Science.gov

Sample records for ii wz sge

  1. PR Her — a WZ Sge-type cataclysmic variable

    NASA Astrophysics Data System (ADS)

    Shugarov, S.; Katysheva, N.; Gladilina, N.

    2015-12-01

    Analysis of the photometric behavior of the WZ Sge-type object PR Herculis during the 2011 outburst was carried out. The periods of "early" (0.05424d) and "ordinary" (0.054990d) superhumps were determined. The value of Pdot=4.7 10-5, showing the rate of change of the period of "ordinary" superhumps during the superoutburst, was found.

  2. ASASSN-15jd: WZ Sge-type star with intermediate superoutburst between single and double ones

    NASA Astrophysics Data System (ADS)

    Kimura, Mariko; Isogai, Keisuke; Kato, Taichi; Imada, Akira; Kojiguchi, Naoto; Sugiura, Yuki; Fukushima, Daiki; Takeda, Nao; Matsumoto, Katsura; Dvorak, Shawn; Vanmunster, Tonny; Dubovsky, Pavol A.; Kudzej, Igor; Miller, Ian; Pavlenko, Elena P.; Babina, Julia V.; Antonyuk, Oksana I.; Baklanov, Aleksei V.; Stein, William L.; Andreev, Maksim V.; Tordai, Tamás; Itoh, Hiroshi; Pickard, Roger D.; Nogami, Daisaku

    2016-08-01

    We present optical photometry of a WZ Sge-type dwarf nova (DN), ASASSN-15jd. Its light curve showed a small dip in the middle of the superoutburst in 2015 for the first time among WZ Sge-type DNe. The unusual light curve implies a delay in the growth of the 3 : 1 resonance tidal instability. Also, the light curve is similar to those of two other WZ Sge-type stars, SSS J122221.7-311523 and OT J184228.1+483742, which are believed to be the best candidates for period bouncers on the basis of their small values of the mass ratio (q ≡ M2/M1). Additionally, the small mean superhump amplitude (<0.1 mag) and the long duration of no ordinary superhumps at the early stage of its superoutburst are common to the best candidates for period bouncers. Its average superhump period was Psh = 0.0649810(78) d and no early superhumps were detected. Although we could not estimate a mass ratio of ASASSN-15jd with high accuracy, this object is expected to be a candidate for a period bouncer-a binary accounting for the missing population of post-period minimum cataclysmic variables-based on the above characteristics.

  3. Superoutburst of WZ Sge-type dwarf nova below the period minimum: ASASSN-15po

    NASA Astrophysics Data System (ADS)

    Namekata, Kosuke; Isogai, Keisuke; Kato, Taichi; Littlefield, Colin; Matsumoto, Katsura; Kojiguchi, Naoto; Sugiura, Yuki; Uto, Yusuke; Fukushima, Daiki; Tatsumi, Taiki; Yamada, Eiji; Kamibetsunawa, Taku; de Miguel, Enrique; Stein, William L.; Sabo, Richard; Andreev, Maksim V.; Morelle, Etienne; Pavlenko, E. P.; Babina, Julia V.; Baklanov, Alex V.; Antonyuk, Kirill A.; Antonyuk, Okasana I.; Sosnovskij, Aleksei A.; Shugarov, Sergey Yu.; Golysheva, Polina Yu.; Gladilina, Natalia G.; Miller, Ian; Neustroev, Vitaly V.; Chavushyan, Vahram; Valdés, José R.; Sjoberg, George; Maeda, Yutaka; Itoh, Hiroshi; Masi, Gianluca; Michel, Raúl; Dubovsky, Pavol A.; Kiyota, Seiichiro; Tordai, Tamás; Oksanen, Arto; Ruiz, Javier; Nogami, Daisaku

    2017-02-01

    We report on a superoutburst of a WZ Sge-type dwarf nova (DN), ASASSN-15po. The light curve showed the main superoutburst and multiple rebrightenings. In this outburst, we observed early superhumps and growing (stage A) superhumps with periods of 0.050454(2) and 0.051809(13) d, respectively. We estimated that the mass ratio of secondary to primary (q) is 0.0699(8) by using Porb and a superhump period PSH of stage A. ASASSN-15po [Porb ˜ 72.6 min] is the first DN with an orbital period between 67-76 min. Although the theoretical predicted period minimum Pmin of hydrogen-rich cataclysmic variables (CVs) is about 65-70 min, the observational cut-off of the orbital period distribution at 80 min implies that the period minimum is about 82 min, and the value is widely accepted. We suggest the following four possibilities: the object is (1) a theoretical period minimum object, (2) a binary with a evolved secondary, (3) a binary with a metal-poor (Popullation II) seconday, or (4) a binary which was born with a brown-dwarf donor below the period minimum.

  4. The Origin of the Molecular Emission in WZ Sagittae

    NASA Astrophysics Data System (ADS)

    Wellhouse, J. W.; Harrison, T. E.; Howell, S. B.; Szkody, P.

    2005-12-01

    We have amassed seven hours of observations of WZ Sge using NIRSPEC on Keck II. WZ Sge is the prototype TOAD, Cataclysmic Variable with infrequent large amplitude outbursts. Previous Keck NIRSPEC K band data reveled emission from both molecular hydrogen and carbon monoxide. Such emission had never been observed in any other cataclysmic variable in quiescence. Our previous limited data set suggested that the molecular emission disappeared during inferior conjunction. Our new data confirms this and indicates an origin on the heated face of the secondary. If true this may allow future investigations of exoplanets containing "hot Jupiters" as the irradiation experienced by the secondary star in WZ Sge is similar that experienced by these "hot Jupiters". We will present time resolved K band spectra of WZ Sge. These data were obtained with NOAO time on Keck.

  5. Optical dual-band photometry and spectroscopy of the WZ Sge-type dwarf nova EZ Lyn during the 2010 superoutburst

    NASA Astrophysics Data System (ADS)

    Isogai, Mizuki; Arai, Akira; Yonehara, Atsunori; Kawakita, Hideyo; Uemura, Makoto; Nogami, Daisaku

    2015-02-01

    We performed optical simultaneous dual-band (SDSS g'- and i'-bands) photometry and low-resolution spectroscopy for the WZ Sge-type dwarf nova EZ Lyn during its 2010 superoutburst. Dual-band photometry revealed that the g'- i' color reddened with a decrease in brightness during the main superoutburst and the following rebrightening phase, whereas the color became bluer with a further decrease in brightness during the slow, final decline phase. With a fit to our photometric results by a blackbody function, we estimated the disk radius ratio (ratio of the disk radius to the binary separation) and compared this with that of V455 And, a WZ Sge-type object that did not show any rebrightening in the 2007 superoutburst. The comparison revealed: (1) the disk radius ratio of EZ Lyn decreased more slowly than that of V455 And, and (2) the radius ratio of EZ Lyn at the end of the main superoutburst was larger than that of V455 And. These results favor the mass reservoir model for the mechanism of rebrightening. During both the superoutburst plateau and subsequent rebrightening phase, Hα and Hβ lines were detected. The Hα line showed a double-peak profile from which we estimated the disk radius ratio. The comparison of this ratio with that derived by photometry indicates that the Hα disk was larger than the photometric one, which suggests that the optically thin gas was extended to the outer region more than the optically thick gas disk and was possibly responsible for the rebrightening phenomenon. Time-series dual-band photometry during the main superoutburst revealed that color variations during the early superhump show roughly the same behavior as that of V455 And, whereas color variations during the ordinary superhump display clear anticorrelation with brightness, in contrast to that seen in V455 And. Here, we discuss different color behaviors.

  6. V1006 Cygni: Dwarf nova showing three types of outbursts and simulating some features of the WZ Sge-type behavior

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Pavlenko, Elena P.; Shchurova, Alisa V.; Sosnovskij, Aleksei A.; Babina, Julia V.; Baklanov, Aleksei V.; Shugarov, Sergey Yu.; Littlefield, Colin; Dubovsky, Pavol A.; Kudzej, Igor; Pickard, Roger D.; Isogai, Keisuke; Kimura, Mariko; de Miguel, Enrique; Tordai, Tamás; Chochol, Drahomir; Maeda, Yutaka; Cook, Lewis M.; Miller, Ian; Itoh, Hiroshi

    2016-04-01

    We observed the 2015 July-August long outburst of V1006 Cyg and established this object to be an SU UMa-type dwarf nova in the period gap. Our observations have confirmed that V1006 Cyg is the second established object showing three types of outbursts (normal, long normal, and superoutbursts) after TU Men. We have succeeded in recording the growing stage of superhumps (stage A superhumps) and obtained a mass ratio of 0.26-0.33, which is close to the stability limit of tidal instability. This identification of stage A superhumps demonstrates that superhumps indeed slowly grow in systems near the stability limit, the idea first introduced by Kato et al. (2014, PASJ, 66, 90). The superoutburst showed a temporary dip followed by a rebrightening. The moment of the dip coincided with the stage transition of superhumps, and we suggest that stage C superhumps are related to the start of the cooling wave in the accretion disk. We interpret that the tidal instability was not strong enough to maintain the disk in the hot state when the cooling wave started. We propose that the properties commonly seen in the extreme ends of mass ratios (WZ Sge-type objects and long-period systems) can be understood as a result of weak tidal effect.

  7. Winds in collision. II - An analysis of the X-ray emission from the eruptive symbiotic HM Sge

    NASA Technical Reports Server (NTRS)

    Willson, L. A.; Wallerstein, G.; Brugel, E. W.; Stencel, R. E.

    1984-01-01

    X-ray emissions from HM Sge obtained in 1981 from the HEAO-2 satellite are analyzed and compared quantitatively with observations of HM Sge made in 1980 and of HM Sge, V 1016 Cyg, and RR Tel made in 1979. The change in the X-ray emission from HM Sge between 1979 and 1981 is found to be consistent with the X-ray luminosity and/or temperature of the emitting region declining with an e-folding timescale of the order of one to several decades. Comparison with X-ray data from V 1016 Cyg and RR Tel gives a composite X-ray light curve that is also consistent with such a decline. A comparison of the X-ray observation with spectroscopic information makes it possible to constrain the properties of the X-ray emitting region: the result is consistent with emission from an optically thin region between the two stars in the system where their winds collide head on. It is also shown that the observations are inconsistent with a stellar (blackbody) source, with emission from an accretion disk around a white dwarf or a neutron star, and with emission from a single star wind from either a white dwarf or a neutron star.

  8. Search for non-standard model signatures in the WZ/ZZ final state at CDF run II

    SciTech Connect

    Norman, Matthew

    2009-01-01

    This thesis discusses a search for non-Standard Model physics in heavy diboson production in the dilepton-dijet final state, using 1.9 fb -1 of data from the CDF Run II detector. New limits are set on the anomalous coupling parameters for ZZ and WZ production based on limiting the production cross-section at high š. Additionally limits are set on the direct decay of new physics to ZZ andWZ diboson pairs. The nature and parameters of the CDF Run II detector are discussed, as are the influences that it has on the methods of our analysis.

  9. Measurement of the WW + WZ production cross section using the lepton + jets final state at CDF II.

    PubMed

    Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S

    2010-03-12

    We report two complementary measurements of the WW + WZ cross section in the final state consisting of an electron or muon, missing transverse energy, and jets, performed using pp collision data at square root of s = 1.96 TeV collected by the CDF II detector. The first method uses the dijet invariant mass distribution while the second more sensitive method uses matrix-element calculations. The result from the second method has a signal significance of 5.4sigma and is the first observation of WW + WZ production using this signature. Combining the results gives sigma(WW + WZ) = 16.0 +/- 3.3 pb, in agreement with the standard model prediction.

  10. Measurement of the WW+WZ Production Cross Section Using the lepton+jets Final State at CDF II

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; D'Errico, M.; di Canto, A.; di Giovanni, G. P.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, T.; Dube, S.; Ebina, K.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussein, M.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Lovas, L.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramanov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Potamianos, K.; Poukhov, O.; Prokoshin, F.; Pronko, A.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Rutherford, B.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Santi, L.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Simonenko, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Tipton, P.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Trovato, M.; Tsai, S.-Y.; Tu, Y.; Turini, N.; Ukegawa, F.; Uozumi, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wolfe, H.; Wright, T.; Wu, X.; Würthwein, F.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zhang, X.; Zheng, Y.; Zucchelli, S.; CDF Collaboration

    2010-03-01

    We report two complementary measurements of the WW+WZ cross section in the final state consisting of an electron or muon, missing transverse energy, and jets, performed using pp¯ collision data at s=1.96TeV collected by the CDF II detector. The first method uses the dijet invariant mass distribution while the second more sensitive method uses matrix-element calculations. The result from the second method has a signal significance of 5.4σ and is the first observation of WW+WZ production using this signature. Combining the results gives σWW+WZ=16.0±3.3pb, in agreement with the standard model prediction.

  11. XMM-Newton and Swift Observations of WZ Sagittae: Spectral and Timing Analysis

    NASA Technical Reports Server (NTRS)

    Nucita, A. A.; Kuulkers, E.; De Paolis, F.; Mukai, K.; Ingrosso, G.; Maiolo, B. M. T.

    2014-01-01

    WZ Sagittae is the prototype object of a subclass of dwarf novae with rare and long (super)outbursts, in which a white dwarf primary accretes matter from a low mass companion. High-energy observations offer the possibility of a better understanding of the disk-accretion mechanism in WZ Sge-like binaries.

  12. The protein LJM 111 from Lutzomyia longipalpis Salivary Gland Extract (SGE) accounts for the SGE-inhibitory effects upon inflammatory parameters in experimental arthritis model

    PubMed Central

    Grespan, Renata; Lemos, Henrique P.; Carregaro, Vanessa; Verri, Waldiceu A.; Souto, Fabricio O.; de Oliveira, Carlo J.F.; Teixeira, Clarissa; Ribeiro, José Marcos; Valenzuela, Jesus G.; Cunha, Fernando Q.

    2012-01-01

    Several studies have pointed out the immunomodulatory properties of the Salivary Gland Extract (SGE) from Lutzomyia longipalpis. We aimed to identify the SGE component (s) responsible for its effect on ovalbumin (OVA)-induced neutrophil migration (NM) and to evaluate the effect of SGE and components in the antigen-induced arthritis (AIA) model. We tested the anti-arthritic activities of SGE and the recombinant LJM111 salivary protein (rLJM111) by measuring the mechanical hypernociception and the NM into synovial cavity. Furthermore, we measured IL-17, TNF-α and IFN-γ released by lymph nodes cells stimulated with mBSA or anti-CD3 using enzyme-linked immunosorbent assay (ELISA). Additionally, we tested the effect of SGE and rLJM111 on co-stimulatory molecules expression (MHC-II and CD-86) by flow cytometry, TNF-α and IL-10 production (ELISA) of bone marrow-derived dendritic cells (BMDCs) stimulated with LPS, chemotaxis and actin polymerization from neutrophils. Besides, the effect of SGE on CXCR2 and GRK-2 expression on neutrophils was investigated. We identified one plasmid expressing the protein LJM111 that prevented NM in OVA-challenged immunized mice. Furthermore, both SGE and rLJM111 inhibited NM and pain sensitivity in AIA and reduced IL-17, TNF-α and IFN-γ. SGE and rLJM111 also reduced MHC-II and CD-86 expression and TNF-α whereas increased IL-10 release by LPS-stimulated BMDCs. SGE, but not LJM 111, inhibited neutrophils chemotaxis and actin polymerization. Additionally, SGE reduced neutrophil CXCR2 expression and increased GRK-2. Thus, rLJM111 is partially responsible for SGE mechanisms by diminishing DC function and maturation but not chemoattraction of neutrophils. PMID:22366405

  13. Observation of WZ production.

    PubMed

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenaro, C; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; DaRonco, S; Datta, M; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdeckerc, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McCarthy, K; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojma, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; Vanguri, R; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-04-20

    We report the first observation of the associated production of a W boson and a Z boson. This result is based on 1.1 fb;-1 of integrated luminosity from pp collisions at sqrt[s]=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We observe 16 WZ candidates passing our event selection with an expected background of 2.7+/-0.4 events. A fit to the missing transverse energy distribution indicates an excess of events compared to the background expectation corresponding to a significance equivalent to 6 standard deviations. The measured cross section is sigma(pp-->WZ)=5.0(-1.6)(+1.8) pb, consistent with the standard model expectation.

  14. Measurement of the WW and WZ production cross section using final states with a charged lepton and heavy-flavor jets in the full CDF Run II data set

    DOE PAGES

    Aaltonen, T.; Amerio, S.; Amidei, D.; ...

    2016-08-23

    We present a measurement of the total WW and WZ production cross sections inmore » $$p\\bar{p}$$ collision at $$\\sqrt{s}$$ = 1.96 TeV, in a final state consistent with leptonic W boson decay and jets originating from heavy-flavor quarks from either a W or a Z boson decay. This analysis uses the full data set collected with the CDF II detector during Run II of the Tevatron collider, corresponding to an integrated luminosity of 9.4 fb-1. An analysis of the dijet mass spectrum provides 3.7σ evidence of the summed production processes of either WW or WZ bosons with a measured total cross section of σWW+WZ = 13.7±3.9 pb. Independent measurements of the WW and WZ production cross sections are allowed by the different heavy-flavor decay patterns of the W and Z bosons and by the analysis of secondary-decay vertices reconstructed within heavy-flavor jets. The productions of WW and of WZ dibosons are independently seen with significances of 2.9σ and 2.1σ, respectively, with total cross sections of σWW = 9.4±4.2 pb and σWZ = 3.7$$+2.5\\atop{-2.2}$$ pb. Lastly, the measurements are consistent with standard-model predictions.« less

  15. DIRECT DETECTION OF THE L-DWARF DONOR IN WZ SAGITTAE

    SciTech Connect

    Harrison, Thomas E.

    2016-01-01

    Analysis of a large set of phase-resolved K-band spectra of the cataclysmic variable WZ Sge shows that the secondary star of this system appears to be an L-dwarf. Previous K-band spectra of WZ Sge found that the CO overtone bandheads were in emission. We show that absorption from the {sup 12}CO{sub (2,0)} bandhead of the donor star creates a dip in the {sup 12}CO{sub (2,0)} emission feature. Measuring the motion of this feature over the orbital period, we construct a radial velocity curve that gives a velocity amplitude of K{sub abs} = 520 ± 35 km s{sup −1}, consistent with the previously published values for this parameter.

  16. Search for WW and WZ production in lepton, neutrino plus jets final states at CDF Run II and Silicon module production and detector control system for the ATLAS SemiConductor Tracker

    SciTech Connect

    Sfyrla, Anna

    2008-03-10

    In the first part of this work, we present a search for WW and WZ production in charged lepton, neutrino plus jets final states produced in p$\\bar{p}$ collisions with √s = 1.96 TeV at the Fermilab Tevatron, using 1.2 fb-1 of data accumulated with the CDF II detector. This channel is yet to be observed in hadron colliders due to the large singleWplus jets background. However, this decay mode has a much larger branching fraction than the cleaner fully leptonic mode making it more sensitive to anomalous triple gauge couplings that manifest themselves at higher transverse W momentum. Because the final state is topologically similar to associated production of a Higgs boson with a W, the techniques developed in this analysis are also applicable in that search. An Artificial Neural Network has been used for the event selection optimization. The theoretical prediction for the cross section is σWW/WZtheory x Br(W → ℓv; W/Z → jj) = 2.09 ± 0.14 pb. They measured NSignal = 410 ± 212(stat) ± 102(sys) signal events that correspond to a cross section σWW/WZ x Br(W → ℓv; W/Z → jj) = 1.47 ± 0.77(stat) ± 0.38(sys) pb. The 95% CL upper limit to the cross section is estimated to be σ x Br(W → ℓv; W/Z → jj) < 2.88 pb. The second part of the present work is technical and concerns the ATLAS SemiConductor Tracker (SCT) assembly phase. Although technical, the work in the SCT assembly phase is of prime importance for the good performance of the detector during data taking. The production at the University of Geneva of approximately one third of the silicon microstrip end-cap modules is presented. This collaborative effort of the university of Geneva group that lasted two years, resulted in 655 produced modules, 97% of which were good modules, constructed within the mechanical and electrical specifications and delivered in the SCT collaboration for assembly on the end-cap disks. The SCT end-caps and barrels

  17. The orbital period of the V Sge star candidate QU Carinae

    NASA Astrophysics Data System (ADS)

    Oliveira, A. S.; Lima, H. J. F.; Steiner, J. E.; Borges, B. W.; Cieslinski, D.

    2014-11-01

    Close binary supersoft X-ray sources (CBSS) are considered strong candidates to Type Ia supernova progenitors, but very few CBSS are known in our Galaxy. The Galactic counterparts of the CBSS may be the V Sge stars, not detected in X-rays due to the strong absorption by the interstellar gas. Nevertheless, the number of members in the V Sge class is still small. In order to find new members, we selected QU Car for photometric and spectroscopic observations. The orbital period of this system was published in the literature as 10.9 h, determined from radial velocity data taken in 1979-1980, but posterior analysis of data taken in 2006-2007 did not confirm this period. We analysed the high variability of its emission line profiles with the temporal variance spectrum (TVS) technique. Besides, we recovered the 10.9 h orbital period from the radial velocities of the He II 4686 Å emission line and, for the first time, detected what may be the orbital modulation in the photometric data. This photometric modulation is present only in the lower brightness state data, when the flickering is attenuated. The inclusion of QU Car in the V Sge class is supported by many features like high/low states, strong winds, nebular lines and He II 4686 Å/Hβ line ratios. However, the non-detection of the characteristic O VI 3811-34 Å lines in its spectrum claims against this classification. These lines, though, may be highly variable so additional spectra analysed with the TVS technique can, possibly, solve this question.

  18. WW and WZ production at the Tevatron

    SciTech Connect

    Lipeles, Elliot; /UC, San Diego

    2007-01-01

    This report summarizes recent measurements of the production properties of WW and WZ pairs of bosons at the Tevatron. This includes measurements of the cross-section and triple gauge couplings in the WW process and the first evidence for WZ production.

  19. The Nuclear Protein Sge1 of Fusarium oxysporum Is Required for Parasitic Growth

    PubMed Central

    Reijnen, Linda; Manders, Erik M. M.; Boas, Sonja; Olivain, Chantal; Alabouvette, Claude; Rep, Martijn

    2009-01-01

    Dimorphism or morphogenic conversion is exploited by several pathogenic fungi and is required for tissue invasion and/or survival in the host. We have identified a homolog of a master regulator of this morphological switch in the plant pathogenic fungus Fusarium oxysporum f. sp. lycopersici. This non-dimorphic fungus causes vascular wilt disease in tomato by penetrating the plant roots and colonizing the vascular tissue. Gene knock-out and complementation studies established that the gene for this putative regulator, SGE1 (SIX Gene Expression 1), is essential for pathogenicity. In addition, microscopic analysis using fluorescent proteins revealed that Sge1 is localized in the nucleus, is not required for root colonization and penetration, but is required for parasitic growth. Furthermore, Sge1 is required for expression of genes encoding effectors that are secreted during infection. We propose that Sge1 is required in F. oxysporum and other non-dimorphic (plant) pathogenic fungi for parasitic growth. PMID:19851506

  20. Measurement of WW and WZ production in the lepton plus heavy flavor jets final state at CDF

    SciTech Connect

    Leone, Sandra

    2016-11-16

    We present the CDF measurement of the diboson WW and WZ production cross section in a final state consistent with leptonic W decay and jets originating from heavy flavor quarks, based on the full Tevatron Run II dataset. The analysis of the di–jet invariant mass spectrum allows the observation of 3.7 sigma evidence for the combined production processes of either WW or WZ bosons. The different heavy flavor decay pattern of the W and Z bosons and the analysis of the secondary–decay vertex properties allow to independently measure the WW and WZ production cross section in a hadronic final state. The measured cross sections are consistent with the standard model predictions and correspond to signal significances of 2.9 and 2.1 sigma for WW and WZ production, respectively.

  1. WW and WZ production at the tevatron

    SciTech Connect

    Fuess, T.A.

    1995-04-01

    Direct limits are set on WWZ and WW{gamma} three-boson couplings in a search for WW and WZ production in p{bar p} collisions at {radical}s = 1.8 TeV using the D(0) and CDF detectors at the Fermilab Tevatron.

  2. 75 FR 41854 - SGE Energy Sourcing, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission SGE Energy Sourcing, LLC; Supplemental Notice That Initial Market-Based Rate... notice in the above-referenced proceeding of SGE Energy Sourcing, LLC's application for market-based...

  3. Photometric observations and numerical modeling of AW Sge

    NASA Astrophysics Data System (ADS)

    Montgomery, M. M.; Voloshina, I.; Goel, Amit

    2016-01-01

    In this work, we present R-band photometric light curves of Cataclysmic Variable AW Sge, an SU Uma type, near superoutburst maximum. The positive superhump shape changes over three days, from single peaked on October 11, 2013 to one maximum near phase ϕ ˜ 0.3 followed by minor peaks near phases ϕ ˜ 0.6 and ϕ ˜ 0.9, respectively, on October 13, 2013. Using the maxima from October 11-13, 2013 (JD 2456577-2356579), the observed positive superhump period is 0.074293 ± 0.000025 days. In addition to the observations, we also provide a three dimensional Smoothed Particle Hydrodynamic simulation near superoutburst maximum, for comparison, assuming a secondary-to-primary mass ratio q =M2 /M1 = 0.6 M⊙/0.132 M⊙ = 0.22. The simulation produces positive superhump shapes that are similar to the observations. The simulated positive superhump has a period of 0.076923 days, which is approximately 6% longer than the orbital period, assuming an orbital period Porb = 0.0724 days. The 3.5% difference from the observed positive superhump period is likely due to the assumptions used in generating the simulations, as the orbital period and masses are not well known. From an analysis of the simulated positive superhump shape near superoutburst maximum, the maximum occurs near ϕ ˜ 0.3, when the disk is highly elliptical and eccentric and at least one of the two density waves is compressing with the disk rim. Based on the simulation, we find that the disk may be tilted and precessing in the retrograde direction at a time that is just before the next outburst and/or superoutburst.

  4. Measurement of the $WZ\\rightarrow \\ell\

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Abolins, Maris A.; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; Alverson, George O.; Alves, Gilvan Augusto; /Rio de Janeiro, CBPF /Nijmegen U.

    2010-06-01

    The standard model (SM) of particle physics has been extensively tested in the past three decades and is found to be in excellent agreement with experimental observations. It is widely assumed, however, that the SM is only a low energy approximation of a more general theory. Therefore, any significant deviation from the SM predictions yields information on the nature of a more fundamental theory. Production of WZ pairs is the least studied diboson process within the SM, as it is a charged final state and can only be produced at hadron colliders. A detailed study of this process probes the electroweak sector of the SM. In addition, searches for new phenomena in the production of heavy gauge boson pairs are interesting, as many extensions of the SM predict 1-4 additional heavy gauge bosons that can decay into a WZ boson pairs.

  5. Search for WZ+ZZ Production with Missing Transverse Energy and b Jets at CDF

    SciTech Connect

    Poprocki, Stephen

    2013-01-01

    Observation of diboson processes at hadron colliders is an important milestone on the road to discovery or exclusion of the standard model Higgs boson. Since the decay processes happen to be closely related, methods, tools, and insights obtained through the more common diboson decays can be incorporated into low-mass standard model Higgs searches. The combined WW + WZ + ZZ diboson cross section has been measured at the Tevatron in hadronic decay modes. In this thesis we take this one step closer to the Higgs by measuring just the WZ + ZZ cross section, exploiting a novel arti cial neural network based b-jet tagger to separate the WW background. The number of signal events is extracted from data events with large ET using a simultaneous t in events with and without two jets consistent with B hadron decays. Using 5:2 fb-1 of data from the CDF II detector, we measure a cross section of (p $\\bar{p}$ → WZ,ZZ) = 5:8+3.6 -3.0 pb, in agreement with the standard model.

  6. Measurement of the $WW+WZ$ production cross section in a semileptonic decay mode at CDF

    SciTech Connect

    Hurwitz, Martina

    2010-03-01

    The measurement of the WW + WZ production cross section in a semileptonic decay mode is presented. The measurement is carried out with 4.6 fb-1 of integrated luminosity collected by the CDF II detector in √s = 1.96 TeV proton-antiproton collisions at the Tevatron. The main experimental challenge is identifying the signal in the overwhelming background from W+jets production. The modeling of the W+jets background is carefully studied and a matrix element technique is used to build a discriminant to separate signal and background. The cross section of WW + WZ production is measured to be σ(p$\\bar{p}$ → WW + WZ) = 16.5-3.0+3.3 pb, in agreement with the next-to-leading order theoretical prediction of 15.1 ± 0.9 pb. The significance of the signal is evaluated to be 5.4σ. This measurement is an important milestone in the search for the Standard Model Higgs boson at the Tevatron.

  7. Evidence for WZ Production and a Measurement of the WZ Production Cross Section

    SciTech Connect

    Degenhardt, James D.

    2007-05-01

    This dissertation describes a test of the Standard Model (SM) of particle physics by measuring the probability, or cross section, of simultaneously producing a W boson and a Z boson from proton-antiproton collisions. The SM predicts the cross section of WZ production to be 3.68 ± 0.25 pb. The SM and physics of WZ production are described in Chapter 2 of this dissertation. The 1.96 TeV center-of-mass energy proton-antiproton collisions are provided by the Fermi National Accelerator Laboratory (FNAL) Tevatron Collider. The W and Z particles are detected using the D0 detector, which is described in Chapter 3. The data were collected by the detector during 2002-2006 corresponding to 1 fb-1 of p{bar p} collisions. This data set is described in Chapter 6. The measurement uses the trilepton (evee, μvee, evμμ, and μvμμ) decay channels, in which a W decays to a charged lepton plus a neutrino and a Z decays to a pair of charged leptons. The W and Z particle selection criteria, detection efficiency, and background determination are described in Chapter 7. We observe 13 candidate events in 1 fb-1 of p$\\bar{p}$ collisions. In this data set we expect to see 4.5 ± 0.6 background events, and we expect to see 9.2 ± 1.0 signal events. The probability of 4.5 ± 0.6 background events to fluctuate to 13 or more events is 1.2 x 10-3 which is a 3.0 σ deviation from the background estimate. A log likelihood method is used to determine the most likely cross section as determined by the measured signal efficiencies, the expected backgrounds, and the observed data. Presented in Chapter 8 is a measurement of the cross section for p$\\bar{p}$ → WZ + X at √s = 1.96 TeV. The WZ diboson production cross section is measured to be σWZ = 2.7$+1.7\\atop{-1.3}$ pb. This is in agreement with the predicted Standard Model cross section.

  8. The potential protein kinase A (Pka) phosphorylation site is required for the function of FgSge1 in Fusarium graminearum.

    PubMed

    Yu, Fang-Wei; Zhang, Xiao-Ping; Yu, Meng-Hao; Yin, Yan-Ni; Ma, Zhong-Hua

    2015-09-01

    The new transcription factor Sge1 has garnered much attention in filamentous fungi recently, which highlights its role in pathogenicity, conidiation, and the production of secondary metabolites. In this study, we demonstrated that FgSge1 is localized in the nucleus in Fusarium graminearum using fluorescent protein GFP. Mutants containing a T67A mutation within the potential protein kinase A (Pka) phosphorylation site of FgSge1 exhibited a significant decrease in conidiation and dramatically impaired virulence on both wheat head and non-host tomato. These results indicated that the Pka phosphorylation site is required for the function of FgSge1 in F. graminearum. In addition, we characterized the FgSGE1 deletion mutants and found that the mutants showed increased sensitivity to osmotic stress mediated by NaCl or KCl, and to cell wall damaging agent congo red (CR). Real-time PCR assays revealed increased transcription levels of FgSGE1 with the treatment of NaCl or CR, and decreased FgSGE1 transcription in the FgOS-2 deletion mutant ΔFgOs-2. Based on the transcription levels, it can be concluded that FgSge1 is a downstream target of the mitogen-activated protein kinase FgOs-2.

  9. Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transition from one lifestyle to another in some fungi is initiated by a single orthologous gene, SGE1, that regulates markedly different genes in different fungi. Despite these differences, many of the regulated genes encode effector proteins or proteins involved in the synthesis of secondary m...

  10. W/Z+ jets and Z p_t measurements at Tevatron

    SciTech Connect

    Chung, Y.S.; /Rochester U.

    2006-10-01

    The authors present a measurement of W/Z boson + jets production and Z p{sub T} measurement in the p{bar p} collisions at the Tevatron Collider at {radical}s = 1.96 TeV. The CDF II measures W + jets production based on 320 pb{sup -1} and the D0 Run II measures Z + jets with 950 pb{sup -1} data. The measurement of Z p{sub T} is performed with D0 Run II data corresponding to an integrated luminosity of 960 pb{sup -1}. The measurement of W + jets is compared to the Leading Order Alpgen + Pythia prediction and the Z + jets is compared to Sherpa and Pythia Monte Carlo. The Z p{sub T} measurement is also compared to Resbos + Photos predictions.

  11. The orbit and companion of the Cepheid S Sge - A probable triple system

    NASA Technical Reports Server (NTRS)

    Evans, Nancy R.; Welch, Douglas L.; Slovak, Mark H.; Barnes, Thomas G., III; Moffett, Thomas J.

    1993-01-01

    New radial velocities for the classical Cepheid S Sge have been obtained and combined with previous observations to derive a new orbit. The revised orbital elements are: gamma, -10.3 +/- 0.4 km/s; K, 15.5 +/- 0.2 km/s; e, 0.23 +/- 0.02; omega, 203.1 +/- 4.2 deg; T0, 39902.3 +/- 6.6 JD; P, 675.79 +/- 0.18 days; f(m), 0.239 +/- 0.010 solar masses; a sin i, 0.935 AU = 139.9 +/- 2.0 x 10 exp 6 km; s.e., 1.2 km/s. The revised elements differ very little from the orbit determined by Herbig and Moore (1952). We have also obtained low resolution IUE spectra to search for the companion. The IUE spectra show excess flux at 1800 A when compared with spectra of the single Cepheid Delta Cep at the same (B-V)0. The spectral type of the companion determined from this flux excess is A7 V to F0 V. However, the mass of such a companion (1.7 to 1.5 solar masses) is smaller than the minimum mass (2.8 solar masses) required by the mass function and an evolutionary mass of the Cepheid. We infer that the companion is itself a short period binary.

  12. Search for WW and WZ production in lepton plus jets final state at CDF

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; González, B. Álvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beringer, J.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burke, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cordelli, M.; Cortiana, G.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Almenar, C. Cuenca; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Derwent, P. F.; di Canto, A.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Genser, K.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; da Costa, J. Guimaraes; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heijboer, A.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Knuteson, B.; Ko, B. R.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C.-S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lucchesi, D.; Luci, C.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Merkel, P.; Mesropian, C.; Miao, T.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Fernandez, P. Movilla; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Nett, J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Griso, S. Pagan; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Rutherford, B.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Trovato, M.; Tsai, S.-Y.; Tu, Y.; Turini, N.; Ukegawa, F.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Würthwein, F.; Xie, S.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2009-06-01

    We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in s=1.96TeV p pmacr collisions at the Fermilab Tevatron, using data corresponding to 1.2fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of σWW×BR(W→ℓνℓ,W→jets)+σWZ×BR(W→ℓνℓ,Z→jets)<2.88pb, which is consistent with the standard model next-to-leading-order cross section calculation for this decay channel of 2.09±0.12pb.

  13. Search for resonant WZ production in the WZ to lvl l channel in root(s)=7 TeV pp collisions with the ATLAS detector

    SciTech Connect

    Aad G.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderhol

    2012-06-25

    A generic search is presented for a heavy particle decaying to WZ {yields} lvl{prime}l{prime} (l, l{prime} = e, {mu}) final states. The data were recorded by the ATLAS detector in {radical}s = 7 TeV pp collisions at the Large Hadron Collider and correspond to an integrated luminosity of 1.02 fb{sup -1}. The transverse mass distribution of the selected WZ candidates is found to be consistent with the standard model expectation. Upper limits on the production cross section times branching ratio are derived using two benchmark models predicting a heavy particle decaying to a WZ pair.

  14. QCD aspects of W/Z production at the Tevatron

    SciTech Connect

    Guglielmo, G.; CDF and D0 Collaborations

    1997-07-01

    Hadron colliders are providing valuable opportunities for studying the influence of the strong force on electroweak interactions in both the perturbative and non-perturbative regions. At the Fermilab Tevatron, analysis by CDF and D0 of p{anti p} {yields} W/Z + X events at {radical}s = 1.8 TeV have been used to test a variety of leading order and next-to-leading order QCD predictions. Among the many promising benefits are improvements of parton distribution functions at high Q{sup 2} , demonstration of soft gluon radiation patterns which survive hadronization, and tests of perturbative QCD and resummation calculations.

  15. Measurement of the WZ cross section and triple gauge couplings in pp̄ collisions at √s=1.96 TeV

    SciTech Connect

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hidas, D.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Pursley, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Soha, A.; Sorin, V.; Song, H.; Squillacioti, P.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vanguri, R.; Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2012-08-23

    This article describes the current most precise measurement of the WZ production cross section as well as limits on anomalous WWZ couplings at a center-of-mass energy of 1.96 TeV in proton-antiproton collisions for the Collider Detector at Fermilab (CDF). WZ candidates are reconstructed from decays containing three charged leptons and missing energy from a neutrino, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector (7.1 fb⁻¹ of integrated luminosity), 63 candidate events are observed with the expected background contributing 8±1 events. The measured total cross section σ(pp̄→WZ)=3.93+0.60–0.53(stat)+0.59–0.46(syst) pb is in good agreement with the standard model prediction of 3.50±0.21. The same sample is used to set limits on anomalous WWZ couplings.

  16. Measurement of the WZ cross section and triple gauge couplings in pp̄ collisions at √s=1.96 TeV

    DOE PAGES

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...

    2012-08-23

    This article describes the current most precise measurement of the WZ production cross section as well as limits on anomalous WWZ couplings at a center-of-mass energy of 1.96 TeV in proton-antiproton collisions for the Collider Detector at Fermilab (CDF). WZ candidates are reconstructed from decays containing three charged leptons and missing energy from a neutrino, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector (7.1 fb⁻¹ of integrated luminosity), 63 candidate events are observed with the expected background contributing 8±1 events. The measured total cross section σ(pp̄→WZ)=3.93+0.60–0.53(stat)+0.59–0.46(syst) pb is in good agreementmore » with the standard model prediction of 3.50±0.21. The same sample is used to set limits on anomalous WWZ couplings.« less

  17. On WZ and RR couplings of BPS branes and their all order α‧ corrections in IIB, IIA

    NASA Astrophysics Data System (ADS)

    Hatefi, Ehsan

    2017-03-01

    We compute all three and four point couplings of BPS Dp-branes for all different nonzero p-values on the entire world volume and transverse directions. We start finding out all four point function supersymmetric Wess-Zumino (WZ) actions of one closed string Ramond-Ramond (RR) field with two fermions, either with the same (IIB) or different chirality (IIA) as well as their all order α‧ corrections. The closed form of S-matrices of two closed string RR in both IIB, IIA, including their all order α‧ corrections have also been addressed. Our results confirm that, not only the structures of α‧ corrections but also their coefficients of IIB are quite different from their IIA ones. The S-matrix of an RR and two gauge (scalar) fields and their all order corrections in antisymmetric picture of RR have been carried out as well. Various remarks on the restricted Bianchi identities as well as all order α‧ corrections to all different supersymmetric WZ couplings in both type IIA and IIB superstring theory are also released. Lastly, different singularity structures as well as all order contact terms for all non-vanishing traces in type II have also been constructed.

  18. Winds in collision. I - Geometric implications of the emission lines for V 1016 Cyg and HM Sge

    NASA Technical Reports Server (NTRS)

    Willson, L. A.; Salzer, J.; Wallerstein, G.; Brugel, E.

    1984-01-01

    Emission line profiles and radial velocity data obtained from spectra in the visual region are presented for V1016 Cyg and HM Sge. The profiles of the forbidden emission lines are found to be inconsistent with spherical symmetry for the hot nebular material. It is argued that part of the nebular material in a detached binary system where both stars have spontaneous winds will naturally assume the shape of a curved, roughly conical, shell. The data can be satisfactorily interpreted in terms of the interaction of a low-velocity wind from a red giant with a high-velocity wind from a white dwarf in a detached binary system. This scheme provides a natural assignment of emission line forming regions to different portions of the interaction shell and the two winds, explaining both the profiles and the velocities of the features.

  19. Search for anomalous WW and WZ production at D0

    SciTech Connect

    Abachi, S.

    1995-07-01

    We present a preliminary result from a search for anomalous WW and WZ production in p{bar p} collisions at {radical}s = 1.8 TeV using p{bar p} {yields} e{nu}jj events observed during the 1992-1993 run of the Fermilab Tevatron collider. A fit to the p{sub T} spectrum of W(e{nu}) yields direct limits on the CP-conserving anomalous WW{gamma} and WWZ coupling parameters of -0.89 < {Delta}{kappa} < 1.07 ({lambda} = 0) and -0.66 < {lambda} < 0.67 ({Delta}{kappa} = 0) at the 95% confidence level, assuming that the WWZ coupling parameters are equal to the WW{gamma} coupling parameters, and a form factor scale {Lambda} = 1.5 TeV.

  20. Studies of WW and WZ production and limits on anomalous WWγ and WWZ couplings

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Akimov, V.; Alves, G. A.; Amos, N.; Anderson, E. W.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chekulaev, S. V.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Coppage, D.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gobbi, B.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J. A.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Tong; Ito, A. S.; Jerger, S. A.; Jesik, R.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Ko, W.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Landry, F.; Landsberg, G.; Leflat, A.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Martin, R. D.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mostafa, M.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Parashar, N.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Reay, N. W.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Toback, D.; Trippe, T. G.; Tuts, P. M.; Vaniev, V.; Varelas, N.; Varnes, E. W.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Wood, D. R.; Yamada, R.; Yamin, P.; Yasuda, T.

    1999-10-01

    Evidence of anomalous WW and WZ production was sought in pp¯ collisions at a center-of-mass energy of s=1.8 TeV. The final states WW(WZ)-->μν jet jet+X, WZ-->μνee+X and WZ-->eνee+X were studied using a data sample corresponding to an integrated luminosity of approximately 90 pb-1. No evidence of anomalous diboson production was found. Limits were set on anomalous WWγ and WWZ couplings and were combined with our previous results. The combined 95% confidence level anomalous coupling limits for Λ=2 TeV are -0.25<=Δκ<=0.39 (λ=0) and -0.18<=λ<=0.19 (Δκ=0), assuming the WWγ couplings are equal to the WWZ couplings.

  1. First Evidence of WW/WZ ---> l nu qq at the Tevatron

    SciTech Connect

    Haley, Joseph; /Princeton U.

    2009-07-01

    We present the first evidence from a hadron collider of WW + WZ production with semileptonic decays. The data were recorded by the D0 detector at the Fermilab Tevatron and correspond to 1.07 fb{sup -1} of integrated luminosity obtained in proton-antiproton collisions at {radical}s = 1.96 TeV. The cross section observed for WW + WZ production is 20.2 {+-} 4.5 pb with a significance of 4.4 standard deviations.

  2. Search for Resonant WW and WZ Production in pp̄ Collisions at √s=1.96 TeV

    DOE PAGES

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; ...

    2011-06-29

    We search for resonant WW or WZ production by using up to 5.4 fb⁻¹ of integrated luminosity collected by the D0 experiment in run II of the Fermilab Tevatron Collider. The data are consistent with the standard model background expectation, and we set limits on a resonance mass by using the sequential standard model W' boson and the Randall-Sundrum model graviton G as benchmarks. We exclude a sequential standard model W' boson in the mass range 180–690 GeV and a Randall-Sundrum graviton in the range 300–754 GeV at 95% C.L.

  3. Lattice structures and electronic properties of WZ-CuInS2/WZ-CdS interface from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Xia; Tang, Fu-Ling; Xue, Hong-Tao; Zhang, Yu; Cheng, Yu-Wen; Feng, Yu-Dong

    2016-12-01

    Using the first-principles plane-wave calculations within density functional theory, the perfect bi-layer and monolayer terminated WZ-CIS (100)/WZ-CdS (100) interfaces are investigated. After relaxation the atomic positions and the bond lengths change slightly on the two interfaces. The WZ-CIS/WZ-CdS interfaces can exist stably, when the interface bonding energies are -0.481 J/m2 (bi-layer terminated interface) and -0.677 J/m2 (monolayer terminated interface). Via analysis of the density of states, difference charge density and Bader charges, no interface state is found near the Fermi level. The stronger adhesion of the monolayer terminated interface is attributed to more electron transformations and orbital hybridizations, promoting stable interfacial bonds between atoms than those on a bi-layer terminated interface. Project supported by the National Natural Science Foundation of China (Grant Nos. 11164014 and 11364025) and the Gansu Science and Technology Pillar Program, China (Grant No. 1204GKCA057).

  4. Photometry and Spectroscopy of ES Aql, SV Sge, and Z UMi, Cool Stars with Variability of the R Coronae Borealis Type

    NASA Astrophysics Data System (ADS)

    Rosenbush, A. E.

    2013-12-01

    UBVR c I c photometric measurements are made of three cool stars with R Coronae Borealis type variability, ES Aql, SV Sge, and Z UMi. During their visual light minima ES Aql and Z UMi manifested brightness and color behavior typical of this type of variability: a decrease or increase in the color indices as the brightness decreases and an increase as the normal state is recovered. The molecular spectrum of Z UMi during the second half of the minimum with an weakness by about 4m was already normal, but the Na I D doublet lines were still filled with emission. High resolution profiles of the Na I D lines for SV Sge reveal a systematic shift to -10 km/s and an extended blue wing, which can be regarded as a consequence of a constant outflow of matter from the star's atmosphere that has not led to minima in the visual brightness even over a time of 9 years. Identification of the interstellar Na I D lines in the high resolution spectra has made it possible to verify the known color excess E(B-V) for Z UMi at a level 0m.02 ± 0m.11 and substantially reduce its value to 0m.03 for SV Sge. For the latter star this also opens up the possibility of a substantially lower absolute magnitude, M V ≤ 2m, than assumed previously.

  5. Curcumin derivative WZ35 efficiently suppresses colon cancer progression through inducing ROS production and ER stress-dependent apoptosis

    PubMed Central

    Zhang, Junru; Feng, Zhiguo; Wang, Chunhua; Zhou, Huiping; Liu, Weidong; Kanchana, Karvannan; Dai, Xuanxuan; Zou, Peng; Gu, Junlian; Cai, Lu; Liang, Guang

    2017-01-01

    Colon cancer is characterized by its fast progression and poor prognosis, and novel agents of treating colon cancer are urgently needed. WZ35, a synthetic curcumin derivative, has been reported to exhibit promising antitumor activity. Here, we investigated the in vitro and in vivo activities of WZ35 and explored the underlying mechanisms in colon cancer cell lines. WZ35 treatment significantly decreased the cell viability associated with G2/M cell cycle arrest and apoptosis induction in colon cancer cell lines. We also show that WZ35 is highly effective in inhibiting tumor growth in a CT26 xenograft mouse model. Mechanistically, WZ35 treatment significantly induced reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress in CT26 cells. Abrogation of ROS production by N-acetylcysteine (NAC) co-treatment almost totally reversed the WZ35-induced cell apoptosis and ER stress activation. Inhibition of p-PERK by GSK2606414 can significantly reverse WZ35-induced cell apoptosis in CT26 cells. Taken together, the curcumin derivative WZ35 exhibited anti-tumor effects in colon cancer cells both in vitro and in vivo, via a ROS-ER stress-mediated mechanism. These findings indicate that activating ROS generation could be an important strategy for the treatment of colon cancers. PMID:28337376

  6. Search for a resonance decaying into WZ boson pairs in pp collisions.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Asman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Camacho-Pérez, E; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; DeVaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Golovanov, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kirsch, M; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, W M; Leflat, A; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magaña-Villalba, R; Mal, P K; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Onoprienko, D; Orduna, J; Osman, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Parihar, V; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wagner, R; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Wenger, A; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G

    2010-02-12

    We present the first search for an electrically charged resonance W' decaying to a WZ boson pair using 4.1 fb(-1) of integrated luminosity collected with the D0 detector at the Fermilab Tevatron pp collider. The WZ pairs are reconstructed through their decays into three charged leptons (l=e, mu). A total of 9 data events is observed in good agreement with the background prediction. We set 95% C.L. limits on the W'WZ coupling and on the W' production cross section multiplied by the branching fractions. We also exclude W' masses between 188 and 520 GeV within a simple extension of the standard model and set the most restrictive limits to date on low-scale technicolor models.

