voltage Sensor Translates 10 Å during Gating

    PubMed Central

    Posson, David J.; Selvin, Paul R.

    2008-01-01

    Summary Voltage driven activation of Kv channels results from conformational changes of four voltage sensor domains (VSDs) that surround the K+ selective pore domain. How the VSD helices rearrange during gating is an area of active research. Luminescence Resonance Energy Transfer (LRET) is a powerful spectroscopic ruler uniquely suitable for addressing the conformational trajectory of these helices. Using a new geometric analysis of numerous LRET measurements, we were able for the first time to estimate LRET probe positions relative to existing structural models. The experimental movement of helix S4 does not support a large 15–20 Å transmembrane ‘paddle-type’ movement or a near-zero Å vertical ‘transporter-type’ model. Rather, our measurements demonstrate a moderate S4 displacement of 10 ± 5 Å, with a vertical component of 5 ± 2 Å. The S3 segment moves 2 ± 1 Å in the opposite direction and is therefore not moving as an S3–S4 rigid body. PMID:18614032

  14. Free-energy landscape of ion-channel voltage-sensor-domain activation.

    PubMed

    Delemotte, Lucie; Kasimova, Marina A; Klein, Michael L; Tarek, Mounir; Carnevale, Vincenzo

    2015-01-01

    Voltage sensor domains (VSDs) are membrane-bound protein modules that confer voltage sensitivity to membrane proteins. VSDs sense changes in the transmembrane voltage and convert the electrical signal into a conformational change called activation. Activation involves a reorganization of the membrane protein charges that is detected experimentally as transient currents. These so-called gating currents have been investigated extensively within the theoretical framework of so-called discrete-state Markov models (DMMs), whereby activation is conceptualized as a series of transitions across a discrete set of states. Historically, the interpretation of DMM transition rates in terms of transition state theory has been instrumental in shaping our view of the activation process, whose free-energy profile is currently envisioned as composed of a few local minima separated by steep barriers. Here we use atomistic level modeling and well-tempered metadynamics to calculate the configurational free energy along a single transition from first principles. We show that this transition is intrinsically multidimensional and described by a rough free-energy landscape. Remarkably, a coarse-grained description of the system, based on the use of the gating charge as reaction coordinate, reveals a smooth profile with a single barrier, consistent with phenomenological models. Our results bridge the gap between microscopic and macroscopic descriptions of activation dynamics and show that choosing the gating charge as reaction coordinate masks the topological complexity of the network of microstates participating in the transition. Importantly, full characterization of the latter is a prerequisite to rationalize modulation of this process by lipids, toxins, drugs, and genetic mutations.

  15. Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.

    PubMed

    Santos-Sacchi, Joseph; Song, Lei

    2016-06-01

    In general, SLC26 solute carriers serve to transport a variety of anions across biological membranes. However, prestin (SLC26a5) has evolved, now serving as a motor protein in outer hair cells (OHCs) of the mammalian inner ear and is required for cochlear amplification, a mechanical feedback mechanism to boost auditory performance. The mechanical activity of the OHC imparted by prestin is driven by voltage and controlled by anions, chiefly intracellular chloride. Current opinion is that chloride anions control the Boltzmann characteristics of the voltage sensor responsible for prestin activity, including Qmax, the total sensor charge moved within the membrane, and Vh, a measure of prestin's operating voltage range. Here, we show that standard narrow-band, high-frequency admittance measures of nonlinear capacitance (NLC), an alternate representation of the sensor's charge-voltage (Q-V) relationship, is inadequate for assessment of Qmax, an estimate of the sum of unitary charges contributed by all voltage sensors within the membrane. Prestin's slow transition rates and chloride-binding kinetics adversely influence these estimates, contributing to the prevalent concept that intracellular chloride level controls the quantity of sensor charge moved. By monitoring charge movement across frequency, using measures of multifrequency admittance, expanded displacement current integration, and OHC electromotility, we find that chloride influences prestin kinetics, thereby controlling charge magnitude at any particular frequency of interrogation. Importantly, however, this chloride dependence vanishes as frequency decreases, with Qmax asymptoting at a level irrespective of the chloride level. These data indicate that prestin activity is significantly low-pass in the frequency domain, with important implications for cochlear amplification. We also note that the occurrence of voltage-dependent charge movements in other SLC26 family members may be hidden by inadequate

  16. Molecular basis of the inhibition of the fast inactivation of voltage-gated sodium channel Nav1.5 by tarantula toxin Jingzhaotoxin-II.

    PubMed

    Huang, Ying; Zhou, Xi; Tang, Cheng; Zhang, Yunxiao; Tao, Huai; Chen, Ping; Liu, Zhonghua

    2015-06-01

    Jingzhaotoxin-II (JZTX-II) is a 32-residue peptide from the Chinese tarantula Chilobrachys jingzhao venom, and preferentially inhibits the fast inactivation of the voltage-gated sodium channels (VGSCs) in rat cardiac myocytes. In the present study, we elucidated the action mechanism of JZTX-II inhibiting hNav1.5, a VGSC subtype mainly distributed in human cardiac myocytes. Among the four VGSC subtypes tested, hNav1.5 was the most sensitive to JZTX-II (EC50=125±4nM). Although JZTX-II had little or no effect on steady-state inactivation of the residual currents conducted by hNav1.5, it caused a 10mV hyperpolarized shift of activation. Moreover, JZTX-II increased the recovery rate of hNav1.5 channels, which should lead to a shorter transition from the inactivation to closed state. JZTX-II dissociated from toxin-channel complex via extreme depolarization and subsequently rebound to the channel upon repolarization. Mutagenesis analyses showed that the domain IV (DIV) voltage-sensor domain (VSD) was critical for JZTX-II binding to hNav1.5 and some mutations located in S1-S2 and S3-S4 extracellular loops of hNav1.5 DIV additively reduced the toxin sensitivity of hNav1.5. Our data identified the mechanism underlying JZTX-II inhibiting hNav1.5, similar to scorpion α-toxins, involving binding to neurotoxin receptor site 3. PMID:25817910

  17. Cable Crosstalk Suppression with Two-Wire Voltage Feedback Method for Resistive Sensor Array.

    PubMed

    Wu, Jianfeng; He, Shangshang; Li, Jianqing; Song, Aiguo

    2016-01-01

    Using a long, flexible test cable connected with a one-wire voltage feedback circuit, a resistive tactile sensor in a shared row-column fashion exhibited flexibility in robotic operations but suffered from crosstalk caused by the connected cable due to its wire resistances and its contacted resistances. Firstly, we designed a new non-scanned driving-electrode (VF-NSDE) circuit using two wires for every row line and every column line to reduce the crosstalk caused by the connected cables in the circuit. Then, an equivalent resistance expression of the element being tested (EBT) for the two-wire VF-NSDE circuit was analytically derived. Following this, the one-wire VF-NSDE circuit and the two-wire VF-NSDE circuit were evaluated by simulation experiments. Finally, positive features of the proposed method were verified with the experiments of a two-wire VF-NSDE prototype circuit. The experiment results show that the two-wire VF-NSDE circuit can greatly reduce the crosstalk error caused by the cables in the 2-D networked resistive sensor array.

  18. Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes Is a Prerequisite for Its Inhibition of Human Voltage-gated Sodium Channel NaV1.7.

    PubMed

    Henriques, Sónia Troeira; Deplazes, Evelyne; Lawrence, Nicole; Cheneval, Olivier; Chaousis, Stephanie; Inserra, Marco; Thongyoo, Panumart; King, Glenn F; Mark, Alan E; Vetter, Irina; Craik, David J; Schroeder, Christina I

    2016-08-12

    ProTx-II is a disulfide-rich peptide toxin from tarantula venom able to inhibit the human voltage-gated sodium channel 1.7 (hNaV1.7), a channel reported to be involved in nociception, and thus it might have potential as a pain therapeutic. ProTx-II acts by binding to the membrane-embedded voltage sensor domain of hNaV1.7, but the precise peptide channel-binding site and the importance of membrane binding on the inhibitory activity of ProTx-II remain unknown. In this study, we examined the structure and membrane-binding properties of ProTx-II and several analogues using NMR spectroscopy, surface plasmon resonance, fluorescence spectroscopy, and molecular dynamics simulations. Our results show a direct correlation between ProTx-II membrane binding affinity and its potency as an hNaV1.7 channel inhibitor. The data support a model whereby a hydrophobic patch on the ProTx-II surface anchors the molecule at the cell surface in a position that optimizes interaction of the peptide with the binding site on the voltage sensor domain. This is the first study to demonstrate that binding of ProTx-II to the lipid membrane is directly linked to its potency as an hNaV1.7 channel inhibitor. PMID:27311819

  19. PIP2 controls voltage-sensor movement and pore opening of Kv channels through the S4-S5 linker.

    PubMed

    Rodriguez-Menchaca, Aldo A; Adney, Scott K; Tang, Qiong-Yao; Meng, Xuan-Yu; Rosenhouse-Dantsker, Avia; Cui, Meng; Logothetis, Diomedes E

    2012-09-01

    Voltage-gated K(+) (Kv) channels couple the movement of a voltage sensor to the channel gate(s) via a helical intracellular region, the S4-S5 linker. A number of studies link voltage sensitivity to interactions of S4 charges with membrane phospholipids in the outer leaflet of the bilayer. Although the phospholipid phosphatidylinositol-4,5-bisphosphate (PIP(2)) in the inner membrane leaflet has emerged as a universal activator of ion channels, no such role has been established for mammalian Kv channels. Here we show that PIP(2) depletion induced two kinetically distinct effects on Kv channels: an increase in voltage sensitivity and a concomitant decrease in current amplitude. These effects are reversible, exhibiting distinct molecular determinants and sensitivities to PIP(2). Gating current measurements revealed that PIP(2) constrains the movement of the sensor through interactions with the S4-S5 linker. Thus, PIP(2) controls both the movement of the voltage sensor and the stability of the open pore through interactions with the linker that connects them.

  20. A High Resolution On-Chip Delay Sensor with Low Supply-Voltage Sensitivity for High-Performance Electronic Systems

    PubMed Central

    Sheng, Duo; Lai, Hsiu-Fan; Chan, Sheng-Min; Hong, Min-Rong

    2015-01-01

    An all-digital on-chip delay sensor (OCDS) circuit with high delay-measurement resolution and low supply-voltage sensitivity for efficient detection and diagnosis in high-performance electronic system applications is presented. Based on the proposed delay measurement scheme, the quantization resolution of the proposed OCDS can be reduced to several picoseconds. Additionally, the proposed cascade-stage delay measurement circuit can enhance immunity to supply-voltage variations of the delay measurement resolution without extra self-biasing or calibration circuits. Simulation results show that the delay measurement resolution can be improved to 1.2 ps; the average delay resolution variation is 0.55% with supply-voltage variations of ±10%. Moreover, the proposed delay sensor can be implemented in an all-digital manner, making it very suitable for high-performance electronic system applications as well as system-level integration. PMID:25688590

  1. Shaping the water crevice to accommodate the voltage sensor in a down conformation: a molecular dynamics simulation study.

    PubMed

    Kitjaruwankul, Sunan; Boonamnaj, Panisak; Fuklang, Sunit; Supunyabut, Chirayut; Sompornpisut, Pornthep

    2015-06-01

    Voltage sensor domains (VSD) of voltage-dependent ion channels share a basic molecular structure with a voltage-sensing phosphatase and a voltage-gated proton channel. The VSD senses and responds to changes in the membrane potential by undergoing conformational changes associated with the movement of the charged arginines located on the S4 segment. Although several functional and structural studies have provided useful information about the conformational changes in many ion channels, a detailed and unambiguous explanation has not been published. Therefore, understanding the principle of voltage-dependent gating at an atomic level is required. In this study, we took advantage of the available spin labeling electron paramagnetic resonance spectrometry data and computational methods to investigate the structure and dynamic properties of the Up-state (activated) and Down-state (resting) conformations of the VSD by means of all-atom molecular dynamics (MD) simulations. The MD results of the Down conformation determined in bilayers with and without lipid phosphates both revealed a different shape of the aqueous crevice, in which more water molecules surround and fill the intracellular crevice in its Down state than in its Up state. The solvent accessible surface within the crevice has a complementary shape that can account for water-mediated interactions between the voltage sensor and the lipid bilayer. The results support the previously reported experimental data.

  2. A Hg(II)-mediated "signal-on" electrochemical glutathione sensor.

    PubMed

    Lotfi Zadeh Zhad, Hamid R; Lai, Rebecca Y

    2014-08-01

    We report the design and fabrication of a DNA-based electrochemical sensor for detection of glutathione. Sensor signaling relies on glutathione's ability to chelate mercury Hg(II), displacing it from the thymine-Hg(II)-thymine complex formed between the surface-immobilized DNA probes. Our results show that this sensor is sensitive and selective enough to be employed in saliva.

  3. Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations

    PubMed Central

    Delemotte, Lucie; Tarek, Mounir; Klein, Michael L.; Amaral, Cristiano; Treptow, Werner

    2011-01-01

    The response of a membrane-bound Kv1.2 ion channel to an applied transmembrane potential has been studied using molecular dynamics simulations. Channel deactivation is shown to involve three intermediate states of the voltage sensor domain (VSD), and concomitant movement of helix S4 charges 10–15 Å along the bilayer normal; the latter being enabled by zipper-like sequential pairing of S4 basic residues with neighboring VSD acidic residues and membrane-lipid head groups. During the observed sequential transitions S4 basic residues pass through the recently discovered charge transfer center with its conserved phenylalanine residue, F233. Analysis indicates that the local electric field within the VSD is focused near the F233 residue and that it remains essentially unaltered during the entire process. Overall, the present computations provide an atomistic description of VSD response to hyperpolarization, add support to the sliding helix model, and capture essential features inferred from a variety of recent experiments. PMID:21444776

  4. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears.

    PubMed

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-01-01

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor. PMID:27472331

  5. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears

    PubMed Central

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-01-01

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor. PMID:27472331

  6. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears.

    PubMed

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-07-26

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor.

  7. Membrane bending is critical for the stability of voltage sensor segments in the membrane.

    PubMed

    Callenberg, Keith M; Latorraca, Naomi R; Grabe, Michael

    2012-07-01

    The interaction between membrane proteins and the surrounding membrane is becoming increasingly appreciated for its role in regulating protein function, protein localization, and membrane morphology. In particular, recent studies have suggested that membrane deformation is needed to stably accommodate proteins harboring charged amino acids in their transmembrane (TM) region, as it is energetically prohibitive to bury charge in the hydrophobic core of the bilayer. Unfortunately, current computational methods are poorly equipped for describing such deformations, as atomistic simulations are often too short to observe large-scale membrane reorganization and most continuum approaches assume a flat membrane. Previously, we developed a method that overcomes these shortcomings by using elasticity theory to characterize equilibrium membrane distortions in the presence of a TM protein, while using traditional continuum electrostatic and nonpolar energy models to determine the energy of the protein in the membrane. Here, we linked the elastostatics, electrostatics, and nonpolar numeric solvers to permit the calculation of energies for nontrivial membrane deformations. We then coupled this procedure to a robust search algorithm that identifies optimal membrane shapes for a TM protein of arbitrary chemical composition. This advance now permits us to explore a host of biological phenomena that were beyond the scope of our original method. We show that the energy required to embed charged residues in the membrane can be highly nonadditive, and our model provides a simple mechanical explanation for this nonadditivity. Our results also predict that isolated voltage sensor segments do not insert into rigid membranes, but membrane bending dramatically stabilizes these proteins in the bilayer despite their high charge content. Additionally, we use the model to explore hydrophobic mismatch with regard to nonpolar peptides and mechanosensitive channels. Our method is in quantitative

  8. Membrane bending is critical for the stability of voltage sensor segments in the membrane

    PubMed Central

    Callenberg, Keith M.; Latorraca, Naomi R.

    2012-01-01

    The interaction between membrane proteins and the surrounding membrane is becoming increasingly appreciated for its role in regulating protein function, protein localization, and membrane morphology. In particular, recent studies have suggested that membrane deformation is needed to stably accommodate proteins harboring charged amino acids in their transmembrane (TM) region, as it is energetically prohibitive to bury charge in the hydrophobic core of the bilayer. Unfortunately, current computational methods are poorly equipped for describing such deformations, as atomistic simulations are often too short to observe large-scale membrane reorganization and most continuum approaches assume a flat membrane. Previously, we developed a method that overcomes these shortcomings by using elasticity theory to characterize equilibrium membrane distortions in the presence of a TM protein, while using traditional continuum electrostatic and nonpolar energy models to determine the energy of the protein in the membrane. Here, we linked the elastostatics, electrostatics, and nonpolar numeric solvers to permit the calculation of energies for nontrivial membrane deformations. We then coupled this procedure to a robust search algorithm that identifies optimal membrane shapes for a TM protein of arbitrary chemical composition. This advance now permits us to explore a host of biological phenomena that were beyond the scope of our original method. We show that the energy required to embed charged residues in the membrane can be highly nonadditive, and our model provides a simple mechanical explanation for this nonadditivity. Our results also predict that isolated voltage sensor segments do not insert into rigid membranes, but membrane bending dramatically stabilizes these proteins in the bilayer despite their high charge content. Additionally, we use the model to explore hydrophobic mismatch with regard to nonpolar peptides and mechanosensitive channels. Our method is in quantitative

  9. Enhanced low current, voltage, and power dissipation measurements via Arduino Uno microcontroller with modified commercially available sensors

    NASA Astrophysics Data System (ADS)

    Tanner, Meghan; Eckel, Ryan; Senevirathne, Indrajith

    The versatility, simplicity, and robustness of Arduino microcontroller architecture have won a huge following with increasingly serious engineering and physical science applications. Arduino microcontroller environment coupled with commercially available sensors have been used to systematically measure, record, and analyze low currents, low voltages and corresponding dissipated power for assessing secondary physical properties in a diverse array of engineering systems. Setup was assembled via breadboard, wire, and simple soldering with an Arduino Uno with ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino Software while the bootloader was used to upload the code. Commercial Hall effect current sensor modules ACS712 and INA169 current shunt monitor was used to measure corresponding low to ultra-low currents and voltages. Stable measurement data was obtained via sensors and compared with corresponding oscilloscope measurements to assess reliability and uncertainty. Sensor breakout boards were modified to enhance the sensitivity of the measurements and to expand the applicability. Discussion of these measurements will focus on capabilities, capacities and limitations of the systems with examples of possible applications. Lock Haven Nanotechnology Program.

  10. Inhibition of voltage-gated calcium currents in type II vestibular hair cells by cinnarizine.

    PubMed

    Arab, Sonja F; Düwel, Philip; Jüngling, Eberhard; Westhofen, Martin; Lückhoff, Andreas

    2004-06-01

    Cinnarizine is pharmaceutically used in conditions with vestibular vertigo such as Meniere's disease. It is thought to act on extra-vestibular targets. We hypothesized that cinnarizine, as a blocker of L-type Ca2+ channels, may directly target vestibular hair cells where Ca2+ currents are important for the mechano-electrical transduction and transmitter release. Our aim was to clarify whether cinnarizine affected voltage-dependent Ca2+ currents in vestibular type II hair cells. Such cells were isolated from inner ears of guinea pigs by enzymatic and mechanical dissection from the gelatinous otolithic membrane and studied with the patch-clamp technique in conventional whole-cell mode. Ca2+ currents were elicited by depolarizing pulses in a solution containing 1.8 mM Ca2+ and 40 mM Ba2+. These currents resembled L-type currents (I(Ca,L)) with respect to their voltage-dependence and their inhibition by nifedipine and Cd2+ but did not show time-dependent inactivation. The currents were inhibited by cinnarizine in a concentration-dependent and reversible manner. The IC50 was 1.5 microM. A block exceeding 80% was achieved with 10 microM. The onset of current block was faster with higher concentrations but the reversibility after wash-out was less, suggesting accumulation in the membrane. We conclude that these direct actions of cinnarizine on hair cells should be considered as molecular mechanisms contributing to therapeutic effects of cinnarizine in vertigo. PMID:15138660

  11. Influence of Ambient Humidity on the Voltage Response of Ionic Polymer-Metal Composite Sensor.

    PubMed

    Zhu, Zicai; Horiuchi, Tetsuya; Kruusamäe, Karl; Chang, Longfei; Asaka, Kinji

    2016-03-31

    Electrical potential based on ion migration exists not only in natural systems but also in ionic polymer materials. In order to investigate the influence of ambient humidity on voltage response, classical Au-Nafion IPMC was chosen as the reference sample. Voltage response under a bending deformation was measured in two ways: first, continuous measurement of voltage response in the process of absorption and desorption of water to study the tendency of voltage variation at all water states; second, measurements at multiple fixed ambient humidity levels to characterize the process of voltage response quantitatively. Ambient humidity influences the voltage response mainly by varying water content in ionic polymer. Under a step bending, the amplitude of initial voltage peak first increases and then decreases as the ambient humidity and the inherent water content decrease. This tendency is explained semiquantitatively by mass storage capacity related to the stretchable state of the Nafion polymer network. Following the initial peak, the voltage shows a slow decay to a steady state, which is first characterized in this paper. The relative voltage decay during the steady state always decreases as the ambient humidity is lowered. It is ascribed to progressive increase of the ratio between the water molecules in the cation hydration shell to the free water. Under sinusoidal mechanical bending excitation in the range of 0.1-10 Hz, the voltage magnitude increases with frequency at high ambient humidity but decreases with frequency at low ambient humidity. The relationship is mainly controlled by the voltage decay effect and the response speed.

  12. Effect of angiotensin II-induced arterial hypertension on the voltage-dependent contractions of mouse arteries.

    PubMed

    Fransen, Paul; Van Hove, Cor E; Leloup, Arthur J A; Schrijvers, Dorien M; De Meyer, Guido R Y; De Keulenaer, Gilles W

    2016-02-01

    Arterial hypertension (AHT) affects the voltage dependency of L-type Ca(2+) channels in cardiomyocytes. We analyzed the effect of angiotensin II (AngII)-induced AHT on L-type Ca(2+) channel-mediated isometric contractions in conduit arteries. AHT was induced in C57Bl6 mice with AngII-filled osmotic mini-pumps (4 weeks). Normotensive mice treated with saline-filled osmotic mini-pumps were used for comparison. Voltage-dependent contractions mediated by L-type Ca(2+) channels were studied in vaso-reactive studies in vitro in isolated aortic and femoral arteries by using extracellular K(+) concentration-response (KDR) experiments. In aortic segments, AngII-induced AHT significantly sensitized isometric contractions induced by elevated extracellular K(+) and depolarization. This sensitization was partly prevented by normalizing blood pressure with hydralazine, suggesting that it was caused by AHT rather than by direct AngII effects on aortic smooth muscle cells. The EC50 for extracellular K(+) obtained in vitro correlated significantly with the rise in arterial blood pressure induced by AngII in vivo. The AHT-induced sensitization persisted when aortic segments were exposed to levcromakalim or to inhibitors of basal nitric oxide release. Consistent with these observations, AngII-treatment also sensitized the vaso-relaxing effects of the L-type Ca(2+) channel blocker diltiazem during K(+)-induced contractions. Unlike aorta, AngII-treatment desensitized the isometric contractions to depolarization in femoral arteries pointing to vascular bed specific responses of arteries to hypertension. AHT affects the voltage-dependent L-type Ca(2+) channel-mediated contraction of conduit arteries. This effect may contribute to the decreased vascular compliance in AHT and explain the efficacy of Ca(2+) channel blockers to reduce vascular stiffness and central blood pressure in AHT.

  13. The piezoelectronic stress transduction switch for very large-scale integration, low voltage sensor computation, and radio frequency applications

    NASA Astrophysics Data System (ADS)

    Magdǎu, I.-B.; Liu, X.-H.; Kuroda, M. A.; Shaw, T. M.; Crain, J.; Solomon, P. M.; Newns, D. M.; Martyna, G. J.

    2015-08-01

    The piezoelectronic transduction switch is a device with potential as a post-CMOS transistor due to its predicted multi-GHz, low voltage performance on the VLSI-scale. However, the operating principle of the switch has wider applicability. We use theory and simulation to optimize the device across a wide range of length scales and application spaces and to understand the physics underlying its behavior. We show that the four-terminal VLSI-scale switch can operate at a line voltage of 115 mV while as a low voltage-large area device, ≈200 mV operation at clock speeds of ≈2 GHz can be achieved with a desirable 104 On/Off ratio—ideal for on-board computing in sensors. At yet larger scales, the device is predicted to operate as a fast (≈250 ps) radio frequency (RF) switch exhibiting high cyclability, low On resistance and low Off capacitance, resulting in a robust switch with a RF figure of merit of ≈4 fs. These performance benchmarks cannot be approached with CMOS which has reached fundamental limits. In detail, a combination of finite element modeling and ab initio calculations enables prediction of switching voltages for a given design. A multivariate search method then establishes a set of physics-based design rules, discovering the key factors for each application. The results demonstrate that the piezoelectronic transduction switch can offer fast, low power applications spanning several domains of the information technology infrastructure.

  14. Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor

    PubMed Central

    Leyton-Mange, Jordan S.; Mills, Robert W.; Macri, Vincenzo S.; Jang, Min Young; Butte, Faraz N.; Ellinor, Patrick T.; Milan, David J.

    2014-01-01

    Summary In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity. PMID:24527390

  15. Tuning FlaSh: redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential.

    PubMed Central

    Guerrero, Giovanna; Siegel, Micah S; Roska, Botond; Loots, Eli; Isacoff, Ehud Y

    2002-01-01

    The optical voltage sensor FlaSh, made from a fusion of a GFP "reporter domain" and a voltage-gated Shaker K(+) channel "detector domain," has been mutagenically tuned in both the GFP reporter and channel detector domains. This has produced sensors with improved folding at 37 degrees C, enabling use in mammalian preparations, and yielded variants with distinct spectra, kinetics, and voltage dependence, thus expanding the types of electrical signals that can be detected. The optical readout of FlaSh has also been expanded from single wavelength fluorescence intensity changes to dual wavelength measurements based on both voltage-dependent spectral shifts and changes in FRET. Different versions of FlaSh can now be chosen to optimize the detection of either action potentials or synaptic potentials, to follow high versus low rates of activity, and to best reflect electrical activity in cell types with distinct voltages of operation. PMID:12496128

  16. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    PubMed Central

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361

  17. A click fluorophore sensor that can distinguish Cu(II) and Hg(II) via selective anion-induced demetallation.

    PubMed

    Lau, Yu Heng; Price, Jason R; Todd, Matthew H; Rutledge, Peter J

    2011-03-01

    A cyclam-based fluorescent sensor featuring a novel triazole pendant arm has been synthesised using click chemistry. The sensor is highly responsive to both Cu(II) and Hg(II) in neutral aqueous solution and displays excellent selectivity in the presence of various competing metal ions in 50-fold excess. The addition of specific anions such as I(-) and S(2)O(3)(2-) causes a complete revival of fluorescence only in the case of Hg(II), providing a simple and effective method for distinguishing solutions containing Cu(II), Hg(II) or a mixture of both ions, even in doped seawater samples. X-ray crystal structures of both the Hg(II) sensor complex and a model Cu(II) complex show that pendant triazole coordination occurs through the central nitrogen atom (N2), providing to the best of our knowledge the first reported examples of this unusual coordination mode in macrocycles. Fluorescence, mass spectrometry and (1)H NMR experiments reveal that the mechanism of anion-induced fluorescence revival involves either displacement of pendant coordination or complete removal of the Hg(II) from the macrocycle, depending on the anion.

  18. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    NASA Astrophysics Data System (ADS)

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-05-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V‑1 sec‑1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.

  19. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.

    PubMed

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-05-09

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.

  20. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.

    PubMed

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  1. Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors.

    PubMed

    Yin, Anxiang; He, Qiyuan; Lin, Zhaoyang; Luo, Liang; Liu, Yuan; Yang, Sen; Wu, Hao; Ding, Mengning; Huang, Yu; Duan, Xiangfeng

    2016-01-11

    Herein, we report the design and synthesis of plasmonic/non-linear optical (NLO) material core/shell nanostructures that can allow dynamic manipulation of light signals using an external electrical field and enable a new generation of nanoscale optical voltage sensors. We show that gold nanorods (Au NRs) can be synthesized with tunable plasmonic properties and function as the nucleation seeds for continued growth of a shell of NLO materials (such as polyaniline, PANI) with variable thickness. The formation of a PANI nanoshell allows dynamic modulation of the dielectric environment of the plasmonic Au NRs, and therefore the plasmonic resonance characteristics, by an external electrical field. The finite element simulation confirms that such modulation is originated from the field-induced modulation of the dielectric constant of the NLO shell. This approach is general, and the coating of the Au NRs with other NLO materials (such as barium titanate, BTO) is found to produce a similar effect. These findings can not only open a new pathway to active modulation of plasmonic resonance at the sub-wavelength scale but also enable the creation of a new generation of nanoscale optical voltage sensors (NOVS). PMID:26783058

  2. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    PubMed Central

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  3. Coupling between residues on S4 and S1 defines the voltage-sensor resting conformation in NaChBac.

    PubMed

    Paldi, Tzur; Gurevitz, Michael

    2010-07-21

    The voltage sensor is a four-transmembrane helix bundle (S1-S4) that couples changes in membrane potential to conformational alterations in voltage-gated ion channels leading to pore opening and ion conductance. Although the structure of the voltage sensor in activated potassium channels is available, the conformation of the voltage sensor at rest is still obscure, limiting our understanding of the voltage-sensing mechanism. By employing a heterologously expressed Bacillus halodurans sodium channel (NaChBac), we defined constraints that affect the positioning and depolarization-induced outward motion of the S4 segment. We compared macroscopic currents mediated by NaChBac and mutants in which E43 on the S1 segment and the two outermost arginines (R1 and R2) on S4 were substituted. Neutralization of the negatively charged E43 (E43C) had a significant effect on channel gating. A double-mutant cycle analysis of E43 and R1 or R2 suggested changes in pairing during channel activation, implying that the interaction of E43 with R1 stabilizes the voltage sensor in its closed/available state, whereas interaction of E43 with R2 stabilizes the channel open/unavailable state. These constraints on S4 dynamics that define its stepwise movement upon channel activation and positioning at rest are novel, to the best of our knowledge, and compatible with the helical-screw and electrostatic models of S4 motion.

  4. Ultra-low power sensor for autonomous non-invasive voltage measurement in IoT solutions for energy efficiency

    NASA Astrophysics Data System (ADS)

    Villani, Clemente; Balsamo, Domenico; Brunelli, Davide; Benini, Luca

    2015-05-01

    Monitoring current and voltage waveforms is fundamental to assess the power consumption of a system and to improve its energy efficiency. In this paper we present a smart meter for power consumption which does not need any electrical contact with the load or its conductors, and which can measure both current and voltage. Power metering becomes easier and safer and it is also self-sustainable because an energy harvesting module based on inductive coupling powers the entire device from the output of the current sensor. A low cost 32-bit wireless CPU architecture is used for data filtering and processing, while a wireless transceiver sends data via the IEEE 802.15.4 standard. We describe in detail the innovative contact-less voltage measurement system, which is based on capacitive coupling and on an algorithm that exploits two pre-processing channels. The system self-calibrates to perform precise measurements regardless the cable type. Experimental results demonstrate accuracy in comparison with commercial high-cost instruments, showing negligible deviations.

  5. S1 Constrains S4 in the Voltage Sensor Domain of Kv7.1 K+ Channels

    PubMed Central

    Shamgar, Liora; Schottelndreier, Hella; Peretz, Asher; Paas, Yoav; Attali, Bernard

    2008-01-01

    Voltage-gated K+ channels comprise a central pore enclosed by four voltage-sensing domains (VSDs). While movement of the S4 helix is known to couple to channel gate opening and closing, the nature of S4 motion is unclear. Here, we substituted S4 residues of Kv7.1 channels by cysteine and recorded whole-cell mutant channel currents in Xenopus oocytes using the two-electrode voltage-clamp technique. In the closed state, disulfide and metal bridges constrain residue S225 (S4) nearby C136 (S1) within the same VSD. In the open state, two neighboring I227 (S4) are constrained at proximity while residue R228 (S4) is confined close to C136 (S1) of an adjacent VSD. Structural modeling predicts that in the closed to open transition, an axial rotation (∼190°) and outward translation of S4 (∼12 Å) is accompanied by VSD rocking. This large sensor motion changes the intra-VSD S1–S4 interaction to an inter-VSD S1–S4 interaction. These constraints provide a ground for cooperative subunit interactions and suggest a key role of the S1 segment in steering S4 motion during Kv7.1 gating. PMID:18398461

  6. Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.

    2003-04-01

    This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.

  7. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane

    NASA Astrophysics Data System (ADS)

    Rajapaksha, Suneth P.; Pal, Nibedita; Zheng, Desheng; Lu, H. Peter

    2015-11-01

    We have applied a combined fluorescence microscopy and single-ion-channel electric current recording approach, correlating with molecular dynamics (MD) simulations, to study the mechanism of voltage-sensor domain translocation across a lipid bilayer. We use the colicin Ia ion channel as a model system, and our experimental and simulation results show the following: (1) The open-close activity of an activated colicin Ia is not necessarily sensitive to the amplitude of the applied cross-membrane voltage when the cross-membrane voltage is around the resting potential of excitable membranes; and (2) there is a significant probability that the activation of colicin Ia occurs by forming a transient and fluctuating water pore of ˜15 Å diameter in the lipid bilayer membrane. The location of the water-pore formation is nonrandom and highly specific, right at the insertion site of colicin Ia charged residues in the lipid bilayer membrane, and the formation is intrinsically associated with the polypeptide conformational fluctuations and solvation dynamics. Our results suggest an interesting mechanistic pathway for voltage-sensitive ion channel activation, and specifically for translocation of charged polypeptide chains across the lipid membrane under a transmembrane electric field: the charged polypeptide domain facilitates the formation of hydrophilic water pore in the membrane and diffuses through the hydrophilic pathway across the membrane; i.e., the charged polypeptide chain can cross a lipid membrane without entering into the hydrophobic core of the lipid membrane but entirely through the aqueous and hydrophilic environment to achieve a cross-membrane translocation. This mechanism sheds light on the intensive and fundamental debate on how a hydrophilic and charged peptide domain diffuses across the biologically inaccessible high-energy barrier of the hydrophobic core of a lipid bilayer: The peptide domain does not need to cross the hydrophobic core to move across a

  8. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.

    PubMed

    Rajapaksha, Suneth P; Pal, Nibedita; Zheng, Desheng; Lu, H Peter

    2015-01-01

    We have applied a combined fluorescence microscopy and single-ion-channel electric current recording approach, correlating with molecular dynamics (MD) simulations, to study the mechanism of voltage-sensor domain translocation across a lipid bilayer. We use the colicin Ia ion channel as a model system, and our experimental and simulation results show the following: (1) The open-close activity of an activated colicin Ia is not necessarily sensitive to the amplitude of the applied cross-membrane voltage when the cross-membrane voltage is around the resting potential of excitable membranes; and (2) there is a significant probability that the activation of colicin Ia occurs by forming a transient and fluctuating water pore of ∼15 Å diameter in the lipid bilayer membrane. The location of the water-pore formation is nonrandom and highly specific, right at the insertion site of colicin Ia charged residues in the lipid bilayer membrane, and the formation is intrinsically associated with the polypeptide conformational fluctuations and solvation dynamics. Our results suggest an interesting mechanistic pathway for voltage-sensitive ion channel activation, and specifically for translocation of charged polypeptide chains across the lipid membrane under a transmembrane electric field: the charged polypeptide domain facilitates the formation of hydrophilic water pore in the membrane and diffuses through the hydrophilic pathway across the membrane; i.e., the charged polypeptide chain can cross a lipid membrane without entering into the hydrophobic core of the lipid membrane but entirely through the aqueous and hydrophilic environment to achieve a cross-membrane translocation. This mechanism sheds light on the intensive and fundamental debate on how a hydrophilic and charged peptide domain diffuses across the biologically inaccessible high-energy barrier of the hydrophobic core of a lipid bilayer: The peptide domain does not need to cross the hydrophobic core to move across a

  9. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.

    PubMed

    Rajapaksha, Suneth P; Pal, Nibedita; Zheng, Desheng; Lu, H Peter

    2015-01-01

    We have applied a combined fluorescence microscopy and single-ion-channel electric current recording approach, correlating with molecular dynamics (MD) simulations, to study the mechanism of voltage-sensor domain translocation across a lipid bilayer. We use the colicin Ia ion channel as a model system, and our experimental and simulation results show the following: (1) The open-close activity of an activated colicin Ia is not necessarily sensitive to the amplitude of the applied cross-membrane voltage when the cross-membrane voltage is around the resting potential of excitable membranes; and (2) there is a significant probability that the activation of colicin Ia occurs by forming a transient and fluctuating water pore of ∼15 Å diameter in the lipid bilayer membrane. The location of the water-pore formation is nonrandom and highly specific, right at the insertion site of colicin Ia charged residues in the lipid bilayer membrane, and the formation is intrinsically associated with the polypeptide conformational fluctuations and solvation dynamics. Our results suggest an interesting mechanistic pathway for voltage-sensitive ion channel activation, and specifically for translocation of charged polypeptide chains across the lipid membrane under a transmembrane electric field: the charged polypeptide domain facilitates the formation of hydrophilic water pore in the membrane and diffuses through the hydrophilic pathway across the membrane; i.e., the charged polypeptide chain can cross a lipid membrane without entering into the hydrophobic core of the lipid membrane but entirely through the aqueous and hydrophilic environment to achieve a cross-membrane translocation. This mechanism sheds light on the intensive and fundamental debate on how a hydrophilic and charged peptide domain diffuses across the biologically inaccessible high-energy barrier of the hydrophobic core of a lipid bilayer: The peptide domain does not need to cross the hydrophobic core to move across a

  10. Monte Carlo Simulations of Microchannel Plate Detectors II: Pulsed Voltage Results

    SciTech Connect

    Kruschwitz, Craig A.; Wu, Ming; Rochau, Greg A.

    2011-02-11

    This paper is part of a continuing study of straight-channel microchannel plate (MCP)–based x-ray detectors. Such detectors are a useful diagnostic tool for two-dimensional, time-resolved imaging and time-resolved x-ray spectroscopy. To interpret the data from such detectors, it is critical to develop a better understanding of the behavior of MCPs biased with subnanosecond voltage pulses. The subject of this paper is a Monte Carlo computer code that simulates the electron cascade in a MCP channel under an arbitrary pulsed voltage, particularly those pulses with widths comparable to the transit time of the electron cascade in the MCP under DC voltage bias. We use this code to study the gain as a function of time (also called the gate profile or optical gate) for various voltage pulse shapes, including pulses measured along the MCP. In addition, experimental data of MCP behavior in pulsed mode are obtained with a short-pulse UV laser. Comparisons between the simulations and experimental data show excellent agreement for both the gate profile and the peak relative sensitivity along the MCP strips. We report that the dependence of relative gain on peak voltage increases in sensitivity in pulsed mode when the width of the high-voltage waveform is smaller than the transit time of cascading electrons in the MCP.

  11. Fiber-optic epoxy composite cure sensor. II. Performance characteristics

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    The performance of a fiber-optic epoxy composite cure sensor, as previously proposed, depends on the optical properties and the reaction kinetics of the epoxy. The reaction kinetics of a typical epoxy system are presented. It is a third-order autocatalytic reaction with a peak observed in each isothermal reaction-rate curve. A model is derived to describe the performance characteristics of the epoxy cure sensor. If a composite coupon is cured at an isothermal temperature, the sensor signal can be used to predict the time when the gel point occurs and to monitor the cure process. The sensor is also shown to perform well in nonstoichiometric epoxy matrices. In addition the sensor can detect the end of the cure without calibration.

  12. External protons destabilize the activated voltage sensor in hERG channels.

    PubMed

    Shi, Yu Patrick; Cheng, Yen May; Van Slyke, Aaron C; Claydon, Tom W

    2014-03-01

    Extracellular acidosis shifts hERG channel activation to more depolarized potentials and accelerates channel deactivation; however, the mechanisms underlying these effects are unclear. External divalent cations, e.g., Ca(2+) and Cd(2+), mimic these effects and coordinate within a metal ion binding pocket composed of three acidic residues in hERG: D456 and D460 in S2 and D509 in S3. A common mechanism may underlie divalent cation and proton effects on hERG gating. Using two-electrode voltage clamp, we show proton sensitivity of hERG channel activation (pKa = 5.6), but not deactivation, was greatly reduced in the presence of Cd(2+) (0.1 mM), suggesting a common binding site for the Cd(2+) and proton effect on activation and separable effects of protons on activation and deactivation. Mutational analysis confirmed that D509 plays a critical role in the pH dependence of activation, as shown previously, and that cooperative actions involving D456 and D460 are also required. Importantly, neutralization of all three acidic residues abolished the proton-induced shift of activation, suggesting that the metal ion binding pocket alone accounts for the effects of protons on hERG channel activation. Voltage-clamp fluorimetry measurements demonstrated that protons shifted the voltage dependence of S4 movement to more depolarized potentials. The data indicate a site and mechanism of action for protons on hERG activation gating; protonation of D456, D460 and D509 disrupts interactions between these residues and S4 gating charges to destabilize the activated configuration of S4.

  13. Pyroelectric PVDF sensor modeling of the temporal voltage response to arbitrarily modulated radiation.

    PubMed

    Capineri, L; Masotti, L; Mazzoni, M

    2000-01-01

    Our design of transducer arrays for custom pyroelectric sensors is mainly devoted to IR laser beam characterization and control. It benefits from some of the properties of PVDF film such as low cost, low weight, mechanical flexibility, chemical stability (inert), and compatibility of thick film interconnection technologies on metallized films. By using the temporal characteristics of the source intensity and starting from a standard equivalent one-dimensional model of a multilayer thick-film transducer in the frequency domain, we developed a computer model of the PVDF sensor that determines the temporal response to arbitrarily modulated radiation. The validation of the model accuracy has been carried out with a simulation procedure performed on a PVDF sensor designed for accurate beam alignment of low power laser beams. In this case, an iterative algorithm also was developed to estimate some thermal and physical properties of the front absorbing and the metallization layers that are generally barely known. We present a fitting procedure to determine these properties by using the temporal pyroelectric response to a square wave modulated laser diode that provides a reliable reference signal. PMID:18238686

  14. Fiber Bragg grating sensor for fault detection in high voltage overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Moghadas, Amin

    2011-12-01

    A fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by fiber Bragg grating (FBG) sensors. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signals. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG sensors and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

  15. Imaging Membrane Potential with Two Types of Genetically Encoded Fluorescent Voltage Sensors.

    PubMed

    Lee, Sungmoo; Piao, Hong Hua; Sepheri-Rad, Masoud; Jung, Arong; Sung, Uhna; Song, Yoon-Kyu; Baker, Bradley J

    2016-02-04

    Genetically encoded voltage indicators (GEVIs) have improved to the point where they are beginning to be useful for in vivo recordings. While the ultimate goal is to image neuronal activity in vivo, one must be able to image activity of a single cell to ensure successful in vivo preparations. This procedure will describe how to image membrane potential in a single cell to provide a foundation to eventually image in vivo. Here we describe methods for imaging GEVIs consisting of a voltage-sensing domain fused to either a single fluorescent protein (FP) or two fluorescent proteins capable of Förster resonance energy transfer (FRET) in vitro. Using an image splitter enables the projection of images created by two different wavelengths onto the same charge-coupled device (CCD) camera simultaneously. The image splitter positions a second filter cube in the light path. This second filter cube consists of a dichroic and two emission filters to separate the donor and acceptor fluorescent wavelengths depending on the FPs of the GEVI. This setup enables the simultaneous recording of both the acceptor and donor fluorescent partners while the membrane potential is manipulated via whole cell patch clamp configuration. When using a GEVI consisting of a single FP, the second filter cube can be removed allowing the mirrors in the image splitter to project a single image onto the CCD camera.