  7. A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland.

    PubMed

    Zhao, Lei; Forsberg, René; Wu, Meiping; Olesen, Arne Vestergaard; Zhang, Kaidong; Cao, Juliang

    2015-06-05

    An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level.

  8. A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland

    PubMed Central

    Zhao, Lei; Forsberg, René; Wu, Meiping; Olesen, Arne Vestergaard; Zhang, Kaidong; Cao, Juliang

    2015-01-01

    An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level. PMID:26057039

  9. Measurement of WW + WZ production cross section and study of the dijet mass spectrum in the ℓν + jets final state at CDF

    SciTech Connect

    Cavaliere, Viviana

    2010-01-01

    We present the measurement of the WW and WZ production cross section in p$\\bar{p}$ collisions at √s = 1.96 TeV, in a final state consisting of an electron or muon, neutrino and jets. The data analyzed were collected by the CDF II detector at the Tevatron collider and correspond to 4.3 fb-1 of integrated luminosity. The analysis uses a fit to the dijet mass distribution to extract the diboson contribution. We observe 1582 ± 275(stat.) ± 107(syst.) diboson candidate events and measure a cross section of σWW/WZ = 18.1 ± 3.3(stat.) ± 2.5(syst.) pb, consistent with the Standard Model prediction of 15.9 ± 0.9 pb. The best fit to the dijet mass of the known components shows a good agreement with the data except for the [120, 160] GeV/c2 mass range, where an excess is observed. We perform detailed checks of our background model and study the significance of the excess, assuming an additional gaussian component with a width compatible with the expected dijet mass resolution. A standard Δχ2 test of the presence of the additional component, returns a p-value of 4.2 x 10-4 when standard sources of systematics are considered, corresponding to a significance of 3.3{sigma}.

  10. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System

    PubMed Central

    Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping

    2015-01-01

    The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01. PMID:26633407

  11. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System.

    PubMed

    Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping

    2015-12-01

    The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01.

  12. Search for $p \\bar{p} \\rightarrow WZ \\rightarrow l\

    SciTech Connect

    Pani, Priscilla; /Rome U. /INFN, Rome

    2010-07-01

    associate production of a W{sup {+-}} and Z gauge boson, looking for them in the lepton, neutrino plus jets final state, This process is predicted by the Standard Model but not revealed yet in this particular channel, both for its small cross section ({sigma}{sub WW/WZ} {approx} 16 pb{sup -1}) and for the huge backgrounds we have to deal with. The W{sup +}W{sup -} or W{sup {+-}}Z in l {bar {nu}}{sub l} j j process has been measured for the first time in [4] and represents the starting point of this work. Our aim is to discriminate W{sup {+-}}Z process from W{sup +}W{sup -} one requiring the decay of the Z boson in two b-quarks. The evidence of a peak on the invariant mass distribution will allow a tuning of the invariant mass resolution of b-jets. In addition, one of the main motivations for this quest is the similarity of this exactly predicted process with the W{sup {+-}}H associate production signature, for which it represents a test of the searching tools and techniques, as long as an irreducible background that must be understood before such Higgs search is performed.

  13. Measurements of WW and WZ Production in W plus jets Final States in p(p)over-bar Collisions

    SciTech Connect

    Abazov V. M.; Abbott B.; Acharya B. S.; Adams M.; Adams T.; Alexeev G. D.; Alkhazov G.; Alton A.; Alverson G.; Alves G. A.; Aoki M.; Askew A.; Asman B.; Atkins S.; Atramentov O.; Augsten K.; Avila C.; BackusMayes J.; Badaud F.; Bagby L.; Baldin B.; Bandurin D. V.; Banerjee S.; Barberis E.; Baringer P.; Barreto J.; Bartlett J. F.; Bassler U.; Bazterra V.; Bean A.; Begalli M.; Belanger-Champagne C.; Bellantoni L.; Beri S. B.; Bernardi G.; Bernhard R.; Bertram I.; Besancon M.; Beuselinck R.; Bezzubov V. A.; Bhat P. C.; Bhatnagar V.; Blazey G.; Blessing S.; Bloom K.; Boehnlein A.; Boline D.; Boos E. E.; Borissov G.; Bose T.; Brandt A.; Brandt O.; Brock R.; Brooijmans G.; Bross A.; Brown D.; Brown J.; Bu X. B.; Buehler M.; Buescher V.; Bunichev V.; Burdin S.; Burnett T. H.; Buszello C. P.; Calpas B.; Camacho-Perez E.; Carrasco-Lizarraga M. A.; Casey B. C. K.; Castilla-Valdez H.; Chakrabarti S.; Chakraborty D.; Chan K. M.; Chandra A.; Chapon E.; Chen G.; Chevalier-Thery S.; Cho D. K.; Cho S. W.; Choi S.; Choudhary B.; Cihangir S.; Claes D.; Clutter J.; Cooke M.; Cooper W. E.; Corcoran M.; Couderc F.; Cousinou M. -C.; Croc A.; Cutts D.; Das A.; Davies G.; De K.; de Jong S. J.; De la Cruz-Burelo E.; Deliot F.; Demina R.; Denisov D.; Denisov S. P.; Desai S.; Deterre C.; DeVaughan K.; Diehl H. T.; Diesburg M.; Ding P. F.; Dominguez A.; Dorland T.; Dubey A.; Dudko L. V.; Duggan D.; Duperrin A.; Dutt S.; Dyshkant A.; Eads M.; Edmunds D.; Ellison J.; Elvira V. D.; Enari Y.; Evans H.; Evdokimov A.; Evdokimov V. N.; Facini G.; Ferbel T.; Fiedler F.; Filthaut F.; Fisher W.; Fisk H. E.; Fortner M.; Fox H.; Fuess S.; Garcia-Bellido A.; Garcia-Guerra G. A.; Gavrilov V.; Gay P.; Geng W.; Gerbaudo D.; Gerber C. E.; Gershtein Y.; Ginther G.; Golovanov G.; Goussiou A.; Grannis P. D.; Greder S.; Greenlee H.; Greenwood Z. D.; Gregores E. M.; Grenier G.; Gris Ph.; Grivaz J. -F.; Grohsjean A.; Gruenendahl S.; Gruenewald M. W.; Guillemin T.; Gutierrez G.; Gutierrez P.; Haas A.; Hagopian S.; Haley J.; Han L.; Harder K.; Harel A.; Hauptman J. M.; Hays J.; Head T.; Hebbeker T.; Hedin D.; Hegab H.; Heinson A. P.; Heintz U.; Hensel C.; Heredia-De la Cruz I.; Herner K.; Hesketh G.; Hildreth M. D.; Hirosky R.; Hoang T.; Hobbs J. D.; Hoeneisen B.; Hohlfeld M.; Hubacek Z.; Hynek V.; Iashvili I.; Ilchenko Y.; Illingworth R.; Ito A. S.; Jabeen S.; Jaffre M.; Jamin D.; Jayasinghe A.; Jesik R.; Johns K.; Johnson M.; Jonckheere A.; Jonsson P.; Joshi J.; Jung A. W.; Juste A.; Kaadze K.; Kajfasz E.; Karmanov D.; Kasper P. A.; Katsanos I.; Kehoe R.; Kermiche S.; Khalatyan N.; Khanov A.; Kharchilava A.; Kharzheev Y. N.; Kohli J. M.; Kozelov A. V.; Kraus J.; Kulikov S.; Kumar A.; Kupco A.; Kurca T.; Kuzmin V. A.; Kvita J.; Lammers S.; Landsberg G.; Lebrun P.; Lee H. S.; Lee S. W.; Lee W. M.; Lellouch J.; Li L.; Li Q. Z.; Lietti S. M.; Lim J. K.; Lincoln D.; Linnemann J.; Lipaev V. V.; Lipton R.; Liu Y.; Lobodenko A.; Lokajicek M.; de Sa R. Lopes; Lubatti H. J.; Luna-Garcia R.; Lyon A. L.; Maciel A. K. A.; Mackin D.; Madar R.; Magana-Villalba R.; Malik S.; Malyshev V. L.; Maravin Y.; Martinez-Ortega J.; McCarthy R.; McGivern C. L.; Meijer M. M.; Melnitchouk A.; Menezes D.; Mercadante P. G.; Merkin et al.

    2012-05-02

    We study WW and WZ production with {ell}{nu}qq ({ell} = e,{mu}) final states using data collected by the D0 detector at the Fermilab Tevatron Collider corresponding to 4.3 fb{sup -1} of integrated luminosity from p{bar p} collisions at {radical}s = 1.96 TeV. Assuming the ratio between the production cross sections {sigma}(WW) and {sigma}(WZ) as predicted by the standard model, we measure the total WV (V = W,Z) cross section to be {sigma}(WV) = 19.6{sub -3.0}{sup +3.2} pb and reject the background-only hypothesis at a level of 7.9 standard deviations. We also use b-jet discrimination to separate the WZ component from the dominant WW component. Simultaneously fitting WW and WZ contributions, we measure {sigma}(WW) = 15.9{sub -3.2}{sup +3.7} pb and {sigma}(WZ) = 3.3{sub -3.3}{sup +4.1} pb, which is consistent with the standard model predictions.

  14. Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. II The Second Year (2009-2010)

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Maehara, Hiroyuki; Uemura, Makoto; Henden, Arne; Miguel, Enrique De; Miller, Ian; Dubovsky, Pavol A.; Kudzej, Igor; Kiyota, Seiichiro; Hambsch, Franz-Josef; Tanabe, Kenji; Imamura, Kazuyoshi; Kunitomi, Nanae; Takagi, Ryosuke; Nose, Mikiha; Akazawa, Hidehiko; Masi, Gianluca; Nakagawa, Shinichi; Iino, Eriko; Noguchi, Ryo; Matsumoto, Katsura; Fujii, Daichi; Kobayashi, Hiroshi; Ogura, Kazuyuki; Ohtomo, Sachi; Yamashita, Kousei; Yanagisawa, Hirofumi; Itoh, Hiroshi; Bolt, Greg; Monard, Berto; Ohshima, Tomohito; Shears, Jeremy; Ruiz, Javier; Imada, Akira; Oksanen, Arto; Nelson, Peter; Gomez, Tomas L.; Staels, Bart; Boyd, David; Voloshina, Irina B.; Krajci, Thomas; Crawford, Tim; Stockdale, Chris; Richmond, Michael; Morelle, Etienne; Novák, Rudolf; Nogami, Daisaku; Ishioka, Ryoko; Brady, Steve; Simonsen, Mike; Pavlenko, Elena P.; Ringwald, Frederick A.; Kuramoto, Tetsuya; Miyashita, Atsushi; Pickard, Roger D.; Hynek, Tomáš; Dvorak, Shawn; Stubbings, Rod; Muyllaert, Eddy

    2010-12-01

    Continued from Kato et al. (2009, PASJ, 61, S395), we collected the times of superhump maxima for 68 SU UMa-type dwarf novae, mainly observed during the 2009-2010 season. The newly obtained data confirmed the basic findings reported in Kato et al. (ibid.): the presence of stages A-C and the predominance of positive period derivatives during stage B in systems with superhump periods shorter than 0.07 d. There was a systematic difference in the period derivatives for the systems with superhump periods longer than 0.075 d between this study and Kato et al. (ibid.). We suggest that this difference was possibly caused by a relative lack of frequently outbursting SU UMa-type dwarf novae in this period regime in the present study. We recorded a strong beat phenomenon during the 2009 superoutburst of IY UMa. A close correlation between the beat period and the superhump period suggests that the changing angular velocity of the apsidal motion of the elliptical disk is responsible for the variation of the superhump periods. We also described three new WZ Sge-type objects with established early superhumps and one with likely early superhumps. We suggest that two systems, VX For and EL UMa, are WZ Sge-type dwarf novae with multiple rebrightenings. The O - C variation in OT J213806.6+261957 suggests that the frequent absence of rebrightenings in very short-Porb objects can be the result of a sustained superoutburst plateau at the epoch when usual SU UMa-type dwarf novae return to quiescence, preceding a rebrightening. We also present a formulation for a variety of Bayesian extensions to traditional period analyses.

  15. Search for resonant WW and WZ production in ppbar collisions at ?s = 1.96 TeV

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; Alverson, George O.; Alves, Gilvan Augusto; Ancu, Lucian Stefan; /Nijmegen U. /Fermilab

    2010-11-01

    The standard model of particle physics is expected to be a low energy effective theory valid for particle interactions below the TeV scale. Above this scale, extensions to the standard model (SM) augment the existing particle content, leading to enhanced production of many final states at colliders. Specifically, the production and decay of massive charged or neutral particles can produce an excess of W boson pairs for neutral particles or W and Z boson pairs for charged particles. We search for resonant WW or WZ production using up to 5.4 fb{sup -1} of integrated luminosity collected by the D0 experiment in Run II of the Fermilab Tevatron Collider. The data are consistent with the standard model background expectation, and we set limits on a resonance mass using the sequential standard model (SSM) W{prime} boson and the Randall-Sundrum model graviton G as benchmarks. We exclude an SSM W{prime} boson in the mass range 180-690 GeV and a Randall-Sundrum graviton in the range 300-754 GeV at 95% CL.

  16. Search for WW and WZ Resonances Decaying to Electron, Missing ET, and Two Jets in pp¯ Collisions at s=1.96TeV.

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; D'Ascenzo, N.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; D'Errico, M.; di Canto, A.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, T.; Dube, S.; Ebina, K.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussein, M.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Ko, B. R.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Lovas, L.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramanov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Potamianos, K.; Poukhov, O.; Prokoshin, F.; Pronko, A.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Rutherford, B.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Santi, L.; Sartori, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Simonenko, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Tipton, P.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tsai, S.-Y.; Tu, Y.; Turini, N.; Ukegawa, F.; Uozumi, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.; Wang, C.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wolfe, H.; Wright, T.; Wu, X.; Würthwein, F.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zhang, X.; Zheng, Y.; Zucchelli, S.; CDF Collaboration

    2010-06-01

    Using data from 2.9fb-1 of integrated luminosity collected with the CDF II detector at the Tevatron, we search for resonances decaying into a pair of on-shell gauge bosons, WW or WZ, where one W decays into an electron and a neutrino, and the other boson decays into two jets. We observed no statistically significant excess above the expected standard model background, and we set cross section limits at 95% confidence level on G* (Randall-Sundrum graviton), Z', and W' bosons. By comparing these limits to theoretical cross sections, mass exclusion regions for the three particles are derived. The mass exclusion regions for Z' and W' are further evaluated as a function of their gauge coupling strength.

  17. Measurements of WW and WZ Production in W+jets Final States in pp̄ Collisions

    SciTech Connect

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Aoki, M.; Askew, A.; Åsman, B.; Atkins, S.; Atramentov, O.; Augsten, K.; Avila, C.; BackusMayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Camacho-Pérez, E.; Carrasco-Lizarraga, M. A.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Théry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; De, K.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; García-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jamin, D.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Kvita, J.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Muanza, G. S.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Novaes, S. F.; Nunnemann, T.; Obrant, G.; Orduna, J.; Osman, N.; Osta, J.; Otero y Garzón, G. J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Piegaia, R.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Polozov, P.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Safronov, G.; Sajot, G.; Salcido, P.; Sánchez-Hernández, A.; Sanders, M. P.; Sanghi, B.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schliephake, T.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Sirotenko, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Strom, D.; Stutte, L.; Suter, L.; Svoisky, P.; Takahashi, M.; Tanasijczuk, A.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weber, M.; Welty-Rieger, L.; White, A.; Wicke, D.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, W.-C.; Yasuda, T.; Yatsunenko, Y. A.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J.; Zhao, T.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2012-05-02

    We study WW and WZ production with lνqq (l=e,μ) final states using data collected by the D0 detector at the Fermilab Tevatron Collider corresponding to 4.3 fb⁻¹ of integrated luminosity from pp̄ collisions at √s=1.96 TeV. Assuming the ratio between the production cross sections σ(WW) and σ(WZ) as predicted by the standard model, we measure the total WV (V=W,Z) cross section to be σ(WV)=19.6+3.2-3.0 pb and reject the background-only hypothesis at a level of 7.9 standard deviations. We also use b-jet discrimination to separate the WZ component from the dominant WW component. Simultaneously fitting WW and WZ contributions, we measure σ(WW)=15.9+3.7-3.2 pb and σ(WZ)=3.3+4.1-3.3 pb, which is consistent with the standard model predictions.

  18. Measurements of WW and WZ Production in W+jets Final States in pp̄ Collisions

    DOE PAGES

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; ...

    2012-05-02

    We study WW and WZ production with lνqq (l=e,μ) final states using data collected by the D0 detector at the Fermilab Tevatron Collider corresponding to 4.3 fb⁻¹ of integrated luminosity from pp̄ collisions at √s=1.96 TeV. Assuming the ratio between the production cross sections σ(WW) and σ(WZ) as predicted by the standard model, we measure the total WV (V=W,Z) cross section to be σ(WV)=19.6+3.2-3.0 pb and reject the background-only hypothesis at a level of 7.9 standard deviations. We also use b-jet discrimination to separate the WZ component from the dominant WW component. Simultaneously fitting WW and WZ contributions, we measuremore » σ(WW)=15.9+3.7-3.2 pb and σ(WZ)=3.3+4.1-3.3 pb, which is consistent with the standard model predictions.« less

  19. Search for anomalous WW/WZ → evjj production at D0; Busqueda de produccion anomala WW/WZ →evjj en D-Zero

    SciTech Connect

    Hernandez, Alberto Sanchez

    1997-02-01

    A search for anomalous WW and WZ production in p$\\bar{p}$ collisions at √s = 1.8 TeV using the D0 detector at Fermilab is presented. With a data sample of p$\\bar{p}$ → evjjX events corresponding to an integrated luminosity of 76.5 ± 4.1pb-1. 399 candidate events were identified, from which 387.1 ± 39.8 events were estimated to be background. No deviations from the Standard Model were seen, which predicts 16.2 ± 2.7 events. The 95% CL limit on the cross section σ(p$\\bar{p}$ → W+W-X) was calculated to be 93.8 pb. Limits on the CP-conserving anomalous WWγ and WWZ coupling parameters were obtained from a binned likelihood fit to the transverse momentum spectrum of the W boson. Assuming that the WWγ and WWZ coupling parameters are equal, the 95% CL limits on the CP-conserving couplings are -0.56 < Δκ < 0.75 (with λ = 0) and -0.42 < λ < 0.44 (with Δκ = 0), for a form factor scale ΛFF = 1.5 TeV. Limits on other assumptions are also reported. These results were combined with the previous D0 WW, WZ → evjj published results (13.7 ± 0.7 pb-1), and the limits on the anomalous coupling parameters were set to -0.44 < Δκ < 0.60 (with λ = 0) and -0.34 < {lambda} 0.37 (with Δκ = 0), for a form factor scale ΛFF = 2.0 TeV.

  20. Measurement of the WZ production cross section in pp collisions at √{ s} = 13 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Goebel, K.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Behnamian, H.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Oh, S. B.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chadeeva, M.; Danilov, M.; Markin, O.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Bowen, J.; Bruner, C.; Castle, J.; Kenny, R. P., III; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Kumar, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Luo, J.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-03-01

    The WZ production cross section in proton-proton collisions at √{ s} = 13 TeV is measured with the CMS experiment at the LHC using a data sample corresponding to an integrated luminosity of 2.3 fb-1. The measurement is performed in the leptonic decay modes WZ → ℓνℓ‧ℓ‧, where ℓ ,ℓ‧ = e , μ. The measured cross section for the range 60 WZ) = 39.9 ± 3.2 (stat) -3.1 +2.9(syst) ± 0.4 (theo) ± 1.3 (lumi) pb, consistent with the standard model prediction.

  1. Properties of WZ21 (%wt) alloy processed by a powder metallurgy route.

    PubMed

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2015-06-01

    Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 μm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times.

  2. First evidence for WW and WZ diboson production with semi-leptonic decays at a Hadron Collider

    SciTech Connect

    Haley, Joseph Glenn Biddle

    2009-06-01

    Presented is a measurement of the simultaneous production of a W± boson in association with a second weak boson (W± or Z0) in p$\\bar{p}$ collisions at √s = 1.96 TeV. Events are consider with one electron or one muon, missing transverse energy, and at least two hadronic jets. The data were collected by the D0 detector in Run IIa of the Tevatron accelerator and correspond to 1.07 fb-1 of integrated luminosity for each of the two channels (WW/WZ → evq$\\bar{q}$ and WW/WZ → μvq$\\bar{q}$). The cross section for WW + WZ production is measured to be 20.2 ± 2.5(stat) ± 3.6(sys) ± 1.2(lum) pb with a Gaussian significance of 4.4 standard deviations above the background-only scenario. This measurement is consistent with the Standard Model prediction and represents the first direct evidence for WW and WZ production with semi-leptonic decays at a hadron collider.

  3. Limits on anomalous WWγ and WWZ couplings from WW/WZ-->eνjj production

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Ahn, S.; Akimov, V.; Alves, G. A.; Amos, N.; Anderson, E. W.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Belyaev, A.; Beri, S. B.; Bernardi, G.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Cho, D. K.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Connolly, B.; Cooper, W. E.; Coppage, D.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Feher, S.; Fein, D.; Ferbel, T.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Fleuret, F.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gilmartin, R.; Ginther, G.; Gobbi, B.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J. A.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Ito, A. S.; Jerger, S. A.; Jesik, R.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Kahn, S.; Kajfasz, E.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Knuteson, B.; Ko, W.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Landsberg, G.; Leflat, A.; Lehner, F.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lu, J. G.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Maciel, A. K.; Madaras, R. J.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Martin, R. D.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mostafa, M.; da Motta, H.; Nagy, E.; Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Negret, J. P.; Negroni, S.; Norman, D.; Oesch, L.; Oguri, V.; Olivier, B.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Parashar, N.; Partridge, R.; Parua, N.; Paterno, M.; Patwa, A.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Popkov, E.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Reay, N. W.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Sculli, J.; Sen, N.; Shabalina, E.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Singh, H.; Singh, J. B.; Sirotenko, V.; Slattery, P.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Song, X. F.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Stutte, L.; Sznajder, A.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Toback, D.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; van Gemmeren, P.; Vaniev, V.; Varelas, N.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Wood, D. R.; Yamada, R.; Yamin, P.; Yasuda, T.; Yip, K.; Youssef, S.; Yu, J.; Yu, Y.; Zanabria, M.; Zheng, H.; Zhou, Z.; Zhu, Z. H.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A.

    2000-09-01

    Limits on anomalous WWγ and WWZ couplings are presented from a study of WW/WZ-->eνjj events produced in pp¯ collisions at s=1.8 TeV. Results from the analysis of data collected using the DØ detector during the 1993-1995 Tevatron collider run at Fermilab are combined with those of an earlier study from the 1992-1993 run. A fit to the transverse momentum spectrum of the W boson yields direct limits on anomalous WWγ and WWZ couplings. With the assumption that the WWγ and WWZ couplings are equal, we obtain -0.34<λ<0.36 (with Δκ=0) and -0.43<Δκ<0.59 (with λ=0) at the 95% confidence level for a form-factor scale Λ=2.0 TeV.

  4. Search for WZ + ZZ productions with missing transverse energy + jets with b enhancement at \\(\\sqrt{s} = 1.96\\) TeV

    DOE PAGES

    Aaltonen, T.; Gonzalez, B. Alvarez; Amerio, S.; ...

    2012-01-06

    Diboson production (WW + WZ + ZZ) has been observed at the Tevatron in hadronic decay modes dominated by the WW process. This paper describes the measurement of the cross section of WZ and ZZ events in final states with large ET and using b-jet identification as a tool to suppress WW contributions. Due to the limited energy resolution, we cannot distinguish between partially hadronic decays of WZ and ZZ, and we measure the sum of these processes. The number of signal events is extracted using a simultaneous fit to the invariant mass distribution of the two jets for eventsmore » with two b-jet candidates and events without two b-jet candidates. We measure a cross section Σ(pp¯ → WZ,ZZ) = 5.8-3.0+3.6 pb, in agreement with the standard model.« less

  5. Search for WZ + ZZ productions with missing transverse energy + jets with b enhancement at \\(\\sqrt{s} = 1.96\\) TeV

    SciTech Connect

    Aaltonen, T.; Gonzalez, B. Alvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; Arisawa, T.

    2012-01-06

    Diboson production (WW + WZ + ZZ) has been observed at the Tevatron in hadronic decay modes dominated by the WW process. This paper describes the measurement of the cross section of WZ and ZZ events in final states with large ET and using b-jet identification as a tool to suppress WW contributions. Due to the limited energy resolution, we cannot distinguish between partially hadronic decays of WZ and ZZ, and we measure the sum of these processes. The number of signal events is extracted using a simultaneous fit to the invariant mass distribution of the two jets for events with two b-jet candidates and events without two b-jet candidates. We measure a cross section Σ(pp¯ → WZ,ZZ) = 5.8-3.0+3.6 pb, in agreement with the standard model.

  6. Measurement of the sum of WW and WZ production with W+dijet events in pp collisions at [Formula: see text].

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Aguilo, E; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, C; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Waltenberger, W; Walzel, G; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Luyckx, S; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Olbrechts, A; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hreus, T; Léonard, A; Marage, P E; Mohammadi, A; Reis, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; Mccartin, J; Ocampo Rios, A A; Ryckbosch, D; Strobbe, N; Thyssen, F; Tytgat, M; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Bruno, G; Castello, R; Ceard, L; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; Martins, T; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Malek, M; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Soares Jorge, L; Sznajder, A; Vilela Pereira, A; Anjos, T S; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, Y; Li, W; Liu, S; Mao, Y; Qian, S J; Teng, H; Wang, D; Zhang, L; Zou, W; Avila, C; Gomez, J P; Gomez Moreno, B; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Mekterovic, D; Morovic, S; Attikis, A; Galanti, M; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Elgammal, S; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Millischer, L; Nayak, A; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Daci, N; Dahms, T; Dalchenko, M; Dobrzynski, L; Florent, A; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Fontaine, J-C; Gelé, D; Goerlach, U; Juillot, P; Le Bihan, A-C; Van Hove, P; Fassi, F; Mercier, D; Beauceron, S; Beaupere, N; Bondu, O; Boudoul, G; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Sgandurra, L; Sordini, V; Tschudi, Y; Verdier, P; Viret, S; Tsamalaidze, Z; Autermann, C; Beranek, S; Calpas, B; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Kreuzer, P; Merschmeyer, M; Meyer, A; Olschewski, M; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Thüer, S; Weber, M; Bontenackels, M; Cherepanov, V

    A measurement of the inclusive WW+WZ diboson production cross section in proton-proton collisions is reported, based on events containing a leptonically decaying W boson and exactly two jets. The data sample, collected at [Formula: see text] with the CMS detector at the LHC, corresponds to an integrated luminosity of 5.0 fb(-1). The measured value of the sum of the inclusive WW and WZ cross sections is σ(pp→WW+WZ)=68.9±8.7 (stat.)±9.7 (syst.)±1.5 (lum.) pb, consistent with the standard model prediction of 65.6±2.2 pb. This is the first measurement of WW+WZ production in pp collisions using this signature. No evidence for anomalous triple gauge couplings is found and upper limits are set on their magnitudes.

  7. Measurement of the sum of WW and WZ production with W+dijet events in pp collisions at √{s} = 7 {TeV}

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.

    2013-02-01

    A measurement of the inclusive WW+WZ diboson production cross section in proton-proton collisions is reported, based on events containing a leptonically decaying W boson and exactly two jets. The data sample, collected at √{s} = 7 {TeV} with the CMS detector at the LHC, corresponds to an integrated luminosity of 5.0 fb-1. The measured value of the sum of the inclusive WW and WZ cross sections is σ(pp→WW+WZ)=68.9±8.7 (stat.)±9.7 (syst.)±1.5 (lum.) pb, consistent with the standard model prediction of 65.6±2.2 pb. This is the first measurement of WW+WZ production in pp collisions using this signature. No evidence for anomalous triple gauge couplings is found and upper limits are set on their magnitudes.

  8. Measurement of the WW and WZ production cross section using final states with a charged lepton and heavy-flavor jets in the full CDF Run II data set

    SciTech Connect

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d’Ascenzo, N.; Datta, M.; De Barbaro, P.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Sorin, V.; Song, H.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W. -M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2016-08-23

    We present a measurement of the total WW and WZ production cross sections in $p\\bar{p}$ collision at $\\sqrt{s}$ = 1.96 TeV, in a final state consistent with leptonic W boson decay and jets originating from heavy-flavor quarks from either a W or a Z boson decay. This analysis uses the full data set collected with the CDF II detector during Run II of the Tevatron collider, corresponding to an integrated luminosity of 9.4 fb-1. An analysis of the dijet mass spectrum provides 3.7σ evidence of the summed production processes of either WW or WZ bosons with a measured total cross section of σWW+WZ = 13.7±3.9 pb. Independent measurements of the WW and WZ production cross sections are allowed by the different heavy-flavor decay patterns of the W and Z bosons and by the analysis of secondary-decay vertices reconstructed within heavy-flavor jets. The productions of WW and of WZ dibosons are independently seen with significances of 2.9σ and 2.1σ, respectively, with total cross sections of σWW = 9.4±4.2 pb and σWZ = 3.7$+2.5\\atop{-2.2}$ pb. Lastly, the measurements are consistent with standard-model predictions.

  9. Search for a W' or Techni-ρ Decaying into WZ in pp Collisions at s=7TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.

    2012-10-01

    A search is performed in pp collisions at s=7TeV for exotic particles decaying via WZ to final states with electrons and muons. The data sample corresponds to an integrated luminosity of approximately 5fb-1. No significant excess is observed in the data above the expected standard model background. Upper bounds at 95% confidence level are set on the production cross section of the W' boson described by the sequential standard model and on the W' WZ coupling. W' bosons with masses below 1143 GeV are excluded. Limits are also set in the context of low-scale technicolor models, under a range of assumptions concerning the model parameters.

  10. Search for $WW$ and $WZ$ resonances decaying to electron, missing $E_T$, and two jets in $p\\bar{p}$ collisions at $\\sqrt{s}=1.96$ TeV

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.; Apresyan, A.; /Purdue U. /Waseda U.

    2010-04-01

    Using data from 2.9 fb{sup -1} of integrated luminosity collected with the CDF II detector at the Tevatron, we search for resonances decaying into a pair of on-shell gauge bosons, WW or WZ, where one W decays into an electron and a neutrino, and the other boson decays into two jets. We observed no statistically significant excess above the expected standard model background, and we set cross section limits at 95% confidence level on G* (Randall-Sundrum graviton), Z{prime}, and W{prime} bosons. By comparing these limits to theoretical cross sections, mass exclusion regions for the three particles are derived. The mass exclusion regions for Z{prime} and W{prime} are further evaluated as a function of their gauge coupling strength.

  11. Analytical study of the propagation of fast longitudinal modes along wz-BN/AlN thin acoustic waveguides.

    PubMed

    Caliendo, Cinzia

    2015-01-23

    The propagation of the fundamental symmetric Lamb mode S0 along wz-BN/AlN thin composite plates suitable for telecommunication and sensing applications is studied. The investigation of the acoustic field profile across the plate thickness revealed the presence of modes having longitudinal polarization, the Anisimkin Jr. plate modes (AMs), travelling at a phase velocity close to that of the wz-BN longitudinal bulk acoustic wave propagating in the same direction. The study of the S0 mode phase velocity and coupling coefficient (K2) dispersion curves, for different electrical boundary conditions, has shown that eight different coupling configurations are allowable that exhibit a K2 as high as about 4% and very high phase velocity (up to about 16,700 m/s). The effect of the thickness and material type of the metal floating electrode on the K2 dispersion curves has also been investigated, specifically addressing the design of an enhanced coupling device. The gravimetric sensitivity of the BN/AlN-based acoustic waveguides was then calculated for both the AMs and elliptically polarized S0 modes; the AM-based sensor velocity and attenuation shifts due to the viscosity of a surrounding liquid was theoretically predicted. The performed investigation suggests that wz-BN/AlN is a very promising substrate material suitable for developing GHz band devices with enhanced electroacoustic coupling efficiency and suitable for application in telecommunications and sensing fields.

  12. Analytical Study of the Propagation of Fast Longitudinal Modes along wz-BN/AlN Thin Acoustic Waveguides

    PubMed Central

    Caliendo, Cinzia

    2015-01-01

    The propagation of the fundamental symmetric Lamb mode S0 along wz-BN/AlN thin composite plates suitable for telecommunication and sensing applications is studied. The investigation of the acoustic field profile across the plate thickness revealed the presence of modes having longitudinal polarization, the Anisimkin Jr. plate modes (AMs), travelling at a phase velocity close to that of the wz-BN longitudinal bulk acoustic wave propagating in the same direction. The study of the S0 mode phase velocity and coupling coefficient (K2) dispersion curves, for different electrical boundary conditions, has shown that eight different coupling configurations are allowable that exhibit a K2 as high as about 4% and very high phase velocity (up to about 16,700 m/s). The effect of the thickness and material type of the metal floating electrode on the K2 dispersion curves has also been investigated, specifically addressing the design of an enhanced coupling device. The gravimetric sensitivity of the BN/AlN-based acoustic waveguides was then calculated for both the AMs and elliptically polarized S0 modes; the AM-based sensor velocity and attenuation shifts due to the viscosity of a surrounding liquid was theoretically predicted. The performed investigation suggests that wz-BN/AlN is a very promising substrate material suitable for developing GHz band devices with enhanced electroacoustic coupling efficiency and suitable for application in telecommunications and sensing fields. PMID:25625904

  13. WZ Cephei: A Dynamically Active W UMa-Type Binary Star

    NASA Astrophysics Data System (ADS)

    Jeong, Jang-Hae; Kim, Chun-Hwey

    2011-09-01

    An intensive analysis of 185 timings of WZ Cep, including our new three timings, was made to understand the dynamical picture of this active W UMa-type binary. It was found that the orbital period of the system has complexly varied in two cyclical components superposed on a secularly downward parabola over about 80y. The downward parabola, corresponding to a secular period decrease of -9.d97 × 10-8 y-1, is most probably produced by the action of both angular momentum loss (AML) due to magnetic braking and mass-transfer from the massive primary component to the secondary. The period decrease rate of -6.d72 × 10-8 y-1 due to AML contributes about 67% to the observed period decrease. The mass flow of about 5.16 × 10-8 M⊙ y-1 from the primary to the secondary results the remaining 33% period decrease. Two cyclical components have an 11.y8 period with amplitude of 0.d0054 and a 41.y3 period with amplitude of 0.d0178. It is very interesting that there seems to be exactly in a commensurable 7:2 relation between their mean motions. As the possible causes, two rival interpretations (i.e., light-time effects (LTE) by additional bodies and the Applegate model) were considered. In the LTE interpretation, the minimum masses of 0.30 M⊙ for the shorter period and 0.49 M⊙ for the longer one were calculated. Their contributions to the total light were at most within 2%, if they were assumed to be main-sequence stars. If the LTE explanation is true for the WZ Cep system, the 7:2 relation found between their mean motions would be interpreted as a stable 7:2 orbit resonance produced by a long-term gravitational interaction between two tertiary bodies. In the Applegate model interpretation, the deduced model parameters indicate that the mechanism could work only in the primary star for both of the two period modulations, but could not in the secondary. However, we couldn't find any meaningful relation between the light variation and the period variability from the historical

  14. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02.

    PubMed

    Yu, Ruihang; Cai, Shaokun; Wu, Meiping; Cao, Juliang; Zhang, Kaidong

    2015-09-16

    In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter-SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS), a Global Navigation Satellite System (GNSS) remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS) of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  15. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02

    PubMed Central

    Yu, Ruihang; Cai, Shaokun; Wu, Meiping; Cao, Juliang; Zhang, Kaidong

    2015-01-01

    In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter—SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS), a Global Navigation Satellite System (GNSS) remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS) of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising. PMID:26389916

  16. ROS generation mediates the anti-cancer effects of WZ35 via activating JNK and ER stress apoptotic pathways in gastric cancer

    PubMed Central

    Zou, Peng; Zhang, Junru; Xia, Yiqun; Kanchana, Karvannan; Guo, Guilong; Chen, Wenbo; Huang, Yi; Wang, Zhe; Yang, Shulin; Liang, Guang

    2015-01-01

    Gastric cancer is one of the leading causes of cancer mortality in the world, and finding novel agents and strategies for the treatment of advanced gastric cancer is of urgent need. Curcumin is a well-known natural product with anti-cancer ability, but is limited by its poor chemical stability. In this study, an analog of curcumin with high chemical stability, WZ35, was designed and evaluated for its anti-cancer effects and underlying mechanisms against human gastric cancer. WZ35 showed much stronger anti-proliferative effects than curcumin, accompanied by dose-dependent induction of cell cycle arrest and apoptosis in gastric cancer cells. Mechanistically, our data showed that WZ35 induced reactive oxygen species (ROS) production, resulting in the activation of both JNK-mitochondrial and ER stress apoptotic pathways and eventually cell apoptosis in SGC-7901 cells. Blockage of ROS production totally reversed WZ35-induced JNK and ER stress activation as well as cancer cell apoptosis. In vivo, WZ35 showed a significant reduction in SGC-7901 xenograft tumor size in a dose-dependent manner. Taken together, this work provides a novel anticancer candidate for the treatment of gastric cancer, and importantly, reveals that increased ROS generation might be an effective strategy in human gastric cancer treatment. PMID:25714022

  17. Measurement of the WZ boson pair production cross section at 13 TeV and confidence intervals on anomalous triple gauge couplings with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Iliadis, Dimitrios

    2017-03-01

    The WZ boson pair production at 13 TeV is measured using the ATLAS detector. Leptonic decays of the W and Z bosons to electrons and muons are considered using 2015 and 2016 data that correspond to a total integrated luminosity of 13.3 fb-1. The differential cross-section as a function of jet multiplicity is also measured along with the charge-dependent W+Z and W-Z cross-sections and their ratio. Also, the integrated fiducial cross-sections ratio, measured at center-of-mass energies of 8 TeV and 13 TeV, is calculated. Finally, limits on anomalous triple gauge couplings are derived.

  18. Passivation for Cu2ZnSnS4/WZ-ZnO interface states: From the first principles calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Wen; Tang, Fu-Ling; Xue, Hong-Tao; Liu, Hong-Xia; Gao, Bo

    2017-02-01

    We employed the first-principles calculations to investigate F, Cl and H's passivation effects for Cu2ZnSnS4 (102)/WZ-ZnO (110) interface, in which the interface states mainly originate from Sn atoms. The interface states peaks can be reduced more or less by introducing F, Cl and H around Sn atom. H and F have a more efficient passivation effect than Cl atoms. The charge density difference and Bader atomic charge analysis suggests that F, Cl and H can get part of the electrons leading to interface states and that the interface states can be passivated by F, Cl or H atoms.

  19. Search for resonant WZ production in the WZ→lνl'l' channel in (s)=7TeV pp collisions with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendel, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.

    2012-06-01

    A generic search is presented for a heavy particle decaying to WZ→ℓνℓ'ℓ' (ℓ, ℓ'=e, μ) final states. The data were recorded by the ATLAS detector in s=7TeV pp collisions at the Large Hadron Collider and correspond to an integrated luminosity of 1.02fb-1. The transverse mass distribution of the selected WZ candidates is found to be consistent with the standard model expectation. Upper limits on the production cross section times branching ratio are derived using two benchmark models predicting a heavy particle decaying to a WZ pair.

  20. Evidence of WW and WZ production with lepton + jets final states in pp collisions at square root s=1.96 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Jesus, A C S Assis; Atramentov, O; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blekman, F; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calvet, S; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cuplov, V; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Devaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dutt, S; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; Meijer, M M; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Mitrevski, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osman, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Tanasijczuk, A; Taylor, W; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vilanova, D; Villeneuve-Seguier, F; Vint, P; Vokac, P; Voutilainen, M; Wagner, R; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2009-04-24

    We present first evidence for WW+WZ production in lepton + jets final states at a hadron collider. The data correspond to 1.07 fb-1 of integrated luminosity collected with the D0 detector at the Fermilab Tevatron in pp collisions at square root s=1.96 TeV. The observed cross section for WW+WZ production is 20.2+/-4.5 pb, consistent with the standard model and more precise than previous measurements in fully leptonic final states. The probability that background fluctuations alone produce this excess is <5.4 x 10-6, which corresponds to a significance of 4.4 standard deviations.

  1. Effects of proteinase A on cultivation and viability characteristics of industrial Saccharomyces cerevisiae WZ65*

    PubMed Central

    Zhang, Hong-bo; Zhang, Hai-feng; Chen, Qi-he; Ruan, Hui; Fu, Ming-liang; He, Guo-qing

    2009-01-01

    Proteinase A (PrA), encoded by PEP4 gene, is a key enzyme in the vacuoles of Saccharomyces cerevisiae. We characterized the effects of PrA on cell growth and glucose metabolism in the industrial S. cerevisiae WZ65. It was observed that the lag phase of cell growth of partial PEP4 gene deletion mutant (36 h) and PrA-negative mutant (48 h) was significantly extended, compared with the wild type strain (24 h) (P<0.05), but PrA had no effect on glucose metabolism either under shaking or steady state cultivations. The logistic model was chosen to evaluate the effect of PrA on S. cerevisiae cell growth, and PrA was found to promote cell growth against insufficient oxygen condition in steady state cultivation, but had no effect in shaking cultivation. The effects of glucose starvation on cell growth of partial PEP4 gene deletion strain and PrA-negative mutant were also evaluated. The results show that PrA partial deficiency increased the adaption of S. cerevisiae to unfavorable nutrient environment, but had no effect on glucose metabolism under the stress of low glucose. During heat shock test, at 60 °C the reduced cell viability rate (RCVR) was 10% for the wild type S. cerevisiae and 90% for both mutant strains (P<0.01), suggesting that PrA was a negative factor for S. cerevisiae cells to survive under heat shock. As temperatures rose from 60 °C to 70 °C, the wild type S. cerevisiae had significantly lower relative glucose consumption rate (RGCR) (61.0% and 80.0%) than the partial mutant (78.0% and 98.5%) and the complete mutant (80.0% and 98.0%) (P<0.05), suggesting that, in coping with heat shock, cells of the PrA mutants increased their glucose consumption to survive. The present study may provide meaningful information for brewing industry; however, the role of PrA in industrial S. cerevisiae physiology is complex and needs to be further investigated. PMID:19817002

  2. Measurement of WZ and ZZ production in pp collisions at $$\\sqrt{s} = 8\\,\\text {TeV} $$ in final states with b-tagged jets

    DOE PAGES

    Chatrchyan, Serguei

    2014-08-07

    Measurements are reported of the WZ and ZZ production cross sections in proton-proton collisions atmore » $$\\sqrt{s}$$ = 8 TeV in final states where one Z boson decays to b-tagged jets. The other gauge boson, either W or Z, is detected through its leptonic decay (either $$W \\to e\

  3. Measurement of WZ and ZZ production in pp collisions at $\\sqrt{s} = 8\\,\\text {TeV} $ in final states with b-tagged jets

    SciTech Connect

    Chatrchyan, Serguei

    2014-08-07

    Measurements are reported of the WZ and ZZ production cross sections in proton-proton collisions at $\\sqrt{s}$ = 8 TeV in final states where one Z boson decays to b-tagged jets. The other gauge boson, either W or Z, is detected through its leptonic decay (either $W \\to e\

  4. A measurement of the $WZ$ and $ZZ$ production cross sections using leptonic final states in 8.6 fb$^{-1}$ of $p\\bar{p}$ collisions

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; Alverson, George O.; Aoki, Masato; Askew, Andrew Warren; /Florida State U. /Stockholm U.

    2012-01-01

    We study the processes p{bar p} {yields} WZ {yields} {ell}{nu}{ell}{sup +}{ell}{sup -} and p{bar p} {yields} ZZ {yields} {ell}{sup +}{ell}{sup -}{nu}{bar {nu}}, where {ell} = e or {mu}. Using 8.6 fb{sup -1} of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron collider, we measure the WZ production cross section to be 4.50{sub -0.66}{sup +0.63} pb which is consistent with, but slightly above a prediction of the standard model. The ZZ cross section is measured to be 1.64 {+-} 0.46 pb, in agreement with a prediction of the standard model. Combination with an earlier analysis of the ZZ {yields} {ell}{sup +}{ell}{sup -}{ell}{sup +}{ell}{sup -} channel yields a ZZ cross section of 1.44{sub -0.34}{sup +0.35} pb.

  5. Bonding and electronic properties of the Cu2ZnSnS4 /WZ-ZnO interface from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Wen; Tang, Fu-Ling; Xue, Hong-Tao; Liu, Hong-Xia; Gao, Bo; Feng, Yu-Dong

    2016-07-01

    We theoretically explored the interface structure, binding energy, band offsets and electronic properties of the CZTS (1 0 2)/WZ-ZnO (1 1 0) interface from first-principles calculations. The interface has a small lattice mismatch of less than 3.2%. The interface binding energy is about  -0.21 J m-2. The values of band offset indicate that such an interface belongs to the type-I heterojunction. New electronic density of states, the so called interface states, appear near the Fermi level. These states are attributed to Cu 3d, Sn 5s, S 3s and 3p orbitals on the first CZTS layer, Zn 4s and 3d, O 2s and 2p orbitals on the first WZ-ZnO layer. The orbital hybridizations and charge transfers on both sides strengthen the interfacial adhesion.

  6. Evidence of WW+WZ production with lepton + jets final states in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; /Michigan U. /Northeastern U.

    2008-10-01

    We present the first evidence of WW+WZ production with lepton+jets final states at a hadron collider. The data correspond to 1.07 inverse femtobarns of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider in proton-antiproton collisions at sqrt(s)=1.96 TeV. The observed cross section for WW+WZ production is 20.2 +/- 4.5 pb, consistent with the SM prediction of 16.1 +/- 0.9 pb. The probability for background fluctuations to produce an excess equal to or larger than that observed is estimated to be 5.4e-6, corresponding to a significance of 4.4 standard deviations.

  7. Search for a W' or techni-ρ decaying into WZ in pp Collisions at sqrt[s] = 7  TeV.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Aguilo, E; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, C; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Luyckx, S; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Staykova, Z; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Olbrechts, A; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hreus, T; Léonard, A; Marage, P E; Reis, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ocampo Rios, A A; Ryckbosch, D; Strobbe, N; Thyssen, F; Tytgat, M; Verwilligen, P; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Bruno, G; Castello, R; Ceard, L; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; De Jesus Damiao, D; Martins, T; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Custódio, A; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Matos Figueiredo, D; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Soares Jorge, L; Sznajder, A; Anjos, T S; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, S; Guo, Y; Li, W; Liu, S; Mao, Y; Qian, S J; Teng, H; Wang, D; Zhang, L; Zhu, B; Zou, W; Avila, C; Gomez, J P; Gomez Moreno, B; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Morovic, S; Attikis, A; Galanti, M; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Elgammal, S; Ellithi Kamel, A; Khalil, S; Mahmoud, M A; Radi, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Millischer, L; Nayak, A; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Daci, N; Dahms, T; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Juillot, P; Le Bihan, A-C; Van Hove, P; Fassi, F; Mercier, D; Beauceron, S; Beaupere, N; Bondu, O; Boudoul, G; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tschudi, Y; Verdier, P; Viret, S; Tsamalaidze, Z; Anagnostou, G; Beranek, S; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Kreuzer, P; Magass, C; Merschmeyer, M; Meyer, A; Olschewski, M; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Weber, M; Bontenackels, M; Cherepanov, V; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Nowack, A; Perchalla, L; Pooth, O; Sauerland, P; Stahl, A; Aldaya Martin, M; Behr, J; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Castro, E; Costanza, F; Dammann, D; Diez Pardos, C; Eckerlin, G; Eckstein, D; Flucke, G; Geiser, A; Glushkov, I; Gunnellini, P; Habib, S; Hauk, J; Hellwig, G; Jung, H; Kasemann, M; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Naumann-Emme, S; Olzem, J; Perrey, H; Petrukhin, A; Pitzl, D; Raspereza, A; Ribeiro Cipriano, P M; Riedl, C; Ron, E; Rosin, M; Salfeld-Nebgen, J; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Walsh, R; Wissing, C; Autermann, C; Blobel, V; Draeger, J; Enderle, H; Erfle, J; Gebbert, U; Görner, M; Hermanns, T; Höing, R S; Kaschube, K; Kaussen, G; Kirschenmann, H; Klanner, R; Lange, J; Mura, B; Nowak, F; Peiffer, T; Pietsch, N; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schröder, M; Schum, T; Seidel, M; Sola, V; Stadie, H; Steinbrück, G; Thomsen, J; Vanelderen, L; Barth, C; Berger, J; Böser, C; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Guthoff, M; Hackstein, C; Hartmann, F; Hauth, T; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Katkov, I; Komaragiri, J R; Lobelle Pardo, P; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Nürnberg, A; Oberst, O; Oehler, A; Ott, J; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Röcker, S; Scheurer, A; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Zeise, M; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Saoulidou, N; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Beni, N; Czellar, S; Molnar, J; Palinkas, J; Szillasi, Z; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Jindal, M; Kaur, M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, J; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Sarkar, S; Sharan, M; Abdulsalam, A; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mehta, P; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Ganguly, S; Guchait, M; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Hesari, H; Jafari, A; Khakzad, M; Mohammadi Najafabadi, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, G; Selvaggi, G; Silvestris, L; Singh, G; Venditti, R; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Tosi, S; Benaglia, A; De Guio, F; Di Matteo, L; Fiorendi, S; Gennai, S; Ghezzi, A; Malvezzi, S; Manzoni, R A; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Tabarelli de Fatis, T; Buontempo, S; Carrillo Montoya, C A; Cavallo, N; De Cosa, A; Dogangun, O; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Kanishchev, K; Lacaprara, S; Lazzizzera, I; Margoni, M; Meneguzzo, A T; Nespolo, M; Pazzini, J; Ronchese, P; Simonetto, F; Torassa, E; Vanini, S; Zotto, P; Zumerle, G; Gabusi, M; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Biasini, M; Bilei, G M; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Saha, A; Santocchia, A; Spiezia, A; Taroni, S; Azzurri, P; Bagliesi, G; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Grassi, M; Longo, E; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Sigamani, M; Soffi, L; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Cartiglia, N; Costa, M; Demaria, N; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Vilela Pereira, A; Belforte, S; Candelise, V; Cossutti, F; Della Ricca, G; Gobbo, B; Marone, M; Montanino, D; Penzo, A; Schizzi, A; Heo, S G; Kim, T Y; Nam, S K; Chang, S; Kim, D H; Kim, G N; Kong, D J; Park, H; Ro, S R; Son, D C; Son, T; Kim, J Y; Kim, Zero J; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Choi, M; Kim, J H; Park, C; Park, I C; Park, S; Ryu, G; Cho, Y; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Kwon, E; Lee, B; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Juodagalvis, A; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Magaña Villalba, R; Martínez-Ortega, J; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Krofcheck, D; Bell, A J; Butler, P H; Doesburg, R; Reucroft, S; Silverwood, H; Ahmad, M; Asghar, M I; Hoorani, H R; Khalid, S; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Bialkowska, H; Boimska, B; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Seixas, J; Varela, J; Vischia, P; Belotelov, I; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Malakhov, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Evstyukhin, S; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Erofeeva, M; Gavrilov, V; Kossov, M; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Popov, A; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Korablev, A; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Piedra Gomez, J; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Felcini, M; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Graziano, A; Jorda, C; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Benitez, J F; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Christiansen, T; Coarasa Perez, J A; D'Enterria, D; Dabrowski, A; De Roeck, A; Di Guida, S; Dobson, M; Dupont-Sagorin, N; Elliott-Peisert, A; Frisch, B; Funk, W; Georgiou, G; Giffels, M; Gigi, D; Gill, K; Giordano, D; Giunta, M; Glege, F; Gomez-Reino Garrido, R; Govoni, P; Gowdy, S; Guida, R; Hansen, M; Harris, P; Hartl, C; Harvey, J; Hegner, B; Hinzmann, A; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Kousouris, K; Lecoq, P; Lee, Y-J; Lenzi, P; Lourenço, C; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Musella, P; Nesvold, E; Orimoto, T; Orsini, L; Palencia Cortezon, E; Perez, E; Perrozzi, L; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Polese, G; Quertenmont, L; Racz, A; Reece, W; Rodrigues Antunes, J; Rolandi, G; Rommerskirchen, T; Rovelli, C; Rovere, M; Sakulin, H; Santanastasio, F; Schäfer, C; Schwick, C; Segoni, I; Sekmen, S; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Tsirou, A; Veres, G I; Vlimant, J R; Wöhri, H K; Worm, S D; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Bäni, L; Bortignon, P; Buchmann, M A; Casal, B; Chanon, N; Deisher, A; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eugster, J; Freudenreich, K; Grab, C; Hits, D; Lecomte, P; Lustermann, W; Marini, A C; Martinez Ruiz del Arbol, P; Mohr, N; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pandolfi, F; Pape, L; Pauss, F; Peruzzi, M; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Starodumov, A; Stieger, B; Takahashi, M; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, H A; Wehrli, L; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Ivova Rikova, M; Millan Mejias, B; Otiougova, P; Robmann, P; Snoek, H; Tupputi, S; Verzetti, M; Chang, Y H; Chen, K H; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Singh, A P; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Majumder, D; Petrakou, E; Shi, X; Shiu, J G; Tzeng, Y M; Wan, X; Wang, M; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Karaman, T; Karapinar, G; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Yildirim, E; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Cankocak, K; Levchuk, L; Bostock, F; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Williams, T; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Jackson, J; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Bainbridge, R; Ball, G; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pela, J; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Stoye, M; Tapper, A; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Whyntie, T; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Hatakeyama, K; Liu, H; Scarborough, T; Charaf, O; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Alimena, J; Bhattacharya, S; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Breto, G; Calderon de la Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Dolen, J; Erbacher, R; Gardner, M; Houtz, R; Ko, W; Kopecky, A; Lander, R; Miceli, T; Pellett, D; Ricci-tam, F; Rutherford, B; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Andreev, V; Cline, D; Cousins, R; Duris, J; Erhan, S; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Valuev, V; Weber, M; Babb, J; Clare, R; Dinardo, M E; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Liu, H; Long, O R; Luthra, A; Nguyen, H; Paramesvaran, S; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Macneill, I; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; Mccoll, N; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; West, C; Apresyan, A; Bornheim, A; Chen, Y; Di Marco, E; Duarte, J; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Spiropulu, M; Timciuc, V; Traczyk, P; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Azzolini, V; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Liu, Y F; Paulini, M; Vogel, H; Vorobiev, I; Cumalat, J P; Drell, B R; Edelmaier, C J; Ford, W T; Gaz, A; Heyburn, B; Luiggi Lopez, E; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Eggert, N; Gibbons, L K; Heltsley, B; Khukhunaishvili, A; Kreis, B; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Green, D; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kilminster, B; Klima, B; Kunori, S; Kwan, S; Leonidopoulos, C; Linacre, J; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Cheng, T; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Remington, R; Rinkevicius, A; Sellers, P; Skhirtladze, N; Snowball, M; Yelton, J; Zakaria, M; Gaultney, V; Hewamanage, S; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Bucinskaite, I; Callner, J; Cavanaugh, R; Dragoiu, C; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Lacroix, F; Malek, M; O'Brien, C; Silkworth, C; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Griffiths, S; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Onel, Y; Ozok, F; Sen, S; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Kenny, R P; Murray, M; Noonan, D; Sanders, S; Stringer, R; Tinti, G; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Peterman, A; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Apyan, A; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Gomez Ceballos, G; Goncharov, M; Hahn, K A; Kim, Y; Klute, M; Krajczar, K; Li, W; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Velicanu, D; Wenger, E A; Wolf, R; Wyslouch, B; Xie, S; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cooper, S I; Dahmes, B; De Benedetti, A; Franzoni, G; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Sasseville, M; Singovsky, A; Tambe, N; Turkewitz, J; Cremaldi, L M; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Avdeeva, E; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Shipkowski, S P; Smith, K; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Nash, D; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Mucia, N; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Brinkerhoff, A; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Wolf, M; Bylsma, B; Durkin, L S; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Vuosalo, C; Williams, G; Winer, B L; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hegeman, J; Hunt, A; Jindal, P; Lopes Pegna, D; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Raval, A; Safdi, B; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Brownson, E; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Zatserklyaniy, A; Alagoz, E; Barnes, V E; Benedetti, D; Bolla, G; Bortoletto, D; De Mattia, M; Everett, A; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Vidal Marono, M; Yoo, H D; Zablocki, J; Zheng, Y; Guragain, S; Parashar, N; Adair, A; Boulahouache, C; Ecklund, K M; Geurts, F J M; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Miner, D C; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Rekovic, V; Robles, J; Rose, K; Salur, S; Schnetzer, S; Seitz, C; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Safonov, A; Sakuma, T; Sengupta, S; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Damgov, J; Dudero, P R; Jeong, C; Kovitanggoon, K; Lee, S W; Libeiro, T; Roh, Y; Volobouev, I; Appelt, E; Delannoy, A G; Florez, C; Greene, S; Gurrola, A; Johns, W; Johnston, C; Kurt, P; Maguire, C; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Wood, J; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sakharov, A; Anderson, M; Bachtis, M; Belknap, D; Borrello, L; Carlsmith, D; Cepeda, M; Dasu, S; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Ojalvo, I; Palmonari, F; Pierro, G A; Ross, I; Savin, A; Smith, W H; Swanson, J

    2012-10-05

    A search is performed in pp collisions at sqrt[s]=7  TeV for exotic particles decaying via WZ to final states with electrons and muons. The data sample corresponds to an integrated luminosity of approximately 5  fb(-1). No significant excess is observed in the data above the expected standard model background. Upper bounds at 95% confidence level are set on the production cross section of the W' boson described by the sequential standard model and on the W' WZ coupling. W' bosons with masses below 1143 GeV are excluded. Limits are also set in the context of low-scale technicolor models, under a range of assumptions concerning the model parameters.

  8. Combination of searches for WW, WZ, and ZZ resonances in pp collisions at √{ s} = 8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-04-01

    The ATLAS experiment at the CERN Large Hadron Collider has performed searches for new, heavy bosons decaying to WW, WZ and ZZ final states in multiple decay channels using 20.3 fb-1 of pp collision data at √{ s} = 8 TeV. In the current study, the results of these searches are combined to provide a more stringent test of models predicting heavy resonances with couplings to vector bosons. Direct searches for a charged diboson resonance decaying to WZ in the ℓνℓ‧ℓ‧ (ℓ = μ , e), ℓℓq q bar , ℓνq q bar and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WZ bosons are compared with predictions of an extended gauge model with a heavy W‧ boson. In addition, direct searches for a neutral diboson resonance decaying to WW and ZZ in the ℓℓq q bar , ℓνq q bar , and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WW and ZZ bosons are compared with predictions for a heavy, spin-2 graviton in an extended Randall-Sundrum model where the Standard Model fields are allowed to propagate in the bulk of the extra dimension.

  9. A Novel Technique to Reconstruct the $Z$ mass in $WZ/ZZ$ Events with Lepton(s), Missing Transverse Energy and Three Jets at CDFII

    SciTech Connect

    Trovato, Marco; Vernieri, Caterina

    2012-01-01

    Observing WZ/ZZ production at the Tevatron in a final state with a lepton, missing transverse energy and jets is extremely difficult because of the low signal rate and the huge background. In an attempt to increase the acceptance we study the sample where three high-energy jets are reconstructed, where about 1/3 of the diboson signal events are expected to end. Rather than choosing the two E{sub T}-leading jets to detect a Z signal, we make use of the information carried by all jets. To qualify the potential of our method, we estimate the probability of observing an inclusive diboson signal at the three standard deviations level (P{sub 3{sigma}}) to be about four times larger than when using the two leading jets only. Aiming at applying the method to the search for the exclusive WZ/ZZ {yields} {ell}{nu}q{bar q} channel in the three jets sample, we analyzed separately the sample with at least one b-tagged jet and the sample with no tags. In WZ/ZZ {yields} {ell}{nu}b{bar b} search, we observe a modest improvement in sensitivity over the option of building the Z-mass from the two leading jets in E{sub T}. Studies for improving the method further are on-going.

  10. Production of WZ events in p anti-p collisions at s**(1/2) = 1.96-TeV and limits on anomalous WWZ couplings

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, S.; Andrieu, B.; Arnoud, Y.; Askew, A.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay

    2005-04-01

    The authors present results from a search for WZ production with subsequent decay to {ell}{nu}{ell}'{bar {ell}}' ({ell} and {ell}' = e or {mu}) using 0.30 fb{sup -1} of data collected by the D0 experiment between 2002 and 2004 at the Tevatron. Three events with WZ decay characteristics are observed. With an estimated background of 0.71 {+-} 0.08 events, we measure the WZ production cross section to be 4.5{sub -2.6}{sup +3.8} pb, with a 95% C.L. upper limit of 13.3 pb. The 95% C.L. limits for anomalous WWZ couplings are found to be -2.0 < {Delta}{kappa}{sub Z} < 2.4 for form factor scale {Lambda} = 1 TeV, and -0.48 < {lambda}{sub Z} < 0.48 and -0.49 < {Delta}g{sub 1}{sup Z} < 0.66 for {Lambda} = 1.5 TeV.

  11. Development of a multivariate tool to reject background in a WZ diboson search for the CDF experiment

    SciTech Connect

    Cremonesi, Matteo

    2015-08-27

    In the frame of the strong on-going data analysis effort of the CDF collaboration at Fermilab, a method was developed by the candidate to improve the background rejection efficiency in the search for associated pair production of electroweak W, Z bosons. The performaces of the method for vetoing the tt background in a WZ/ZZ → fνq$\\bar{q}$ diboson search are reported. The method was developed in the inclusive 2-jets sample and applied to the “tag-2 jets" region, the subsample defined by the request that the two jets carry beauty flavor. In this region the tt production is one of the largest backgrounds. The tt veto proceeds in two steps: first, a set of pre-selection cuts are applied in a candidate sample where up to two leptons are accepted in addition to a jet pair, and the ZZ component of the signal is thus preserved; next, a Neural Network is trained to indicate the probability that the event be top-pair production. To validate the the method as developed in the inclusive 2-jets sample, it is applied to veto region providing a significant rejection of this important background.

  12. W/Z production cross sections and asymmetries at E(CM) = 2-TeV

    SciTech Connect

    Bellavance, Angela M.; /Nebraska U.

    2005-06-01

    The most recent results for W and Z boson production cross sections and asymmetries are presented from the CDF and D0 collaborations using Run II data taken at the Fermi National Accelerator Laboratory (FNAL) Tevatron. Data set sizes range from 72 pb{sup -1} to 226 pb{sup -1}, and results range from published to preliminary. Results presented agree with the Standard Model and world averages within errors.

  13. Search for (W/Z → jets) + γ Events in Proton-Antiproton Collisions at the Fermilab Tevatron

    SciTech Connect

    Bocci, Andrea

    2005-01-01

    We present a study of the p¯p → W(Z)γ → γq¯q process at the center-of-mass energy √s = 1.96 TeV using data collected by the Collider Detector at Fermilab. The analysis is based on the selection of low transverse momentum photons produced in association with at least two jets. A modification of an existing photon trigger was studied and implemented in the data acquisition system to enhance the sensitivity of this analysis. The data presented are from approximately 184 pb-1 of integrated luminosity collected by this new trigger. A preliminary event sample is obtained requiring a central photon with ET > 12 GeV and two jets with ET > 15 GeV. The corresponding efficiency is studied using a Monte Carlo simulation of the W(Z)γ → γq¯q based on Standard Model predictions. Monte Carlo estimation of the background is not necessary as it is measured from the data. A more advanced selection based on a Neural Network method improves the signal-to-noise ratio from 1/333 to 1/71, and further optimization of the dijet mass search region increases the ratio to its final value of 1/41. No evidence of a W/Z → q¯q peak in the dijet mass distribution is visible when the background contribution is subtracted. Using a fully Bayesian approach, the 95% confidence level upper limit on σ(p¯p → Wγ) x Β(W → q¯q) + σ(p¯p → Zγ) x Β(Z → q¯q) is calculated to be 54 pb, which is consistent with the Standard Model prediction of 20.5 pb.

  14. Measurement of $WZ$ production and searches for anomalous top quark decays and Higgs boson production using tri-lepton final states in $p\\bar{p}$ collisions at $\\sqrt{s} = 1.96~\\rm{TeV}$

    SciTech Connect

    McGivern, Carrie Lynne

    2012-01-01

    We present the results of three analyses; a $WZ$ production cross section measurement, a search for new physics in anomalous top quark decays, and the search for the standard model Higgs boson, all with final states of three or more leptons -- either electrons or muons -- plus an imbalance of transverse momentum using Tevatron proton and anti-proton collisions at a center--of--mass energy of $\\sqrt{s}$ = 1.96 TeV with the D0 detector at the Fermi National Accelerator Laboratory in Chicago, IL. The first analysis reports a measurement of the $WZ \\rightarrow \\ell^{\\prime}\

  15. Measurement of the WZ and ZZ production cross sections using leptonic final states in 8.6 fb⁻¹ of pp̄ collisions

    SciTech Connect

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Aoki, M.; Askew, A.; Åsman, B.; Atkins, S.; Atramentov, O.; Augsten, K.; Avila, C.; BackusMayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Camacho-Pérez, E.; Carrasco-Lizarraga, M. A.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Théry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; García-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jamin, D.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, H.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Muanza, G. S.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Novaes, S. F.; Nunnemann, T.; Obrant, G.; Orduna, J.; Osman, N.; Osta, J.; Oteroy y Garzón, G. J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Piegaia, R.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Polozov, P.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Safronov, G.; Sajot, G.; Salcido, P.; Sánchez-Hernández, A.; Sanders, M. P.; Sanghi, B.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schliephake, T.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Sirotenko, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Strom, D.; Stutte, L.; Suter, L.; Svoisky, P.; Takahashi, M.; Tanasijczuk, A.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weber, M.; Weichert, J.; Welty-Rieger, L.; White, A.; Wicke, D.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, W.-C.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Zhao, T.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2012-06-12

    We study the processes pp̄→WZ→l±νl⁺l⁻ and pp̄→ZZ→l⁺l⁻νν¯, where l=e or μ. Using 8.6 fb⁻¹ of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron collider, we measure the WZ production cross section to be 4.50+0.63–0.66 pb which is consistent with, but slightly larger than, the prediction of the standard model. The ZZ cross section is measured to be 1.64±0.46 pb, in agreement with a prediction of the standard model. Combination with an earlier analysis of the ZZ→l⁺l⁻l⁺l⁻ channel yields a ZZ cross section of 1.44+0.35–0.34 pb.

  16. Measurement of the WZ and ZZ production cross sections using leptonic final states in 8.6 fb⁻¹ of pp̄ collisions

    DOE PAGES

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; ...

    2012-06-12

    We study the processes pp̄→WZ→l±νl⁺l⁻ and pp̄→ZZ→l⁺l⁻νν¯, where l=e or μ. Using 8.6 fb⁻¹ of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron collider, we measure the WZ production cross section to be 4.50+0.63–0.66 pb which is consistent with, but slightly larger than, the prediction of the standard model. The ZZ cross section is measured to be 1.64±0.46 pb, in agreement with a prediction of the standard model. Combination with an earlier analysis of the ZZ→l⁺l⁻l⁺l⁻ channel yields a ZZ cross section of 1.44+0.35–0.34 pb.

  17. Search for $WZ/ZZ$ Production in the Lepton(s) + MET + Jets Channel with the CDF Experiment at the Tevatron Collider

    SciTech Connect

    Trovato, Marco

    2014-01-01

    In this thesis we present a search for the WZ and ZZ production in a final state ("W+2 jets") with a leptonically-decaying W and two energetic jets. We use the full dataset ( ∫ Ldt = 8:9 fb-1) recorded with the CDF detector at Fermilab. The challenge consists in extracting the small Z-hadronic peak from the large amount of background processes. Those processes also include the WW, whose hadronic peak cannot be distinguished from the Z peak, due to the poor calorimeter resolution. In the past such a signature was used to measure the diboson cross section, which is highly dominated by the WW cross section.

  18. Measurement of WZ and ZZ production in pp collisions at [Formula: see text] in final states with b-tagged jets.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Luyckx, S; Ochesanu, S; Roland, B; Rougny, R; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Heracleous, N; Kalogeropoulos, A; Keaveney, J; Kim, T J; Lowette, S; Maes, M; Olbrechts, A; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Favart, L; Gay, A P R; Léonard, A; Marage, P E; Mohammadi, A; Perniè, L; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Crucy, S; Dildick, S; Garcia, G; Klein, B; Lellouch, J; Mccartin, J; Ocampo Rios, A A; Ryckbosch, D; Salva Diblen, S; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jez, P; Komm, M; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; Martins, T; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Malek, M; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santaolalla, J; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Dias, F A; Fernandez Perez Tomei, T R; Novaes, S F; Padula, Sandra S; Bernardes, C A; Gregores, E M; Mercadante, P G; Genchev, V; Iaydjiev, P; Marinov, A; Piperov, S; Rodozov, M; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Chen, M; Du, R; Jiang, C H; Liang, D; Liang, S; Meng, X; Plestina, R; Tao, J; Wang, X; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, Y; Li, Q; Li, W; Liu, S; Mao, Y; Qian, S J; Wang, D; Zhang, L; Zou, W; Avila, C; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Morovic, S; Tikvica, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Elgammal, S; Ellithi Kamel, A; Mahmoud, M A; Mahrous, A; Radi, A; Kadastik, M; Müntel, M; Murumaa, M; Raidal, M; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Nayak, A; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Busson, P; Charlot, C; Daci, N; Dahms, T; Dalchenko, M; Dobrzynski, L; Filipovic, N; Florent, A; Granier de Cassagnac, R; Mastrolorenzo, L; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sauvan, J B; Sirois, Y; Veelken, C; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Juillot, P; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Boudoul, G; Brochet, S; Carrillo Montoya, C A; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Ruiz Alvarez, J D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Tsamalaidze, Z; Autermann, C; Beranek, S; Bontenackels, M; Calpas, B; Edelhoff, M; Feld, L; Hindrichs, O; Klein, K; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Olschewski, M; Padeken, K; Papacz, P; Reithler, H; Schmitz, S A; Sonnenschein, L; Teyssier, D; Thüer, S; Weber, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Lingemann, J; Nowack, A; Nugent, I M; Perchalla, L; Pooth, O; Stahl, A; Asin, I; Bartosik, N; Behr, J; Behrenhoff, W; Behrens, U; Bell, A J; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Geiser, A; Grebenyuk, A; Gunnellini, P; Habib, S; Hauk, J; Hellwig, G; Hempel, M; Horton, D; Jung, H; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Krämer, M; Krücker, D; Lange, W; Leonard, J; Lipka, K; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Naumann-Emme, S; Novgorodova, O; Nowak, F; Ntomari, E; Perrey, H; Petrukhin, A; Pitzl, D; Placakyte, R; Raspereza, A; Ribeiro Cipriano, P M; Riedl, C; Ron, E; Sahin, M Ö; Salfeld-Nebgen, J; Saxena, P; Schmidt, R; Schoerner-Sadenius, T; Schröder, M; Stein, M; Vargas Trevino, A D R; Walsh, R; Wissing, C; Aldaya Martin, M; Blobel, V; Enderle, H; Erfle, J; Garutti, E; Goebel, K; Görner, M; Gosselink, M; Haller, J; Höing, R S; Kirschenmann, H; Klanner, R; Kogler, R; Lange, J; Lapsien, T; Lenz, T; Marchesini, I; Ott, J; Peiffer, T; Pietsch, N; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Seidel, M; Sibille, J; Sola, V; Stadie, H; Steinbrück, G; Troendle, D; Usai, E; Vanelderen, L; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Guthoff, M; Hartmann, F; Hauth, T; Held, H; Hoffmann, K H; Husemann, U; Katkov, I; Kornmayer, A; Kuznetsova, E; Lobelle Pardo, P; Martschei, D; Mozer, M U; Müller, Th; Niegel, M; Nürnberg, A; Oberst, O; Quast, G; Rabbertz, K; Ratnikov, F; Röcker, S; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Wolf, R; Zeise, M; Anagnostou, G; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Psallidas, A; Topsis-Giotis, I; Gouskos, L; Panagiotou, A; Saoulidou, N; Stiliaris, E; Aslanoglou, X; Evangelou, I; Flouris, G; Foudas, C; Jones, J; Kokkas, P; Manthos, N; Papadopoulos, I; Paradas, E; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Molnar, J; Palinkas, J; Szillasi, Z; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Swain, S K; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Kaur, M; Mittal, M; Nishu, N; Sharma, A; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Singh, A P; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Chatterjee, R M; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Dugad, S; Arfaei, H; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Jafari, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Grunewald, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, G; Radogna, R; Selvaggi, G; Silvestris, L; Singh, G; Venditti, R; Verwilligen, P; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gallo, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Piccolo, D; Fabbricatore, P; Ferretti, R; Ferro, F; Lo Vetere, M; Musenich, R; Robutti, E; Tosi, S; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Dosselli, U; Galanti, M; Gasparini, F; Gasparini, U; Giubilato, P; Gozzelino, A; Kanishchev, K; Lacaprara, S; Lazzizzera, I; Margoni, M; Meneguzzo, A T; Pazzini, J; Pegoraro, M; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Triossi, A; Zotto, P; Zucchetta, A; Zumerle, G; Gabusi, M; Ratti, S P; Riccardi, C; Salvini, P; Vitulo, P; Biasini, M; Bilei, G M; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Romeo, F; Saha, A; Santocchia, A; Spiezia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Moon, C S; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Vernieri, C; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Grassi, M; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Rovelli, C; Soffi, L; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Degano, A; Demaria, N; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Ortona, G; Pacher, L; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Montanino, D; Penzo, A; Schizzi, A; Umer, T; Zanetti, A; Chang, S; Kim, T Y; Nam, S K; Kim, D H; Kim, G N; Kim, J E; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Park, H; Sakharov, A; Son, D C; Kim, J Y; Kim, Zero J; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, Y; Lee, B; Lee, K S; Park, S K; Roh, Y; Choi, M; Kim, J H; Park, C; Park, I C; Park, S; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kwon, E; Lee, J; Seo, H; Yu, I; Juodagalvis, A; Komaragiri, J R; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Martínez-Ortega, J; Sanchez-Hernandez, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Krofcheck, D; Butler, P H; Doesburg, R; Reucroft, S; Ahmad, A; Ahmad, M; Asghar, M I; Butt, J; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Wolszczak, W; Bargassa, P; Beirão Da Cruz E Silva, C; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Varela, J; Vischia, P; Bunin, P; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Skatchkov, N; Smirnov, V; Tikhonenko, E; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Spiridonov, A; Stolin, V; Vlasov, E; Zhokin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Willmott, C; Albajar, C; de Trocóniz, J F; Missiroli, M; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Graziano, A; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Bondu, O; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Christiansen, T; Coarasa Perez, J A; Colafranceschi, S; D'Alfonso, M; d'Enterria, D; Dabrowski, A; David, A; De Guio, F; De Roeck, A; De Visscher, S; Dobson, M; Dupont-Sagorin, N; Elliott-Peisert, A; Eugster, J; Franzoni, G; Funk, W; Giffels, M; Gigi, D; Gill, K; Giordano, D; Girone, M; Giunta, M; Glege, F; Gomez-Reino Garrido, R; Gowdy, S; Guida, R; Hammer, J; Hansen, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Karavakis, E; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Magini, N; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Mulders, M; Musella, P; Orsini, L; Palencia Cortezon, E; Pape, L; Perez, E; Perrozzi, L; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Plagge, M; Racz, A; Reece, W; Rolandi, G; Rovere, M; Sakulin, H; Santanastasio, F; Schäfer, C; Schwick, C; Sekmen, S; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Steggemann, J; Stieger, B; Stoye, M; Treille, D; Tsirou, A; Veres, G I; Vlimant, J R; Wöhri, H K; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Bortignon, P; Buchmann, M A; Casal, B; Chanon, N; Deisher, A; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Grab, C; Hits, D; Lustermann, W; Mangano, B; Marini, A C; Martinez Ruiz Del Arbol, P; Meister, D; Mohr, N; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pandolfi, F; Pauss, F; Peruzzi, M; Quittnat, M; Rebane, L; Ronga, F J; Rossini, M; Starodumov, A; Takahashi, M; Theofilatos, K; Wallny, R; Weber, H A; Amsler, C; Canelli, M F; Chiochia, V; De Cosa, A; Favaro, C; Hinzmann, A; Hreus, T; Ivova Rikova, M; Kilminster, B; Millan Mejias, B; Ngadiuba, J; Robmann, P; Snoek, H; Taroni, S; Verzetti, M; Yang, Y; Cardaci, M; Chen, K H; Ferro, C; Kuo, C M; Li, S W; Lin, W; Lu, Y J; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Liu, Y F; Lu, R-S; Majumder, D; Petrakou, E; Shi, X; Shiu, J G; Tzeng, Y M; Wang, M; Wilken, R; Asavapibhop, B; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Karapinar, G; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Bahtiyar, H; Barlas, E; Cankocak, K; Günaydin, Y O; Vardarlı, F I; Yücel, M; Levchuk, L; Sorokin, P; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Senkin, S; Smith, V J; Williams, T; Bell, K W; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Ilic, J; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Womersley, W J; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Burton, D; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Dittmann, J; Hatakeyama, K; Kasmi, A; Liu, H; Scarborough, T; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Heister, A; Lawson, P; Lazic, D; Richardson, C; Rohlf, J; Sperka, D; St John, J; Sulak, L; Alimena, J; Christopher, G; Cutts, D; Demiragli, Z; Ferapontov, A; Garabedian, A; Heintz, U; Jabeen, S; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Segala, M; Sinthuprasith, T; Speer, T; Swanson, J; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Ko, W; Kopecky, A; Lander, R; Miceli, T; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Rutherford, B; Searle, M; Shalhout, S; Smith, J; Squires, M; Tripathi, M; Wilbur, S; Yohay, R; Cline, D; Cousins, R; Erhan, S; Everaerts, P; Farrell, C; Felcini, M; Hauser, J; Ignatenko, M; Jarvis, C; Rakness, G; Schlein, P; Takasugi, E; Valuev, V; Weber, M; Babb, J; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Jandir, P; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Nguyen, H; Shrinivas, A; Sturdy, J; Sumowidagdo, S; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Evans, D; Holzner, A; Kelley, R; Kovalskyi, D; Lebourgeois, M; Letts, J; Macneill, I; Padhi, S; Palmer, C; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bradmiller-Feld, J; Campagnari, C; Danielson, T; Dishaw, A; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Incandela, J; Justus, C; Magaña Villalba, R; Mccoll, N; Pavlunin, V; Richman, J; Rossin, R; Stuart, D; To, W; West, C; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Di Marco, E; Duarte, J; Kcira, D; Mott, A; Newman, H B; Pena, C; Rogan, C; Spiropulu, M; Timciuc, V; Wilkinson, R; Xie, S; Zhu, R Y; Azzolini, V; Calamba, A; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Drell, B R; Ford, W T; Gaz, A; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Chu, J; Eggert, N; Gibbons, L K; Hopkins, W; Khukhunaishvili, A; Kreis, B; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kaadze, K; Klima, B; Kwan, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Mishra, K; Mrenna, S; Musienko, Y; Nahn, S; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Ratnikova, N; Sexton-Kennedy, E; Sharma, S; Soha, A; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitbeck, A; Whitmore, J; Wu, W; Yang, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Cheng, T; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Field, R D; Fisher, M; Fu, Y; Furic, I K; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Rinkevicius, A; Shchutska, L; Skhirtladze, N; Snowball, M; Yelton, J; Zakaria, M; Gaultney, V; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Yumiceva, F; Adams, M R; Apanasevich, L; Bazterra, V E; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kurt, P; Moon, D H; O'Brien, C; Silkworth, C; Turner, P; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Dilsiz, K; Duru, F; Haytmyradov, M; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Rahmat, R; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Gritsan, A V; Maksimovic, P; Martin, C; Swartz, M; Baringer, P; Bean, A; Benelli, G; Gray, J; Kenny, R P; Murray, M; Noonan, D; Sanders, S; Sekaric, J; Stringer, R; Wang, Q; Wood, J S; Barfuss, A F; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Saini, L K; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Baden, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Bauer, G; Busza, W; Cali, I A; Chan, M; Di Matteo, L; Dutta, V; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Klute, M; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Ma, T; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Stöckli, F; Sumorok, K; Velicanu, D; Veverka, J; Wyslouch, B; Yang, M; Yoon, A S; Zanetti, M; Zhukova, V; Dahmes, B; De Benedetti, A; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Singovsky, A; Tambe, N; Turkewitz, J; Acosta, J G; Cremaldi, L M; Kroeger, R; Oliveros, S; Perera, L; Sanders, D A; Summers, D; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Gonzalez Suarez, R; Keller, J; Knowlton, D; Kravchenko, I; Lazo-Flores, J; Malik, S; Meier, F; Snow, G R; Dolen, J; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Rappoccio, S; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Massironi, A; Nash, D; Orimoto, T; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Hahn, K A; Kubik, A; Lusito, L; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Velasco, M; Won, S; Berry, D; Brinkerhoff, A; Chan, K M; Drozdetskiy, A; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Kolb, J; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Planer, M; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Smith, G; Vuosalo, C; Winer, B L; Wolfe, H; Wulsin, H W; Berry, E; Elmer, P; Halyo, V; Hebda, P; Hunt, A; Jindal, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Raval, A; Saka, H; Stickland, D; Tully, C; Werner, J S; Zenz, S C; Zuranski, A; Brownson, E; Lopez, A; Mendez, H; Ramirez Vargas, J E; Alagoz, E; Benedetti, D; Bolla, G; Bortoletto, D; De Mattia, M; Everett, A; Hu, Z; Jha, M K; Jones, M; Jung, K; Kress, M; Leonardo, N; Lopes Pegna, D; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shipsey, I; Silvers, D; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Yoo, H D; Zablocki, J; Zheng, Y; Parashar, N; Adair, A; Akgun, B; Ecklund, K M; Geurts, F J M; Li, W; Michlin, B; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Miner, D C; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Rekovic, V; Robles, J; Salur, S; Schnetzer, S; Seitz, C; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Rose, K; Spanier, S; Yang, Z C; York, A; Bouhali, O; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Krutelyov, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Safonov, A; Sakuma, T; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kovitanggoon, K; Kunori, S; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Johns, W; Maguire, C; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Wood, J; Gollapinni, S; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Belknap, D A; Borrello, L; Carlsmith, D; Cepeda, M; Dasu, S; Duric, S; Friis, E; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Levine, A; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ross, I; Sarangi, T; Savin, A; Smith, W H; Woods, N

    Measurements are reported of the WZ and ZZ production cross sections in proton-proton collisions at [Formula: see text][Formula: see text] in final states where one Z boson decays to b-tagged jets. The other gauge boson, either W or Z, is detected through its leptonic decay (either [Formula: see text], [Formula: see text] or [Formula: see text], [Formula: see text], or [Formula: see text]). The results are based on data corresponding to an integrated luminosity of 18.9 fb[Formula: see text] collected with the CMS detector at the Large Hadron Collider. The measured cross sections, [Formula: see text] and [Formula: see text], are consistent with next-to-leading order quantum chromodynamics calculations.

  19. Measurements of the WZ di-boson production cross section at center of mass energy = 1.96 TeV in the dielectron and dimuon channels

    NASA Astrophysics Data System (ADS)

    Unalan, Rahmi

    The cross section measurements of WZ and ZZ di-boson productions using proton-antiproton collisions at s = 1.96 TeV using the data collected with the DOdetector at Fermilab is presented. Both the ee + jets and mumu + jets final states are considered, with total luminosities 1044 pb-1 and 948 pb-1 respectively in each channel. Both of the leptons are decay products of a Z boson. This study uses a different approach to simple likelihood method. The measured cross sections for the two processes are: WsZ/ZZ→eejj=2.67+/- 1.90pb and WsZ/ZZ→mmj j=3.45+/-3.51pb.

  20. Search for bb¯ decay of the Stand Model Higgs boson produced in association with a vector boson (W/Z) with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Ming, Yao

    This dissertation presents a search for the bb¯ decay of the Standard Model Higgs boson. The analysis is performed with the ATLAS experiment, using the full dataset delivered by the LHC and recorded by ATLAS detector during LHC Run 1. The integrated luminosities used are 4.7 fb-1 at √s = 7 TeV, and 20.3 fb-1 at √s = 8 TeV. The processes considered in this analysis are associated (W/Z)H production, where W → ℓnunu, Z → ℓℓ and Z → nunu. Based on the number of leptons (ℓ), the events used in this analysis are divided into zero, one, and two lepton channels. In this analysis, no significant excess is observed above the Standard Model backgrounds. For mH = 125 GeV, a 95% CL upper limit of 1.4 times the Standard Model expectation is set on the cross section times branching ratio for pp → (W/Z )(H → bb¯). The corresponding expected limit is 1.3 in the absence of signal. The ratio of the measured signal yield to the Standard Model expectation is found to be mu = 0.2 +/- 0.5(stat.) +/- 0.4(syst.). This analysis procedure is validated by a measurement of the yield of diboson production(WZ and ZZ), with Z → bb¯. The ratio of observed diboson signal strength to the Standard Model expectation is found to be muD = 0.93 +/- 0.21, which is consistent with the Standard Model expectation of muD = 1.

  1. Search for production of WW / WZ resonances decaying to a lepton, neutrino and jets in pp collisions at √s = 8 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.

    2015-05-12

    In this study, a search is presented for narrow diboson resonances decaying to WW or WZ in the final state where one W boson decays leptonically (to an electron or a muon plus a neutrino) and the other W/Z boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb–1 of pp collisions at √s = 8 TeV collected by the ATLAS detector at the large hadron collider. No evidence for resonant diboson production is observed, and resonance masses below 700 and 1490 GeV are excluded at 95% confidence level for the spin-2 Randall–Sundrum bulk graviton G*more » with coupling constant of 1.0 and the extended gauge model W' boson respectively.« less

  2. Search for production of WW / WZ resonances decaying to a lepton, neutrino and jets in pp collisions at √s = 8 TeV with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-05-12

    In this study, a search is presented for narrow diboson resonances decaying to WW or WZ in the final state where one W boson decays leptonically (to an electron or a muon plus a neutrino) and the other W/Z boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb–1 of pp collisions at √s = 8 TeV collected by the ATLAS detector at the large hadron collider. No evidence for resonant diboson production is observed, and resonance masses below 700 and 1490 GeV are excluded at 95% confidence level for the spin-2 Randall–Sundrum bulk graviton G* with coupling constant of 1.0 and the extended gauge model W' boson respectively.

  3. Measurement of the WZ production cross section in proton-proton collision at √s = 7 TeV and limits on anomalous triple gauge couplings with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Jeanty, Laura Elizabeth

    In this dissertation, we present a study of WZ production in proton-proton collisions at a center-of-mass energy of 7 TeV. The data analyzed was collected by the ATLAS detector and corresponds to an integrated luminosity of 4.6 fb-1 provided by the Large Hadron Collider in 2011. We select WZ events in the fully leptonic decay mode with electrons, muons, and missing transverse energy in the final state. Events are required to have three isolated leptons with significant transverse momentum, a large missing transverse energy, a Z candidate reconstructed from two of the selected leptons, and a W candidate reconstructed from the missing transverse energy and third lepton. The major backgrounds to the WZ signal in the leptonic decay channel are Z+jets events, ZZ production, Z+photon events, and events with top quarks. We estimate the Z+jets and top quark background contributions from data and take the expected contribution for the other background processes from simulation. We observe 317 WZ candidates in data, with a background expectation of 68+/-10 events. The total production cross section is extracted from the selected sample using a maximum likelihood method and is determined to be 19.0+1.4/1.3(stat) +/-0.9 (syst) +/-0.4 (lumi) pb, which is consistent with the next-to-leading Standard Model prediction of 17.6+1.1/-1.0 pb. WZ production in the Standard Model includes a contribution from the WWZ triple gauge boson vertex. If new physics beyond the Standard Model exists and interacts with W and Z bosons, the coupling of the WWZ vertex could differ from the Standard Model prediction. We set limits on anomalous triple gauge boson couplings using the transverse momentum spectrum of Z bosons in the selected sample. We derive the 95% confidence interval for three model-independent anomalous triple gauge couplings using a frequentist approach and set the most stringent bounds to date on two of the three parameters.

  4. Search for massive resonances decaying into WW, WZ or ZZ bosons in proton-proton collisions at sqrt(s) = 13 TeV

    SciTech Connect

    Sirunyan, Albert M; et al.

    2016-12-29

    A search is presented for new massive resonances decaying to WW, WZ or ZZ bosons in l nu quark anti-quark and quark anti-quark quark anti-quark final states. Results are based on data corresponding to an integrated luminosity of 2.3-2.7 inverse femtobarns recorded in proton-proton collisions at sqrt(s) = 13 TeV with the CMS detector at the LHC. Decays of spin-1 and spin-2 resonances into two vector bosons are sought in the mass range 0.6-4.0 TeV. No significant excess over the standard model background is observed. Combining the results of the l nu quark anti-quark and quark anti-quark quark anti-quark final states, cross section and mass exclusion limits are set for models that predict heavy spin-1 and spin-2 resonances. This is the first search for a narrow-width spin-2 resonance at sqrt(s) = 13 TeV.

  5. Search for massive resonances decaying into WW, WZ or ZZ bosons in proton-proton collisions at s=13$$ \\sqrt{s}=13 $$ TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-03-01

    A search is presented for new massive resonances decaying to WW, WZ or ZZ bosons in l nu quark anti-quark and quark anti-quark quark anti-quark final states. Results are based on data corresponding to an integrated luminosity of 2.3-2.7 inverse femtobarns recorded in proton-proton collisions atmore » $$\\sqrt{s} = $$ 13 TeV with the CMS detector at the LHC. Decays of spin-1 and spin-2 resonances into two vector bosons are sought in the mass range 0.6-4.0 TeV. No significant excess over the standard model background is observed. Combining the results of the l nu quark anti-quark and quark anti-quark quark anti-quark final states, cross section and mass exclusion limits are set for models that predict heavy spin-1 and spin-2 resonances. This is the first search for a narrow-width spin-2 resonance at $$\\sqrt{s} = $$ 13 TeV.« less

  6. Measurements of sigma (V + D*)/sigma( V) in 9:7 FB-1 at CDF Run II

    NASA Astrophysics Data System (ADS)

    Matera, Keith

    The Standard Model of particle physics has been remarkably successful, but the non-perturbative features of quantum chromodynamics must be tested and modeled with data. There have been many such tests, focused primarily on the use of jet-based probes of heavy flavor (bottom and charm quark) production at hadron colliders. In this thesis, we propose and test a strategy for identifying heavy flavor in events containing a W or Z vector boson (a V boson); this technique probes a much lower energy regime than can be explored by jet-based methods. In a sample of W and Z events skimmed from 9.7 fb-1 of high-pT electron and muon data from CDF Run II pp¯ collisions at center of mass energy sqrt(s) = 1.96 GeV, we identify charm by fully reconstructing D*(2010) → D0(→ Kpi)pis decays at the track level. Using a binned fit of Deltam = m(Kpipis) - m(Kpi) to count reconstructed D* candidates, we then unfold these raw counts with acceptance values derived from Monte Carlo, and present measurements of sigma(W + D*)/sigma(W) and sigma(Z + D*)/sigma(Z) in the W/Z leptonic decay channels. All measurements are found to be in agreement with the predictions of Pythia 6.2 (PDF set CTEQ5L). These results include the first measurement of W/Z + c production in events with zero jet objects at the Tevatron, and the first measurement of W/Z + c production with p T(c) < 15 GeV at the Tevatron.

  7. Measurements of $\\sigma(V+D^{*})/\\sigma(V)$ in $9.7$ fb$^{-1}$ at CDF Run II

    SciTech Connect

    Matera, Keith

    2014-01-01

    The Standard Model of particle physics has been remarkably successful, but the non-perturbative features of quantum chromodynamics must be tested and modeled with data. There have been many such tests, focused primarily on the use of jet-based probes of heavy flavor (bottom and charm quark) production at hadron colliders. In this thesis, we propose and test a strategy for identifying heavy flavor in events containing a W or Z vector boson (a V boson); this technique probes a much lower energy regime than can be explored by jet-based methods. In a sample of W and Z events skimmed from 9.7 fb-1 of high- pT electron and muon data from CDF Run II p p collisions at center of mass energy √s = 1:96 GeV , we identify charm by fully reconstructing D* (2010) → D0(→ Kπ )π s decays at the track level. Using a binned fit of Δm=m(Kππ s) m(Kπ ) to count reconstructed D* candidates, we then unfold these raw counts with acceptance values derived from Monte Carlo, and present measurements of σ(W + D* )/ σ(W) and σ(Z + D* )/ σ(Z) in the W/Z leptonic decay channels. All measurements are found to be in agreement with the predictions of Pythia 6.2 (PDF set CTEQ5L). These results include the first measurement of W/Z + c production in events with zero jet objects at the Tevatron, and the first measurement of W/Z +c production with pT (c) < 15 GeV at the Tevatron.

  8. Search for New Phenomena Using W/Z + (b)-Jets Measurements Performed with the ATLAS Detector

    SciTech Connect

    Beauchemin, Pierre-Hugues

    2015-06-30

    The Project proposed to use data of the ATLAS experiment, obtained during the 2011 and 2012 data-taking campaigns, to pursue studies of the strong interaction (QCD) and to examine promising signatures for new physics. The Project also contains a service component dedicated to a detector development initiative. The objective of the strong interaction studies is to determine how various predictions from the main theory (QCD) compare to the data. Results of a set of measurements developed by the Tufts team indicate that the dominant factor of discrepancy between data and QCD predictions come from the mis-modeling of the low energy gluon radiation as described by algorithms called parton showers. The discrepancies introduced by parton showers on LHC predictions could even be larger than the effect due to completely new phenomena (dark matter, supersymmetry, etc.) and could thus block further discoveries at the LHC. Some of the results obtained in the course of this Project also specify how QCD predictions must be improved in order to open the possibility for the discovery of something completely new at the LHC during Run-II. This has been integrated in the Run-II ATLAS physics program. Another objective of Tufts studies of the strong interaction was to determine how the hypothesis about an intrinsic heavy-quark component of the proton (strange, charm or bottom quarks) could be tested at the LHC. This hypothesis has been proposed by theorists 30 years ago and is still controversial. The Tufts team demonstrated that intrinsic charms can be observed, or severely constrained, at the LHC, and determine how the measurement should be performed in order to maximize its sensitivity to such an intrinsic heavy-quark component of the proton. Tufts also embarked on performing the measurement that is in progress, but final results are not yet available. They should shade a light of understanding on the fundamental structure of the proton. Determining the nature of dark matter

  9. Measurement of the WZ production cross section in pp collisions at $\\sqrt{s}$ = 7 and 8 TeV and search for anomalous triple gauge couplings at $\\sqrt{s}$ = 8 TeV

    SciTech Connect

    Khachatryan, Vardan; et al.

    2016-09-19

    The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton-proton collision data samples corresponding to integrated luminosities of 4.9 fb$^{-1}$ collected at $ \\sqrt{s} = $ 7 TeV, and 19.6 fb$^{-1}$ at $ \\sqrt{s} = $ 8 TeV. The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for 71 $ < m_{\\mathrm{ Z }} < $ 111 GeV are $\\sigma(\\mathrm{ p }\\mathrm{ p }\\to\\mathrm{ W }\\mathrm{ Z };\\ \\sqrt{s} = 7\\, \\mathrm{TeV}) =$ 20.14 $\\pm$ 1.32 (stat) $\\pm$ 1.13 (syst) $\\pm$ 0.44 (lumi) pb and $\\sigma(\\mathrm{ p }\\mathrm{ p }\\to\\mathrm{ W }\\mathrm{ Z };\\ \\sqrt{s} = 8\\, \\mathrm{TeV}) =$ 24.09 $\\pm$ 0.87 (stat) $\\pm$ 1.62 (syst) $\\pm$ 0.63 (lumi) pb. Differential cross sections with respect to the Z boson p$_{\\mathrm{T}}$, the leading jet $p_{\\mathrm{T}}$, and the number of jets are obtained using the $\\sqrt{s} =$ 8 TeV data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.

  10. Photobilirubin II.

    PubMed Central

    Bonnett, R; Buckley, D G; Hamzetash, D; Hawkes, G E; Ioannou, S; Stoll, M S

    1984-01-01

    An improved preparation of photobilirubin II in ammoniacal methanol is described. Evidence is presented which distinguishes between the two structures proposed earlier for photobilirubin II in favour of the cycloheptadienyl structure. Nuclear-Overhauser-enhancement measurements with bilirubin IX alpha and photobilirubin II in dimethyl sulphoxide are complicated by the occurrence of negative and zero effects. The partition coefficient of photobilirubin II between chloroform and phosphate buffer (pH 7.4) is 0.67. PMID:6743241

  11. Photosystem II

    ScienceCinema

    James Barber

    2016-07-12

    James Barber, Ernst Chain Professor of Biochemistry at Imperial College, London, gives a BSA Distinguished Lecture titled, "The Structure and Function of Photosystem II: The Water-Splitting Enzyme of Photosynthesis."