  16. Design and modeling of magnetically driven electric-field sensor for non-contact DC voltage measurement in electric power systems

    NASA Astrophysics Data System (ADS)

    Wang, Decai; Li, Ping; Wen, Yumei

    2016-10-01

    In this paper, the design and modeling of a magnetically driven electric-field sensor for non-contact DC voltage measurement are presented. The magnetic drive structure of the sensor is composed of a small solenoid and a cantilever beam with a cylindrical magnet mounted on it. The interaction of the magnet and the solenoid provides the magnetic driving force for the sensor. Employing magnetic drive structure brings the benefits of low driving voltage and large vibrating displacement, which consequently results in less interference from the drive signal. In the theoretical analyses, the capacitance calculation model between the wire and the sensing electrode is built. The expression of the magnetic driving force is derived by the method of linear fitting. The dynamical model of the magnetic-driven cantilever beam actuator is built by using Euler-Bernoulli theory and distributed parameter method. Taking advantage of the theoretical model, the output voltage of proposed sensor can be predicted. The experimental results are in good agreement with the theoretical results. The proposed sensor shows a favorable linear response characteristic. The proposed sensor has a measuring sensitivity of 9.87 μV/(V/m) at an excitation current of 37.5 mA. The electric field intensity resolution can reach 10.13 V/m.

  17. Neuronal death and perinatal lethality in voltage-gated sodium channel alpha(II)-deficient mice.

    PubMed

    Planells-Cases, R; Caprini, M; Zhang, J; Rockenstein, E M; Rivera, R R; Murre, C; Masliah, E; Montal, M

    2000-06-01

    Neural activity is crucial for cell survival and fine patterning of neuronal connectivity during neurodevelopment. To investigate the role in vivo of sodium channels (NaCh) in these processes, we generated knockout mice deficient in brain NaChalpha(II). NaChalpha(II)(-/-) mice were morphologically and organogenically indistinguishable from their NaChalpha(+/-) littermates. Notwithstanding, NaChalpha(II)(-/-) mice died perinatally with severe hypoxia and massive neuronal apoptosis, notably in the brainstem. Sodium channel currents recorded from cultured neurons of NaChalpha(II)(-/-) mice were sharply attenuated. Death appears to arise from severe hypoxia consequent to the brainstem deficiency of NaChalpha(II). NaChalpha(II) expression is, therefore, redundant for embryonic development but essential for postnatal survival.

  18. Two-photon scanning microscopy of in vivo sensory responses of cortical neurons genetically encoded with a fluorescent voltage sensor in rat

    PubMed Central

    Ahrens, Kurt F.; Heider, Barbara; Lee, Hanson; Isacoff, Ehud Y.; Siegel, Ralph M.

    2012-01-01

    A fluorescent voltage sensor protein “Flare” was created from a Kv1.4 potassium channel with YFP situated to report voltage-induced conformational changes in vivo. The RNA virus Sindbis introduced Flare into neurons in the binocular region of visual cortex in rat. Injection sites were selected based on intrinsic optical imaging. Expression of Flare occurred in the cell bodies and dendritic processes. Neurons imaged in vivo using two-photon scanning microscopy typically revealed the soma best, discernable against the background labeling of the neuropil. Somatic fluorescence changes were correlated with flashed visual stimuli; however, averaging was essential to observe these changes. This study demonstrates that the genetic modification of single neurons to express a fluorescent voltage sensor can be used to assess neuronal activity in vivo. PMID:22461770

  19. Calibration of a polarization navigation sensor using the NSGA-II algorithm

    NASA Astrophysics Data System (ADS)

    Ma, Tao; Hu, Xiaoping; Zhang, Lilian; He, Xiaofeng

    2016-10-01

    A bio-inspired polarization navigation sensor is designed based on the polarization sensitivity mechanisms of insects. A new calibration model by formulating the calibration problem as a multi-objective optimization problem is presented. Unlike existing calibration models, the proposed model makes the calibration problem well-posed. The calibration parameters are optimized through Non-dominated Sorting Genetic Algorithm-II (NSGA-II) approach to minimize both angle of polarization (AOP) residuals and degree of linear polarization (DOLP) dispersions. The results of simulation and experiments show that the proposed algorithm is more stable than the compared methods for the calibration applications of polarization navigation sensors.

  20. Biomimetic smart sensors for autonomous robotic behavior II: vestibular processing

    NASA Astrophysics Data System (ADS)

    Xue, Shuwan; Deligeorges, Socrates; Soloway, Aaron; Lichtenstein, Lee; Gore, Tyler; Hubbard, Allyn

    2009-05-01

    Limited autonomous behaviors are fast becoming a critical capability in the field of robotics as robotic applications are used in more complicated and interactive environments. As additional sensory capabilities are added to robotic platforms, sensor fusion to enhance and facilitate autonomous behavior becomes increasingly important. Using biology as a model, the equivalent of a vestibular system needs to be created in order to orient the system within its environment and allow multi-modal sensor fusion. In mammals, the vestibular system plays a central role in physiological homeostasis and sensory information integration (Fuller et al, Neuroscience 129 (2004) 461-471). At the level of the Superior Colliculus in the brain, there is multimodal sensory integration across visual, auditory, somatosensory, and vestibular inputs (Wallace et al, J Neurophysiol 80 (1998) 1006-1010), with the vestibular component contributing a strong reference frame gating input. Using a simple model for the deep layers of the Superior Colliculus, an off-the-shelf 3-axis solid state gyroscope and accelerometer was used as the equivalent representation of the vestibular system. The acceleration and rotational measurements are used to determine the relationship between a local reference frame of a robotic platform (an iRobot Packbot®) and the inertial reference frame (the outside world), with the simulated vestibular input tightly coupled with the acoustic and optical inputs. Field testing of the robotic platform using acoustics to cue optical sensors coupled through a biomimetic vestibular model for "slew to cue" gunfire detection have shown great promise.

  1. S1-S3 counter charges in the voltage sensor module of a mammalian sodium channel regulate fast inactivation.

    PubMed

    Groome, James R; Winston, Vern

    2013-05-01

    The movement of positively charged S4 segments through the electric field drives the voltage-dependent gating of ion channels. Studies of prokaryotic sodium channels provide a mechanistic view of activation facilitated by electrostatic interactions of negatively charged residues in S1 and S2 segments, with positive counterparts in the S4 segment. In mammalian sodium channels, S4 segments promote domain-specific functions that include activation and several forms of inactivation. We tested the idea that S1-S3 countercharges regulate eukaryotic sodium channel functions, including fast inactivation. Using structural data provided by bacterial channels, we constructed homology models of the S1-S4 voltage sensor module (VSM) for each domain of the mammalian skeletal muscle sodium channel hNaV1.4. These show that side chains of putative countercharges in hNaV1.4 are oriented toward the positive charge complement of S4. We used mutagenesis to define the roles of conserved residues in the extracellular negative charge cluster (ENC), hydrophobic charge region (HCR), and intracellular negative charge cluster (INC). Activation was inhibited with charge-reversing VSM mutations in domains I-III. Charge reversal of ENC residues in domains III (E1051R, D1069K) and IV (E1373K, N1389K) destabilized fast inactivation by decreasing its probability, slowing entry, and accelerating recovery. Several INC mutations increased inactivation from closed states and slowed recovery. Our results extend the functional characterization of VSM countercharges to fast inactivation, and support the premise that these residues play a critical role in domain-specific gating transitions for a mammalian sodium channel.

  2. Mechanism of Electromechanical Coupling in Voltage-Gated Potassium Channels

    PubMed Central

    Blunck, Rikard; Batulan, Zarah

    2012-01-01

    Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3–4e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4–S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during

  3. Evaluation of a Trainer for Sensor Operators on Gunship II Aircraft.

    ERIC Educational Resources Information Center

    Cream, Bertram W.

    This report describes the design, development, and evaluation of a training device intended to enable ground-based practice of equipment operation and target-tracking skills that are required by the Forward-Looking Infrared (FLIR) and Low Light Level TV (LLLTV) sensor operators assigned to Gunship II aircraft. This trainer makes use of a…

  4. Application of HFCT and UHF sensors in on-line partial discharge measurements for insulation diagnosis of high voltage equipment.

    PubMed

    Álvarez, Fernando; Garnacho, Fernando; Ortego, Javier; Sánchez-Urán, Miguel Ángel

    2015-01-01

    Partial discharge (PD) measurements provide valuable information for assessing the condition of high voltage (HV) insulation systems, contributing to their quality assurance. Different PD measuring techniques have been developed in the last years specially designed to perform on-line measurements. Non-conventional PD methods operating in high frequency bands are usually used when this type of tests are carried out. In PD measurements the signal acquisition, the subsequent signal processing and the capability to obtain an accurate diagnosis are conditioned by the selection of a suitable detection technique and by the implementation of effective signal processing tools. This paper proposes an optimized electromagnetic detection method based on the combined use of wideband PD sensors for measurements performed in the HF and UHF frequency ranges, together with the implementation of powerful processing tools. The effectiveness of the measuring techniques proposed is demonstrated through an example, where several PD sources are measured simultaneously in a HV installation consisting of a cable system connected by a plug-in terminal to a gas insulated substation (GIS) compartment. PMID:25815452

  5. Application of HFCT and UHF sensors in on-line partial discharge measurements for insulation diagnosis of high voltage equipment.

    PubMed

    Álvarez, Fernando; Garnacho, Fernando; Ortego, Javier; Sánchez-Urán, Miguel Ángel

    2015-03-25

    Partial discharge (PD) measurements provide valuable information for assessing the condition of high voltage (HV) insulation systems, contributing to their quality assurance. Different PD measuring techniques have been developed in the last years specially designed to perform on-line measurements. Non-conventional PD methods operating in high frequency bands are usually used when this type of tests are carried out. In PD measurements the signal acquisition, the subsequent signal processing and the capability to obtain an accurate diagnosis are conditioned by the selection of a suitable detection technique and by the implementation of effective signal processing tools. This paper proposes an optimized electromagnetic detection method based on the combined use of wideband PD sensors for measurements performed in the HF and UHF frequency ranges, together with the implementation of powerful processing tools. The effectiveness of the measuring techniques proposed is demonstrated through an example, where several PD sources are measured simultaneously in a HV installation consisting of a cable system connected by a plug-in terminal to a gas insulated substation (GIS) compartment.

  6. Application of HFCT and UHF Sensors in On-Line Partial Discharge Measurements for Insulation Diagnosis of High Voltage Equipment

    PubMed Central

    Álvarez, Fernando; Garnacho, Fernando; Ortego, Javier; Sánchez-Urán, Miguel Ángel

    2015-01-01

    Partial discharge (PD) measurements provide valuable information for assessing the condition of high voltage (HV) insulation systems, contributing to their quality assurance. Different PD measuring techniques have been developed in the last years specially designed to perform on-line measurements. Non-conventional PD methods operating in high frequency bands are usually used when this type of tests are carried out. In PD measurements the signal acquisition, the subsequent signal processing and the capability to obtain an accurate diagnosis are conditioned by the selection of a suitable detection technique and by the implementation of effective signal processing tools. This paper proposes an optimized electromagnetic detection method based on the combined use of wideband PD sensors for measurements performed in the HF and UHF frequency ranges, together with the implementation of powerful processing tools. The effectiveness of the measuring techniques proposed is demonstrated through an example, where several PD sources are measured simultaneously in a HV installation consisting of a cable system connected by a plug-in terminal to a gas insulated substation (GIS) compartment. PMID:25815452

  7. Design and construction of the 3.2 MeV high voltage column for DARHT II

    SciTech Connect

    Peters, C., Elliott, B.; Yu, S.; Eylon, S.; Henestroza, E.

    2000-08-20

    A 3.2 MeV injector has been designed and built for the DARHT II Project at Los Alamos Lab. The installation of the complete injector system is nearing completion at this time. The requirements for the injector are to produce a 3.2 MeV, 2000-ampere electron pulse with a flattop width of at least 2-microseconds and emittance of less than 0.15 pi cm-rad normalized. A large high voltage column has been built and installed. The column is vertically oriented, is 4.4 meters long, 1.2 meters in diameter, and weighs 5700 kilograms. A novel method of construction has been employed which utilizes bonded Mycalex insulating rings. This paper will describe the design, construction, and testing completed during construction. Mechanical aspects of the design will be emphasized.

  8. The α2δ-1 subunit remodels CaV1.2 voltage sensors and allows Ca2+ influx at physiological membrane potentials.

    PubMed

    Savalli, Nicoletta; Pantazis, Antonios; Sigg, Daniel; Weiss, James N; Neely, Alan; Olcese, Riccardo

    2016-08-01

    Excitation-evoked calcium influx across cellular membranes is strictly controlled by voltage-gated calcium channels (CaV), which possess four distinct voltage-sensing domains (VSDs) that direct the opening of a central pore. The energetic interactions between the VSDs and the pore are critical for tuning the channel's voltage dependence. The accessory α2δ-1 subunit is known to facilitate CaV1.2 voltage-dependent activation, but the underlying mechanism is unknown. In this study, using voltage clamp fluorometry, we track the activation of the four individual VSDs in a human L-type CaV1.2 channel consisting of α1C and β3 subunits. We find that, without α2δ-1, the channel complex displays a right-shifted voltage dependence such that currents mainly develop at nonphysiological membrane potentials because of very weak VSD-pore interactions. The presence of α2δ-1 facilitates channel activation by increasing the voltage sensitivity (i.e., the effective charge) of VSDs I-III. Moreover, the α2δ-1 subunit also makes VSDs I-III more efficient at opening the channel by increasing the coupling energy between VSDs II and III and the pore, thus allowing Ca influx within the range of physiological membrane potentials. PMID:27481713

  9. Highly selective and stable florescent sensor for Cd(II) based on poly (azomethine-urethane).

    PubMed

    Kaya, İsmet; Kamacı, Musa

    2013-01-01

    In this study a kind of poly(azomethine-urethane); (E)-4-((2 hydroxyphenylimino) methyl)-2-methoxyphenyl 6-acetamidohexylcarbamate (HDI-co-3-DHB-2-AP) was prepared as in the literature and employed as a new fluorescent probe for detection of Cd(II) concentration. The photoluminescence (PL) measurements were carried out in the presence of several kinds of heavy metals. HDI-co-3-DHB-2-AP gave a linearly and highly stable response against Cd(II) as decreasing a new emission peak at 562 nm. Possible interferences of other ions were found too low. Detection limit of the sensor was found as 8.86 × 10(-4) mol L(-1). Resultantly, HDI-co-3- DHB-2-AP could be effectively used as an optical Cd(II) sensor.

  10. Highly selective and stable florescent sensor for Cd(II) based on poly (azomethine-urethane).

    PubMed

    Kaya, İsmet; Kamacı, Musa

    2013-01-01

    In this study a kind of poly(azomethine-urethane); (E)-4-((2 hydroxyphenylimino) methyl)-2-methoxyphenyl 6-acetamidohexylcarbamate (HDI-co-3-DHB-2-AP) was prepared as in the literature and employed as a new fluorescent probe for detection of Cd(II) concentration. The photoluminescence (PL) measurements were carried out in the presence of several kinds of heavy metals. HDI-co-3-DHB-2-AP gave a linearly and highly stable response against Cd(II) as decreasing a new emission peak at 562 nm. Possible interferences of other ions were found too low. Detection limit of the sensor was found as 8.86 × 10(-4) mol L(-1). Resultantly, HDI-co-3- DHB-2-AP could be effectively used as an optical Cd(II) sensor. PMID:22941725

  11. Disparities in voltage-sensor charge and electromotility imply slow chloride-driven state transitions in the solute carrier SLC26a5.

    PubMed

    Song, Lei; Santos-Sacchi, Joseph

    2013-03-01

    Outer hair cells (OHCs) drive cochlear amplification that enhances our ability to detect and discriminate sounds. The motor protein, prestin, which evolved from the SLC26 anion transporter family, underlies the OHC's voltage-dependent mechanical activity (eM). Here we report on simultaneous measures of prestin's voltage-sensor charge movement (nonlinear capacitance, NLC) and eM that evidence disparities in their voltage dependence and magnitude as a function of intracellular chloride, challenging decades' old dogma that NLC reports on eM steady-state behavior. A very simple kinetic model, possessing fast anion-binding transitions and fast voltage-dependent transitions, coupled together by a much slower transition recapitulates these disparities and other biophysical observations on the OHC. The intermediary slow transition probably relates to the transporter legacy of prestin, and this intermediary gateway, which shuttles anion-bound molecules into the voltage-enabled pool of motors, provides molecular delays that present as phase lags between membrane voltage and eM. Such phase lags may help to effectively inject energy at the appropriate moment to enhance basilar membrane motion. PMID:23431177

  12. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Khoshkbar Sadigh, Arash

    Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified

  13. Brown Adipose Tissue Response Dynamics: In Vivo Insights with the Voltage Sensor 18F-Fluorobenzyl Triphenyl Phosphonium.

    PubMed

    Madar, Igal; Naor, Elinor; Holt, Daniel; Ravert, Hayden; Dannals, Robert; Wahl, Richard

    2015-01-01

    Brown adipose tissue (BAT) thermogenesis is an emerging target for prevention and treatment of obesity. Mitochondria are the heat generators of BAT. Yet, there is no noninvasive means to image the temporal dynamics of the mitochondrial activity in BAT in vivo. Here, we report a technology for quantitative monitoring of principal kinetic components of BAT adaptive thermogenesis in the living animal, using the PET imaging voltage sensor 18F-fluorobenzyltriphenylphosphonium (18F-FBnTP). 18F-FBnTP targets the mitochondrial membrane potential (ΔΨm)--the voltage analog of heat produced by mitochondria. Dynamic 18F-FBnTP PET imaging of rat's BAT was acquired just before and during localized skin cooling or systemic pharmacologic stimulation, with and without administration of propranolol. At ambient temperature, 18F-FBnTP demonstrated rapid uptake and prolonged steady-state retention in BAT. Conversely, cold-induced mitochondrial uncoupling resulted in an immediate washout of 18F-FBnTP from BAT, which was blocked by propranolol. Specific variables of BAT evoked activity were identified and quantified, including response latency, magnitude and kinetics. Cold stimulation resulted in partial washout of 18F-FBnTP (39.1%±14.4% of basal activity). The bulk of 18F-FBnTP washout response occurred within the first minutes of the cold stimulation, while colonic temperature remained nearly intact. Drop of colonic temperature to shivering zone did not have an additive effect. The ß3-adrenergic agonist CL-316,243 elicited 18F-FBnTP washout from BAT of kinetics similar to those caused by cold stimulation. Thus, monitoring ΔΨm in vivo using 18F-FBnTP PET provides insights into the kinetic physiology of BAT. 18F-FBnTP PET depicts BAT as a highly sensitive and rapidly responsive organ, emitting heat in short burst during the first minutes of stimulation, and preceding change in core temperature. 18F-FBnTP PET provides a novel set of quantitative metrics highly important for

  14. Voltage-Dependent Regulation of Complex II Energized Mitochondrial Oxygen Flux

    PubMed Central

    Bai, Fan; Fink, Brian D.; Yu, Liping; Sivitz, William I.

    2016-01-01

    Oxygen consumption by isolated mitochondria is generally measured during state 4 respiration (no ATP production) or state 3 (maximal ATP production at high ADP availability). However, mitochondria in vivo do not function at either extreme. Here we used ADP recycling methodology to assess muscle mitochondrial function over intermediate clamped ADP concentrations. In so doing, we uncovered a previously unrecognized biphasic respiratory pattern wherein O2 flux on the complex II substrate, succinate, initially increased and peaked over low clamped ADP concentrations then decreased markedly at higher clamped concentrations. Mechanistic studies revealed no evidence that the observed changes in O2 flux were due to altered opening or function of the mitochondrial permeability transition pore or to changes in reactive oxygen. Based on metabolite and functional metabolic data, we propose a multifactorial mechanism that consists of coordinate changes that follow from reduced membrane potential (as the ADP concentration in increased). These changes include altered directional electron flow, altered NADH/NAD+ redox cycling, metabolite exit, and OAA inhibition of succinate dehydrogenase. In summary, we report a previously unrecognized pattern for complex II energized O2 flux. Moreover, our findings suggest that the ADP recycling approach might be more widely adapted for mitochondrial studies. PMID:27153112

  15. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor

    PubMed Central

    Ghitani, Nima; Bayguinov, Peter O.; Ma, Yihe

    2014-01-01

    Genetically encoded voltage sensors expand the optogenetics toolkit into the important realm of electrical recording, enabling researchers to study the dynamic activity of complex neural circuits in real time. However, these probes have thus far performed poorly when tested in intact neural circuits. Hybrid voltage sensors (hVOS) enable the imaging of voltage by harnessing the resonant energy transfer that occurs between a genetically encoded component, a membrane-tethered fluorescent protein that serves as a donor, and a small charged molecule, dipicrylamine, which serves as an acceptor. hVOS generates optical signals as a result of voltage-induced changes in donor-acceptor distance. We expressed the hVOS probe in mouse brain by in utero electroporation and in transgenic mice with a neuronal promoter. Under conditions favoring sparse labeling we could visualize single-labeled neurons. hVOS imaging reported electrically evoked fluorescence changes from individual neurons in slices from entorhinal cortex, somatosensory cortex, and hippocampus. These fluorescence signals tracked action potentials in individual neurons in a single trial with excellent temporal fidelity, producing changes that exceeded background noise by as much as 16-fold. Subthreshold synaptic potentials were detected in single trials in multiple distinct cells simultaneously. We followed signal propagation between different cells within one field of view and between dendrites and somata of the same cell. hVOS imaging thus provides a tool for high-resolution recording of electrical activity from genetically targeted cells in intact neuronal circuits. PMID:25411462

  16. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor.

    PubMed

    Ghitani, Nima; Bayguinov, Peter O; Ma, Yihe; Jackson, Meyer B

    2015-02-15

    Genetically encoded voltage sensors expand the optogenetics toolkit into the important realm of electrical recording, enabling researchers to study the dynamic activity of complex neural circuits in real time. However, these probes have thus far performed poorly when tested in intact neural circuits. Hybrid voltage sensors (hVOS) enable the imaging of voltage by harnessing the resonant energy transfer that occurs between a genetically encoded component, a membrane-tethered fluorescent protein that serves as a donor, and a small charged molecule, dipicrylamine, which serves as an acceptor. hVOS generates optical signals as a result of voltage-induced changes in donor-acceptor distance. We expressed the hVOS probe in mouse brain by in utero electroporation and in transgenic mice with a neuronal promoter. Under conditions favoring sparse labeling we could visualize single-labeled neurons. hVOS imaging reported electrically evoked fluorescence changes from individual neurons in slices from entorhinal cortex, somatosensory cortex, and hippocampus. These fluorescence signals tracked action potentials in individual neurons in a single trial with excellent temporal fidelity, producing changes that exceeded background noise by as much as 16-fold. Subthreshold synaptic potentials were detected in single trials in multiple distinct cells simultaneously. We followed signal propagation between different cells within one field of view and between dendrites and somata of the same cell. hVOS imaging thus provides a tool for high-resolution recording of electrical activity from genetically targeted cells in intact neuronal circuits. PMID:25411462

  17. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Khoshkbar Sadigh, Arash

    Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified

  18. In situ formation of p-n junction: a novel principle for photoelectrochemical sensor and its application for mercury(II) ion detection.

    PubMed

    Wang, Guang-Li; Liu, Kang-Li; Dong, Yu-Ming; Li, Zai-Jun; Zhang, Chi

    2014-05-27

    The discovery and development of photoelectrochemical sensors with novel principles are of great significance to realize sensitive and low-cost detection. In this paper, a new photoelectrochemial sensor based on the in situ formation of p-n junction was designed and used for the accurate determination of mercury(II) ions. Cysteine-capped ZnS quantum dots (QDs) was assembled on the surface of indium tin oxide (ITO) electrode based on the electrostatic interaction between Poly(diallyldimethylammonium chloride) (PDDA) and Cys-capped ZnS QDs. The in situ formation of HgS, a p-type semiconductor, on the surface of ZnS facilitated the charge carrier transport and promoted electron-hole separation, triggered an obviously enhanced anodic photocurrent of Cys-capped ZnS QDs. The formation of p-n junction was confirmed by P-N conductive type discriminator measurements and current-voltage (I-V) curves. The photoelectrochemical method was used for the sensing of trace mercuric (II) ions with a linear concentration of 0.01 to 10.0 µM and a detection limit of 4.6×10(-9)mol/L. It is expected that the present study can serve as a foundation to the application of p-n heterojunction to photoelectrochemical sensors and it might be easily extended to more exciting sensing systems by photoelectrochemistry. PMID:24832992

  19. Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, Lorenzo; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-07-01

    The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of 8 ×1035cm-2s-1 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors.

  20. Precocene II, a Trichothecene Production Inhibitor, Binds to Voltage-Dependent Anion Channel and Increases the Superoxide Level in Mitochondria of Fusarium graminearum.

    PubMed

    Furukawa, Tomohiro; Sakamoto, Naoko; Suzuki, Michio; Kimura, Makoto; Nagasawa, Hiromichi; Sakuda, Shohei

    2015-01-01

    Precocene II, a constituent of essential oils, shows antijuvenile hormone activity in insects and inhibits trichothecene production in fungi. We investigated the molecular mechanism by which precocene II inhibits trichothecene production in Fusarium graminearum, the main causal agent of Fusarium head blight and trichothecene contamination in grains. Voltage-dependent anion channel (VDAC), a mitochondrial outer membrane protein, was identified as the precocene II-binding protein by an affinity magnetic bead method. Precocene II increased the superoxide level in mitochondria as well as the amount of oxidized mitochondrial proteins. Ascorbic acid, glutathione, and α-tocopherol promoted trichothecene production by the fungus. These antioxidants compensated for the inhibitory activity of precocene II on trichothecene production. These results suggest that the binding of precocene II to VDAC may cause high superoxide levels in mitochondria, which leads to stopping of trichothecene production. PMID:26248339

  1. Effect of Embedded Pd Microstructures on the Flat-Band-Voltage Operation of Room Temperature ZnO-Based Liquid Petroleum Gas Sensors

    PubMed Central

    Ali, Ghusoon M.; Thompson, Cody V.; Jasim, Ali K.; Abdulbaqi, Isam M.; Moore, James C.

    2013-01-01

    Three methods were used to fabricate ZnO-based room temperature liquid petroleum gas (LPG) sensors having interdigitated metal-semiconductor-metal (MSM) structures. Specifically, devices with Pd Schottky contacts were fabricated with: (1) un-doped ZnO active layers; (2) Pd-doped ZnO active layers; and (3) un-doped ZnO layers on top of Pd microstructure arrays. All ZnO films were grown on p-type Si(111) substrates by the sol-gel method. For devices incorporating a microstructure array, Pd islands were first grown on the substrate by thermal evaporation using a 100 μm mesh shadow mask. We have estimated the sensitivity of the sensors for applied voltage from –5 to 5 V in air ambient, as well as with exposure to LPG in concentrations from 500 to 3,500 ppm at room temperature (300 K). The current-voltage characteristics were studied and parameters such as leakage current, barrier height, reach-through voltage, and flat-band voltage were extracted. We include contributions due to the barrier height dependence on the electric field and tunneling through the barrier for the studied MSM devices. The Pd-enhanced devices demonstrated a maximum gas response at flat-band voltages. The study also revealed that active layers consisting of Pd microstructure embedded ZnO films resulted in devices exhibiting greater gas-response as compared to those using Pd-doped ZnO thin films or un-doped active layers.

  2. Quantum Efficiency Characterization and Optimization of a Tungsten Transition-Edge Sensor for ALPS II

    NASA Astrophysics Data System (ADS)

    Bastidon, Noëmie; Horns, Dieter; Lindner, Axel

    2016-07-01

    The ALPS II experiment, Any Light Particle Search II at DESY in Hamburg, will look for sub-eV mass new fundamental bosons (e.g., axion-like particles, hidden photons, and other weakly interacting sub-eV particles) in the next years by means of a light-shining-through-wall setup. The ALPS II photosensor is a tungsten transition-edge sensor (W-TES) optimized for 1064 nm photons. This TES, operated at 80 mK, has already allowed single infrared photon detections as well as non-dispersive spectroscopy with very low background rates. The demonstrated quantum efficiency for such TES is up to 95 % (1064 nm) as has been already demonstrated by the US National Institute of Standards and Technology. A back-to-back measurement of the ALPS TES quantum efficiency using a calibrated charge-coupled device camera has lead to a first estimation of 30 %. Improvement methods are discussed.

  3. The Chimera II Real-Time Operating System for advanced sensor-based control applications

    NASA Technical Reports Server (NTRS)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1992-01-01

    Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.

  4. Zn(II) complex-based potentiometric sensors for selective determination of nitrate anion.

    PubMed

    Mahajan, Rakesh Kumar; Kaur, Ravneet; Miyake, Hiroyuki; Tsukube, Hiroshi

    2007-02-12

    Polymeric membranes containing new Zn(II) complexes as anion carriers were prepared for determination of nitrate anion present in water samples. Two Zn(II) complexes coordinated by neutral tetradentate ligands, N,N'-ethylene-bis(N-methyl-(S)-alanine methylamide) and N,N'-ethylene-bis(N-methyl-(S)-alanine dimethylamide), worked well as anion-selective carriers, while common phthalocyanine Zn(II) complex rarely responded to any anions. The combination of these new Zn(II) complexes with dioctylsebacate as a plasticizer particularly offered high sensing selectivity for nitrate anion. They exhibited near-Nernstian slopes in the wide linear concentration range of 5.0 x 10(-5) to 1.0 x 10(-1) M, and operated well in the wide pH range from 4 to 11 with the response time of less than 25s. The potentiometric selectivity coefficients were evaluated using the fixed interference method, indicating that the two Zn(II) complexes exhibited better selectivity for nitrate anion with respect to a wide variety of inorganic anions. Although chloride anion worked as an interfering species at a concentration higher than 1.0 x 10(-3) M, the new Zn(II) complex-based sensors were applicable in determination of the nitrate anion after adding silver sulfate to remove the chloride anion.

  5. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor.

    PubMed

    Gong, Yiyang; Huang, Cheng; Li, Jin Zhong; Grewe, Benjamin F; Zhang, Yanping; Eismann, Stephan; Schnitzer, Mark J

    2015-12-11

    Genetically encoded voltage indicators (GEVIs) are a promising technology for fluorescence readout of millisecond-scale neuronal dynamics. Previous GEVIs had insufficient signaling speed and dynamic range to resolve action potentials in live animals. We coupled fast voltage-sensing domains from a rhodopsin protein to bright fluorophores through resonance energy transfer. The resulting GEVIs are sufficiently bright and fast to report neuronal action potentials and membrane voltage dynamics in awake mice and flies, resolving fast spike trains with 0.2-millisecond timing precision at spike detection error rates orders of magnitude better than previous GEVIs. In vivo imaging revealed sensory-evoked responses, including somatic spiking, dendritic dynamics, and intracellular voltage propagation. These results empower in vivo optical studies of neuronal electrophysiology and coding and motivate further advancements in high-speed microscopy. PMID:26586188

  6. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor

    PubMed Central

    Gong, Yiyang; Huang, Cheng; Li, Jin Zhong; Grewe, Benjamin F.; Zhang, Yanping; Eismann, Stephan; Schnitzer, Mark J.

    2016-01-01

    Genetically encoded voltage indicators (GEVIs) are a promising technology for fluorescence readout of millisecond-scale neuronal dynamics. Previous GEVIs had insufficient signaling speed and dynamic range to resolve action potentials in live animals. We coupled fast voltage-sensing domains from a rhodopsin protein to bright fluorophores through resonance energy transfer. The resulting GEVIs are sufficiently bright and fast to report neuronal action potentials and membrane voltage dynamics in awake mice and flies, resolving fast spike trains with 0.2-millisecond timing precision at spike detection error rates orders of magnitude better than previous GEVIs. In vivo imaging revealed sensory-evoked responses, including somatic spiking, dendritic dynamics, and intracellular voltage propagation. These results empower in vivo optical studies of neuronal electrophysiology and coding and motivate further advancements in high-speed microscopy. PMID:26586188

  7. A regenerative electrochemical sensor based on oligonucleotide for the selective determination of mercury(II).

    PubMed

    Han, Donghoon; Kim, Yang-Rae; Oh, Jeong-Wook; Kim, Tae Hyun; Mahajan, Rakesh Kumar; Kim, Jong Seung; Kim, Hasuck

    2009-09-01

    We have developed a selective, sensitive, and re-usable electrochemical sensor for Hg2+ ion detection. This sensor is based on the Hg2+-induced conformational change of a single-stranded DNA (ssDNA) which involves an electroactive, ferrocene-labeled DNA hairpin structure and provides strategically the selective binding of a thymine-thymine mismatch for the Hg2+ ion. The ferrocene-labeled DNA is self-assembled through S-Au bonding on a polycrystalline gold electrode surface and the surface blocked with 3-mercapto-1-propanol to form a mixed monolayer. The modified electrode showed a voltammetric signal due to a one-step redox reaction of the surface-confined ferrocenyl moiety. The 'signal-on' upon mercury binding could be attributed to a change in the conformation of ferrocene-labeled DNA from an open structure to a restricted hairpin structure. The differential pulse voltammetry (DPV) of the modified electrode showed a linear response of the ferrocene oxidation signal with increase of Hg2+ concentration in the range between 0.1 and 2 microM with a detection limit of 0.1 microM. The molecular beacon mercury(II) ion sensor was amenable to regeneration by simply unfolding the ferrocene-labeled DNA in 10 microM cysteine, and could be regenerated with no loss in signal gain upon subsequent mercury(II) ion binding.

  8. Passive Chemiresistor Sensor Based on Iron (II) Phthalocyanine Thin Films for Monitoring of Nitrogen Dioxide

    NASA Astrophysics Data System (ADS)

    Shu, John Hungjen

    In this dissertation, an alternate, new approach was investigated to produce a nonreversible, passive, iron (II) phthalocyanine (FePc) thin film sensor that does not require continuous power for operation. The sensor was manufactured using standard microelectronics fabrication procedures, with emphasis on low cost and sensor consistency. The sensor substrate consists of a gold interdigitated electrode pattern deposited on an oxidized silicon or quartz wafer. The FePc thin film is then vacuum sublimed over the interdigitated electrodes to form the finalized sensor. Different thicknesses and morphologies of FePc thin films were fabricated. Once sensor fabrication was accomplished, the general response, temperature dependence, concentration dependence, specificity, and longevity of FePc thin film sensors were investigated. To evaluate general sensor reponse, sensors were exposed to 100 ppm nitrogen dioxide in nitrogen, with a flow rate of 0.25 liters per minute (L/min), at the temperatures of -46, 20, and 71 °C. For each case, the resistance of the sensor decreased exponentially as a function of exposure duration and reached saturation within 25 minutes. The resistance decrease was measured to be four, three, and two orders of magnitude for the exposure temperatures of -46, 20, and 71 .C respectively. In these experiments, sub-zero temperature detection of nitrogen dioxide with FePc thin films was reported for the first time. It was found that the response at -46 °C was greater than at 20 or 71 °C. To evaluate temperature dependence, sensors were thermal cycled in the range of -50 to 80 °C, first under ultra-high purity nitrogen gas at 0.25 L/min, and then under 100 ppm nitrogen dioxide gas at 0.25 L/min. Intrinsic FePc film conductivity was measured by thermal cycling sensors under nitrogen gas. Extrinsic FePc film conductivity was measured by thermal cycling sensors under nitrogen dioxide gas. Results from these tests indicated that the temperature dependence of

  9. Multiparametric optimization of a new high-sensitive and disposable mercury (II) electrochemical sensor.

    PubMed

    Armas, M A; María-Hormigos, R; Cantalapiedra, A; Gismera, M J; Sevilla, M T; Procopio, J R

    2016-01-21

    An electrochemical sensor for mercury (II) determination was developed by modifying the surface of a commercial screen-printed carbon electrode (SPCE) with a polystyrene sulfonate-NiO-carbon nanopowder composite material. Mercury measurements were performed by differential pulse anodic stripping voltammetry (DPASV). Sensor composition and measurement conditions were optimized using a multivariate experiment design. A screening experiment by using a Plackett-Burman design was first performed in order to determine the main contributing factors to the electrochemical response. The most important factors were employed to establish the interactions between different experimental variables and get the best conditions for mercury determination. For this purpose, a five level central composite design and a response surface methodology were used. The optimized method using the developed NiO-PSS-SPCE sensor presents a very low limit of detection of 0.021 μg L(-1) and a linear response over two concentration ranges with two different slopes, from 0.05 to 2.0 μg L(-1) and between 2.0 and 75 μg L(-1). The sensor was successfully applied to mercury determination in water samples. PMID:26724765

  10. Multiparametric optimization of a new high-sensitive and disposable mercury (II) electrochemical sensor.

    PubMed

    Armas, M A; María-Hormigos, R; Cantalapiedra, A; Gismera, M J; Sevilla, M T; Procopio, J R

    2016-01-21

    An electrochemical sensor for mercury (II) determination was developed by modifying the surface of a commercial screen-printed carbon electrode (SPCE) with a polystyrene sulfonate-NiO-carbon nanopowder composite material. Mercury measurements were performed by differential pulse anodic stripping voltammetry (DPASV). Sensor composition and measurement conditions were optimized using a multivariate experiment design. A screening experiment by using a Plackett-Burman design was first performed in order to determine the main contributing factors to the electrochemical response. The most important factors were employed to establish the interactions between different experimental variables and get the best conditions for mercury determination. For this purpose, a five level central composite design and a response surface methodology were used. The optimized method using the developed NiO-PSS-SPCE sensor presents a very low limit of detection of 0.021 μg L(-1) and a linear response over two concentration ranges with two different slopes, from 0.05 to 2.0 μg L(-1) and between 2.0 and 75 μg L(-1). The sensor was successfully applied to mercury determination in water samples.

  11. Silicon sensor prototypes for the Phase II upgrade of the CMS tracker

    NASA Astrophysics Data System (ADS)

    Bergauer, Thomas

    2016-09-01

    The High-Luminosity LHC (HL-LHC) has been identified as the highest priority program in High Energy Physics in the mid-term future. It will provide the experiments an additional integrated luminosity of about 2500 fb-1 over 10 years of operation, starting in 2025. In order to meet the experimental challenges of unprecedented p-p luminosity, especially in terms of radiation levels and occupancy, the CMS collaboration will need to replace its entire strip tracker by a new one. In this paper the baseline layout option for this new Phase-II tracker is shown, together with two variants using a tilted barrel geometry or larger modules from 8-inch silicon wafers. Moreover, the two module concepts are discussed, which consist either of two strip sensors (2S) or of one strip and one pixel sensor (PS). These two designs allow pT discrimination at module level enabling the tracker to contribute to the L1 trigger decision. The paper presents testing results of the macro-pixel-light sensor for the PS module and shows the first electrical characterization of unirradiated, full-scale strip sensor prototypes for the 2S module concept, both on 6- and 8-inch wafers.

  12. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    PubMed Central

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-01-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully. PMID:25640000

  13. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-02-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.

  14. CHIMERA II - A real-time multiprocessing environment for sensor-based robot control

    NASA Technical Reports Server (NTRS)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1989-01-01

    A multiprocessing environment for a wide variety of sensor-based robot system, providing the flexibility, performance, and UNIX-compatible interface needed for fast development of real-time code is addressed. The requirements imposed on the design of a programming environment for sensor-based robotic control is outlined. The details of the current hardware configuration are presented, along with the details of the CHIMERA II software. Emphasis is placed on the kernel, low-level interboard communication, user interface, extended file system, user-definable and dynamically selectable real-time schedulers, remote process synchronization, and generalized interprocess communication. A possible implementation of a hierarchical control model, the NASA/NBS standard reference model for telerobot control system is demonstrated.

  15. Structural characterization of the voltage sensor domain and voltage-gated K+- channel proteins vectorially-oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry

    PubMed Central

    Gupta, S.; Dura, J.A.; Freites, J.A.; Tobias, D.J.; Blasie, J. K.

    2012-01-01

    The voltage-sensor domain (VSD) is a modular 4-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of x-ray crystal structures for a few voltage-gated potassium (Kv-) channels and a voltage-gate sodium (Nav-) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e. non-conducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially-oriented within a single phospholipid (POPC; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane investigated by x-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces thus achieving partial to full hydration, respectively (Gupta et. al. Phys. Rev E. 2011, 84). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the sub-molecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected sub-molecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of water and

  16. MPV-II: an enhanced vector man-portable EMI sensor for UXO identification

    NASA Astrophysics Data System (ADS)

    Fernández, Juan Pablo; Barrowes, Benjamin; Bijamov, Alex; Grzegorczyk, Tomasz; Lhomme, Nicolas; O'Neill, Kevin; Shamatava, Irma; Shubitidze, Fridon

    2011-06-01

    The Man-Portable Vector (MPV) electromagnetic induction sensor has proved its worth and flexibility as a tool for identification and discrimination of unexploded ordnance (UXO). TheMPV allows remediation work in treed and rough terrains where other instruments cannot be deployed; it can work in survey mode and in a static mode for close interrogation of anomalies. By measuring the three components of the secondary field at five different locations, the MPV provides diverse time-domain data of high quality. TheMPV is currently being upgraded, streamlined, and enhanced to make it more practical and serviceable. The new sensor, dubbedMPV-II, has a smaller head and lighter components for better portability. The original laser positioning system has been replaced with one that uses the transmitter coil as a beacon. The receivers have been placed in a configuration that permits experimental computation of field gradients. In this work, after introducing the new sensor, we present the results of several identification/discrimination experiments using data provided by the MPV-II and digested using a fast and accurate new implementation of the dipole model. The model performs a nonlinear search for the location of a responding target, at each step carrying out a simultaneous linear least-squares inversion for the principal polarizabilities at all time gates and for the orientation of the target. We find that the MPV-II can identify standard-issue UXO, even in cases where there are two targets in its field of view, and can discriminate them from clutter.

  17. A low cost matching motion estimation sensor based on the NIOS II microprocessor.

    PubMed

    González, Diego; Botella, Guillermo; Meyer-Baese, Uwe; García, Carlos; Sanz, Concepción; Prieto-Matías, Manuel; Tirado, Francisco

    2012-09-27

    This work presents the implementation of a matching-based motion estimation sensor on a Field Programmable Gate Array (FPGA) and NIOS II microprocessor applying a C to Hardware (C2H) acceleration paradigm. The design, which involves several matching algorithms, is mapped using Very Large Scale Integration (VLSI) technology. These algorithms, as well as the hardware implementation, are presented here together with an extensive analysis of the resources needed and the throughput obtained. The developed low-cost system is practical for real-time throughput and reduced power consumption and is useful in robotic applications, such as tracking, navigation using an unmanned vehicle, or as part of a more complex system.

  18. Fibre-optic sensors for partial discharge-generated ultrasound in elastomeric high-voltage insulation materials

    NASA Astrophysics Data System (ADS)

    Rohwetter, P.; Habel, W.

    2013-05-01

    Recent progress in the development of ultrasonic fibre-optic sensors for detecting acoustic emission from partial discharge in elastomeric insulations is presented. These sensors are an important part of a proposed comprehensive scheme for the fibre-optic monitoring of cable accessories. After specifying the underlying design goals the improved fibre-optic sensor design is outlined. It is experimentally shown that it offers about ten-fold improvement over a previously investigated resonant cantilever-type design in terms of detection limit, making it competitive with conventional piezoelectric transducers, however with the added compatibility with strong electrical fields and electromagnetically noisy environments.

  19. Preparation of a novel pH optical sensor using orange (II) based on agarose membrane as support.

    PubMed

    Heydari, Rouhollah; Hosseini, Mohammad; Amraei, Ahmadreza; Mohammadzadeh, Ali

    2016-04-01

    A novel and cost effective optical pH sensor was prepared using covalent immobilization of orange (II) indicator on the agarose membrane as solid support. The fabricated optical sensor was fixed into a sample holder of a spectrophotometer instrument for pH monitoring. Variables affecting sensor performance including pH of dye bonding to agarose membrane and dye concentration were optimized. The sensor responds to the pH changes in the range of 3.0-10.0 with a response time of 2.0 min and appropriate reproducibility (RSD ≤ 0.9%). No significant variation was observed on sensor response after increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH using the proposed optical sensor is quick, simple, inexpensive, selective and sensitive in the pH range of 3.0-10.0.

  20. BK channel activation by tungstate requires the β1 subunit extracellular loop residues essential to modulate voltage sensor function and channel gating.

    PubMed

    Fernández-Mariño, Ana I; Valverde, Miguel A; Fernández-Fernández, José M

    2014-07-01

    Tungstate, a compound with antidiabetic, antiobesity, and antihypertensive properties, activates the large-conductance voltage- and Ca(2+)-dependent K(+) (BK) channel containing either β1 or β4 subunits. The BK activation by tungstate is Mg(2+)-dependent and promotes arterial vasodilation, but only in precontracted mouse arteries expressing β1. In this study, we further explored how the β1 subunit participates in tungstate activation of BK channels. Activation of heterologously expressed human BKαβ1 channels in inside-out patches is fully dependent on the Mg(2+) sensitivity of the BK α channel subunit even at high (10 μM) cytosolic Ca(2+) concentration. Alanine mutagenesis of β1 extracellular residues Y74 or S104, which destabilize the active voltage sensor, greatly decreased the tungstate-induced left-shift of the BKαβ1 G-V curves in either the absence or presence of physiologically relevant cytosolic Ca(2+) levels (10 μM). The weakened tungstate activation of the BKαβ1Y74A and BKαβ1S104A mutant channels was not related to decreased Mg(2+) sensitivity. These results, together with previously published reports, support the idea that the putative binding site for tungstate-mediated BK channel activation is located in the pore-forming α channel subunit, around the Mg(2+) binding site. The role of β1 in tungstate-induced channel activation seems to rely on its interaction with the BK α subunit to modulate channel activity. Loop residues that are essential for the regulation of voltage sensor activation and gating of the BK channel are also relevant for BK activation by tungstate.

  1. Calmodulin kinase II is involved in voltage-dependent facilitation of the L-type Cav1.2 calcium channel: Identification of the phosphorylation sites.

    PubMed

    Lee, Tae-Seong; Karl, Rosi; Moosmang, Sven; Lenhardt, Peter; Klugbauer, Norbert; Hofmann, Franz; Kleppisch, Thomas; Welling, Andrea

    2006-09-01

    Calcium-dependent facilitation of L-type calcium channels has been reported to depend on the function of calmodulin kinase II. In contrast, the mechanism for voltage-dependent facilitation is not clear. In HEK 293 cells expressing Ca(v)1.2, Ca(v)beta2a, and calmodulin kinase II, the calcium current measured at +30 mV was facilitated up to 1.5-fold by a 200-ms-long prepulse to +160 mV. This voltage-dependent facilitation was prevented by the calmodulin kinase II inhibitors KN93 and the autocamtide-2-related peptide. In cells expressing the Ca(v)1.2 mutation I1649E, a residue critical for the binding of Ca2+-bound calmodulin, facilitation was also abolished. Calmodulin kinase II was coimmunoprecipitated with the Ca(v)1.2 channel from murine heart and HEK 293 cells expressing Ca(v)1.2 and calmodulinkinase II. The precipitated Ca(v)1.2 channel was phosphorylated in the presence of calmodulin and Ca2+. Fifteen putative calmodulin kinase II phosphorylation sites were identified mostly in the carboxyl-terminal tail of Ca(v)1.2. Neither truncation at amino acid 1728 nor changing the II-III loop serines 808 and 888 to alanines affected facilitation of the calcium current. In contrast, facilitation was decreased by the single mutations S1512A and S1570A and abolished by the double mutation S1512A/S1570A. These serines flank the carboxyl-terminal EF-hand motif. Immunoprecipitation of calmodulin kinase II with the Ca(v)1.2 channel was not affected by the mutation S1512A/S1570A. The phosphorylation of the Ca(v)1.2 protein was strongly decreased in the S1512A/S1570A double mutant. These results suggest that voltage-dependent facilitation of the Ca(v)1.2 channel depends on the phosphorylation of Ser1512/Ser1570 by calmodulin kinase II. PMID:16820363

  2. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Icing Sensor Performance During the 2003 Alliance Icing Research Study (AIRS II)

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Schaffner, Philip R.; Minnis, Patrick; Nguyen, Louis; Delnore, Victor E.; Daniels, Taumi S.; Grainger, C. A.; Delene, D.; Wolff, C. A.

    2004-01-01

    The Tropospheric Airborne Meteorological Data Reporting (TAMDAR) sensor was deployed onboard the University of North Dakota Citation II aircraft in the Alliance Icing Research Study (AIRS II) from Nov 19 through December 14, 2003. TAMDAR is designed to measure and report winds, temperature, humidity, turbulence and icing from regional commercial aircraft (Daniels et. al., 2004). TAMDAR icing sensor performance is compared to a) in situ validation data from the Citation II sensor suite, b) Current Icing Potential products developed by the National Center for Atmospheric Research (NCAR) and available operationally on the NOAA Aviation Weather Center s Aviation Digital Data Server (ADDS) and c) NASA Advanced Satellite Aviation-weather Products (ASAP) cloud microphysical products.

  3. Fiber-optic sensor for real-time monitoring of temperature on high voltage (400KV) power transmission lines

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Tarun K.; Paul, Mukul C.; Bjerkan, Leif

    2009-10-01

    On-line monitoring of temperature and sag in 400KV power transmission line has successfully been implemented by a novel device using fibre Bragg grating (FBG) sensors. The complete device has been fabricated with aluminum mount connected via fibre-optic cable and installed on ACSR power conductor for continuous two years measurement. This paper presents the excellent results and experience of the tests in controlled indoor environments conducted in Norway and real-field application on installed power conductor in India. Thus, better surveillance of the thermal and mechanical loads on power lines can be possible using this FBG sensor system.

  4. Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization

    SciTech Connect

    Chad Smutzer

    2010-01-31

    Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine vibration (at medium to high engine load). Phase I of this project refined the previously developed technology with an engine-generic and robust algorithm. The objective of the Phase I research was to answer two fundamental questions: Can the accelerometer-based SOC sensor provide adequate SOC event capture to control an HCCI engine in a feedback loop? And, will the sensor system meet cost, durability, and software efficiency (speed) targets? Based upon the results, the answer to both questions was 'YES'. The objective of Phase II-A was to complete the parameter optimization of the SOC sensor prototype in order to reach a

  5. Origin of dc voltage in type II superconducting flux pumps: field, field rate of change, and current density dependence of resistivity

    NASA Astrophysics Data System (ADS)

    Geng, J.; Matsuda, K.; Fu, L.; Fagnard, J.-F.; Zhang, H.; Zhang, X.; Shen, B.; Dong, Q.; Baghdadi, M.; Coombs, T. A.

    2016-03-01

    Superconducting flux pumps are the kind of devices which can generate direct current into superconducting circuit using external magnetic field. The key point is how to induce a dc voltage across the superconducting load by ac fields. Giaever (1966 IEEE Spectr. 3 117) pointed out flux motion in superconductors will induce a dc voltage, and demonstrated a rectifier model which depended on breaking superconductivity. van de Klundert et al (1981 Cryogenics 21 195, 267) in their review(s) described various configurations for flux pumps all of which relied on inducing the normal state in at least part of the superconductor. In this letter, following their work, we reveal that a variation in the resistivity of type II superconductors is sufficient to induce a dc voltage in flux pumps and it is not necessary to break superconductivity. This variation in resistivity is due to the fact that flux flow is influenced by current density, field intensity, and field rate of change. We propose a general circuit analogy for travelling wave flux pumps, and provide a mathematical analysis to explain the dc voltage. Several existing superconducting flux pumps which rely on the use of a travelling magnetic wave can be explained using the analysis enclosed. This work can also throw light on the design and optimization of flux pumps.

  6. Zinc(II)-selective ratiometric fluorescent sensors based on inhibition of excited-state intramolecular proton transfer.

    PubMed

    Henary, Maged M; Wu, Yonggang; Fahrni, Christoph J

    2004-06-21

    To develop a zinc(II)-selective emission ratiometric probe suitable for biological applications, we explored the cation-induced inhibition of excited-state intramolecular proton transfer (ESIPT) with a series of 2-(2'-benzenesulfonamidophenyl)benzimidazole derivatives. In the absence of Zn(II) at neutral pH, the fluorophores undergo ESIPT to yield a highly Stokes' shifted emission from the proton-transfer tautomer. Coordination of Zn(II) inhibits the ESIPT process and yields a significant hypsochromic shift of the fluorescence emission maximum. Whereas the paramagnetic metal cations Cu(II), Fe(II), Ni(II), Co(II), and Mn(II) result in fluorescence quenching, the emission response is not altered by millimolar concentrations of Ca(II) or Mg(II), rendering the sensors selective for Zn(II) among all biologically important metal cations. Due to the modular architecture of the fluorophore, the Zn(II) binding affinity can be readily tuned by implementing simple structural modifications. The synthesized probes are suitable to gauge free Zn(II) concentrations in the micromolar to picomolar range under physiological conditions.

  7. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: part II--Optimization of structural sensor placement.

    PubMed

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-04-01

    The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.

  8. High-speed, random-access fluorescence microscopy: II. Fast quantitative measurements with voltage-sensitive dyes.

    PubMed Central

    Bullen, A; Saggau, P

    1999-01-01

    An improved method for making fast quantitative determinations of membrane potential with voltage-sensitive dyes is presented. This method incorporates a high-speed, random-access, laser-scanning scheme (Bullen et al., 1997. Biophys. J. 73:477-491) with simultaneous detection at two emission wavelengths. The basis of this ratiometric approach is the voltage-dependent shift in the emission spectrum of the voltage-sensitive dye di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS). Optical measurements are made at two emission wavelengths, using secondary dichroic beamsplitting and dual photodetectors (<570 nm and >570 nm). Calibration of the ratiometric measurements between signals at these wavelengths was achieved using simultaneous optical and patch-clamp measurements from adjacent points. Data demonstrating the linearity, precision, and accuracy of this technique are presented. Records obtained with this method exhibited a voltage resolution of approximately 5 mV, without any need for temporal or spatial averaging. Ratiometric recordings of action potentials from isolated hippocampal neurons are used to illustrate the usefulness of this approach. This method is unique in that it is the first to allow quantitative determination of dynamic membrane potential changes in a manner optimized for both high spatiotemporal resolution (2 micrometers and <0.5 ms) and voltage discrimination. PMID:10096922

  9. Role of glycine residues highly conserved in the S2-S3 linkers of domains I and II of voltage-gated calcium channel alpha(1) subunits.

    PubMed

    Teng, Jinfeng; Iida, Kazuko; Ito, Masanori; Izumi-Nakaseko, Hiroko; Kojima, Itaru; Adachi-Akahane, Satomi; Iida, Hidetoshi

    2010-05-01

    The pore-forming component of voltage-gated calcium channels, alpha(1) subunit, contains four structurally conserved domains (I-IV), each of which contains six transmembrane segments (S1-S6). We have shown previously that a Gly residue in the S2-S3 linker of domain III is completely conserved from yeasts to humans and important for channel activity. The Gly residues in the S2-S3 linkers of domains I and II, which correspond positionally to the Gly in the S2-S3 linker of domain III, are also highly conserved. Here, we investigated the role of the Gly residues in the S2-S3 linkers of domains I and II of Ca(v)1.2. Each of the Gly residues was replaced with Glu or Gln to produce mutant Ca(v)1.2s; G182E, G182Q, G579E, G579Q, and the resulting mutants were transfected into BHK6 cells. Whole-cell patch-clamp recordings showed that current-voltage relationships of the four mutants were the same as those of wild-type Ca(v)1.2. However, G182E and G182Q showed significantly smaller current densities because of mislocalization of the mutant proteins, suggesting that Gly(182) in domain I is involved in the membrane trafficking or surface expression of alpha(1) subunit. On the other hand, G579E showed a slower voltage-dependent current inactivation (VDI) compared to Ca(v)1.2, although G579Q showed a normal VDI, implying that Gly(579) in domain II is involved in the regulation of VDI and that the incorporation of a negative charge alters the VDI kinetics. Our findings indicate that the two conserved Gly residues are important for alpha(1) subunit to become functional.

  10. A Low Cost Matching Motion Estimation Sensor Based on the NIOS II Microprocessor

    PubMed Central

    González, Diego; Botella, Guillermo; Meyer-Baese, Uwe; García, Carlos; Sanz, Concepción; Prieto-Matías, Manuel; Tirado, Francisco

    2012-01-01

    This work presents the implementation of a matching-based motion estimation sensor on a Field Programmable Gate Array (FPGA) and NIOS II microprocessor applying a C to Hardware (C2H) acceleration paradigm. The design, which involves several matching algorithms, is mapped using Very Large Scale Integration (VLSI) technology. These algorithms, as well as the hardware implementation, are presented here together with an extensive analysis of the resources needed and the throughput obtained. The developed low-cost system is practical for real-time throughput and reduced power consumption and is useful in robotic applications, such as tracking, navigation using an unmanned vehicle, or as part of a more complex system. PMID:23201989

  11. Optimization of Stripping Voltammetric Sensor by a Back Propagation Artificial Neural Network for the Accurate Determination of Pb(II) in the Presence of Cd(II)

    PubMed Central

    Zhao, Guo; Wang, Hui; Liu, Gang; Wang, Zhiqiang

    2016-01-01

    An easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry (SWASV) without further electrode modification. The effects of Cd(II) in different concentrations on stripping responses of Pb(II) was studied. The results indicate that the presence of Cd(II) will reduce the prediction precision of a direct calibration model. Therefore, a two-input and one-output BP-ANN was built for the optimization of a stripping voltammetric sensor, which considering the combined effects of Cd(II) and Pb(II) on the SWASV detection of Pb(II) and establishing the nonlinear relationship between the stripping peak currents of Pb(II) and Cd(II) and the concentration of Pb(II). The key parameters of the BP-ANN and the factors affecting the SWASV detection of Pb(II) were optimized. The prediction performance of direct calibration model and BP-ANN model were tested with regard to the mean absolute error (MAE), root mean square error (RMSE), average relative error (ARE), and correlation coefficient. The results proved that the BP-ANN model exhibited higher prediction accuracy than the direct calibration model. Finally, a real samples analysis was performed to determine trace Pb(II) in some soil specimens with satisfactory results. PMID:27657083

  12. A CAD investigation of metal-overhang on multiple guard ring design for high voltage operation of Si sensors

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Ashutosh; Ranjan, Kirti; Namrata; Chatterji, Sudeep; Srivastava, Ajay K.; Shivpuri, R. K.

    2002-12-01

    The extension of Si detectors to the next generation high-energy physics experiments such as large hadron collider implies a reliable operation in high radiation environment which is by far the main technological challenge for these detectors. Multiple field limiting ring systems are well established as a means of protecting diffused junction from high voltage premature breakdown. Also, a spread of the Al metallization over the inter-cathodic field oxide sensibly lowers the electric field at the junction edges, thus, allowing for higher breakdown voltages. The purpose of this work is to combine the positive aspects of these two termination techniques with the aim of defining layouts and technological solutions suitable for the use of Si detectors in adverse radiation environment. An important feature is the potential distribution in the multi-guard ring structure, which depends on the bulk doping concentration, the oxide charge, the size of the gap between guard rings and the metal-overhang design. A systematic investigation on the breakdown performance is done by varying the physical and geometrical parameters such as width of overhang, guard ring spacing, junction depth and oxide charge. CAD tools are used for evaluating potential and electric field distributions within the device.

  13. Sol-gel based optical sensor for determination of Fe (II): a novel probe for iron speciation.

    PubMed

    Samadi-Maybodi, Abdolraouf; Rezaei, Vida; Rastegarzadeh, Saadat

    2015-02-01

    A highly selective optical sensor for Fe (II) ions was developed based on entrapment of a sensitive reagent, 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), in a silica sol-gel thin film coated on a glass substrate. The thin films fabricated based on tetraethoxysilane (TEOS) as precursor, sol-gel pH∼3, water:alkoxyde ratio of 4:1 and TPTZ concentration of 0.112 mol L(-1). The influence of sol-gel parameters on sensing behavior of the fabricated sensor was also investigated. The fabricated sensor can be used for determination of Fe (II) ion with an outstanding high selectivity over a dynamic range of 5-115 ng mL(-1) and a detection limit of 1.68 ng mL(-1). It also showed reproducible results with relative standard deviation of 3.5% and 1.27% for 10 and 90 ng mL(-1) of Fe (II), respectively, along with a fast response time of ∼120 s. Total iron also was determined after reduction of Fe (III) to Fe (II) using ascorbic acid as reducing agent. Then, the concentration of Fe (III) was calculated by subtracting the concentration of Fe (II) from the total iron concentration. Interference studies showed a good selectivity for Fe (II) with trapping TPTZ into sol-gel matrix and appropriately adjusting the structure of doped sol-gel. The sensor was compared with other sensors and was applied to determine iron in different water samples with good results.

  14. The S4-S5 linker directly couples voltage sensor movement to the activation gate in the human ether-a'-go-go-related gene (hERG) K+ channel.

    PubMed

    Ferrer, Tania; Rupp, Jason; Piper, David R; Tristani-Firouzi, Martin

    2006-05-01

    A key unresolved question regarding the basic function of voltage-gated ion channels is how movement of the voltage sensor is coupled to channel opening. We previously proposed that the S4-S5 linker couples voltage sensor movement to the S6 domain in the human ether-a'-go-go-related gene (hERG) K+ channel. The recently solved crystal structure of the voltage-gated Kv1.2 channel reveals that the S4-S5 linker is the structural link between the voltage sensing and pore domains. In this study, we used chimeras constructed from hERG and ether-a'-go-go (EAG) channels to identify interactions between residues in the S4-S5 linker and S6 domain that were critical for stabilizing the channel in a closed state. To verify the spatial proximity of these regions, we introduced cysteines in the S4-S5 linker and at the C-terminal end of the S6 domain and then probed for the effect of oxidation. The D540C-L666C channel current decreased in an oxidizing environment in a state-dependent manner consistent with formation of a disulfide bond that locked the channel in a closed state. Disulfide bond formation also restricted movement of the voltage sensor, as measured by gating currents. Taken together, these data confirm that the S4-S5 linker directly couples voltage sensor movement to the activation gate. Moreover, rather than functioning simply as a mechanical lever, these findings imply that specific interactions between the S4-S5 linker and the activation gate stabilize the closed channel conformation.

  15. The Sensing of Humidity by Surface-Type Ag/FORMYL-TIPPCu(II)/Ag Sensor for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Khan, Dil Nawaz; Sayyad, Muhammad Hassan; Tahir, Muhammad; Wahab, Fazal; Yaseen, Muhammad; Ali, Mukhtar; Munawar, Munawar Ali

    2014-06-01

    In this paper, we have studied the effects of changing relative humidity on the electrical parameters and their multi frequency response of the surface type Ag/formyl-TIPPCu(II)/Ag humidity sensors. The silver electrodes of thickness 100 nm were primarily deposited on cleaned glass substrates by thermal evaporator. A gap of 40 μm was created between the electrodes of each device by using mask during the evaporation process. Thin films of formyl-TIPPCu(II) of 140 nm thickness were grown on silver electrodes by thermal sublimation technique. The values of capacitance and resistance of the sensors were found at different humidity levels at frequency of 1, 10 and 100 kHz of AC input signal. A remarkable increase in capacitance and decrease in resistance were observed during the rise of relative humidity from 45% to 95% RH. The hysteresis response of these humidity sensors was also studied at 1 kHz AC signal.

  16. Highly sensitive sensing of zinc(II) by development and characterization of a PVC-based fluorescent chemical sensor

    NASA Astrophysics Data System (ADS)

    Aksuner, Nur; Henden, Emur; Yenigul, Berrin; Yilmaz, Ibrahim; Cukurovali, Alaaddin

    2011-03-01

    A sensor membrane with excellent performance based on 1-methyl-1-phenyl-3-[1-hydroxyimino-2-(succinimido)ethyl]cyclobutane has been developed for the determination of zinc(II) ions. The sensing membrane is capable of determining zinc(II) with an outstanding high selectivity over a dynamic range between 8.0 × 10 -8 and 1.6 × 10 -4 mol L -1 with a limit of detection of 2.5 × 10 -8 mol L -1 (1.6 μg L -1). It can be easily and completely regenerated by using 0.1 mol L -1 EDTA solution. The optical sensor developed here was found to be stable, cost effective, easy to prepare, and has unique selectivity towards Zn 2+ ion with respect to common metal ions. The proposed sensor was then applied for the determination of zinc in tap water and hair samples with satisfactory results.

  17. Visual sensor for the detection of trace Cu(II) ions using an immunochromatographic strip.

    PubMed

    Xing, Changrui; Feng, Min; Hao, Changlong; Xu, Liguang; Wang, Libing; Xu, Chuanlai

    2013-01-01

    A rapid and simple immunochromatography method based on a gold nanoparticle-labeled monoclonal antibody was developed for the on-site detection of copper (Cu) in water samples. This monoclonal antibody, obtained by a cell fusion technique, recognized the Cu-ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) complex, but not metal-free EDTA, with high sensitivity and specificity. In optimized conditions, the visual limit of detection for qualitative detection of Cu(II) ions was 10 ng/mL and the LOD for semi-quantitative detection decreased to 0.45 ng/mL with the help of a scanning reader system. The detection process was achieved within 10 min with no cross-reactivity from other heavy metal ions. The recovery of the test samples ranged from 98% to 109%. To our knowledge, this antibody-based test strip for Cu(II) ions has not been previously reported. Based on the above results, this strip sensor could be used as an alternative tool for screening heavy metal pollution in the environment.

  18. Visual sensor for the detection of trace Cu(II) ions using an immunochromatographic strip.

    PubMed

    Xing, Changrui; Feng, Min; Hao, Changlong; Xu, Liguang; Wang, Libing; Xu, Chuanlai

    2013-01-01

    A rapid and simple immunochromatography method based on a gold nanoparticle-labeled monoclonal antibody was developed for the on-site detection of copper (Cu) in water samples. This monoclonal antibody, obtained by a cell fusion technique, recognized the Cu-ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) complex, but not metal-free EDTA, with high sensitivity and specificity. In optimized conditions, the visual limit of detection for qualitative detection of Cu(II) ions was 10 ng/mL and the LOD for semi-quantitative detection decreased to 0.45 ng/mL with the help of a scanning reader system. The detection process was achieved within 10 min with no cross-reactivity from other heavy metal ions. The recovery of the test samples ranged from 98% to 109%. To our knowledge, this antibody-based test strip for Cu(II) ions has not been previously reported. Based on the above results, this strip sensor could be used as an alternative tool for screening heavy metal pollution in the environment. PMID:23461614

  19. Capturing distinct KCNQ2 channel resting states by metal ion bridges in the voltage-sensor domain

    PubMed Central

    Gourgy-Hacohen, Orit; Kornilov, Polina; Pittel, Ilya; Peretz, Asher

    2014-01-01

    Although crystal structures of various voltage-gated K+ (Kv) and Na+ channels have provided substantial information on the activated conformation of the voltage-sensing domain (VSD), the topology of the VSD in its resting conformation remains highly debated. Numerous studies have investigated the VSD resting state in the Kv Shaker channel; however, few studies have explored this issue in other Kv channels. Here, we investigated the VSD resting state of KCNQ2, a K+ channel subunit belonging to the KCNQ (Kv7) subfamily of Kv channels. KCNQ2 can coassemble with the KCNQ3 subunit to mediate the IM current that regulates neuronal excitability. In humans, mutations in KCNQ2 are associated with benign neonatal forms of epilepsy or with severe epileptic encephalopathy. We introduced cysteine mutations into the S4 transmembrane segment of the KCNQ2 VSD and determined that external application of Cd2+ profoundly reduced the current amplitude of S4 cysteine mutants S195C, R198C, and R201C. Based on reactivity with the externally accessible endogenous cysteine C106 in S1, we infer that each of the above S4 cysteine mutants forms Cd2+ bridges to stabilize a channel closed state. Disulfide bonds and metal bridges constrain the S4 residues S195, R198, and R201 near C106 in S1 in the resting state, and experiments using concatenated tetrameric constructs indicate that this occurs within the same VSD. KCNQ2 structural models suggest that three distinct resting channel states have been captured by the formation of different S4–S1 Cd2+ bridges. Collectively, this work reveals that residue C106 in S1 can be very close to several N-terminal S4 residues for stabilizing different KCNQ2 resting conformations. PMID:25385787

  20. Studies examining the relationship between the chemical structure of protoxin II and its activity on voltage gated sodium channels.

    PubMed

    Park, Jae H; Carlin, Kevin P; Wu, Gang; Ilyin, Victor I; Musza, Laszlo L; Blake, Paul R; Kyle, Donald J

    2014-08-14

    The aqueous solution structure of protoxin II (ProTx II) indicated that the toxin comprises a well-defined inhibitor cystine knot (ICK) backbone region and a flexible C-terminal tail region, similar to previously described NaSpTx III tarantula toxins. In the present study we sought to explore the structure-activity relationship of the two regions of the ProTx II molecule. As a first step, chimeric toxins of ProTx II and PaTx I were synthesized and their biological activities on Nav1.7 and Nav1.2 channels were investigated. Other tail region modifications to this chimera explored the effects of tail length and tertiary structure on sodium channel activity. In addition, the activity of various C-terminal modifications of the native ProTx II was assayed and resulted in the identification of protoxin II-NHCH3, a molecule with greater potency against Nav1.7 channels (IC50=42 pM) than the original ProTx II. PMID:25026046

  1. Sol-Gel derived Sb-doped SnO II/SiO II nano-composite thin films for gas sensors

    NASA Astrophysics Data System (ADS)

    Gu, Zhengtian; Liang, Peihui; Zhang, Weiqing

    2006-05-01

    Sb-doped SnO II/SiO II nano-composite thin films prepared by sol-gel dip-coating method have been studied. By using X-ray diffraction (XRD), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy, detailed investigation on the structure and morphology of the films has shown the crystalline grain size of Sb-doped SnO II/SiO II thin films is about 34nm, with larger specific surface area and duty porosity, which is fit for gas-sensing materials. The adulteration of SiO II particles leads to the condensation of Sn-OH and the strengthening of gel network, and improve the adhesion of the films. In addition, the optical properties of the thin films were studied by UV-Vis spectra and p-polarized light reflectance angular spectrum. The results showthat the optical transmissivity of Sb-doped SnO II/SiO II thin films is higher, near 95% in visible spectrum range, the measured optical gap is found equal to 3.67eV, also the films take on smaller refractive index and extinction coefficient compared with those of the SnO II and Sb:SnO II films, which is compatible with the semiconductor substrate in the solar cell. Further, the gas-sensing test was made to three kinds of gas C 3H 8, C IIH 5OH and NH 3 in our novel high sensitive scheme for optical film sensors. The results indicate that Sb doping to SnO II films greatly improves the gas sensitivity to C IIH 5OH, and the gas sensitivity of Sb:SnO II/SiO II nano-composite thin films are higher than that of Sb:SnO II thin films. The detection sensitivity of this optical film sensor is available to 10 -1ppm provided that the resolution of reflectance ratio is 10 -2.

  2. Profile structures of the voltage-sensor domain and the voltage-gated K+-channel vectorially oriented in a single phospholipid bilayer membrane at the solid-vapor and solid-liquid interfaces determined by x-ray interferometry

    PubMed Central

    Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.

    2011-01-01

    One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1–S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and

  3. Voltage-sensor conformation shapes the intra-membrane drug binding site that determines gambierol affinity in Kv channels.

    PubMed

    Kopljar, Ivan; Grottesi, Alessandro; de Block, Tessa; Rainier, Jon D; Tytgat, Jan; Labro, Alain J; Snyders, Dirk J

    2016-08-01

    Marine ladder-shaped polyether toxins are implicated in neurological symptoms of fish-borne food poisonings. The toxin gambierol, produced by the marine dinoflagellate Gambierdiscus toxicus, belongs to the group of ladder-shaped polyether toxins and inhibits Kv3.1 channels with nanomolar affinity through a mechanism of gating modification. Binding determinants for gambierol localize at the lipid-exposed interface of the pore forming S5 and S6 segments, suggesting that gambierol binds outside of the permeation pathway. To explore a possible involvement of the voltage-sensing domain (VSD), we made different chimeric channels between Kv3.1 and Kv2.1, exchanging distinct parts of the gating machinery. Our results showed that neither the electro-mechanical coupling nor the S1-S3a region of the VSD affect gambierol sensitivity. In contrast, the S3b-S4 part of the VSD (paddle motif) decreased gambierol sensitivity in Kv3.1 more than 100-fold. Structure determination by homology modeling indicated that the position of the S3b-S4 paddle and its primary structure defines the shape and∖or the accessibility of the binding site for gambierol, explaining the observed differences in gambierol affinity between the channel chimeras. Furthermore, these findings explain the observed difference in gambierol affinity for the closed and open channel configurations of Kv3.1, opening new possibilities for exploring the VSDs as selectivity determinants in drug design. PMID:26956727

  4. Monitoring pasture variability: optical OptRx(®) crop sensor versus Grassmaster II capacitance probe.

    PubMed

    Serrano, João M; Shahidian, Shakib; Marques da Silva, José Rafael

    2016-02-01

    Estimation of pasture productivity is an important step for the farmer in terms of planning animal stocking, organizing animal lots, and determining supplementary feeding needs throughout the year. The main objective of this work was to evaluate technologies which have potential for monitoring aspects related to spatial and temporal variability of pasture green and dry matter yield (respectively, GM and DM, in kg/ha) and support to decision making for the farmer. Two types of sensors were evaluated: an active optical sensor ("OptRx(®)," which measures the NDVI, "Normalized Difference Vegetation Index") and a capacitance probe ("GrassMaster II" which estimates plant mass). The results showed the potential of NDVI for monitoring the evolution of spatial and temporal patterns of vegetative growth of biodiverse pasture. Higher NDVI values were registered as pasture approached its greatest vegetative vigor, with a significant fall in the measured NDVI at the end of Spring, when the pasture began to dry due to the combination of higher temperatures and lower soil moisture content. This index was also effective for identifying different plant species (grasses/legumes) and variability in pasture yield. Furthermore, it was possible to develop calibration equations between the capacitance and the NDVI (R(2) = 0.757; p < 0.01), between capacitance and GM (R(2) = 0.799; p < 0.01), between capacitance and DM (R(2) =0.630; p < 0.01), between NDVI and GM (R(2) = 0.745; p < 0.01), and between capacitance and DM (R(2) = 0.524; p < 0.01). Finally, a direct relationship was obtained between NDVI and pasture moisture content (PMC, in %) and between capacitance and PMC (respectively, R(2) = 0.615; p < 0.01 and R(2) = 0.561; p < 0.01) in Alentejo dryland farming systems. PMID:26812951

  5. Biomimetic sensor for certain phenols employing a copper(II) complex.

    PubMed

    Mobin, Shaikh M; Sanghavi, Bankim J; Srivastava, Ashwini K; Mathur, Pradeep; Lahiri, Goutam K

    2010-07-15

    A new dimeric Cu(II) complex [Cu(mu(2)-hep)(hep-H)](2).2PF(6) (1) containing a bidentate (hep-H = 2-(2-hydroxyethyl)pyridine) ligand was synthesized and characterized by single crystal X-ray diffraction studies. Each Cu ion in 1 is in a distorted square pyramidal geometry. Further 1 is used as a modifier in the construction of a biomimetic sensor for determining phenols [phenol (Phe), resorcinol (Res), hydroquinone (HQ), and catechol (Cat)] in phosphate buffer by using cyclic voltammetry (CV), chronocoulometry, electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and square wave voltammetry (SWV). DPV has been proposed for trace determination of Phe and Res while SWV for HQ and Cat. The method has been applied for the selective and precise analysis of Phe in commercial injections, Res in hair coloring agents, HQ in photographic developers and cosmetics, and Cat in tea samples and guarana tablets. The calibration curves showed a linear response ranging between 10(-6) and 10(-8) M for all four of the analytes with detection limits (3sigma) of 1.04 x 10(-8), 2.31 x 10(-8), 1.54 x 10(-8), and 0.86 x 10(-8) M for Phe, Res, HQ, and Cat, respectively. The lifetime of the biomimetic sensor was 200 days at room temperature (at least 750 determinations). The catalytic properties of 1-CPE were characterized by chronoamperometry and were found to be in good agreement with Michaelis-Menten kinetics.

  6. Rapid and selective lead (II) colorimetric sensor based on azacrown ether-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Alizadeh, A.; Khodaei, M. M.; Karami, Ch; Workentin, M. S.; Shamsipur, M.; Sadeghi, M.

    2010-08-01

    A gold nanoparticle (AuNPs)-based simple and fast colorimetric sensor for selective detecting of Pb(II) in aqueous solution has been developed. Monodisperse AuNPs (approx. 2.0 nm diameter) has been prepared facilely and further modified with an alkanethiol-bearing monoazacrown ether terminus. These AuNPs are shown to selectively sense Pb2 + through color change, which is visually discernible by an appearance of the surface plasmon band (SPB) at 520 nm. The recognition mechanism is attributed to the unique structure of the monoazacrown ether attached to AuNPs and metal sandwich coordination between two azacrown ether moieties that are attached to separate nanoparticles. This inter-particle cross-linking results in an aggregation and apparent color change from brown to purple. Additionally, TEM experiments support the optical absorption data proving the aggregation between azacrown ether-capped gold nanoparticles. This AuNP-based colorimetric assay is a facile and robust method and allows fast detection of Pb2 + at ambient temperatures. More importantly, the developed technique does not utilize enzymatic reactions, light-sensitive dye molecules, lengthy protocols or sophisticated instrumentation.

  7. Determination of copper(II) in the dairy product by an electrochemical sensor based on click chemistry.

    PubMed

    Qiu, Suyan; Xie, Lidan; Gao, Sen; Liu, Qida; Lin, Zhenyu; Qiu, Bin; Chen, Guonan

    2011-11-30

    Herein, a novel sensitive electrochemical sensor for copper(II) based on Cu(I) catalyzed alkyne-azide cycloaddition reaction (CuAAC) is described. The catalyst of Cu(I) species is derived from electrochemical reduction of Cu(II) through bulk electrolysis (BE) with coulometry technique. The propargyl-functionalized ferrocene (propargyl-functionalized Fc) is covalently coupled onto the electrode surface via CuAAC reaction and forms propargyl-functionalized Fc modified gold electrode, which allows a good and stable electrochemical signal. The change of current at peak (dI), detected by differential pulse voltammetry (DPV), exhibits a linear response to the logarithm of Cu(II) concentration in the range of 1.0×10(-14)-1.0×10(-9) mol L(-1). It is also found that the proposed sensor has a good selectivity for copper(II) assay even in the presence of other common metal ions. Additionally, the proposed method has been applied to determine copper(II) in the dairy product (yoghurt) with satisfactory results.

  8. Determination of copper(II) in the dairy product by an electrochemical sensor based on click chemistry.

    PubMed

    Qiu, Suyan; Xie, Lidan; Gao, Sen; Liu, Qida; Lin, Zhenyu; Qiu, Bin; Chen, Guonan

    2011-11-30

    Herein, a novel sensitive electrochemical sensor for copper(II) based on Cu(I) catalyzed alkyne-azide cycloaddition reaction (CuAAC) is described. The catalyst of Cu(I) species is derived from electrochemical reduction of Cu(II) through bulk electrolysis (BE) with coulometry technique. The propargyl-functionalized ferrocene (propargyl-functionalized Fc) is covalently coupled onto the electrode surface via CuAAC reaction and forms propargyl-functionalized Fc modified gold electrode, which allows a good and stable electrochemical signal. The change of current at peak (dI), detected by differential pulse voltammetry (DPV), exhibits a linear response to the logarithm of Cu(II) concentration in the range of 1.0×10(-14)-1.0×10(-9) mol L(-1). It is also found that the proposed sensor has a good selectivity for copper(II) assay even in the presence of other common metal ions. Additionally, the proposed method has been applied to determine copper(II) in the dairy product (yoghurt) with satisfactory results. PMID:22027119

  9. Microwave-assisted synthesis of II-VI semiconductor micro-and nanoparticles towards sensor applications

    NASA Astrophysics Data System (ADS)

    Majithia, Ravish Yogesh

    Engineering particles at the nanoscale demands a high degree of control over process parameters during synthesis. For nanocrystal synthesis, solution-based techniques typically include application of external convective heat. This process often leads to slow heating and allows decomposition of reagents or products over time. Microwave-assisted heating provides faster, localized heating at the molecular level with near instantaneous control over reaction parameters. In this work, microwave-assisted heating has been applied for the synthesis of II-VI semiconductor nanocrystals namely, ZnO nanopods and CdX (X = Se, Te) quantum dots (QDs). Based on factors such as size, surface functionality and charge, optical properties of such nanomaterials can be tuned for application as sensors. ZnO is a direct bandgap semiconductor (3.37 eV) with a large exciton binding energy (60 meV) leading to photoluminescence (PL) at room temperature. A microwave-assisted hydrothermal approach allows the use of sub-5 nm ZnO zero-dimensional nanoparticles as seeds for generation of multi-legged quasi one-dimensional nanopods via heterogeneous nucleation. ZnO nanopods, having individual leg diameters of 13-15 nm and growing along the [0001] direction, can be synthesized in as little as 20 minutes. ZnO nanopods exhibit a broad defect-related PL spanning the visible range with a peak at ~615 nm. Optical sensing based on changes in intensity of the defect PL in response to external environment (e.g., humidity) is demonstrated in this work. Microwave-assisted synthesis was also used for organometallic synthesis of CdX(ZnS) (X = Se, Te) core(shell) QDs. Optical emission of these QDs can be altered based on their size and can be tailored to specific wavelengths. Further, QDs were incorporated in Enhanced Green-Fluorescent Protein -- Ultrabithorax (EGFP-Ubx) fusion protein for the generation of macroscale composite protein fibers via hierarchal self-assembly. Variations in EGFP- Ubx˙QD composite

  10. New duel fluorescent 'on-off' and colorimetric sensor for Copper(II): Copper(II) binds through N coordination and pi cation interaction to sensor

    NASA Astrophysics Data System (ADS)

    Kumar, Jutika; Bhattacharyya, Pradip K.; Das, Diganta Kumar

    2015-03-01

    Schiff base derived from naphthylamine and benzil (L) binds to two Cu2+ ions, one by coordination through N of the Schiff base and another by pi cation interaction through benzil rings. This bonding pattern determined by DFT calculation has been proved by matching electronic spectrum obtained from TDDFT calculation to the experimental one. L acts as "on-off" fluorescent and bare eye detectable colorimetric (purple color) sensor for Cu2+ ion over the metal ions - Na+, K+, Ca2+ Mn2+, Co2+ Ni2+, Zn2+, Pb2+, Cd2+, Hg2+, Ag+, Hg2+ and Al3+ in 1:1 v/v CH3CN:H2O. These metal ions do not interfere the fluorescent/colorimetric sensing. As fluorescent sensor the linear range of detection is 5 × 10-5 to 3 × 10-4 M and detection limit 10-5 M.

  11. New duel fluorescent "on-off" and colorimetric sensor for Copper(II): Copper(II) binds through N coordination and pi cation interaction to sensor.

    PubMed

    Kumar, Jutika; Bhattacharyya, Pradip K; Das, Diganta Kumar

    2015-03-01

    Schiff base derived from naphthylamine and benzil (L) binds to two Cu(2+) ions, one by coordination through N of the Schiff base and another by pi cation interaction through benzil rings. This bonding pattern determined by DFT calculation has been proved by matching electronic spectrum obtained from TDDFT calculation to the experimental one. L acts as "on-off" fluorescent and bare eye detectable colorimetric (purple color) sensor for Cu(2+) ion over the metal ions - Na(+), K(+), Ca(2+) Mn(2+), Co(2+) Ni(2+), Zn(2+), Pb(2+), Cd(2+), Hg(2+), Ag(+), Hg(2+) and Al(3+) in 1:1 v/v CH3CN:H2O. These metal ions do not interfere the fluorescent/colorimetric sensing. As fluorescent sensor the linear range of detection is 5×10(-5) to 3×10(-4)M and detection limit 10(-5)M. PMID:25479104

  12. Ozone Observations by the Gas and Aerosol Measurement Sensor during SOLVE II

    NASA Technical Reports Server (NTRS)

    Pitts, M. C.; Thomason, L. W.; Zawodny, J. M.; Wenny, B. N.; Livingston, J. M.; Russell, P. B.; Yee, J.-H.; Swartz, W. H.; Shetter, R. E.

    2006-01-01

    The Gas and Aerosol Measurement Sensor (GAMS) was deployed aboard the NASA DC-8 aircraft during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II). GAMS acquired line-of-sight (LOS) direct solar irradiance spectra during the sunlit portions of ten science flights of the DC-8 between 12 January and 4 February 2003. Differential line-of-sight (DLOS) optical depth spectra are produced from the GAMS raw solar irradiance spectra. Then, DLOS ozone number densities are retrieved from the GAMS spectra using a multiple linear regression spectral fitting technique. Both the DLOS optical depth spectra and retrieved ozone data are compared with coincident measurements from two other solar instruments aboard the DC-8 platform to demonstrate the robustness and stability of the GAMS data. The GAMS ozone measurements are then utilized to evaluate the quality of the Wulf band ozone cross sections, a critical component of the SAGE III aerosol, water vapor, and temperature/pressure retrievals. Results suggest the ozone cross section compilation of Shettle and Anderson currently used operationally in SAGE III data processing may be in error by as much as 10-20% in theWulf bands, and their lack of reported temperature dependence is a significant deficiency. A second, more recent, cross section database compiled for the SCIAMACHY satellite mission appears to be of much better quality in the Wulf bands, but still may have errors as large as 5% near the Wulf band absorption peaks, which is slightly larger than their stated uncertainty. Additional laboratory measurements of the Wulf band cross sections should be pursued to further reduce their uncertainty and better quantify their temperature dependence.

  13. Midrange affinity fluorescent Zn(II) sensors of the Zinpyr family: syntheses, characterization, and biological imaging applications.