  12. FAQs II

    ERIC Educational Resources Information Center

    Kezar, Adrianna; Frank, Vikki; Lester, Jaime; Yang, Hannah

    2008-01-01

    In their paper entitled "Why should postsecondary institutions consider partnering to offer (Individual Development Accounts (IDAs)?" the authors reviewed frequently asked questions they encountered from higher education professionals about IDAs, but as their research continued so did the questions. FAQ II has more in-depth questions and…

  13. SAGE II

    Atmospheric Science Data Center

    2016-02-16

    ... of stratospheric aerosols, ozone, nitrogen dioxide, water vapor and cloud occurrence by mapping vertical profiles and calculating ... (i.e. MLS and SAGE III versus HALOE) Fixed various bugs Details are in the  SAGE II V7.00 Release Notes .   ...

  14. Gamma II

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, M.; Cline, J.; Owen, L.; Boehme, J.; Rottler, L.; Whitworth, C.; Clavier, D.

    2011-05-01

    GAMMA II is the Guide Star Automatic Measuring MAchine relocated from STScI to the Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI). GAMMA II is a multi-channel laser-scanning microdensitometer that was used to measure POSS and SERC plates to create the Guide Star Catalog and the Digital Sky Survey. The microdensitometer is designed with submicron accuracy in x and y measurements using a HP 5507 laser interferometer, 15 micron sampling, and the capability to measure plates as large as 0.5-m across. GAMMA II is a vital instrument for the success of digitizing the direct, objective prism, and spectra photographic plate collections in APDA for research. We plan several targeted projects. One is a collaboration with Drs. P.D. Hemenway and R. L. Duncombe who plan to scan 1000 plates of 34 minor planets to identify systematic errors in the Fundamental System of celestial coordinates. Another is a collaboration with Dr. R. Hudec (Astronomical Institute, Academy of Sciences of the Czech Republic) who is working within the Gaia Variability Unit CU7 to digitize objective prism spectra on the Henize plates and Burrell-Schmidt plates located in APDA. These low dispersion spectral plates provide optical counterparts of celestial high-energy sources and cataclysmic variables enabling the simulation of Gaia BP/RP outputs. The astronomical community is invited to explore the more than 140,000 plates from 20 observatories now archived in APDA, and use GAMMA II. The process of relocating GAMMA to APDA, re-commissioning, and starting up the production scan programs will be described. Also, we will present planned research and future upgrades to GAMMA II.

  15. Support for Spitzer observations of tremendous outburst amplitude dwarf novae (TOADs)

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.

    2008-05-01

    Dr. Steve Howell (NOAO) requests monitoring of a subset of the known and suspected tremendous outburst amplitude dwarf novae (TOADs) in support of Spitzer Space Telescope observations of these objects. The campaign will run from May 16, 2008, through May 2009. Once an object has been verified in superoutburst, Spitzer observations will be scheduled within 2-4 weeks of maximum, and will be repeated twice -- 4-6 weeks and 6-10 weeks later. Observers are asked to provide nightly monitoring of these stars, and to begin intensive observations if and when any of them go into outburst to determine whether the star is in superoutburst. We note that several of these objects -- notably the WZ Sge stars WZ Sge, GW Lib, and V455 And -- are not expected to superoutburst during the next year, but observations are still encouraged in case they exhibit unexpected behavior. Observations should be submitted to the AAVSO International Database.

  16. PORT II

    NASA Technical Reports Server (NTRS)

    Muniz, Beau

    2009-01-01

    One unique project that the Prototype lab worked on was PORT I (Post-landing Orion Recovery Test). PORT is designed to test and develop the system and components needed to recover the Orion capsule once it splashes down in the ocean. PORT II is designated as a follow up to PORT I that will utilize a mock up pressure vessel that is spatially compar able to the final Orion capsule.

  17. PESTICINS II. I and II

    PubMed Central

    Brubaker, Robert R.; Surgalla, Michael J.

    1962-01-01

    Brubaker, Robert R. (Fort Detrick, Frederick, Md.) and Michael J. Surgalla. Pesticins. II. Production of pesticin I and II. J. Bacteriol. 84:539–545. 1962.—Pesticin I was separated from pesticin I inhibitor by ion-exchange chromatography of cell-free culture supernatant fluids and by acid precipitation of soluble preparations obtained from mechanically disrupted cells. The latter procedure resulted in formation of an insoluble pesticin I complex which, upon removal by centrifugation and subsequent dissolution in neutral buffer, exhibited a 100- to 1,000-fold increase in antibacterial activity over that originally observed. However, activity returned to the former level upon addition of the acid-soluble fraction, which contained pesticin I inhibitor. Since the presence of pesticin I inhibitor leads to serious errors in the determination of pesticin I, an assay medium containing ethylenediaminetetraacetic acid in excess Ca++ was developed; this medium eliminated the effect of the inhibitor. By use of the above medium, sufficient pesticin I was found to be contained within 500 nonirradiated cells to inhibit growth of a suitable indicator strain; at least 107 cells were required to effect a corresponding inhibition by pesticin II. Although both pesticins are located primarily within the cell during growth, pesticin I may arise extracellularly during storage of static cells. Slightly higher activity of pesticin I inhibitor was found in culture supernatant fluids than occurred in corresponding cell extracts of equal volume. The differences and similarities between pesticin I and some known bacteriocins are discussed. PMID:14016110

  18. Ovarian Cancer Stage II

    MedlinePlus

    ... Download Title: Ovarian Cancer Stage II Description: Three-panel drawing of stage IIA, IIB, and stage II primary peritoneal cancer; the first panel (stage IIA) shows cancer inside both ovaries that ...

  19. Factor II deficiency

    MedlinePlus

    ... if one or more of these factors are missing or are not functioning like they should. Factor II is one such coagulation factor. Factor II deficiency runs in families (inherited) and is very rare. Both parents must ...

  20. Ticks' response to feeding on host immunized with glandular extracts of Rhipicephalus sanguineus females fed for 2, 4, and 6 days. I. Inactivity or early degeneration of salivary glands?

    PubMed

    Furquim, Karim Christina Scopinho; Mathias, Maria Izabel Camargo; Hebling, Letícia Maria Gráballos Ferraz; Roma, Gislaine Cristina; Bechara, Gervásio Henrique

    2011-07-01

    The present study histologically analyzed the salivary glands of Rhipicephalus sanguineus females fed for 2, 4, and 6 days in hosts which had been previously immunized with glandular extracts obtained from females from this same species in different periods of feeding, having as main objective verify the action of these extracts in the secretor cycle of these glands. For this, glandular extract of females fed for 2 days (SGE2), glandular extract of females fed for 4 days (SGE4), and glandular extract of females fed for 6 days (SGE6) extracts were obtained from salivary glands of R. sanguineus females fed for 2, 4, and 6 days respectively. Then, New Zealand White naive rabbits were inoculated either with extracts (test group = TG), or with a mixture of phosphate buffer and Freund's complete adjuvant (control group 2 = CG2). Each inoculated rabbit (TG and CG2) and non-inoculated (control group 1 = CG1) was posteriorly infested with 15 couples of fasting R. sanguineus from which the salivary glands had been collected from females fed for 2, 4, and 6 days. The results revealed that the resistance the hosts had acquired by the immunization with the extracts affected differently the secretory activity of the glandular cells. It was verified that the resistance to SGE2 and SGE4 extracts acted in the cells of acini II and III, being c1 and c5 from II and d from III inactivated due to the action of SGE2 and c1 and c4 from II and f from III inactivated by the action of SGE4. As for the resistance to SGE6 the effect was only on cells of acini II (c1, c3 e c4), which were also inactivated. In addition, the hosts' resistance to SGE2-SGE6 extracts made the degenerative process earlier in comparison to CG1. On the other hand, the resistance to the extracts did not influence the characteristics of the degenerative process normally found in salivary glands. The assynchronism of the degenerative process was maintained-acini III were always the most affected and I the

  1. World War II Homefront.

    ERIC Educational Resources Information Center

    Garcia, Rachel

    2002-01-01

    Presents an annotated bibliography that provides Web sites focusing on the U.S. homefront during World War II. Covers various topics such as the homefront, Japanese Americans, women during World War II, posters, and African Americans. Includes lesson plan sources and a list of additional resources. (CMK)

  2. Phlebotomine salivas inhibit immune inflammation-induced neutrophil migration via an autocrine DC-derived PGE2/IL-10 sequential pathway

    PubMed Central

    Carregaro, Vanessa; Valenzuela, Jesus G.; Cunha, Thiago M.; Verri, Waldiceu A.; Grespan, Renata; Matsumura, Graziela; Ribeiro, José M. C.; Elnaiem, Dia-Eldin; Silva, João S.; Cunha, Fernando Q.

    2008-01-01

    In the present study, we investigated whether saliva from Phlebotomus papatasi and Phlebotomus duboscqi inhibited antigen-induced neutrophil migration and the mechanisms involved in these effects. The pretreatment of immunized mice with salivary gland extracts (SGE) of both phlebotomines inhibited OVA challenge-induced neutrophil migration and release of the neutrophil chemotactic mediators, MIP-1α, TNF-α, and leukotriene B4 (LTB4). Furthermore, SGE treatment enhanced the production of anti-inflammatory mediators, IL-10 and PGE2. SGE treatments failed to inhibit neutrophil migration and MIP-1α and LTB4 production in IL-10−/− mice, also failing in mice treated with nonselective (indomethacin) or selective (rofecoxibe) cyclooxygenase (COX) inhibitors. COX inhibition resulted in diminished SGE-induced IL-10 production, and PGE2 release triggered by SGE remained increased in IL-10−/− mice, suggesting that prostanoids are acting through an IL-10-dependent mechanism. SGE treatments in vivo reduced the OVA-induced lymphoproliferation of spleen-derived cells. Further, the in vitro incubation of bone marrow-derived dendritic cells (DC) with SGE inhibited the proliferation of CD4+T cells from OVA-immunized mice, which was reversed by indomethacin and anti-IL-10 antibody treatments. Supporting these results, SGE induced the production of PGE2 and IL-10 by DC, which were blocked by COX inhibition. These effects were associated with the reduction of DC-membrane expression of MHC-II and CD86 by SGE treatment. Altogether, the results showed that Phlebotomine saliva inhibits immune inflammation-induced neutrophil migration by an autocrine DC sequential production of PGE2/IL-10, suggesting that the saliva constituents might be promising therapeutic molecules to target immune inflammatory diseases. PMID:18390928

  3. Survey of period variations of superhumps in SU UMa-type dwarf novae. V. The fifth year (2012-2013)

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Hambsch, Franz-Josef; Maehara, Hiroyuki; Masi, Gianluca; Nocentini, Francesca; Dubovsky, Pavol A.; Kudzej, Igor; Imamura, Kazuyoshi; Ogi, Minako; Tanabe, Kenji; Akazawa, Hidehiko; Krajci, Thomas; Miller, Ian; de Miguel, Enrique; Henden, Arne; Noguchi, Ryo; Ishibashi, Takehiro; Ono, Rikako; Kawabata, Miho; Kobayashi, Hiroshi; Sakai, Daisuke; Nishino, Hirochika; Furukawa, Hisami; Masumoto, Kazunari; Matsumoto, Katsura; Littlefield, Colin; Ohshima, Tomohito; Nakata, Chikako; Honda, Satoshi; Kinugasa, Kenzo; Hashimoto, Osamu; Stein, William; Pickard, Roger D.; Kiyota, Seiichiro; Pavlenko, Elena P.; Antonyuk, Oksana I.; Baklanov, Aleksei V.; Antonyuk, Kirill; Samsonov, Denis; Pit, Nikolaj; Sosnovskij, Aleksei; Oksanen, Arto; Harlingten, Caisey; Tyyskä, Jenni; Monard, Berto; Shugarov, Sergey Yu.; Chochol, Drahomir; Kasai, Kiyoshi; Maeda, Yutaka; Hirosawa, Kenji; Itoh, Hiroshi; Sabo, Richard; Ulowetz, Joseph; Morelle, Etienne; Michel, Raúl; Suárez, Genaro; James, Nick; Dvorak, Shawn; Voloshina, Irina B.; Richmond, Michael; Staels, Bart; Boyd, David; Andreev, Maksim V.; Parakhin, Nikolai; Katysheva, Natalia; Miyashita, Atsushi; Nakajima, Kazuhiro; Bolt, Greg; Padovan, Stefano; Nelson, Peter; Starkey, Donn R.; Buczynski, Denis; Starr, Peter; Goff, William N.; Denisenko, Denis; Kochanek, Christopher S.; Shappee, Benjamin; Stanek, Krzysztof Z.; Prieto, José L.; Itagaki, Koh-ichi; Kaneko, Shizuo; Stubbings, Rod; Muyllaert, Eddy; Shears, Jeremy; Schmeer, Patrick; Poyner, Gary; Rodríguez-Marco, Miguel

    2014-04-01

    Continuing the project described in Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for SU UMa-type dwarf novae mainly observed during the 2012-2013 season. We found three objects (V444 Peg, CSS J203937, and MASTER J212624) having strongly positive period derivatives despite the long orbital period (Porb). By using the period of growing stage (stage A) superhumps, we obtained mass ratios for six objects. We characterized nine new WZ Sge-type dwarf novae. We made a pilot survey of the decline rate in the slowly fading parts of SU UMa-type and WZ Sge-type outbursts. The decline time scale was found to generally follow an expected P_orb^{1/4} dependence, and WZ Sge-type outbursts also generally follow this trend. There are some objects which show slower decline rates, and we consider these objects good candidates for period bouncers. We also studied unusual behavior in some objects, including BK Lyn which made a transition from an ER UMa-type state to a novalike (standstill) state in 2013, and unusually frequent occurrences of superoutbursts in NY Ser and CR Boo. We applied the least absolute shrinkage and selection operator (Lasso) power spectral analysis, which has been proven to be very effective in analyzing the Kepler data, to the ground-based photometry of BK Lyn, and detected a dramatic disappearance of the signal of negative superhumps in 2013. We suggested that the mass-transfer rates did not strongly vary between the ER UMa-type state and novalike state in BK Lyn, and this transition was less likely caused by a systematic variation of the mass-transfer rate.

  4. Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Imada, Akira; Uemura, Makoto; Nogami, Daisaku; Maehara, Hiroyuki; Ishioka, Ryoko; Baba, Hajime; Matsumoto, Katsura; Iwamatsu, Hidetoshi; Kubota, Kaori; Sugiyasu, Kei; Soejima, Yuichi; Moritani, Yuuki; Ohshima, Tomohito; Ohashi, Hiroyuki; Tanaka, Junpei; Sasada, Mahito; Arai, Akira; Nakajima, Kazuhiro; Kiyota, Seiichiro; Tanabe, Kenji; Imamura, Kazuyoshi; Kunitomi, Nanae; Kunihiro, Kenji; Taguchi, Hiroki; Koizumi, Mitsuo; Yamada, Norimi; Nishi, Yuichi; Kida, Mayumi; Tanaka, Sawa; Ueoka, Rie; Yasui, Hideki; Maruoka, Koichi; Henden, Arne; Oksanen, Arto; Moilanen, Marko; Tikkanen, Petri; Aho, Mika; Monard, Berto; Itoh, Hiroshi; Dubovsky, Pavol A.; Kudzej, Igor; Dancikova, Radka; Vanmunster, Tonny; Pietz, Jochen; Bolt, Greg; Boyd, David; Nelson, Peter; Krajci, Thomas; Cook, Lewis M.; Torii, Ken'ichi; Starkey, Donn R.; Shears, Jeremy; Jensen, Lasse-Teist; Masi, Gianluca; Hynek, Tomáš; Nová; K, Rudolf; Kociá; N, Radek; Krá; L, Lukáš; Kučá; Ková, Hana; Kolasa, Marek; Štastný, Petr; Staels, Bart; Miller, Ian; Sano, Yasuo; de Ponthière, Pierre; Miyashita, Atsushi; Crawford, Tim; Brady, Steve; Santallo, Roland; Richards, Tom; Martin, Brian; Buczynski, Denis; Richmond, Michael; Kern, Jim; Davis, Stacey; Crabtree, Dustin; Beaulieu, Kevin; Davis, Tracy; Aggleton, Matt; Morelle, Etienne; Pavlenko, Elena P.; Andreev, Maksim; Baklanov, Alexander; Koppelman, Michael D.; Billings, Gary; Urbancok, L'ubomír; Ögmen, Yenal; Heathcote, Bernard; Gomez, Tomas L.; Voloshina, Irina; Retter, Alon; Mularczyk, Krzysztof; Zoczewski, Kamil; Olech, Arkadiasz; Kedzierski, Piotr; Pickard, Roger D.; Stockdale, Chris; Virtanen, Jani; Morikawa, Koichi; Hambsch, Franz-Josef; Garradd, Gordon; Gualdoni, Carlo; Geary, Keith; Omodaka, Toshihiro; Sakai, Nobuyuki; Michel, Raul; Cárdenas, A. A.; Gazeas, Kosmas D.; Niarchos, Panos G.; Yushchenko, Alexander V.; Mallia, Franco; Fiaschi, Marco; Good, Gerry A.; Walker, Stan; James, Nick; Douzu, Ken-Ichi; Julian, Wm Mack, II; Butterworth, Neil D.; Shugarov, Sergey Yu.; Volkov, Igor; Chochol, Drahomir; Katysheva, Natalia; Rosenbush, Alexander E.; Khramtsova, Maria; Kehusmaa, Petri; Reszelski, Maciej; Bedient, James; Liller, William; Pojmanski, Grzegorz; Simonsen, Mike; Stubbings, Rod; Schmeer, Patrick; Muyllaert, Eddy; Kinnunen, Timo; Poyner, Gary; Ripero, Jose; Kriebel, Wolfgang

    2009-12-01

    We systematically surveyed period variations of superhumps in SU UMa-type dwarf novae based on newly obtained data and past publications. In many systems, the evolution of the superhump period is found to be composed of three distinct stages: an early evolutionary stage with a longer superhump period, a middle stage with systematically varying periods, and a final stage with a shorter, stable superhump period. During the middle stage, many systems with superhump periods of less than 0.08 d show positive period derivatives. We present observational characteristics of these stages and give greatly improved statistics. Contrary to an earlier claim, we found no clear evidence for a variation of period derivatives among different superoutbursts of the same object. We present an interpretation that the lengthening of the superhump period is a result of the outward propagation of an eccentricity wave, which is limited by the radius near the tidal truncation. We interpret that late-stage superhumps are rejuvenated excitation of a 3:1 resonance when superhumps in the outer disk are effectively quenched. The general behavior of the period variation, particularly in systems with short orbital periods, appears to follow a scenario proposed in Kato, Maehara, and Monard (2008, PASJ, 60, L23). We also present an observational summary of WZ Sge-type dwarf novae. Many of them have shown long-enduring superhumps during a post-superoutburst stage having longer periods than those during the main superoutburst. The period derivatives in WZ Sge-type dwarf novae are found to be strongly correlated with the fractional superhump excess, or consequently with the mass ratio. WZ Sge-type dwarf novae with a long-lasting rebrightening or with multiple rebrightenings tend to have smaller period derivatives, and are excellent candidates for those systems around or after the period minimum of evolution of cataclysmic variables.

  5. FIRE II Cirrus Info

    Atmospheric Science Data Center

    2014-03-18

    ... Page:  FIRE II Main Grouping:  Cirrus Description:  First ISCCP Regional Experiment (FIRE) ... stratocumulus systems, the radiative properties of these clouds and their interactions. Data Products:  Cirrus ...

  6. START II and beyond

    SciTech Connect

    Mendelsohn, J.

    1996-10-01

    The second Strategic Arms Reduction Treaty (START II), signed by President George Bush and Russian President Boris yeltsin in January 1993, was ratified by the US Senate in January 1996 by and overwhelming vote of 87-4. The treaty, which will slash the strategic arsenals of the United States and Russia to 3,000-3,500 warheads each, is now before the two houses of the Russian Parliament (the Duma and the Federation Council) awaiting ratification amidst confusion and criticism. The Yeltsin administration supports START II and spoke in favor of Russian ratification after the Senate acted on the treaty. The Russian foreign minister and the Russian military believed that START II should be ratified as soon as possible. During the recent presidential campaign and his subsequent illness, President Yeltsin has been virtually silent on the subject of START II and nuclear force reductions. Without a push from the Yeltsin administration, the tone among Duma members, has been sharply critical of START II. Voices across the Russian political spectrum have questioned the treaty and linked it to constraints on highly capable theater missile defense (TMD) systems and the continued viability of the ABM Treaty. And urged that START II ratification be held hostage until NATO abandons its plans to expand eastward. Although the START I and START II accords have generated the momentum, opportunity and expectation-both domestic and international-for additional nuclear arms reductions, the current impasse over ratification in the Duma has cast a shadow over the future of START II and raised questions about the chances for any follow-on (START III) agreement.

  7. Mod II engine development

    NASA Technical Reports Server (NTRS)

    Karl, David W.

    1987-01-01

    The Mod II engine, a four-cylinder, automotive Stirling engine utilizing the Siemens-Rinia double-acting concept, was assembled and became operational in January 1986. This paper describes the Mod II engine, its first assembly, and the subsequent development work done on engine components up to the point that engine performance characterization testing took place. Performance data for the engine are included.

  8. Carnitine palmitoyltransferase II deficiency

    PubMed Central

    Roe, C R.; Yang, B-Z; Brunengraber, H; Roe, D S.; Wallace, M; Garritson, B K.

    2008-01-01

    Background: Carnitine palmitoyltransferase II (CPT II) deficiency is an important cause of recurrent rhabdomyolysis in children and adults. Current treatment includes dietary fat restriction, with increased carbohydrate intake and exercise restriction to avoid muscle pain and rhabdomyolysis. Methods: CPT II enzyme assay, DNA mutation analysis, quantitative analysis of acylcarnitines in blood and cultured fibroblasts, urinary organic acids, the standardized 36-item Short-Form Health Status survey (SF-36) version 2, and bioelectric impedance for body fat composition. Diet treatment with triheptanoin at 30% to 35% of total daily caloric intake was used for all patients. Results: Seven patients with CPT II deficiency were studied from 7 to 61 months on the triheptanoin (anaplerotic) diet. Five had previous episodes of rhabdomyolysis requiring hospitalizations and muscle pain on exertion prior to the diet (two younger patients had not had rhabdomyolysis). While on the diet, only two patients experienced mild muscle pain with exercise. During short periods of noncompliance, two patients experienced rhabdomyolysis with exercise. None experienced rhabdomyolysis or hospitalizations while on the diet. All patients returned to normal physical activities including strenuous sports. Exercise restriction was eliminated. Previously abnormal SF-36 physical composite scores returned to normal levels that persisted for the duration of the therapy in all five symptomatic patients. Conclusions: The triheptanoin diet seems to be an effective therapy for adult-onset carnitine palmitoyltransferase II deficiency. GLOSSARY ALT = alanine aminotransferase; AST = aspartate aminotransferase; ATP = adenosine triphosphate; BHP = β-hydroxypentanoate; BKP = β-ketopentanoate; BKP-CoA = β-ketopentanoyl–coenzyme A; BUN = blood urea nitrogen; CAC = citric acid cycle; CoA = coenzyme A; CPK = creatine phosphokinase; CPT II = carnitine palmitoyltransferase II; LDL = low-density lipoprotein; MCT

  9. About APPLE II Operation

    SciTech Connect

    Schmidt, T.; Zimoch, D.

    2007-01-19

    The operation of an APPLE II based undulator beamline with all its polarization states (linear horizontal and vertical, circular and elliptical, and continous variation of the linear vector) requires an effective description allowing an automated calculation of gap and shift parameter as function of energy and operation mode. The extension of the linear polarization range from 0 to 180 deg. requires 4 shiftable magnet arrrays, permitting use of the APU (adjustable phase undulator) concept. Studies for a pure fixed gap APPLE II for the SLS revealed surprising symmetries between circular and linear polarization modes allowing for simplified operation. A semi-analytical model covering all types of APPLE II and its implementation will be presented.

  10. Mod II engine performance

    NASA Technical Reports Server (NTRS)

    Richey, Albert E.; Huang, Shyan-Cherng

    1987-01-01

    The testing of a prototype of an automotive Stirling engine, the Mod II, is discussed. The Mod II is a one-piece cast block with a V-4 single-crankshaft configuration and an annular regenerator/cooler design. The initial testing of Mod II concentrated on the basic engine, with auxiliaries driven by power sources external to the engine. The performance of the engine was tested at 720 C set temperature and 820 C tube temperature. At 720 C, it is observed that the power deficiency is speed dependent and linear, with a weak pressure dependency, and at 820 C, the power deficiency is speed and pressure dependent. The effects of buoyancy and nozzle spray pattern on the heater temperature spread are investigated. The characterization of the oil pump and the operating cycle and temperature spread tests are proposed for further evaluation of the engine.

  11. SAGE II Ozone Analysis

    NASA Technical Reports Server (NTRS)

    Cunnold, Derek; Wang, Ray

    2002-01-01

    Publications from 1999-2002 describing research funded by the SAGE II contract to Dr. Cunnold and Dr. Wang are listed below. Our most recent accomplishments include a detailed analysis of the quality of SAGE II, v6.1, ozone measurements below 20 km altitude (Wang et al., 2002 and Kar et al., 2002) and an analysis of the consistency between SAGE upper stratospheric ozone trends and model predictions with emphasis on hemispheric asymmetry (Li et al., 2001). Abstracts of the 11 papers are attached.

  12. Instant Insanity II

    ERIC Educational Resources Information Center

    Richmond, Tom; Young, Aaron

    2013-01-01

    "Instant Insanity II" is a sliding mechanical puzzle whose solution requires the special alignment of 16 colored tiles. We count the number of solutions of the puzzle's classic challenge and show that the more difficult ultimate challenge has, up to row permutation, exactly two solutions, and further show that no…

  13. Dissecting Diversity Part II

    ERIC Educational Resources Information Center

    Matthews, Frank

    2005-01-01

    This article presents "Dissecting Diversity, Part II," the conclusion of a wide-ranging two-part roundtable discussion on diversity in higher education. The participants were as follows: Lezli Baskerville, J.D., President and CEO of the National Association for Equal Opportunity (NAFEO); Dr. Gerald E. Gipp, Executive Director of the…

  14. Listen & Learn II.

    ERIC Educational Resources Information Center

    Community Building Resources, Spruce Grove (Alberta).

    Six community builders in Edmonton, Alberta, planned, developed, and implemented Listen and Learn II, a reflective research project in asset-based community building, over a 6-month period in 1998. They met regularly over 2 months to plan the research and design a method that was open to participation at any stage, encouraged exchange of…

  15. A la Mode II.

    ERIC Educational Resources Information Center

    Stowe, Richard A.

    This paper describes two modes of educational decision-making: Mode I, in which the instructor makes such decisions as what to teach, to whom, when, in what order, at what pace, and at what complexity level; and Mode II, in which the learner makes the decisions. While Mode I comprises most of what is regarded as formal education, the learner in…

  16. Periodontics II: Course Proposal.

    ERIC Educational Resources Information Center

    Dordick, Bruce

    A proposal is presented for Periodontics II, a course offered at the Community College of Philadelphia to give the dental hygiene/assisting student an understanding of the disease states of the periodontium and their treatment. A standardized course proposal cover form is given, followed by a statement of purpose for the course, a list of major…

  17. Class II Microcins

    NASA Astrophysics Data System (ADS)

    Vassiliadis, Gaëlle; Destoumieux-Garzón, Delphine; Peduzzi, Jean

    Class II microcins are 4.9- to 8.9-kDa polypeptides produced by and active against enterobacteria. They are classified into two subfamilies according to their structure and their gene cluster arrangement. While class IIa microcins undergo no posttranslational modification, class IIb microcins show a conserved C-terminal sequence that carries a salmochelin-like siderophore motif as a posttranslational modification. Aside from this C-terminal end, which is the signature of class IIb microcins, some sequence similarities can be observed within and between class II subclasses, suggesting the existence of common ancestors. Their mechanisms of action are still under investigation, but several class II microcins use inner membrane proteins as cellular targets, and some of them are membrane-active. Like group B colicins, many, if not all, class II microcins are TonB- and energy-dependent and use catecholate siderophore receptors for recognition/­translocation across the outer membrane. In that context, class IIb microcins are considered to have developed molecular mimicry to increase their affinity for their outer membrane receptors through their salmochelin-like posttranslational modification.

  18. Inhibitory role of peroxiredoxin II (Prx II) on cellular senescence.

    PubMed

    Han, Ying-Hao; Kim, Hyun-Sun; Kim, Jin-Man; Kim, Sang-Keun; Yu, Dae-Yeul; Moon, Eun-Yi

    2005-08-29

    Reactive oxygen species (ROS) were generated in all oxygen-utilizing organisms. Peroxiredoxin II (Prx II) as one of antioxidant enzymes may play a protective role against the oxidative damage caused by ROS. In order to define the role of Prx II in organismal aging, we evaluated cellular senescence in Prx II(-/-) mouse embryonic fibroblast (MEF). As compared to wild type MEF, cellular senescence was accelerated in Prx II(-/-) MEF. Senescence-associated (SA)-beta-galactosidase (Gal)-positive cell formation was about 30% higher in Prx II(-/-) MEF. N-Acetyl-l-cysteine (NAC) treatment attenuated SA-beta-Gal-positive cell formation. Prx II(-/-) MEF exhibited the higher G2/M (41%) and lower S (1.6%) phase cells as compared to 24% and 7.3% [corrected] in wild type MEF, respectively. A high increase in the p16 and a slight increase in the p21 and p53 levels were detected in PrxII(-/-) MEF cells. The cellular senescence of Prx II(-/-) MEF was correlated with the organismal aging of Prx II(-/-) mouse skin. While extracellular signal-regulated kinase (ERK) and p38 activation was detected in Prx II(-/-) MEF, ERK and c-Jun N-terminal kinase (JNK) activation was detected in Prx II(-/-) skin. These results suggest that Prx II may function as an enzymatic antioxidant to prevent cellular senescence and skin aging.

  19. Role of Bound Zn(II) in the CadC Cd(II)/Pb(II)/Zn(II)-Responsive Repressor

    SciTech Connect

    Kandegedara, A.; Thiyagarajan, S; Kondapalli, K; Stemmler, T; Rosen, B

    2009-01-01

    The Staphylococcus aureus plasmid pI258 cadCA operon encodes a P-type ATPase, CadA, that confers resistance to Cd(II)/Pb(II)/Zn(II). Expression is regulated by CadC, a homodimeric repressor that dissociates from the cad operator/promoter upon binding of Cd(II), Pb(II), or Zn(II). CadC is a member of the ArsR/SmtB family of metalloregulatory proteins. The crystal structure of CadC shows two types of metal binding sites, termed Site 1 and Site 2, and the homodimer has two of each. Site 1 is the physiological inducer binding site. The two Site 2 metal binding sites are formed at the dimerization interface. Site 2 is not regulatory in CadC but is regulatory in the homologue SmtB. Here the role of each site was investigated by mutagenesis. Both sites bind either Cd(II) or Zn(II). However, Site 1 has higher affinity for Cd(II) over Zn(II), and Site 2 prefers Zn(II) over Cd(II). Site 2 is not required for either derepression or dimerization. The crystal structure of the wild type with bound Zn(II) and of a mutant lacking Site 2 was compared with the SmtB structure with and without bound Zn(II). We propose that an arginine residue allows for Zn(II) regulation in SmtB and, conversely, a glycine results in a lack of regulation by Zn(II) in CadC. We propose that a glycine residue was ancestral whether the repressor binds Zn(II) at a Site 2 like CadC or has no Site 2 like the paralogous ArsR and implies that acquisition of regulatory ability in SmtB was a more recent evolutionary event.

  20. Regulation of proliferation and gene expression in cultured human aortic smooth muscle cells by resveratrol and standardized grape extracts

    SciTech Connect

    Wang Zhirong; Chen Yan; Labinskyy, Nazar; Hsieh Tzechen; Ungvari, Zoltan; Wu, Joseph M. . E-mail: Joseph_Wu@nymc.edu

    2006-07-21

    Epidemiologic studies suggest that low to moderate consumption of red wine is inversely associated with the risk of coronary heart disease; the protection is in part attributed to grape-derived polyphenols, notably trans-resveratrol, present in red wine. It is not clear whether the cardioprotective effects of resveratrol can be reproduced by standardized grape extracts (SGE). In the present studies, we determined, using cultured human aortic smooth muscle cells (HASMC), growth and specific gene responses to resveratrol and SGE provided by the California Table Grape Commission. Suppression of HASMC proliferation by resveratrol was accompanied by a dose-dependent increase in the expression of tumor suppressor gene p53 and heat shock protein HSP27. Using resveratrol affinity chromatography and biochemical fractionation procedures, we showed by immunoblot analysis that treatment of HASMC with resveratrol increased the expression of quinone reductase I and II, and also altered their subcellular distribution. Growth of HASMC was significantly inhibited by 70% ethanolic SGE; however, gene expression patterns in various cellular compartments elicited in response to SGE were substantially different from those observed in resveratrol-treated cells. Further, SGE also differed from resveratrol in not being able to induce relaxation of rat carotid arterial rings. These results indicate that distinct mechanisms are involved in the regulation of HASMC growth and gene expression by SGE and resveratrol.

  1. Multiple endocrine neoplasia (MEN) II

    MedlinePlus

    Sipple syndrome; MEN II; Pheochromocytoma - MEN II; Thyroid cancer - pheochromocytoma; Parathyroid cancer - pheochromocytoma ... often not cancerous (benign). Medullary carcinoma of the thyroid is ... fatal cancer, but early diagnosis and surgery can often lead ...

  2. FIRE II - Cirrus Data Sets

    Atmospheric Science Data Center

    2013-07-26

    FIRE II - Cirrus Data Sets First ISCCP Regional Experiment (FIRE) II Cirrus was conducted in southeastern Kansas. It was designed to improve the ... stratocumulus systems, the radiative properties of these clouds and their interactions. Relevant Documents:  FIRE ...

  3. RADTRAN II user guide

    SciTech Connect

    Madsen, M M; Wilmot, E L; Taylor, J M

    1983-02-01

    RADTRAN II is a flexible analytical tool for calculating both the incident-free and accident impacts of transporting radioactive materials. The consequences from incident-free shipments are apportioned among eight population subgroups and can be calculated for several transport modes. The radiological accident risk (probability times consequence summed over all postulated accidents) is calculated in terms of early fatalities, early morbidities, latent cancer fatalities, genetic effects, and economic impacts. Groundshine, inhalation, direct exposure, resuspension, and cloudshine dose pathways are modeled to calculate the radiological health risks from accidents. Economic impacts are evaluated based on costs for emergency response, cleanup, evacuation, income loss, and land use. RADTRAN II can be applied to specific scenario evaluations (individual transport modes or specified combinations), to compare alternative modes or to evaluate generic radioactive material shipments. Unit-risk factors can easily be evaluated to aid in performing generic analyses when several options must be compared with the amount of travel as the only variable.

  4. Results from SAGE II

    SciTech Connect

    Nico, J.S.

    1994-10-01

    The Russian-American Gallium solar neutrino Experiment (SAGE) began the second phase of operation (SAGE II) in September of 1992. Monthly measurements of the integral flux of solar neutrinos have been made with 55 tonnes of gallium. The K-peak results of the first nine runs of SAGE II give a capture rate of 66{sub -13}{sup +18} (stat) {sub -7}{sup +5} (sys) SNU. Combined with the SAGE I result of 73{sub -16}{sup +18} (stat) {sub -7}{sup 5} (sys) SNU, the capture rate is 69{sub -11}{sup +11} (stat) {sub -7}{sup +5} (sys) SNU. This represents only 52%--56% of the capture rate predicted by different Standard Solar Models.

  5. Ribosomal Database Project II

    DOE Data Explorer

    The Ribosomal Database Project (RDP) provides ribosome related data and services to the scientific community, including online data analysis and aligned and annotated Bacterial small-subunit 16S rRNA sequences. As of March 2008, RDP Release 10 is available and currently (August 2009) contains 1,074,075 aligned 16S rRNA sequences. Data that can be downloaded include zipped GenBank and FASTA alignment files, a histogram (in Excel) of the number of RDP sequences spanning each base position, data in the Functional Gene Pipeline Repository, and various user submitted data. The RDP-II website also provides numerous analysis tools.[From the RDP-II home page at http://rdp.cme.msu.edu/index.jsp

  6. Operation Everest II

    PubMed Central

    2010-01-01

    Abstract Wagner, Peter D. Operation Everest II. High Alt. Med. Biol. 11:111–119, 2010.—In October 1985, 25 years ago, 8 subjects and 27 investigators met at the United States Army Research Institute for Environmental Medicine (USARIEM) altitude chambers in Natick, Massachusetts, to study human responses to a simulated 40-day ascent of Mt. Everest, termed Operation Everest II (OE II). Led by Charlie Houston, John Sutton, and Allen Cymerman, these investigators conducted a large number of investigations across several organ systems as the subjects were gradually decompressed over 40 days to the Everest summit equivalent. There the subjects reached a \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland,xspace}\\usepackage{amsmath,amsxtra}\\pagestyle{empty}\\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\begin{align*} \\dot{\\rm V}{\\sc O}_2{\\rm max} \\end{align*} \\end{document} of 15.3 mL/kg/min (28% of initial sea-level values) at 100 W and arterial Po2 and Pco2 of ∼28 and ∼10 mm Hg, respectively. Cardiac function resisted hypoxia, but the lungs could not: ventilation–perfusion inequality and O2 diffusion limitation reduced arterial oxygenation considerably. Pulmonary vascular resistance was increased, was not reversible after short-term hyperoxia, but was reduced during exercise. Skeletal muscle atrophy occurred, but muscle structure and function were otherwise remarkably unaffected. Neurological deficits (cognition and memory) persisted after return to sea level, more so in those with high hypoxic ventilatory responsiveness, with motor function essentially spared. Nine percent body weight loss (despite an unrestricted diet) was mainly (67%) from muscle and exceeded the 2% predicted from energy intake–expenditure balance. Some immunological and lipid metabolic changes occurred, of uncertain

  7. AWIPS II Extended - Data Delivery

    NASA Astrophysics Data System (ADS)

    Henry, R.; Schotz, S.; Calkins, J.; Gockel, B.; Ortiz, C.; Peter, R.

    2012-12-01

    AWIPS II Technology Infusion is a multiphase program. The first phase is the migration of the Weather Forecast Offices (WFOs) and River Forecast Centers (RFCs) AWIPS I capabilities into a Service Oriented Architecture (SOA), referred to as AWIPS II. AWIPS II is currently being deployed to Operational Test and Evaluation (OTE) and other select deployment sites. The subsequent phases of AWIPS Technology Infusion, known as AWIPS II Extended, include several projects that will improve technological capabilities of AWIPS II in order to enhance the NWS enterprise and improve services to partners. This paper summarizes AWIPS II Extended - Data Delivery project and reports on its status. Data Delivery enables AWIPS II users to discover, subscribe and access web-enabled data provider systems including the capability to subset datasets by space, time and parameter.

  8. Constant rate control algorithm for Wyner-Ziv video codec

    NASA Astrophysics Data System (ADS)

    Jakubowski, Mariusz

    2009-06-01

    In a distributed video coding (DVC) system, the total bit-rate depends on bit-rate of the key frames (Intra frames) and the Wyner-Ziv (WZ) frames. The key frames bit-rate is relatively easy to control since they are encoded with an Intra coding scheme (e.g. H.264/AVC Intra), and there are many proposed solutions in literature which address this issue1, 2. On the other hand, rate control (RC) of the WZ frames at the encoder is more difficult since the bit-rate of WZ frames is difficult to predict and control due to the absence of the side information at the decoder side. In this work, an RC algorithm developed within the VISNET II, the European Network of Excellence, is presented as an efficient solution to achieve and maintain the target bit-rate for the overall Intra frames and WZ bitstream, mainly by changing the degree of compression of the Intra frames which is controlled by quantization parameter (QP). In order to maintain a similar quality for the Intra and WZ frames, the WZ quantization index (QIndex) follows the QP changes. A statistical model is used to describe the relationship between QIndex and the WZ frames bit-rate. Additionally, an analysis of influence of the key frames residuum complexity on WZ frames bitrate was conducted. The proposed algorithm adapted to the VISNET2 WZ video codec3 confirms its efficiency in terms of achieving and maintaining the target bit-rate.

  9. Delta II Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Final preparations for lift off of the DELTA II Mars Pathfinder Rocket are shown. Activities include loading the liquid oxygen, completing the construction of the Rover, and placing the Rover into the Lander. After the countdown, important visual events include the launch of the Delta Rocket, burnout and separation of the three Solid Rocket Boosters, and the main engine cutoff. The cutoff of the main engine marks the beginning of the second stage engine. After the completion of the second stage, the third stage engine ignites and then cuts off. Once the third stage engine cuts off spacecraft separation occurs.

  10. Run II luminosity progress

    SciTech Connect

    Gollwitzer, K.; /Fermilab

    2007-06-01

    The Fermilab Tevatron Collider Run II program continues at the energy and luminosity frontier of high energy particle physics. To the collider experiments CDF and D0, over 3 fb{sup -1} of integrated luminosity has been delivered to each. Upgrades and improvements in the Antiproton Source of the production and collection of antiprotons have led to increased number of particles stored in the Recycler. Electron cooling and associated improvements have help make a brighter antiproton beam at collisions. Tevatron improvements to handle the increased number of particles and the beam lifetimes have resulted in an increase in luminosity.

  11. SAGE II aerosol data validation - Comparative studies of SAGE II and SAM II data sets

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Mccormick, M. P.; Chu, W. P.; Wang, P. H.; Osborn, M. T.

    1989-01-01

    Data from the Stratospheric Aerosol and Gas Experiment (SAGE II) satellite are compared with data from the Stratospheric Aerosol Measurement (SAM II) satellite. Both experiments produce aerosol extinction profiles by measuring the attenuation of solar radiation during each sunrise and sunset observed by the satelltie. The SAGE II obtains profiles at 1.02 microns and three smaller wavelengths, whereas the SAM II measures at only one radiometric channel at 1.0 microns. It is found that the differences between the two sets of data are generally within the error bars associated with each measurement. In addition, the sunrise and sunset data from SAGE II are analyzed.

  12. Further Measurements of the New Dwarf Nova J2138+26

    NASA Astrophysics Data System (ADS)

    Rovny, Jared; Mezier, Kyle; Voloshina, Irina; Olenick, Richard; Metlov, Vladimir

    2010-10-01

    J2138+26 is a new WZ Sge-type dwarf nova, discovered by Dae-Am Yi et al. on May 7, 2010 (CBET 2273). The object is suggested to be similar to GW Lib, another WZ Sge star outbursting in 2007, in terms of a low inclination angle and apparent brightness. J2138+26 is a binary star system with a variable light output caused by precession of the accretion disk around the white dwarf in the cataclysmic variable system. J2138 enters certain periods of outburst when it is significantly brighter, and its regular light variations (from precession), called superhumps, have a changing period. Additional photometric observation of this system provides information about the changing amplitude and period of its superhumps and outbursts, which in turn helps to determine the system's history and physical activity, as well as providing insight into cataclysmic variable systems and their behavior in general. The research in July 2010, done by the named authors and using a 0.6-m telescope from the Sternberg Astronomical Institute's branch of the Crimean Observatory in Crimea, was focused on such photometric observation. Data and analysis of the superhump periods will be presented. The analysis of data taken by Dr. Voloshina and ourselves will be presented with a focus on the changing amplitude and period of J2138, and the physical significance of these results discussed.

  13. The Belle II Detector

    NASA Astrophysics Data System (ADS)

    Piilonen, Leo; Belle Collaboration, II

    2017-01-01

    The Belle II detector is now under construction at the KEK laboratory in Japan. This project represents a substantial upgrade of the Belle detector (and the KEKB accelerator). The Belle II experiment will record 50 ab-1 of data, a factor of 50 more than that recorded by Belle. This large data set, combined with the low backgrounds and high trigger efficiencies characteristic of an e+e- experiment, should provide unprecedented sensitivity to new physics signatures in B and D meson decays, and in τ lepton decays. The detector comprises many forefront subsystems. The vertex detector consists of two inner layers of silicon DEPFET pixels and four outer layers of double-sided silicon strips. These layers surround a beryllium beam pipe having a radius of only 10 mm. Outside of the vertex detector is a large-radius, small-cell drift chamber, an ``imaging time-of-propagation'' detector based on Cerenkov radiation for particle identification, and scintillating fibers and resistive plate chambers used to identify muons. The detector will begin commissioning in 2017.

  14. Measurements of W/Z production with the ATLAS detector

    SciTech Connect

    Köneke, Karsten; Collaboration: ATLAS Collaboration

    2013-10-21

    W and Z boson production have been measured in the electron, muon and tau decay channels at the LHC with the ATLAS detector. Total and differential cross sections, defined in terms of the decay lepton kinematics, have been measured as a function of rapidity and transverse momentum. Ratios of the cross sections demonstrate sensitivity to lepton universality. The kinematic distributions constrain parton densities and QCD calculations, including resummations of soft gluon radiation and the matching of NLO matrix elements (or high multiplicity tree-level matrix elements) to parton shower approximations. The polarization of W bosons is also measured, as, for the first time, is the polarization of the tau lepton in W → τν decays.

  15. SGA-WZ: a new strapdown airborne gravimeter.

    PubMed

    Huang, Yangming; Olesen, Arne Vestergaard; Wu, Meiping; Zhang, Kaidong

    2012-01-01

    Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter taking full advantage of the inertial navigation system is described with improved mechanical design, high precision time synchronization, better thermal control and optimized sensor modeling. Apart from the general usage, the Global Positioning System (GPS) after differentiation is integrated to the inertial navigation system which provides not only more precise altitude information along with the navigation aiding, but also an effective way to calculate the vehicle acceleration. Design description and test results on the performance of the gyroscopes and accelerations will be emphasized. Analysis and discussion of the airborne field test results are also given.

  16. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  17. II Zwicky 23 and Family

    NASA Astrophysics Data System (ADS)

    Wehner, E. H.; Gallagher, J. S.; Rudie, G. C.; Cigan, P. J.

    II Zwicky 23 (UGC 3179) is a luminous (MB ~ -21) nearby compact narrow emission line st arburst galaxy with blue optical colors and strong emission lines. We present a photometric and morphological study of II Zw 23 and its interacting companions using data obtained with the WIYN 3.5-m telescope in Kitt Peak, Arizona. II Zwicky 23 has a highly disturbed outer structure with long trails of debris that may be feeding tidal dwarfs.

  18. Belle II Software

    NASA Astrophysics Data System (ADS)

    Kuhr, T.; Ritter, M.; Belle Software Group, II

    2016-10-01

    Belle II is a next generation B factory experiment that will collect 50 times more data than its predecessor, Belle. The higher luminosity at the SuperKEKB accelerator leads to higher background levels and requires a major upgrade of the detector. As a consequence, the simulation, reconstruction, and analysis software must also be upgraded substantially. Most of the software has been redesigned from scratch, taking into account the experience from Belle and other experiments and utilizing new technologies. The large amount of experimental and simulated data requires a high level of reliability and reproducibility, even in parallel environments. Several technologies, tools, and organizational measures are employed to evaluate and monitor the performance of the software during development.

  19. He II-Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.

    2014-01-01

    A small fraction of star-forming galaxies at redshift, 3, show He II at 1640 A as a narrow emission line (Cassata et al. 2012), but the source of this emission is not understood. Does the He II emission arise in the stars or in the surrounding nebula? To answer this question, we use I Zw 18, a well studied blue compact dwarf galaxy showing narrow He II line emission as a test case. We consider if/how He II narrow emission lines could originate in the nearby nebulosity, or in the winds of hot, massive stars, both those on the main sequence and post-MS evolutionary phases.

  20. Mode II fatigue crack propagation.

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Kibler, J. J.

    1971-01-01

    Fatigue crack propagation rates were obtained for 2024-T3 bare aluminum plates subjected to in-plane, mode I, extensional loads and transverse, mode II, bending loads. These results were compared to the results of Iida and Kobayashi for in-plane mode I-mode II extensional loads. The engineering significance of mode I-mode II fatigue crack growth is considered in view of the present results. A fatigue crack growth equation for handling mode I-mode II fatigue crack growth rates from existing mode I data is also discussed.

  1. Phase II Final Report

    SciTech Connect

    Schuknecht, Nate; White, David; Hoste, Graeme

    2014-09-11

    The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

  2. Solar Type II Radio Bursts and IP Type II Events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.

    2005-01-01

    We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.