    PubMed

    Nolan, Elizabeth M; Jaworski, Jacek; Racine, Maryann E; Sheng, Morgan; Lippard, Stephen J

    2006-11-27

    The syntheses and photophysical characterization of ZP9, 2-{2-chloro-6-hydroxy-3-oxo-5-[(2-{[pyridin-2-ylmethyl-(1H-pyrrol-2-ylmethyl)amino]methyl}phenylamino)methyl]-3H-xanthen-9-yl}benzoic acid, and ZP10, 2-{2-chloro-6-hydroxy-5-[(2-{[(1-methyl-1H-pyrrol-2-ylmethyl)pyridin-2-ylmethylamino]methyl}phenylamino)methyl]-3-oxo-3H-xanthen-9-yl}benzoic acid, two asymmetrically derivatized fluorescein-based dyes, are described. These sensors each contain an aniline-based ligand moiety functionalized with a pyridyl-amine-pyrrole group and have dissociation constants for Zn(II) in the sub-micromolar (ZP9) and low-micromolar (ZP10) range, which we define as "midrange". They give approximately 12- (ZP9) and approximately 7-fold (ZP10) fluorescence turn-on immediately following Zn(II) addition at neutral pH and exhibit improved selectivity for Zn(II) compared to the di-(2-picolyl)amine-based Zinpyr (ZP) sensors. Confocal microscopy studies indicate that such asymmetrical fluorescein-based probes are cell permeable and Zn(II) responsive in vivo.

  14. Giant magnetoimpedance intrinsic impedance and voltage sensitivity of rapidly solidified Co66Fe2Cr4Si13B15 amorphous wire for highly sensitive sensors applications

    NASA Astrophysics Data System (ADS)

    Das, Tarun K.; Banerji, Pallab; Mandal, Sushil K.

    2016-11-01

    We report a systematic study of the influence of wire length, L, dependence of giant magneto-impedance (GMI) sensitivity of Co66Fe2Cr4Si13B15 soft magnetic amorphous wire of diameter ~100 µm developed by in-water quenching technique. The magnetization behaviour (hysteresis loops) of the wire with different length ( L = 1, 2, 3, 5, 8 and 10 cm) has been evaluated by fuxmetric induction method. It was observed that the behaviour of the hysteresis loops change drastically with the wire length, being attributed to the existence of a critical length, L C, found to be around 3 cm. GMI measurements have been taken using automated GMI measurement system and the GMI sensitivities in terms of intrinsic impedance sensitivity ( S Ω/Am -1) and voltage sensitivity ( S V/Am -1) of the wire have been evaluated under optimal bias field and excitation current. It was found that the maximum ( S Ω/Am -1) max ≈ 0.63 Ω/kAm-1/cm and ( S V/Am -1) max ≈ 3.10 V/kAm-1/cm were achieved at a critical length L C ~ 3 cm of the wire for an AC current of 5 mA and a frequency of 5 MHz. These findings provide crucial insights for optimization of the geometrical dimensions of magnetic sensing elements and important practical guidance for designing high sensitive GMI sensors. The relevant combinations of magnetic material parameters and operating conditions that optimize the sensitivity are highlighted.

  15. Penicillamine-modified sensor for the voltammetric determination of Cd(II) and Pb(II) ions in natural samples.

    PubMed

    Pérez-Ràfols, Clara; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2015-11-01

    A new penicillamine-GCE was developed based on the immobilization of d-penicillamine on aryl diazonium salt monolayers anchored to the glassy carbon electrode (GCE) surface and it was applied for the first time to the simultaneous determination of Cd(II) and Pb(II) ions by stripping voltammetric techniques. The detection and quantification limits at levels of µg L(-1) suggest that the penicillamine-GCE could be fully suitable for the determination of the considered ions in natural samples. PMID:26452863

  16. Isomerically Pure Tetramethylrhodamine Voltage Reporters.

    PubMed

    Deal, Parker E; Kulkarni, Rishikesh U; Al-Abdullatif, Sarah H; Miller, Evan W

    2016-07-27

    We present the design, synthesis, and application of a new family of fluorescent voltage indicators based on isomerically pure tetramethylrhodamines. These new Rhodamine Voltage Reporters, or RhoVRs, use photoinduced electron transfer (PeT) as a trigger for voltage sensing, display excitation and emission profiles in the green to orange region of the visible spectrum, demonstrate high sensitivity to membrane potential changes (up to 47% ΔF/F per 100 mV), and employ a tertiary amide derived from sarcosine, which aids in membrane localization and simultaneously simplifies the synthetic route to the voltage sensors. The most sensitive of the RhoVR dyes, RhoVR 1, features a methoxy-substituted diethylaniline donor and phenylenevinylene molecular wire at the 5'-position of the rhodamine aryl ring, exhibits the highest voltage sensitivity to date for red-shifted PeT-based voltage sensors, and is compatible with simultaneous imaging alongside green fluorescent protein-based indicators. The discoveries that sarcosine-based tertiary amides in the context of molecular-wire voltage indicators prevent dye internalization and 5'-substituted voltage indicators exhibit improved voltage sensitivity should be broadly applicable to other types of PeT-based voltage-sensitive fluorophores. PMID:27428174

  17. High-voltage CMOS detectors

    NASA Astrophysics Data System (ADS)

    Ehrler, F.; Blanco, R.; Leys, R.; Perić, I.

    2016-07-01

    High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented.

  18. Sensors and sensor systems for guidance and navigation II; Proceedings of the Meeting, Orlando, FL, Apr. 22, 23, 1992

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S. (Editor)

    1992-01-01

    Topics discussed in this volume include aircraft guidance and navigation, optics for visual guidance of aircraft, spacecraft and missile guidance and navigation, lidar and ladar systems, microdevices, gyroscopes, cockpit displays, and automotive displays. Papers are presented on optical processing for range and attitude determination, aircraft collision avoidance using a statistical decision theory, a scanning laser aircraft surveillance system for carrier flight operations, star sensor simulation for astroinertial guidance and navigation, autonomous millimeter-wave radar guidance systems, and a 1.32-micron long-range solid state imaging ladar. Attention is also given to a microfabricated magnetometer using Young's modulus changes in magnetoelastic materials, an integrated microgyroscope, a pulsed diode ring laser gyroscope, self-scanned polysilicon active-matrix liquid-crystal displays, the history and development of coated contrast enhancement filters for cockpit displays, and the effect of the display configuration on the attentional sampling performance.

  19. Room Temperature ppb Level Chlorine Gas Sensor Based on Copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine Films

    SciTech Connect

    Bedi, R. K.; Saini, Rajan; Mahajan, Aman

    2010-12-01

    Spin coating technique has been used to fabricate room temperature chlorine gas sensor based on copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine (CuPc(OBu){sub 8}) films. Gas sensor shows a response of 185% to few parts per billion level of Cl{sub 2} gas with response time of 9.5 minutes at room temperature. The interactions between sensor and analytes followed first order kinetics with rate constant 0.01{<=}k{<=}0.02. The chemiresistive sensor showed very good stability at room temperature over a long period of time.

  20. Molecular dissection of the contribution of negatively and positively charged residues in S2, S3, and S4 to the final membrane topology of the voltage sensor in the K+ channel, KAT1.

    PubMed

    Sato, Yoko; Sakaguchi, Masao; Goshima, Shinobu; Nakamura, Tatsunosuke; Uozumi, Nobuyuki

    2003-04-11

    Voltage-dependent ion channels control changes in ion permeability in response to membrane potential changes. The voltage sensor in channel proteins consists of the highly positively charged segment, S4, and the negatively charged segments, S2 and S3. The process involved in the integration of the protein into the membrane remains to be elucidated. In this study, we used in vitro translation and translocation experiments to evaluate interactions between residues in the voltage sensor of a hyperpolarization-activated potassium channel, KAT1, and their effect on the final topology in the endoplasmic reticulum (ER) membrane. A D95V mutation in S2 showed less S3-S4 integration into the membrane, whereas a D105V mutation allowed S4 to be released into the ER lumen. These results indicate that Asp(95) assists in the membrane insertion of S3-S4 and that Asp(105) helps in preventing S4 from being releasing into the ER lumen. The charge reversal mutation, R171D, in S4 rescued the D105R mutation and prevented S4 release into the ER lumen. A series of constructs containing different C-terminal truncations of S4 showed that Arg(174) was required for correct integration of S3 and S4 into the membrane. Interactions between Asp(105) and Arg(171) and between negative residues in S2 or S3 and Arg(174) may be formed transiently during membrane integration. These data clarify the role of charged residues in S2, S3, and S4 and identify posttranslational electrostatic interactions between charged residues that are required to achieve the correct voltage sensor topology in the ER membrane.

  1. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival

    PubMed Central

    Pfleger, J; He, M; Abdellatif, M

    2015-01-01

    The survival of a cell depends on its ability to meet its energy requirements. We hypothesized that the mitochondrial reserve respiratory capacity (RRC) of a cell is a critical component of its bioenergetics that can be utilized during an increase in energy demand, thereby, enhancing viability. Our goal was to identify the elements that regulate and contribute to the development of RRC and its involvement in cell survival. The results show that activation of metabolic sensors, including pyruvate dehydrogenase and AMP-dependent kinase, increases cardiac myocyte RRC via a Sirt3-dependent mechanism. Notably, we identified mitochondrial complex II (cII) as a target of these metabolic sensors and the main source of RRC. Moreover, we show that RRC, via cII, correlates with enhanced cell survival after hypoxia. Thus, for the first time, we show that metabolic sensors via Sirt3 maximize the cellular RRC through activating cII, which enhances cell survival after hypoxia. PMID:26225774

  2. VOLTAGE REGULATOR

    DOEpatents

    Von Eschen, R.L.; Scheele, P.F.

    1962-04-24

    A transistorized voltage regulator which provides very close voitage regulation up to about 180 deg F is described. A diode in the positive line provides a constant voltage drop from the input to a regulating transistor emitter. An amplifier is coupled to the positive line through a resistor and is connected between a difference circuit and the regulating transistor base which is negative due to the difference in voltage drop across thc diode and the resistor so that a change in the regulator output causes the amplifier to increase or decrease the base voltage and current and incrcase or decrease the transistor impedance to return the regulator output to normal. (AEC)

  3. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au-Ag-Au nanostructure for lead(II) ion detection

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.; Yaacob, Mohd Hanif; Mahdi, Mohd Adzir; Zan, Mohd Saiful Dzulkefly; Shaari, Sahbudin

    2016-01-01

    We demonstrate the enhancement of surface plasmon resonance (SPR) technique by implementing a multi-metallic layers of Au-Ag-Au nanostructure in the chitosan-graphene oxide (CS-GO) SPR sensor for lead(II) ion detection. The performance of the sensor is analyzed via SPR measurements, from which the sensitivity, signal-to-noise ratio and repeatability are determined. The nanostructure layers are characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We showed that the proposed structure has increased the shift in the SPR angle up to 3.5° within the range of 0.1-1 ppm due to the enhanced evanescent field at the sensing layer-analyte interface. This sensor also exhibits great repeatability which benefits from the stable multi-metallic nanostructure. The SNR value of 0.92 for 5 ppm lead(II) ion solution and reasonable linearity range up to that concentration shows that the tri-metallic CS-GO SPR sensor gives a good response towards the lead(II) ion solution. The CS-GO SPR sensor is also sensitive to at least a 10-5 change in the refractive index. The results prove that our proposed tri-metallic CS-GO SPR sensor demonstrates a strong performance and reliability for lead(II) ion detection in accordance with the standardized lead safety level for wastewater.

  4. Salicylyl Fluorene Derivatives as Fluorescent Sensors for Cu(II) Ions.

    PubMed

    Khaokeaw, Chenwit; Sukwattanasinitt, Mongkol; Rashatasakhon, Paitoon

    2016-03-01

    Two derivatives of fluorene containing salicylic acid groups are successfully synthesized by palladium-catalyzed coupling reactions and subsequent hydrolysis of salicylate esters. The compounds are characterized by various spectroscopic methods. In phosphate buffer (pH 8.0) solutions, these compounds are well soluble. They show maximum absorption wavelengths in the range of 304-330 nm and exhibit maximum emission wavelength around 420 and 430 nm with the quantum yields of 2.7 and 4.4 %, respectively. The compound with alkynyl salicylate groups (2) exhibits a selective fluorescence quenching towards Cu(II) and Fe(II) with a relatively similar sensitivity. The selectivity favoring Cu(II) over Fe(II) and other metal ions can be achieved upon the addition of 30 μM Triton X-100. The Cu(II) detection limit in solution phase is 1.47 ppb. The fluorescence signal recovery upon the addition of EDTA indicate a reversible complexation between 2 and Cu(II) ion. Fabrication of 2 on filter paper using a 50 μM solution in THF affords a naked-eye detection for Cu(II) and Fe(II) in aqueous media at picomole level. PMID:26753759

  5. A novel cysteine sensor based on modification of carbon paste electrode by Fe(II)-exchanged zeolite X nanoparticles.

    PubMed

    Hashemi, Habibeh-Sadat; Nezamzadeh-Ejhieh, Alireza; Karimi-Shamsabadi, Maryam

    2016-01-01

    An electrochemical sensor based on carbon paste electrode (CPE) modified with iron(II) doped into a synthesized nano-particles of zeolite X (Fe(II)-NX/ZCME) was constructed, which is highly sensitive for detection of cysteine (Cys). The modified electrode showed an excellent electro-activity for oxidation of Cys in phosphate buffer at pH7.4. It has been found that anodic peak potential of Cys oxidation, compared with the unmodified CPE (UCPE), was shifted towards negative values at the surface of the modified electrode under the optimum condition. The peak current increased linearly with the Cys concentration in the wide range of 5.0 × 10(-9)-3.0 × 10(-3) mol L(-1). The very low detection limit was obtained to be 1.5 × 10(-10) mol L(-1). Finally, the modified electrode was used as a selective, simple and precise new electrochemical sensor for the determination of Cys in the real samples, such as pharmaceutical and biological fluids.

  6. Power dissipation studies on planar n+-in-n pixel sensors

    NASA Astrophysics Data System (ADS)

    Klingenberg, R.; Altenheiner, S.; Bryan, D.; Dungs, S.; Gisen, A.; Gößling, C.; Hillringhaus, B.; Kröninger, K.; Ratering, C.; Wittig, T.

    2016-09-01

    Research and development laboratory measurements of non-irradiated and irradiated planar n+-in-n pixel sensor structures are systematically investigated to determine the power dissipation of those sensors. Measurements were taken at different operation temperatures, sensor bias voltages, bulk thicknesses, sensor areas, and irradiation fluences. For planar n+-in-n pixel sensors irradiated to HL-LHC fluences of some 1016neqcm-2 a power dissipation area density of (126±8) mW cm-2 at a temperature of -25 °C and at an operation voltage of 800 V is derived for small sensors with an area of about 0.7cm2 . For large sensors as planned for the ATLAS phase-II upgrade a power dissipation of 100 mW cm-2 is expected.

  7. Potentiometric and voltammetric polymer lab chip sensors for determination of nitrate, pH and Cd(II) in water.

    PubMed

    Jang, Am; Zou, Zhiwei; Lee, Kang Kug; Ahn, Chong H; Bishop, Paul L

    2010-11-15

    Due to their toxicity to humans and animals, heavy metals and nitrate in groundwater are of particular concern. The combination of high toxicity and widespread occurrence has created a pressing need for effective monitoring and measurement of nitrate and heavy metals in soil pore water and groundwater at shallow depths. In this work, a new electrochemical sensing platform with the self-assembly nanobeads-packed (nBP) hetero columns has been developed for the pH and nitrate measurements. In addition, for on-site determination of cadmium (Cd(II)), a bismuth (Bi(III)) based polymer lab chip sensor using the square-wave anodic stripping voltammetry (SWASV) sensing principle has been designed, fabricated and successfully characterized. Factors affecting sensitivity and precision of the sensor, including deposition potential and deposition time, were studied. Miniaturized electrochemical lab chip sensors could be very valuable in environmental monitoring area due to their many benefits, such as greatly reduced sensing cost, sensing system portability, and ease of use.

  8. Label-free fluorescent sensor for lead ion detection based on lead(II)-stabilized G-quadruplex formation.

    PubMed

    Zhan, Shenshan; Wu, Yuangen; Luo, Yanfang; Liu, Le; He, Lan; Xing, Haibo; Zhou, Pei

    2014-10-01

    A label-free fluorescent DNA sensor for the detection of lead ions (Pb(2+)) based on lead(II)-stabilized G-quadruplex formation is proposed in this article. A guanine (G)-rich oligonucleotide, T30695, was used as a recognition probe, and a DNA intercalator, SYBR Green I (SG), was used as a signal reporter. In the absence of Pb(2+), the SG intercalated with the single-stranded random-coil T30695 and emitted strong fluorescence. While in the presence of Pb(2+), the random-coil T30695 would fold into a G-quadruplex structure and the SG could barely show weak fluorescence, and the fluorescence intensity was inversely proportional to the involving amount of Pb(2+). Based on this, a selective lead ion sensor with a limit of detection of 3.79 ppb (parts per billion) and a detection range from 0 to 600 ppb was constructed. Because detection for real samples was also demonstrated to be reliable, this simple, low-cost, sensitive, and selective sensor holds good potential for Pb(2+) detection in real environmental samples.

  9. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    NASA Astrophysics Data System (ADS)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F. R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.

    2016-07-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  10. Ruthenium(II) and osmium(II) mixed chelates based on pyrenyl-pyridylimidazole and 2,2'-bipyridine ligands as efficient DNA intercalators and anion sensors.

    PubMed

    Mardanya, Sourav; Karmakar, Srikanta; Maity, Dinesh; Baitalik, Sujoy

    2015-01-20

    We report herein the synthesis and characterization of two monometallic ruthenium(II) and osmium(II) complexes of composition [(bpy)2M(HImzPPy)] (ClO4)2 derived from pyrenylimidazole-10-pyridin-2-yl-9H-9,11-diazacyclopenta[e]pyrene (HImzPPy) and 2,2'-bipyridine (bpy) ligands. X-ray crystallographic study shows that both crystals belong to the triclinic system having space group P1̅. The photophysical properties of 1 and 2 in acetonitrile indicate that the metal-to-ligand charge-transfer excited state is mainly centered in the [M(bpy)2](2+) moiety of the complexes and slightly affected by the extended conjugation of the pyrenylimidazole moiety. Both complexes display one-electron reversible metal-centered oxidative processes and a number of quasi-reversible reductive processes. The binding affinities of the complexes toward calf-thymus DNA (CT-DNA) were thoroughly studied through different methods such as absorption, emission, excited-state lifetime, circular dichroism, and thermal denaturation of DNA and a relative DNA binding study using ethidium bromide. All of these experiments account for the intercalative nature of both 1 and 2 toward CT-DNA as well as their light-switch behavior. The anion recognition study through different spectroscopic techniques reveals that both complexes act as "turn-on" luminescence sensors for H2PO4(-) and "turn-off" sensors toward F(-) and AcO(-). The imidazole N-H proton of the receptors gets deprotonated with the excessive addition of F(-) and AcO(-), while it interacts with H2PO4(-) through hydrogen-bonding interaction. Theoretical calculations (DFT and TD-DFT) were also performed to understand the photophysical properties of the metalloreceptors.

  11. Study of built-in amplifier performance on HV-CMOS sensor for the ATLAS phase-II strip tracker upgrade

    NASA Astrophysics Data System (ADS)

    Liang, Z.; Affolder, A.; Arndt, K.; Bates, R.; Benoit, M.; Di Bello, F.; Blue, A.; Bortoletto, D.; Buckland, M.; Buttar, C.; Caragiulo, P.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hoeferkamp, M.; Hommels, L. B. A.; Huffman, B. T.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, J.; Mandić, I.; Maneuski, D.; Martinez-Mckinney, F.; McMahon, S.; Meng, L.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Peric, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seidel, S.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zhang, J.; Zhu, H.

    2016-09-01

    This paper focuses on the performance of analog readout electronics (built-in amplifier) integrated on the high-voltage (HV) CMOS silicon sensor chip, as well as its radiation hardness. Since the total collected charge from minimum ionizing particle (MIP) for the CMOS sensor is 10 times lower than for a conventional planar sensor, it is crucial to integrate a low noise built-in amplifier on the sensor chip to improve the signal to noise ratio of the system. As part of the investigation for the ATLAS strip detector upgrade, a test chip that comprises several pixel arrays with different geometries, as well as standalone built-in amplifiers and built-in amplifiers in pixel arrays has been fabricated in a 0.35 μm high-voltage CMOS process. Measurements of the gain and the noise of both the standalone amplifiers and built-in amplifiers in pixel arrays were performed before and after gamma radiation of up to 60 Mrad. Of special interest is the variation of the noise as a function of the sensor capacitance. We optimized the configuration of the amplifier for a fast rise time to adapt to the LHC bunch crossing period of 25 ns, and measured the timing characteristics including jitter. Our results indicate an adequate amplifier performance for monolithic structures used in HV-CMOS technology. The results have been incorporated in the next submission of a large-structure chip.

  12. RF current sensor

    DOEpatents

    Moore, James A.; Sparks, Dennis O.

    1998-11-10

    An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.

  13. Ultraviolet sensor as integrity monitor for enhanced flight vision system (EFVS) approaches to Cat II RVR conditions

    NASA Astrophysics Data System (ADS)

    McKinley, John B.; Pierson, Roger; Ertem, M. C.; Krone, Norris J., Jr.; Cramer, James A.

    2008-04-01

    Flight tests were conducted at Greenbrier Valley Airport (KLWB) and Easton Municipal Airport / Newnam Field (KESN) in a Cessna 402B aircraft using a head-up display (HUD) and a Norris Electro Optical Systems Corporation (NEOC) developmental ultraviolet (UV) sensor. These flights were sponsored by NEOC under a Federal Aviation Administration program, and the ultraviolet concepts, technology, system mechanization, and hardware for landing during low visibility landing conditions have been patented by NEOC. Imagery from the UV sensor, HUD guidance cues, and out-the-window videos were separately recorded at the engineering workstation for each approach. Inertial flight path data were also recorded. Various configurations of portable UV emitters were positioned along the runway edge and threshold. The UV imagery of the runway outline was displayed on the HUD along with guidance generated from the mission computer. Enhanced Flight Vision System (EFVS) approaches with the UV sensor were conducted from the initial approach fix to the ILS decision height in both VMC and IMC. Although the availability of low visibility conditions during the flight test period was limited, results from previous fog range testing concluded that UV EFVS has the performance capability to penetrate CAT II runway visual range obscuration. Furthermore, independent analysis has shown that existing runway light emit sufficient UV radiation without the need for augmentation other than lens replacement with UV transmissive quartz lenses. Consequently, UV sensors should qualify as conforming to FAA requirements for EFVS approaches. Combined with Synthetic Vision System (SVS), UV EFVS would function as both a precision landing aid, as well as an integrity monitor for the GPS and SVS database.

  14. Relative motion of transmembrane segments S0 and S4 during voltage sensor activation in the human BK(Ca) channel.

    PubMed

    Pantazis, Antonios; Kohanteb, Azadeh P; Olcese, Riccardo

    2010-12-01

    Large-conductance voltage- and Ca(2+)-activated K(+) (BK(Ca)) channel α subunits possess a unique transmembrane helix referred to as S0 at their N terminus, which is absent in other members of the voltage-gated channel superfamily. Recently, S0 was found to pack close to transmembrane segments S3 and S4, which are important components of the BK(Ca) voltage-sensing apparatus. To assess the role of S0 in voltage sensitivity, we optically tracked protein conformational rearrangements from its extracellular flank by site-specific labeling with an environment-sensitive fluorophore, tetramethylrhodamine maleimide (TMRM). The structural transitions resolved from the S0 region exhibited voltage dependence similar to that of charge-bearing transmembrane domains S2 and S4. The molecular determinant of the fluorescence changes was identified in W203 at the extracellular tip of S4: at hyperpolarized potential, W203 quenches the fluorescence of TMRM labeling positions at the N-terminal flank of S0. We provide evidence that upon depolarization, W203 (in S4) moves away from the extracellular region of S0, lifting its quenching effect on TMRM fluorescence. We suggest that S0 acts as a pivot component against which the voltage-sensitive S4 moves upon depolarization to facilitate channel activation.

  15. Tangent height registration method for the Version 1.4 data retrieval algorithm of the solar occultation sensor ILAS-II.

    PubMed

    Tanaka, Tomoaki; Nakajima, Hideaki; Sugita, Takafumi; Ejiri, Mitsumu K; Irie, Hitoshi; Saitoh, Naoko; Terao, Yukio; Kawasaki, Hiroyuki; Usami, Masatoshi; Yokota, Tatsuya; Kobayashi, Hirokazu; Sasano, Yasuhiro

    2007-10-10

    The Improved Limb Atmospheric Spectrometer-II (ILAS-II) is a satellite-borne solar occultation sensor onboard the Advanced Earth Observing Satellite-II (ADEOS-II). The ILAS-II succeeded the ILAS. The ILAS-II used four grating spectrometers to observe vertical profiles of gas volume mixing ratios of trace constituents and was also equipped with a Sun-edge sensor to determine tangent heights geometrically with high precision. The accuracy of gas volume mixing ratios depends on the accuracy of the tangent height determination. The combination method is a tangent height registration method that was developed to give appropriate tangent heights for the ILAS-II Version 1.4 data retrieval algorithm. This study describes the method used in the ILAS-II Version 1.4 retrieval algorithm to register tangent heights. The root-sum-square total random error is estimated to be 30 m, and the total systematic error is 180 m at an altitude of 30 km. The influence of the tangent height errors on the vertical profiles of gas volume mixing ratios in ILAS-II Version 1.4 is estimated by using the relative difference. The relative difference for each species is within 7% (20%) for an altitude shift of +/-100 m(+/-300 m).

  16. Multitone harmonic-balance simulations of an x-ray transition-edge sensor characterized at BESSY II

    SciTech Connect

    Rostem, K.; Goldie, D. J.; Withington, S.; Hoevers, H. F. C.; Gottardi, L.; Kuur, J. van der

    2010-07-15

    We present multitone harmonic-balance (MTHB) simulations of a Ti-Au x-ray transition-edge sensor (TES) microcalorimeter in a 5x5 pixel spectrometer array. The dynamic response of the TES microcalorimeter under simulation has been extremely well characterized at the BESSY II Synchrotron Radiation Facility in Berlin. We compare our simulated results directly with these measurements, and show that the MTHB algorithm is able to simulate to great accuracy the dynamic behavior of the TES, even when saturated by 6 keV photons. In this paper, we provide a detailed account of the MTHB simulations, and discuss the impact of this work on future missions such as the International X-ray Observatory.

  17. High Sensitive Sensor Fabricated by Reduced Graphene Oxide/Polyvinyl Butyral Nanofibers for Detecting Cu (II) in Water

    PubMed Central

    Ding, Rui; Luo, Zhimin; Ma, Xiuling; Fan, Xiaoping; Xue, Liqun; Lin, Xiuzhu; Chen, Sheng

    2015-01-01

    Graphene oxide (GO)/polyvinyl butyral (PVB) nanofibers were prepared by a simple electrospinning technique with PVB as matrix and GO as a functional nanomaterial. GO/PVB nanofibers on glassy carbon electrode (GCE) were reduced through electrochemical method to form reduced graphene oxide (RGO)/PVB nanofibers. The morphology and structure of GO/PVB nanofiber were studied by scanning election microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR). RGO/PVB modified GCE was used for fabricating an electrochemical sensor for detecting Cu (II) in water. The analysis results showed that RGO/PVB modified GCE had good analytical results with the linear range of 0.06–2.2 μM, detection limit of 4.10 nM (S/N = 3), and the sensitivity of 103.51 μA·μM−1·cm−2. PMID:25694783

  18. Ditopic boronic acid and imine-based naphthalimide fluorescence sensor for copper(II).

    PubMed

    Li, Meng; Ge, Haobo; Arrowsmith, Rory L; Mirabello, Vincenzo; Botchway, Stanley W; Zhu, Weihong; Pascu, Sofia I; James, Tony D

    2014-10-14

    Copper ions are essential for many biological processes. However, high concentrations of copper can be detrimental to the cell or organism. A novel naphthalimide derivative bearing a monoboronic acid group (BNP) was investigated as a Cu(2+) selective fluorescent sensor in living cells. This derivative is one of the rare examples of reversible fluorescent chemosensors for Cu(2+) which uses a boronic acid group for a binding site. Moreover, the adduct BNP-Cu(2+) displays a fluorescence enhancement with fructose. The uptake of this novel compound in HeLa cancer cells was imaged using confocal fluorescence microscopy techniques including two-photon fluorescence lifetime imaging microscopy. PMID:24919009

  19. Preparation of Pb(II) Ion Imprinted Polymer and Its Application as the Interface of an Electrochemical Sensor for Trace Lead Determination.

    PubMed

    Hu, Shanling; Xiong, Xiaodong; Huang, Shuiying; Lai, Xiaoqi

    2016-01-01

    An ion imprinted polymer (IIP) was synthesized by using Pb(II) as a template, methacrylic acid as a monomer, 8-hydoxyquinoline as a ligand, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and azobisisobutyronitrile as initiator. It can be applied to prepare lead ion selective voltammetric sensor for Pb(II) adsorption and trace detection. The Pb(II)-IIP was characterized by FTIR spectra and SEM image. Under optimized conditions of polymerization, the Pb(II)-IIP showed good adsorption behavior toward Pb(II), with a magnitude of three times higher than that of the non imprinted polymer (NIP). Also, it exhibited a favorable selectivity for Pb(II), compared with other heavy metal ions of Hg(II), Cd(II), Cu(II), and a negligible adsorption to the other cations. The synthesized IIP was used to determine trace levels of Pb(II) in food and water samples, with a calibration linear range over Pb(II) concentrations of 0.05 - 60 μM and a limit of detection at 0.01 μM.

  20. Preparation of Pb(II) Ion Imprinted Polymer and Its Application as the Interface of an Electrochemical Sensor for Trace Lead Determination.

    PubMed

    Hu, Shanling; Xiong, Xiaodong; Huang, Shuiying; Lai, Xiaoqi

    2016-01-01

    An ion imprinted polymer (IIP) was synthesized by using Pb(II) as a template, methacrylic acid as a monomer, 8-hydoxyquinoline as a ligand, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and azobisisobutyronitrile as initiator. It can be applied to prepare lead ion selective voltammetric sensor for Pb(II) adsorption and trace detection. The Pb(II)-IIP was characterized by FTIR spectra and SEM image. Under optimized conditions of polymerization, the Pb(II)-IIP showed good adsorption behavior toward Pb(II), with a magnitude of three times higher than that of the non imprinted polymer (NIP). Also, it exhibited a favorable selectivity for Pb(II), compared with other heavy metal ions of Hg(II), Cd(II), Cu(II), and a negligible adsorption to the other cations. The synthesized IIP was used to determine trace levels of Pb(II) in food and water samples, with a calibration linear range over Pb(II) concentrations of 0.05 - 60 μM and a limit of detection at 0.01 μM. PMID:27682403

  1. A turn-on fluorescent solid-sensor for Hg(II) detection

    NASA Astrophysics Data System (ADS)

    De la Cruz-Guzman, Mayela; Aguilar-Aguilar, Angelica; Hernandez-Adame, Luis; Bañuelos-Frias, Alan; Medellín-Rodríguez, Francisco J.; Palestino, Gabriela

    2014-08-01

    A rhodamine organosilane derivative (Rh-UTES) has been obtained by one-pot synthesis. The chemical structure of Rh-UTES was confirmed by nuclear magnetic resonance (NMR) and infrared (FTIR) techniques. To obtain an inorganic-organic hybrid sensor, Rh-UTES was covalently immobilized on a porous silicon microcavity (PSiMc) via triethoxysilane groups. The attachment of the organic derivative into PSiMc was confirmed by FTIR, specular reflectance, and scanning electron microscopy (SEM). The optical performance of Rh-UTES receptor for Hg2+ detection was investigated by fluorescent spectroscopy and microscopy. Upon the addition of increasing amounts of Hg2+ ions, a remarkable enhancement in emission intensity was produced in both systems. In the solid phase, an increase of integrated fluorescent emission of 0.12- and 0.15-fold after Hg2+ receptor coordination was observed. The light harvesting capability of PSiMc devices allowed obtaining an enhanced fluorescent emission after Rh-UTES immobilization (277-fold). The fluorescence microscopy of hybrid PSiMc sensor provided an optical qualitative test for Hg2+ detection.

  2. Enhanced Archaerhodopsin Fluorescent Protein Voltage Indicators

    PubMed Central

    Gong, Yiyang; Li, Jin Zhong; Schnitzer, Mark J.

    2013-01-01

    A longstanding goal in neuroscience has been to develop techniques for imaging the voltage dynamics of genetically defined subsets of neurons. Optical sensors of transmembrane voltage would enhance studies of neural activity in contexts ranging from individual neurons cultured in vitro to neuronal populations in awake-behaving animals. Recent progress has identified Archaerhodopsin (Arch) based sensors as a promising, genetically encoded class of fluorescent voltage indicators that can report single action potentials. Wild-type Arch exhibits sub-millisecond fluorescence responses to trans-membrane voltage, but its light-activated proton pump also responds to the imaging illumination. An Arch mutant (Arch-D95N) exhibits no photocurrent, but has a slower, ~40 ms response to voltage transients. Here we present Arch-derived voltage sensors with trafficking signals that enhance their localization to the neural membrane. We also describe Arch mutant sensors (Arch-EEN and -EEQ) that exhibit faster kinetics and greater fluorescence dynamic range than Arch-D95N, and no photocurrent at the illumination intensities normally used for imaging. We benchmarked these voltage sensors regarding their spike detection fidelity by using a signal detection theoretic framework that takes into account the experimentally measured photon shot noise and optical waveforms for single action potentials. This analysis revealed that by combining the sequence mutations and enhanced trafficking sequences, the new sensors improved the fidelity of spike detection by nearly three-fold in comparison to Arch-D95N. PMID:23840563

  3. Capacitively coupled RF voltage probe having optimized flux linkage

    DOEpatents

    Moore, James A.; Sparks, Dennis O.

    1999-02-02

    An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.

  4. Development of a rotary disc voltammetric sensor system for semi-continuous and on-site measurements of Pb(II).

    PubMed

    Lee, Yong-Gu; Han, Jungyoup; Kwon, Soondong; Kang, Seoktae; Jang, Am

    2016-01-01

    Atomic absorption spectrometry and inductively coupled plasma-mass spectrometry are widely used for determination of heavy metals due to their low detection limits. However, they are not applicable to on-site measurements of heavy metals as bulky equipment, and highly skilled laboratory staffs are needed as well. In this study, a novel analytical method using a rotary disc voltammetric (RDV) sensor has been successfully designed, fabricated and characterized for semi-continuous and on-site measurements of trace levels of Pb(II) in non-deoxygenating solutions. The square wave anodic stripping voltammetry was used to improve the sensitivity of the Pb(II) detection level with less than 10nM (2μgL(-1)). The RDV sensor has 24-sensing holes to measure concentrations of Pb(II) semi-continuously at sampling sites. Each sensing hole consists of a silver working electrode, an integrated silver counter, and a quasi-reference electrode, which requires only a small amount of samples (<30μL) for measurement of Pb(II) without disturbing and/or clogging the sensing environment. In addition, the RDV sensor showed a correlation coefficient of 0.998 for the Pb(II) concentration range of 10nM-10μM at the deposition time of 180s and its low detection limit was 6.19nM (1.3μgL(-1)). These results indicated that the advanced monitoring technique using a RDV sensor might provide environmental engineers with a reliable way for semi-continuous and on-site measurements of Pb(II).

  5. Development of a rotary disc voltammetric sensor system for semi-continuous and on-site measurements of Pb(II).

    PubMed

    Lee, Yong-Gu; Han, Jungyoup; Kwon, Soondong; Kang, Seoktae; Jang, Am

    2016-01-01

    Atomic absorption spectrometry and inductively coupled plasma-mass spectrometry are widely used for determination of heavy metals due to their low detection limits. However, they are not applicable to on-site measurements of heavy metals as bulky equipment, and highly skilled laboratory staffs are needed as well. In this study, a novel analytical method using a rotary disc voltammetric (RDV) sensor has been successfully designed, fabricated and characterized for semi-continuous and on-site measurements of trace levels of Pb(II) in non-deoxygenating solutions. The square wave anodic stripping voltammetry was used to improve the sensitivity of the Pb(II) detection level with less than 10nM (2μgL(-1)). The RDV sensor has 24-sensing holes to measure concentrations of Pb(II) semi-continuously at sampling sites. Each sensing hole consists of a silver working electrode, an integrated silver counter, and a quasi-reference electrode, which requires only a small amount of samples (<30μL) for measurement of Pb(II) without disturbing and/or clogging the sensing environment. In addition, the RDV sensor showed a correlation coefficient of 0.998 for the Pb(II) concentration range of 10nM-10μM at the deposition time of 180s and its low detection limit was 6.19nM (1.3μgL(-1)). These results indicated that the advanced monitoring technique using a RDV sensor might provide environmental engineers with a reliable way for semi-continuous and on-site measurements of Pb(II). PMID:26058555

  6. Biomechanics of the Sensor–Tissue Interface—Effects of Motion, Pressure, and Design on Sensor Performance and Foreign Body Response—Part II: Examples and Application

    PubMed Central

    Helton, Kristen L; Ratner, Buddy D; Wisniewski, Natalie A

    2011-01-01

    This article is the second part of a two-part review in which we explore the biomechanics of the sensor–tissue interface as an important aspect of continuous glucose sensor biocompatibility. Part I, featured in this issue of Journal of Diabetes Science and Technology, describes a theoretical framework of how biomechanical factors such as motion and pressure (typically micromotion and micropressure) affect tissue physiology around a sensor and in turn, impact sensor performance. Here in Part II, a literature review is presented that summarizes examples of motion or pressure affecting sensor performance. Data are presented that show how both acute and chronic forces can impact continuous glucose monitor signals. Also presented are potential strategies for countering the ill effects of motion and pressure on glucose sensors. Improved engineering and optimized chemical biocompatibility have advanced sensor design and function, but we believe that mechanical biocompatibility, a rarely considered factor, must also be optimized in order to achieve an accurate, long-term, implantable sensor. PMID:21722579

  7. Sensor fusion II: Human and machine strategies; Proceedings of the Meeting, Philadelphia, PA, Nov. 6-9, 1989

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S. (Editor)

    1990-01-01

    Various papers on human and machine strategies in sensor fusion are presented. The general topics addressed include: active vision, measurement and analysis of visual motion, decision models for sensor fusion, implementation of sensor fusion algorithms, applying sensor fusion to image analysis, perceptual modules and their fusion, perceptual organization and object recognition, planning and the integration of high-level knowledge with perception, using prior knowledge and context in sensor fusion.

  8. PtII6 nanoscopic cages with an organometallic backbone as sensors for picric acid.

    PubMed

    Samanta, Dipak; Mukherjee, Partha Sarathi

    2013-12-28

    An organometallic building block 1,3,5-tris(4-trans-Pt(PEt3)2I(ethynyl)phenyl)benzene (1) incorporating Pt-ethynyl functionality has been synthesized and characterized. [2 + 3] self-assembly of its nitrate analogue 1,3,5-tris(4-trans-Pt(PEt3)2(ONO2)(ethynyl)phenyl)benzene (2) with "clip" type bidentate donors (L1-L3) separately afforded three trigonal prismatic architectures (3a-3c), respectively. All these prisms were characterized and their shapes/sizes are predicted through geometry optimization employing molecular mechanics universal force field (MMUFF) simulation. The extended π-conjugation including the presence of Pt-ethynyl functionality makes them electron rich as well as luminescent in nature. Macrocycles 3b and 3c exhibit fluorescence quenching in solution upon addition of picric acid [PA], which is a common constituent of many explosives. Interestingly, the non-responsive nature of fluorescent intensity towards other electron-deficient nitro-aromatic explosives (NAEs) makes them promising selective sensors for PA with a detection limit predicted to be ppb level. Furthermore, solid-state quenching of fluorescent intensity of the thin film of 3b upon exposure to saturated vapor of picric acid has drawn special attention for infield applications.

  9. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment

    SciTech Connect

    Selifonova, O. ); Burlage, R. ); Barkay, T. )

    1993-09-01

    Biosensors can complement analytical chemical methods by detection of biologically available metals in environmental samples. Effective biosensors should contain sensitive receptor and reporter components. The present study reports on the construction of biosensors for the detection of Mercury (II). The mercury resistance operon of transposon 21 (Tn21 mer), the best understood genetic system for detoxification of a heavy metal, was cloned upstream from a promoterless lux operon (luxCDABE) originating from Vibrio fischeri. The sensitivity, selectivity, quantitative response, and applications of the biosensors are discussed. The authors conclude that the mer-lux fusions provide a simple bioassay for the semiquantitative detection of mercury in contaminated waters and industrial wastewaters. 46 refs., 5 figs., 1 tab.

  10. The study of new complex compounds of Ni (II) and Co (II) with N- hydroxy-succinimide and their potential applications as sensors

    NASA Astrophysics Data System (ADS)

    Sibiescu, Doina; Tutulea, Mihaela-Dana; Mîţă, Carmen; Stan, Corneliu; Roţca, Ioan; Vizitiu, Mihaela

    2010-11-01

    In this paper, the study of obtaining new coordination compounds of Ni (II) and Co(II) using as ligand, N-hydroxy-succinimide, was presented. Also, the stability constants of these compounds in aqueous medium were determined. The obtaining conditions and the stability of the new compounds were accomplished in aqueous solutions using characteristic methods for coordination compounds: pH-metry, conductometry and UV-VIS absorption spectroscopy. The combination ratios and the stability constants were determined with methods characteristic for studies in solutions. From experimental data resulted that the combination ratio of central metallic atoms with the ligand N-hydroxy-succinimide was: 1:1 and respectively 1:2. In the experiments were used salts of NiCl2.6H2O and CoCl2.6H2O. The optimal domain of pH stability of the studied compounds is limited between 5.74 - 5.86 for Co- N-hydroxy-succinimide (for molar ratio 1:1 and 1:2) and respectively 5.69 - 5.87 for Ni-N-hydroxysuccinimide( for molar ratio 1:1 and 1:2, too). It is important to mention that these compounds were used with very good results in determination of wastewaters from textile, metallurgical, chemical and food industry. Complexion reactions with this ligand are very sensitive for the cations in this paper mentioned. Therefore it is used most often with success in analytical chemistry and also it is posibil to use as sensors. The new complex compounds has electronics transitions at λ = 517 nm for both complexes Co-N-hydroxy-succinimide at molar ratio 1:1 and 1:2 and also at the same λ = 397nm for Ni-N-hydroxysuccinimide at molar ratio 1:1 and 1:2. These complexes compounds was separated and recrystallized from aqueous solution. From the spectrophotometric data it was determined the type and the nature of the electronics transitions by Dq parameters.

  11. Large voltage modulation in magnetic field sensors from two-dimensional arrays of Y-Ba-Cu-O nano Josephson junctions

    SciTech Connect

    Cybart, Shane A. Dynes, R. C.; Cho, E. Y.; Wong, T. J.; Glyantsev, V. N.; Huh, J. U.; Yung, C. S.; Moeckly, B. H.; Beeman, J. W.; Ulin-Avila, E.; Wu, S. M.