  3. Technology II: Implementation Planning Guide.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    The California Community Colleges (CCC) are facing a number of challenges, including the explosive use of the Internet, the digital divide, the need for integrating technology into teaching and learning, the impact of Tidal Wave II, and the need to ensure that technology is accessible to persons with disabilities. The CCCs' Technology II Strategic…

  4. PARIS II: DESIGNING GREENER SOLVENTS

    EPA Science Inventory

    PARIS II (the program for assisting the replacement of industrial solvents, version II), developed at the USEPA, is a unique software tool that can be used for customizing the design of replacement solvents and for the formulation of new solvents. This program helps users avoid ...

  5. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2016-07-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  6. Annex II technical documentation assessed.

    PubMed

    van Drongelen, A W; Roszek, B; van Tienhoven, E A E; Geertsma, R E; Boumans, R T; Kraus, J J A M

    2005-12-01

    Annex II of the Medical Device Directive (MDD) is used frequently by manufacturers to obtain CE-marking. This procedure relies on a full quality assurance system and does not require an assessment of the individual medical device by a Notified Body. An investigation into the availability and the quality of technical documentation for Annex II devices revealed severe shortcomings, which are reported here.

  7. National Synchrotron Light Source II

    SciTech Connect

    Steve Dierker

    2008-03-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  8. Crystal Structure of Rat Carnitine Palmitoyltransferase II (CPT-II)

    SciTech Connect

    Hsiao,Y.; Jogl, G.; Esser, V.; Tong, L.

    2006-01-01

    Carnitine palmitoyltransferase II (CPT-II) has a crucial role in the {beta}-oxidation of long-chain fatty acids in mitochondria. We report here the crystal structure of rat CPT-II at 1.9 Angstroms resolution. The overall structure shares strong similarity to those of short- and medium-chain carnitine acyltransferases, although detailed structural differences in the active site region have a significant impact on the substrate selectivity of CPT-II. Three aliphatic chains, possibly from a detergent that is used for the crystallization, were found in the structure. Two of them are located in the carnitine and CoA binding sites, respectively. The third aliphatic chain may mimic the long-chain acyl group in the substrate of CPT-II. The binding site for this aliphatic chain does not exist in the short- and medium-chain carnitine acyltransferases, due to conformational differences among the enzymes. A unique insert in CPT-II is positioned on the surface of the enzyme, with a highly hydrophobic surface. It is likely that this surface patch mediates the association of CPT-II with the inner membrane of the mitochondria.

  9. Rhizobium etli asparaginase II

    PubMed Central

    Huerta-Saquero, Alejandro; Evangelista-Martínez, Zahaed; Moreno-Enriquez, Angélica; Perez-Rueda, Ernesto

    2013-01-01

    Bacterial l-asparaginase has been a universal component of therapies for childhood acute lymphoblastic leukemia since the 1970s. Two principal enzymes derived from Escherichia coli and Erwinia chrysanthemi are the only options clinically approved to date. We recently reported a study of recombinant l-asparaginase (AnsA) from Rhizobium etli and described an increasing type of AnsA family members. Sequence analysis revealed four conserved motifs with notable differences with respect to the conserved regions of amino acid sequences of type I and type II l-asparaginases, particularly in comparison with therapeutic enzymes from E. coli and E. chrysanthemi. These differences suggested a distinct immunological specificity. Here, we report an in silico analysis that revealed immunogenic determinants of AnsA. Also, we used an extensive approach to compare the crystal structures of E. coli and E. chrysantemi asparaginases with a computational model of AnsA and identified immunogenic epitopes. A three-dimensional model of AsnA revealed, as expected based on sequence dissimilarities, completely different folding and different immunogenic epitopes. This approach could be very useful in transcending the problem of immunogenicity in two major ways: by chemical modifications of epitopes to reduce drug immunogenicity, and by site-directed mutagenesis of amino acid residues to diminish immunogenicity without reduction of enzymatic activity. PMID:22895060

  10. Angiotensin II receptor heterogeneity

    SciTech Connect

    Herblin, W.F.; Chiu, A.T.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L. )

    1991-04-01

    The possibility of receptor heterogeneity in the angiotensin II (AII) system has been suggested previously, based on differences in Kd values or sensitivity to thiol reagents. One of the authors earliest indications was the frequent observation of incomplete inhibition of the binding of AII to adrenal cortical membranes. Autoradiographic studies demonstrated that all of the labeling of the rat adrenal was blocked by unlabeled AII or saralasin, but not by DuP 753. The predominant receptor in the rat adrenal cortex (80%) is sensitive to dithiothreitol (DTT) and DuP 753, and is designated AII-1. The residual sites in the adrenal cortex and almost all of the sites in the rat adrenal medulla are insensitive to both DTT and DuP 753, but were blocked by EXP655. These sites have been confirmed by ligand binding studies and are designated AII-2. The rabbit adrenal cortex is unique in yielding a nonuniform distribution of AII-2 sites around the outer layer of glomerulosa cells. In the rabbit kidney, the sites on the glomeruli are AII-1, but the sites on the kidney capsule are AII-2. Angiotensin III appears to have a higher affinity for AII-2 sites since it inhibits the binding to the rabbit kidney capsule but not the glomeruli. Elucidation of the distribution and function of these diverse sites should permit the development of more selective and specific therapeutic strategies.

  11. Mycotoxins revisited: Part II.

    PubMed

    Berger, Kyan J; Guss, David A

    2005-02-01

    Mushrooms are ubiquitous in nature. They are an important source of nutrition, however, certain varieties contain chemicals that can be highly toxic to humans. Industrially cultivated mushrooms are historically very safe, whereas foraging for mushrooms or accidental ingestion of mushrooms in the environment can result in serious illness and death. The emergency department is the most common site of presentation for patients suffering from acute mushroom poisoning. Although recognition can be facilitated by identification of a characteristic toxidrome, the presenting manifestations can be variable and have considerable overlap with more common and generally benign clinical syndromes. The goal of this two-part article is to review the knowledge base on this subject and provide information that will assist the clinician in the early consideration, diagnosis and treatment of mushroom poisoning. Part I reviewed the epidemiology and demographics of mushroom poisoning, the physical characteristics of the most toxic varieties, the classification of the toxic species, and presented an overview of the cyclopeptide-containing mushroom class. Part II is focused on the presentation of the other classes of toxic mushrooms along with an up-to-date review of the most recently identified poisonous varieties.

  12. Options Study - Phase II

    SciTech Connect

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to

  13. Biosatellite II mission.

    PubMed

    Reynolds, O E

    1969-01-01

    Biosatellite B was launched from Cape Kennedy, Florida, on a two-stage DELTA launch vehicle at 6:04 p.m. on 7 September, 1967. Approximately nine minutes later the 435 kg spacecraft biological laboratory was placed into a satisfactory 315 km near-circular earth orbit, successfully separated from the launch vehicle's second stage and was designated Biosatellite II. The scientific payload consisting of thirteen selected general biology and radiation experiments were subjected to planned, carefully controlled environmental conditions during 45 hours of earth-orbital flight. The decision was made to abbreviate the scheduled 3-day mission by approximately one day because of a threatening tropical storm in the recovery area, and a problem of communication with the spacecraft from the tracking stations. Highest priority was placed on recovery which was essential to obtain the scientific results on all the experiments. The operational phase of the mission came to a successful conclusion with the deorbit of the recovery capsule, deployment of the parachute system and air recovery by the United States Air Force. The 127 kg recovery capsule was returned to biology laboratories at Hickam Air Force Base, Hawaii, for disassembly and immediate inspection and analysis of the biological materials by the experimenters. It was evident immediately that the quality of the biology was excellent and this fact gave promise of a high return of scientific data. The environmental conditions provided to the experimental material in the spacecraft, provisions for experimental controls, and operational considerations are presented as they relate to interpretation of the experimental results.

  14. Retrovirus Epidemiology Donor Study-II (REDS-II)

    ClinicalTrials.gov

    2016-04-14

    Acquired Immunodeficiency Syndrome; Blood Donors; Blood Transfusion; HIV Infections; HIV-1; HIV-2; HTLV-I; HTLV-II; Retroviridae Infections; Hepatitis, Viral, Human; Hepatitis B; Hepacivirus; West Nile Virus

  15. Quininium tetra-chloridozinc(II).

    PubMed

    Chen, Li-Zhuang

    2009-09-05

    The asymmetric unit of the title compound {systematic name: 2-[hydr-oxy(6-meth-oxy-quinolin-1-ium-4-yl)meth-yl]-8-vinyl-quinuclidin-1-ium tetra-chlorido-zinc(II)}, (C(20)H(26)N(2)O(2))[ZnCl(4)], consists of a double proton-ated quininium cation and a tetra-chloridozinc(II) anion. The Zn(II) ion is in a slightly distorted tetra-hedral coordination environment. The crystal structure is stabilized by inter-molecular N-H⋯Cl and O-H⋯Cl hydrogen bonds.

  16. The Monomeric Pentacyanocobaltate (II) Anion.

    ERIC Educational Resources Information Center

    Mosha, Donnati M. S.

    1982-01-01

    Laboratory procedures, background information, and discussion of experimental results are provided for the preparation of Thallium (I) Pentacyanocobaltate (II). The preparation of this pale green salt is carried out in an aqueous medium. (Author/JN)

  17. Antibacterial Co(II), Cu(II), Ni(II) and Zn(II) Complexes of Thiadiazoles Schiff Bases

    PubMed Central

    Jaffery, Maimoon F.; Supuran, Claudiu T.

    2001-01-01

    Schiff bases were obtained by condensation of 2-amino-l,3,4-thiadiazole with 5-substituted-salicylaldehydes which were further used to obtain complexes of the type [M(L)2]Cl2, where M=Co(II), Cu(II), Ni(II) or Zn(II). The new compounds described here have been characterized by physical, spectral and analytical data, and have been screened for antibacterial activity against several bacterial strains such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antibacterial potency of these Schiff bases increased upon chelation/complexation, against the tested bacterial species, opening new aproaches in the fight against antibiotic resistant strains. PMID:18475981

  18. Preparation, characterization and biological activity of Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO 2(II) complexes of new cyclodiphosph(V)azane of sulfaguanidine

    NASA Astrophysics Data System (ADS)

    Sharaby, Carmen M.

    2005-11-01

    Novel hexachlorocyclodiphosph(V)azane of sulfaguanidine, H 4L, l,3-[ N'-amidino-sulfanilamide]-2,2,2,4,4,4-hexachlorocyclodiphosph(V)azane was prepared and its coordination behaviour towards the transition metal ions Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO 2(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-vis, 1H NMR, mass spectra, reflectance, magnetic susceptibility measurements and thermogravimetric analysis (TGA). The hyperfine interactions in the isolated complex compounds were studied using 14.4 keV γ-ray from radioactive 57Co (Mössbauer spectroscopy). The data show that the ligand are coordinated to the metal ions via the sulfonamide O and deprotonated NH atoms in an octahedral manner. The H 4L ligand forms complexes of the general formulae [(MX z) 2(H 2L)H 2O) n] and [(FeSO 4) 2 (H 4L) (H 2O) 4], where X = NO 3 in case of UO 2(II) and Cl in case of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). The molar conductance data show that the complexes are non-electrolytes. The thermal behaviour of the complexes was studied and different thermodynamic parameters were calculated using Coats-Redfern method. Most of the prepared complexes showed high bactericidal activity and some of the complexes show more activity compared with the ligand and standards.

  19. Optical Waveguide Scattering Reduction. II.

    DTIC Science & Technology

    1980-12-01

    FAD-AOAR 815 BATTELLEWCOLUMBUS LABS ON F/S 20/6 OPTICAL WAVEGUIDE SCATTER ING REDUC TION. II.(U) 7 DEC 80 0 W VAHEY, N F HARTMAN, R C SHERMAN F3361... OPTICAL WAVEGUIDE SCATTERING REDUCTION II M BATTELLE COLUMBUS LABORATORIES 505 KING AVENUE COLUMBUS, OHIO 43201 DTIC ELECTEf MAY 12 198111 December...reviewed and is approved for publication. DOUGLAS AWIWILLE, Project Engineer KENNETH R. HUTCHINSON, Chief Electro- Optics Techniques and Electro- Optics

  20. Determination of Fe(II)Fe(II) ratio in glass

    SciTech Connect

    Baumann, E.W.

    1989-07-26

    The procedure was designed for the simple, rapid determination of the Fe(II)/Fe(III) ratio in glass samples. The procedure consists of the following steps: dissolution of the pulverized glass sample in a sulfuric-hydrofluoric acid mixture, containing ammonium vanadate, which preserves the Fe(II) content; addition of boric acid to destroy iron-fluoride complexes, making the iron available for color formation with Ferrozine; addition of pH 5 buffer and Ferrozine reagent to form the magenta-colored ferrous-Ferrozine complex, with measurement of the absorbance for the determination of Fe(II) content; and, addition of ascorbic acid to reduce Fe(III) to Fe(II), with a second absorbance measurement that determines total Fe. Directions for the preparation of glass from non-radioactive sludge samples are provided. The analysis of this prepared glass for the Fe(II)/Fe(III) ratio is an indication of the ratio that would be in a plant batch of glass if made from this sludge.

  1. Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres.

    PubMed

    Shukla, S R; Pai, Roshan S

    2005-09-01

    The potential of a lignocellulosic fibre, jute, was assessed for adsorption of heavy metal ions like Cu(II), Ni(II) and Zn(II) from their aqueous solutions. The fibre was also used as adsorbent after chemically modifying it by two different techniques viz, loading of a dye with specific structure, C.I. Reactive Orange 13, and oxidising with hydrogen peroxide. Both the modified jute fibres gave higher metal ion adsorption. Thus, the dye loaded jute fibres showed metal ion uptake values of 8.4, 5.26 and 5.95 mg/g for Cu(II), Ni(II) and Zn(II), respectively, while the corresponding values for oxidised jute fibres were 7.73, 5.57 and 8.02 mg/g, as against 4.23, 3.37 and 3.55 mg/g for unmodified jute fibres. Adsorption isotherm models indicated best fit for Langmuir model for the modified jute fibres. The adsorption values decreased with lowering of pH. The desorption efficiency, regenerative and reuse capacity of these adsorbents were also assessed for three successive adsorption-desorption cycles. The adsorptive capacity was retained only when the caustic soda regeneration is carried out as an intermediate step after desorption. Possible mechanism has been given.

  2. The CDF SVX II upgrade for the Tevatron Run II

    SciTech Connect

    Bortoletto, Daniela

    1997-04-01

    A microstrip silicon detector SVX II has been proposed for the upgrade of CDF to be installed in 1999 for Run II of the Tevatron. Three barrels of five layers of double-sided silicon microstrip detectors will cover the interaction region. A description of the project status will be presented. Emphasis will be given to the R&D program for silicon sensors which includes capacitance minimization, the study of coupling capacitor integrity, the operation of the detectors in conjunction with the SVXH and SVX2 readout chips in two beam tests and the determination of the detectors performance deterioration due to radiation damage.

  3. BEATRIX-II, phase II: Data summary report

    SciTech Connect

    Slagle, O.D.; Hollenberg, G.W.

    1996-05-01

    The BEATRIX-II experimental program was an International Energy Agency sponsored collaborative effort between Japan, Canada, and the United States to evaluate the performance of ceramic solid breeder materials in a fast-neutron environment at high burnup levels. This report addresses the Phase II activities, which included two in situ tritium-recovery canisters: temperature-change and temperature-gradient. The temperature-change canister contained a Li{sub 2}O ring specimen that had a nearly uniform temperature profile and was capable of temperature changes between 530 and 640{degrees}C. The temperature-gradient canister contained a Li{sub 2}ZrO{sub 3} pebble bed operating under a thermal gradient of 440 to 1100{degrees}C. Postirradiation examination was carried out to characterize the Phase II in situ specimens and a series of nonvented capsules designed to address the compatibility of beryllium with lithium-ceramic solid-breeder materials. The results of the BEATRIX-II, Phase II, irradiation experiment provided an extensive data base on the in situ tritium-release characteristics of Li{sub 2}O and Li{sub 2}ZrO{sub 3} for lithium burnups near 5%. The composition of the sweep gas was found to be a critical parameter in the recovery of tritium from both Li{sub 2}O and Li{sub 2}ZrO{sub 3}. Tritium inventories measured confirmed that Li{sub 2}O and Li{sub 2}ZrO{sub 3} exhibited very low tritium retention during the Phase II irradiation. Tritium inventories in Li{sub 2}ZrO{sub 3} after Phase II tended to be larger than those found for Li{sub 2}ZrO{sub 3} in other in situ experiments, but the larger values may reflect the larger generation rates in BEATRIX-II. A series of 20 capsules was irradiated to determine the compatibility of lithium ceramics and beryllium under conditions similar to a fusion blanket. It is concluded that Li{sub 2}O and Li{sub 2}ZrO{sub 3} should remain leading candidates for use in a solid-breeder fusion-blanket application.

  4. EBR-II Data Digitization

    SciTech Connect

    Yoon, Su-Jong; Rabiti, Cristian; Sackett, John

    2014-08-01

    1. Objectives To produce a validation database out of those recorded signals it will be necessary also to identify the documents need to reconstruct the status of reactor at the time of the beginning of the recordings. This should comprehends the core loading specification (assemblies type and location and burn-up) along with this data the assemblies drawings and the core drawings will be identified. The first task of the project will be identify the location of the sensors, with respect the reactor plant layout, and the physical quantities recorded by the Experimental Breeder Reactor-II (EBR-II) data acquisition system. This first task will allow guiding and prioritizing the selection of drawings needed to numerically reproduce those signals. 1.1 Scopes and Deliverables The deliverables of this project are the list of sensors in EBR-II system, the identification of storing location of those sensors, identification of a core isotopic composition at the moment of the start of system recording. Information of the sensors in EBR-II reactor system was summarized from the EBR-II system design descriptions listed in Section 1.2.

  5. The Belle II Physics Program

    NASA Astrophysics Data System (ADS)

    Piilonen, Leo; Belle Collaboration, II

    2017-01-01

    The Belle II experiment at the asymmetric e+e- SuperKEKB collider is a major upgrade of the Belle experiment, which ran at the KEKB collider at the KEK laboratory in Japan. The design luminosity of SuperKEKB is 8 ×1035 cm-2 s-1, which is about 40 times higher than that of KEKB. The expected integrated luminosity of Belle II is 50 ab-1 in five years of running. The experiment will focus on searches for new physics beyond the Standard Model via high precision measurements of heavy flavor decays, and searches for rare signals. To reach these goals, the accelerator, detector, electronics, software, and computing systems are all being substantially upgraded. In this talk we discuss the physics program and the expected sensitivity to new physics of the Belle II data set.

  6. Belle II Silicon Vertex Detector

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Bulla, L.; Caria, G.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; De Pietro, G.; Divekar, S. T.; Doležal, Z.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kambara, N.; Kang, K. H.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kumar, R.; Kun, W.; Kvasnička, P.; La Licata, C.; Lanceri, L.; Lettenbicher, J.; Libby, J.; Lueck, T.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Resmi, P. K.; Rozanska, M.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Watanuki, S.; Watanabe, M.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.; Zani, L.

    2017-02-01

    The Belle II experiment at the SuperKEKB asymmetric energy e+e‑ collider in KEK, Japan will operate at an instantaneous luminosity 40 times larger than that of its predecessor, Belle. It is built with an aim of collecting a huge amount of data (50 ab‑1 by 2025) for precise CP violation measurements and new physics search. Thus, we need an accurate vertex determination and reconstruction of low momentum tracks which will be achieved with the help of vertex detector (VXD). The Belle II VXD consists of two layers of DEPFET pixels (`Pixel Detector') and four layers of double-sided silicon microstrip sensors (`Silicon Vertex Detector'), assembled over carbon fibre ribs. In this paper, we discuss about the Belle II Silicon Vertex Detector, especially its design and key features; we also present its module (`ladder') assembly and testing procedures.

  7. NSLS-II INJECTION CONCEPT.

    SciTech Connect

    SHAFTAN, T.; PINAYEV, I.; ROSE, J.; WANG, X.J.; ET AL.

    2005-05-16

    Currently the facility upgrade project is in progress at the NSLS (at Brookhaven National Laboratory). The goal of the NSLS-II is a 3 GeV ultra-low-emittance storage ring that will increase radiation brightness by three orders of magnitude over that of the present NSLS X-ray ring. The low emittance of the high brightness ring's lattice results in a short lifetime, so that a top-off injection mode becomes an operational necessity. Therefore, the NSLS-II injection system must provide, and efficiently inject, an electron beam at a high repetition rate. In this paper, we present our concept of the NSLS-II injection system and discuss the conditions for, and constraints on, its design.

  8. Spacelab Mission Simulation-II

    NASA Technical Reports Server (NTRS)

    Sawin, C. F.; Shumate, W. H.

    1976-01-01

    The NASA Johnson Space Center conducted the second in a series of Spacelab mission simulations during the week of January 26-February 1, 1976. The facilities that supported the Spacelab Mission Simulation-II (SMS-II) included mock-ups of Spacelab, the Orbiter mid-deck and aft flight deck areas, and support areas simulating a mission control area and a payload operation control area. The SMS-II encompassed presently identified Spacelab mission requirements including experiment solicitation, evaluation, selection, and prioritization; crew selection and training; experiment hardware development, integration, and evaluation. The payload chosen included a cosmic ray physics experiment which was located on a pallet aft of the Spacelab and 20 biomedical experiments which were performed in the Spacelab. This paper will summarize simulation experience to date and list areas requiring substantial evaluation in the future.

  9. Titan II secondary payload capability

    NASA Astrophysics Data System (ADS)

    Butts, Aubrey J.; Nance, Milo; Odle, Roger C.

    Small satellite programs are often faced with the prospect of flying as a secondary payload because of size or funding considerations. This paper discusses a concept for flying such payloads on flights already scheduled on the Titan II SLV program over the next decade. The Titan II has the capability of inserting over 4200 lbs into LEO and larger payloads on ballistic trajectories from which higher orbits can be achieved when kick motors are used. Orbit changes are possible depending on the specific altitudes and payloads involved. Of the existing 13 remaining missions currently scheduled to fly on the Titan II SLV, excess performance is available on several missions that could be used to insert secondary payloads of up to 3000 lbs into their final orbit. This paper outlines an approach that would implement a secondary payload mission and allow small satellites to schedule a launch at a predetermined date through the year 2000.

  10. A new chelating resin for preconcentration and determination of Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) by flame atomic absorption spectrometry.

    PubMed

    Maheswari, Mohan A; Subramanian, Mandakolathur S

    2003-01-01

    A new polychelatogen, AXAD-16-1,2-diphenylethanolamine, was developed by chemically modifying Amberlite XAD-16 with 1,2-diphenylethanolamine to produce an effective metal-chelating functionality for the preconcentration of Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) and their determination by flame atomic absorption spectrometry. Various physiochemical parameters that influence the quantitative preconcentration and recovery of metal were optimized by both static and dynamic techniques. The resin showed superior extraction efficiency with high-metal loading capacity values of 0.73, 0.80, 0.77, 0.87, 0.74, and 0.81 mmol/g for Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The system also showed rapid metal-ion extraction and stripping, with complete saturation in the sorbent phase within 15 min for all the metal ions. The optimum condition for effective metal-ion extraction was found to be a neutral pH, which is a great advantage in the preconcentration of trace metal ions from natural water samples without any chemical pretreatment of the sample. The resin also demonstrated exclusive ion selectivity toward targeted metal ions by showing greater resistivity to various complexing species and more common metal ions during analyte concentration, which ultimately led to high preconcentration factors of 700 for Cu(II); 600 for Mn(II), Ni(II), and Zn(II); and 500 for Cd(II) and Pb(II), arising from a larger sample breakthrough volume. The lower limits of metal-ion detection were 7 ng/mL for Mn(II) and Ni(II); 5 ng/mL for Cu(II), Zn(II), and Cd(II), and 10 ng/mL for Pb(II). The developed resin was successful in preconcentrating metal ions from synthetic and real water samples, multivitamin-multimineral tablets, and curry leaves (Murraya koenigii) with relative standard deviations of < or = 3.0% for all analytical measurements, which demonstrated its practical utility.

  11. Administrative Plans. STIP II (Skill Training Improvement Programs Round II).

    ERIC Educational Resources Information Center

    Los Angeles Community Coll. District, CA.

    Personnel policies, job responsibilities, and accounting procedures are summarized for the Los Angeles Community College District's Skill Training Improvement Programs (STIP II). This report first cites references to the established personnel and affirmative action procedures governing the program and then presents an organizational chart for the…

  12. Propulsion Systems for Aircraft. Aerospace Education II. Instructional Unit II.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This curriculum guide accompanies another publication in the Aerospace Education II series entitled "Propulsion Systems for Aircraft." The guide includes specific guidelines for teachers on each chapter in the textbook. Suggestions are included for objectives (traditional and behavioral), suggested outline, orientation, suggested key…

  13. Helium II level measurement techniques

    NASA Astrophysics Data System (ADS)

    Celik, D.; Hilton, D. K.; Zhang, T.; Van Sciver, S. W.

    2001-05-01

    In this paper, a survey of cryogenic liquid level measurement techniques applicable to superfluid helium (He II) is given. The survey includes both continuous and discrete measurement techniques. A number of different probes and controlling circuits for this purpose have been described in the literature. They fall into one of the following categories: capacitive liquid level gauges, superconducting wire liquid level gauges, thermodynamic (heat transfer-based) liquid level gauges, resistive gauges, ultrasound and transmission line-based level detectors. The present paper reviews these techniques and their suitability for He II service. In addition to these methods, techniques for measuring the total liquid volume and mass gauging are also discussed.

  14. Belle II Early Physics Program

    NASA Astrophysics Data System (ADS)

    Stottler, Zachary; Belle Collaboration, II

    2017-01-01

    The Belle II experiment at the SuperKEKB collider is a major upgrade of the KEK `` B factory'' facility in Tsukuba, Japan. First beams are planned for early 2017 and first physics data will be recorded in the middle of 2018 during Phase 2 commissioning, while the Belle II detector is still missing its vertex detector system. In this talk we describe the physics program for this early data. The program will focus on bottomonium spectroscopy at different center-of-mass energies, in particular at the ϒ(3 S) and ϒ(6 S) resonances, amongst other energy points.

  15. Distributed Computing at Belle II

    NASA Astrophysics Data System (ADS)

    Bansal, Vikas; Belle Collaboration, II

    2016-03-01

    The Belle II experiment at the SuperKEKB collider in Tsukuba, Japan, will start physics data taking in 2018 and will accumulate 50 ab-1 of e+e- collision data, about 50 times larger than the data set of the earlier Belle experiment. The computing requirements of Belle II are comparable to those of a RUN I high-pT LHC experiment. Computing will make full use of high speed networking and of the Computing Grids in North America, Asia and Europe. Results of an initial MC simulation campaign with 5 ab-1 equivalent luminosity will be described.

  16. The PEP-II design

    SciTech Connect

    Sullivan, M.K.

    1995-05-01

    The Stanford Linear Accelerator Center (SLAC), Lawrence Berkeley Laboratory (LBL), Lawrence Livermore National Laboratory (LLNL) Positron Electron Project-II (PEP-II) is a design for a high-luminosity, asymmetric energy, electron-positron colliding beam accelerator that will operate at the center-of-mass energy of the {Upsilon}4S (10.58 GeV). The goal of the design is to achieve a large enough integrated luminosity with a moving center-of-mass reference frame to he able to observe the predicted rare decay modes of the {Upsilon}4S that do not conserve charge parity (CP).

  17. First results from SAGE II

    SciTech Connect

    Abdurashitov, J.N.; Faizov, E.L.; Gavrin, V.N.

    1994-07-01

    The Russian-American Gallium solar neutrino Experiment (SAGE) began the second phase of operation (SAGE II) in September of 1992. Monthly measurements of the integral flux of solar neutrinos have been made with 55 tonnes of gallium. The K-peak results of the first five runs of SAGE II give a capture rate of 76{sub {minus}18}{sup +21} (stat) {sub {minus}7}{sup +5} (sys) SNU. combined with the SAGE I result, the capture rate is 74{sub {minus}12}{sup +13} (stat) {sub {minus}7}{sup +5} (sys) SNU. This represents only 56%--60% of the capture rate predicted by different Standard Solar Models.

  18. Preparation and characterization of multi-carboxyl-functionalized silica gel for removal of Cu (II), Cd (II), Ni (II) and Zn (II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Min; Li, Ming-yu; Feng, Chang-gen; Zeng, Qing-xuan

    2014-09-01

    In this paper, the multi-carboxyl-functionalized silica gel was prepared by surface grafting method and applied for the removal of Cu (II), Cd (II), Ni (II) and Zn (II) from aqueous solution. The adsorbent was characterized by FT-IR, thermogravimetry, Brunauer-Emmett-Teller surface area measurement and elemental analysis, and it proved that the organic functional group, carboxyl group, was grafted successfully onto the silica gel surface. The effect of solution pH on removal efficiencies of Cu (II), Cd (II), Ni (II) and Zn (II) was investigated and it was found that with the exception of Zn (II), the removal efficiencies of the rest of metal ions increased with the increasing of pH in the solution, the maximum removal efficiency occurred at pH 6.0, whereas the maximum removal efficiency for Zn (II) was found to be at pH 7.0. Adsorption equilibrium data were well fitted to Langmuir than Freundlich isotherm model and the maximum adsorption capacity for Cu (II), Cd (II), Ni (II) and Zn (II) was 47.07, 41.48, 30.80 and 39.96 mg/g, respectively. Competitive adsorption experiments demonstrated that the adsorbent material had excellent adsorption amount and high affinity for the Cu (II) in the binary systems. In addition, the column experiments were used to investigate stability and reusability of the adsorbent, the dynamic adsorption performance, and desorption of metal ions absorbed from the adsorbent. The results confirmed that the adsorbent presents good dynamic adsorption performance for Cu (II), Cd (II), Ni (II) and Zn (II) and these metal ions adsorbed were easy to be desorbed from the adsorbent. The adsorption capacities of metal ions did not present an obvious decrease after five cycles of adsorption-desorption.

  19. Big Creek Flood Control Project, Cleveland, Ohio. Phase II. General Design Memorandum. Appendix B. Alternative Studies.

    DTIC Science & Technology

    1978-11-01

    60 / 5r ( /n -,A/ace) orOZ3.40 / S. Y Imckh/-j 641 ZSISJ Qt a, g tsp e Aes~ w.C’Cj o) ca As/e. Galsq GANNETT FLAMING CODRY Car.//e /, PoJ.i AND...6- IA x -9 I - 0 z t A acO . w r49 00 oz0 Im - £0 0~.U W1W L O- It 0- 6 IA 1~.- 2WE 4s * g; Zo- wz tp 1 -CZ2.-U.OU z4 at" :) ~0 LI IL at us 4 0, -N 4

  20. Electromagnetic calorimeter for Belle II

    NASA Astrophysics Data System (ADS)

    Belle-ECL; Aulchenko, V.; Bobrov, A.; Bondar, A.; Cheon, B. G.; Eidelman, S.; Epifanov, D.; Garmash, Yu; Goh, Y. M.; Kim, S. H.; Krokovny, P.; Kuzmin, A.; Lee, I. S.; Matvienko, D.; Miyabayashi, K.; Nakamura, I.; Shebalin, V.; Shwartz, B.; Unno, Y.; Usov, Yu; Vinokurova, A.; Vorobjev, V.; Zhilich, V.; Zhulanov, V.

    2015-02-01

    The electromagnetic calorimeter of the BELLE II detector for experiments at Super B-factory SuperKEKB is briefly described. The project of the calorimeter upgrade to meet severe background conditions expected at the upgraded KEK B factory is presented.

  1. Solar Ca II K Observations

    NASA Astrophysics Data System (ADS)

    Bertello, Luca; Pevtsov, Alexei A.; Tlatov, Andrey; Singh, Jagdev

    2016-07-01

    Some of the most important archives of past and current long-term solar synoptic observations in the resonance line of Ca II K are described here. These observations are very important for understanding the state of the solar magnetism on time scales up to several decades. The first observations of this kind began in 1904 at the Kodaikanal Observatory (India), followed by similar programs at different other locations. Regular full-disk Ca II K monitoring programs started in 1915 at the Mount Wilson Observatory (USA) and in 1917 at the National Solar Observatory of Japan. Beginning in 1919 and in 1926 regular observations were taken also at the Paris-Meudon Observatory (France) and at the "Donati solar tower telescope of the Arcetri Astrophysical Observatory in Italy, respectively. In 1926 the the Astronomical Observatory of the Coimbra University in Portugal started its own program of Ca II K observations. Although some of these programs have been terminated over the years, their data archives constitute a unique resource for studies of solar variability. In the early 1970s, the National Solar Observatory (NSO) at Sacramento Peak (USA) started a new program of daily Sun-as-a-star observations in the Ca II K line. Today the NSO is continuing these observations through its Synoptic Optical Long-term Investigations of the Sun (SOLIS) facility.

  2. The Bender-Gestalt II.

    PubMed

    Brannigan, Gary G; Decker, Scott L

    2006-01-01

    In 2003, the Bender-Gestalt II was published. In the present article, the revision process is described, and major changes to the test are discussed. These changes include additional designs, a memory (recall) phase, Motor and Perception supplementary tests, a detailed observation form, a global scoring system, and a large, nationally representative normative base. Directions for future research are also provided.

  3. National Synchrotron Light Source II

    SciTech Connect

    Hill, John; Dooryhee, Eric; Wilkins, Stuart; Miller, Lisa; Chu, Yong

    2016-04-25

    NSLS-II is a synchrotron light source helping researchers explore solutions to the grand energy challenges faced by the nation, and open up new regimes of scientific discovery that will pave the way to discoveries in physics, chemistry, and biology — advances that will ultimately enhance national security and help drive the development of abundant, safe, and clean energy technologies.

  4. Tech Area II: A history

    SciTech Connect

    Ullrich, R.

    1998-07-01

    This report documents the history of the major buildings in Sandia National Laboratories` Technical Area II. It was prepared in support of the Department of Energy`s compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission`s integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area`s primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on high-explosive components outside of the original Area II diamond-shaped parcel. Most of the buildings in the area are vacant and Sandia has no plans to use them. They are proposed for decontamination and demolition as funding becomes available.

  5. National Synchrotron Light Source II

    ScienceCinema

    Hill, John; Dooryhee, Eric; Wilkins, Stuart; Miller, Lisa; Chu, Yong

    2016-07-12

    NSLS-II is a synchrotron light source helping researchers explore solutions to the grand energy challenges faced by the nation, and open up new regimes of scientific discovery that will pave the way to discoveries in physics, chemistry, and biology — advances that will ultimately enhance national security and help drive the development of abundant, safe, and clean energy technologies.

  6. NSLS-II RF SYSTEMS

    SciTech Connect

    Rose, J.; Gash, W.; Holub, B.; Kawashima, Y.; Ma, H.; Towne, N.; Yeddulla, M.

    2011-03-28

    The NSLS-II is a new third generation light source being constructed at Brookhaven Lab. The storage ring is optimized for low emittance by use of damping wigglers to reduce the emittance to below 1 nm-rad. The RF systems are designed to provide stable beam through tight RF phase and amplitude stability requirements.

  7. 40 K Fastrac II Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A 40 K Fastrac II duration test performed at Marshall Test Stand 116. The purpose of this test was to gauge the length of time between contact of TEA (Triethylenealuminum) and LOX (liquid oxygen) as an ignitor for the Fastrac engine.

  8. Achondrogenesis type II with polydactyly.

    PubMed

    Rittler, M; Orioli, I M

    1995-11-06

    We report on a newborn male infant who presented the typical findings of achondrogenesis type II (Langer-Saldino), and who also showed postaxial polydactyly on both feet and bilateral microtia. Polydactyly is frequently part of the short-rib syndromes, but has not been reported in achondrogenesis. The hypothesis of polydactyly as part of a contiguous gene syndrome is discussed.

  9. Military Aerospace. Aerospace Education II.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is a revised publication in the series on Aerospace Education II. It describes the employment of aerospace forces, their methods of operation, and some of the weapons and equipment used in combat and combat support activities. The first chapter describes some of the national objectives and policies served by the Air Force in peace and…

  10. Application Programming in AWIPS II

    NASA Technical Reports Server (NTRS)

    Smit, Matt; McGrath, Kevin; Burks, Jason; Carcione, Brian

    2012-01-01

    Since its inception almost 8 years ago, NASA's Short-term Prediction Research and Transition (SPoRT) Center has integrated NASA data into the National Weather Service's decision support system (DSS) the Advanced Weather Interactive Processing System (AWIPS). SPoRT has, in some instances, had to shape and transform data sets into various formats and manipulate configurations to visualize them in AWIPS. With the advent of the next generation of DSS, AWIPS II, developers will be able to develop their own plugins to handle any type of data. Raytheon is developing AWIPS II to be a more extensible package written mainly in Java, and built around a Service Oriented Architecture. A plugin architecture will allow users to install their own code modules, and (if all the rules have been properly followed) they will work hand-in-hand with AWIPS II as if it were originally built in. Users can bring in new datasets with existing plugins, tweak plugins to handle a nuance or desired new functionality, or create an entirely new visualization layout for a new dataset. SPoRT is developing plugins to ensure its existing NASA data will be ready for AWIPS II when it is delivered, and to prepare for the future of new instruments on upcoming satellites.

  11. Comparative studies of aerosol extinction measurements made by the SAM II and SAGE II satellite experiments

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Mccormick, M. P.; Chu, W. P.; Wang, P.; Osborn, M. T.

    1989-01-01

    Results from the Stratospheric Aerosol Measurement (SAM) II and Stratospheric Aerosol and Gas Experiment (SAGE) II are compared for measurement locations which are coincident in time and space. At 1.0 micron, the SAM II and SAGE II aerosol extinction profiles are similar within their measurement errors. In addition, sunrise and sunset aerosol extinction data at four different wavelengths are compared for occasions when the SAGE II and SAM II measurements are nearly coincident in space and about 12 hours apart.

  12. Synthesis, spectroscopic, antimicrobial and DNA cleavage studies of new Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes with naphthofuran-2-carbohydrazide Schiff base

    NASA Astrophysics Data System (ADS)

    Halli, Madappa B.; Sumathi, R. B.

    2012-08-01

    A series of Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes have been synthesized with newly synthesized Schiff base derived from naphthofuran-2-carbohydrazide and cinnamaldehyde. The elemental analyses of the complexes are confined to the stoichiometry of the type MLCl2 [M = Co(II) and Cu(II)], ML2Cl2 [M = Ni(II), Cd(II), Zn(II) and Hg(II)] respectively, where L is Schiff base ligand. Structures have been proposed from elemental analyses, IR, electronic, mass, 1H NMR, ESR spectral data, magnetic, and thermal studies. The measured low molar conductance values in DMF indicate that the complexes are non-electrolytes. Spectroscopic studies suggest coordination occurs through azomethine nitrogen and carbonyl oxygen of the ligand with the metal ions. The Schiff base and its complexes have been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal (Aspergillus niger, Aspergillus flavus, Cladosporium and Candida albicans) activities by minimum inhibitory concentration (MIC) method. The DNA cleavage studies by agarose gel electrophoresis method was studied for all the complexes.

  13. Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. IV. The Fourth Year (2011-2012)

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Hambsch, Franz-Josef; Maehara, Hiroyuki; Masi, Gianluca; Miller, Ian; Noguchi, Ryo; Akasaka, Chihiro; Aoki, Tomoya; Kobayashi, Hiroshi; Matsumoto, Katsura; Nakagawa, Shinichi; Nakazato, Takuma; Nomoto, Takashi; Ogura, Kazuyuki; Ono, Rikako; Taniuchi, Keisuke; Stein, William; Henden, Arne; de Miguel, Enrique Kiyota, Seiichiro; Dubovsky, Pavol A.; Kudzej, Igor; Imamura, Kazuyoshi; Akazawa, Hidehiko; Takagi, Ryosuke; Wakabayashi, Yuya; Ogi, Minako; Tanabe, Kenji; Ulowetz, Joseph; Morelle, Etienne; Pickard, Roger D.; Ohshima, Tomohito; Kasai, Kiyoshi; Pavlenko, Elena P.; Antonyuk, Oksana I.; Baklanov, Aleksei V.; Antonyuk, Kirill; Samsonov, Denis; Pit, Nikolaj; Sosnovskij, Aleksei; Littlefield, Colin; Sabo, Richard; Ruiz, Javier; Krajci, Thomas; Dvorak, Shawn; Oksanen, Arto; Hirosawa, Kenji; Goff, William N.; Monard, Berto; Shears, Jeremy; Boyd, David; Voloshina, Irina B.; Shugarov, Sergey Yu.; Chochol, Drahomir; Miyashita, Atsushi; Pietz, Jochen; Katysheva, Natalia; Itoh, Hiroshi; Bolt, Greg; Andreev, Maksim V.; Parakhin, Nikolai; Malanushenko, Viktor; Martinelli, Fabio; Denisenko, Denis; Stockdale, Chris; Starr, Peter; Simonsen, Mike; Tristram, Paul J.; Fukui, Akihiko; Tordai, Tamas; Fidrich, Robert; Paxson, Kevin B.; Itagaki, Koh-ichi; Nakashima, Youichirou; Yoshida, Seiichi; Nishimura, Hideo; Kryachko, Timur V.; Samokhvalov, Andrey V.; Korotkiy, Stanislav A.; Satovski, Boris L.; Stubbings, Rod; Poyner, Gary; Muyllaert, Eddy; Gerke, Vladimir; MacDonald, Walter, II; Linnolt, Michael; Maeda, Yutaka; Hautecler, Hubert

    2013-02-01

    Continuing the project described by Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for 86 SU UMa-type dwarf novae, mainly observed during the 2011-2012 season. We confirmed general trends recorded in our previous studies, such as the relation between period derivatives and orbital periods. There are some systems showing positive period derivatives despite the long orbital period. We observed the 2011 outburst of the WZ Sge-type dwarf nova BW Scl, and recorded an O - C diagram similar to those of previously known WZ Sge-type dwarf novae. The WZ Sge-type dwarf nova OT J184228.1+483742 showed an unusual pattern of double outbursts composed of an outburst with early superhumps and one with ordinary superhumps. We propose an interpretation that a very small growth rate of the 3:1 resonance due to an extremely low mass-ratio led to quenching the superoutburst before the ordinary superhump appeared. We systematically studied ER UMa-type dwarf novae, and found that V1159 Ori showed positive superhumps similar to ER UMa in the 1990s. The recently recognized ER UMa-type object BK Lyn dominantly showed negative superhumps, and its behavior was very similar to the present-day state of ER UMa. The pattern of period variations in AM CVn-type objects was very similar to that of short-period hydrogen-rich SU UMa-type dwarf novae, making them a helium analogue of hydrogen-rich SU UMa-type dwarf novae. SBS 1108+574, a peculiar hydrogen-rich dwarf nova below the period minimum, showed a very similar pattern of period variations to those of short-period SU UMa-type dwarf novae. The mass-ratio derived from the detected orbital period suggests that this secondary is a somewhat evolved star whose hydrogen envelope was mostly stripped during the mass-exchange. CC Scl, MASTER OT J072948.66+593824.4, and OT J173516.9+154708 showed only low-amplitude superhumps with complex profiles. These superhumps are likely to be a combination of two closely separated periods.

  14. Epilepsy Care in Developing Countries: Part II of II

    PubMed Central

    Birbeck, Gretchen L

    2010-01-01

    Although 80% of people with epilepsy reside in resource poor, developing countries, epilepsy care in these regions remains limited and the majority of epilepsy patients go untreated. Cost-effective, sustainable epilepsy care services, delivering first-line antiepileptic drugs through established primary health care facilities, are needed to decrease these treatment gaps. Neurologists with local experience and knowledge of the culture, who are willing to serve as educators, policy advisors, and advocates, can make a difference. This is Part II of a two-part article. Part I reviewed the burden of epilepsy and the current state of resources for treatment in developing countries, while Part II will now discuss various aspects of care in these countries. PMID:20944819

  15. Sloan Digital Sky Survey II (SDSS-II) Supernova Data

    DOE Data Explorer

    The Sloan Digital Sky Survey (SDSS) is a series of three interlocking imaging and spectroscopic surveys, carried out over an eight-year period with a dedicated 2.5m telescope located at Apache Point Observatory in Southern New Mexico. The SDSS Supernova Survey was one of those three components of SDSS and SDSS-II, a 3-year extension of the original SDSS that operated from July 2005 to July 2008. The Supernova Survey was a time-domain survey, involving repeat imaging of the same region of sky every other night, weather permitting. The primary scientific motivation was to detect and measure light curves for several hundred supernovae through repeat scans of the SDSS Southern equatorial stripe 82 (about 2.5? wide by ~120? long). Over the course of three 3-month campaigns SDSS-II SN discovered and measured multi-band lightcurves for ~500 spectroscopically confirmed Type Ia supernovae in the redshift range z=0.05-0.4. In addition, the project harvested a few hundred light curves for SNe Ia and discovered about 80 spectroscopically confirmed core-collapse supernovae (supernova types Ib/c and II).

  16. Cytotoxic copper(II), cobalt(II), zinc(II), and nickel(II) coordination compounds of clotrimazole.

    PubMed

    Betanzos-Lara, Soledad; Gómez-Ruiz, Celedonio; Barrón-Sosa, Lidia R; Gracia-Mora, Isabel; Flores-Álamo, Marcos; Barba-Behrens, Noráh

    2012-09-01

    Sixteen novel mononuclear Cu(II), Co(II), Zn(II), and Ni(II) complexes of the biologically active ligand clotrimazole (clotri) of the forms [M(clotri)(2)Cl(2)]·nH(2)O (1-4), [M(clotri)(2)Br(2)]·nH(2)O (5-7), [M(clotri)(3)Br(2)] (8), [M(clotri)(3)NO(3)]NO(3)·nH(2)O (9, 11), [M(clotri)(3)(NO(3))(2)]·nH(2)O (10), and [M(clotri)(3)(OH(2))(2)NO(3)]NO(3)·nH(2)O (12) were synthesized and fully characterized. Dinuclear [Cu(2)(clotri)(4)μ(2)-Cl(4)]·2H(2)O (1a) and [Cu(2)(clotri)(4)μ(2)-Br(2)]·2H(2)O (5b) as well as tetranuclear [Cu(4)(clotri)(4)μ(4)-Br(6)μ(4)-O] (5a) complexes were also isolated. Complexes 1-7, 9, and 11 present a tetrahedral geometry; complex 8 exhibits a pentacoordinated structure; complexes 1a, 10 and 12 an octahedral geometry. X-ray crystal structures of [Cu(clotri)(2)Cl(2)](1), [Cu(clotri)(2)(EtOH)Cl(2)](1·EtOH), [Zn(clotri)(2)Cl(2)] (3), [Zn(clotri)(2)Br(2)] (7), and [Cu(4)(clotri)(4)μ(4)-Br(6)μ(4)-O] (5a) were obtained. Complexes 1-12 were tested for cytotoxic activity against the human carcinoma cell lines HeLa (cervix-uterine), PC3 (prostate), and HCT-15 (colon) displaying IC(50) values <30 μM. Confocal microscopy and nuclear dying (DAPI) for complex 1 showed condensation of cromatin and nuclear membrane fragmentation. Immunocytochemical detection/expression of biomarkers suggests that complexes 1 and 9 induce cell death via apoptosis. TUNEL assay detected DNA fragmentation in HeLa cells, resulting from apoptotic signaling cascades induced by Cu(II) complexes 1 and 9. (1)H NMR studies of the Zn(II) complexes showed that they can bind to nucleotides.

  17. Spectral, IR and magnetic studies of Mn(II), Co(II), Ni(II) and Cu(II) complexes with pyrrole-2-carboxyaldehyde thiosemicarbazone (L).

    PubMed

    Chandra, Sulekh; Kumar, Anil

    2007-11-01

    Mn(II), Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L) derived from pyrrole-2-carboxyaldehyde. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurement, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO indicates that the complexes are non-electrolyte except Co(L)2(NO3)2 and Ni(L)2(NO3)2 complexes which are 1:2 electrolyte. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Mn(II), Co(II) and Ni(II) complexes except Co(L)2(NO3)2 and Ni(L)2(NO3)2 which are of tetrahedral geometry. A tetragonal geometry may be suggested for Cu(II) complexes.

  18. Jefferson Lab's Trim Card II

    SciTech Connect

    Trent Allison; Sarin Philip; C. Higgins; Edward Martin; William Merz

    2005-05-01

    Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) uses Trim Card I power supplies to drive approximately 1900 correction magnets. These trim cards have had a long and illustrious service record. However, some of the employed technology is now obsolete, making it difficult to maintain the system and retain adequate spares. The Trim Card II is being developed to act as a transparent replacement for its aging predecessor. A modular approach has been taken in its development to facilitate the substitution of sections for future improvements and maintenance. The resulting design has been divided into a motherboard and 7 daughter cards which has also allowed for parallel development. The Trim Card II utilizes modern technologies such as a Field Programmable Gate Array (FPGA) and a microprocessor to embed trim card controls and diagnostics. These reprogrammable devices also provide the versatility to incorporate future requirements.

  19. Belle II silicon vertex detector

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Enami, K.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-09-01

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  20. Particle Identification at Belle II

    NASA Astrophysics Data System (ADS)

    Sandilya, S.; Belle Collaboration, II

    2016-11-01

    We report on the charged particle identification (PID) systems for the upcoming Belle II experiment. The time of propagation counter in the central region and the proximity focusing ring imaging Cherenkov counters with aerogel radiator in the forward region will be used as the PID devices. They are expected to provide a kaon identification efficiency of more than 94% at a low pion misidentification probability of 4%. The motivation for the upgrade, method and status of both systems are discussed.

  1. Sorption of lead (II), cobalt (II) and copper (II) ions from aqueous solutions by γ-MnO2 nanostructure

    NASA Astrophysics Data System (ADS)

    Chung Le, Ngoc; Van Phuc, Dinh

    2015-01-01

    Manganese dioxide γ-MnO2 was synthesized via the reduction-oxidation reaction between KMnO4 and C2H5OH at room temperature and characterized with x-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmet-Teller nitrogen adsorption (BET-N2 adsorption). The results showed that γ-MnO2 was about 10-18 nm in size and the BET surface area was about 65 m2 g-1. The feasibility of γ-MnO2 used as a low cost adsorbent for the adsorption of Pb(II), Co(II) and Cu(II) from aqueous solutions was explored. During the adsorption process, batch technique was used, and the effects of contact time and pH on adsorption efficiency under room temperature were studied. The adsorption data showed that the Freundlich, Langmuir and Redlich-Peterson isotherms are a good model for the sorption of Co(II) and Cu(II), while the Langmuir and Redlich-Peterson isotherms provide a reasonable fit to the experimental data for Pb(II). By using the Langmuir isotherm, the adsorption capacities for Pb(II), Co(II) and Cu(II) are found to be 200 mg g-1, 90.91 mg g-1 and 83.33 mg g-1, respectively. The effectiveness of γ-MnO2 in the sorption of the three metal ions from aqueous system has the order Pb(II) > Co(II) > Cu(II). Kinetic studies showed that a pseudo-second-order model was more suitable than the pseudo-first-order model. Also, the intra-particle diffusion models were used to ascertain the mechanism of the sorption process. It is concluded that γ-MnO2 can be used as an effective adsorbent for removing Pb(II), Co(II) and Cu(II) from aqueous solutions.

  2. Topaz II preliminary safety assessment

    NASA Astrophysics Data System (ADS)

    Marshall, Albert C.; Standley, Vaughn; Voss, Susan S.; Haskin, Eric

    1993-01-01

    The Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz II space nuclear power system. A preliminary safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safety assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary safety assessment included a top level event tree, neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, and analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment, it appears that it will be possible to safely launch the Topaz II system in the U.S. with some possible system modifications. The principal system modifications will probably include design changes to preclude water flooded criticality and to assure intact reentry.

  3. Testing the Gossamer Albatross II

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Gossamer Albatross II is seen here during a test flight at NASA's Dryden Flight Research Center, Edwards, California. The original Gossamer Albatross is best known for completing the first completely human powered flight across the English Channel on June 12, 1979. The Albatross II was the backup craft for the Channel flight. It was fitted with a small battery-powered electric motor and flight instruments for the NASA research program in low-speed flight. NASA completed its flight testing of the Gossamer Albatross II and began analysis of the results in April, 1980. During the six week program, 17 actual data gathering flights and 10 other flights were flown here as part of the joint NASA Langley/Dryden flight research program. The lightweight craft, carrying a miniaturized instrumentation system, was flown in three configurations; using human power, with a small electric motor, and towed with the propeller removed. Results from the program contributed to data on the unusual aerodynamic, performance, stability, and control characteristics of large, lightweight aircraft that fly at slow speeds for application to future high altitude aircraft. The Albatross' design and research data contributed to numerous later high altitude projects, including the Pathfinder.

  4. PEP-II Operations Report

    SciTech Connect

    Zisman, Michael S.

    2000-11-01

    PEP-II is a two-ring asymmetric B factory operating at the Upsilon(4S) resonance. It was constructed by a SLAC-LBNL-LLNL collaboration. The collider comprises two rings, a High-Energy Ring (HER) storing 9 GeV electrons, and a Low-Energy Ring (LER) storing 3.1 GeV positrons. Commissioning of the HER began in mid-1997 and commissioning of the LER began in mid-1998. First evidence for collisions was obtained on July 23, 1998. The BaBar detector was installed in early 1999, and commissioning with the detector commenced in May 1999. By September 1999, PEP-II had reached a peak luminosity of 1.35 x 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. In the present run, which began in October 1999, the peak luminosity has reached 3.1 x 10{sup 33} cm{sup {minus}2} s{sup {minus}1} and the integrated luminosity delivered is 25 fb{sup {minus}1}. At present, PEP-II is the world's highest luminosity collider. In this paper we describe the startup experience and summarize the operational experience during fiscal year 2000 (from October 1999 through September 2000). Plan s for luminosity upgrades are briefly described.

  5. Light echoes - Type II supernovae

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1987-01-01

    Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This 'light echo' offers a straightforward explanation of the diversity of Type II SN light curves.

  6. Topaz II preliminary safety assessment

    SciTech Connect

    Marshall, A.C. ); Standley, V. ); Voss, S.S. ); Haskin, E. )

    1993-01-10

    The Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz II space nuclear power system. A preliminary safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safety assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary safety assessment included a top level event tree, neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, and analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment, it appears that it will be possible to safely launch the Topaz II system in the U.S. with some possible system modifications. The principal system modifications will probably include design changes to preclude water flooded criticality and to assure intact reentry.

  7. Biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions by cross-linked metal-imprinted chitosans with epichlorohydrin.

    PubMed

    Chen, Chia-Yun; Yang, Cheng-Yu; Chen, Arh-Hwang

    2011-03-01

    Cross-linked metal-imprinted chitosan microparticles were prepared from chitosan, using four metals (Cu(II), Zn(II), Ni(II), and Pb(II)) as templates, and epichlorohydrin as the cross-linker. The microparticles were characterized by Fourier transform infrared spectroscopy, solid state (13)C nuclear magnetic resonance spectroscopy, and energy-dispersive X-ray spectroscopy. They were used for comparative biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions in an aqueous solution. The results showed that the sorption capacities of Cu(II), Zn(II), Ni(II), and Pb(II) on the templated microparticles increased from 25 to 74%, 13 to 46%, 41 to 57%, and 12 to 43%, respectively, as compared to the microparticles without metal ion templates. The dynamic study showed that the sorption process followed the second-order kinetic equation. Three sorption models, Langmuir, Freundlich, and Dubinin-Radushkevich, were applied to the equilibrium isotherm data. The result showed that the Langmuir isotherm equation best fitted for monolayer sorption processes. Furthermore, the microparticles can be regenerated and reused for the metal removal.

  8. 21 CFR 1308.12 - Schedule II.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Schedule II. 1308.12 Section 1308.12 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Schedules § 1308.12 Schedule II. (a) Schedule II shall consist of the drugs and other substances,...

  9. Masfile--II Pilot Project. Final Report.

    ERIC Educational Resources Information Center

    Five Associated Univ. Libraries, Syracuse, NY.

    The report prepared for the Five Associated University Libraries (FAUL) by the Technical Information Dissemination Bureau (TIDB) at Suny-Buffalo is divided into nine sections: (1) a summary of procedures used to accomplish the specified MASFILE-II tasks; (2) a graphic comparison of the MARC-II and the MASFILE-II formats; (3) recommend…

  10. Neurofibromatosis type II presenting as vertical diplopia.

    PubMed

    Sokwala, Ahmed; Knapp, Christopher; Gottlob, Irene

    2004-09-01

    Neurofibromatosis type II (NF II) is rare and most commonly presents with hearing loss, tinnitus and/or vestibular disturbance in the third decade of life. The authors describe a rare case presenting with NF II with vertical diplopia due to IV(th) nerve palsy. The patient was otherwise asymptomatic despite multiple extensive lesions on MRI.

  11. Macrocyclic receptor showing extremely high Sr(II)/Ca(II) and Pb(II)/Ca(II) selectivities with potential application in chelation treatment of metal intoxication.

    PubMed

    Ferreirós-Martínez, Raquel; Esteban-Gómez, David; Tóth, Éva; de Blas, Andrés; Platas-Iglesias, Carlos; Rodríguez-Blas, Teresa

    2011-04-18

    Herein we report a detailed investigation of the complexation properties of the macrocyclic decadentate receptor N,N'-Bis[(6-carboxy-2-pyridil)methyl]-4,13-diaza-18-crown-6 (H(2)bp18c6) toward different divalent metal ions [Zn(II), Cd(II), Pb(II), Sr(II), and Ca(II)] in aqueous solution. We have found that this ligand is especially suited for the complexation of large metal ions such as Sr(II) and Pb(II), which results in very high Pb(II)/Ca(II) and Pb(II)/Zn(II) selectivities (in fact, higher than those found for ligands widely used for the treatment of lead poisoning such as ethylenediaminetetraacetic acid (edta)), as well as in the highest Sr(II)/Ca(II) selectivity reported so far. These results have been rationalized on the basis of the structure of the complexes. X-ray crystal diffraction, (1)H and (13)C NMR spectroscopy, as well as theoretical calculations at the density functional theory (B3LYP) level have been performed. Our results indicate that for large metal ions such as Pb(II) and Sr(II) the most stable conformation is Δ(δλδ)(δλδ), while for Ca(II) our calculations predict the Δ(λδλ)(λδλ) form being the most stable one. The selectivity that bp18c6(2-) shows for Sr(II) over Ca(II) can be attributed to a better fit between the large Sr(II) ions and the relatively large crown fragment of the ligand. The X-ray crystal structure of the Pb(II) complex shows that the Δ(δλδ)(δλδ) conformation observed in solution is also maintained in the solid state. The Pb(II) ion is endocyclically coordinated, being directly bound to the 10 donor atoms of the ligand. The bond distances to the donor atoms of the pendant arms (2.55-2.60 Å) are substantially shorter than those between the metal ion and the donor atoms of the crown moiety (2.92-3.04 Å). This is a typical situation observed for the so-called hemidirected compounds, in which the Pb(II) lone pair is stereochemically active. The X-ray structures of the Zn(II) and Cd(II) complexes show that

  12. Pb(II), Cu(II) and Cd(II) removal through untreated rice husk; thermodynamics and kinetics.

    PubMed

    Guiso, Maria Giovanna; Alberti, Giancarla; Emma, Giovanni; Pesavento, Maria; Biesuz, Raffaela

    2012-01-01

    The sorption properties of rice husk towards Cu(II), Cd(II) and Pb(II) were studied. The sorption isotherms are described by the Langmuir equation, and Pb(II) shows a higher affinity for rice husk compared to Cu(II) and Cd(II) under the same conditions. The kinetics of sorption obeys to a pseudo second-order equation for all metals. The sorption profiles as a function of the pH were used to characterize the stoichiometry of the sorption reaction. The competition for metal complexation by any ligand in solution is also accounted for. Upon increasing the ionic strength, the sorption curves of Pb(II) move to basic pH; this shift can be explained by considering the effect of nitrate complexes on the free metal ion concentration, since KNO(3) is used as the ionic medium. An attempt to employ rice husk in a dynamic system is presented.

  13. Phosphorylation of DNA topoisomerase II by casein kinase II: modulation of eukaryotic topoisomerase II activity in vitro.

    PubMed Central

    Ackerman, P; Glover, C V; Osheroff, N

    1985-01-01

    The phosphorylation of Drosophila melanogaster DNA topoisomerase II by purified casein kinase II was characterized in vitro. Under the conditions used, the kinase incorporated a maximum of 2-3 molecules of phosphate per homodimer of topoisomerase II. No autophosphorylation of the topoisomerase was observed. The only amino acid residue modified by casein kinase II was serine. Apparent Km and Vmax values for the phosphorylation reaction were 0.4 microM topoisomerase II and 3.3 mumol of phosphate incorporated per min per mg of kinase, respectively. Phosphorylation stimulated the DNA relaxation activity of topoisomerase II by 3-fold over that of the dephosphorylated enzyme, and the effects of modification could be reversed by treatment with alkaline phosphatase. Therefore, this study demonstrates that post-translational enzymatic modifications can be used to modulate the interaction between topoisomerase II and DNA. Images PMID:2987912

  14. Spectroscopic and mycological studies of Co(II), Ni(II) and Cu(II) complexes with 4-aminoantipyrine derivative

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-10-01

    Complexes of the type [M(L)X 2], where M = Co(II), Ni(II) and Cu(II), have been synthesized with novel NO-donor Schiff's base ligand, 1,4-diformylpiperazine bis(4-imino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) which is obtained by the acid catalyzed condensation of 1,4-diformylpiperazine with 4-aminoantipyrine. The elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV, NMR, mass and EPR studies of the compounds led to the conclusion that the ligand acts as tetradentate chelate. The Schiff's base ligand forms hexacoordinated complexes having octahedral geometry for Ni(II) and tetragonal geometry for Co(II) and Cu(II) complexes. The mycological studies of the compounds were examined against the several opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The Cu(II) complexes were found to have most fungicidal behavior.

  15. 40 CFR Table II-1 to Subpart II of... - Emission Factors

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Emission Factors II Table II-1 to Subpart II of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment Pt. 98, Subpt. II, Table...

  16. 40 CFR Table II-1 to Subpart II of... - Emission Factors

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Emission Factors II Table II-1 to Subpart II of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment Pt. 98, Subpt. II, Table...

  17. The Practice SSAT-II. [and] Test Administration Manual for the Practice SSAT-II.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Student Assessment Section.

    The Florida Statewide Assessment Program provides "The Practice SSAT-II," for students who will be taking the State Student Assessment Test, Part II (SSAT-II). This practice test may be administered to tenth grade students taking the test for the first time and to eleventh and twelfth graders if they have previously failed the SSAT-II.…

  18. Mixed metal copper(II)-nickel(II) and copper(II)-zinc(II) complexes of multihistidine peptide fragments of human prion protein.

    PubMed

    Jószai, Viktória; Turi, Ildikó; Kállay, Csilla; Pappalardo, Giuseppe; Di Natale, Giuseppe; Rizzarelli, Enrico; Sóvágó, Imre

    2012-07-01

    Mixed metal copper(II)-nickel(II) and copper(II)-zinc(II) complexes of four peptide fragments of human prion protein have been studied by potentiometric, UV-vis and circular dichroism spectroscopic techniques. One peptide contained three histidyl residues: HuPrP(84-114) with H85 inside and H96, H111 outside the octarepeat domain. The other three peptides contained two histidyl residues; H96 and H111 for HuPrP(91-115) and HuPrP(84-114)H85A while HuPrP(84-114)H96A contained the histidyl residues at positions 85 and 111. It was found that both histidines of the latter peptides can simultaneously bind copper(II) and nickel(II) ions and dinuclear mixed metal complexes can exist in slightly alkaline solution. One molecule of the peptide with three histidyl residues can bind two copper(II) and one nickel(II) ions. H85 and H111 were identified as the major copper(II) and H96 as the preferred nickel(II) binding sites in mixed metal species. The studies on the zinc(II)-PrP peptide binary systems revealed that zinc(II) ions can coordinate to the 31-mer PrP peptide fragments in the form of macrochelates with two or three coordinated imidazol-nitrogens but the low stability of these complexes cannot prevent the hydrolysis of the metal ion in slightly alkaline solution. These data provide further support for the outstanding affinity of copper(II) ions towards the peptide fragments of prion protein but the binding of nickel(II) can significantly modify the distribution of copper(II) among the available metal binding sites.

  19. Synthesis, spectral characterization and biological evaluation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes with thiosemicarbazone ending by pyrazole and pyridyl rings

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; Al-Jahdali, M.; El-Rakhawy, El-Bastawesy R.

    2014-08-01

    Here we present the synthesis of the new Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes with chelating ligand (Z)-(2-((1,3-diphenyl-1H-pyrazol-4-yl)methylene) hydrazinyl)(pyridin-2-ylamino)methanethiol. All the complexes were characterized by elemental analysis, IR, 1H NMR, UV-vis, magnetic susceptibility measurements and EPR spectral studies. IR spectra of complexes showed that the ligand behaves as NN neutral bidentate, NSN mononegative tridentate and NSNN mononegative tetradentate. The electronic spectra and the magnetic measurements suggested the octahedral geometry for all complexes as well as the EPR confirmed the tetragonal distorted octahedral for Cu(II) complex. Cd(II) complex showed the highest inhibitory antioxidant activity either using ABTS method. The SOD-like activity exhibited those Cd(II) and Zn(II) complexes have strong antioxidative properties. We tested the synthesized compounds for antitumor activity and showed that the ability to kill liver (HePG2) and breast (MCF-7) cancer cells definitely.

  20. Topoisomerase II from Human Malaria Parasites

    PubMed Central

    Mudeppa, Devaraja G.; Kumar, Shiva; Kokkonda, Sreekanth; White, John; Rathod, Pradipsinh K.

    2015-01-01

    Historically, type II topoisomerases have yielded clinically useful drugs for the treatment of bacterial infections and cancer, but the corresponding enzymes from malaria parasites remain understudied. This is due to the general challenges of producing malaria proteins in functional forms in heterologous expression systems. Here, we express full-length Plasmodium falciparum topoisomerase II (PfTopoII) in a wheat germ cell-free transcription-translation system. Functional activity of soluble PfTopoII from the translation lysates was confirmed through both a plasmid relaxation and a DNA decatenation activity that was dependent on magnesium and ATP. To facilitate future drug discovery, a convenient and sensitive fluorescence assay was established to follow DNA decatenation, and a stable, truncated PfTopoII was engineered for high level enzyme production. PfTopoII was purified using a DNA affinity column. Existing TopoII inhibitors previously developed for other non-malaria indications inhibited PfTopoII, as well as malaria parasites in culture at submicromolar concentrations. Even before optimization, inhibitors of bacterial gyrase, GSK299423, ciprofloxacin, and etoposide exhibited 15-, 57-, and 3-fold selectivity for the malarial enzyme over human TopoII. Finally, it was possible to use the purified PfTopoII to dissect the different modes by which these varying classes of TopoII inhibitors could trap partially processed DNA. The present biochemical advancements will allow high throughput chemical screening of compound libraries and lead optimization to develop new lines of antimalarials. PMID:26055707

  1. 2-line ferrihydrite: synthesis, characterization and its adsorption behaviour for removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions.

    PubMed

    Rout, K; Mohapatra, M; Anand, S

    2012-03-21

    Nano-structured 2-line ferrihydrite was synthesized by a pH-controlled precipitation technique at 90 °C. Chemical, X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman analyses confirmed the sample to be 2-line ferrihydrite. The nano nature of the prepared sample was studied by transmission electron microscopy (TEM). The surface area obtained by the Brunauer-Emmett-Teller (BET) method was 175.8 m(2) g(-1). The nanopowder so obtained was used to study its behaviour for the removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions. The relative importance of experimental parameters such as solution pH, contact time and concentration of adsorbate on the uptake of various cations was evaluated. By increasing the pH from 2.0 to 5.5, adsorption of the four cations increased. The kinetics parameters were compared by fitting the contact time data to both linear as well as non-linear forms of pseudo-second-order models. Linear forms of both Langmuir and Freundlich models fitted the equilibrium data of all the cations except for Pb(II) which was also fitted to the non-linear forms of both the models as it gave a low R(2) value of 0.85 for the Langmuir model. High Langmuir monolayer capacities of 366, 250, 62.5 and 500 mg g(-1) were obtained for Pb(II), Cd(II), Cu(II) and Zn(II), respectively. Presence of chloride or sulfate had an adverse effect on cation adsorption. The interactive effects on adsorption from solutions containing two, three or four cations were studied. Surprisingly no Cd(II) adsorption was observed in Pb(II)-Cd(II), Pb(II)-Cd(II)-Zn(II) and Pb(II)-Cd(II)-Cu(II)-Zn(II) systems under the studied concentration range. The overall loading capacity of the adsorbent decreased in mixed cation systems. Metal ion loaded adsorbents were characterized by XRD, FTIR and Raman techniques. The high adsorption capability of the 2-lines ferrihydrite makes it a potentially attractive adsorbent for the removal of cations from aqueous solutions.

  2. Commissioning of NSLS-II

    SciTech Connect

    Willeke, F.

    2015-05-03

    NSLS-II, the new 3rd generation light source at BNL was designed for a brightness of 1022 photons s-1mm-2mrad-2 (0.1%BW)-1. It was constructed between 2009 and 2014. The storage ring was commissioned in April 2014 which was followed by insertion device and beamline commissioning in the fall of 2014. All ambitious design parameters of the facility have already been achieved except for commissioning the full beam intensity of 500mA which requires more RF installation. This paper reports on the results of commissioning.

  3. Zeeman effect of As II.

    NASA Technical Reports Server (NTRS)

    Li, H.; Andrew, K. L.

    1972-01-01

    Spectrograms of As electrodeless-discharge tubes operated in a field of 24,025 G have given Zeeman patterns for 232 As II spectral lines from 2361 to 10,556 A and yielded 80 Lande g factors, of which more than half are new. There is agreement between these and the g values calculated by least-squares fitting for single configurations or for multiconfigurations, where configuration interaction is noticeable. All of the measured g values as well as the energy levels are used in the fitting process.

  4. MALDI time-of-flight mass spectrometry and thermogravimetric analysis of Mg(II), Ca(II), Cu(II), Zn(II) and Pt(II) adducts with monomethoxypolyethylene glycol 5000

    NASA Astrophysics Data System (ADS)

    Mwelase, S. R.; Bariyanga, J.

    2002-05-01

    We have prepared and isolated complexes of Mg(II), Ca(II), Cu(II), Zn(II) and Pt(II) with monomethoxypolyethylene glycol 5000 in a pH 7 buffer at 40 °C in order to study the interaction of this polymer carrier with the ions likely to be found in the human body. Their characterization was done by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Fourier transform infrared, UV-Vis spectrophotometry, thermogravimetry and elemental analysis. The mass spectra allowed us to determine not only the molecular weights but also the nature of the complexes and the findings were in agreement with the elementary analysis data. The calcium ion was found not directly linked to polyethylene glycol but through water molecules. The overall results indicated strong bonding for Cu(II) and Zn(II) complexes and weak interactions for Mg(II), Ca(II) and Pt(II).

  5. Ii Chain Controls the Transport of Major Histocompatibility Complex Class II Molecules to and from Lysosomes

    PubMed Central

    Brachet, Valérie; Raposo, Graça; Amigorena, Sebastian; Mellman, Ira

    1997-01-01

    Major histocompatibility complex class II molecules are synthesized as a nonameric complex consisting of three αβ dimers associated with a trimer of invariant (Ii) chains. After exiting the TGN, a targeting signal in the Ii chain cytoplasmic domain directs the complex to endosomes where Ii chain is proteolytically processed and removed, allowing class II molecules to bind antigenic peptides before reaching the cell surface. Ii chain dissociation and peptide binding are thought to occur in one or more postendosomal sites related either to endosomes (designated CIIV) or to lysosomes (designated MIIC). We now find that in addition to initially targeting αβ dimers to endosomes, Ii chain regulates the subsequent transport of class II molecules. Under normal conditions, murine A20 B cells transport all of their newly synthesized class II I-Ab αβ dimers to the plasma membrane with little if any reaching lysosomal compartments. Inhibition of Ii processing by the cysteine/serine protease inhibitor leupeptin, however, blocked transport to the cell surface and caused a dramatic but selective accumulation of I-Ab class II molecules in lysosomes. In leupeptin, I-Ab dimers formed stable complexes with a 10-kD NH2-terminal Ii chain fragment (Ii-p10), normally a transient intermediate in Ii chain processing. Upon removal of leupeptin, Ii-p10 was degraded and released, I-Ab dimers bound antigenic peptides, and the peptide-loaded dimers were transported slowly from lysosomes to the plasma membrane. Our results suggest that alterations in the rate or efficiency of Ii chain processing can alter the postendosomal sorting of class II molecules, resulting in the increased accumulation of αβ dimers in lysosome-like MIIC. Thus, simple differences in Ii chain processing may account for the highly variable amounts of class II found in lysosomal compartments of different cell types or at different developmental stages. PMID:9105036

  6. BNL ATF II beamlines design

    SciTech Connect

    Fedurin, M.; Jing, Y.; Stratakis, D.; Swinson, C.

    2015-05-03

    The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, will be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.

  7. [S-II symptom questionnaire].

    PubMed

    Aleksandrowicz, J W

    2000-01-01

    "S-II" Symptom Check-list which allows for a fast diagnosis of neurotic disorders. A result of 165 points suggests the incidence of such disorders with the probability of 90%. The methodology of the construction of the check-list intends for the application of questions most common in those ill due to neurotic disorders (owing to the change in frequency) and the most possibly equal amount of questions on the symptoms common to women and men. Thanks to this the norm for women and men is identical. SCL S-II Symptom Check-list is a shortened and actualised version of the "O" Symptom Check-list, developed in 1975. It is similar to the SCL-90 and highly correlated with it, but it does not contain the variables concerning the psychotic symptoms. Thanks to this, its' accuracy (specificity) in the diagnosis of neurotic disorders is high. 4 pairs of questions allow for the judgement of answer reliability. 10 scales were singled out in the questionnaire. They are only of a helpful value and do not allow for a one-sided diagnosis of the type of the disorder, listed in the ICD-10. The scale results can, however make the correct diagnosis easier.

  8. The Spectrum of Fe II

    NASA Astrophysics Data System (ADS)

    Nave, Gillian; Johansson, Sveneric

    2013-01-01

    The spectrum of singly ionized iron (Fe II) has been recorded using high-resolution Fourier transform (FT) and grating spectroscopy over the wavelength range 900 Å to 5.5 μm. The spectra were observed in high-current continuous and pulsed hollow cathode discharges using FT spectrometers at the Kitt Peak National Observatory, Tucson, AZ and Imperial College, London and with the 10.7 m Normal Incidence Spectrograph at the National Institute of Standards and Technology. Roughly 12,900 lines were classified using 1027 energy levels of Fe II that were optimized to measured wavenumbers. The wavenumber uncertainties of lines in the FT spectra range from 10-4 cm-1 for strong lines around 4 μm to 0.05 cm-1 for weaker lines around 1500 Å. The wavelength uncertainty of lines in the grating spectra is 0.005 Å. The ionization energy of (130,655.4 ± 0.4) cm-1 was estimated from the 3d6(5D)5g and 3d6(5D)6h levels.

  9. Topaz II preliminary safety assessment

    SciTech Connect

    Marshall, A.C. ); Standley, V. ); Voss, S.S. ); Haskin, E. . Dept. of Chemical and Nuclear Engineering)

    1992-01-01

    The Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz 11 space nuclear power system. A preliminary safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safely assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary safety assessment included a top level event tree, neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, and analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment, it appears that it will be possible to safely launch the Topaz II system in the US with some possible system modifications. The principal system modifications will probably include design changes to preclude water flooded criticality and to assure intact reentry.

  10. Synthesis, structural characterization, thermal and electrochemical studies of Mn(II), Co(II), Ni(II) and Cu(II) complexes containing thiazolylazo ligands

    NASA Astrophysics Data System (ADS)

    Chavan, S. S.; Sawant, V. A.

    2010-02-01

    Some thiazolylazo derivatives and their metal complexes of the type [M(L)(H 2O)Cl]; M = Mn(II), Co(II), Ni(II), Cu(II) and L = 6-(2'-thiazolylazo)-2-mercapto-quinazolin-4-one (HL 1), 6-(4'-phenyl-2'-thiazolylazo)-2-mercapto-quinazolin-4-one (HL 2), 6-(2'-thiazolylazo)-2-mercapto-3-( m-tolyl)-quinazolin-4-one (HL 3) and 6-(4'-phenyl-2'-thiazolylazo)-2-mercapto-3-( m-tolyl)-quinazolin-4-one (HL 4) have been prepared. All the complexes were characterized on the basis of elemental analysis, molar conductance, magnetic moment, IR, UV-vis, ESR, TG-DTA and powder X-ray diffraction studies. IR spectra of these complexes reveal that the complex formation occurred through thiazole nitrogen, azo nitrogen, imino nitrogen and sulfur atom of the ligands. On the basis of electronic spectral data and magnetic susceptibility measurement octahedral geometry has been proposed for the Mn(II), Co(II) and Ni(II) complexes and distorted octahedral geometry for the Cu(II) complexes. Electrochemical behavior of Ni(II) complexes exhibit quasireversible oxidation corresponding to Ni(III)/Ni(II) couple along with ligand reduction. X-ray diffraction study is used to elucidate the crystal structure of the complexes.

  11. Parallaxes and Distance Estimates for 14 Cataclysmic Variable Stars

    NASA Astrophysics Data System (ADS)

    Thorstensen, John R.

    2003-12-01

    I used the 2.4 m Hiltner Telescope at MDM Observatory in an attempt to measure trigonometric parallaxes for 14 cataclysmic variable stars. Techniques are described in detail. In the best cases the parallax uncertainties are below 1 mas, and significant parallaxes are found for most of the program stars. A Bayesian method that combines the parallaxes together with proper motions and absolute magnitude constraints is developed and used to derive distance estimates and confidence intervals. The most precise distance derived here is for WZ Sge, for which I find 43.3+1.6-1.5 pc. Six Luyten Half-Second stars with previous precise parallax measurements were remeasured to test the techniques, and good agreement was found. Based on observations obtained at the MDM Observatory, operated by Dartmouth College, Columbia University, Ohio State University, and the University of Michigan.

  12. One Thousand New Dwarf Novae from the OGLE Survey

    NASA Astrophysics Data System (ADS)

    Mróz, P.; Udalski, A.; Poleski, R.; Pietrukowicz, P.; Szymański, M. K.; Soszyński, I.; Wyrzykowski, Ł.; Ulaczyk, K.; Kozłowski, S.; Skowron, J.

    2015-12-01

    We present one of the largest collections of dwarf novae (DNe) containing 1091 objects that have been discovered in the long-term photometric data from the Optical Gravitational Lensing Experiment (OGLE) survey. They were found in the OGLE fields toward the Galactic bulge and the Magellanic Clouds. We analyze basic photometric properties of all systems and tentatively find a population of DNe from the Galactic bulge. We identify several dozen of WZ Sge-type DN candidates, including two with superhump periods longer than 0.09 d. Other interesting objects include SU UMa-type stars with "early" precursor outbursts or a Z Cam-type star showing outbursts during standstills. We also provide a list of DNe which will be observed during the K2 Campaign 9 microlensing experiment in 2016. Finally, we present the new OGLE-IV real-time data analysis system: CVOM, which has been designed to provide continuous real time photometric monitoring of selected CVs.

  13. Quiet High Speed Fan II (QHSF II): Final Report

    NASA Technical Reports Server (NTRS)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  14. Removal of Pb(II), Cd(II), Cu(II) and trichloroethylene from water by Nanofer ZVI.

    PubMed

    Eglal, Mahmoud M; Ramamurthy, Amruthur S

    2015-01-01

    Zero-valent iron nanoparticle (Nanofer ZVI) is a new reagent due to its unique structure and properties. Images of scanning electron microscopy/electron dispersive spectroscopy (SEM/EDS), transmission electron microscopy and X-ray diffraction revealed that Nanofer ZVI is stable, reactive and has a unique structure. The particles exhibited a spherical shape, a chain-like structure with a particle size of 20 to 100 nm and a surface area between 25-30 m2g(-1). The time interval for particles to agglomerate and settle was between 4-6 h. SEM/EDS Images showed that particle size increased to 2 µm due to agglomeration. Investigation of adsorption and oxidation behavior of Nanofer ZVI used for the removal of Cu(II), Pb(II), Cd(II) ions and trichloroethylene (TCE) from aqueous solutions showed that the optimal pH for Pb(II), Cu(II), Cd(II) and TCE removal were 4.5 and 4.8, 5.0 and 6.5, respectively. Test data were used to form Langmuir and Freundlich isotherms. The maximum contaminant loading was estimated as 270, 170, 110, 130 mg per gram of Nanofer ZVI for Cu(II), Pb(II), Cd(II) and TCE respectively. Removal of metal ions is interpreted in terms of their hydrated ionic radii and their electronegativity. TCE oxidation followed the dechlorination pathway resulting in nonhazardous by-products.

  15. Chelation of Cu(II), Zn(II), and Fe(II) by tannin constituents of selected edible nuts.

    PubMed

    Karamać, Magdalena

    2009-12-22

    The tannin fractions isolated from hazelnuts, walnuts and almonds were characterised by colorimetric assays and by an SE-HPLC technique. The complexation of Cu(II) and Zn(II) was determined by the reaction with tetramethylmurexide, whereas for Fe(II), ferrozine was employed. The walnut tannins exhibited a significantly weaker reaction with the vanillin/HCl reagent than hazelnut and almond tannins, but the protein precipitation capacity of the walnut fraction was high. The SE-HPLC chromatogram of the tannin fraction from hazelnuts revealed the presence of oligomers with higher molecular weights compared to that of almonds. Copper ions were most effectively chelated by the constituents of the tannin fractions of hazelnuts, walnuts and almonds. At a 0.2 mg/assay addition level, the walnut tannins complexed almost 100% Cu(II). The Fe(II) complexation capacities of the tannin fractions of walnuts and hazelnuts were weaker in comparison to that of the almond tannin fraction, which at a 2.5 mg/assay addition level, bound Fe(II) by approximately 90%. The capacity to chelate Zn(II) was quite varied for the different nut tannin fractions: almond tannins bound as much as 84% Zn(II), whereas the value for walnut tannins was only 8.7%; and for hazelnut tannins, no Zn(II) chelation took place at the levels tested.

  16. [Biosorption of Cd(II), Cu(II), Pb(II) and Zn(II) in aqueous solutions by fruiting bodies of macrofungi (Auricularia polytricha and Tremella fuciformis)].

    PubMed

    Mo, Yu; Pan, Rong; Huang, Hai-wei; Cao, Li-xiang; Zhang, Ren-duo

    2010-07-01

    Batch experiments were conducted to study the ability of fruiting bodies of Auricularia polytricha and Tremella fuciformis to adsorb Cd(II), Cu(II), Pb(II) and Zn(II) from aqueous solutions, including biosorption ability of the biomass to remove heavy metals from solutions with different concentrations, kinetics of adsorption, influence of co-cations, and biosorption affinity in multi-metalsystem. Results showed that in the solutions with individual metal, the maximum biosorption amounts of Cd(II), Cu(II), Pb(II), Zn(II) by A. polytricha were 18.91, 18.69, 20.33, 12.42 mg x g(-1), respectively, and the highest removal rates for all cases were more than 85%. The maximum biosorption amounts of Cd(II), Cu(II), Pb(II), Zn(II) by T. fuciformis were 19.98, 20.15, 19.16, 16.41 mg x g(-1), respectively, and highest removal rates for all cases were more than 75%. In the solutions with initial concentrations of 10, 50 and 100 mg x L(-1), the biosorption amounts increased but the removal rates decreased as the initial concentrations increasing. The pseudo-second-order reaction model described adsorption kinetics of heavy metal ions by fruiting bodies of A. polytricha and T. fuciformis better than the pseudo-first-order reaction model. In the solutions with multi metals, the biosorption amounts of heavy metals by two biosorbent were in the order of Ph(II) > Cd(II) > Cu(II) > Zn(II). The ions with more negative charges were preferential to be sorbed. The biosorption ability of A. polytricha was inhibited in multi-metal solutions. In multi-metal solutions, T. fuciformis sorbed a higher amount of Pb(II) but lower amounts of other three ions than that in the individual metal solutions. The results indicated that both fruiting bodies of A. polytricha and T. fuciformis were potential biosorbents.

  17. Double quantum coherence electron spin resonance on coupled Cu(II)-Cu(II) electron spins

    NASA Astrophysics Data System (ADS)

    Becker, James S.; Saxena, Sunil

    2005-10-01

    We demonstrate for the first time the ability to generate double quantum coherences (DQCs) for the case of Cu(II). We show that small splittings (˜7 MHz) from the Cu(II)-Cu(II) electron-electron magnetic dipolar interaction can be reliably resolved even though the inhomogeneously broadened Cu(II) linewidth is ˜2 GHz. A Cu(II)-Cu(II) distance of 2.0 nm was measured on a model peptide system, thus, demonstrating that distances on the nanometer scale may be measured using DQC electron spin resonance (ESR).

  18. Software Aspects of PuMa-II

    NASA Astrophysics Data System (ADS)

    Karuppusamy, R.; Stappers, B.; Stappers, B.

    2006-08-01

    The Pulsar Machine II (PuMa-II) is a state of the art pulsar machine-installed at the Westerbork Synthesis Radio Telescope (WSRT), in December 2005. PuMa-II is a flexible instrument and is designed around an ensemble of 44 high-performance computers running the Linux operating system. Much of the flexibility of PuMa-II comes from the software that is being developed for this instrument. The radio signals reaching the telescope undergo several stages of electronic and software processing before a scientifically useful data product is generated. The electronic processing of signals includes the usual RF to IF conversion, analogue to digital conversion and telescope dependent electronic digital delay compensation that happen in the signal chain of WSRT. Within PuMa-II, this data is acquired, stored and suitably processed. In this poster we present various aspects of PuMa-II software and illustrate its pulsar signal processing capabilities.

  19. Sample Exchange Evaluation (SEE) Report - Phase II

    SciTech Connect

    Winters, W.I.

    1994-09-28

    This report describes the results from Phase II of the Sample Exchange Evaluation (SEE) Program, a joint effort to compare analytical laboratory performance on samples from the Hanford Site`s high-level waste tanks. In Phase II, the program has been expanded to include inorganic constituents in addition to radionuclides. Results from Phase II that exceeded 20% relative percent difference criteria are identified.

  20. Start II, red ink, and Boris Yeltsin

    SciTech Connect

    Arbatov, A.

    1993-04-01

    Apart from the vulnerability implied by the START II treaty, it will bear the burden of the general political opposition to the Yeltsin administration. START II will be seen as part of an overall Yeltsin-Andrei Kozyrev foreign policy that is under fire for selling out Russian national interests in Yugoslavia, the Persian Gulf, and elsewhere. This article discusses public opinion concerning START II, the cost of its implementation, and the general purpose of the treaty.

  1. Telemetry Tests Of The Advanced Receiver II

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami M.; Bevan, Roland P.; Marina, Miguel

    1993-01-01

    Report describes telemetry tests of Advanced Receiver II (ARX-II): digital radio receiving subsystem operating on intermediate-frequency output of another receiving subsystem called "multimission receiver" (MMR), detecting carrier, subcarrier, and data-symbol signals transmitted by spacecraft, and extracts Doppler information from signals. Analysis of data shows performance of MMR/ARX-II system comparable and sometimes superior to performances of Blk-III/BPA and Blk-III/SDA/SSA systems.

  2. AGEX II: Technical quarterly, Volume 2

    SciTech Connect

    Ekdahl, C.

    1995-03-01

    The AGEX II Technical Quarterly publishes short technical contributions on above ground experiments that use pulsed power and laser drivers. The Quarterly is intended to provide rapid exposure of timely technical ideas and results as well as a means for documenting AGEX II progress and scientific quality for the AGEX II community. Suitable topics include experimental results, diagnostic apparatus, theoretical design, and scaling, among others.

  3. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  4. Polymeric potassium triformatocobalt(II)

    PubMed Central

    Wöhlert, Susanne; Wriedt, Mario; Jess, Inke; Näther, Christian

    2011-01-01

    In the crystal structure of the title compound, poly[tri-μ-formato-cobalt(II)potassium], [CoK(CHO2)3]n the Co2+ cations are coordinated by six O-bonded formate anions in an octa­hedral coordination mode and the K+ cations are eightfold coordinated by seven O-bonded formate anions within irregular polyhedra. The Co2+ cations are connected by bridging formate anions into a three-dimensional coordination network in which the K+ cations are embedded. The asymmetric unit consits of one Co2+ cation located on a center of inversion, one K+ cation located on a twofold axis and two crystallographically independent formato anions, of which one is located on a twofold axis and the other occupies a general position. PMID:21753951

  5. PEP-II prototype klystron

    SciTech Connect

    Fowkes, W.R.; Caryotakis, G.; Lee, T.G.; Pearson, C.; Wright, E.L.

    1993-04-01

    A 540-kW continuous-wave (cw) klystron operating at 476 MHz was developed for use as a power source for testing PEP-II rf accelerating cavities and rf windows. It also serves as a prototype for a 1.2 MW cw klystron presently being developed as a potential rf source for asymmetric colliding ring use. The design incorporates the concepts and many of the parts used in the original 353 MHz PEP klystron developed sixteen years ago. The superior computer simulation codes available today result in improved performance with the cavity frequencies, drift lengths, and output circuit optimized for the higher frequency.The design and operating results of this tube are described with particular emphasis on the factors which affect efficiency and stability.

  6. Probing outflows in z = 1 ∼ 2 galaxies through Fe II/Fe II* multiplets

    SciTech Connect

    Tang, Yuping; Giavalisco, Mauro; Guo, Yicheng

    2014-10-01

    We report on a study of the 2300-2600 Å Fe II/Fe II* multiplets in the rest-UV spectra of star-forming galaxies at 1.0 < z < 2.6 as probes of galactic-scale outflows. We extracted a mass-limited sample of 97 galaxies at z ∼ 1.0-2.6 from ultra-deep spectra obtained during the GMASS spectroscopic survey in the GOODS South field with the Very Large Telescope and FORS2. We obtain robust measures of the rest equivalent width of the Fe II absorption lines down to a limit of W{sub r} > 1.5 Å and of the Fe II* emission lines to W{sub r} > 0.5 Å. Whenever we can measure the systemic redshift of the galaxies from the [O II] emission line, we find that both the Fe II and Mg II absorption lines are blueshifted, indicating that both species trace gaseous outflows. We also find, however, that the Fe II gas has generally lower outflow velocity relative to that of Mg II. We investigate the variation of Fe II line profiles as a function of the radiative transfer properties of the lines, and find that transitions with higher oscillator strengths are more blueshifted in terms of both line centroids and line wings. We discuss the possibility that Fe II lines are suppressed by stellar absorptions. The lower velocities of the Fe II lines relative to the Mg II doublet, as well as the absence of spatially extended Fe II* emission in two-dimensional stacked spectra, suggest that most clouds responsible for Fe II absorption lie close (3 ∼ 4 kpc) to the disks of galaxies. We show that the Fe II/Fe II* multiplets offer unique probes of the kinematic structure of galactic outflows.

  7. Carbonic anhydrase isozymes IV and II in urinary membranes from carbonic anhydrase II-deficient patients.

    PubMed Central

    Sato, S; Zhu, X L; Sly, W S

    1990-01-01

    Carbonic anhydrase II (CA II) deficiency has been shown to be the primary defect in the recessively inherited syndrome of osteopetrosis with renal tubular acidosis. Until now, the absence of CA II in kidney of CA II-deficient patients has not been shown directly, and the status of the membrane-associated CA in kidney of CA II-deficient patients has been unclear. To address these questions, we analyzed urinary membranes and soluble fractions from normal and CA II-deficient subjects. The CA activity in membrane fractions of normal urine was found to comprise two components--(i) a vesicle-enclosed, sodium dodecyl sulfate (SDS)-sensitive fraction, which was shown immunochemically to be the 29-kDa CA II, and (ii) an SDS-resistant fraction, which was due to native and cleaved forms of the 35-kDa, membrane-anchored isozyme CA IV. Urinary membranes from CA II-deficient patients showed little or no SDS-sensitive activity and no immunoreactivity for CA II, providing direct evidence that their mutation, which produces CA II deficiency in erythrocytes, also affects CA II in kidney. CA IV activity and immunoreactivity were present in normal amounts in urinary membranes from CA II-deficient patients. We conclude from the enzymatic and immunological evidence presented that both CA II and CA IV are present in urinary membranes from normal subjects, that renal CA IV is present but renal CA II is absent in urinary membranes from patients with the CA II-deficiency syndrome, and that the methods presented should be useful in studying renal CA II and renal CA IV in other disorders of impaired bicarbonate reabsorption. Images PMID:2117271

  8. Survey of period variations of superhumps in SU UMa-type dwarf novae. VII. The seventh year (2014-2015)

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Hambsch, Franz-Josef; Dubovsky, Pavol A.; Kudzej, Igor; Monard, Berto; Miller, Ian; Itoh, Hiroshi; Kiyota, Seiichiro; Masumoto, Kazunari; Fukushima, Daiki; Kinoshita, Hiroki; Maeda, Kazuki; Mikami, Jyunya; Matsuda, Risa; Kojiguchi, Naoto; Kawabata, Miho; Takenaka, Megumi; Matsumoto, Katsura; de Miguel, Enrique; Maeda, Yutaka; Ohshima, Tomohito; Isogai, Keisuke; Pickard, Roger D.; Henden, Arne; Kafka, Stella; Akazawa, Hidehiko; Otani, Noritoshi; Ishibashi, Sakiko; Ogi, Minako; Tanabe, Kenji; Imamura, Kazuyoshi; Stein, William; Kasai, Kiyoshi; Vanmunster, Tonny; Starr, Peter; Oksanen, Arto; Pavlenko, Elena P.; Antonyuk, Oksana I.; Antonyuk, Kirill A.; Sosnovskij, Aleksei A.; Pit, Nikolaj V.; Babina, Julia V.; Sklyanov, Aleksandr; Novák, Rudolf; Dvorak, Shawn; Michel, Raúl; Masi, Gianluca; Littlefield, Colin; Ulowetz, Joseph; Shugarov, Sergey Yu.; Golysheva, Polina Yu.; Chochol, Drahomir; Krushevska, Viktoriia; Ruiz, Javier; Tordai, Tamás; Morelle, Etienne; Sabo, Richard; Maehara, Hiroyuki; Richmond, Michael; Katysheva, Natalia; Hirosawa, Kenji; Goff, William N.; Dubois, Franky; Logie, Ludwig; Rau, Steve; Voloshina, Irina B.; Andreev, Maksim V.; Shiokawa, Kazuhiko; Neustroev, Vitaly V.; Sjoberg, George; Zharikov, Sergey; James, Nick; Bolt, Greg; Crawford, Tim; Buczynski, Denis; Cook, Lewis M.; Kochanek, Christopher S.; Shappee, Benjamin; Stanek, Krzysztof Z.; Prieto, José L.; Denisenko, Denis; Nishimura, Hideo; Mukai, Masaru; Kaneko, Shizuo; Ueda, Seiji; Stubbings, Rod; Moriyama, Masayuki; Schmeer, Patrick; Muyllaert, Eddy; Shears, Jeremy; Modic, Robert J.; Paxson, Kevin B.

    2015-12-01

    Continuing the project described by Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for 102 SU UMa-type dwarf novae, observed mainly during the 2014-2015 season, and characterized these objects. Our project has greatly improved the statistics of the distribution of orbital periods, which is a good approximation of the distribution of cataclysmic variables at the terminal evolutionary stage, and has confirmed the presence of a period minimum at a period of 0.053 d and a period spike just above this period. The number density monotonically decreased toward the longer period and there was no strong indication of a period gap. We detected possible negative superhumps in Z Cha. It is possible that normal outbursts are also suppressed by the presence of a disk tilt in this system. There was no indication of enhanced orbital humps just preceding the superoutburst, and this result favors the thermal-tidal disk instability as the origin of superoutbursts. We detected superhumps in three AM CVn-type dwarf novae. Our observations and recent other detections suggest that 8% of objects showing dwarf nova-type outbursts are AM CVn-type objects. AM CVn-type objects and EI Psc-type objects may be more abundant than previously recognized. OT J213806, a WZ Sge-type object, exhibited remarkably different features between the 2010 and 2014 superoutbursts. Although the 2014 superoutburst was much fainter, the plateau phase was shorter than the 2010 one, and the course of the rebrightening phase was similar. This object indicates that the O - C diagrams of superhumps can indeed be variable, at least in WZ Sge-type objects. Four deeply eclipsing SU UMa-type dwarf novae (ASASSN-13cx, ASASSN-14ag, ASASSN-15bu, and NSV 4618) were identified. We studied long-term trends in supercycles in MM Hya and CY UMa and found systematic variations of supercycles of ˜20%.