    2014-02-10

    We have fabricated and tested two-dimensional arrays of YBa{sub 2}Cu{sub 3}O{sub 7−δ} superconducting quantum interference devices. The arrays contain over 36 000 nano Josephson junctions fabricated from ion irradiation of YBa{sub 2}Cu{sub 3}O{sub 7−δ} through narrow slits in a resist-mask that was patterned with electron beam lithography and reactive ion etching. Measurements of current-biased arrays in magnetic field exhibit large voltage modulations as high as 30 mV.

  12. Determination of peroxide-based explosives with copper(II)-neocuproine assay combined with a molecular spectroscopic sensor.

    PubMed

    Eren, Sule; Uzer, Ayşem; Can, Ziya; Kapudan, Timuçin; Erçağ, Erol; Apak, Reşat

    2010-08-01

    The two members of peroxide-based explosives, triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD), can be manufactured from readily accessible reagents, and are difficult to detect by conventional analytical methods. TATP and HMTD were securely synthesized, taken up with acetone, hydrolyzed with 4 M HCl to hydrogen peroxide, the acidic solution containing H(2)O(2) was neutralized, and assayed by the copper(II)-neocuproine spectrophotometric method. The chromophore of the reaction was the Cu(I)-neocuproine chelate responsible for light absorption at 454 nm. The molar absorptivity (epsilon) of the method for TATP and HMTD was 3.45 x 10(4) and 4.68 x 10(4) L mol(-1) cm(-1), respectively. The TATP recovery from a synthetically contaminated loamy clay soil was 91-99%. The colorimetric method was also applied to a Cu(ii)-neocuproine-impregnated polymeric Nafion membrane sensor developed for the first time in this work for peroxide explosive assay. The absorbance-concentration response was perfectly linear, and the limit of detection (LOD) of the procedure for both TATP and HMTD was approximately 0.2 mg L(-1). Neither common soil ions (Ca(2+), K(+), Cl(-), SO(4)(2-), Mg(2+) and NO(3)(-)) at 100-fold amounts nor military-purpose nitro-explosives of TNT, RDX, and PETN at 10-fold amounts interfered with the proposed assay. Active oxygen constituents of laundry detergents (perborates and percarbonates), which normally interfered with the assay, could easily be separated from the analytes by solubility differences. The method was statistically validated against standard reference methods of TiOSO(4) colorimetry and GC-MS. PMID:20532268

  13. Determination of peroxide-based explosives with copper(II)-neocuproine assay combined with a molecular spectroscopic sensor.

    PubMed

    Eren, Sule; Uzer, Ayşem; Can, Ziya; Kapudan, Timuçin; Erçağ, Erol; Apak, Reşat

    2010-08-01

    The two members of peroxide-based explosives, triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD), can be manufactured from readily accessible reagents, and are difficult to detect by conventional analytical methods. TATP and HMTD were securely synthesized, taken up with acetone, hydrolyzed with 4 M HCl to hydrogen peroxide, the acidic solution containing H(2)O(2) was neutralized, and assayed by the copper(II)-neocuproine spectrophotometric method. The chromophore of the reaction was the Cu(I)-neocuproine chelate responsible for light absorption at 454 nm. The molar absorptivity (epsilon) of the method for TATP and HMTD was 3.45 x 10(4) and 4.68 x 10(4) L mol(-1) cm(-1), respectively. The TATP recovery from a synthetically contaminated loamy clay soil was 91-99%. The colorimetric method was also applied to a Cu(ii)-neocuproine-impregnated polymeric Nafion membrane sensor developed for the first time in this work for peroxide explosive assay. The absorbance-concentration response was perfectly linear, and the limit of detection (LOD) of the procedure for both TATP and HMTD was approximately 0.2 mg L(-1). Neither common soil ions (Ca(2+), K(+), Cl(-), SO(4)(2-), Mg(2+) and NO(3)(-)) at 100-fold amounts nor military-purpose nitro-explosives of TNT, RDX, and PETN at 10-fold amounts interfered with the proposed assay. Active oxygen constituents of laundry detergents (perborates and percarbonates), which normally interfered with the assay, could easily be separated from the analytes by solubility differences. The method was statistically validated against standard reference methods of TiOSO(4) colorimetry and GC-MS.

  14. Luminescent pH sensor of a novel imidazole-containing hexanuclear Ru(II) polypyridyl complex

    NASA Astrophysics Data System (ADS)

    Cheng, Feixiang; Tang, Ning; Chen, Jishu; Chen, Guang

    2013-10-01

    Hexapodal ligand H6L containing imidazole rings has been prepared by the reaction of 1,10-phenanthroline-5,6-dione with 1,2,3,4,5,6-hexakis[(3-formylphenoxy)methyl]benzene. The Ru(II) polypyridyl complex [{Ru(bpy)2}6(μ6-H6L)](PF6)12 (bpy = 2,2'-bipyridine) has been synthesized by the reaction of Ru(bpy)2Cl2·2H2O with ligand H6L. The pH effects on the UV-vis absorption and emission spectra of the complex have been studied. The ground- and excited-state ionization constants of the acid-base equilibria have been calculated according to the absorbance and emission data. The complex acts as an off-on-off luminescent pH sensor through two successive deprotonation processes of imidazole rings, with a maximum on-off ratio of 5 in buffer solution.

  15. The CaVβ Subunit Protects the I-II Loop of the Voltage-gated Calcium Channel CaV2.2 from Proteasomal Degradation but Not Oligoubiquitination.

    PubMed

    Page, Karen M; Rothwell, Simon W; Dolphin, Annette C

    2016-09-23

    CaVβ subunits interact with the voltage-gated calcium channel CaV2.2 on a site in the intracellular loop between domains I and II (the I-II loop). This interaction influences the biophysical properties of the channel and leads to an increase in its trafficking to the plasma membrane. We have shown previously that a mutant CaV2.2 channel that is unable to bind CaVβ subunits (CaV2.2 W391A) was rapidly degraded (Waithe, D., Ferron, L., Page, K. M., Chaggar, K., and Dolphin, A. C. (2011) J. Biol. Chem. 286, 9598-9611). Here we show that, in the absence of CaVβ subunits, a construct consisting of the I-II loop of CaV2.2 was directly ubiquitinated and degraded by the proteasome system. Ubiquitination could be prevented by mutation of all 12 lysine residues in the I-II loop to arginines. Including a palmitoylation motif at the N terminus of CaV2.2 I-II loop was insufficient to target it to the plasma membrane in the absence of CaVβ subunits even when proteasomal degradation was inhibited with MG132 or ubiquitination was prevented by the lysine-to-arginine mutations. In the presence of CaVβ subunit, the palmitoylated CaV2.2 I-II loop was protected from degradation, although oligoubiquitination could still occur, and was efficiently trafficked to the plasma membrane. We propose that targeting to the plasma membrane requires a conformational change in the I-II loop that is induced by binding of the CaVβ subunit. PMID:27489103

  16. The CaVβ Subunit Protects the I-II Loop of the Voltage-gated Calcium Channel CaV2.2 from Proteasomal Degradation but Not Oligoubiquitination*

    PubMed Central

    Page, Karen M.; Rothwell, Simon W.; Dolphin, Annette C.

    2016-01-01

    CaVβ subunits interact with the voltage-gated calcium channel CaV2.2 on a site in the intracellular loop between domains I and II (the I-II loop). This interaction influences the biophysical properties of the channel and leads to an increase in its trafficking to the plasma membrane. We have shown previously that a mutant CaV2.2 channel that is unable to bind CaVβ subunits (CaV2.2 W391A) was rapidly degraded (Waithe, D., Ferron, L., Page, K. M., Chaggar, K., and Dolphin, A. C. (2011) J. Biol. Chem. 286, 9598–9611). Here we show that, in the absence of CaVβ subunits, a construct consisting of the I-II loop of CaV2.2 was directly ubiquitinated and degraded by the proteasome system. Ubiquitination could be prevented by mutation of all 12 lysine residues in the I-II loop to arginines. Including a palmitoylation motif at the N terminus of CaV2.2 I-II loop was insufficient to target it to the plasma membrane in the absence of CaVβ subunits even when proteasomal degradation was inhibited with MG132 or ubiquitination was prevented by the lysine-to-arginine mutations. In the presence of CaVβ subunit, the palmitoylated CaV2.2 I-II loop was protected from degradation, although oligoubiquitination could still occur, and was efficiently trafficked to the plasma membrane. We propose that targeting to the plasma membrane requires a conformational change in the I-II loop that is induced by binding of the CaVβ subunit. PMID:27489103

  17. Highly sensitive amperometric sensor for micromolar detection of trichloroacetic acid based on multiwalled carbon nanotubes and Fe(II)-phtalocyanine modified glassy carbon electrode.

    PubMed

    Kurd, Masoumeh; Salimi, Abdollah; Hallaj, Rahman

    2013-04-01

    A highly sensitive electrochemical sensor for the detection of trichloroacetic acid (TCA) is developed by subsequent immobilization of phthalocyanine (Pc) and Fe(II) onto multiwalled carbon nanotubes (MWCNTs) modified glassy carbon (GC) electrode. The GC/MWCNTs/Pc/Fe(II) electrode showed a pair of well-defined and nearly reversible redox couple correspondent to (Fe(III)Pc/Fe(II)Pc) with surface-confined characteristics. The surface coverage (Γ) and heterogeneous electron transfer rate constant (ks) of immobilized Fe(II)-Pc were calculated as 1.26×10(-10) mol cm(-2) and 28.13 s(-1), respectively. Excellent electrocatalytic activity of the proposed GC/MWCNTs/Pc/Fe(II) system toward TCA reduction has been indicated and the three consequent irreversible peaks for electroreduction of CCl3COOH to CH3COOH have been clearly seen. The observed chronoamperometric currents are linearly increased with the concentration of TCA at concentration range up to 20mM. Detection limit and sensitivity of the modified electrode were 2.0 μM and 0.10 μA μM(-1) cm(-2), respectively. The applicability of the sensor for TCA detection in real samples was tested. The obtained results suggest that the proposed system can serve as a promising electrochemical platform for TCA detection.

  18. Structure of Voltage-gated Two-pore Channel TPC1 from Arabidopsis thaliana

    PubMed Central

    Guo, Jiangtao; Zeng, Weizhong; Chen, Qingfeng; Lee, Changkeun; Chen, Liping; Yang, Yi; Cang, Chunlei; Ren, Dejian; Jiang, Youxing

    2015-01-01

    Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here, we present the first crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca2+. Ca2+ binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices (IS6 helices) from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain (VSD2) whose conformational changes are coupled to the pair of inner helices (IIS6 helices) from the second 6-TM domains. Luminal Ca2+ or Ba2+ can modulate voltage activation by stabilizing VSD2 in the resting state and shifts voltage activation towards more positive potentials. Our Ba2+ bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels. PMID:26689363

  19. Human neutrophil elastase detection with fluorescent peptide sensors conjugated to cellulosic and nanocellulosic materials: part II, structure/function analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human neutrophil elastase (HNE) is one of a number of proteases that is receiving increased attention as a marker for inflammatory diseases and sensor-based point of care diagnostics. Integral to sensor-based detection is the transducer surface which is the platform of the sensor's signal transmitta...

  20. Data Overview for Sensor Fish Samples Acquired at Ice Harbor, John Day, and Bonneville II Dams in 2005, 2006, and 2007

    SciTech Connect

    Carlson, Thomas J.; Duncan, Joanne P.; Deng, Zhiqun

    2008-03-12

    The purpose of this work was to acquire Sensor Fish data on turbine passage at Bonneville II, John Day, and Ice Harbor dams for later analysis and use. The original data sets have been entered into a database and are being maintained by Pacific Northwest National Laboratory pending delivery to the U.S. Army Corps of Engineers when requested. This report provides documentation for the data sets acquired and details about the operations of the Sensor Fish and interpretation of Sensor Fish data that will be necessary for later use of the acquired data. A limited review of the acquired data was conducted to assess its quality and to extract information that might prove useful to its later use.

  1. The Torsin-family AAA+ Protein OOC-5 Contains a Critical Disulfide Adjacent to Sensor-II That Couples Redox State to Nucleotide Binding

    PubMed Central

    Zhu, Li; Wrabl, James O.; Hayashi, Adam P.; Rose, Lesilee S.

    2008-01-01

    A subgroup of the AAA+ proteins that reside in the endoplasmic reticulum and the nuclear envelope including human torsinA, a protein mutated in hereditary dystonia, is called the torsin family of AAA+ proteins. A multiple-sequence alignment of this family with Hsp100 proteins of known structure reveals a conserved cysteine in the C-terminus of torsin proteins within the Sensor-II motif. A structural model predicts this cysteine to be a part of an intramolecular disulfide bond, suggesting that it may function as a redox sensor to regulate ATPase activity. In vitro experiments with OOC-5, a torsinA homolog from Caenorhabditis elegans, demonstrate that redox changes that reduce this disulfide bond affect the binding of ATP and ADP and cause an attendant local conformational change detected by limited proteolysis. Transgenic worms expressing an ooc-5 gene with cysteine-to-serine mutations that disrupt the disulfide bond have a very low embryo hatch rate compared with wild-type controls, indicating these two cysteines are essential for OOC-5 function. We propose that the Sensor-II in torsin family proteins is a redox-regulated sensor. This regulatory mechanism may be central to the function of OOC-5 and human torsinA. PMID:18550799

  2. The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu(II).

    PubMed

    Jayawardane, B Manori; Coo, Lilibeth dlC; Cattrall, Robert W; Kolev, Spas D

    2013-11-25

    A disposable paper-based sensor (PBS) is described for the determination of Cu(II) in natural and waste waters at approximately 2 cents per measurement. The device makes use of a polymer inclusion membrane (PIM) to provide the selectivity for Cu(II). The PIM consists of 40 wt% di(2-ethlyhexyl) phosphoric acid (D2EHPA) as the carrier, 10 wt% dioctyl phthalate (DOP) as a plasticizer, 49.5 wt% poly(vinyl chloride) (PVC) as the base polymer and 0.5 wt% (mm(-1)) 1-(2'-pyridylazo)-2-naphthol (PAN) as the colourimetric reagent. High selectivity under mildly acidic conditions (HCl, pH 2.0) is achieved for Cu(II) in the presence of frequently encountered metal ions in natural and waste waters such as Fe(III), Al(III), Zn(II), Cd(II), Pb(II), Ca(II), Mg(II), and Ni(II). The laminated PBS consists of a PIM sensing disc (2mm in diameter) attached to the centre of a circular hydrophilic zone (7 mm in diameter) pretreated with 0.01 M HCl. This hydrophilic zone separates the sample port (a circular hole in the plastic cover) from the PIM sensing disc. After introducing 19.2 μL of a sample/standard solution to the sample port, Cu(II) diffuses across the hydrophilic zone and is extracted into the PIM disc as the Cu(II)-D2EHPA complex which subsequently reacts with PAN to produce the red-purple coloured Cu(II)-PAN complex. The colour intensity of the PIM disc is measured 15 min after sample/standard introduction by scanning using a flatbed scanner. Under optimal conditions the device is characterized by a limit of detection (LOD) and limit of quantitation (LOQ) of 0.06 and 0.21 mg L(-1) Cu(II), respectively, with two linear ranges together covering the Cu(II) concentration range from 0.1 to 30.0 mg L(-1). The PBS was successfully applied to the determination of Cu(II) in hot tap water and mine tailings water.

  3. Voltage-Dependent Gating of hERG Potassium Channels

    PubMed Central

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  4. Stress wave communication in concrete: II. Evaluation of low voltage concrete stress wave communications utilizing spectrally efficient modulation schemes with PZT transducers

    NASA Astrophysics Data System (ADS)

    Siu, Sam; Qing, Ji; Wang, Kun; Song, Gangbing; Ding, Zhi

    2014-12-01

    Piezoelectric materials, traditionally used for structural health monitoring, have recently been used to implement stress wave communications. Within a protective encasing we fabricate a smart aggregate which enables transmission and reception of modulated stress waves for digital communication within concrete. Our research focuses on building a high efficiency stress wave communication system and comparing the performance of phase shift keying (PSK) with quadrature amplitude modulation (QAM). Our experiments evaluate the performance of QPSK and 16QAM implemented with our stress wave communication system at a transmit voltage ranging from 32 dBV to 37 dBV. We also demonstrate the increase in spectral efficiency of 16QAM compared to QPSK.

  5. Fabrication of a highly selective cadmium (II) sensor based on 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane as a supramolecular ionophore.

    PubMed

    Ghaemi, Arezoo; Tavakkoli, Haman; Mombeni, Tayebeh

    2014-05-01

    A new cadmium (II) ion selective sensor based on 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (kryptofix5) as a supramolecular carrier has been developed. The membrane solutions containing polyvinyl chloride (PVC), plasticizer, sodium tetraphenylborate (NaTPB) as a lipophilic ionic additive and kryptofix5 as an ionophore were directly coated on the surface of graphite rods. The best composition of the coated membrane (w/w%) was found to be: 30.0% PVC, 61.0% dioctyl sebacate (DOS), 6.0% NaTPB and 3.0% kryptofix5. The sensor indicates a good linear response for Cd(2+) cation over a wide concentration range from 1.0×10(-5) to 1.0×10(-1) M with a Nernstian slope of 29.8±0.1 mV/decade and the detection limit is 8.4×10(-6) M. The response time of the sensor is 15s and it can be used for 7 weeks without significant drift in potential. The sensor operates in the wide pH range of 1.0-6.0. This sensor reveals a very good selectivity toward Cd(2+) ion over a wide range of alkali, transition and heavy metal cations. The sensor was used as an indicator electrode for potentiometric titration of Cd(2+) using sodium fluoride and ethylenediaminetetraacetic acid (EDTA) solutions with a sharp potential change that occurred at the end point. In addition, the proposed sensor was successfully used for determination of Cd(2+) cation in real water samples.

  6. Fabrication of a highly selective cadmium (II) sensor based on 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane as a supramolecular ionophore.

    PubMed

    Ghaemi, Arezoo; Tavakkoli, Haman; Mombeni, Tayebeh

    2014-05-01

    A new cadmium (II) ion selective sensor based on 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (kryptofix5) as a supramolecular carrier has been developed. The membrane solutions containing polyvinyl chloride (PVC), plasticizer, sodium tetraphenylborate (NaTPB) as a lipophilic ionic additive and kryptofix5 as an ionophore were directly coated on the surface of graphite rods. The best composition of the coated membrane (w/w%) was found to be: 30.0% PVC, 61.0% dioctyl sebacate (DOS), 6.0% NaTPB and 3.0% kryptofix5. The sensor indicates a good linear response for Cd(2+) cation over a wide concentration range from 1.0×10(-5) to 1.0×10(-1) M with a Nernstian slope of 29.8±0.1 mV/decade and the detection limit is 8.4×10(-6) M. The response time of the sensor is 15s and it can be used for 7 weeks without significant drift in potential. The sensor operates in the wide pH range of 1.0-6.0. This sensor reveals a very good selectivity toward Cd(2+) ion over a wide range of alkali, transition and heavy metal cations. The sensor was used as an indicator electrode for potentiometric titration of Cd(2+) using sodium fluoride and ethylenediaminetetraacetic acid (EDTA) solutions with a sharp potential change that occurred at the end point. In addition, the proposed sensor was successfully used for determination of Cd(2+) cation in real water samples. PMID:24656367

  7. Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators

    PubMed Central

    St-Pierre, François; Chavarha, Mariya; Lin, Michael Z.

    2015-01-01

    Neurons tightly regulate the electrical potential difference across the plasma membrane with millivolt accuracy and millisecond resolution. Membrane voltage dynamics underlie the generation of an impulse, the transduction of impulses from one end of the neuron to the other, and the release of neurotransmitters. Imaging these voltage dynamics in multiple neurons simultaneously is therefore critical for understanding how neurons function together within circuits in intact brains. Genetically encoded fluorescent voltage sensors have long been desired to report voltage in defined subsets of neurons with optical readout. In this review, we discuss the diverse strategies used to design and optimize protein-based voltage sensors, and highlight the chemical mechanisms by which different classes of reporters sense voltage. To guide neuroscientists in choosing an appropriate sensor for their applications, we also describe operating tradeoffs of each class of voltage indicators. PMID:26079047

  8. Ozone Profiles in the High-latitude Stratosphere and Lower Mesosphere Measured by the Improved Limb Atmospheric Spectrometer (ILAS)-II: Comparison with other Satellite Sensors and Ozonesondes

    NASA Technical Reports Server (NTRS)

    Sugita, T.; Nakajima, H.; Yokota, T.; Kanzawa, H.; Gernandt, H.; Herber, A.; VonderGathen, P.; Koenig-Langlo, G.; Sato, K.; Dorokhov, V.; Yushkov, V. A.; Murayama, Y.; Yamamori, M.; Godin-Beekmann, S.; Goutail, F.; Roscoe, H. K.; Deshler, T.; Yela, M.; Taalas, P.; Kyroe, E.; Oltmans, S. J.; Johnson, B. J.; Allaart, M.; Litynska, Z.; Klekociuk, A.

    2006-01-01

    A solar occultation sensor, the Improved Limb Atmospheric Spectrometer (ILAS)-II, measured 5890 vertical profiles of ozone concentrations in the stratosphere and lower mesosphere and of other species from January to October 2003. The measurement latitude coverage was 54-71degN and 64-88degS, which is similar to the coverage of ILAS (November 1996 to June 1997). One purpose of the ILAS-II measurements was to continue such high-latitude measurements of ozone and its related chemical species in order to help accurately determine their trends. The present paper assesses the quality of ozone data in the version 1.4 retrieval algorithm, through comparisons with results obtained from comprehensive ozonesonde measurements and four satellite-borne solar occultation sensors. In the Northern Hemisphere (NH), the ILAS-II ozone data agree with the other data within +/-10% (in terms of the absolute difference divided by its mean value) at altitudes between 11 and 40 km, with the median coincident ILAS-II profiles being systematically up to 10% higher below 20 km and up to 10% lower between 21 and 40 km after screening possible suspicious retrievals. Above 41 km, the negative bias between the NH ILAS-II ozone data and the other data increases with increasing altitude and reaches 30% at 61-65 km. In the Southern Hemisphere, the ILAS-II ozone data agree with the other data within 10% in the altitude range of 11-60 km, with the median coincident profiles being on average up to 10% higher below 20 km and up to 10% lower above 20 km.

  9. Gold nanoparticle-sensitized quartz crystal microbalance sensor for rapid and highly selective determination of Cu(II) ions.

    PubMed

    Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2013-09-21

    A novel quartz crystal microbalance (QCM) sensor for rapid, highly selective and sensitive detection of copper ions was developed. As a signal amplifier, gold nanoparticles (Au NPs) were self-assembled onto the surface of the sensor. A simple dip-and-dry method enabled the whole detection procedure to be accomplished within 20 min. High selectivity of the sensor towards copper ions is demonstrated by both individual and coexisting assays with interference ions. This gold nanoparticle mediated amplification allowed a detection limit down to 3.1 μM. Together with good repeatability and regeneration, the QCM sensor was also applied to the analysis of copper contamination in drinking water. This work provides a flexible method for fabricating QCM sensors for the analysis of important small molecules in environmental and biological samples. PMID:23888301

  10. 2,6-Bis(2-Benzimidazolyl)Pyridine Fluorescent Red-Shifted Sensor for Recognition of Zinc(II) and a Calorimetric Sensor for Iron Ions.

    PubMed

    Vosough Razavi, Bita; Badiei, Alireza; Lashgari, Negar; Mohammadi Ziarani, Ghodsi

    2016-09-01

    The ability of 2,6-bis(2-benzimidazolyl)pyridine (bbp) as an optical sensor was studied by fluorescence spectroscopy, colorimetric and UV-visible techniques. The fluorescence spectra of bbp demonstrated a red-shifted upon addition of Zn(2+) ion, whereas rest of the cations did not induce any shift. Selectivity of the sensor was examined toward Zn(2+) in the presence of a wide range of cations, as interfering agents, that showed no disruption in its function. In addition, the pH effect was tested on the fluorescence response of bbp; which showed the efficiency of the sensor in a wide pH range. The limit of detection for Zn(2+) was estimated as 2.1 μM. Furthermore, the colorimetric studies were carried out and the observations showed a color change from colorless to purple by the addition of Fe(2+) ion and from colorless to yellow by the addition of Fe(3+). The UV-visible studies were carried out to confirm the colorimetric observations. The color changes occurred when Fe(2+) and Fe(3+) were added to the sensors solution, respectively. The detection limits were calculated as 2.8 × 10(-7) M and 3.5 × 10(-6) M for Fe(2+) and Fe(3+), respectively. Hence, bbp can be used as a dual mode optical sensor for detection of Zn(2+) by fluorescence and discriminately detection of Fe(2+) and Fe(3+) visually.

  11. 2,6-Bis(2-Benzimidazolyl)Pyridine Fluorescent Red-Shifted Sensor for Recognition of Zinc(II) and a Calorimetric Sensor for Iron Ions.

    PubMed

    Vosough Razavi, Bita; Badiei, Alireza; Lashgari, Negar; Mohammadi Ziarani, Ghodsi

    2016-09-01

    The ability of 2,6-bis(2-benzimidazolyl)pyridine (bbp) as an optical sensor was studied by fluorescence spectroscopy, colorimetric and UV-visible techniques. The fluorescence spectra of bbp demonstrated a red-shifted upon addition of Zn(2+) ion, whereas rest of the cations did not induce any shift. Selectivity of the sensor was examined toward Zn(2+) in the presence of a wide range of cations, as interfering agents, that showed no disruption in its function. In addition, the pH effect was tested on the fluorescence response of bbp; which showed the efficiency of the sensor in a wide pH range. The limit of detection for Zn(2+) was estimated as 2.1 μM. Furthermore, the colorimetric studies were carried out and the observations showed a color change from colorless to purple by the addition of Fe(2+) ion and from colorless to yellow by the addition of Fe(3+). The UV-visible studies were carried out to confirm the colorimetric observations. The color changes occurred when Fe(2+) and Fe(3+) were added to the sensors solution, respectively. The detection limits were calculated as 2.8 × 10(-7) M and 3.5 × 10(-6) M for Fe(2+) and Fe(3+), respectively. Hence, bbp can be used as a dual mode optical sensor for detection of Zn(2+) by fluorescence and discriminately detection of Fe(2+) and Fe(3+) visually. PMID:27365126

  12. Experimental validation of a high voltage pulse measurement method.

    SciTech Connect

    Cular, Stefan; Patel, Nishant Bhupendra; Branch, Darren W.

    2013-09-01

    This report describes X-cut lithium niobates (LiNbO3) utilization for voltage sensing by monitoring the acoustic wave propagation changes through LiNbO3 resulting from applied voltage. Direct current (DC), alternating current (AC) and pulsed voltage signals were applied to the crystal. Voltage induced shift in acoustic wave propagation time scaled quadratically for DC and AC voltages and linearly for pulsed voltages. The measured values ranged from 10 - 273 ps and 189 ps 2 ns for DC and non-DC voltages, respectively. Data suggests LiNbO3 has a frequency sensitive response to voltage. If voltage source error is eliminated through physical modeling from the uncertainty budget, the sensors U95 estimated combined uncertainty could decrease to ~0.025% for DC, AC, and pulsed voltage measurements.

  13. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  14. Advanced fiber optic seismic sensors (geophone) research

    NASA Astrophysics Data System (ADS)

    Zhang, Yan

    The systematical research on the fiber optic seismic sensors based on optical Fiber Bragg Grating (FBG) sensing technology is presented in this thesis. Optical fiber sensors using fiber Bragg gratings have a number of advantages such as immunity to electromagnetic interference, lightweight, low power consumption. The FBG sensor is intrinsically sensitive to dynamic strain signals and the strain sensitivity can approach sub micro-strain. Furthermore, FBG sensors are inherently suited for multiplexing, which makes possible networked/arrayed deployment on a large scale. The basic principle of the FBG geophone is that it transforms the acceleration of ground motion into the strain signal of the FBG sensor through mechanical design, and after the optical demodulation generates the analog voltage output proportional to the strain changes. The customized eight-channel FBG seismic sensor prototype is described here which consists of FBG sensor/demodulation grating pairs attached on the spring-mass mechanical system. The sensor performance is evaluated systematically in the laboratory using the conventional accelerometer and geophone as the benchmark, Two major applications of FBG seismic sensor are demonstrated. One is in the battlefield remote monitoring system to detect the presence of personnel, wheeled vehicles, and tracked vehicles. The other application is in the seismic reflection survey of oilfield exploration to collect the seismic waves from the earth. The field tests were carried out in the air force base and the oilfield respectively. It is shown that the FBG geophone has higher frequency response bandwidth and sensitivity than conventional moving-coil electromagnetic geophone and the military Rembass-II S/A sensor. Our objective is to develop a distributed FBG seismic sensor network to recognize and locate the presence of seismic sources with high inherent detection capability and a low false alarm rate in an integrated system.

  15. Development of a reduced-graphene-oxide based superparamagnetic nanocomposite for the removal of nickel (II) from an aqueous medium via a fluorescence sensor platform.

    PubMed

    Nandi, Debabrata; Saha, Indranil; Ray, Suprakas Sinha; Maity, Arjun

    2015-09-15

    Reduced-graphene-oxide based superparamagnetic nanocomposite (GC) was fabricated and applied for the remediation of Ni(II) from an aqueous medium. The as-prepared GC was extensively characterized by Raman, TEM, AFM, SEM-EDX, SQUID, and BET analyses. Quantitative immobilization of Ni(II) in an aqueous solution by the fluorescent sensor platform of GC was explored at varying pH, doses, contact times, and temperatures. The pseudo-second-order kinetics equation governed the overall sorption process at optimized pH of 5 (±0.2). The superior monolayer sorption capacity was 228mgg(-1) at 300K. Negative ΔG(0) indicated the spontaneous sorption nature, whereas the positive ΔH(0) resulted from an increase in entropy (positive ΔS(0)) at the solid-liquid interface during the endothermic reaction. The lower enthalpy agreed with the relatively high regeneration (approximately 91%) of the GC by 0.1M HCl, because of the formation of stable tetrahedral complex. The physisorption was well corroborated by calculated sorption energy (EDR ∼7kJmol(-1)) and the nature of the Stern-Volmer plot of the fluorescence-quenching data with reaction time. The GC played a pivotal role as a static fluorescent sensor platform (fluorophore) for Ni(II) adsorption. Magnetic property also indicated that GC could be easily separated from fluids by exploiting its superparamagnetic property. PMID:26004571

  16. Development of a reduced-graphene-oxide based superparamagnetic nanocomposite for the removal of nickel (II) from an aqueous medium via a fluorescence sensor platform.

    PubMed

    Nandi, Debabrata; Saha, Indranil; Ray, Suprakas Sinha; Maity, Arjun

    2015-09-15

    Reduced-graphene-oxide based superparamagnetic nanocomposite (GC) was fabricated and applied for the remediation of Ni(II) from an aqueous medium. The as-prepared GC was extensively characterized by Raman, TEM, AFM, SEM-EDX, SQUID, and BET analyses. Quantitative immobilization of Ni(II) in an aqueous solution by the fluorescent sensor platform of GC was explored at varying pH, doses, contact times, and temperatures. The pseudo-second-order kinetics equation governed the overall sorption process at optimized pH of 5 (±0.2). The superior monolayer sorption capacity was 228mgg(-1) at 300K. Negative ΔG(0) indicated the spontaneous sorption nature, whereas the positive ΔH(0) resulted from an increase in entropy (positive ΔS(0)) at the solid-liquid interface during the endothermic reaction. The lower enthalpy agreed with the relatively high regeneration (approximately 91%) of the GC by 0.1M HCl, because of the formation of stable tetrahedral complex. The physisorption was well corroborated by calculated sorption energy (EDR ∼7kJmol(-1)) and the nature of the Stern-Volmer plot of the fluorescence-quenching data with reaction time. The GC played a pivotal role as a static fluorescent sensor platform (fluorophore) for Ni(II) adsorption. Magnetic property also indicated that GC could be easily separated from fluids by exploiting its superparamagnetic property.

  17. A novel voltammetric sensor for sensitive detection of mercury(II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer.

    PubMed

    Ghanei-Motlagh, Masoud; Taher, Mohammad Ali; Heydari, Abolfazl; Ghanei-Motlagh, Reza; Gupta, Vinod K

    2016-06-01

    In this paper, a novel strategy was proposed to prepare ion-imprinted polymer (IIP) on the surface of reduced graphene oxide (RGO). Polymerization was performed using methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, 2,2'-((9E,10E)-1,4-dihydroxyanthracene-9,10-diylidene) bis(hydrazine-1-carbothioamide) (DDBHCT) as the chelating agent and ammonium persulfate (APS) as initiator, via surface imprinted technique. The RGO-IIP was characterized by means of Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The electrochemical procedure was based on the accumulation of Hg(II) ions at the surface of a modified glassy carbon electrode (GCE) with RGO-IIP. The prepared RGO-IIP sensor has higher voltammetric response compared to the non-imprinted polymer (NIP), traditional IIP and RGO. The RGO-IIP modified electrode exhibited a linear relationship toward Hg(II) concentrations ranging from 0.07 to 80 μg L(-1). The limit of detection (LOD) was found to be 0.02 μg L(-1) (S/N=3), below the guideline value from the World Health Organization (WHO). The applicability of the proposed electrochemical sensor to determination of mercury(II) ions in different water samples was reported. PMID:27040231

  18. The ion-channel activity of longibrachins LGA I and LGB II: effects of pro-2/Ala and gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels.

    PubMed

    Cosette, P; Rebuffat, S; Bodo, B; Molle, G

    1999-11-01

    Longibrachins LGA I (Ac Aib Ala Aib Ala Aib(5) Ala Gln Aib Val Aib(10) Gly Leu Aib Pro Val(15) Aib Aib Gln Gln Pheol(20), with Aib: alpha-aminoisobutyric acid, pheol: phenylalaninol) and LGB II are two homologous 20-residue long-sequence peptaibols isolated from the fungus Trichoderma longibrachiatum that differ between them by a Gln-18/Glu substitution. They distinguish from alamethicin by a Pro-2 for Ala replacement, which allowed to examine for the first time with natural Aib-containing analogues, the effect of Pro-2 on the ion-channel properties exhibited by alamethicin. The influence of these structural modifications on the voltage-gated ion-channel forming activity of the peptides in planar lipid bilayers were analysed. The general 'barrel-stave' model of ion-channel activity, already described for alamethicin, was preserved with both longibrachins. The negatively charged LGB II promoted higher oligomerisation levels, which could presumably dilute the repulsive effect of the negative Glu ring near the entrance of the channel and resulted in lower lifetimes of the substates, confirming the strong anchor of the peptide C-terminus at the cis-interface. Reduction of the channel lifetimes was observed for the longibrachins, compared to alamethicin. This argues for a better stabilisation of the channels formed by peptaibols having a proline at position 2, which results in better anchoring of the peptide monomer N-terminus at the trans-bilayer interface. Qualitative assays of the temperature dependence on the neutral longibrachin channel properties demonstrated a high increase of channel lifetimes and a markedly reduced voltage-sensitivity when the temperature was decreased, showing that such conditions may allow to study the channel-forming properties of peptides leading to fast current fluctuations. PMID:10556493

  19. CDF Run-II Silicon Detector: Operations and Aging

    SciTech Connect

    Stancari, Michelle; /Fermilab

    2011-09-10

    The CDF Run-II silicon microstrip detector has seen almost 12 fb{sup -1} of proton-antiproton collisions over the last 10 years. It has shown remarkable performance, with 80% of its channels still operating error-free, and only one of its eight layers approaching the operational limits for full depletion. The measured depletion voltage and signal-to-noise ratio of these sensors give unique information about the behavior of sensors irradiated slowly over a long period of time. Data from heavily irradiated, double-sided sensors excludes a monotonic electric field inside the sensor and is instead consistent with a doubly-peaked field that is lower in the center of the sensor and higher at the edges.

  20. Study on a colorimetric sensor with color switching: Naked-eye detection for Cu(II) ion

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Ma, Wenzhong

    2012-12-01

    In this paper, we synthesize and report a Cu(II)-sensing probe of N'1,N'2-bis(4-(diethylamino)-2-hydroxybenzylidene)oxalohydrazide (BDHO) with two detection channels. Its colorimetric and fluorescence spectrophotometric responses towards Cu(II) ion are fully investigated. It is found that the absorption and emission spectra of BDHO are both sensitive towards Cu(II) ion with high sensitivity as well as excellent selectivity. In addition, the recognition of BDHO towards Cu(II) ion is also very quick and can be accomplished within less than 1 min. The actual sensing performance of BDHO towards Cu(II) ion is also tentatively explored.

  1. Readout circuit design of the retina-like CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Cao, Fengmei; Song, Shengyu; Bai, Tingzhu; Cao, Nan

    2015-02-01

    Readout circuit is designed for a special retina-like CMOS image sensor. To realize the pixels timing drive and readout of the sensor, the Altera's Cyclone II FPGA is used as a control chip. The voltage of the sensor is supported by a voltage chip initialized by SPI with AVR MCU system. The analog image signal outputted by the sensor is converted to digital image data by 12-bits A/D converter ADS807 and the digital data is memorized in the SRAM. Using the Camera-link image grabber, the data stored in SRAM is transformed to image shown on PC. Experimental results show the circuit works well on retina-like CMOS timing drive and image readout and images can be displayed properly on the PC.

  2. 1,4,7,10-tetrakis(2,2'-bipyridyl-5-ylmethyl-bis(2,2'-bipyridine) ruthenium(II))-1,4,7,10-tetraazacyclododecane, a macrocyclic sensor for positively charged species.

    PubMed

    Josceanu, A M; Moore, P; Smith, S

    2001-01-01

    The luminescent behavior of the cyclen-based macrocycle L1 was investigated to establish its sensing ability for protons and transition metal ions. It acts as a good pH sensor in the neutral region. Its interaction with Cu (II) and Ni (II) is accompanied by quenching. The rate data for the interaction with Cu (II) were measured at pH 7.43.

  3. Evaluation of infrasound sensors

    SciTech Connect

    Kromer, R.P.; McDonald, T.S.

    1998-08-01

    Sandia is evaluating the performance of various infrasound sensors that could be used as part of the International Monitoring Systems (IMS). Specifications for infrasound stations are outlined in CTBT/PC/II/1/Add.2. This document specifies minimum requirements for sensor, digitizer and system. The infrasound sensors evaluation task has the following objectives: provide an overview of the sensors presently in use; evaluate these sensors with respect to the requirements of the IMS.

  4. Temporal Dynamics of Microbial Rhodopsin Fluorescence Reports Absolute Membrane Voltage

    PubMed Central

    Hou, Jennifer H.; Venkatachalam, Veena; Cohen, Adam E.

    2014-01-01

    Plasma membrane voltage is a fundamentally important property of a living cell; its value is tightly coupled to membrane transport, the dynamics of transmembrane proteins, and to intercellular communication. Accurate measurement of the membrane voltage could elucidate subtle changes in cellular physiology, but existing genetically encoded fluorescent voltage reporters are better at reporting relative changes than absolute numbers. We developed an Archaerhodopsin-based fluorescent voltage sensor whose time-domain response to a stepwise change in illumination encodes the absolute membrane voltage. We validated this sensor in human embryonic kidney cells. Measurements were robust to variation in imaging parameters and in gene expression levels, and reported voltage with an absolute accuracy of 10 mV. With further improvements in membrane trafficking and signal amplitude, time-domain encoding of absolute voltage could be applied to investigate many important and previously intractable bioelectric phenomena. PMID:24507604

  5. Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow-through electrodes and controlled anode potentials.

    PubMed

    Jiang, Yong; Liang, Peng; Zhang, Changyong; Bian, Yanhong; Yang, Xufei; Huang, Xia; Girguis, Peter R

    2015-08-01

    The application of microbial fuel cell (MFC)-based toxicity sensors to real-world water monitoring is partly impeded by the limited sensitivity. To address this limitation, this study optimized the flow configurations and the control modes. Results revealed that the sensitivity increased by ∼15-41times with the applying of a flow-through anode, compared to those with a flow-by anode. The sensors operated in the controlled anode potential (CP) mode delivered better sensitivity than those operated in the constant external resistance (ER) mode over a broad range of anode potentials from -0.41V to +0.1V. Electrodeposition of Cu(II) was found to bias the toxicity measurement at low anode potentials. The optimal anode potential was approximately -0.15V, at which the sensor achieved an unbiased measurement of toxicity and the highest sensitivity. This value was greater than those required for electrodeposition while smaller than those for power overshoot. PMID:25965954

  6. Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow-through electrodes and controlled anode potentials.

    PubMed

    Jiang, Yong; Liang, Peng; Zhang, Changyong; Bian, Yanhong; Yang, Xufei; Huang, Xia; Girguis, Peter R

    2015-08-01

    The application of microbial fuel cell (MFC)-based toxicity sensors to real-world water monitoring is partly impeded by the limited sensitivity. To address this limitation, this study optimized the flow configurations and the control modes. Results revealed that the sensitivity increased by ∼15-41times with the applying of a flow-through anode, compared to those with a flow-by anode. The sensors operated in the controlled anode potential (CP) mode delivered better sensitivity than those operated in the constant external resistance (ER) mode over a broad range of anode potentials from -0.41V to +0.1V. Electrodeposition of Cu(II) was found to bias the toxicity measurement at low anode potentials. The optimal anode potential was approximately -0.15V, at which the sensor achieved an unbiased measurement of toxicity and the highest sensitivity. This value was greater than those required for electrodeposition while smaller than those for power overshoot.

  7. The Belle II Silicon Vertex Detector readout chain

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Bergauer, T.; Frankenberger, A.; Gfall, I.; Irmler, C.; Valentan, M.

    2013-02-01

    The Silicon Vertex Detector of the future Belle II experiment at KEK (Japan) will consist of 6'' double-sided strip sensors. Those are read out by APV25 chips (originally developed for CMS) which are powered by DC/DC converters with low voltages tied to the sensor bias potentials. The signals are transmitted by cable links of about 12 meters. In the back-end, the data are digitized and processed by FADC modules with powerful FPGAs, which are also capable of precisely measuring the hit time of each particle in order to discard off-time background.

  8. FET charge sensor and voltage probe

    NASA Technical Reports Server (NTRS)

    Robinson, P. A., Jr. (Inventor)

    1986-01-01

    A MOSFET structure having a biased gate covered with an insulator is described. The insulator is of such a thickness as to render the structure capable of giving a measure of accumulated charge. The structure is also capable of being used in a stacked structure as a particle spectrometer.

  9. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid

    PubMed Central

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-01-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  10. Generic EO sensor simulator

    NASA Astrophysics Data System (ADS)

    Akerman, Alexander, III; Hoffman, George A., Jr.

    1988-01-01

    A generic sensor simulation has been developed which emulates the imagery produced by closed circuit television sensors. Applications to date include a monochromatic vidicon and a color CCD camera. The core software program was extracted from the MARSAM II model embedded within the Avionics Laboratory Sensor Performance Model (ALSPM).

  11. Low-Cost Linear Optical Sensors.

    ERIC Educational Resources Information Center

    Kinsey, Kenneth F.; Meisel, David D.

    1994-01-01

    Discusses the properties and application of three light-to-voltage optical sensors. The sensors have been used for sensing diffraction patterns, the inverse-square law, and as a fringe counter with an interferometer. (MVL)

  12. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection

    PubMed Central

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-01-01

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world’s attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg2+ ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species. PMID:27483277

  13. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection.

    PubMed

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-07-29

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species.

  14. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection.

    PubMed

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-01-01

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species. PMID:27483277

  15. Batteries: Widening voltage windows

    NASA Astrophysics Data System (ADS)

    Xu, Kang; Wang, Chunsheng

    2016-10-01

    The energy output of aqueous batteries is largely limited by the narrow voltage window of their electrolytes. Now, a hydrate melt consisting of lithium salts is shown to expand such voltage windows, leading to a high-energy aqueous battery.

  16. Polypyrrole thin film sensor base surface plasmon resonance for detection of Cu(II) and Fe(III) in aqueous solution

    NASA Astrophysics Data System (ADS)

    Sadrolhosseini, Amir R.; Noor, A. S. M.; Moksin, Mohd Maarof; Abdi, Mahnaz M.; Soleimani, Hassan; Abas, Ahmad Fauzi; Talib, Zainal Abdin

    2012-09-01

    In this study, the performance of surface plasmon resonance method incorporated with polypyrrole sensing layer was examined for detection of Cu (II) and Fe (III) ions in aqueous solutions. The polypyrrole was prepared by electro-oxidation method on a gold layer for the detecting low concentration ions (0.1, 1 5 10 20 ppm). The experiments carried out at room temperature, and each sample was flowed through the flow cell. A photodiode registered the SPR signals as the function of rotation angle and thickness of layers. For observing the association and dissociation processes, the experiments repeated more than ten times, and the sensorgrams were obtained. Furthermore, Langmuir model was utilized to describe the binding interactions of ions with the polypyrrole layer. The lower concentration detection limit was about 0.1 ppm and the terminal resonance angles were occurred after the 300 s. The sensor was also found to be more sensitive to the presence of Cu than Fe ions.

  17. Automatic voltage imbalance detector

    DOEpatents

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  18. Peak radiated power measurement of the DOE Mark II container tag with integrated ST-676 sensor radio frequency identification device.

    SciTech Connect

    Jursich, Mark

    2010-04-01

    The total peak radiated power of the Department of Energy Mark II container tag was measured in the electromagnetic reverberation chamber facility at Sandia National Laboratories. The tag's radio frequency content was also evaluated for possible emissions outside the intentional transmit frequency band. No spurious emissions of any significance were found, and the radiated power conformed to the manufacturer's specifications.

  19. Analysis of the interaction of tarantula toxin Jingzhaotoxin-III (β-TRTX-Cj1α) with the voltage sensor of Kv2.1 uncovers the molecular basis for cross-activities on Kv2.1 and Nav1.5 channels.

    PubMed

    Tao, Huai; Chen, Jin J; Xiao, Yu C; Wu, Yuan Y; Su, Hai B; Li, Dan; Wang, Heng Y; Deng, Mei C; Wang, Mei C; Liu, Zhong H; Liang, Song P

    2013-10-22

    Animal venoms contain a fascinating array of divergent peptide toxins that have cross-activities on different types of voltage-gated ion channels. However, the underlying mechanism remains poorly understood. Jingzhaotoxin-III (JZTX-III), a 36-residue peptide from the tarantula Chilobrachys jingzhao, is specific for Nav1.5 and Kv2.1 channels over the majority of other ion channel subtypes. JZTX-III traps the Nav1.5 DII voltage sensor at closed state by binding to the DIIS3-S4 linker. In this study, electrophysiological experiments showed that JZTX-III had no effect on five voltage-gated potassium channel subtypes (Kv1.4, Kv3.1, and Kv4.1-4.3), whereas it significantly inhibited Kv2.1 with an IC50 of 0.71 ± 0.01 μM. Mutagenesis and modeling data suggested that JZTX-III docks at the Kv2.1 voltage-sensor paddle. Alanine replacement of Phe274, Lys280, Ser281, Leu283, Gln284, and Val288 could decrease JZTX-III affinity by 7-, 9-, 34-, 12-, 9-, and 7-fold, respectively. Among them, S281 is the most crucial determinant, and the substitution with Thr only slightly reduced toxin sensitivity. In contrast, a single conversion of Ser281 to Ala, Phe, Ile, Val, or Glu increased the IC50 value by >34-fold. Alanine-scanning mutagenesis experiments indicated that the functional surface of JZTX-III bound to the Kv2.1 channel is composed of four hydrophobic residues (Trp8, Trp28, Trp30, and Val33) and three charged residues (Arg13, Lys15, and Glu34). The bioactive surfaces of JZTX-III interacting with Kv2.1 and Nav1.5 are only partially overlapping. These results strongly supported the hypothesis that animal toxins might use partially overlapping bioactive surfaces to target the voltage-sensor paddles of two different types of ion channels. Increasing our understanding of the molecular mechanisms of toxins interacting with voltage-gated sodium and potassium channels may provide new molecular insights into the design of more potent ion channel inhibitors. PMID:24044413

  20. Terbium(III)/gold nanocluster conjugates: the development of a novel ratiometric fluorescent probe for mercury(II) and a paper-based visual sensor.

    PubMed

    Qi, Yan-Xia; Zhang, Min; Zhu, Anwei; Shi, Guoyue

    2015-08-21

    In this work, a novel ratiometric fluorescent probe was developed for rapid, highly accurate, sensitive and selective detection of mercury(II) (Hg(2+)) based on terbium(III)/gold nanocluster conjugates (Tb(3+)/BSA-AuNCs), in which bovine serum albumin capped gold nanoclusters (BSA-AuNCs) acted as the signal indicator and terbium(III) (Tb(3+)) was used as the build-in reference. Our proposed ratiometric fluorescent probe exhibited unique specificity toward Hg(2+) against other common environmentally and biologically important metal ions, and had high accuracy and sensitivity with a low detection limit of 1 nM. In addition, our proposed probe was effectively employed to detect Hg(2+) in the biological samples from the artificial Hg(2+)-infected rats. More significantly, an appealing paper-based visual sensor for Hg(2+) was designed by using filter paper embedded with Tb(3+)/BSA-AuNC conjugates, and we have further demonstrated its feasibility for facile fluorescent sensing of Hg(2+) in a visual format, in which only a handheld UV lamp is used. In the presence of Hg(2+), the paper-based visual sensor, illuminated by a handheld UV lamp, would undergo a distinct fluorescence color change from red to green, which can be readily observed with naked eyes even in trace Hg(2+) concentrations. The Tb(3+)/BSA-AuNC-derived paper-based visual sensor is cost-effective, portable, disposable and easy-to-use. This work unveiled a facile approach for accurate, sensitive and selective measuring of Hg(2+) with self-calibration.

  1. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  2. Fuel sensor-less control of a liquid feed fuel cell under dynamic loading conditions for portable power sources (II)

    NASA Astrophysics Data System (ADS)

    Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.

    This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.

  3. Using of Rhizopus arrhizus as a sensor modifying component for determination of Pb(II) in aqueous media by voltammetry.

    PubMed

    Yüce, Meral; Nazir, Hasan; Dönmez, Gönül

    2010-10-01

    For the sensitive determination of Pb(II) from aqueous solutions, a new voltammetric biosensor based on carbon paste electrode modified with Rhizopus arrhizus was developed. The preconcentrated ions at open circuit were reduced by using differential pulse stripping voltammetry technique. The obtained current values were related to the concentration of Pb(II) in the solutions. The best results were achieved at pH 7 with 0.01 M Tris-HCl buffer solution applying a preconcentration time of 12 min. The linear range for the biosensor was found to be within 1.0 x 10(-7)-1.25 x 10(-5) M, with a detection limit of 0.5 x 10(-8) M. The selectivity of the microbial biosensor was explored by adding interfering heavy metals to accumulation medium one by one, and their matrix effects were also investigated in the model metal solutions. Energy dispersive X-ray spectra analysis were applied to show the specific effect of the fungal biomass on the Pb(II) determination.

  4. A mercury(II) selective sensor based on N,N'-bis(salicylaldehyde)-phenylenediamine as neutral carrier for potentiometric analysis in water samples.

    PubMed

    Abu-Shawish, Hazem M

    2009-08-15

    Mercuric ions in water samples were determined by a new modified carbon paste electrode based on N,N'-bis(salicylaldehyde)-phenylenediamine (salophen) as a chemical modifier. The construction, performance, and applications of mercury carbon paste electrode are described. The electrode displays a linear log[Hg(2+)] versus EMF response over a wide concentration range of 3.2 x 10(-7) to 3.2 x 10(-4) with Nernstian slope of 58.8+/-0.3 mV/decade with limit of detection 1.5 x 10(-7) over the pH range 3.8-7.8; the presence of the complex Hg(OH)(+) ion explains the slope of the response curve. The proposed sensor shows a reasonable discrimination ability towards Hg(II) in comparison to some alkali, alkaline earth transition and heavy metal ions. The modified electrode was applied as indicator electrode in potentiometric titration and successfully used to determine mercury(II) in water samples with satisfactory results.

  5. Results from On-Board CSA-CP and CDM Sensor Readings During the Burning and Suppression of Solids II (BASS-II) Experiment in the Microgravity Science Glovebox (MSG)

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Ferkul, Paul V.; Bhattacharjee, Subrata; Miller, Fletcher J.; Fernandez-Pello, Carlos; Link, Shmuel; T'ien, James S.; Wichman, Indrek

    2015-01-01

    For the first time on ISS, BASS-II utilized MSG working volume dilution with gaseous nitrogen (N2). We developed a perfectly stirred reactor model to determine the N2 flow time and flow rate to obtain the desired reduced oxygen concentration in the working volume for each test. We calibrated the model with CSA-CP oxygen readings offset using the Mass Constituents Analyzer reading of the ISS ambient atmosphere data for that day. This worked out extremely well for operations, and added a new vital variable, ambient oxygen level, to our test matrices. The main variables tested in BASS-II were ambient oxygen concentration, ventilation flow velocity, and fuel type, thickness, and geometry. BASS-II also utilized the on-board CSA-CP for oxygen and carbon monoxide readings, and the CDM for carbon dioxide readings before and after each test. Readings from these sensors allow us to evaluate the completeness of the combustion. The oxygen and carbon dioxide readings before and after each test were analyzed and compared very well to stoichiometric ratios for a one step gas-phase reaction. The CO versus CO2 followed a linear trend for some datasets, but not for all the different geometries of fuel and flow tested. Lastly, we calculated the heat release rates during each test from the oxygen consumption and burn times, using the constant 13.1 kJ of heat released per gram of oxygen consumed. The results showed that the majority of the tests had heat release rates well below 100 Watts.

  6. Active health monitoring of an aircraft wing with an embedded piezoelectric sensor/actuator network: II. Wireless approaches

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoliang; Qian, Tao; Mei, Gang; Kwan, Chiman; Zane, Regan; Walsh, Christi; Paing, Thurein; Popovic, Zoya

    2007-08-01

    The objective of this study is to develop a wireless ultrasonic structural health monitoring (SHM) system for aircraft wing inspection. In part I of the study (Zhao et al 2007 Smart Mater. Struct. 16 1208-17), small, low cost and light weight piezoelectric (PZT) disc transducers were bonded to various parts of an aircraft wing for detection, localization and growth monitoring of defects. In this part, two approaches for wirelessly interrogating the sensor/actuator network were developed and tested. The first one utilizes a pair of reactive coupling monopoles to deliver 350 kHz RF tone-burst interrogation pulses directly to the PZT transducers for generating ultrasonic guided waves and to receive the response signals from the PZTs. It couples enough energy to and from the PZT transducers for the wing panel inspection, but the signal is quite noisy and the monopoles need to be in close proximity to each other for efficient coupling. In the second approach, a small local diagnostic device was developed that can be embedded into the wing and transmit the digital signals FM-modulated on a 915 MHz carrier. The device has an ultrasonic pulser that can generate 350 kHz, 70 V tone-burst signals, a multiplexed A/D board with a programmable gain amplifier for multi-channel data acquisition, a microprocessor for circuit control and data processing, and a wireless module for data transmission. Power to the electronics is delivered wirelessly at X-band with an antenna-rectifier (rectenna) array conformed to the aircraft body, eliminating the need for batteries and their replacement. It can effectively deliver at least 100 mW of DC power continuously from a transmitter at a range of 1 m. The wireless system was tested with the PZT sensor array on the wing panel and compared well with the wire connection case.

  7. Optical voltage reference

    DOEpatents

    Rankin, R.; Kotter, D.

    1994-04-26

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  8. Two-Photon Lifetime Imaging of Voltage Indicating Proteins as a Probe of Absolute Membrane Voltage.

    PubMed

    Brinks, Daan; Klein, Aaron J; Cohen, Adam E

    2015-09-01

    Genetically encoded voltage indicators (GEVIs) can report cellular electrophysiology with high resolution in space and time. Two-photon (2P) fluorescence has been explored as a means to image voltage in tissue. Here, we used the 2P electronic excited-state lifetime to probe absolute membrane voltage in a manner that is insensitive to the protein expression level, illumination intensity, or photon detection efficiency. First, we tested several GEVIs for 2P brightness, response speed, and voltage sensitivity. ASAP1 and a previously described citrine-Arch electrochromic Förster resonance energy transfer sensor (dubbed CAESR) showed the best characteristics. We then characterized the voltage-dependent lifetime of ASAP1, CAESR, and ArcLight under voltage-clamp conditions. ASAP1 and CAESR showed voltage-dependent lifetimes, whereas ArcLight did not. These results establish 2P fluorescence lifetime imaging as a viable means of measuring absolute membrane voltage. We discuss the prospects and improvements necessary for applications in tissue.

  9. Two-Photon Lifetime Imaging of Voltage Indicating Proteins as a Probe of Absolute Membrane Voltage.

    PubMed

    Brinks, Daan; Klein, Aaron J; Cohen, Adam E

    2015-09-01

    Genetically encoded voltage indicators (GEVIs) can report cellular electrophysiology with high resolution in space and time. Two-photon (2P) fluorescence has been explored as a means to image voltage in tissue. Here, we used the 2P electronic excited-state lifetime to probe absolute membrane voltage in a manner that is insensitive to the protein expression level, illumination intensity, or photon detection efficiency. First, we tested several GEVIs for 2P brightness, response speed, and voltage sensitivity. ASAP1 and a previously described citrine-Arch electrochromic Förster resonance energy transfer sensor (dubbed CAESR) showed the best characteristics. We then characterized the voltage-dependent lifetime of ASAP1, CAESR, and ArcLight under voltage-clamp conditions. ASAP1 and CAESR showed voltage-dependent lifetimes, whereas ArcLight did not. These results establish 2P fluorescence lifetime imaging as a viable means of measuring absolute membrane voltage. We discuss the prospects and improvements necessary for applications in tissue. PMID:26331249

  10. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  11. Colorimetric detection of fluoride ions by anthraimidazoledione based sensors in the presence of Cu(ii) ions.

    PubMed

    Sarkar, Amrita; Bhattacharyya, Sudipta; Mukherjee, Arindam

    2016-01-21

    Anthraquinone based anion receptors have gained importance due to their colorimetric response on sensing a specific anion and the possibility of tuning this property by varying the conjugated moiety (the donor) to the diamine. In this work, we have synthesized and characterized four anthraimidazoledione compounds having 2,5-dihydroxy benzene, 4-(bis(2-chloroethyl)amino)benzene, imidazole and 4-methylthiazole moieties respectively (1-4). All of them were probed for their potential as anion sensors to study the effect of changes in the hydrogen bond donor-acceptor. The p-hydroquinone bound anthraimidazoledione (1) and thioimidazole bound anthraimidazoledione (4) were able to detect both F(-) and CN(-) in the presence of other anions Cl(-), Br(-), I(-), H2PO4(-), OAc(-), NO3(-)and ClO4(-). Both 1 and 4 could not differentiate F(-) from CN(-) and provided a similar response to both. The 1H NMR studies of 1 and 4 with F(-) showed the formation of [HF2](-) at 16.3 ppm and the 19F NMR showed a sharp peak at -145 ppm in both cases. However, although there may be NMR evidence of [HF2](-) formation F(-) may not be detected colorimetrically if the CT band remains almost unchanged, as found for 3. The results emphasize that the change of a hetero atom in the donor moiety of an anthraimidazoledione may render a large difference in sensitivity. In the case of 4 selective detection of F(-) was possible in the presence of 0.5 equivalent of Cu2+ with the exhibition of a distinct green colour with a Δλ shift of ca. 50 nm in contrast to CN(-) which showed orange colouration with a Δλ shift of only 15 nm. In the presence of Cu2+ the F(-) detection limit was 0.038(5) ppm (below the WHO specified level) at a receptor concentration of 25 μM. PMID:26659520

  12. Energy harvesting in high voltage measuring techniques

    NASA Astrophysics Data System (ADS)

    Żyłka, Pawel; Doliński, Marcin

    2016-02-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed.

  13. Plasmonics-Based Multifunctional Electrodes for Low-Power-Consumption Compact Color-Image Sensors.

    PubMed

    Lin, Keng-Te; Chen, Hsuen-Li; Lai, Yu-Sheng; Chi, Yi-Min; Chu, Ting-Wei

    2016-03-01

    High pixel density, efficient color splitting, a compact structure, superior quantum efficiency, and low power consumption are all important features for contemporary color-image sensors. In this study, we developed a surface plasmonics-based color-image sensor displaying a high photoelectric response, a microlens-free structure, and a zero-bias working voltage. Our compact sensor comprised only (i) a multifunctional electrode based on a single-layer structured aluminum (Al) film and (ii) an underlying silicon (Si) substrate. This approach significantly simplifies the device structure and fabrication processes; for example, the red, green, and blue color pixels can be prepared simultaneously in a single lithography step. Moreover, such Schottky-based plasmonic electrodes perform multiple functions, including color splitting, optical-to-electrical signal conversion, and photogenerated carrier collection for color-image detection. Our multifunctional, electrode-based device could also avoid the interference phenomenon that degrades the color-splitting spectra found in conventional color-image sensors. Furthermore, the device took advantage of the near-field surface plasmonic effect around the Al-Si junction to enhance the optical absorption of Si, resulting in a significant photoelectric current output even under low-light surroundings and zero bias voltage. These plasmonic Schottky-based color-image devices could convert a photocurrent directly into a photovoltage and provided sufficient voltage output for color-image detection even under a light intensity of only several femtowatts per square micrometer. Unlike conventional color image devices, using voltage as the output signal decreases the area of the periphery read-out circuit because it does not require a current-to-voltage conversion capacitor or its related circuit. Therefore, this strategy has great potential for direct integration with complementary metal-oxide-semiconductor (CMOS)-compatible circuit

  14. Plasmonics-Based Multifunctional Electrodes for Low-Power-Consumption Compact Color-Image Sensors.

    PubMed

    Lin, Keng-Te; Chen, Hsuen-Li; Lai, Yu-Sheng; Chi, Yi-Min; Chu, Ting-Wei

    2016-03-01

    High pixel density, efficient color splitting, a compact structure, superior quantum efficiency, and low power consumption are all important features for contemporary color-image sensors. In this study, we developed a surface plasmonics-based color-image sensor displaying a high photoelectric response, a microlens-free structure, and a zero-bias working voltage. Our compact sensor comprised only (i) a multifunctional electrode based on a single-layer structured aluminum (Al) film and (ii) an underlying silicon (Si) substrate. This approach significantly simplifies the device structure and fabrication processes; for example, the red, green, and blue color pixels can be prepared simultaneously in a single lithography step. Moreover, such Schottky-based plasmonic electrodes perform multiple functions, including color splitting, optical-to-electrical signal conversion, and photogenerated carrier collection for color-image detection. Our multifunctional, electrode-based device could also avoid the interference phenomenon that degrades the color-splitting spectra found in conventional color-image sensors. Furthermore, the device took advantage of the near-field surface plasmonic effect around the Al-Si junction to enhance the optical absorption of Si, resulting in a significant photoelectric current output even under low-light surroundings and zero bias voltage. These plasmonic Schottky-based color-image devices could convert a photocurrent directly into a photovoltage and provided sufficient voltage output for color-image detection even under a light intensity of only several femtowatts per square micrometer. Unlike conventional color image devices, using voltage as the output signal decreases the area of the periphery read-out circuit because it does not require a current-to-voltage conversion capacitor or its related circuit. Therefore, this strategy has great potential for direct integration with complementary metal-oxide-semiconductor (CMOS)-compatible circuit

  15. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  16. Development of a Hydrazine/Nitrogen Dioxide Fiber Optic Sensor

    NASA Technical Reports Server (NTRS)

    Andrawis, Alfred S.; Santiago, Josephine

    2003-01-01

    Bromothymol Blue (BT)/Bromocresol Green (BG) mixture (1/1) in hydrogel (l/l), produces a blue-green indicator for HZ and/or NO2. The stability over a two months period of this BT/BG (1/1) indicator solution was tested and no evidence of performance deterioration was detected. A dual HZ/NO2 prototype sensor utilizing an acid-base indicator was previously constructed. A monitor and control circuit are also designed, built d tested during the course of this project. The circuit is controlled with Motorola MC68HC II microcontroller evaluation board to monitor the voltage level out of the photodetector. Low-pass filter and amplifier are used to interface the sensor's small voltage with the microcontroller's AD input. The sensor, interface circuit and the microcontroller board are then all placed in one unit and powered with a single power supply. The unit is then tested several times and the response was consistent and proved the feasibility of dual "J@ leak detection. Other sensor types, suitable for silica glass fiber, smaller in size, more rugged and suitable for use on board of the Space Shuttle and missile canisters, are then proposed.

  17. Voltage verification unit

    DOEpatents

    Martin, Edward J.

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  18. Driven shielding capacitive proximity sensor

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor); McConnell, Robert L. (Inventor)

    2000-01-01

    A capacitive proximity sensing element, backed by a reflector driven at the same voltage as and in phase with the sensor, is used to reflect the field lines away from a grounded robot arm towards an intruding object, thus dramatically increasing the sensor's range and sensitivity.

  19. Mixed ligand two dimensional Cd(ii)/Ni(ii) metal organic frameworks containing dicarboxylate and tripodal N-donor ligands: Cd(ii) MOF is an efficient luminescent sensor for detection of picric acid in aqueous media.

    PubMed

    Rachuri, Yadagiri; Parmar, Bhavesh; Bisht, Kamal Kumar; Suresh, Eringathodi

    2016-05-01

    Two dimensional metal organic frameworks (MOFs) [Cd(5-BrIP)(TIB)]n () and [Ni2(5-BrIP)2(TIB)2]n (), involving the aromatic polycarboxylate ligand 5-bromo isophthalic acid (H2BrIP), flexible tripodal ligand 1,3,5-tris(imidazol-1-ylmethyl)benzene (TIB) and Cd(ii)/Ni(ii) metal nodes have been synthesized by different methods. These compounds were characterized by various analytical methods, and variable temperature X-ray diffraction data showed thermal stability of both MOFs up to 350 °C. Phase purity as well as water stability of the MOFs were established by powder X-ray diffraction, and the structural diversity of the compounds were investigated by single-crystal X-ray diffraction. Both the MOFs are mixed ligand 2D nets, and the topology of the network can be described as a binodal 3,5-c connected net with 3,5L2 topology having the point symbol {4(2)·6(7)·8}{4(2)·6}. Sensing of picric acid [2,4,6-trinitrophenol, TNP] by luminescence quenching among a large range of nitroanalytes in aqueous phase by the Cd(ii) luminescent MOF (LMOF) were been investigated. Structural studies on 1 : 1 co-crystals () of TIB and TNP were carried out. The selective and sensitive fluorescence quenching response of towards electron-deficient TNP over other nitro analytes in aqueous phase was demonstrated by fluorescence quenching titration. Concomitant occurrence of electron transfer/energy transfer processes and electrostatic interaction favours the selective sensing of TNP. A Cd(ii) LMOF ()-coated paper strip that we developed demonstrated fast and selective response to TNP, by the complete quenching of the blue fluorescence upon excitation of the paper strip at 365 nm radiation in its presence. PMID:27067118

  20. Electron transfer study on graphene modified glassy carbon substrate via electrochemical reduction and the application for tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence sensor fabrication.

    PubMed

    Xu, Yuanhong; Cao, Mengmei; Liu, Huihui; Zong, Xidan; Kong, Na; Zhang, Jizhen; Liu, Jingquan

    2015-07-01

    In this study, electron transfer behavior of the graphene nanosheets attachment on glassy carbon electrode (GCE) via direct electrochemical reduction of graphene oxide (GO) is investigated for the first time. The graphene modified electrode was achieved by simply dipping the GCE in GO suspension, followed by cyclic voltammetric scanning in the potential window from 0V to -1.5V. Tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)3(2+)] was immobilized on the graphene modified electrode and used as the redox probe to evaluate the electron transfer behavior. The electron transfer rate constant (Ks) was calculated to be 61.9±5.8s(-1), which is much faster than that of tiled graphene modified GCE (7.1±0.6s(-1)). The enhanced electron transfer property observed with the GCE modified by reductively deposited graphene is probably due to its standing configuration, which is beneficial to the electron transfer comparing with the tiled one. Because the abundant oxygen-containing groups are mainly located at the edges of GO, which should be much easier for the reduction to start from, the reduced GO should tend to stand on the electrode surface as evidenced by scanning electron microscopy analysis. In addition, due to the favored electron transfer and standing configuration, the Ru(bpy)3(2+) electrochemiluminescence sensor fabricated with standing graphene modified GCE provided much higher and more stable efficiency than that fabricated with tiled graphene.

  1. Characteristics of non-irradiated and irradiated double SOI integration type pixel sensor

    NASA Astrophysics Data System (ADS)

    Asano, M.; Sekigawa, D.; Hara, K.; Aoyagi, W.; Honda, S.; Tobita, N.; Arai, Y.; Miyoshi, T.; Kurachi, I.; Tsuboyama, T.; Yamada, M.

    2016-09-01

    We are developing monolithic pixel sensors based on a 0.2 μm fully depleted silicon-on-insulator (FD-SOI) technology for high-energy physics experiment applications. With this SOI technology, the wafer resistivities for the electronics and sensor parts can be chosen separately. Therefore, a device with full depletion and fast charge collection is realized. The total ionizing dose (TID) effect is the major challenge for application in hard radiation environments. To compensate for TID damage, we introduced a double SOI structure that implements an additional middle silicon layer (SOI2 layer). Applying a negative voltage to the SOI2 layer should compensate for the effects induced by holes trapped in the buried oxide layers. We studied the recovery from TID damage induced by 60Co γ and other characteristics of the integration-type double SOI sensor INTPIXh2. When the double SOI sensor was irradiated to 100 kGy, it showed a response to the infrared laser similar to that of a non-irradiated sensor when we applied a negative voltage to the SOI2 layer. Thus, we concluded that the double SOI sensor is very effective at sufficiently enhancing the radiation hardness for application in experiments with harsh radiation environments, such as at Belle II or ILC.

  2. CMOS Integrated Carbon Nanotube Sensor

    SciTech Connect

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-05-23

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  3. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

  4. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-07-01

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  5. Electrocatalytic cermet sensor

    DOEpatents

    Shoemaker, Erika L.; Vogt, Michael C.

    1998-01-01

    A sensor for O.sub.2 and CO.sub.2 gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer.

  6. Electrocatalytic cermet sensor

    DOEpatents

    Shoemaker, E.L.; Vogt, M.C.

    1998-06-30

    A sensor is described for O{sub 2} and CO{sub 2} gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer. 16 figs.

  7. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  8. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  9. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Hess, Herbert L. (Inventor); Buck, Kevin M. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  10. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  11. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  12. Imaging voltage in neurons

    PubMed Central

    Peterka, Darcy S.; Takahashi, Hiroto; Yuste, Rafael

    2011-01-01

    In the last decades, imaging membrane potential has become a fruitful approach to study neural circuits, especially in invertebrate preparations with large, resilient neurons. At the same time, particularly in mammalian preparations, voltage imaging methods suffer from poor signal to noise and secondary side effects, and they fall short of providing single-cell resolution when imaging of the activity of neuronal populations. As an introduction to these techniques, we briefly review different voltage imaging methods (including organic fluorophores, SHG chromophores, genetic indicators, hybrid, nanoparticles and intrinsic approaches), and illustrate some of their applications to neuronal biophysics and mammalian circuit analysis. We discuss their mechanisms of voltage sensitivity, from reorientation, electrochromic or electro-optical phenomena, to interaction among chromophores or membrane scattering, and highlight their advantages and shortcomings, commenting on the outlook for development of novel voltage imaging methods. PMID:21220095

  13. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  14. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  15. Biased low differential input impedance current receiver/converter device and method for low noise readout from voltage-controlled detectors

    DOEpatents

    Degtiarenko, Pavel V.; Popov, Vladimir E.

    2011-03-22

    A first stage electronic system for receiving charge or current from voltage-controlled sensors or detectors that includes a low input impedance current receiver/converter device (for example, a transimpedance amplifier), which is directly coupled to the sensor output, a source of bias voltage, and the device's power supply (or supplies), which use the biased voltage point as a baseline.

  16. β1-subunit-induced structural rearrangements of the Ca2+- and voltage-activated K+ (BK) channel.

    PubMed

    Castillo, Juan P; Sánchez-Rodríguez, Jorge E; Hyde, H Clark; Zaelzer, Cristian A; Aguayo, Daniel; Sepúlveda, Romina V; Luk, Louis Y P; Kent, Stephen B H; Gonzalez-Nilo, Fernando D; Bezanilla, Francisco; Latorre, Ramón

    2016-06-01

    Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels are involved in a large variety of physiological processes. Regulatory β-subunits are one of the mechanisms responsible for creating BK channel diversity fundamental to the adequate function of many tissues. However, little is known about the structure of its voltage sensor domain. Here, we present the external architectural details of BK channels using lanthanide-based resonance energy transfer (LRET). We used a genetically encoded lanthanide-binding tag (LBT) to bind terbium as a LRET donor and a fluorophore-labeled iberiotoxin as the LRET acceptor for measurements of distances within the BK channel structure in a living cell. By introducing LBTs in the extracellular region of the α- or β1-subunit, we determined (i) a basic extracellular map of the BK channel, (ii) β1-subunit-induced rearrangements of the voltage sensor in α-subunits, and (iii) the relative position of the β1-subunit within the α/β1-subunit complex.

  17. Inductive Position Sensor

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Simmons, Stephen M. (Inventor)

    2015-01-01

    An inductive position sensor uses three parallel inductors, each of which has an axial core that is an independent magnetic structure. A first support couples first and second inductors and separate them by a fixed distance. A second support coupled to a third inductor disposed between the first and second inductors. The first support and second support are configured for relative movement as distance changes from the third inductor to each of the first and second inductors. An oscillating current is supplied to the first and second inductors. A device measures a phase component of a source voltage generating the oscillating current and a phase component of voltage induced in the third inductor when the oscillating current is supplied to the first and second inductors such that the phase component of the voltage induced overlaps the phase component of the source voltage.

  18. A fault-tolerant voltage measurement method for series connected battery packs

    NASA Astrophysics Data System (ADS)

    Xia, Bing; Mi, Chris

    2016-03-01

    This paper proposes a fault-tolerant voltage measurement method for battery management systems. Instead of measuring the voltage of individual cells, the proposed method measures the voltage sum of multiple battery cells without additional voltage sensors. A matrix interpretation is developed to demonstrate the viability of the proposed sensor topology to distinguish between sensor faults and cell faults. A methodology is introduced to isolate sensor and cell faults by locating abnormal signals. A measurement electronic circuit is proposed to implement the design concept. Simulation and experiment results support the mathematical analysis and validate the feasibility and robustness of the proposed method. In addition, the measurement problem is generalized and the condition for valid sensor topology is discovered. The tuning of design parameters are analyzed based on fault detection reliability and noise levels.

  19. Pressure Sensor Calibration using VIPA Hardware

    SciTech Connect

    Suarez, Reynold; Heimbigner, Tom R.; Forrester, Joel B.; Hayes, James C.; Lidey, Lance S.

    2008-10-08

    The VIPA hardware uses a series of modules to control the system. One of the modules that the VIPA hardware uses is a 16-bit analog input module. The main purpose of this module is to read in a voltage. The inputs of these modules are connected directly to the voltage outputs of all the pressure sensors in the system. Because the sensors have different pressure and voltage output ranges, it is necessary to calibrate and scale the sensors so that the values make sense to the operator of the system.

  20. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  1. Device for monitoring cell voltage

    DOEpatents

    Doepke, Matthias; Eisermann, Henning

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  2. Rain Drop Charge Sensor

    NASA Astrophysics Data System (ADS)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  3. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1996-10-15

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  4. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1996-01-01

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  5. Strong cooperativity between subunits in voltage-gated proton channels

    PubMed Central

    Gonzalez, Carlos; Koch, Hans P.; Drum, Ben M.; Larsson, H. Peter

    2010-01-01

    Voltage-activated proton (HV) channels are essential components in the innate immune response. HV channels are dimeric proteins with one proton permeation pathway per subunit. It is not known how HV channels are activated by voltage and whether there is any cooperativity between subunits during voltage activation. Using cysteine accessibility measurements and voltage clamp fluorometry, we show data that are consistent with that the fourth transmembrane segment S4 functions as the voltage sensor in HV channels from Ciona intestinalis. Surprisingly, in a dimeric HV channel, S4 in both subunits have to move to activate the two proton permeation pathways. In contrast, if HV subunits are prevented from dimerizing, then the movement of a single S4 is sufficient to activate the proton permeation pathway in a subunit. These results suggest a strong cooperativity between subunits in dimeric HV channels. PMID:20023639

  6. Voltage controlled current source

    DOEpatents

    Casne, Gregory M.

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  7. Electron launching voltage monitor

    DOEpatents

    Mendel, Clifford W.; Savage, Mark E.

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  8. Electron launching voltage monitor

    DOEpatents

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

  9. High voltage variable diameter insulator

    DOEpatents

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  10. Voltage Regulators for Photovoltaic Systems

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1986-01-01

    Two simple circuits developed to provide voltage regulation for highvoltage (i.e., is greater than 75 volts) and low-voltage (i.e., is less than 36 volts) photovoltaic/battery power systems. Use of these circuits results in voltage regulator small, low-cost, and reliable, with very low power dissipation. Simple oscillator circuit controls photovoltaic-array current to regulate system voltage and control battery charging. Circuit senses battery (and system) voltage and adjusts array current to keep battery voltage from exceeding maximum voltage.

  11. System for improving measurement accuracy of transducer by measuring transducer temperature and resistance change using thermoelectric voltages

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor); Parker, Allen R., Jr. (Inventor)

    1993-01-01

    A constant current loop measuring system measures a property including the temperature of a sensor responsive to an external condition being measured. The measuring system includes thermocouple conductors connected to the sensor, sensing first and second induced voltages responsive to the external condition. In addition, the measuring system includes a current generator and reverser generating a constant current, and supplying the constant current to the thermocouple conductors in forward and reverse directions generating first and second measured voltages, and a determining unit receiving the first and second measured voltages from the current generator and reverser, and determining the temperature of the sensor responsive to the first and second measured voltages.

  12. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  13. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  14. Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Integrated Component Systems, Inc. incorporated information from a NASA Tech Briefs article into a voltage-controlled oscillator it designed for a customer. The company then applied the technology to its series of phase-locked loop synthesizers, which offer superior phase noise performance.

  15. High Voltage Insulation Technology

    NASA Astrophysics Data System (ADS)

    Scherb, V.; Rogalla, K.; Gollor, M.

    2008-09-01

    In preparation of new Electronic Power Conditioners (EPC's) for Travelling Wave Tub Amplifiers (TWTA's) on telecom satellites a study for the development of new high voltage insulation technology is performed. The initiative is mandatory to allow compact designs and to enable higher operating voltages. In a first task a market analysis was performed, comparing different materials with respect to their properties and processes. A hierarchy of selection criteria was established and finally five material candidates (4 Epoxy resins and 1 Polyurethane resin) were selected to be further investigated in the test program. Samples for the test program were designed to represent core elements of an EPC, the high voltage transformer and Printed Circuit Boards of the high voltage section. All five materials were assessed in the practical work flow of the potting process and electrical, mechanical, thermal and lifetime testing was performed. Although the lifetime tests results were overlayed by a larges scatter, finally two candidates have been identified for use in a subsequent qualification program. This activity forms part of element 5 of the ESA ARTES Programme.

  16. Geomagnetism and Induced Voltage

    ERIC Educational Resources Information Center

    Abdul-Razzaq, W.; Biller, R. D.

    2010-01-01

    Introductory physics laboratories have seen an influx of "conceptual integrated science" over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it is…

  17. Measuring Breakdown Voltage.

    ERIC Educational Resources Information Center

    Auer, Herbert J.

    1978-01-01

    The article discusses an aspect of conductivity, one of the electrical properties subdivisions, and describes a tester that can be shop-built. Breakdown voltage of an insulation material is specifically examined. Test procedures, parts lists, diagrams, and test data form are included. (MF)

  18. Sensitivity Enhancement in Magnetic Sensors Based on Ferroelectric-Bimorphs and Multiferroic Composites.

    PubMed

    Sreenivasulu, Gollapudi; Qu, Peng; Petrov, Vladimir; Qu, Hongwei; Srinivasan, Gopalan

    2016-02-20

    Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME) coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i) a bimorph of oppositely-poled lead zirconate titanate (PZT) platelets and (ii) a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data.

  19. Sensitivity Enhancement in Magnetic Sensors Based on Ferroelectric-Bimorphs and Multiferroic Composites

    PubMed Central

    Sreenivasulu, Gollapudi; Qu, Peng; Petrov, Vladimir; Qu, Hongwei; Srinivasan, Gopalan

    2016-01-01

    Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME) coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i) a bimorph of oppositely-poled lead zirconate titanate (PZT) platelets and (ii) a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data. PMID:26907290

  20. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Rockstad, Howard K. (Inventor); Reynolds, Joseph K. (Inventor)

    1994-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane which would otherwise change deflection depending upon incident infrared radiation. The resulting infrared sensor will meet or exceed the performance of all other broadband, uncooled, infrared sensors and can be miniaturized to pixel dimensions smaller than 100 .mu.m. The technology is readily implemented as a small-format linear array suitable for commercial and spacecraft applications.

  1. Modular sensor network node

    DOEpatents

    Davis, Jesse Harper Zehring; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick; Kyker, Ronald Dean

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  2. Label-free detection of Cu(II) in a human serum sample by using a prion protein-immobilized FET sensor.

    PubMed

    Wustoni, Shofarul; Hideshima, Sho; Kuroiwa, Shigeki; Nakanishi, Takuya; Mori, Yasuro; Osaka, Tetsuya

    2015-10-01

    We have developed a field effect transistor (FET) sensor to sensitively detect copper ions (Cu(2+)) in a human serum (HS) sample for promising health-care diagnosis. By utilizing a Cu(2+)-binding prion protein that was immobilized on the FET gate surface, such an FET sensor can provide a simple, label free and highly selective performance, even in HS samples. We demonstrated the sensitivity of the sensor at the nanomolar level, 0-100 nM, which is very useful for the detection range of Cu(2+) deficiency in practical applications. PMID:26288852

  3. A Simple Sensor Model for THUNDER Actuators

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Bryant, Robert G.

    2009-01-01

    A quasi-static (low frequency) model is developed for THUNDER actuators configured as displacement sensors based on a simple Raleigh-Ritz technique. This model is used to calculate charge as a function of displacement. Using this and the calculated capacitance, voltage vs. displacement and voltage vs. electrical load curves are generated and compared with measurements. It is shown this model gives acceptable results and is useful for determining rough estimates of sensor output for various loads, laminate configurations and thicknesses.

  4. Non-contact current and voltage sensing method using a clamshell housing and a ferrite cylinder

    DOEpatents

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C.; Schappert, Michael

    2016-04-26

    A method of measurement using a detachable current and voltage sensor provides an isolated and convenient technique for to measuring current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  5. Enhancing sensitivity and selectivity in a label-free colorimetric sensor for detection of iron(II) ions with luminescent molybdenum disulfide nanosheet-based peroxidase mimetics.

    PubMed

    Wang, Yong; Hu, Jie; Zhuang, Qianfen; Ni, Yongnian

    2016-06-15

    In the present study, we demonstrated that the luminescent molybdenum disulfide (MoS2) nanosheets, which were prepared hydrothermally by using sodium molybdate and thiourea as precursors, possessed peroxidase-like activity, and could catalyze the oxidation of peroxidase substrate o-phenylenediamine (OPD) in the presence of hydrogen peroxide (H2O2) to produce a yellow color reaction. Further addition of Fe(2+) into the nanosheets led to peroxidase mimetics with greatly enhanced catalytic activity. The observation was exploited to develop a label-free colorimetric nanozyme sensor for detection of Fe(2+). The fabricated MoS2/OPD/H2O2 sensor showed a wide linear range of 0.01-0.8 µM with a detection limit of 7 nM. Moreover, it was found that the MoS2/OPD/H2O2 sensor displayed enhanced sensitivity and selectivity toward Fe(2+) compared with the OPD/H2O2 sensor, suggesting that the MoS2 nanosheets could improve the performance of the Fe(2+) sensor. An advanced chemometrics algorithm, multivariate curve resolution by alternating least squares (MCR-ALS), was further applied to interpret the origin of enhancing sensitivity and selectivity in the Fe(2+) sensor with the MoS2 nanosheets. The time-dependent UV-vis spectral data of the studied systems were collected, and submitted to the MCR-ALS. The results showed that the increased sensitivity and selectivity of the MoS2/OPD/H2O2 sensor for Fe(2+) detection likely arose from its large reaction rate constant. Finally, the proposed MoS2/OPD/H2O2 sensor was successfully applied for detection of Fe(2+) in water samples.

  6. Microwave alcohol fuel sensor

    SciTech Connect

    Kimura, K.; Endo, A.; Morozumi, H.; Shibata, T.

    1984-06-05

    A microwave alcohol fuel sensor comprises a microwave oscillator, a microwave receiver, and a microwave transmission circuit connected to the oscillator and the receiver. The microwave transmission circuit comprises a dielectric substrate and, a strip line mounted on the substrate so that microwaves leak from the substrate to an alcohol gasoline fuel, and the microwaves attenuate by alcohol dielectric loss, whereby output voltage from the receiver corresponds to alcohol content rate. The dielectric substrate is formed tubular so that a constant amount of the fuel is fed the sensor.

  7. A low voltage ``railgun''

    NASA Astrophysics Data System (ADS)

    Starr, Stanley O.; Youngquist, Robert C.; Cox, Robert B.

    2013-01-01

    Due to recent advances in solid-state switches and ultra-capacitors, it is now possible to construct a "railgun" that can operate at voltages below 20 V. Railguns typically operate above a thousand volts, generating huge currents for a few milliseconds to provide thousands of g's of acceleration to a small projectile. The low voltage railgun described herein operates for much longer time periods (tenths of seconds to seconds), has far smaller acceleration and speed, but can potentially propel a much larger object. The impetus for this development is to lay the groundwork for a possible ground-based supersonic launch track, but the resulting system may also have applications as a simple linear motor. The system would also be a useful teaching tool, requiring concepts from electrodynamics, mechanics, and electronics for its understanding, and is relatively straightforward to construct.

  8. Optogenetic Monitoring of Synaptic Activity with Genetically Encoded Voltage Indicators

    PubMed Central

    Nakajima, Ryuichi; Jung, Arong; Yoon, Bong-June; Baker, Bradley J.