  9. Survey of period variations of superhumps in SU UMa-type dwarf novae. VIII. The eighth year (2015-2016)

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Hambsch, Franz-Josef; Monard, Berto; Vanmunster, Tonny; Maeda, Yutaka; Miller, Ian; Itoh, Hiroshi; Kiyota, Seiichiro; Isogai, Keisuke; Kimura, Mariko; Imada, Akira; Tordai, Tamás; Akazawa, Hidehiko; Tanabe, Kenji; Otani, Noritoshi; Ogi, Minako; Ando, Kazuko; Takigawa, Naoki; Dubovsky, Pavol A.; Kudzej, Igor; Shugarov, Sergey Yu.; Katysheva, Natalia; Golysheva, Polina; Gladilina, Natalia; Chochol, Drahomir; Starr, Peter; Kasai, Kiyoshi; Pickard, Roger D.; Miguel, Enrique de; Kojiguchi, Naoto; Sugiura, Yuki; Fukushima, Daiki; Yamada, Eiji; Uto, Yusuke; Kamibetsunawa, Taku; Tatsumi, Taiki; Takeda, Nao; Matsumoto, Katsura; Cook, Lewis M.; Pavlenko, Elena P.; Babina, Julia V.; Pit, Nikolaj V.; Antonyuk, Oksana I.; Antonyuk, Kirill A.; Sosnovskij, Aleksei A.; Baklanov, Aleksei V.; Kafka, Stella; Stein, William; Voloshina, Irina B.; Ruiz, Javier; Sabo, Richard; Dvorak, Shawn; Stone, Geoff; Andreev, Maksim V.; Antipin, Sergey V.; Zubareva, Alexandra M.; Zaostrojnykh, Anna M.; Richmond, Michael; Shears, Jeremy; Dubois, Franky; Logie, Ludwig; Rau, Steve; Vanaverbeke, Siegfried; Simon, Andrei; Oksanen, Arto; Goff, William N.; Bolt, Greg; Dębski, Bartłomiej; Kochanek, Christopher S.; Shappee, Benjamin; Stanek, Krzysztof Z.; Prieto, José L.; Stubbings, Rod; Muyllaert, Eddy; Hiraga, Mitsutaka; Horie, Tsuneo; Schmeer, Patrick; Hirosawa, Kenji

    2016-08-01

    Continuing the project described by Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for 128 SU UMa-type dwarf novae observed mainly during the 2015-2016 season and characterized these objects. The data have improved the distribution of orbital periods, the relation between the orbital period and the variation of superhumps, and the relation between period variations and the rebrightening type in WZ Sge-type objects. Coupled with new measurements of mass ratios using growing stages of superhumps, we now have a clearer and statistically greatly improved evolutionary path near the terminal stage of evolution of cataclysmic variables. Three objects (V452 Cas, KK Tel, and ASASSN-15cl) appear to have slowly growing superhumps, which is proposed to reflect the slow growth of the 3 : 1 resonance near the stability border. ASASSN-15sl, ASASSN-15ux, SDSS J074859.55+312512.6, and CRTS J200331.3-284941 are newly identified eclipsing SU UMa-type (or WZ Sge-type) dwarf novae. ASASSN-15cy has a short (˜0.050 d) superhump period and appears to belong to EI Psc-type objects with compact secondaries having an evolved core. ASASSN-15gn, ASASSN-15hn, ASASSN-15kh, and ASASSN-16bu are candidate period bouncers with superhump periods longer than 0.06 d. We have newly obtained superhump periods for 79 objects and 13 orbital periods, including periods from early superhumps. In order that future observations will be more astrophysically beneficial and rewarding to observers, we propose guidelines on how to organize observations of various superoutbursts.

  10. RNA polymerase II transcription: structure and mechanism.

    PubMed

    Liu, Xin; Bushnell, David A; Kornberg, Roger D

    2013-01-01

    A minimal RNA polymerase II (pol II) transcription system comprises the polymerase and five general transcription factors (GTFs) TFIIB, -D, -E, -F, and -H. The addition of Mediator enables a response to regulatory factors. The GTFs are required for promoter recognition and the initiation of transcription. Following initiation, pol II alone is capable of RNA transcript elongation and of proofreading. Structural studies reviewed here reveal roles of GTFs in the initiation process and shed light on the transcription elongation mechanism. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.

  11. Antibacterial cobalt (II), copper (II), nickel (II) and zinc (II) complexes of mercaptothiadiazole--derived furanyl, thienyl, pyrrolyl, salicylyl and pyridinyl Schiff bases.

    PubMed

    Chohan, Zahid H; Pervez, Humayun; Rauf, Abdul; Khan, Khalid M; Supuran, Claudiu T

    2006-04-01

    A series of Co (II), Cu (II), Ni (II) and Zn (II) complexes of mercaptothiadiazole-derived furanyl, thienyl, pyrrorlyl, salicylyl and pyridinyl Schiff bases were synthesized, characterized and screened for their in vitro antibacterial activity against four Gram-negative, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella fexneri, and two Gram-positive; Bacillus subtilis and Staphylococcus aureous bacterial strains. The results of these studies show the metal complexes to be more antibacterial as compared to the prepared un-complexed Schiff bases.

  12. Spectroscopic and fluorescence studies on Mn(II), Co(II), Ni(II) and Cu(II) complexes with NO donor fluorescence dyes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Metwaly, Nashwa M.

    2011-10-01

    The reactions of the two common dyes [2TMPACT and 4PENI] with Mn(II), Co(II), Ni(II) and Cu(II) ions were done. All the isolated complexes have been characterized by physicochemical and spectroscopic techniques. The IR data reflect the bidentate mode of 2TMPACT towards the mononuclear complex [Mn(II)] even its tetradentate in binuclear complexes [Co(II) and Cu(II)]. However, the bidentate mode is the only behavior of 4PENI ligand towards each metal ion in its mononuclear complexes. The UV-vis spectral analysis beside the magnetic moment measurements are proposed different geometries concerning each metal ions with the two ligands under investigation, as the Mn(II)-2TMPACT complex is an octahedral but Mn(II)-4PENI is a tetrahedral geometry. All the synthesized compounds are thermogravimetrically investigated. The proposed thermal decomposition was discussed for each compound with each step as well as, the kinetic parameters were calculated for all preferrible decomposition steps. The mass spectroscopy tool was used to emphasis on the suitable molecular formula proposed and the fragmentation patterns were displayed. The fluorescence properties of the synthesized ligands and their complexes were studied in DMSO at room temperature.

  13. Spectroscopic and fluorescence studies on Mn(II), Co(II), Ni(II) and Cu(II) complexes with NO donor fluorescence dyes.

    PubMed

    Refat, Moamen S; el-Metwaly, Nashwa M

    2011-10-15

    The reactions of the two common dyes [2TMPACT and 4PENI] with Mn(II), Co(II), Ni(II) and Cu(II) ions were done. All the isolated complexes have been characterized by physicochemical and spectroscopic techniques. The IR data reflect the bidentate mode of 2TMPACT towards the mononuclear complex [Mn(II)] even its tetradentate in binuclear complexes [Co(II) and Cu(II)]. However, the bidentate mode is the only behavior of 4PENI ligand towards each metal ion in its mononuclear complexes. The UV-vis spectral analysis beside the magnetic moment measurements are proposed different geometries concerning each metal ions with the two ligands under investigation, as the Mn(II)-2TMPACT complex is an octahedral but Mn(II)-4PENI is a tetrahedral geometry. All the synthesized compounds are thermogravimetrically investigated. The proposed thermal decomposition was discussed for each compound with each step as well as, the kinetic parameters were calculated for all preferrible decomposition steps. The mass spectroscopy tool was used to emphasis on the suitable molecular formula proposed and the fragmentation patterns were displayed. The fluorescence properties of the synthesized ligands and their complexes were studied in DMSO at room temperature.

  14. Optimization of simultaneous electrochemical determination of Cd(II), Pb(II), Cu(II) and Hg(II) at carbon nanotube-modified graphite electrodes.

    PubMed

    Pikna, L'ubomír; Heželová, Mária; Kováčová, Zuzana

    2015-01-01

    The health of the environment is worsening every day. Monitoring of potentially toxic elements and remediation of environmental pollution are necessary. Therefore, the research and development of simple, inexpensive, portable and effective sensors is important. Electrochemistry is a useful component of the field of environment monitoring. The present study focuses on evaluating and comparing three types of electrodes (PIGE, PIGE/MWCNT/HNO3 and PIGE/MWCNT/EDTA/HNO3) employed for the simultaneous electrochemical determination of four potentially toxic elements: Cd(II), Pb(II), Cu(II) and Hg(II). Cyclic voltammograms were measured in an acetate buffer. The LOD, LOQ, the standard and relative precisions of the method and a prediction intervals were calculated (according to the technical procedure DIN 32 645) for the three electrodes and for each measured element. The LOD for PIGE/CNT/HNO3 (the electrode with narrowest calculated prediction intervals) was 2.98 × 10(-7) mol L(-1) for Cd(II), 4.83 × 10(-7) mol L(-1) for Pb(II), 3.81 × 10(-7) mol L(-1) for Cu(II), 6.79 × 10(-7) mol L(-1) for Hg(II). One of the benefits of this study was the determination of the amount of Hg(II) in the mixture of other elements.

  15. A substituted sulfonamide and its Co (II), Cu (II), and Zn (II) complexes as potential antifungal agents.

    PubMed

    Diaz, Jorge R A; Fernández Baldo, Martín; Echeverría, Gustavo; Baldoni, Héctor; Vullo, Daniela; Soria, Delia B; Supuran, Claudiu T; Camí, Gerardo E

    2016-01-01

    A sulfonamide 1-tosyl-1-H-benzo(d)imidazol-2-amine (TBZA) and three new complexes of Co(II), Cu(II), and Zn(II) have been synthesized. The compounds have been characterized by elemental analyses, FTIR, (1)H, and (13)C-NMR spectroscopy. The structure of the TBZA, and its Co(II) and Cu(II) complexes, was determined by X-ray diffraction methods. TBZA and its Co(II) complex crystallize in the triclinic P-1 space group, while the Cu(II) complex crystallizes in the monoclinic P21/c space group. Antifungal activity was screened against eight pathogenic yeasts: Candida albicans (DMic 972576), Candida krusei (DMic 951705), Candida glabrata (DMic 982882), Candida tropicalis (DMic 982884), Candida dubliniensis (DMic 93695), Candida guilliermondii (DMic 021150), Cryptococcus neoformans (ATCC 24067), and Cryptococcus gattii (ATCC MYA-4561). Results on the inhibition of various human (h) CAs, hCA I, II, IV, VII, IX, and XII, and pathogenic beta and gamma CAs are also reported.

  16. Kinetics of Formation of Cobalt(II)- and Nickel(II) Carbonic Anhydrase.

    ERIC Educational Resources Information Center

    McQuate, Robert S.; Reardon, John E.

    1978-01-01

    Discusses the kinetic behavior associated with the interaction of metal ions with apocarbonic anhydrase, focusing on the formation of two metallocarbonic anhydrase--the biochemically active Co(II) and the inactive Ni(II)derivatives. (GA)

  17. ACCURATE RITZ WAVELENGTHS OF PARITY-FORBIDDEN [Co II] AND [V II] LINES OF ASTROPHYSICAL INTEREST

    SciTech Connect

    Ruffoni, M. P.; Pickering, J. C.

    2013-08-15

    We report a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co II] and [V II] lines obtained from the analysis of energy levels measured in the laboratory with Fourier transform emission spectroscopy. Such lines, particularly those in the infrared, are in demand for the analysis of low-density astrophysical plasmas in and around objects such as planetary nebulae, star-forming regions, and active galactic nuclei. Transitions between all known metastable levels of Co II and V II are included in our analysis, producing wavelengths for 1477 [V II] lines and 782 [Co II] lines. Of these, 170 [V II] lines and 171 [Co II] lines arise from transitions with calculated transition probabilities greater than 1 Multiplication-Sign 10{sup -2} s{sup -1} and upper level excitations of less than 5 eV, and thus are likely to be observed in astrophysical spectra.

  18. Heteroleptic bis(dipyrrinato)copper(II) and nickel(II) complexes.

    PubMed

    Toyoda, Ryojun; Tsuchiya, Mizuho; Sakamoto, Ryota; Matsuoka, Ryota; Wu, Kuo-Hui; Hattori, Yohei; Nishihara, Hiroshi

    2015-09-14

    Heteroleptic bis(dipyrrinato)copper(II) and nickel(II) complexes are synthesized. Their structures are determined by X-ray diffraction analysis, and their properties are investigated by using cyclic voltammetry, chronocoulometry, and UV/vis absorption spectroscopy.

  19. Voltammetric analysis of Cu (II), Cd (II) and Zn (II) complexes and their cyclic voltammetry with several cephalosporin antibiotics.

    PubMed

    Abo El-Maali, N; Osman, A H; Aly, A A M; Al-Hazmi, G A A

    2005-02-01

    Both osteryoung square wave voltammetry and cyclic voltammetry have been utilized to elucidate and confirm the possible complexation reaction that occur between the various cephalosporin antibiotics and either the toxic, non-essential metal ion, viz. Cd (II), or the essential but toxic (when their concentration exceeds certain level in serum) metal ions, viz. Cu (II) and Zn (II). Voltammetric measurements indicated the existence of 1:1 metal-to-ligand ratio (as in cephalexin and cephapirin complexes), 1:2 ratio (such as in cefamandole, cefuroxime and cefotaxime complexes) and 2:1 ratio in case of ceftazidime complexes. Adsorption behavior was evidenced for Cu (II)-cefuroxime or ceftazidime complexes as well as for those for Zn (II)-cephalexin or cephapirin. This phenomenon could be used for the determination of either the antibiotic or the metal ion using adsorptive stripping voltammetry. Detection limits down to 7x10(-10) M have been easily achieved.

  20. Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina.

    PubMed

    Naiya, Tarun Kumar; Bhattacharya, Ashim Kumar; Das, Sudip Kumar

    2009-05-01

    The ability of activated alumina as synthetic adsorbent was investigated for adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions. Various physico-chemical parameters such as pH, initial metal ion concentration, and adsorbent dosage level and equilibrium contact time were studied. The optimum solution pH for adsorption of Cd(II) and Pb(II) from aqueous solutions was found to be 5. Kinetics data were best described by pseudo-second order model. The effective particle diffusion coefficient of Cd(II) and Pb(II) are of the order of 10(-10) m(2)/s. Values of mass transfer coefficient were estimated as 4.868x10(-6) cm/s and 6.85x10(-6) cm/s for Cd(II) and Pb(II) adsorption respectively. The equilibrium adsorption data for Cd(II) and Pb(II) were better fitted to Langmuir adsorption isotherm model. The thermodynamic studies indicated that the adsorption was spontaneous and exothermic for Cd(II) adsorption and endothermic for Pb(II). The sorption energy calculated from Dubinin-Radushkevich isotherm were 11.85 kJ/mol and 11.8 kJ/mol for the adsorption of Cd(II) and Pb(II) respectively which indicated that both the adsorption processes were chemical in nature. Desorption studies were carried out using dilute mineral acids. Application studies carried out using industrial waste water samples containing Cd(II) and Pb(II) showed the suitability of activated alumina in waste water treatment plant operation.

  1. 40 CFR Table II-2 to Subpart II - Collection Efficiencies of Anaerobic Processes

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Collection Efficiencies of Anaerobic Processes II Table II-2 to Subpart II Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment Pt....

  2. 40 CFR Table II-2 to Subpart II - Collection Efficiencies of Anaerobic Processes

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Collection Efficiencies of Anaerobic Processes II Table II-2 to Subpart II Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment Pt....

  3. Sorption hysteresis of Cd(II) and Pb(II) on natural zeolite and bentonite.

    PubMed

    Hamidpour, Mohsen; Kalbasi, Mahmoud; Afyuni, Majid; Shariatmadari, Hossein; Holm, Peter E; Hansen, Hans Christian Brunn

    2010-09-15

    Sorption hysteresis in natural sorbents has important environmental implications for pollutant transport and bioavailability. We examined sorption reversibility of Cd(II) and Pb(II) on zeolite and bentonite. Sorption isotherms were derived by sorption of Cd(II) and Pb(II) from solutions containing a range of the metal concentrations corresponding to 10-100% maximum sorption capacity (SCmax) of the sorbents. The desorption experiments were performed immediately following the completion of sorption experiments. Sorption and desorption isotherms of Cd(II) and Pb(II) were well described by the Freundlich model. The results revealed that the desorption isotherms of Cd(II) and Pb(II) from zeolite significantly deviated from the sorption isotherms indicating irreversible or very slowly reversible sorption. For bentonite sorption/desorption isotherms were similar indicating reversible sorption. The extent of hysteresis was evaluated from sorption and desorption Freundlich parameters (K(f) and n) through the apparent hysteresis index (HI = n(desorb)/n(sorb); n is the exponent in the Freundlich equation) and differences in Freundlich K(f) parameters. Higher sorption irreversibility was obtained for Pb(II) as compared to Cd(II). The amounts of Cd(II) and Pb(II) desorbed from bentonite were more than from zeolite, indicating that zeolite was a more effective sorbent for water and wastewater treatment.

  4. Calix[4]arene based chemosensor for selective complexation of Cd(II) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Qazi, Mansoor Ahmed; Qureshi, Imdadullah; Memon, Shahabuddin

    2010-06-01

    The present article describes synthesis, characterization and a detailed complexation study of calix[4]arene based chemosensor ( 4) bearing two anthracenyl units as signaling groups on its coordination sphere. The complex formation ability of 4 toward selected transition metals such as Cd(II), Co(II), Cu(II), Ni(II) and Pb(II) has been investigated by UV-visible spectroscopy. Assessment of results reveal that the chemosensor is selective toward Cd(II) and Cu(II). The FT-IR spectroscopic method was applied for further confirmation of the complexation phenomenon. Besides this, a study regarding interference of other metals on complex formation in solution has also supported the efficient binding preference of 4 for Cd(II) and Cu(II). From the results it has been concluded that 4 has compatible coordination sphere to accommodate these metals. The similarities and differences revealed that being soft nature of both metals and because of diagonal relationship in the periodic table their coordination behavior toward N/O-donor ligand may be treated as a test on possibility of the Cu(II) ions to be displaced by Cd(II). The study certainly will help in understanding the hazards of Cd(II) in biological systems.

  5. Diet History Questionnaire II & Canadian Diet History Questionnaire II: Web-based DHQ

    Cancer.gov

    The Web-based versions of DHQ II and C-DHQ II are identical in content to the paper forms. By automating the DHQ II and providing versions on the Web for public use, researchers have another tool to collect and analyze food frequency questionnaire data.

  6. Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b.

    PubMed

    Choi, Dong W; Do, Young S; Zea, Corbin J; McEllistrem, Marcus T; Lee, Sung-W; Semrau, Jeremy D; Pohl, Nicola L; Kisting, Clint J; Scardino, Lori L; Hartsel, Scott C; Boyd, Eric S; Geesey, Gill G; Riedel, Theran P; Shafe, Peter H; Kranski, Kim A; Tritsch, John R; Antholine, William E; DiSpirito, Alan A

    2006-12-01

    Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV-visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.

  7. FOREWORD: HELAS II International Conference

    NASA Astrophysics Data System (ADS)

    Gizon, Laurent; Roth, Markus

    2008-07-01

    Volume 118 (2008) of Journal of Physics: Conference Series provides a written record of the talks and posters presented at the HELAS II International Conference `Helioseismology, Asteroseismology and MHD Connections'. The conference was held during the week 20-24 August 2007 in Göttingen, Germany, jointly hosted by the Max Planck Institute for Solar System Research and the Faculty of Physics of the University of Göttingen. A total of 140 scientists from all over the world attended. The Scientific Organizing Committee consisted of Conny Aerts, Annie Baglin, Jørgen Christensen-Dalsgaard, Thierry Corbard, Jadwiga Daszyńska-Daszkiewicz, Stefan Dreizler, Yvonne Elsworth, Laurent Gizon (Chairman), Wolfgang Glatzel, Frank Hill, Donald Kurtz, Oskar von der Lühe, Maria Pia Di Mauro, Mário Monteiro, Pere Pallé, Markus Roth, Philip Scherrer, Manfred Schüssler, and Michael Thompson. HELAS stands for the European Helio- and Asteroseismology Network, a Coordination Action supported by the sixth Framework Programme of the European Union. It aims to bring together researchers in the fields of solar and stellar oscillations. This volume consists of 91 articles organized into sections that reflect the scientific programme of the conference: 012001-07 Wave diagnostics in physics, geophysics and astrophysics 012008-09 Perspectives on helio- and asteroseismology 012010-17 Asteroseismology: Observations 012018-25 Asteroseismology: Theory 012026-32 Global helioseismology and solar models 012033-38 Local helioseismology and magnetic activity 012039-44 Future observational projects in helio- and asteroseismology 012045-91 Poster papers. The overwhelming majority of papers discuss the seismology of the Sun and stars. Papers in the first section provide a broader perspective on wave phenomena and techniques for probing other physical systems, from living beings to the universe as a whole. We were extremely fortunate to have particularly distinguished experts to cover these topics

  8. Moderately luminous Type II supernovae

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Pastorello, A.; Turatto, M.; Pumo, M. L.; Benetti, S.; Cappellaro, E.; Botticella, M. T.; Bufano, F.; Elias-Rosa, N.; Harutyunyan, A.; Taubenberger, S.; Valenti, S.; Zampieri, L.

    2013-07-01

    Context. Core-collapse Supernovae (CC-SNe) descend from progenitors more massive than about 8 M⊙. Because of the young age of the progenitors, the ejecta may eventually interact with the circumstellar medium (CSM) via highly energetic processes detectable in the radio, X-ray, ultraviolet (UV) and, sometimes, in the optical domains. Aims: In this paper we present ultraviolet, optical and near infrared observations of five Type II SNe, namely SNe 2009dd, 2007pk, 2010aj, 1995ad, and 1996W. Together with few other SNe they form a group of moderately luminous Type II events. We investigate the photometric similarities and differences among these bright objects. We also attempt to characterise them by analysing the spectral evolutions, in order to find some traces of CSM-ejecta interaction. Methods: We collected photometry and spectroscopy with several telescopes in order to construct well-sampled light curves and spectral evolutions from the photospheric to the nebular phases. Both photometry and spectroscopy indicate a degree of heterogeneity in this sample. Modelling the data of SNe 2009dd, 2010aj and 1995ad allows us to constrain the explosion parameters and the properties of the progenitor stars. Results: The light curves have luminous peak magnitudes (-16.95 < MB < -18.70). The ejected masses of 56Ni for three SNe span a wide range of values (2.8 × 10-2 M⊙ < M(56Ni)< 1.4 × 10-1 M⊙), while for a fourth (SN 2010aj) we could determine a stringent upper limit (7 × 10-3 M⊙). Clues of interaction, such as the presence of high velocity (HV) features of the Balmer lines, are visible in the photospheric spectra of SNe 2009dd and 1996W. For SN 2007pk we observe a spectral transition from a Type IIn to a standard Type II SN. Modelling the observations of SNe 2009dd, 2010aj and 1995ad with radiation hydrodynamics codes, we infer kinetic plus thermal energies of about 0.2-0.5 foe, initial radii of 2-5 × 1013 cm and ejected masses of ~5.0-9.5 M⊙. Conclusions: These

  9. Adsorption of Cd(II), Cu(II) and Ni(II) ions by cross-linking chitosan/rectorite nano-hybrid composite microspheres.

    PubMed

    Zeng, Lixuan; Chen, Yufei; Zhang, Qiuyun; Guo, Xingmei; Peng, Yanni; Xiao, Huijuan; Chen, Xiaocheng; Luo, Jiwen

    2015-10-05

    Chitosan/rectorie (CTS/REC) nano-hybrid composite microsphere was prepared by changing the proportion of CTS/REC with 2:1, 3:1 and 4:1. Compared with the pure cross-linking chitosan microsphere, the nano-hybrid composite microsphere was proved to have better sorption capacity of Cd(II), Cu(II) and Ni(II), especially 2:1(CTS/REC-1). The adsorption behavior of the microsphere of Cd(II), Cu(II) and Ni(II) was investigated in single and binary metal systems. In single system, the equilibrium studies showed that the adsorption of Cd(II), Cu(II) and Ni(II) followed the Langmuir model and the pseudo-second-order kinetic model. The negative values of (ΔG) suggested that the adsorption process was spontaneous. In binary system, the combined action of the metals was found to be antagonistic and the metal sorption followed the order of Cu(II)>Cd(II)>Ni(II). The regeneration studies indicated that EDTA desorbed Cd(II), Cu(II) and Ni(II) from cross-linking microspheres better than HCl. The FT-IR and XPS spectra showed that coordination bonds were formed between Cd(II), Cu(II) and Ni(II) and the nitrogen atoms of cross-linking CTS/REC nano-hybrid composite microspheres.

  10. World War II Homefront: A Historiography.

    ERIC Educational Resources Information Center

    Winkler, Allan M.

    2002-01-01

    Highlights the scholarship that exists on the World War II homefront covering topics such as World War II as a good war, Franklin D. Roosevelt, economic policy, propaganda, status of women and women's employment, the role of African Americans, racial violence, and the Japanese American experience. (CMK)

  11. Addressing Instructional Avoidance with Tier II Supports

    ERIC Educational Resources Information Center

    Anderson, Cynthia M.; Turtura, Jessica; Parry, Michael

    2013-01-01

    In a 3-tiered, prevention-oriented framework, Tier II (secondary, targeted) interventions are designed for students whose problem behaviors have not responded to Tier I but are not severe enough to warrant an individualized Tier III intervention. Tier II interventions are implemented similarly across students receiving the intervention and can be…

  12. The CNET Automated Budget System (CABS) II.

    ERIC Educational Resources Information Center

    Middleton, Morris G.; And Others

    The Chief of Naval Education and Training (CNET) Automated Budget System II (CABS II) is an improved and expanded version of an earlier system which was developed by the Training Analysis and Evaluation Group (TAEG) to provide an efficient, easy means of handling the large volume of data necessary to produce budget documents. Intended as a guide…

  13. Children Teaching Children II. [CD-ROM].

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Office of School Improvement.

    Children Teaching Children (CTC): Collection II is a CD-ROM created at 6 elementary schools in the West Contra Costa Unified School District (California) as part of the Coaching Odyssey for school improvement. CTC II, published by the California Department of Education, is an effective early literacy intervention that integrates the development of…

  14. World War II: A Technology Lesson Plan.

    ERIC Educational Resources Information Center

    Hagar, Suzy

    1990-01-01

    Presents a class activity on the history, causes, and consequences of World War II. Focuses on the development and deployment of the atomic bomb. Utilizes a Video Encyclopedia Program for historical background. Divides the class into groups that are responsible for researching and preparing a videotape on a World War II topic. (RW)

  15. Geology of the Phase II System

    SciTech Connect

    Laney, R.; Laughlin, A. William

    1980-11-19

    This is a report on the analysis of EE-2 cuttings and thin sections, geologic characterization of the Phase II system, comparison with Phase 1, and geologic speculations and recommendations concerning Phase II. The EE-2 litholog has been included in the pocket.

  16. World War II Memorial Learning Activities.

    ERIC Educational Resources Information Center

    Tennessee State Dept. of Education, Nashville.

    These learning activities can help students get the most out of a visit to the Tennessee World War II Memorial, a group of ten pylons located in Nashville (Tennessee). Each pylon contains informational text about the events of World War II. The ten pylons are listed as: (1) "Pylon E-1--Terror: America Enters the War against Fascism, June…

  17. Fits, pyridoxine, and hyperprolinaemia type II.

    PubMed

    Walker, V; Mills, G A; Peters, S A; Merton, W L

    2000-03-01

    The rare inherited disorder hyperprolinaemia type II presents with fits in childhood, usually precipitated by infection. A diagnosis of hyperprolinaemia type II and vitamin B(6) deficiency was made in a well nourished child with fits. It is thought that pyridoxine deficiency was implicated in her fits and was the result of inactivation of the vitamin by the proline metabolite, pyrroline-5-carboxylate.

  18. Hearing Restoration in Neurofibromatosis Type II Patients

    PubMed Central

    Lee, Jeon Mi; Chang, Jin Woo; Choi, Jae Young

    2016-01-01

    Patients with neurofibromatosis type II will eventually succumb to bilateral deafness. For patients with hearing loss, modern medical science technology can provide efficient hearing restoration through a number of various methods. In this article, several hearing restoration methods for patients with neurofibromatosis type II are introduced. PMID:27189272

  19. TRUPACT-II procedures and maintenance instructions

    SciTech Connect

    1994-01-14

    The purpose of this document is to provide the technical requirements for operation, inspection and maintenance of a TRUPACT-II Shipping Package and directly related components. This document shall supply the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP) and Certificate of Compliance (C of C) 9218. In the event there is a conflict between this document and the TRUPACT-II SARP (NRC Certificate of Compliance No. 9218), the TRUPACT-II SARP shall govern. This document details the operations, maintenance, repair, replacement of components, as well as the documentation required and the procedures to be followed to maintain the integrity of the TRUPACT-II container. These procedures may be modified for site use, but as a minimum all parameters and format listed herein must be included in any site modified version. For convenience and where applicable steps may be performed out of sequence. Packaging and payload handling equipment and transport trailers have been specifically designed for use with the TRUPACT-II Packaging. This document discusses the minimum required procedures for use of the adjustable center of gravity lift fixture and the TRUPACT-II transport trailer in conjunction with the TRUPACT-II Packaging.

  20. Biology II Curriculum Guide. Bulletin 1820.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.

    In 1986, the Louisiana State Board of Elementary and Secondary Education requested that an advanced course in Biology II be developed. The resulting curriculum guide contains grade appropriate goals, skills, and competencies; suggested activities; suggested materials of instruction; and minimum time allotments for instruction. Biology II is a…

  1. Run II data analysis on the grid

    SciTech Connect

    Igor Mandrichenko, Igor Terekhov and Frank Wurthwein

    2002-12-02

    In this document, we begin the technical design for the distributed RunII computing for CDF and D0. The present paper defines the three components of the data handling area of Run II computing, namely the Data Handling System, the Storage System and the Application. We outline their functionality and interaction between them. We identify necessary and desirable elements of the interfaces.

  2. Synthesis, DFT Calculation, and Antimicrobial Studies of Novel Zn(II), Co(II), Cu(II), and Mn(II) Heteroleptic Complexes Containing Benzoylacetone and Dithiocarbamate

    PubMed Central

    Ekennia, Anthony C.; Onwudiwe, Damian C.; Olasunkanmi, Lukman O.; Osowole, Aderoju A.; Ebenso, Eno E.

    2015-01-01

    Heteroleptic complexes of zinc(II), copper(II), manganese(II), and cobalt(II) of the types [MLL′(H2O)2]·nH2O and [MLL′]·nH2O have been synthesized using sodium N-methyl-N-phenyldithiocarbamate (L) and benzoylacetone (L′). The metal complexes were characterized by elemental analysis, electrical conductance, magnetic susceptibility, infrared (IR), and UV-visible spectroscopic studies. The electrical conductance measurements revealed the nonelectrolytic nature of the synthesized complexes. The results of the elemental analyses, magnetic susceptibility measurements, and electronic spectra inferred that the Zn(II) complex adopted a four-coordinate geometry while the Co(II), Cu(II), and Mn(II) complexes assumed octahedral geometries. The IR spectra showed that the metal ions coordinated with the ligands via the S- and O-donor atoms. The geometry, electronic, and thermodynamic parameters of the complexes were obtained from density functional theory (DFT) calculations. The spin density distributions, relative strength of H–bonds, and thermodynamic parameters revealed that the order of stability of the metal complexes is Mn < Co < Cu > Zn. The agar diffusion methods were used to study the antimicrobial activity of the complexes against two Gram positive bacteria (S. aureus and S. pneumoniae), one Gram negative bacterium (E. coli), and two fungi organisms (A. niger and A. candida) and the complexes showed a broad spectrum of activities against the microbes. PMID:26681931

  3. Micro Channel/Multibus-II Interface Circuit

    NASA Technical Reports Server (NTRS)

    D'Ambrose, John J.; Jaworski, Richard C.; Heise, Nyles N.; Thornton, David N.

    1991-01-01

    Micro Channel/Multibus-II interface circuit provides electrical interconnections enabling communications between Micro Channels of IBM Personal System/2 computers and IEEE 1296 standard Multibus-II parallel system bus (iPSB). Made mostly of commercially available parts, interface enables independent Micro Channels to communicate over iPSB without modification.

  4. Interpreting the H II Region Luminosity Function

    NASA Astrophysics Data System (ADS)

    Oey, M. S.; Clarke, C. J.

    1998-12-01

    We construct Monte Carlo simulations of the H II region luminosity function (H II LF), drawing ionizing stars from a constant stellar IMF, and the number of ionizing stars from a power-law distribution of constant slope. We find that observed variations in the form of the H II LF across the Hubble sequence can be explained by a trend in the maximum number of ionizing stars per nebula. In addition, variations in the form of the H II LF between arm and interarm populations of spiral galaxies can be explained by evolutionary effects. The H II LF can thus reveal features in the most recent (< 10 Myr) star formation history of the host galaxies.

  5. TRUPACT-II Operating and Maintenance Instructions

    SciTech Connect

    Westinghouse Electric Corporation, Waste Isolation Division

    1999-12-31

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II) Shipping Package and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP) and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9218. In the event there is a conflict between this document and the TRUPACT-II SARP, the TRUPACT-II SARP shall govern. TRUPACT-II C of C number 9218 states, ''... each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.'' It further states, ''... each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the application.'' Chapter 9 of the TRUPACT-II SARP charges the Westinghouse Electric Corporation Waste Isolation Division (WID) with assuring that the TRUPACT-II is used in accordance with the requirements of the C of C. To meet this requirement and verify consistency of operations when loading and unloading the TRUPACT-II on the trailer, placing a payload in the packaging, unloading the payload from the packaging, or performing maintenance, the U.S. Department of Energy Carlsbad Area Office (U.S. DOE/CAO) finds it necessary to implement the changes that follow. This TRUPACT-II maintenance document represents a change to previous philosophy regarding site specific procedures for the use of the TRUPACT-II. This document details the instructions to be followed to consistently operate and maintain the TRUPACT-II. The intent of these instructions is to ensure that all users of the TRUPACT-II follow the same or equivalent instructions. Users may achieve this intent by any of the following methods: (1) Utilizing these instructions as is, or (2

  6. TRUPACT-II, a regulatory perspective

    SciTech Connect

    Gregory, P.C.; Spooner, O.R.

    1995-12-31

    The Transuranic Package Transporter II (TRUPACT-II) is a US Nuclear Regulatory Commission (NRC) certified Type B packaging for the shipment of contact-handled transuranic (CH-TRU) material by the US Department of Energy (DOE). The NRC approved the TRUPACT-II design as meeting the requirements of Title 10, Code of Federal Regulations, Part 71 (10 CFR 71) and issued Certificate of Compliance (CofC) Number 9218 to the DOE. There are currently 15 certified TRUPACT-IIs. Additional TRUPACT-IIs will be required to make more than 15,000 shipments of CH-TRU waste to the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, New Mexico. The TRUPACT-II may also be used for the DOE inter-site and intra-site shipments of CH-TRU waste. The Land Withdrawal Act (Public Law 102-579), enacted by the US Congress, October 30, 1992, and an agreement between the DOE and the State of New Mexico, signed August 4, 1987, both stipulate that only NRC approved packaging may be used for shipments of TRU waste to the WIPP. Early in the TRUPACT-II development phase it was decided that the transportation system (tractor, trailer, and TRUPACT-II) should be highway legal on all routes without the need for oversize and/or overweight permits. In large measure, public acceptance of the DOE`s efforts to safely transport CH-TRU waste depends on the public`s perception that the TRUPACT-II is in compliance with all applicable regulations, standards, and quality assurance requirements. This paper addresses some of the numerous regulations applicable to Type B packaging, and it describes how the TRUPACT-II complies with these regulations.

  7. Ozone Conference II: Abstract Proceedings

    SciTech Connect

    1999-11-01

    Ozone Conference II: Pre- and Post-Harvest Applications Two Years After Gras, was held September 27-28, 1999 in Tulare, California. This conference, sponsored by EPRI's Agricultural Technology Alliance and Southern California Edison's AgTAC facility, was coordinated and organized by the on-site ATA-AgTAC Regional Center. Approximately 175 people attended the day-and-a-half conference at AgTAC. During the Conference twenty-two presentations were given on ozone food processing and agricultural applications. Included in the presentations were topics on: (1) Ozone fumigation; (2) Ozone generation techniques; (3) System and design applications; (4) Prewater treatment requirements; (5) Poultry water reuse; (6) Soil treatments with ozone gas; and (7) Post-harvest aqueous and gaseous ozone research results. A live videoconference between Tulare and Washington, D.C. was held to discuss the regulators' view from inside the beltway. Attendees participated in two Roundtable Question and Answer sessions and visited fifteen exhibits and demonstrations. The attendees included university and governmental researchers, regulators, consultants and industry experts, technology developers and providers, and corporate and individual end-users. This report is comprised of the Abstracts of each presentation, biographical sketches for each speaker and a registration/attendees list.

  8. II-VI widegap superlattices

    NASA Astrophysics Data System (ADS)

    Taguchi, T.; Yamada, Y.; Endoh, Y.; Nozue, Y.; Mullins, J. T.; Ohno, T.; Masumoto, Y.; Takeda, S.

    We review our recent results of the excitonic properties in ZnSeZnS and Cd xZn 1-xSZnS strained-layer superlattices (SLSs). The most important physical insights in the II-VI widegap superlattices are to understand the relationship between the optical properties of quasi-two-dimensional exciton and strain because the well layer frequently receives biaxial compression or tension. The strain thus causes the significant shifts of the bandgap and splitting of the valence band. Semi-quantative calculations lead to an expectation that ZnSeZnS SLS always exhibits a type I band lineup within 100 Å thicknesses of the ZnSe well at a constant ZnS barrier width of several tens angstrom. This is in good agreement with the experimental results of exciton absorption and its luminescence excitation spectra. The Cd 0.3Zn 0.7SZnS SLSs with a range of well widths can produce intense excitonic emissions around 3.4 eV at room temperature due to the quantum confinement of excitons in the ternary CdZnS well. In order to elucidate localisation and relaxation processes of excitons, we have for the first time reported a multiple-LO-phonon emission process in the excitation spectra. The electric-field studies suggest that the concomitant decrease in intensity and the energy downshift of the exciton line may originate from the quantum confined Stark effect.

  9. PEP-II operations report

    NASA Astrophysics Data System (ADS)

    Zisman, Michael S.

    2001-04-01

    PEP-II is a two-ring asymmetric B factory operating at the ϒ(4S) resonance. It was constructed by a SLAC-LBNL-LLNL collaboration. The collider comprises two rings, a High-Energy Ring (HER) storing 9 GeV electrons, and a Low-Energy Ring (LER) storing 3.1 GeV positrons. Commissioning of the HER began in mid-1997 and commissioning of the LER began in mid-1998. First evidence for collisions was obtained on July 23, 1998. The B AB AR detector was installed in early 1999, and commissioning with the detector commenced in May 1999. In the present run, which began in October 1999, the peak luminosity has reached 3.1×10 33 cm-2 s-1 and the integrated luminosity delivered is 25 fb-1. In this paper we describe the startup experience and summarize the operational experience during fiscal year 2000 (from October 1999 through September 2000). Plans for luminosity upgrades are briefly described.

  10. Early failure of Class II resin composite versus Class II amalgam restorations placed by dental students.

    PubMed

    Overton, J D; Sullivan, Diane J

    2012-03-01

    Using the information from remake request slips in a dental school's predoctoral clinic, we examined the short-term survival of Class II resin composite restorations versus Class II dental amalgam restorations. In the student clinic, resin composite is used in approximately 58 percent of Class II restorations placed, and dental amalgam is used in the remaining 42 percent. In the period examined, Class II resin composite restorations were ten times more likely to be replaced at no cost to the patient than Class II dental amalgam restorations. A total of eighty-four resin composite restorations and six amalgam restorations were replaced due to an identified failure.

  11. Synthesis and characterization of Co(II), Ni(II) and Cu(II) complexes involving hydroxy antipyrine azodyes

    NASA Astrophysics Data System (ADS)

    Gaber, M.; Hassanein, A. M.; Lotfalla, A. A.

    2008-03-01

    The complexes formed between some hydroxy antipyrine azodyes and Co(II), Ni(II) and Cu(II) ions were studied spectrophotometrically in solution. The stoichiometry and stability constants of the metal chelates were determined. The spectrophotometric determination of the titled metal ions and titration using EDTA were reported. The chelating behaviour of the azodyes was confirmed by preparing the solid chelates in which their structures are elucidated using molar conductance, elemental, thermogravimetric (TGA) analyses, IR, ESR and electronic spectra as well as the magnetic measurements. Kinetic parameters are computed from the thermal decomposition data. The electrical properties for the metal complexes are measured from which the activation energies are calculated.

  12. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers.

    PubMed

    Monier, M; Ayad, D M; Sarhan, A A

    2010-04-15

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction.

  13. Effects of Mg II and Ca II ionization on ab-initio solar chromosphere models

    NASA Technical Reports Server (NTRS)

    Rammacher, W.; Cuntz, M.

    1991-01-01

    Acoustically heated solar chromosphere models are computed considering radiation damping by (non-LTE) emission from H(-) and by Mg II and Ca II emission lines. The radiative transfer equations for the Mg II k and Ca II K emission lines are solved using the core-saturation method with complete redistribution. The Mg II k and Ca II K cooling rates are compared with the VAL model C. Several substantial improvements over the work of Ulmschneider et al. (1987) are included. It is found that the rapid temperature rises caused by the ionization of Mg II are not formed in the middle chromosphere, but occur at larger atmospheric heights. These models represent the temperature structure of the 'real' solar chromosphere much better. This result is a major precondition for the study of ab-initio models for solar flux tubes based on MHD wave propagation and also for ab-initio models for the solar transition layer.

  14. Genetic analysis of capsule and its associated economic traits in opium poppy (Papaver somniferum L.).

    PubMed

    Kumar, Birendra; Patra, Nirmal Kumar

    2010-01-01

    Four single crosses (VG20 x SGE48, SGE48 x SG35II, VG26 x SG35II, and SG35II x VG20) in opium poppy (Papaver somniferum L.) were analyzed to study the gene actions involved in the inheritance of quantitative traits, namely plant height, branches/plant, capsules/plant, peduncle length, capsule index, stigmatic rays, straw yield/plant, and morphine content. Simple additive, dominance, and epistatic genetic components were found to be significant for inheritance pattern. Dominance effect (h) was higher than additive effect (d). Digenic interaction indicated the prevalence of dominance x dominance (l) followed by additive x dominance (j) type epistasis. The significance of dominance (h) and dominance x dominance (l) indicated duplicate epistasis for all the traits and crosses except SG35II x VG20 for stigmatic rays. Biparental mating followed by recurrent selection involving desired recombinants may be utilized to improve the component traits.

  15. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS).

    PubMed

    Duran, Celal; Gundogdu, Ali; Bulut, Volkan Numan; Soylak, Mustafa; Elci, Latif; Sentürk, Hasan Basri; Tüfekci, Mehmet

    2007-07-19

    A new method using a column packed with Amberlite XAD-2010 resin as a solid-phase extractant has been developed for the multi-element preconcentration of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Pb(II) ions based on their complex formation with the sodium diethyldithiocarbamate (Na-DDTC) prior to flame atomic absorption spectrometric (FAAS) determinations. Metal complexes sorbed on the resin were eluted by 1 mol L(-1) HNO3 in acetone. Effects of the analytical conditions over the preconcentration yields of the metal ions, such as pH, quantity of Na-DDTC, eluent type, sample volume and flow rate, foreign ions etc. have been investigated. The limits of detection (LOD) of the analytes were found in the range 0.08-0.26 microg L(-1). The method was validated by analyzing three certified reference materials. The method has been applied for the determination of trace elements in some environmental samples.

  16. Chitosan film loaded with silver nanoparticles-sorbent for solid phase extraction of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II).

    PubMed

    Djerahov, Lubomir; Vasileva, Penka; Karadjova, Irina; Kurakalva, Rama Mohan; Aradhi, Keshav Krishna

    2016-08-20

    The present study describes the ecofriendly method for the preparation of chitosan film loaded with silver nanoparticles (CS-AgNPs) and application of this film as efficient sorbent for separation and enrichment of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). The stable CS-AgNPs colloid was prepared by dispersing the AgNPs sol in chitosan solution at appropriate ratio and further used to obtain a cast film with very good stability under storage and good mechanical strength for easy handling in aqueous medium. The incorporation of AgNPs in the structure of CS film and interaction between the polymer matrix and nanoparticles were confirmed by UV-vis and FTIR spectroscopy. The homogeneously embedded AgNPs (average diameter 29nm, TEM analysis) were clearly observed throughout the film by SEM. The CS-AgNPs nanocomposite film shows high sorption activity toward trace metals under optimized chemical conditions. The results suggest that the CS-AgNPs nanocomposite film can be feasibly used as a novel sorbent material for solid-phase extraction of metal pollutants from surface waters.

  17. New Rh2(II,II) Architecture for the Catalytic Reduction of H⁺.

    PubMed

    White, Travis A; Witt, Suzanne E; Li, Zhanyong; Dunbar, Kim R; Turro, Claudia

    2015-10-19

    Formamidinate-bridged Rh2(II,II) complexes containing diimine ligands of the formula cis-[Rh2(II,II)(μ-DTolF)2(NN)2](2+) (Rh2-NN2), where DTolF = p-ditolylformamidinate and NN = dppn (benzo[i]dipyrido[3,2-a:2',3'-h]quinoxaline), dppz (dipyrido[3,2-a:2',3'-c]phenazine), and phen (1,10-phenanthroline), electrocatalytically reduce H(+) to H2 in DMF solutions containing CH3COOH at a glassy carbon electrode. Cathodic scans in the absence of acid display a Rh(III,II/II,II) reduction at -0.90 V vs Fc(+)/Fc followed by NN(0/-) reduction at -1.13, -1.36, and -1.65 V for Rh2-dppn2, Rh2-dppz2, and Rh2-phen2, respectively. Upon the addition of acid, Rh2-dppn2 and Rh2-dppz2 undergo reduction-protonation-reduction at each pyrazine-containing NN ligand prior to the Rh2(II,II/II,I) reduction. The Rh2(II,I) species is then protonated at one of the metal centers, resulting in the formation of the corresponding Rh2(II,III)-hydride. In the case of Rh2-phen2, the reduction of the phen ligand is followed by intramolecular electron transfer to the Rh2(II,II) core in the presence of protons to form a Rh2(II,III)-hydride species. Further reduction and protonation at the Rh2 core for all three complexes rapidly catalyzes H2 formation with varied calculated turnover frequencies (TOF) and overpotential values (η): 2.6 × 10(4) s(-1) and 0.56 V for Rh2-dppn, 2.8 × 10(4) s(-1) and 0.50 V for Rh2-dppz2, and 5.9 × 10(4) s(-1) and 0.64 V for Rh2-phen2. Bulk electrolysis confirmed H2 formation, and further CH3COOH addition regenerates H2 production, attesting to the robust nature of the architecture. The cis-[Rh2(II,II)(μ-DTolF)2(NN)2](2+) architecture benefits by combining electron-rich formamidinate bridges, a redox-active Rh2(II,II) core, and electron-accepting NN diimine ligands to allow for the electrocatalysis of H(+) substrate to H2 fuel.