    2016-01-01

    The age of genetically encoded voltage indicators (GEVIs) has matured to the point that changes in membrane potential can now be observed optically in vivo. Improving the signal size and speed of these voltage sensors has been the primary driving forces during this maturation process. As a result, there is a wide range of probes using different voltage detecting mechanisms and fluorescent reporters. As the use of these probes transitions from optically reporting membrane potential in single, cultured cells to imaging populations of cells in slice and/or in vivo, a new challenge emerges—optically resolving the different types of neuronal activity. While improvements in speed and signal size are still needed, optimizing the voltage range and the subcellular expression (i.e., soma only) of the probe are becoming more important. In this review, we will examine the ability of recently developed probes to report synaptic activity in slice and in vivo. The voltage-sensing fluorescent protein (VSFP) family of voltage sensors, ArcLight, ASAP-1, and the rhodopsin family of probes are all good at reporting changes in membrane potential, but all have difficulty distinguishing subthreshold depolarizations from action potentials and detecting neuronal inhibition when imaging populations of cells. Finally, we will offer a few possible ways to improve the optical resolution of the various types of neuronal activities. PMID:27547183

  9. Increased voltage photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  10. Insulators for high voltages

    SciTech Connect

    Looms, J.S.T.

    1987-01-01

    This book describes electrical insulators for high voltage applications. Topics considered include the insulating materials, the manufacture of wet process porcelain, the manufacture of tempered glass, the glass-fibre core, the polymeric housing, the common problem - terminating an insulator, mechanical constraints, the physics of pollution flashover, the physics of contamination, testing of insulators, conclusions from testing, remedies for flashover, insulators for special cases, interference and noise, and the insulator of the future.

  11. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  12. High voltage generator

    DOEpatents

    Schwemin, A. J.

    1959-03-17

    A generator for producing relatively large currents at high voltages is described. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The above-noted circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  13. High Voltage Seismic Generator

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  14. High Voltage Connector

    SciTech Connect

    Kurita, C.H.; /Fermilab

    1987-03-06

    The originally designed high voltage connectors were to be made of brass. However, if treated like a Bellevile spring with the initially given dimensions, the stresses of the connector when crimped were calculated to be much higher than the yield stress of brass. Since the flange and outer diameters of the connector are to remain small, it was necessary to alter the other dimensions and choice of material in order to bring down the stresses applied to the connector.

  15. HIGH VOLTAGE GENERATOR

    DOEpatents

    Schwemin, A.J.

    1959-03-17

    A generator is presented for producing relatively large currents at high voltages. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  16. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  17. Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains

    PubMed Central

    Lörinczi, Éva; Gómez-Posada, Juan Camilo; de la Peña, Pilar; Tomczak, Adam P.; Fernández-Trillo, Jorge; Leipscher, Ulrike; Stühmer, Walter; Barros, Francisco; Pardo, Luis A.

    2015-01-01

    Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4–S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4–S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules. PMID:25818916

  18. APPARATUS FOR REGULATING HIGH VOLTAGE

    DOEpatents

    Morrison, K.G.

    1951-03-20

    This patent describes a high-voltage regulator of the r-f type wherein the modulation of the r-f voltage is accomplished at a high level, resulting in good stabilization over a large range of load conditions.

  19. Fuel cell CO sensor

    DOEpatents

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    1999-12-14

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  20. Fuel cell CO sensor

    SciTech Connect

    Grot, S.A.; Meltser, M.A.; Gutowski, S.; Neutzler, J.K.; Borup, R.L.; Weisbrod, K.

    1999-12-14

    The CO concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H{sub 2} fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  1. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  2. Automatic voltage-imbalance detector

    SciTech Connect

    Bobbett, R.E.; McCormick, J.B.; Kerwin, W.J.

    1981-05-20

    A device is described for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  3. High voltage variable diameter insulator

    DOEpatents

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  4. Charge-pump voltage converter

    DOEpatents

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  5. New Gas Polarographic Hydrogen Sensor

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Barile, Ron

    2004-01-01

    Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor. is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H+ ions or protons; H+ ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic 02 sensors are commercially available; a gas polarographic 02 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.

  6. Quartz crystal microbalance based on passive frequency to voltage converter

    SciTech Connect

    Burda, Ioan; Tunyagi, Arthur

    2012-02-15

    In dynamics of evaporation or drying of microdrops from a solid surface, a faster and precise quartz crystal microbalance (QCM) is needed. The fast QCM based on frequency to voltage converter is an attractive and powerful tool in the investigation of the dynamic regime of evaporation to translate the frequency shift in terms of a continuous voltage change. The frequency shift monitoring in fast QCM applications is a real challenge for electronic processing interface. Originally developed as a frequency shift processing interface, this novel passive frequency to voltage converter can produce faster, stable, and accurate results in regard to the QCM sensor behavior. In this article, the concept and circuit of passive frequency to voltage converter will be explained followed by static and dynamic characterization. Experimental results of microdrops evaporation will be given.

  7. Superior Sensor Making Sense in Military, Medicine

    NASA Technical Reports Server (NTRS)

    2004-01-01

    A fiber-optic voltage sensor developed a decade ago for NASA's aircraft and space power systems has been the building block for a string of new sensor products offering safe, accurate detection and measurement for electrically noisy and hazardous environments.

  8. Voltage balancing strategies for serial connection of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno; Buret, François

    2015-07-01

    The microbial fuel cell (MFC) converts electrochemically organic matter into electricity by means of metabolisms of bacteria. The MFC power output is limited by low voltage and low current characteristics in the range of microwatts or milliwatts per litre. In order to produce a sufficient voltage level (>1.5 V) and sufficient power to supply real applications such as autonomous sensors, it is necessary to either scale-up one single unit or to connect multiple units together. Many topologies of connection are possible as the serial association to improve the output voltage, or the parallel connection to improve the output current or the series/parallel connection to step-up both voltage and current. The association of MFCs in series is a solution to increase the voltage to an acceptable value and to mutualize the unit's output power. The serial association of a large number of MFCs presents several issues. The first one is the hydraulic coupling among MFCs when they share the same substrate. The second one is the dispersion between generators that lead to a non-optimal stack efficiency because the maximum power point (MPP) operation of all MFCs is not permitted. Voltage balancing is a solution to compensate non-uniformities towards MPP. This paper presents solutions to improve the efficiency of a stack of serially connected MFCs through a voltage-balancing circuit. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014)", edited by Adel Razek

  9. Precision bridge circuit using a temperature sensor

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor)

    1992-01-01

    A precision bridge measurement circuit connected to a current source providing a linear output voltage versus resistance change of a variable resistance (resistance temperature transducer) including a voltage follower in one branch of the bridge so that the zero setting of the transducer resistance does not depend upon the current source or upon an excitation voltage. The zero setting depends only on the precision and stability of the three resistances. By connecting the output of an instrumentation amplifier to a feedback resistor and then to the output of the voltage follower, minor nonlinearities in the resistance-vs-temperature output of a resistance-temperature transducer, such as a platinum temperature sensor, may be corrected. Sensors which have nonlinearity opposite in polarity to platinum, such as nickel-iron sensors, may be linearized by inserting an inverting amplifier into the feedback loop.

  10. Fiber-optic sensors for aerospace electrical measurements: An update

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.

    1991-01-01

    Fiber-optic sensors are being developed for electrical current, voltage, and power measurements in aerospace applications. These sensors are presently designed to cover ac frequencies from 60 Hz to 20 kHz. The current sensor, based on the Faraday effect in optical fiber, is in advanced development after some initial testing. Concentration is on packaging methods and ways to maintain consistent sensitivity with changes in temperature. The voltage sensor, utilizing the Pockels effect in a crystal, has excelled in temperature tests. This paper reports on the development of these sensors, the results of evaluation, improvements now in progress, and the future direction of the work.

  11. The Uhuru star aspect sensor.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Austin, G.; Mickiewicz, S.; Goddard, R.

    1972-01-01

    Description of the star sensor used in the spin-stabilized Uhuru satellite for the purpose of detecting and locating stellar X-ray sources. The star sensor had the capability of detecting fourth-magnitude stars to within 1 arc minute of azimuth and 2 arc minutes of elevation. This was achieved with the aid of a slightly modified 76-mm, f/0.87 Super Farron lens, an 'n' shaped reticle located in the focal plane, and an RCA CF70114F photomultiplier serving as the detection element. The star sensor is composed of three major components - a high-voltage power supply, the photomultiplier, and an amplifier.

  12. Temperature compensated and self-calibrated current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-09-25

    A method is described to provide temperature compensation and reduction of drift due to aging for a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. The offset voltage signal generated by each magnetic field sensor is used to correct variations in the output signal due to temperature variations and aging.

  13. CCD image sensor with compensated reset operation

    NASA Astrophysics Data System (ADS)

    Park, Sangsik; Uh, Hyung Soo; Park, Soeun

    2006-11-01

    A low voltage charge coupled device (CCD) image sensor has been developed by adjusting the electron potential barrier in the electron sensing structure. A charge injection to the gate dielectrics of a MOS transistor was utilized to optimize the electron potential level in the output structure. A DC bias generating circuit was added to the reset structure which sets reference voltage and holds the signal charge to be detected. The generated DC bias is added to the reset pulse to give an optimized voltage margin to the reset operation, and is controlled by adjustment of the threshold voltage of a MOS transistor in the circuit. By the pulse-type stress voltage applied to the gate, the electrons and holes were injected to the gate dielectrics, and the threshold voltage could be adjusted ranging from 0.2 V to 5.5 V, which is suitable for compensating the incomplete reset operation due to the process variation. The charges trapped in the silicon nitride lead to the positive and negative shift of the threshold voltage, and this phenomenon is explained by Poole-Frenkel conduction and Fowler-Nordheim conduction. A CCD image sensor with 492(H) × 510(V) pixels adopting this structure showed complete reset operation with the driving voltage of 3.0 V. The image taken with the image sensor utilizing this structure was not saturated to the illumination of 30 lux, that is, showed no image distortion.

  14. Transistor voltage comparator performs own sensing

    NASA Technical Reports Server (NTRS)

    Cliff, R. A.

    1965-01-01

    Detection of the highest voltage input among a group of varying voltage inputs is accomplished by a transistorized voltage comparison circuit. The collector circuits of the transistors perform the sensing function. Input voltage levels are governed by the transistors.

  15. An easily fabricated high performance ionic polymer based sensor network

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Wang, Yanjie; Hu, Xiaopin; Sun, Xiaofei; Chang, Longfei; Lu, Pin

    2016-08-01

    Ionic polymer materials can generate an electrical potential from ion migration under an external force. For traditional ionic polymer metal composite sensors, the output voltage is very small (a few millivolts), and the fabrication process is complex and time-consuming. This letter presents an ionic polymer based network of pressure sensors which is easily and quickly constructed, and which can generate high voltage. A 3 × 3 sensor array was prepared by casting Nafion solution directly over copper wires. Under applied pressure, two different levels of voltage response were observed among the nine nodes in the array. For the group producing the higher level, peak voltages reached as high as 25 mV. Computational stress analysis revealed the physical origin of the different responses. High voltages resulting from the stress concentration and asymmetric structure can be further utilized to modify subsequent designs to improve the performance of similar sensors.

  16. Reaction-based turn-on electrochemiluminescent sensor with a ruthenium(II) complex for selective detection of extracellular hydrogen sulfide in rat brain.

    PubMed

    Yue, Xiaoxiao; Zhu, Ziyu; Zhang, Meining; Ye, Zhiqiang

    2015-02-01

    Hydrogen sulfide (H2S) has been drawing increasing attention because it plays an important role in the nervous system and has been deemed as a third endogenous gas signal molecule besides nitric oxide (NO) and carbon monoxide (CO). In this study, using a ruthenium complex, [Ru(bpy)2(bpy-DPA)Cu](4+) (where bpy = 2,2'-bipyridine and bpy-DPA = 4-methyl-4'-[N,N-bis(2-picolyl)aminomethylene]-2,2'-bipyridine) as recognition unit, we report a new reaction-based turn-on electrochemiluminescent (ECL) sensor to selectively detect extracellular H2S in rat brain, coupled with in vivo microdialysis for dialysate sampling. To prepare the sensor for sensing endogenous H2S, [Ru(bpy)2(bpy-DPA)](2+) is first designed and synthesized, showing high ECL efficiency with tri-n-propylamine (TPA) as a coreactant and quenching after reaction with Cu(2+) (forming [Ru(bpy)2(bpy-DPA)Cu](4+)). Then a Nafion membrane is coated on the surface of glassy carbon (GC) electrode and [Ru(bpy)2(bpy-DPA)Cu](4+) is confined onto the Nafion membrane through ion exchange. The resulting [Ru(bpy)2(bpy-DPA)Cu](4+)/Nafion/GC sensor exhibits a low ECL signal. The [Ru(bpy)2(bpy-DPA)Cu](4+)/Nafion/GC sensor demonstrates enhanced ECL signal after reacting with volatile H2S due to the high-affinity binding between sulfur and Cu(2+), returning to [Ru(bpy)2(bpy-DPA)](2+)/Nafion/GC. The changes of ECL signal at the sensor depend linearly on the concentration of Na2S in the range from 0.5 to 10 μM, with a detection limit of 0.25 μM. Moreover, the sensor demonstrates high selectivity, free from interference especially by other nonvolatile thiol-containing species, such as cysteine and glutathione. The basal dialysate level of H2S in the microdialysate from the cortex of adult male Sprague-Dawley rats is determined to be 2.3 ± 0.9 μM (n = 4). This method is reliable and is envisaged to help understand the regulation of H2S in physiological and pathological events. PMID:25574779

  17. High voltage feedthrough bushing

    DOEpatents

    Brucker, John P.

    1993-01-01

    A feedthrough bushing for a high voltage diode provides for using compression sealing for all sealing surfaces. A diode assembly includes a central conductor extending through the bushing and a grading ring assembly circumferentially surrounding and coaxial with the central conductor. A flexible conductive plate extends between and compressively seals against the central conductor and the grading ring assembly, wherein the flexibility of the plate allows inner and outer portions of the plate to axially translate for compression sealing against the central conductor and the grading ring assembly, respectively. The inner portion of the plate is bolted to the central conductor for affecting sealing. A compression beam is also bolted to the central conductor and engages the outer portion of the plate to urge the outer portion toward the grading ring assembly to obtain compression sealing therebetween.

  18. High voltage isolation transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  19. First validation of SCIAMACHY O3 and NO2 products with collocated measurements from satellite sensors GOME, HALOE and SAGE II

    NASA Astrophysics Data System (ADS)

    Bracher, A.; Weber, M.; Bramstedt, K.; Richter, A.; Rozanov, A.; von Savigny, C.; von Koenig, M.; Burrows, J. P.

    2003-04-01

    Various operational versions and scientific products of ozone and NO2 columns and profiles from SCIAMACHY on ENVISAT are validated by comparison with the space borne instruments Global-Ozone-Monitoring-Experiment (GOME, version 2.7), Halogen Occultation Experiment (HALOE, data version v19) and Stratospheric Aerosol and Gas Experiment II (SAGE II, data version 6.10) in order to assess the level-2 data retrieval accuracy of these selected trace gas products. Coincident measurements are identified by limiting time differences and distance between two observation points. Since there are large amounts of coincident measurements for the comparisons of O3 and NO2 columns from SCIAMACHY and GOME, data are spatially divided into regular latitudinal and longitudinal square grids in order to save computing time. Where both instruments have measurements in the same spatial square grid, the means of the data of each instrument within one grid are compared to each other. For the comparisons of O3 and NO2 profiles columns from SCIAMACHY with HALOE and SAGE II data, collocations were identified where measurements of the two satellite instruments were taken at the same day and using a spatial collocation tolerance which ensures that the tangent point of HALOE or SAGE II is covered by the SCIAMACHY ground pixel. For the comparisons of NO2 profiles, additionally a scaling factor is applied, because NO2 has a strong diurnal variability and the HALOE and SAGE II measurements are performed during local sunrise or sunset.

  20. Mercury (II) sensor based on monitoring dissociation rate of the trans-acting factor MerR from cis-element by surface plasmon resonance.

    PubMed

    Taniguchi, Masaki; Siddiki, Mohammad Shohel Rana; Ueda, Shunsaku; Maeda, Isamu

    2015-05-15

    Transcriptional switches regulate gene expression in response to environmental changes surrounding cell. Many studies have focused on two fundamentally different models of transcriptional control by bacterial metalloregulatory protein. Distortion of the DNA fragment including cis-element, to which the trans-acting factor MerR binds, is accepted as the mechanism of gene expression regulation by Hg (II) while, in cases of the other trans-acting factors ArsR and CadC, events of association to and dissociation from cis-element are known to control transcription in response to As (III) and Cd (II), respectively. In this study, interactions between green-fluorescent-protein-tagged trans-acting factor and immobilized cis-element were analyzed on solid surface. Fluorescent measurements and surface plasmon resonance (SPR) responses revealed that although the equilibrium dissociation constant (KD) was much lower in MerR than in ArsR and CadC, the dissociation rate of MerR from DNA increased in response to Hg (II) at concentrations of 5-10(4) µg l(-1). These results firstly demonstrate an increase of KD between MerR and its recognition site in DNA by Hg (II), and possibility of rapid Hg (II) quantification with the low detection limit (5 µg l(-1)) and the high dynamic range (10(1)-10(4) µg l(-1)).

  1. Electron tunneling infrared sensor module with integrated control circuitry

    NASA Technical Reports Server (NTRS)

    Boyadzhyan-Sevak, Vardkes V. (Inventor)

    2001-01-01

    In an integrated electron tunneling sensor, an automatic tunneling control circuit varies a high voltage bias applied to the sensor deflection electrode in response to changes in sensor output to maintain the proper gap between the sensor tip and membrane. The control circuit ensures stable tunneling activity in the presence of large signals and other disturbances to the sensor. Output signals from the module may be derived from the amplified sensor output. The integrated sensor module is particularly well adapted for use in blood glucose measurement and monitoring system.

  2. Inductive voltage adder (IVA) for submillimeter radius electron beam

    SciTech Connect

    Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.

    1996-12-31

    The authors have already demonstrated the utility of inductive voltage adder accelerators for production of small-size electron beams. In this approach, the inductive voltage adder drives a magnetically immersed foilless diode to produce high-energy (10--20 MeV), high-brightness pencil electron beams. This concept was first demonstrated with the successful experiments which converted the linear induction accelerator RADLAC II into an IVA fitted with a small 1-cm radius cathode magnetically immersed foilless diode (RADLAC II/SMILE). They present here first validations of extending this idea to mm-scale electron beams using the SABRE and HERMES-III inductive voltage adders as test beds. The SABRE experiments are already completed and have produced 30-kA, 9-MeV electron beams with envelope diameter of 1.5-mm FWHM. The HERMES-III experiments are currently underway.

  3. 59. View of high voltage (4160 volts alternating current) electric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. View of high voltage (4160 volts alternating current) electric load center and motor control center at mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  4. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  5. NOx Sensor Development

    SciTech Connect

    Woo, L Y; Glass, R S

    2010-11-01

    NO{sub x} compounds, specifically NO and NO{sub 2}, are pollutants and potent greenhouse gases. Compact and inexpensive NO{sub x} sensors are necessary in the next generation of diesel (CIDI) automobiles to meet government emission requirements and enable the more rapid introduction of more efficient, higher fuel economy CIDI vehicles. Because the need for a NO{sub x} sensor is recent and the performance requirements are extremely challenging, most are still in the development phase. Currently, there is only one type of NO{sub x} sensor that is sold commercially, and it seems unlikely to meet more stringent future emission requirements. Automotive exhaust sensor development has focused on solid-state electrochemical technology, which has proven to be robust for in-situ operation in harsh, high-temperature environments (e.g., the oxygen stoichiometric sensor). Solid-state sensors typically rely on yttria-stabilized zirconia (YSZ) as the oxygen-ion conducting electrolyte and then target different types of metal or metal-oxide electrodes to optimize the response. Electrochemical sensors can be operated in different modes, including amperometric (a current is measured) and potentiometric (a voltage is measured), both of which employ direct current (dc) measurements. Amperometric operation is costly due to the electronics necessary to measure the small sensor signal (nanoampere current at ppm NO{sub x} levels), and cannot be easily improved to meet the future technical performance requirements. Potentiometric operation has not demonstrated enough promise in meeting long-term stability requirements, where the voltage signal drift is thought to be due to aging effects associated with electrically driven changes, both morphological and compositional, in the sensor. Our approach involves impedancemetric operation, which uses alternating current (ac) measurements at a specified frequency. The approach is described in detail in previous reports and several publications

  6. Circuit and method for producing a flexible reference voltage

    NASA Technical Reports Server (NTRS)

    Thornton, Roger D. (Inventor)

    1993-01-01

    A flexible reference voltage circuit includes a circuit for producing a first digital signal representative of a range of reference voltage levels; a circuit for producing a second digital signal representative of a selected reference voltage level within the range of reference voltage levels; an adder for adding the first and second digital signals to produce a third digital signal; and a digital to analog converter for providing an output voltage in response to the third digital signal. The method of producing a flexible reference voltage performed by the circuit is also claimed. The invention can be used with a differential protection circuit to provide a series of trip level ranges, with a series of selectable trip levels in each range. This is accomplished in a high accuracy circuit which is relatively simple to construct, thereby minimizing size and complexity of the current sensor module, in differential protection applications, or the circuitry, if used in a power system controller. Standard digital logic components can be used to perform the necessary range/level decoding.

  7. Voltage-gated proton channel is expressed on phagosomes

    SciTech Connect

    Okochi, Yoshifumi; Sasaki, Mari; Iwasaki, Hirohide; Okamura, Yasushi

    2009-05-01

    Voltage-gated proton channel has been suggested to help NADPH oxidase activity during respiratory burst of phagocytes through its activities of compensating charge imbalance and regulation of pH. In phagocytes, robust production of reactive oxygen species occurs in closed membrane compartments, which are called phagosomes. However, direct evidence for the presence of voltage-gated proton channels in phagosome has been lacking. In this study, the expression of voltage-gated proton channels was studied by Western blot with the antibody specific to the voltage-sensor domain protein, VSOP/Hv1, that has recently been identified as the molecular correlate for the voltage-gated proton channel. Phagosomal membranes of neutrophils contain VSOP/Hv1 in accordance with subunits of NADPH oxidases, gp91, p22, p47 and p67. Superoxide anion production upon PMA activation was significantly reduced in neutrophils from VSOP/Hv1 knockout mice. These are consistent with the idea that voltage-gated proton channels help NADPH oxidase in phagocytes to produce reactive oxygen species.

  8. RISTA II trials

    NASA Astrophysics Data System (ADS)

    Martin, John R.

    1998-11-01

    Northrop Grumman Corporation has developed an advanced 2nd generation IR sensor system under the guidance of the US Army's Night Vision and Electronic Sensors Directorate (NVESD) as part of an Advanced Concept Technology Demonstration (ACTD) called Counter Mobile Rocket Launcher (CMRL). Designed to support rapid counter fire against mobile targets from an unmanned aerial vehicle (UAV), the sensor system, called reconnaissance IR surveillance target acquisition (RISTA II), consists of a 2nd generation FLIR/line scanner, a digital data link, a ground processing facility, and an aided target recognizer (AiTF). The concept of operation together with component details was reported at the passive sensors IRIS in March, 1996. The performance testing of the RISTA II System was reported at the National IRIS in November, 1997. The RISTA II sensor has subsequently undergone performance testing on a Royal Netherlands Air Force F-16 for a manned reconnaissance application in August and October, 1997, at Volkel Airbase, Netherlands. That testing showed performance compatible with the medium altitude IR sensor performance. The results of that testing, together with flight test imagery, will be presented.

  9. A CMOS humidity sensor for passive RFID sensing applications.

    PubMed

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  10. A CMOS humidity sensor for passive RFID sensing applications.

    PubMed

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-05-16

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  11. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  12. Temperature controlled high voltage regulator

    DOEpatents

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  13. Transient voltage oscillations in coils

    SciTech Connect

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated.

  14. Potassium Sensitive Optical Nanosensors Containing Voltage Sensitive Dyes.

    PubMed

    Xie, Xiaojiang; Gutiérrez, Agustín; Trofimov, Valentin; Szilagyi, Istvan; Soldati, Thierry; Bakker, Eric

    2015-01-01

    lonophore-based ion-selective optical nanosensors have been explored for a number of years. Voltage sensitive dyes (VSDs) have been introduced into this type of sensors only very recently, forming a new class of analytical tools. Here, K(+)-sensitive nanospheres incorporating a lipophilic VSD were successfully fabricated and characterized. The nanosensors were readily delivered into the social amoeba Dictyostelium discoideum in a non-invasive manner, forming a promising new platform for intracellular ion quantification and imaging. PMID:26668937

  15. Power conditioning for low-voltage piezoelectric stack energy harvesters

    NASA Astrophysics Data System (ADS)

    Skow, E.; Leadenham, S.; Cunefare, K. A.; Erturk, A.

    2016-04-01

    Low-power vibration and acoustic energy harvesting scenarios typically require a storage component to be charged to enable wireless sensor networks, which necessitates power conditioning of the AC output. Piezoelectric beam-type bending mode energy harvesters or other devices that operate using a piezoelectric element at resonance produce high voltage levels, for which AC-DC converters and step-down DC-DC converters have been previously investigated. However, for piezoelectric stack energy harvesters operating off-resonance and producing low voltage outputs, a step-up circuit is required for power conditioning, such as seen in electromagnetic vibration energy scavengers, RF communications, and MEMS harvesters. This paper theoretically and experimentally investigates power conditioning of a low-voltage piezoelectric stack energy harvester.

  16. Silica Aerogels Doped with Ru(II) Tris 1,l0-Phenanthro1ine)-Electron Acceptor Dyads: Improving the Dynamic Range, Sensitivity and Response Time of Sol-Gel Based Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Kevebtusm Bucgikas; Rawashdeh, Abdel M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia

    2005-01-01

    Complexes 1 and 2 were characterized in fluid and frozen solution and as dopants of silica aerogels. The intramolecular quenching efficiency of pendant 4-benzoyl-N-methylpyridinium group (4BzPy) is solvent dependent: emission is quenched completely in acetonitrile but not in alcohols. On the other hand, N-benzyl-N'-methylviologen (BzMeV) quenches the emission in all solvents completely. The differences are traced electrochemically to a stronger solvation effect by the alcohol in the case of 1. In fiozen matrices or absorbed on the surfaces of silica aerogel, both 1 and 2 are photoluminescent. The lack of quenching has been traced to the environmental rigidity. When doped aerogels are cooled to 77K, the emission shifts to the blue and its intensity increases in analogy to what is observed with Ru(II) complexes in media undergoing fluid-to-rigid transition. The photoluminescence of 1 and 2 from the aerogel is quenched by oxygen diffusing through the pores. In the presence of oxygen, aerogels doped with 1 can modulate their emission over a wider dynamic range than aerogels doped with 2, and both are more sensitive than aerogels doped with Ru(II) tris(1,l0- phenanthroline). In contrast to frozen solutions, the luminescent moieties in the bulk of aerogels kept at 77K are still accessible, leading to more sensitive platforms for oxygen sensors than other ambient temperature configurations.

  17. Temperature and voltage coupling to channel opening in transient receptor potential melastatin 8 (TRPM8).

    PubMed

    Raddatz, Natalia; Castillo, Juan P; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-12-19

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca(2+)-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol(-1). The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  18. Temperature and voltage coupling to channel opening in transient receptor potential melastatin 8 (TRPM8).

    PubMed

    Raddatz, Natalia; Castillo, Juan P; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-12-19

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca(2+)-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol(-1). The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening.

  19. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8)*♦

    PubMed Central

    Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-01-01

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  20. Modulation of BK channel voltage gating by different auxiliary β subunits

    PubMed Central

    Contreras, Gustavo F.; Neely, Alan; Alvarez, Osvaldo; Gonzalez, Carlos; Latorre, Ramon

    2012-01-01

    Calcium- and voltage-activated potassium channels (BK) are regulated by a multiplicity of signals. The prevailing view is that different BK gating mechanisms converge to determine channel opening and that these gating mechanisms are allosterically coupled. In most instances the pore forming α subunit of BK is associated with one of four alternative β subunits that appear to target specific gating mechanisms to regulate the channel activity. In particular, β1 stabilizes the active configuration of the BK voltage sensor having a large effect on BK Ca2+ sensitivity. To determine the extent to which β subunits regulate the BK voltage sensor, we measured gating currents induced by the pore-forming BK α subunit alone and with the different β subunits expressed in Xenopus oocytes (β1, β2IR, β3b, and β4). We found that β1, β2, and β4 stabilize the BK voltage sensor in the active conformation. β3 has no effect on voltage sensor equilibrium. In addition, β4 decreases the apparent number of charges per voltage sensor. The decrease in the charge associated with the voltage sensor in α β4 channels explains most of their biophysical properties. For channels composed of the α subunit alone, gating charge increases slowly with pulse duration as expected if a significant fraction of this charge develops with a time course comparable to that of K+ current activation. In the presence of β1, β2, and β4 this slow component develops in advance of and much more rapidly than ion current activation, suggesting that BK channel opening proceeds in two steps. PMID:23112204

  1. Mechanisms of closed-state inactivation in voltage-gated ion channels

    PubMed Central

    Bähring, Robert; Covarrubias, Manuel

    2011-01-01

    Inactivation of voltage-gated ion channels is an intrinsic auto-regulatory process necessary to govern the occurrence and shape of action potentials and establish firing patterns in excitable tissues. Inactivation may occur from the open state (open-state inactivation, OSI) at strongly depolarized membrane potentials, or from pre-open closed states (closed-state inactivation, CSI) at hyperpolarized and modestly depolarized membrane potentials. Voltage-gated Na+, K+, Ca2+ and non-selective cationic channels utilize both OSI and CSI. Whereas there are detailed mechanistic descriptions of OSI, much less is known about the molecular basis of CSI. Here, we review evidence for CSI in voltage-gated cationic channels (VGCCs) and recent findings that shed light on the molecular mechanisms of CSI in voltage-gated K+ (Kv) channels. Particularly, complementary observations suggest that the S4 voltage sensor, the S4S5 linker and the main S6 activation gate are instrumental in the installment of CSI in Kv4 channels. According to this hypothesis, the voltage sensor may adopt a distinct conformation to drive CSI and, depending on the stability of the interactions between the voltage sensor and the pore domain, a closed-inactivated state results from rearrangements in the selectivity filter or failure of the activation gate to open. Kv4 channel CSI may efficiently exploit the dynamics of the subthreshold membrane potential to regulate spiking properties in excitable tissues. PMID:21098008

  2. Multi-physical model of cation and water transport in ionic polymer-metal composite sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Chang, Longfei; Horiuchi, Tetsuya; Takagi, Kentaro; Aabloo, Alvo; Asaka, Kinji

    2016-03-01

    Ion-migration based electrical potential widely exists not only in natural systems but also in ionic polymer materials. We presented a multi-physical model and investigated the transport process of cation and water of ionic polymer-metal composites based on our thorough understanding on the ionic sensing mechanisms in this paper. The whole transport process was depicted by transport equations concerning convection flux under the total pressure gradient, electrical migration by the built-in electrical field, and the inter-coupling effect between cation and water. With numerical analysis, the influence of critical material parameters, the elastic modulus Ewet, the hydraulic permeability coefficient K, the diffusion coefficient of cation dII and water dWW, and the drag coefficient of water ndW, on the distribution of cation and water was investigated. It was obtained how these parameters correlate to the voltage characteristics (both magnitude and response speed) under a step bending. Additionally, it was found that the effective relative dielectric constant ɛr has little influence on the voltage but is positively correlated to the current. With a series of optimized parameters, the predicted voltage agreed with the experimental results well, which validated our model. Based on our physical model, it was suggested that an ionic polymer sensor can benefit from a higher modulus Ewet, a higher coefficient K and a lower coefficient dII, and a higher constant ɛr.

  3. Improved Programmable High-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Rutberg, Arthur

    1994-01-01

    Improved dc-to-dc converter functions as programmable high-voltage power supply with low-power-dissipation voltage regulator on high-voltage side. Design of power supply overcomes deficiencies of older designs. Voltage regulation with low power dissipation provided on high-voltage side.

  4. Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. II. Concept validation with ZELDA on VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    N'Diaye, M.; Vigan, A.; Dohlen, K.; Sauvage, J.-F.; Caillat, A.; Costille, A.; Girard, J. H. V.; Beuzit, J.-L.; Fusco, T.; Blanchard, P.; Le Merrer, J.; Le Mignant, D.; Madec, F.; Moreaux, G.; Mouillet, D.; Puget, P.; Zins, G.

    2016-08-01

    Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments that are mounted on large, ground-based observatories. These facilities include extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve unprecedented sensitivities for exoplanet detection and their spectral characterization. However, low spatial frequency differential aberrations between the ExAO sensing path and the science path represent critical limitations for the detection of giant planets with a contrast lower than a few 10-6 at very small separations (<0.3'') from their host star. In our previous work, we proposed a wavefront sensor based on Zernike phase-contrast methods to circumvent this problem and measure these quasi-static aberrations at a nanometric level. We present the design, manufacturing, and testing of ZELDA, a prototype that was installed on VLT/SPHERE during its reintegration in Chile. Using the internal light source of the instrument, we first performed measurements in the presence of Zernike or Fourier modes introduced with the deformable mirror. Our experimental results are consistent with the results in simulations, confirming the ability of our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy. Following these results, we corrected the long-lived non-common path aberrations in SPHERE based on ZELDA measurements and estimated a contrast gain of 10 in the coronagraphic image at 0.2'', reaching the raw contrast limit set by the coronagraph in the instrument. In addition to this encouraging result, the simplicity of the design and its phase reconstruction algorithm makes ZELDA an excellent candidate for the online measurements of quasi-static aberrations during the observations. The implementation of a ZELDA-based sensing path on the current and future facilities (ELTs, future space missions) could facilitate the observation of cold gaseous

  5. Passive-sensor data fusion

    NASA Astrophysics Data System (ADS)

    Kolitz, Stephan E.

    1991-08-01

    are made, when sensor data is integrated over a 60 s time period. With higher-resolution sensors, better results are achievable in less time. The results of the data fusion from three or more sensors over such a period of time provide a rich source of information for the estimation of target states. The algorithms are fast (O(n ln n)); for approximately 100 targets, the average processing per scan in the multi-scan three-sensor methodology takes approximately a second of computational time on a Mac II.

  6. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  7. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  8. Chemoresistive gas sensor

    DOEpatents

    Hirschfeld, T.B.

    1987-06-23

    A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron funneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner. 2 figs.

  9. Chemoresistive gas sensor

    DOEpatents

    Hirschfeld, Tomas B.

    1987-01-01

    A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron funneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner.

  10. Chemoresistive gas sensor

    DOEpatents

    Hirschfeld, T.B.

    1985-09-30

    A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron tunneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner.

  11. Thermocooling of GMR Sensors

    NASA Technical Reports Server (NTRS)

    Davis, Despina (Inventor); Bellamkonda, Ramya (Inventor); Mannam, Raja Sekharam (Inventor)

    2013-01-01

    A thermoelectrically cooled GMR sensor having a first thermoelectric layer with an array of nanowires, wherein the nanowires include a diameter of about 1 nanometer to about 1000 nanometers. A plurality of alternating layers of magnetic and nonmagnetic material are positioned over and extend the nanowires to form a GMR assembly. A second thermoelectric layer is positioned over the GMR assembly and extends the nanowires, such that the nanowires have a length of between about 100 nanometers and about 500 microns. Conductors are placed in contact with the first and second thermoelectric layers for connecting the thermoelectric layers to a voltage source.

  12. Field emission chemical sensor

    DOEpatents

    Panitz, J.A.

    1983-11-22

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  13. Structure of the voltage-gated K⁺ channel Eag1 reveals an alternative voltage sensing mechanism.

    PubMed

    Whicher, Jonathan R; MacKinnon, Roderick

    2016-08-12

    Voltage-gated potassium (K(v)) channels are gated by the movement of the transmembrane voltage sensor, which is coupled, through the helical S4-S5 linker, to the potassium pore. We determined the single-particle cryo-electron microscopy structure of mammalian K(v)10.1, or Eag1, bound to the channel inhibitor calmodulin, at 3.78 angstrom resolution. Unlike previous K(v) structures, the S4-S5 linker of Eag1 is a five-residue loop and the transmembrane segments are not domain swapped, which suggest an alternative mechanism of voltage-dependent gating. Additionally, the structure and position of the S4-S5 linker allow calmodulin to bind to the intracellular domains and to close the potassium pore, independent of voltage-sensor position. The structure reveals an alternative gating mechanism for K(v) channels and provides a template to further understand the gating properties of Eag1 and related channels. PMID:27516594

  14. Low voltage nonprimary explosive detonator

    DOEpatents

    Dinegar, Robert H.; Kirkham, John

    1982-01-01

    A low voltage, electrically actuated, nonprimary explosive detonator is disclosed wherein said detonation is achieved by means of an explosive train in which a deflagration-to-detonation transition is made to occur. The explosive train is confined within a cylindrical body and positioned adjacent to low voltage ignition means have electrical leads extending outwardly from the cylindrical confining body. Application of a low voltage current to the electrical leads ignites a self-sustained deflagration in a donor portion of the explosive train which then is made to undergo a transition to detonation further down the train.

  15. Low-cost chemiresistive sensor for volatile amines based on a 2D network of a zinc(II) Schiff-base complex

    NASA Astrophysics Data System (ADS)

    Mirabella, S.; Oliveri, I. P.; Ruffino, F.; Maccarrone, G.; Di Bella, S.

    2016-10-01

    A marked chemiresistive behavior is revealed in a nanostructured material obtained by spin-coating a solution of a bis(salycilaldiminato)Zn(II) Schiff-base (ZnSB) complex. The resulting submicron 2D network exhibits reversible changes in absorbance and resistance under the cycles of absorption and desorption of a volatile amine. These results are explained in terms of a Lewis donor-acceptor interaction between the ZnSB (acceptor) and the chemisorbed amine (donor). The 2D network of ZnSB was employed as a sensing element to fabricate a low-cost device for the volatile amines detection, showing promising results for food spoilage detection.

  16. Genetically encoded fluorescent sensors of membrane potential

    PubMed Central

    Baker, B. J.; Mutoh, H.; Dimitrov, D.; Akemann, W.; Perron, A.; Iwamoto, Y.; Jin, L.; Cohen, L. B.; Isacoff, E. Y.; Pieribone, V. A.; Hughes, T.; Knöpfel, T.

    2009-01-01

    Imaging activity of neurons in intact brain tissue was conceived several decades ago and, after many years of development, voltage-sensitive dyes now offer the highest spatial and temporal resolution for imaging neuronal functions in the living brain. Further progress in this field is expected from the emergent development of genetically encoded fluorescent sensors of membrane potential. These fluorescent protein (FP) voltage sensors overcome the drawbacks of organic voltage sensitive dyes such as non-specificity of cell staining and the low accessibility of the dye to some cell types. In a transgenic animal, a genetically encoded sensor could in principle be expressed specifically in any cell type and would have the advantage of staining only the cell population determined by the specificity of the promoter used to drive expression. Here we critically review the current status of these developments. PMID:18679801

  17. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    SciTech Connect

    Patel, N.; Branch, D. W.; Cular, S.; Schamiloglu, E.

    2015-08-15

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO{sub 3}) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  18. Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing

    SciTech Connect

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-11

    A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  19. Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing

    DOE PAGES

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-11

    A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to bothmore » crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less

  20. Development of sensitive and selective food sensors using new Re(I)-Pt(II) bimetallic complexes to detect volatile biogenic sulfides formed by meat spoilage.

    PubMed

    Chow, Cheuk-Fai; Ho, Pui-Yu; Sun, Dong; Lu, Yu-Jing; Wong, Wing-Leung; Tang, Qian; Gong, Cheng-Bin

    2017-02-01

    Detection of volatile biogenic sulfides (VBS) plays a crucial role in food safety because the amounts of these compounds can reflect the freshness of meat. A new indicator-displacement assay with Re(I)-Pt(II) complexes, [Re(Lig)(CO)3(bridge)]-[Pt(DMSO)(Cl)2] (1: Lig=5-phenyl-1,10-phenanthroline and bridge=NCS(-); 2: Lig=5-phenyl-1,10-phenanthroline and bridge=CN(-); 3: Lig=2,2'-biquinoline and bridge=NCS(-)), was demonstrated to be a very effective sensing method to VBS. The results indicated that the control of Re(I)-bridge-Pt(II) and Re(I)-ligand combination are able to regulate their sensing selectivity and sensitivity. This system was successfully applied to detect CH3SCH3 in real rotten pork with a linear luminometric response up to 20.0mgkg(-1) (R=0.997) with the detection limit as 0.05 mgkg(-1). Complex 1 also gave comparable results on the detection of VBS with respect to those determined by GCMS with recovery range from 76% to 102% (RSD%=13.8).

  1. Development of sensitive and selective food sensors using new Re(I)-Pt(II) bimetallic complexes to detect volatile biogenic sulfides formed by meat spoilage.

    PubMed

    Chow, Cheuk-Fai; Ho, Pui-Yu; Sun, Dong; Lu, Yu-Jing; Wong, Wing-Leung; Tang, Qian; Gong, Cheng-Bin

    2017-02-01

    Detection of volatile biogenic sulfides (VBS) plays a crucial role in food safety because the amounts of these compounds can reflect the freshness of meat. A new indicator-displacement assay with Re(I)-Pt(II) complexes, [Re(Lig)(CO)3(bridge)]-[Pt(DMSO)(Cl)2] (1: Lig=5-phenyl-1,10-phenanthroline and bridge=NCS(-); 2: Lig=5-phenyl-1,10-phenanthroline and bridge=CN(-); 3: Lig=2,2'-biquinoline and bridge=NCS(-)), was demonstrated to be a very effective sensing method to VBS. The results indicated that the control of Re(I)-bridge-Pt(II) and Re(I)-ligand combination are able to regulate their sensing selectivity and sensitivity. This system was successfully applied to detect CH3SCH3 in real rotten pork with a linear luminometric response up to 20.0mgkg(-1) (R=0.997) with the detection limit as 0.05 mgkg(-1). Complex 1 also gave comparable results on the detection of VBS with respect to those determined by GCMS with recovery range from 76% to 102% (RSD%=13.8). PMID:27596434

  2. Proximity and Force Characteristics of CMC Touch Sensor with Square/Dome-shaped Sensor Elements

    NASA Astrophysics Data System (ADS)

    Kawamura, T.; Inaguma, N.; Kakizaki, Y.; Yamada, H.; Tani, K.

    2013-04-01

    A tactile sensor called Carbon Micro Coil (CMC) touch sensor was developed by CMC Technology Development Co., Ltd. The sensor's elements used in the experiments of this paper are made of silicon rubber containing CMCs several micrometers in diameter. One of the elements is molded into a square 30 mm on a side and 3 mm thick; the other is a dome 16 mm in diameter and 2 mm height. CMCs in the sensor element contribute to the electrical conductivity and the sensor element is considered to constitute an LCR circuit. When an object approaches to the sensor element or the sensor element is deformed mechanically, the impedance changes, and the CMC sensor detects the impedance changes by measuring the modulation of amplitude and phase of an input excitation signal to the sensor element. The CMC sensor also creates voltage signals of the R- and LC-components separately according to the amplitude and phase modulation. In this paper, the characteristics of the CMC sensor with respect to its proximity and force senses are investigated. First, the output of the CMC sensor with the square-shaped sensor element is measured when an object approaches to the sensor element. Next, the output of the CMC sensor with the dome-shaped sensor element is measured when fine deformations of 1 to 5 μm are applied to the sensor element under variable compression force. The results suggest that the CMC sensor can measure the force variance applied to the sensor element as well as the distance between the sensor element and an object.

  3. Genetically Engineered Fluorescent Voltage Reporters

    PubMed Central

    2012-01-01

    Fluorescent membrane voltage indicators that enable optical imaging of neuronal circuit operations in the living mammalian brain are powerful tools for biology and particularly neuroscience. Classical voltage-sensitive dyes, typically low molecular-weight organic compounds, have been in widespread use for decades but are limited by issues related to optical noise, the lack of generally applicable procedures that enable staining of specific cell populations, and difficulties in performing imaging experiments over days and weeks. Genetically encoded voltage indicators (GEVIs) represent a newer alternative that overcomes several of the limitations inherent to classical voltage-sensitive dyes. We critically review the fundamental concepts of this approach, the variety of available probes and their state of development. PMID:22896802

  4. High voltage solar array experiments

    NASA Technical Reports Server (NTRS)

    Kennerud, K. L.

    1974-01-01

    The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

  5. REVIEW ARTICLE: A taste sensor

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi

    1998-12-01

    A multichannel taste sensor, namely an electronic tongue, with global selectivity is composed of several kinds of lipid/polymer membranes for transforming information about substances producing taste into electrical signals, which are input to a computer. The sensor output exhibits different patterns for chemical substances which have different taste qualities such as saltiness, sourness and bitterness, whereas it exhibits similar patterns for chemical substances with similar tastes. The sensor responds to the taste itself, as can be understood from the fact that taste interactions such as the suppression effect, which appears for mixtures of sweet and bitter substances, can be reproduced well. The suppression of the bitterness of quinine and a drug substance by sucrose can be quantified. Amino acids can be classified into several groups according to their own tastes on the basis of sensor outputs. The tastes of foodstuffs such as beer, coffee, mineral water, milk, sake, rice, soybean paste and vegetables can be discussed quantitatively using the taste sensor, which provides the objective scale for the human sensory expression. The flavour of a wine is also discriminated using the taste-odour sensory fusion conducted by combining the taste sensor and an odour-sensor array using conducting polymer elements. The taste sensor can also be applied to measurements of water pollution. Miniaturization of the taste sensor using FET produces the same characteristics as those of the above taste sensor by measuring the gate-source voltage. Use of the taste sensor will lead to a new era of food and environmental sciences.

  6. Low-Voltage Bypass Device

    NASA Technical Reports Server (NTRS)

    Wilson, J. P.

    1994-01-01

    Improved bypass device provides low-resistance current shunt around low-voltage power cell when cell fails in open-circuit condition during operation. In comparison with older bypass devices for same application, this one weighs less, generates less heat, and has lower voltage drop (less resistance). Bypass device connected in parallel with power cell. Draws very little current during normal operation of cell.

  7. Switched-Capacitor Voltage Multiplier

    NASA Technical Reports Server (NTRS)

    Sridharan, Govind

    1991-01-01

    Dc-to-dc power converter multiplies input supply potential by factor of nearly 40. Design does not make use of transformers or inductors but effects voltage boost-up by capacitive energy transfer. Circuit primarily made up of banks of capacitors, connected by network of integrated-circuit relays. Converter functionally linear voltage amplifier with fixed gain figure. Bipolar in operation. Output fully floating, and excellent dc isolation between input and output terminals.

  8. High voltage power transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    Design considerations, fabrication procedures, and methods of evaluation for high-voltage power-transistor development are discussed. Technique improvements such as controlling the electric field at the surface and perserving lifetimes in the collector region which have advanced the state of the art in high-voltage transistors are discussed. These improvements can be applied directly to the development of 1200 volt, 200 ampere transistors.

  9. A matter of quantum voltages.

    PubMed

    Sellner, Bernhard; Kathmann, Shawn M

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V(o))--the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V(o) from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V(o) for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V(o) as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. PMID:25399199

  10. A matter of quantum voltages.

    PubMed

    Sellner, Bernhard; Kathmann, Shawn M

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V(o))--the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V(o) from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V(o) for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V(o) as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  11. A Matter of Quantum Voltages

    SciTech Connect

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. Electron holography is able to measure the variation of voltages in matter and modern supercomputers allow the calculation of quantum voltages with practically unlimited spatial and temporal resolution of bulk systems. Of particular interest is the Mean Inner Potential (Vo) - the spatial average of these voltages. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of Vo for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Furthermore, we predict Vo as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  12. A matter of quantum voltages

    SciTech Connect

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V{sub o}) – the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V{sub o} from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V{sub o} for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V{sub o} as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  13. Voltage-Boosting Driver For Switching Regulator

    NASA Technical Reports Server (NTRS)

    Trump, Ronald C.

    1990-01-01

    Driver circuit assures availability of 10- to 15-V gate-to-source voltage needed to turn on n-channel metal oxide/semiconductor field-effect transistor (MOSFET) acting as switch in switching voltage regulator. Includes voltage-boosting circuit efficiently providing gate voltage 10 to 15 V above supply voltage. Contains no exotic parts and does not require additional power supply. Consists of NAND gate and dual voltage booster operating in conjunction with pulse-width modulator part of regulator.

  14. Spectral characterization of a newly synthesized fluorescent semicarbazone derivative and its usage as a selective fiber optic sensor for copper(II).

    PubMed

    Oter, Ozlem; Ertekin, Kadriye; Kirilmis, Cumhur; Koca, Murat

    2007-02-19

    In this work photoluminescent properties of highly Cu(2+) selective organic fluoroionophore, semicarbazone derivative; bis(naphtho[2,1-b]furan-2-yl)methanone semicarbazone (BNF) was investigated in different solvents (dichloromethane, tetrahydrofuran, toluene and ethanol) and in polymer matrices of polyvinylchloride (PVC) and ethyl cellulose (EC) by absorption and emission spectrometry. The BNF derivative displayed enhanced fluorescence emission quantum yield, Q(f)=6.1 x 10(-2) and molar extinction coefficient, epsilon=29,000+/-65 cm(-1)M(-1) in immobilized PVC matrix, compared to 2.6 x 10(-3) and 24,573+/-115 in ethanol solution. The offered sensor exhibited remarkable fluorescence intensity quenching upon exposure to Cu(2+) ions at pH 4.0 in the concentration range of 1.0 x 10(-9) to 3.0 x 10(-4)M [Cu(2+)] while the effects of the responding ions (Ca(2+), Hg(+), Pb(2+), Al(3+), Cr(3+), Mn(2+), Mg(2+), Sn(2+), Cd(2+), Co(2+) and Ni(2+)) were less pronounced.

  15. Surface roughness considerations for atmospheric correction of ocean color sensors. I - The Rayleigh-scattering component. II - Error in the retrieved water-leaving radiance

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Wang, Menghua

    1992-01-01

    The first step in the Coastal Zone Color Scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering (RS) contribution, L sub r, to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm, L sub r is computed by assuming that the ocean surface is flat. Calculations of the radiance leaving an RS atmosphere overlying a rough Fresnel-reflecting ocean are presented to evaluate the radiance error caused by the flat-ocean assumption. Simulations are carried out to evaluate the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct sun glitter, it is concluded that the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness. This suggests that, in refining algorithms for future sensors, more effort should be focused on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.

  16. On voltage collapse in electric power systems

    SciTech Connect

    Chiang, H.D.; Dobson, I.; Thomas, R.J.; Thorp, J.S.; Fekih-Ahmed, L. . School of Electrical Engineering)

    1990-05-01

    Several voltage collapses have had a period of slowly decreasing voltage followed by an accelerating collapse in voltage. This paper analyzes this type of voltage collapse based on a center manifold voltage collapse model. The essence of this model is that the system dynamics after bifurcation are captured by the center manifold trajectory and it is a computable model that allows prediction of voltage collapse. Both physical explanations and computational considerations of this model are presented. The authors clarify the use of static and dynamic models to explain voltage collapse. Voltage collapse dynamics are demonstrated on a simple power system model.

  17. Small, Inexpensive Combined NOx Sensor and O2 Sensor

    SciTech Connect

    W. N. Lawless; C. F. Clark, Jr.

    2008-09-08

    electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

  18. Label-free colorimetric sensor for mercury(II) and DNA on the basis of mercury(II) switched-on the oxidase-mimicking activity of silver nanoclusters.

    PubMed

    Wang, Guang-Li; Jin, Lu-Yi; Wu, Xiu-Ming; Dong, Yu-Ming; Li, Zai-Jun

    2015-04-29

    In this paper, a novel colorimetric biosensor for Hg(2+) and DNA molecules is presented based on Hg(2+) stimulated oxidase-like activity of bovine serum albumin protected silver clusters (BSA-Ag NCs). Under mild conditions, Hg(2+) activated BSA-Ag NCs to show high catalytic activity toward the oxidation of 3,3',5, 5'-tetramethylbenzidine (TMB) using ambient dissolved oxygen as an oxidant. The oxidase-like activity of BSA-Ag NCs was "switched-on" selectively in the presence of Hg(2+), which permitted a novel and facile colorimetric sensor for Hg(2+). As low as 25 nmol L(-1)Hg(2+) could be detected with a linear range from 80 nmol L(-1) to 50 mmol L(-1). In addition, the sensing strategy was also employed to detect DNA molecules. Hg(2+) is known to bind very strongly and specifically with two DNA thymine bases (T) to form thymine-Hg(2+)-thymine (T-Hg(2+)-T) base pairs. The hairpin-structure was disrupted and Hg(2+) ions were released after hybridization with the DNA target. By coupling the Hg(2+) switched-on the oxidase-mimicking activity of BSA-Ag NCs, we developed a novel label-free strategy for facile and fast colorimetric detection of DNA molecules. More important, target DNA can be detected as low as 10 nmol L(-1) with a linear range from 30 to 225 nmol L(-1). Compared with other methods, this method presents several advantages such as the independence of hydrogen peroxide, high sensitivity and good selectivity, avoiding any modification or immobilization of DNA, which holds a great potential of metal NCs for clinical application in biosensing and biotechnology. PMID:25847155

  19. Utilization of reduced graphene oxide/cadmium sulfide-modified carbon cloth for visible-light-prompt photoelectrochemical sensor for copper (II) ions.

    PubMed

    Foo, C Y; Lim, H N; Pandikumar, A; Huang, N M; Ng, Y H

    2016-03-01

    A newly developed CdS/rGO/CC electrode was prepared based on a flexible carbon cloth (CC) substrate with cadmium sulfide (CdS) nanoparticles and reduced graphene oxide (rGO). The CdS was synthesized using an aerosol-assisted chemical vapor deposition (AACVD) method, and the graphene oxide was thermally reduced on the modified electrode surface. The existence of rGO in the CdS-modified electrode increased the photocurrent intensity of the CdS/rGO/CC-modified electrode by three orders of magnitude, compared to that of the CdS/ITO electrode and two orders of magnitude higher than the CdS/CC electrode. A new visible-light-prompt photoelectrochemical sensor was developed based on the competitive binding reaction of Cu(2+) and CdS on the electrode surface. The results showed that the effect of the Cu(2+) on the photocurrent response was concentration-dependent over the linear ranges of 0.1-1.0 μM and 1.0-40.0 μM with a detection limit of 0.05 μM. The results of a selectivity test showed that this modified electrode has a high response toward Cu(2+) compared to other heavy metal ions. The proposed CdS/rGO/CC electrode provided a significantly high potential current compared to other reported values, and could be a practical tool for the fast, sensitive, and selective determination of Cu(2+). PMID:26595899

  20. Particle sensor array

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Lieneweg, Udo (Inventor)

    1994-01-01

    A particle sensor array which in a preferred embodiment comprises a static random access memory having a plurality of ion-sensitive memory cells, each such cell comprising at least one pull-down field effect transistor having a sensitive drain surface area (such as by bloating) and at least one pull-up field effect transistor having a source connected to an offset voltage. The sensitive drain surface area and the offset voltage are selected for memory cell upset by incident ions such as alpha-particles. The static random access memory of the present invention provides a means for selectively biasing the memory cells into the same state in which each of the sensitive drain surface areas is reverse biased and then selectively reducing the reversed bias on these sensitive drain surface areas for increasing the upset sensitivity of the cells to ions. The resulting selectively sensitive memory cells can be used in a number of applications. By way of example, the present invention can be used for measuring the linear energy transfer of ion particles, as well as a device for assessing the resistance of CMOS latches to Cosmic Ray induced single event upsets. The sensor of the present invention can also be used to determine the uniformity of an ion beam.

  1. Galvanic cell type oxygen sensor

    SciTech Connect

    Fujita, Y.; Kudo, H.; Tanigawa, I.

    1985-01-22

    A galvanic cell type oxygen sensor comprising a galvanic cell comprised of a cathode made up of metal effective for the electrolytic reduction of oxygen, an anode made up of lead material and an electrolyte made up of an aqueous mixed solution of organic acid and organic acid salt, which has a long life and a high output voltage, is not at all affected by carbon dioxide and which can prevent the generation of hydrogen from the cathode, is disclosed.

  2. Electrode voltage fall and total voltage of a transient arc

    NASA Astrophysics Data System (ADS)

    Valensi, F.; Ratovoson, L.; Razafinimanana, M.; Masquère, M.; Freton, P.; Gleizes, A.

    2016-06-01

    This paper deals with an experimental study of the components of a transient arc total voltage with duration of a few tens of ms and a current peak close to 1000 A. The cathode tip is made of graphite whereas the flat anode is made either of copper or of graphite; the electrodes gap is a few mm. The analysis of the electrical parameters is supported and validated by fast imaging and by two models: the first one is a 2D physical model of the arc allowing to calculate both the plasma temperature field and the arc voltage; the second model is able to estimate the transient heating of the graphite electrode. The main aim of the study was to detect the possible change of the cathode voltage fall (CVF) during the first instants of the arc. Indeed it is expected that during the first ms the graphite cathode is rather cool and the main mechanism of the electron emission should be the field effect emission, whereas after several tens of ms the cathode is strongly heated and thermionic emission should be predominant. We have observed some change in the apparent CVF but we have shown that this apparent change can be attributed to the variation of the solid cathode resistance. On the other hand, the possible change of CVF corresponding to the transition between a ‘cold’ and a ‘hot’ cathode should be weak and could not be characterized considering our measurement uncertainty of about 2 V. The arc column voltage (ACV) was estimated by subtracting the electrode voltage fall from the total arc voltage. The experimental transient evolution of the ACV is in very good agreement with the theoretical variation predicted by the model, showing the good ability of the model to study this kind of transient arc.

  3. Flexible Hall sensors based on graphene

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Shaygan, Mehrdad; Otto, Martin; Schall, Daniel; Neumaier, Daniel

    2016-03-01

    The excellent electronic and mechanical properties of graphene provide a perfect basis for high performance flexible electronic and sensor devices. Here, we present the fabrication and characterization of flexible graphene based Hall sensors. The Hall sensors are fabricated on 50 μm thick flexible Kapton foil using large scale graphene grown by chemical vapor deposition technique on copper foil. Voltage and current normalized sensitivities of up to 0.096 V VT-1 and 79 V AT-1 were measured, respectively. These values are comparable to the sensitivity of rigid silicon based Hall sensors and are the highest values reported so far for any flexible Hall sensor devices. The sensitivity of the Hall sensor shows no degradation after being bent to a minimum radius of 4 mm, which corresponds to a tensile strain of 0.6%, and after 1000 bending cycles to a radius of 5 mm.

  4. Flexible Hall sensors based on graphene.

    PubMed

    Wang, Zhenxing; Shaygan, Mehrdad; Otto, Martin; Schall, Daniel; Neumaier, Daniel

    2016-04-14

    The excellent electronic and mechanical properties of graphene provide a perfect basis for high performance flexible electronic and sensor devices. Here, we present the fabrication and characterization of flexible graphene based Hall sensors. The Hall sensors are fabricated on 50 μm thick flexible Kapton foil using large scale graphene grown by chemical vapor deposition technique on copper foil. Voltage and current normalized sensitivities of up to 0.096 V VT(-1) and 79 V AT(-1) were measured, respectively. These values are comparable to the sensitivity of rigid silicon based Hall sensors and are the highest values reported so far for any flexible Hall sensor devices. The sensitivity of the Hall sensor shows no degradation after being bent to a minimum radius of 4 mm, which corresponds to a tensile strain of 0.6%, and after 1000 bending cycles to a radius of 5 mm.

  5. Smart sensors

    NASA Astrophysics Data System (ADS)

    Corsi, Carlo

    2006-08-01

    The term "Smart Sensors" refer to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. In a broad sense, they include any sensor systems covering the whole electromagnetic spectrum: this paper deals specifically with a new class of smart sensors in infrared spectral bands whose developments started some years ago, when it was recognized that the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic infrared detector array technology could be combined to develop new generations of infrared smart sensor systems with much improved performance. So, sophisticated signal processing operations have been developed for these new systems by integrating microcomputers and other VLSI signal processors within or next to the sensor arrays on the same focal plane avoiding complex computing located far away from the sensors. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduce inside the sensor some of the basic function of living eyes, such as dynamic stare, dishomogenity compensation, spatial and temporal filtering. New objectives and requirements of these new focal plane processors are presented for this type of new infrared smart sensor systems. This paper is concerned with the processing techniques for only the front end of the focal plane processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation threshold.

  6. Non-intrusive speed sensor

    NASA Technical Reports Server (NTRS)

    Wyett, L.

    1986-01-01

    In Phase I of the Non-Intrusive Speed Sensor program, a computerized literature search was performed to identify candidate technologies for remote, non-intrusive speed sensing applications in Space Shuttle Main Engine (SSME) turbopumps. The three most promising technologies were subjected to experimental evaluation to quantify their performance characteristics under the harsh environmental requirements within the turbopumps. Although the infrared and microwave approaches demonstrated excellent cavitation immunity in laboratory tests, the variable-source magnetic speed sensor emerged as the most viable approach. Preliminary design of this speed sensor encountered no technical obstacles and resulted in viable and feasible speed nut, sensor housing, and sensor coil designs. Phase II of this program developed the variable-source magnetic speed sensor through the detailed design task and guided the design into breadboard fabrication. The speed sensor and its integral speed nut were evaluated at both unit and system level testing. The final room-temperature and cryogenic spin testing of the hardware demonstrated that the sensor was capable of generating sufficient output signal to enable remote speed sensing from 1500 to 40000 rpm over a speed nut/sensor separation of 3.5 inches.

  7. Linear air-fuel sensor development

    SciTech Connect

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changes by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.

  8. Miniaturized gas ionization sensors using carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Modi, Ashish; Koratkar, Nikhil; Lass, Eric; Wei, Bingqing; Ajayan, Pulickel M.

    2003-07-01

    Gas sensors operate by a variety of fundamentally different mechanisms. Ionization sensors work by fingerprinting the ionization characteristics of distinct gases, but they are limited by their huge, bulky architecture, high power consumption and risky high-voltage operation. Here we report the fabrication and successful testing of ionization microsensors featuring the electrical breakdown of a range of gases and gas mixtures at carbon nanotube tips. The sharp tips of nanotubes generate very high electric fields at relatively low voltages, lowering breakdown voltages several-fold in comparison to traditional electrodes, and thereby enabling compact, battery-powered and safe operation of such sensors. The sensors show good sensitivity and selectivity, and are unaffected by extraneous factors such as temperature, humidity, and gas flow. As such, the devices offer several practical advantages over previously reported nanotube sensor systems. The simple, low-cost, sensors described here could be deployed for a variety of applications, such as environmental monitoring, sensing in chemical processing plants, and gas detection for counter-terrorism.

  9. Fabrication of Thin Film Heat Flux Sensors

    NASA Technical Reports Server (NTRS)

    Will, Herbert A.

    1992-01-01

    Prototype thin film heat flux sensors have been constructed and tested. The sensors can be applied to propulsion system materials and components. The sensors can provide steady state and fast transient heat flux information. Fabrication of the sensor does not require any matching of the mounting surface. Heat flux is proportional to the temperature difference across the upper and lower surfaces of an insulation material. The sensor consists of an array of thermocouples on the upper and lower surfaces of a thin insulating layer. The thermocouples for the sensor are connected in a thermopile arrangement. A 100 thermocouple pair heat flux sensor has been fabricated on silicon wafers. The sensor produced an output voltage of 200-400 microvolts when exposed to a hot air heat gun. A 20 element thermocouple pair heat flux sensor has been fabricated on aluminum oxide sheet. Thermocouples are Pt-Pt/Rh with silicon dioxide as the insulating material. This sensor produced an output of 28 microvolts when exposed to the radiation of a furnace operating at 1000 C. Work is also underway to put this type of heat flux sensor on metal surfaces.

  10. An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation.

    PubMed

    Offenbacher, Adam R; Polander, Brandon C; Barry, Bridgette A

    2013-10-01

    Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global (13)C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster.

  11. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  12. Voltage-Gated Hydrophobic Nanopores

    SciTech Connect

    Lavrik, Nickolay V

    2011-01-01

    Hydrophobicity is a fundamental property that is responsible for numerous physical and biophysical aspects of molecular interactions in water. Peculiar behavior is expected for water in the vicinity of hydrophobic structures, such as nanopores. Indeed, hydrophobic nanopores can be found in two distinct states, dry and wet, even though the latter is thermodynamically unstable. Transitions between these two states are kinetically hindered in long pores but can be much faster in shorter pores. As it is demonstrated for the first time in this paper, these transitions can be induced by applying a voltage across a membrane with a single hydrophobic nanopore. Such voltage-induced gating in single nanopores can be realized in a reversible manner through electrowetting of inner walls of the nanopores. The resulting I-V curves of such artificial hydrophobic nanopores mimic biological voltage-gated channels.

  13. A Differential Reflective Intensity Optical Fiber Angular Displacement Sensor.

    PubMed

    Jia, Binghui; He, Lei; Yan, Guodong; Feng, Yong

    2016-09-16

    In this paper, a novel differential reflective intensity optical fiber angular displacement sensor was proposed. This sensor can directly measure the angular and axial linear displacement of a flat surface. The structure of the sensor probe is simple and its basic principle was first analyzed according to the intensity modulation mechanisms. Secondly, in order to trim the dark output voltage to zero, the photoelectric conversion circuit was developed to adjust the signals. Then, the sensor model including the photoelectric conversion circuit has been established, and the influence of design parameters on the sensor output characteristic has been simulated. Finally, the design parameters of the sensor structure were obtained based on the simulation results; and an experimental test system was built for the sensor calibration. Experimental results show that the linear angular range and the sensitivity of the sensor were 74.4 and 0.051 V/°, respectively. Its change rules confirm the operating principle of the sensor well.

  14. A Differential Reflective Intensity Optical Fiber Angular Displacement Sensor

    PubMed Central

    Jia, Binghui; He, Lei; Yan, Guodong; Feng, Yong

    2016-01-01

    In this paper, a novel differential reflective intensity optical fiber angular displacement sensor was proposed. This sensor can directly measure the angular and axial linear displacement of a flat surface. The structure of the sensor probe is simple and its basic principle was first analyzed according to the intensity modulation mechanisms. Secondly, in order to trim the dark output voltage to zero, the photoelectric conversion circuit was developed to adjust the signals. Then, the sensor model including the photoelectric conversion circuit has been established, and the influence of design parameters on the sensor output characteristic has been simulated. Finally, the design parameters of the sensor structure were obtained based on the simulation results; and an experimental test system was built for the sensor calibration. Experimental results show that the linear angular range and the sensitivity of the sensor were 74.4 and 0.051 V/°, respectively. Its change rules confirm the operating principle of the sensor well. PMID:27649199

  15. A Differential Reflective Intensity Optical Fiber Angular Displacement Sensor.

    PubMed

    Jia, Binghui; He, Lei; Yan, Guodong; Feng, Yong

    2016-01-01

    In this paper, a novel differential reflective intensity optical fiber angular displacement sensor was proposed. This sensor can directly measure the angular and axial linear displacement of a flat surface. The structure of the sensor probe is simple and its basic principle was first analyzed according to the intensity modulation mechanisms. Secondly, in order to trim the dark output voltage to zero, the photoelectric conversion circuit was developed to adjust the signals. Then, the sensor model including the photoelectric conversion circuit has been established, and the influence of design parameters on the sensor output characteristic has been simulated. Finally, the design parameters of the sensor structure were obtained based on the simulation results; and an experimental test system was built for the sensor calibration. Experimental results show that the linear angular range and the sensitivity of the sensor were 74.4 and 0.051 V/°, respectively. Its change rules confirm the operating principle of the sensor well. PMID:27649199

  16. Ancillary service details: Voltage control

    SciTech Connect

    Kirby, B.; Hirst, E.

    1997-12-01

    Voltage control is accomplished by managing reactive power on an alternating-current power system. Reactive power can be produced and absorbed by both generation and transmission equipment. Reactive-power devices differ substantially in the magnitude and speed of response and in their capital costs. System operators, transmission owners, generators, customers, power marketers, and government regulators need to pay close attention to voltage control as they restructure the U.S. electricity industry. Voltage control can affect reliability and commerce in three ways: (1) Voltages must be maintained within an acceptable range for both customer and power-system equipment to function properly. (2) The movement of reactive power consumes transmission resources, which limits the ability to move real power and worsens congestion. (3) The movement of reactive power results in real-power losses. When generators are required to supply excessive amounts of reactive power, their real-power production must be curtailed. These opportunity costs are not currently compensated for in most regions. Current tariffs are based on embedded costs. These embedded-cost tariffs average about $0.51/MWh, equivalent to $1.5 billion annually for the United States as a whole. Although this cost is low when compared with the cost of energy, it still aggregates to a significant amount of money. This report takes a basic look at why the power system requires reactive power (an appendix explains the fundamentals of real and reactive power). The report then examines the various types of generation and transmission resources used to supply reactive power and to control voltage. Finally it discusses how these resources are deployed and paid for in several reliability regions around the country. As the U.S. electricity industry is restructured, the generation, transmission, and system-control equipment and functions that maintain voltages within the appropriate ranges are being deintegrated.

  17. Voltage-gated calcium channels: Determinants of channel function and modulation by inorganic cations.

    PubMed

    Neumaier, Felix; Dibué-Adjei, Maxine; Hescheler, Jürgen; Schneider, Toni

    2015-06-01

    Voltage-gated calcium channels (VGCCs) represent a key link between electrical signals and non-electrical processes, such as contraction, secretion and transcription. Evolved to achieve high rates of Ca(2+)-selective flux, they possess an elaborate mechanism for selection of Ca(2+) over foreign ions. It has been convincingly linked to competitive binding in the pore, but the fundamental question of how this is reconcilable with high rates of Ca(2+) transfer remains unanswered. By virtue of their similarity to Ca(2+), polyvalent cations can interfere with the function of VGCCs and have proven instrumental in probing the mechanisms underlying selective permeation. Recent emergence of crystallographic data on a set of Ca(2+)-selective model channels provides a structural framework for permeation in VGCCs, and warrants a reconsideration of their diverse modulation by polyvalent cations, which can be roughly separated into three general mechanisms: (I) long-range interactions with charged regions on the surface, affecting the local potential sensed by the channel or influencing voltage-sensor movement by repulsive forces (electrostatic effects), (II) short-range interactions with sites in the ion-conducting pathway, leading to physical obstruction of the channel (pore block), and in some cases (III) short-range interactions with extracellular binding sites, leading to non-electrostatic modifications of channel gating (allosteric effects). These effects, together with the underlying molecular modifications, provide valuable insights into the function of VGCCs, and have important physiological and pathophysiological implications. Allosteric suppression of some of the pore-forming Cavα1-subunits (Cav2.3, Cav3.2) by Zn(2+) and Cu(2+) may play a major role for the regulation of excitability by endogenous transition metal ions. The fact that these ions can often traverse VGCCs can contribute to the detrimental intracellular accumulation of metal ions following excessive

  18. A low voltage CMOS low drop-out voltage regulator

    NASA Astrophysics Data System (ADS)

    Bakr, Salma Ali; Abbasi, Tanvir Ahmad; Abbasi, Mohammas Suhaib; Aldessouky, Mohamed Samir; Abbasi, Mohammad Usaid

    2009-05-01

    A low voltage implementation of a CMOS Low Drop-Out voltage regulator (LDO) is presented. The requirement of low voltage devices is crucial for portable devices that require extensive computations in a low power environment. The LDO is implemented in 90nm generic CMOS technology. It generates a fixed 0.8V from a 2.5V supply which on discharging goes to 1V. The buffer stage used is unity gain configured unbuffered OpAmp with rail-to-rail swing input stage. The simulation result shows that the implemented circuit provides load regulation of 0.004%/mA and line regulation of -11.09mV/V. The LDO provides full load transient response with a settling time of 5.2μs. Further, the dropout voltage is 200mV and the quiescent current through the pass transistor (Iload=0) is 20μA. The total power consumption of this LDO (excluding bandgap reference) is only 80μW.

  19. SCORPION II persistent surveillance system update

    NASA Astrophysics Data System (ADS)

    Coster, Michael; Hunt, Cassandra

    2011-06-01

    This paper highlights the most recently added features and benefits available in the latest generation of Northrop Grumman SCORPION II persistent surveillance and target recognition systems. By leveraging smaller, lighter, and more power efficient SCORPION II sensor and universal gateway components, with foliage penetrating ad-hoc network communications, persistent field programmable systems that are easier to conceal can be optimized for both image capture and data exfiltration. In addition to the SCORPION II suite of sensor components, a growing list of over sixty different sensor and camera types from a variety of manufacturers have been integrated with the SCORPION Gateway family. In addition to updating several different COP systems, SCORPION and SCORPION II data can be directly processed using a common sensor status graphical user interface (GUI) that allows for viewing and analysis of images and sensor data from hundreds of SCORPION system gateways on single or multiple displays.

  20. Low Voltage Spatial Light Modulator

    SciTech Connect

    Papavasiliou, A

    2003-02-19

    This project studied the feasibility of a Low-Voltage actuator technology that promises to reduce the switched voltage requirements and linearize the response of spatial light modulators. We created computer models that demonstrate substantial advantages offered by this technology, and fabricated and tested those devices. SLMs are electro-optic devices for modulating the phase, amplitude or angle of light beams, laser or other. Applications for arrays of SLMs include turbulence correction for high-speed optical communications, imaging through distorting media, input devices for holographic memories, optical manipulation of DNA molecules, and optical computers. Devices based on micro electro-mechanical systems (MEMS) technology have recently become of special interest because of their potential for greatly improved performance at a much lower cost than piezoelectric or liquid crystal based devices. The new MEMS-based SLM devices could have important applications in high-speed optical communication and remote optical sensing, in support of DoD and DOE missions. Virtually all previously demonstrated MEMS SLMs are based on parallel-plate capacitors where an applied voltage causes a mirror attached to a suspended electrode to move towards a fixed electrode. They require relatively high voltages, typically on the order of 100 V, resulting in (1) large transistor sizes, available only from specialized foundries at significant cost and limiting the amount/sophistication of electronics under each SLM pixel, and (2) large power dissipation/area, resulting in a heat removal issue because of the optical precision required ({approx} 1/50-th of a wavelength). The actuator described in this process uses an advanced geometry that was invented at LLNL and is currently still proprietary. The new geometry allows the application of a bias voltage. This applied bias voltage results in a reduction of the required switched voltage and a linearization of the response curve. When this

  1. Hybrid Voltage-Multipliers Based Switching Power Converters

    NASA Astrophysics Data System (ADS)

    Rosas-Caro, Julio C.; Mayo-Maldonado, Jonathan C.; Vazquez-Bautista, Rene Fabian; Valderrabano-Gonzalez, Antonio; Salas-Cabrera, Ruben; Valdez-Resendiz, Jesus Elias

    2011-08-01

    This work presents a derivation of PWM DC-DC hybrid converters by combining traditional converters with the Cockcroft-Walton voltage multiplier, the voltage multiplier of each converter is driven with the same transistor of the basic topology; this fact makes the structure of the new converters very simple and provides high-voltage gain. The traditional topologies discussed are the boost, buck-boost, Cuk and SEPIC. They main features of the discussed family are: (i) high-voltage gain without using extreme duty cycles or transformers, which allow high switching frequency and (ii) low voltage stress in switching devices, along with modular structures, and more output levels can be added without modifying the main circuit, which is highly desirable in some applications such as renewable energy generation systems. It is shown how a multiplier converter can become a generalized topology and how some of the traditional converters and several state-of-the-art converters can be derived from the generalized topologies and vice-versa. All the discussed converters were simulated, additionally experimental results are provided with an interleaved multiplier converter.

  2. Sensor web

    NASA Technical Reports Server (NTRS)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  3. Incrementally Variable High-Voltage Supply

    NASA Technical Reports Server (NTRS)

    Potter, D. W.; Chin, J.; Anderson, H. R.; Loveless, R. L.

    1985-01-01

    Programable power supply provides regulated output ranging from 2.5 to 2,500 volts. Exponential digital-to-analog converter provides low-voltage analog signal to power converter and to negative and positive high-voltage regulators. In response, converter furnishes voltage of approximate magnitude represented by analog signal, and regulators adjust voltage to precise magnitude. Entire voltage range covered in 169 steps. Total power consumption expected to be less than 2 watts.

  4. Universal sensor interface module (USIM)

    NASA Astrophysics Data System (ADS)

    King, Don; Torres, A.; Wynn, John

    1999-01-01

    A universal sensor interface model (USIM) is being developed by the Raytheon-TI Systems Company for use with fields of unattended distributed sensors. In its production configuration, the USIM will be a multichip module consisting of a set of common modules. The common module USIM set consists of (1) a sensor adapter interface (SAI) module, (2) digital signal processor (DSP) and associated memory module, and (3) a RF transceiver model. The multispectral sensor interface is designed around a low-power A/D converted, whose input/output interface consists of: -8 buffered, sampled inputs from various devices including environmental, acoustic seismic and magnetic sensors. The eight sensor inputs are each high-impedance, low- capacitance, differential amplifiers. The inputs are ideally suited for interface with discrete or MEMS sensors, since the differential input will allow direct connection with high-impedance bridge sensors and capacitance voltage sources. Each amplifier is connected to a 22-bit (Delta) (Sigma) A/D converter to enable simultaneous samples. The low power (Delta) (Sigma) converter provides 22-bit resolution at sample frequencies up to 142 hertz (used for magnetic sensors) and 16-bit resolution at frequencies up to 1168 hertz (used for acoustic and seismic sensors). The video interface module is based around the TMS320C5410 DSP. It can provide sensor array addressing, video data input, data calibration and correction. The processor module is based upon a MPC555. It will be used for mode control, synchronization of complex sensors, sensor signal processing, array processing, target classification and tracking. Many functions of the A/D, DSP and transceiver can be powered down by using variable clock speeds under software command or chip power switches. They can be returned to intermediate or full operation by DSP command. Power management may be based on the USIM's internal timer, command from the USIM transceiver, or by sleep mode processing management

  5. Toward developing long-life water quality sensors for the ISS using planar REDOX and conductivity sensors

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Kuhlman, G. M.; Keymeulen, D.; Myung, N.; Kounaves, S. P.

    2003-01-01

    REDOX and conductivity sensors are metal electrodes that are used to detect ionic species in solution by measuring the electrochemical cell current as the voltage is scanned. This paper describes the construction of the sensors, the potentiostat electronics, the measurement methodology, and applications to water quality measurements.

  6. Porous glasses for optical sensors

    NASA Astrophysics Data System (ADS)

    Dorosz, Dominik; Procyk, Bernadeta

    2006-03-01

    Microporous glasses from the Na II0-B II0 3-Si0 II system can be obtained by appropriate thermal and chemical treatment. During the thermal treatment the separation of the borate phase from the silicon skeleton has been occurred. The borates are in the form small drops joined to each other. In the course of chemical treatment the borates become leached in water, water solutions of acids or basis and the glass becomes porous. Microporous glasses may find application in many branches of science and engineering. The applications depend on the internal arrangement, size and shape of pores. These parameters may be in a wide range modified by a change of the chemical composition. The received porous glass was used as an element in optical fibre NO II sensor. The specific coloration reaction between organic reagents and NO II in the pores was occurred. It is possible to detection of 10-50 ppm NO II level.

  7. EDITORIAL: Humidity sensors Humidity sensors

    NASA Astrophysics Data System (ADS)

    Regtien, Paul P. L.

    2012-01-01

    produced at relatively low cost. Therefore, they find wide use in lots of applications. However, the method requires a material that possesses some conflicting properties: stable and reproducible relations between air humidity, moisture uptake and a specific property (for instance the length of a hair, the electrical impedance of the material), fast absorption and desorption of the water vapour (to obtain a short response time), small hysteresis, wide range of relative humidity (RH) and temperature-independent output (only responsive to RH). For these reasons, much research is done and is still going on to find suitable materials that combine high performance and low price. In this special feature, three of the four papers report on absorption sensors, all with different focus. Aziz et al describe experiments with newly developed materials. The surface structure is extensively studied, in view of its ability to rapidly absorb water vapour and exhibit a reproducible change in the resistance and capacitance of the device. Sanchez et al employ optical fibres coated with a thin moisture-absorbing layer as a sensitive humidity sensor. They have studied various coating materials and investigated the possibility of using changes in optical properties of the fibre (here the lossy mode resonance) due to a change in humidity of the surrounding air. The third paper, by Weremczuk et al, focuses on a cheap fabrication method for absorption-based humidity sensors. The inkjet technology appears to be suitable for mass fabrication of such sensors, which is demonstrated by extensive measurements of the electrical properties (resistance and capacitance) of the absorbing layers. Moreover, they have developed a model that describes the relation between humidity and the electrical parameters of the moisture-sensitive layer. Despite intensive research, absorption sensors still do not meet the requirements for high accuracy applications. The dew-point temperature method is more appropriate

  8. Voltage control of ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Liu, Ming

    2016-05-01

    Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME) coupling mechanism: strain/stress, interfacial charge, spin-electromagnetic (EM) coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR) in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin-EM coupling and exchange coupling.

  9. High voltage MOSFET switching circuit

    DOEpatents

    McEwan, T.E.

    1994-07-26

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET. 2 figs.

  10. High Voltage Space Solar Arrays

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.; Vayner, B. V.; Galofaro, J. T.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent tests performed at the NASA Glenn Research Center and elsewhere have shown promise in the design and construction of high voltage (300-1000 V) solar arrays for space applications. Preliminary results and implications for solar array design will be discussed, with application to direct-drive electric propulsion and space solar power.

  11. High voltage MOSFET switching circuit

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  12. LHCb calorimeters high voltage system

    NASA Astrophysics Data System (ADS)

    Gilitsky, Yu.; Golutvin, A.; Konoplyannikov, A.; Lefrancois, J.; Perret, P.; Schopper, A.; Soldatov, M.; Yakimchuk, V.

    2007-02-01

    The calorimeter system in LHCb aims to identify electrons, photons and hadrons. All calorimeters are equipped with Hamamatsu photo tubes as devices for light to signal conversion. Eight thousand R7899-20 tubes are used for electromagnetic and hadronic calorimeters and two hundred 64 channels multi-anode R7600-00-M64 for Scintillator-Pad/Preshower detectors. The calorimeter high voltage (HV) system is based on a Cockroft Walton (CW) voltage converter and a control board connected to the Experiment Control System (ECS) by serial bus. The base of each photomultiplier tube (PMT) is built with a high voltage converter and constructed on an individual printed circuit board, using compact surface mount components. The base is attached directly to the PMT. There are no HV cables in the system. A Field Programmable Gate Array (FPGA) is used on the control board as an interface between the ECS and the 200 control channels. The FPGA includes also additional functionalities allowing automated monitoring and ramp up of the high voltage values. This paper describes the HV system architecture, some technical details of the electronics implementation and summarizes the system performance. This safe and low power consumption HV electronic system for the photomultiplier tubes can be used for various biomedical apparatus too.

  13. High-Voltage Droplet Dispenser

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2003-01-01

    An apparatus that is extremely effective in dispensing a wide range of droplets has been developed. This droplet dispenser is unique in that it utilizes a droplet bias voltage, as well as an ionization pulse, to release a droplet. Apparatuses that deploy individual droplets have been used in many applications, including, notably, study of combustion of liquid fuels. Experiments on isolated droplets are useful in that they enable the study of droplet phenomena under well-controlled and simplified conditions. In this apparatus, a syringe dispenses a known value of liquid, which emerges from, and hangs onto, the outer end of a flat-tipped, stainless steel needle. Somewhat below the needle tip and droplet is a ring electrode. A bias high voltage, followed by a high-voltage pulse, is applied so as to attract the droplet sufficiently to pull it off the needle. The voltages are such that the droplet and needle are negatively charged and the ring electrode is positively charged.

  14. Thermal protection system ablation sensor

    NASA Technical Reports Server (NTRS)

    Gorbunov, Sergey (Inventor); Martinez, Edward R. (Inventor); Scott, James B. (Inventor); Oishi, Tomomi (Inventor); Fu, Johnny (Inventor); Mach, Joseph G. (Inventor); Santos, Jose B. (Inventor)

    2011-01-01

    An isotherm sensor tracks space vehicle temperatures by a thermal protection system (TPS) material during vehicle re-entry as a function of time, and surface recession through calibration, calculation, analysis and exposed surface modeling. Sensor design includes: two resistive conductors, wound around a tube, with a first end of each conductor connected to a constant current source, and second ends electrically insulated from each other by a selected material that becomes an electrically conductive char at higher temperatures to thereby complete an electrical circuit. The sensor conductors become shorter as ablation proceeds and reduced resistance in the completed electrical circuit (proportional to conductor length) is continually monitored, using measured end-to-end voltage change or current in the circuit. Thermocouple and/or piezoelectric measurements provide consistency checks on local temperatures.

  15. Chemical sensors

    DOEpatents

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  16. Temperature Sensor

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Weed Instrument Inc. produces a line of thermocouples - temperature sensors - for a variety of industrial and research uses. One of the company's newer products is a thermocouple specially designed for high accuracy at extreme temperatures above 3,000 degrees Fahrenheit. Development of sensor brought substantial increases in Weed Instrument sales and employment.

  17. Chemical sensors

    SciTech Connect

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section.

  18. Electrochemical sensor for monitoring electrochemical potentials of fuel cell components

    DOEpatents

    Kunz, Harold R.; Breault, Richard D.

    1993-01-01

    An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

  19. The screw-helical voltage gating of ion channels.

    PubMed Central

    Keynes, R D; Elinder, F

    1999-01-01

    In the voltage-gated ion channels of every animal, whether they are selective for K+, Na+ or Ca2+, the voltage sensors are the S4 transmembrane segments carrying four to eight positive charges always separated by two uncharged residues. It is proposed that they move across the membrane in a screw-helical fashion in a series of three or more steps that each transfer a single electronic charge. The unit steps are stabilized by ion pairing between the mobile positive charges and fixed negative charges, of which there are invariably two located near the inner ends of segments S2 and S3 and a third near the outer end of either S2 or S3. Opening of the channel involves three such steps in each domain. PMID:10343407

  20. Voltage-gated Proton Channels

    PubMed Central

    DeCoursey, Thomas E.

    2014-01-01

    Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance ~103 smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn2+ (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H+ for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens. PMID:23798303