  18. Inhibition of chymotrypsin by heparin cofactor II.

    PubMed Central

    Church, F C; Noyes, C M; Griffith, M J

    1985-01-01

    Human heparin cofactor II is a plasma protein that is known to inhibit thrombin. The rate of thrombin inhibition by heparin cofactor II is accelerated (greater than or equal to 1000-fold) in the presence of the glycosaminoglycans, heparin and dermatan sulfate. We have found that chymotrypsin A alpha is also inhibited by heparin cofactor II with a second-order rate constant value of 1.8 X 10(6) M-1 X min-1 at pH 8.0 and 25 degrees C. However, there was no measurable effect of heparin or dermatan sulfate on the rate of chymotrypsin inhibition. Arginine-modified heparin cofactor II showed a comparable percentage loss of both antichymotrypsin and antithrombin activities. Heparin cofactor II and chymotrypsin formed a stable complex with a Mr value near 90,000 when analyzed by NaDodSO4/polyacrylamide gel electrophoresis; this suggests a 1:1 reaction stoichiometry. The chymotrypsin cleavage site in heparin cofactor II was the same as that for thrombin, and primary structure analysis of the inhibitor showed a P'1-P'8 sequence of Ser-Thr-Gln-Val-Arg-Phe-Thr-Val ... . The results indicate that, in contrast to alpha 1-antichymotrypsin, which does not inhibit trypsin-like enzymes, including thrombin, heparin cofactor II can effectively inhibit both thrombin and chymotrypsin. PMID:3863104

  19. Dinuclear Metallacycles with Single M-X-M Bridges (X = Cl(-), Br(-); M = Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)): Strong Antiferromagnetic Superexchange Interactions.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Foley, Elizabeth A; Smith, Mark D; Jezierska, Julia; Wojciechowska, Agnieszka; Stoian, Sebastian A; Ozarowski, Andrew

    2017-03-06

    A series of monochloride-bridged, dinuclear metallacycles of the general formula [M2(μ-Cl)(μ-L)2](ClO4)3 have been prepared using the third-generation, ditopic bis(pyrazolyl)methane ligands L = m-bis[bis(1-pyrazolyl)methyl]benzene (Lm), M = Cu(II), Zn(II), and L = m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (Lm*), M = Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II). These complexes were synthesized from the direct reactions of M(ClO4)2·6H2O, MCl2, and the ligand, Lm or Lm*, in the appropriate stoichiometric amounts. Three analogous complexes of the formula [M2(μ-Cl)(μ-L)2](BF4)3, L = Lm, M = Cu(II), and L = Lm*, M = Co(II), Cu(II), were prepared from the reaction of [M2(μ-F)(μ-L)2](BF4)3 and (CH3)3SiCl. The bromide-bridged complex [Cu2(μ-Br)(μ-Lm*)2](ClO4)3 was prepared by the first method. Three acyclic complexes, [Co2(μ-Lm)μ-Cl4], [Co2(μ-Lm*)Cl4], and [Co2(μ-Lm*)Br4], were also prepared. The structures of all [M2(μ-X)(μ-L)2](3+) (X = Cl(-), Br(-)) complexes have two ditopic bis(pyrazolyl)methane ligands bridging two metals in a metallacyclic arrangement. The fifth coordination site of the distorted trigonal bipyramidal metal centers is filled by a bridging halide ligand that has an unusual linear or nearly linear M-X-M angle. The NMR spectra of [Zn2(μ-Cl)(μ-Lm*)2](ClO4)3 and especially [Cd2(μ-Cl)(μ-Lm*)2](ClO4)3 demonstrate that the metallacycle structure is maintained in solution. Solid state magnetic susceptibility data for the copper(II) compounds show very strong antiferromagnetic exchange interactions, with -J values of 536 cm(-1) for [Cu2(μ-Cl)(μ-Lm)2](ClO4)3·xCH3CN, 720 cm(-1) for [Cu2(μ-Cl)(μ-Lm*)2](ClO4)3, and 945 cm(-1) for [Cu2(μ-Br)(μ-Lm*)2](ClO4)3·2CH3CN. Smaller but still substantial antiferromagnetic interactions are observed with other first row transition metals, with -J values of 98 cm(-1) for [Ni2(μ-Cl)(μ-Lm*)2](ClO4)3, 55 cm(-1) for [Co2(μ-Cl)(μ-Lm*)2](ClO4)3, and 34 cm(-1) for [Fe2(μ-Cl)(μ-Lm*)2](ClO4

  20. Angiotensin II receptors in testes

    SciTech Connect

    Millan, M.A.; Aguilera, G.

    1988-05-01

    Receptors for angiotensin II (AII) were identified and characterized in testes of rats and several primate species. Autoradiographic analysis of the binding of 125I-labeled (Sar1,Ile8)AII to rat, rhesus monkey, cebus monkey, and human testicular slide-mounted frozen sections indicated specific binding to Leydig cells in the interstitium. In rat collagenase-dispersed interstitial cells fractionated by Percoll gradient, AII receptor content was parallel to that of hCG receptors, confirming that the AII receptors are in the Leydig cells. In rat dispersed Leydig cells, binding was specific for AII and its analogs and of high affinity (Kd, 4.8 nM), with a receptor concentration of 15 fmol/10(6) cells. Studies of AII receptors in rat testes during development reveals the presence of high receptor density in newborn rats which decreases toward the adult age (4934 +/- 309, 1460 +/- 228, 772 +/- 169, and 82 +/- 12 fmol/mg protein at 5, 15, 20, and 30 days of age, respectively) with no change in affinity. At all ages receptors were located in the interstitium, and the decrease in binding was parallel to the decrease in the interstitial to tubular ratio observed with age. AII receptor properties in membrane-rich fractions from prepuberal testes were similar in the rat and rhesus monkey. Binding was time and temperature dependent, reaching a plateau at 60 min at 37 C, and was increased by divalent cations, EGTA, and dithiothreitol up to 0.5 mM. In membranes from prepuberal monkey testes, AII receptors were specific for AII analogs and of high affinity (Kd, 4.2 nM) with a receptor concentration of 7599 +/- 1342 fmol/mg protein. The presence of AII receptors in Leydig cells in rat and primate testes in conjunction with reports of the presence of other components of the renin-angiotensin system in the testes suggests that the peptide has a physiological role in testicular function.

  1. Probing Our Heliospheric History II

    NASA Astrophysics Data System (ADS)

    Wyman, Katherine; Redfield, S.

    2012-05-01

    A physical relationship between our local interstellar medium (ISM), galactic cosmic rays (GCR), and our planetary environment has long been a subject of interest to the astronomical community. Clouds of sufficient density to compress the heliosphere to within 1 AU are commonly seen throughout the galactic environment, including within the Local Bubble (LB). Such a compression would lead to an increase in the GCR flux at 1 AU and would have drastic consequences for many planetary processes such as atmospheric chemistry, lightning production, cloud cover, and DNA mutation rates for surface organisms. Prior to this work, we derived a column density profile of the ISM toward 49 bright stars along a narrow cone centered on the historical solar path. High resolution spectra were taken of NaI and CaII absorption out to a distance of 610 pc, with a median separation distance of 11 pc between adjacent stars. No absorption is seen out to a distance of 120 pc (consistent with the LB), but a complex number of absorbers is seen beyond. We now present the detection of several distinct clouds, their associated column densities, radial velocities, inferred distances, and size constraints. This combination of cloud properties allows us to derive a volume density profile of the ISM in the Sun's “rear-view mirror,” which represents one plausible record of actual ISM encounters for the Sun. We also make use of empirical relations to determine the effect these clouds would have on the historical heliosphere. Our analysis suggests that within the last 10 million years, if the Sun encountered a cloud with the same properties as we have detected along the solar historical trajectory, the Sun's termination shock would have resided inside the orbit of Uranus, with a GCR flux at Earth an order of magnitude greater than it is currently.

  2. The VRI colours of H II galaxies

    NASA Astrophysics Data System (ADS)

    Telles, Eduardo; Terlevich, Roberto

    1997-03-01

    We present a high spatial resolution CCD surface photometry study in the optical V, R and I broad-band filters of a sample of 15 H II galaxies. Narrow-band imaging allows the separation of the emission-line region from the extended parts of the galaxy. The latter are assumed to represent the underlying galaxy in H II galaxies; thus the colours of the underlying galaxy are measured. The colours of the underlying stellar continuum within the starburst are also derived by subtracting the contribution of the emission lines falling in the broad-band filters. The distribution of colours of the underlying galaxy in H II galaxies is similar to the colours of other late-type low surface brightness galaxies, which suggests a close kinship of these with the quiescent phases of H II galaxies. However, comparison wtih recent evolutionary population synthesis models shows that the observational errors and the uncertainties in the models are still too large to put strict constraints on their past star formation history. Our analysis of the morphology and structural properties, from contour maps and luminosity profiles, of this sample of 15 H II galaxies agrees with what has been found by Telles and Telles, Melnick & Terlevich, namely that H II galaxies comprise two broad classes segregated by their luminosity; Type I H II galaxies are luminous and have disturbed and irregular outer shapes, while Type II H II galaxies are less luminous and have regular shapes. The outer parts of their profiles are well represented by an exponential, as in other types of known dwarf galaxy.

  3. Characteristics of He II Proximity Profiles

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Syphers, David; Meiksin, Avery; Kriss, Gerard A.; Schneider, Donald P.; York, Donald G.; Anderson, Scott F.

    2015-06-01

    The proximity profile in the spectra of z≈ 3 quasars, where fluxes extend blueward of the He ii Lyα wavelength 304 (1+z) Å, is one of the most important spectral features in the study of the intergalactic medium (IGM). Based on the Hubble Space Telescope spectra of 24 He ii quasars, we find that the majority of them display a proximity profile, corresponding to an ionization radius as large as 20 Mpc in the source's rest frame. In comparison with those in the H i spectra of the quasars at z ≈ 6, the He ii proximity effect is more prominent and is observed over a considerably longer period of reionization. The He ii proximity zone sizes decrease at higher redshifts, particularly at z\\gt 3.3. This trend is similar to that for H i, signaling an onset of He ii reionization at z≳ 4. For quasar SDSS1253+6817 (z = 3.48), the He ii absorption trough displays a gradual decline and serves as a good case for modeling the He ii reionization. To model such a broad profile requires a quasar radiation field whose energy distribution between 4 and 1 Rydberg is considerably harder than normally assumed. The UV continuum of this quasar is indeed exceptionally steep, and the He ii ionization level in the quasar vicinity is higher than the average level in the IGM. These results are evidence that a very hard EUV continuum from this quasar produces a large ionized zone around it. Distinct exceptions are the two brightest He ii quasars at z ≈ 2.8, for which no significant proximity profile is present, probably implying that they are very young.

  4. 75 FR 4834 - National Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... matter experts in law enforcement, fire, emergency medical services, hospital, public works, emergency... Government Employee (SGE) appointment), Emergency Medical Provider (one SGE appointment), Standard Settings... areas will be filled by SGE appointments: Public Health and Emergency Medical Provider. If a...

  5. LHC II system sensitivity to magnetic fluids

    NASA Astrophysics Data System (ADS)

    Cotae, Vlad; Creanga, Ioan

    2005-03-01

    Experiments have been designed to reveal the influences of ferrofluid treatment and static magnetic field exposure on the photosynthetic system II, where the light harvesting complex (LHC II) controls the ratio chlorophyll a/ chlorophyll b (revealing, indirectly, the photosynthesis rate). Spectrophotometric measurement of chlorophyll content revealed different influences for relatively low ferrofluid concentrations (10-30 μl/l) in comparison to higher concentrations (70-100 μl/l). The overlapped effect of the static magnetic field shaped better the stimulatory ferrofluid action on LHC II system in young poppy plantlets.

  6. CAPPS II: the foundation of aviation security?

    PubMed

    Barnett, Arnold

    2004-08-01

    A new computer system is being developed to classify U.S. air travelers by the degree of terrorist threat they might pose. Reports indicate that the system--called CAPPS II--would use large amounts of information about each passenger, perhaps including such personal details as his or her magazine-subscription behavior. We argue that what is publicly known about CAPPS II raises questions about how substantially the system would improve aviation security. We discuss conditions under which CAPPS II could yield safety benefits, but suggest that it might be more prudent to view the system as one component of future security arrangements rather than the centerpiece of these arrangements.

  7. Level II Ergonomic Analyses, Dover AFB, DE

    DTIC Science & Technology

    1999-02-01

    IERA-RS-BR-TR-1999-0002 UNITED STATES AIR FORCE IERA Level II Ergonomie Analyses, Dover AFB, DE Andrew Marcotte Marilyn Joyce The Joyce...Project (070401881, Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 4. TITLE AND SUBTITLE Level II Ergonomie Analyses, Dover...1.0 INTRODUCTION 1-1 1.1 Purpose Of The Level II Ergonomie Analyses : 1-1 1.2 Approach 1-1 1.2.1 Initial Shop Selection and Administration of the

  8. Belle II Physics Prospects, Status and Schedule

    NASA Astrophysics Data System (ADS)

    Bennett, J.

    2016-11-01

    The second generation B-factory at the SuperKEKB facility in Tsukuba, Japan is beginning to take shape. The highly anticipated Belle II experiment will have a rich physics program at the intensity frontier, in complement to existing experiments in the energy frontier. Accelerator commissioning has been making good progress, as has the construction and installation of the Belle II detector. An overview of the physics prospects at Belle II, as well as the status and schedule of the experiment, is presented.

  9. Genetics Home Reference: distal hereditary motor neuropathy, type II

    MedlinePlus

    ... distal hereditary motor neuropathy, type II distal hereditary motor neuropathy, type II Enable Javascript to view the ... PDF Open All Close All Description Distal hereditary motor neuropathy, type II is a progressive disorder that ...

  10. T lymphocytes and dendritic cells are activated by the deletion of peroxiredoxin II (Prx II) gene.

    PubMed

    Moon, Eun-Yi; Noh, Young-Wook; Han, Ying-Hao; Kim, Sun-Uk; Kim, Jin-Man; Yu, Dae-Yeul; Lim, Jong-Seok

    2006-02-15

    Peroxiredoxin II (Prx II) is a member of antioxidant enzyme family and it plays a protective role against oxidative damage. Constitutive production of endogenous reactive oxygen species was detected in spleen and bone marrow cells lacking Prx II. Here, we investigated the role of Prx II in immune responses. The total number of splenocytes (especially, the population of S-phase cells and CD3(+) T cells) was significantly higher in Prx II(-/-) mice than in wild type. Number of peripheral blood mononuclear cells (PBMCs) in Prx II(-/-) mice was also higher than wild type. Differentiation of Prx II(-/-) mouse bone marrow cells into CD11c-positive dendritic cells was greater than that of wild type. Transplantation of Prx II(-/-) bone marrow cells into wild type mice increased PBMCs in blood and bone marrow-derived dendritic cells. Prx II deletion enhances concanavalin A (ConA)-induced splenocyte proliferation and mixed lymphocyte reaction (MLR) activity of bone marrow-derived CD11c-positive dendritic cells to stimulate recipient splenocytes. Collectively, these data suggest that Prx II inhibits the immune cell responsiveness, which may be regulated by scavenging the low amount of reactive oxygen species (ROS).

  11. Selected methods for dissolved iron (II, III) and dissolved sulfide (-II) determinations in geothermal waters

    USGS Publications Warehouse

    Vivit, D.V.; Jenne, E.A.

    1985-01-01

    Dissolved sulfide (-II) and dissolved iron (II, III) were determined in geothermal well water samples collected at Cerro Prieto, Mexico. Most samples consisted of liquid and gas (two phases) at the instant of collection; and a subset of samples, referred to as ' flashed ' samples, consisted of pressurized steam samples which were allowed to condense. Sulfide was determined by sulfide specific ion electrode; Fe(II) and Fe(III) plus Fe(II) were determined spectrophotometrically. The precision and accuracy of the methods were evaluated for these high-silica waters with replicate analyses, spike recoveries, and an alternate method. Direct current (d.c.) argon plasma emission spectrometry was the alternate method used for Fe(III)-plus-Fe(II) analyses. Mean dissolved iron concentrations ranged from 20.2 to 834 micrograms/L (ug/L) as Fe(II) and 26.8 to 904 ug/L as Fe(III) plus Fe(II). Mean sulfide concentrations ranged from about 0.01 to 5.3 mg/L (S-II) Generally, higher S(-II) values and larger Fe(II)/Fe(III) ratios were found in the two-phase samples. These findings suggest that the ' flashed ' samples are at a less reduced state than the two-phase samples. (Author 's abstract)

  12. Increased association of dynamin II with myosin II in ras transformed NIH3T3 cells.

    PubMed

    Jeong, Soon-Jeong; Kim, Su-Gwan; Yoo, Jiyun; Han, Mi-Young; Park, Joo-Cheol; Kim, Heung-Joong; Kang, Seong-Soo; Choi, Baik-Dong; Jeong, Moon-Jin

    2006-08-01

    Dynamin has been implicated in the formation of nascent vesicles through both endocytic and secretory pathways. However, dynamin has recently been implicated in altering the cell membrane shape during cell migration associated with cytoskeleton-related proteins. Myosin II has been implicated in maintaining cell morphology and in cellular movement. Therefore, reciprocal immunoprecipitation was carried out to identify the potential relationship between dynamin II and myosin II. The dynamin II expression level was higher when co-expressed with myosin II in Ras transformed NIH3T3 cells than in normal NIH3T3 cells. Confocal microscopy also confirmed the interaction between these two proteins. Interestingly, exposing the NIH3T3 cells to platelet-derived growth factor altered the interaction and localization of these two proteins. The platelet-derived growth factor treatment induced lamellipodia and cell migration, and dynamin II interacted with myosin II. Grb2, a 24 kDa adaptor protein and an essential element of the Ras signaling pathway, was found to be associated with dynamin II and myosin II gene expression in the Ras transformed NIH3T3 cells. These results suggest that dynamin II acts as an intermediate messenger in the Ras signal transduction pathway leading to membrane ruffling and cell migration.

  13. Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions.

    PubMed

    Vaghetti, Julio C P; Lima, Eder C; Royer, Betina; da Cunha, Bruna M; Cardoso, Natali F; Brasil, Jorge L; Dias, Silvio L P

    2009-02-15

    In the present study we reported for the first time the feasibility of pecan nutshell (PNS, Carya illinoensis) as an alternative biosorbent to remove Cu(II), Mn(II) and Pb(II) metallic ions from aqueous solutions. The ability of PNS to remove the metallic ions was investigated by using batch biosorption procedure. The effects such as, pH, biosorbent dosage on the adsorption capacities of PNS were studied. Four kinetic models were tested, being the adsorption kinetics better fitted to fractionary-order kinetic model. Besides that, the kinetic data were also fitted to intra-particle diffusion model, presenting three linear regions, indicating that the kinetics of adsorption should follow multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm model. The maximum biosorption capacities of PNS were 1.35, 1.78 and 0.946mmolg(-1) for Cu(II), Mn(II) and Pb(II), respectively.

  14. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust.

    PubMed

    Rafatullah, M; Sulaiman, O; Hashim, R; Ahmad, A

    2009-10-30

    The present study proposed the use of meranti sawdust in the removal of Cu(II), Cr(III), Ni(II) and Pb(II) ions from synthetic aqueous solutions. Batch adsorption studies showed that meranti sawdust was able to adsorb Cu(II), Cr(III), Ni(II) and Pb(II) ions from aqueous solutions in the concentration range 1-200mg/L. The adsorption was favoured with maximum adsorption at pH 6, whereas the adsorption starts at pH 1 for all metal ions. The effects of contact time, initial concentration of metal ions, adsorbent dosage and temperature have been reported. The applicability of Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm was tried for the system to completely understand the adsorption isotherm processes. The adsorption kinetics tested with pseudo-first-order and pseudo-second-order models yielded high R(2) values from 0.850 to 0.932 and from 0.991 to 0.999, respectively. The meranti sawdust was found to be cost effective and has good efficiency to remove these toxic metal ions from aqueous solution.

  15. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands.

    PubMed

    Sumathi, S; Tharmaraj, P; Sheela, C D; Anitha, C

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M=Cu(II), Ni(II), Co(II); L=3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, (1)H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).

  16. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands

    NASA Astrophysics Data System (ADS)

    Sumathi, S.; Tharmaraj, P.; Sheela, C. D.; Anitha, C.

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M = Cu(II), Ni(II), Co(II); L = 3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).

  17. Kinetics of homogeneous and surface-catalyzed mercury(II) reduction by iron(II)

    USGS Publications Warehouse

    Amirbahman, Aria; Kent, Douglas B.; Curtis, Gary P.; Marvin-DiPasquale, Mark C.

    2013-01-01

    Production of elemental mercury, Hg(0), via Hg(II) reduction is an important pathway that should be considered when studying Hg fate in environment. We conducted a kinetic study of abiotic homogeneous and surface-catalyzed Hg(0) production by Fe(II) under dark anoxic conditions. Hg(0) production rate, from initial 50 pM Hg(II) concentration, increased with increasing pH (5.5–8.1) and aqueous Fe(II) concentration (0.1–1 mM). The homogeneous rate was best described by the expression, rhom = khom [FeOH+] [Hg(OH)2]; khom = 7.19 × 10+3 L (mol min)−1. Compared to the homogeneous case, goethite (α-FeOOH) and hematite (α-Fe2O3) increased and γ-alumina (γ-Al2O3) decreased the Hg(0) production rate. Heterogeneous Hg(0) production rates were well described by a model incorporating equilibrium Fe(II) adsorption, rate-limited Hg(II) reduction by dissolved and adsorbed Fe(II), and rate-limited Hg(II) adsorption. Equilibrium Fe(II) adsorption was described using a surface complexation model calibrated with previously published experimental data. The Hg(0) production rate was well described by the expression rhet = khet [>SOFe(II)] [Hg(OH)2], where >SOFe(II) is the total adsorbed Fe(II) concentration; khet values were 5.36 × 10+3, 4.69 × 10+3, and 1.08 × 10+2 L (mol min)−1 for hematite, goethite, and γ-alumina, respectively. Hg(0) production coupled to reduction by Fe(II) may be an important process to consider in ecosystem Hg studies.

  18. Copper(II) and lead(II) removal from aqueous solution by water treatment residues.

    PubMed

    Castaldi, Paola; Silvetti, Margherita; Garau, Giovanni; Demurtas, Daniela; Deiana, Salvatore

    2015-01-01

    In this study, we investigated the ability of Fe- and Al-based water treatment residues (Fe- and Al-WTR) to accumulate Pb(II) and Cu(II) at pH 4.5. The role of the inorganic and organic fractions of WTRs in metals sorption was also assessed. Sorption isotherms showed a higher sorption of Pb(II) by both WTRs with respect to Cu(II) (e.g. 0.105 and 0.089 mmol g(-1) of Pb(II) and Cu(II) respectively sorbed by Fe-WTR). Fe-WTR revealed a stronger sorbent for both metals than Al-WTR. The amount of Pb(II) and Cu(II) sorbed by Fe-WTR was about the 69% and 63% higher than that sorbed by the Al-WTR. The organic matter of Fe- and Al-WTR contributed to about 26% and 8.5% respectively in the sorption of both metals. The sequential extraction procedure showed that the greatest amount of metals sorbed by both WTRs were tightly bound and not extractable, and this was particularly apparent for Cu(II). The FT-IR spectra indicated the formation of inner-sphere complexes between the Fe(Al)-O nucleus and Pb(II) and Cu(II). Moreover, the FT-IR spectra also suggested that the humic fraction of WTRs interacted, through the carboxylate groups, with Cu(II) and Pb(II) by forming mainly monodentate and bidentate complexes, respectively.

  19. Rapid and wide-range determination of Cd(II), Pb(II), Cu(II) and Hg(II) in fish tissues using light addressable potentiometric sensor.

    PubMed

    Zhang, Wen; Xu, Yiwei; Tahir, Haroon E; Zou, Xiaobo; Wang, Ping

    2017-04-15

    A rapid and wide-range method, based on light addressable potentiometric sensor (LAPS), is introduced into determination of Cd(II), Pb(II), Cu(II) and Hg(II) in fish tissues. A compact LAPS module is prepared by integrating four LAPS chips specifically sensitive to target elements. Its responses in digestions from various settings are investigated to find suitable factors. Analytical properties of this method are evaluated in consequent experiments under optimized conditions. Measurement range for each target element exceeds 0.1 to 1000mgL(-1), and response time is less than 10s. Accuracy, precision and selectivity of the proposed method are also well defined in measurements. It is successively performed to detect the target elements in real fish samples from 4 species, and obtained results are consistent with certified method.

  20. Psychological Action and Structure in "Richard II."

    ERIC Educational Resources Information Center

    Toole, William B., III

    1978-01-01

    Explores the theme that the suffering arising from Richard II's loss of power, a power that consisted more of appearance than of intrinsic worth, led him to spiritual growth and the development of real value as a person. (MB)

  1. Resistance domain in type II superconductors

    SciTech Connect

    Gurevich, A.V.; Mints, R.G.

    1980-01-05

    We show that traveling domains with a finite resistance can exist in type II superconductors in the presence of a transport current. An experiment in which this effect generates an alternating electric field and current is proposed.

  2. Zodiac II: Debris Disk Imaging Potential

    NASA Technical Reports Server (NTRS)

    Traub Wesley; Bryden, Geoff; Stapelfeldt, Karl; Chen, Pin; Trauger, John

    2011-01-01

    Zodiac II is a proposed coronagraph on a balloon-borne platform, for the purpose of observing debris disks around nearby stars. Zodiac II will have a 1.2-m diameter telescope mounted in a balloon-borne gondola capable of arcsecond quality pointing, and with the capability to make long-duration (several week) flights. Zodiac II will have a coronagraph able to make images of debris disks, meaning that its scattered light speckles will be at or below an average contrast level of about 10(exp -7) in three narrow (7 percent) bands centered on the V band, and one broad (20%) one at I band. We will discuss the potential science to be done with Zodiac II.

  3. Far Outer Galaxy H II Regions

    NASA Technical Reports Server (NTRS)

    Rudolph, A. L.; deGues, E. J.; Brand, J.; Wouterloot, J. G. A.; Gross, Anthony R. (Technical Monitor)

    1994-01-01

    We have made a multifrequency (6, 3.6, and 2 cm), high-resolution (3"-6"), radio continuum survey of IRAS selected sources from the catalogue of Wouterloot & Brand (1989) to search for and study H II regions in the far outer Galaxy. We identified 31 sources in this catalog with well determined galactocentric distances, and with R approx.. greater than 15 kpc and L(sub FIR) approx.greater than 10(exp 4) solar luminosity, indicating the presence of high-mass star-formation. We have observed 11 of these sources with the Very Large Array (VLA). We observed the sources at 6 and 2 cm using "scaled arrays", making possible a direct and reliable comparison of the data at these two wavelengths for the determination of spectral indices. We detected a total of 12 radio sources, of which 10 have spectral indices consistent with optically-thin free-free emission from H II regions. Combined with previous VLA observations by other investigators, we have data on a total of 15 H II regions at galactocentric distances of 15 to 18.2kpc, among the most remote H II regions found in our Galaxy. The sizes of the H II regions range from approx. less than 0.10 to 2.3 pc. Using the measured fluxes and sizes, we determine the electron densities, emission measures, and excitation parameters of the H II regions, as well as the fluxes of Lyman continuum photons needed to keep the nebulae ionized. The sizes and electron densities are consistent with most of the sources detected in this survey being compact or ultracompact H II regions. Seven of the fifteen H II regions have sizes approx. less than 0.20 pc. Assuming simple pressure-driven expansion of the H II regions, these sizes indicate ages approx. less than 5 x 10(exp 4) yr, or only 1% of the lifetime of an O star, which implies an unlikely overabundance of O stars in the outer Galaxy. Thus, the large number of compact H II regions suggests that the time these regions spend in a compact phase must be much longer than their dynamical

  4. Courseware Review: Vernier Software: Precision Timer II.

    ERIC Educational Resources Information Center

    Park, John C.

    1988-01-01

    Reviews "Vernier Software: Precision Timer II" for high school through college mechanics. Introduces 14 different modes including pulse time, pendulum timer, bouncer timer, gate timer, collision timers, and stroke calibration. Provides two typical displays and ratings of the software. (YP)

  5. Enzymatic synthesis of lipid II and analogues.

    PubMed

    Huang, Lin-Ya; Huang, Shih-Hsien; Chang, Ya-Chih; Cheng, Wei-Chieh; Cheng, Ting-Jen R; Wong, Chi-Huey

    2014-07-28

    The emergence of antibiotic resistance has prompted active research in the development of antibiotics with new modes of action. Among all essential bacterial proteins, transglycosylase polymerizes lipid II into peptidoglycan and is one of the most favorable targets because of its vital role in peptidoglycan synthesis. Described in this study is a practical enzymatic method for the synthesis of lipid II, coupled with cofactor regeneration, to give the product in a 50-70% yield. This development depends on two key steps: the overexpression of MraY for the synthesis of lipid I and the use of undecaprenol kinase for the preparation of polyprenol phosphates. This method was further applied to the synthesis of lipid II analogues. It was found that MraY and undecaprenol kinase can accept a wide range of lipids containing various lengths and configurations. The activity of lipid II analogues for bacterial transglycolase was also evaluated.

  6. PEP-II Status and Outlook

    SciTech Connect

    Wienands, H.U.; Biagini, M.E.; Decker, F.J.; Donald, M.H.; Ecklund, S.; Fisher, A.; Holtzapple, R.L.; Iverson, R.H.; Krejcik, P.; Kulikov, A.V.; Meyer, T.; Nelson, J.; Novokhatski, A.; Reichel, I.; Sullivan, M.; Seeman, J.T.; Turner, J.; Steier, C.; Zisman, M.S.; /LBL, Berkeley

    2012-04-24

    PEP-II/BABAR are presently in their second physics run. With machine and detector performance and reliability at an all-time high, almost 51 fb{sup -1} have been integrated by BABAR up to mid-October 2001. PEP-II luminosity has reached 4.4 x 10{sup 33} cm{sup -2} s{sup -1} and our highest monthly delivered luminosity has been above 6 pb{sup -1}, exceeding the performance parameters given in the PEP-II CDR by almost 50%. The increase compared to the first run in 2000 has been achieved by a combination of beam-current increase and beam-size decrease. In this paper we will summarize the PEP-II performance and the present limitations as well as our plans to further increase machine performance.

  7. Achondrogenesis type II, abnormalities of extracellular matrix.

    PubMed

    Horton, W A; Machado, M A; Chou, J W; Campbell, D

    1987-09-01

    Immune and lectin histochemical and microchemical methods were employed to study growth cartilage from seven cases of achondrogenesis type II (Langer-Saldino). The normal architecture of the epiphyseal and growth plate cartilage was replaced by a morphologically heterogeneous tissue. Some areas were comprised of vascular canals surrounded by extensive fibrous tissue and enlarged cells that had the appearance and histochemical characteristics of hypertrophic chondrocytes. Other areas contained a mixture of cells ranging from small to the enlarged chondrocytes. The extracellular matrix in the latter areas was more abundant and had characteristics of both precartilage mesenchymal matrix and typical cartilage matrix; it contained types I and II collagen, cartilage proteoglycan, fibronectin, and peanut agglutinin binding glycoconjugate(s). Peptide mapping of cyanogen bromide cartilage collagen peptides revealed the presence of types I and II collagen. These observations could be explained by a defect in the biosynthesis of type II collagen or in chondrocyte differentiation.

  8. Achondrogenesis II-hypochondrogenesis: variability versus heterogeneity.

    PubMed

    Borochowitz, Z; Ornoy, A; Lachman, R; Rimoin, D L

    1986-06-01

    Recently hypochondrogenesis was described as a form of neonatally lethal dwarfism said to resemble spondyloepiphyseal dysplasia congenita radiographically and achondrogenesis II morphologically. Because of the difficulty in distinguishing radiographically between mild achondrogenesis II and severe hypochondrogenesis, we performed a clinical, radiographic, and morphologic study of 24 cases originally classified as either achondrogenesis II or hypochondrogenesis, in an attempt to distinguish between heterogeneity and clinical variability. Review of the radiographic findings in these cases show a fairly continuous spectrum of bony defects, rather than two distinct radiographic syndromes. Chondro-osseous histology and ultrastructure was similar in all cases regardless of severity and was characterized by hypervascularity and hypercellularity of the cartilage with multiple small, round dilated cysternae of rough endoplasmic reticulum. These findings suggest that hypochondrogenesis and achondrogenesis type II represent a spectrum with marked phenotypic variability.

  9. NSLS-II Transport Line Progress

    SciTech Connect

    Fliller R. P.; Wahl, W.; Anderson, A.; Benish, B.; DeBoer, W.; Ganetis, G.; Heese, R.; Hseuh, H.-C.; Hu, J.-P.; Johanson, M.P.; Kosciuk, B.N.; Padrazo, D.; Roy, K.; Shaftan, T.; Singh, O.; Tuozzolo, J.; Wang, G.

    2012-05-20

    The National Synchrotron Light Source II (NSLS-II) is a state-of-the-art 3-GeV third generation light source currently under construction at Brookhaven National Laboratory. The NSLS-II injection system consists of a 200 MeV linac, a 3-GeV booster synchrotron and associated transfer lines. The first part of the Linac to Booster Transport (LBT) line has been installed for linac commissioning. This part includes all components necessary to commission the NSLS-II linac. The second part of this transport line is undergoing installation. Initial results of hardware commissioning will be discussed. The Booster to Storage Ring (BSR) transport line underwent a design review. The first part of the BSR transport line, consisting of all components necessary to commission the booster will be installed in 2012 for booster commissioning. We report on the final design of the BSR line along with the plan to commission the booster.

  10. Neutral (bis-beta-diketonato) iron(III), cobalt(II), nickel(II), copper(II) and zinc(II) metallocycles: structural, electrochemical and solvent extraction studies.

    PubMed

    Clegg, Jack K; Bray, David J; Gloe, Kerstin; Gloe, Karsten; Hayter, Michael J; Jolliffe, Katrina A; Lawrance, Geoffrey A; Meehan, George V; McMurtrie, John C; Lindoy, Leonard F; Wenzel, Marco

    2007-05-07

    Neutral dimeric metallocyclic complexes of type [M(2)(L(1))(2)B(n)] (where M = cobalt(II), nickel(II) and zinc(II), L(1) is the doubly deprotonated form of a 1,3-aryl linked bis-beta-diketone ligand of type 1,3-bis(RC(O)CH(2)C(O))C(6)H(4) (R=Me, n-Pr, t-Bu) and B is pyridine (Py) or 4-ethylpyridine (EtPy)) have been synthesised, adding to similar complexes already reported for copper(II). New lipophilic ligand derivatives with R = octyl or nonyl were also prepared for use in solvent extraction experiments. Structural, electrochemical and solvent extraction investigations of selected metal complex systems from the above series are reported, with the X-ray structures of [Co(2)(L(1))(2)(Py)(4)] x 2.25CHCl(3) x 0.5H(2)O (R=Pr), [Co(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Ni(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Zn(2)(L(1))(2)(EtPy)(2)] (R=Me) and [Zn(2)(L(1))(2)(EtPy)(4)] (R=t-Bu) being presented. The electrochemistry of H(2)L(1) (R=t-Bu) and of [Fe(2)(L(1))(3)], [Co(2)(L(1))(2)(Py)(4)], [Ni(2)(L(1))(2)(Py)(4)], [Cu(2)(L(1))(2)] and [Zn(2)(L(1))(2)(Py)(2)] has been examined. Oxidative processes for the complexes are dominantly irreversible, but several examples of quasireversible behaviour were observed and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as a metal-centred oxidation. The reduction processes for the respective metal complexes are not simple, and irreversible in most cases. Solvent extraction studies (water/chloroform) involving variable concentrations of metal, bis-beta-diketone and heterocyclic base have been performed for cobalt(II) and zinc(II) using a radiotracer technique to probe the stoichiometries of the extracted species in each case. Synergism was observed when 4-ethylpyridine was added to the bis-beta-diketone ligand in the chloroform phase. Competitive extraction studies show a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).

  11. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion.

    PubMed

    Shipley, Heather J; Engates, Karen E; Grover, Valerie A

    2013-03-01

    Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.

  12. NSLS-II Radio Frequency Systems

    SciTech Connect

    Rose J.; Gao F.; Goel, A.; Holub, B.; Kulpin, J.; Marques, C.; Yeddulla, M.

    2015-05-03

    The National Synchrotron Light Source II is a 3 GeV X-ray user facility commissioned in 2014. The NSLS-II RF system consists of the master oscillator, digital low level RF controllers, linac, booster and storage ring RF sub-systems, as well as a supporting cryogenic system. Here we will report on RF commissioning and early operation experience of the system.

  13. Nickel(II) biosorption by Rhodotorula glutinis.

    PubMed

    Suazo-Madrid, Alicia; Morales-Barrera, Liliana; Aranda-García, Erick; Cristiani-Urbina, Eliseo

    2011-01-01

    The present study reports the feasibility of using Rhodotorula glutinis biomass as an alternative low-cost biosorbent to remove Ni(II) ions from aqueous solutions. Acetone-pretreated R. glutinis cells showed higher Ni(II) biosorption capacity than untreated cells at pH values ranging from 3 to 7.5, with an optimum pH of 7.5. The effects of other relevant environmental parameters, such as initial Ni(II) concentration, shaking contact time and temperature, on Ni(II) biosorption onto acetone-pretreated R. glutinis were evaluated. Significant enhancement of Ni(II) biosorption capacity was observed by increasing initial metal concentration and temperature. Kinetic studies showed that the kinetic data were best described by a pseudo-second-order kinetic model. Among the two-, three-, and four-parameter isotherm models tested, the Fritz-Schluender model exhibited the best fit to experimental data. Thermodynamic parameters (activation energy, and changes in activation enthalpy, activation entropy, and free energy of activation) revealed that the biosorption of Ni(II) ions onto acetone-pretreated R. glutinis biomass is an endothermic and non-spontaneous process, involving chemical sorption with weak interactions between the biosorbent and Ni(II) ions. The high sorption capacity (44.45 mg g(-1) at 25°C, and 63.53 mg g(-1) at 70°C) exhibited by acetone-pretreated R. glutinis biomass places this biosorbent among the best adsorbents currently available for removal of Ni(II) ions from aqueous effluents.

  14. NSLS-II Beam Diagnostics Overview

    SciTech Connect

    Singh,O.; Alforque, R.; Bacha, B.; Blednykh, A.; Cameron, P.; Cheng, W.; Dalesio, L. B.; Della Penna, A. J.; doom, L.; Fliller, R. P.; Ganetis, G.; Heese, R.; Hseuh, H-C.; Johnson, E. D.; Kosciuk, b. N.; Kramer, S. L.; Krinsky, S.; Mead, J.; Ozaki, S.; Padrazo, D.; Pinayev, I.; Ravindranath, R. V.; Rose, J.; Shaftan, T.; Sharma, S.; Skaritka, J.; Tanabe, T.; Tian, Y.; Willeke, F. J.; Yu, L-H.

    2009-05-04

    A new 3rd generation light source (NSLS-II) is in the early stages of construction at Brookhaven National Laboratory. The NSLS-II facility will provide ultra high brightness and flux with exceptional beam stability. It presents several challenges for diagnostics and instrumentation, related to the extremely small emittance. In this paper, we present an overview of all planned instrumentation systems, results from research and development activities; and then focus on other challenging aspects.

  15. Mechanisms of angiotensin II natriuresis and antinatriuresis.

    PubMed

    Olsen, M E; Hall, J E; Montani, J P; Guyton, A C; Langford, H G; Cornell, J E

    1985-08-01

    The aim of this study was to determine the role of changes in renal arterial pressure (RAP), renal hemodynamics, and tubular reabsorption in mediating the natriuretic and antinatriuretic actions of angiotensin II (ANG II). In seven anesthetized dogs, endogenous ANG II formation was blocked with captopril, and ANG II was infused intravenously at rates of 5-1,215 ng X kg-1 X min-1 while RAP was either servo-controlled at the preinfusion level or permitted to increase. When RAP was servo-controlled, ANG II infusion at all rates from 5-1,215 ng X kg-1 X min-1 decreased urinary sodium excretion (UNaV) and fractional sodium excretion (FENa) while increasing fractional reabsorption of lithium (FRLi) (an index of proximal tubular fractional sodium reabsorption) and causing no change in calculated distal tubule fractional sodium reabsorption (FRDNa). When RAP was permitted to increase, ANG II infusion rates up to 45 ng X kg-1. min-1 also decreased UNaV and FENa while increasing FRLi and causing no change in FRDNa. However, at 135 ng X kg-1 X min-1 and above, UNaV and FENa increased while FRLi and FRDNa decreased when RAP was allowed to rise, even though renal blood flow and filtration fraction were not substantially different from the values observed when RAP was servo-controlled. Filtered sodium load was slightly higher when RAP was permitted to increase during ANG II infusion compared with when RAP was servo-controlled, although the differences were not statistically significant. Thus, even very large doses of ANG II cause antinatriuresis when RAP is prevented from increasing.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Antenatal diagnosis of achondrogenesis type II.

    PubMed

    Kodandapani, S; Ramkumar, V

    2009-01-01

    Achondrogenesis is a lethal congenital chondrodystrophy characterized by extreme micromelia, small thorax and polyhydramnios. We describe a case of achondrogenesis type II (Langer-Saldino achondrogenesis). Prenatal ultrasonography at 22-weeks gestation revealed a fetus with large head, short neck and chest, prominent abdomen and short limbs. Pregnancy was terminated. Radiologic examination of neonate revealed features of achondrogenesis type II. Routine ultrasound screening made early detection and timely management possible.

  17. The Ssart of Run II at CDF

    SciTech Connect

    Marco Rescigno

    2002-10-29

    After a hiatus of almost 6 years and an extensive upgrade, Tevatron, the world largest proton-antiproton collider, has resumed the operation for the so called RUN II. In this paper we give a brief overview of the many new features of the Tevatron complex and of the upgraded CDF experiment, and show the presently achieved detector performances as well as highlights of the RUN II physics program in the beauty and electroweak sector.

  18. Status of the CDF II experiment

    SciTech Connect

    S. Rolli

    2002-08-14

    The status of the CDF II experiment is described. Since operations start-up for run II data taking in March 2001, the CDF detector has been commissioned using about 20 pb{sup -1} of data provided by the Tevatron (utilized about 4-8). Most detector components are ready for physics quality data. The goal is to present the first physics results by summer-fall 2002.

  19. Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution.

    PubMed

    Chand, Piar; Pakade, Yogesh B

    2015-07-01

    Hydroxyapatite nanoparticles were synthesized, characterized, and impregnated onto apple pomace surface (HANP@AP) for efficient removal of Pb(II), Cd(II), and Ni(II) ions from water. HANP@AP was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis. Batch sorption studies were carried out to investigate the influence of different parameters as amount of dose (g), pH, time (min), and initial concentration (mg L(-1)) on adsorption process. Experimental kinetic data followed pseudo-second-order model and equilibrium data well fitted to Langmuir adsorption model with maximum adsorption capacities of 303, 250, and 100 mg g(-1) for Pb(II), Cd(II), and Ni(II) ions, respectively. Competitive adsorption of Pb(II), Cd(II), and Ni(II) ions in presences of each other was studied to evaluate the removal efficiency of HANP@AP against multi metal-loaded water. HANP@AP was successfully applied to real industrial wastewater with 100 % removal of all three metal ions even at high concentration. HANP@AP could be recycled for four, four, and three cycles in case of Pb(II), Cd(II) and Ni(II), respectively. The study showed that HANP@AP is fast, cost effective, and environmental friendly adsorbent for removal of Pb(II), Cd(II), and Ni(II) ions from real industrial wastewater.

  20. Preferred crystallographic orientation in the ice I ← II transformation and the flow of ice II

    USGS Publications Warehouse

    Bennett, K.; Wenk, H.-R.; Durham, W.B.; Stern, L.A.; Kirby, S.H.

    1997-01-01

    The preferred crystallographic orientation developed during the ice I ← II transformation and during the plastic flow of ice II was measured in polycrystalline deuterium oxide (D2O) specimens using low-temperature neutron diffraction. Samples partially transformed from ice I to II under a non-hydrostatic stress developed a preferred crystallographic orientation in the ice II. Samples of pure ice II transformed from ice I under a hydrostatic stress and then when compressed axially, developed a strong preferred orientation of compression axes parallel to (1010). A match to the observed preferred orientation using the viscoplastic self-consistent theory was obtained only when (1010) [0001] was taken as the predominant slip system in ice II.

  1. Pb(II) and Cd(II) removal from aqueous solutions by olive cake.

    PubMed

    Doyurum, Sabriye; Celik, Ali

    2006-11-02

    The removal of heavy metals from wastewater using olive cake as an adsorbent was investigated. The effect of the contact time, pH, temperature, and concentration of adsorbate on adsorption performance of olive cake for Pb(II) and Cd(II) ions were examined by batch method. Adsorption of Pb(II) and Cd(II) in aqueous solution onto olive cake was studied in single component. After establishing the optimum conditions, elution of these ions from the adsorbent surface was also examined. The optimum sorption conditions were determined for two elements. Maximum desorption of the Pb(II) and Cd(II) ions were found to be 95.92 and 53.97% by 0.5M HNO(3) and 0.2M HCl, respectively. The morphological analysis of the olive cake was performed by the scanning electron microscopy (SEM).

  2. Differential effect of solution conditions on the conformation of the actinoporins Sticholysin II and Equinatoxin II.

    PubMed

    Fauth, Edson V F; Cilli, Eduardo M; Ligabue-Braun, Rodrigo; Verli, Hugo

    2014-12-01

    Actinoporins are a family of pore-forming proteins with hemolytic activity. The structural basis for such activity appears to depend on their correct folding. Such folding encompasses a phosphocholine binding site, a tryptophan-rich region and the activity-related N-terminus segment. Additionally, different solution conditions are known to be able to influence the pore formation by actinoporins, as for Sticholysin II (StnII) and Equinatoxin II (EqtxII). In this context, the current work intends to characterize the influence of distinct solution conditions in the conformational behavior of these proteins through molecular dynamics (MD) simulations. The obtained data offer structural insights into actinoporins dynamics in solution, characterizing its conformational behavior at the atomic level, in accordance with previous experimental data on StnII and EqtxII hemolytic activities.

  3. Genetic heterogeneity of Usher syndrome type II.

    PubMed Central

    Pieke Dahl, S; Kimberling, W J; Gorin, M B; Weston, M D; Furman, J M; Pikus, A; Möller, C

    1993-01-01

    Usher syndrome is an autosomal recessive disorder characterised by retinitis pigmentosa and congenital sensorineural hearing loss. A gene for Usher syndrome type II (USH2) has been localised to chromosome 1q32-q41. DNA from a family with four of seven sibs affected with clinical characteristics of Usher syndrome type II was genotyped using markers spanning the 1q32-1q41 region. These included D1S70 and D1S81, which are believed to flank USH2. Genotypic results and subsequent linkage analysis indicated non-linkage of this family to these markers. The A test analysis for heterogeneity with this family and 32 other Usher type II families was statistically significant at p < 0.05. Further clinical evaluation of this family was done in light of the linkage results to determine if any phenotypic characteristics would allow for clinical identification of the unlinked type. No clear phenotypic differences were observed; however, this unlinked family may represent a previously unreported subtype of Usher type II characterised by a milder form of retinitis pigmentosa and mild vestibular abnormalities. Heterogeneity of Usher syndrome type II complicates efforts to isolate and clone Usher syndrome genes using linkage analysis and limits the use of DNA markers in early detection of Usher type II. Images PMID:7901420

  4. Group II Introns and Their Protein Collaborators

    NASA Astrophysics Data System (ADS)

    Solem, Amanda; Zingler, Nora; Pyle, Anna Marie; Li-Pook-Than, Jennifer

    Group II introns are an abundant class of autocatalytic introns that excise themselves from precursor mRNAs. Although group II introns are catalytic RNAs, they require the assistance of proteins for efficient splicing in vivo. Proteins that facilitate splicing of organellar group II introns fall into two main categories: intron-encoded maturases and host-encoded proteins. This chapter will focus on the host proteins that group II introns recruited to ensure their function. It will discuss the great diversity of these proteins, define common features, and describe different strategies employed to achieve specificity. Special emphasis will be placed on DEAD-box ATPases, currently the best studied example of host-encoded proteins with a role in group II intron splicing. Since the exact mechanisms by which splicing is facilitated is not known for any of the host proteins, general mechanistic strategies for protein-mediated RNA folding are described and assessed for their potential role in group II intron splicing.

  5. 40 CFR Table 1 to Subpart II of... - General Provisions of Applicability to Subpart II

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Reference Applies to subpart II Comment 63.1(a)(1)-(3) Yes. 63.1(a)(4) Yes Subpart II clarifies the applicability of each paragraph in subpart A to sources subject to subpart II. 63.1(a)(5)-(7) Yes 63.1(a)(8) No Discusses State programs. 63.1(a)(9)-(14) Yes 63.1(b)(1) Yes § 63.781 specifies applicability in more...

  6. Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: A spectroscopic and modeling approach.

    PubMed

    Ding, Congcong; Cheng, Wencai; Wang, Xiangxue; Wu, Zhen-Yu; Sun, Yubing; Chen, Changlun; Wang, Xiangke; Yu, Shu-Hong

    2016-08-05

    The competitive sorption of Pb(II), Cu(II) and Ni(II) on the uniform carbonaceous nanofibers (CNFs) was investigated in binary/ternary-metal systems. The pH-dependent sorption of Pb(II), Cu(II) and Ni(II) on CNFs was independent of ionic strength, indicating that inner-sphere surface complexation dominated sorption Pb(II), Cu(II) and Ni(II) on CNFs. The maximum sorption capacities of Pb(II), Cu(II) and Ni(II) on CNFs in single-metal systems at a pH 5.5±0.2 and 25±1°C were 3.84 (795.65mg/g), 3.21 (204.00mg/g) and 2.67 (156.70mg/g)mmol/g, respectively. In equimolar binary/ternary-metal systems, Pb(II) exhibited greater inhibition of the sorption of Cu(II) and Ni(II), demonstrating the stronger affinity of CNFs for Pb(II). The competitive sorption of heavy metals in ternary-metal systems was predicted quite well by surface complexation modeling derived from single-metal data. According to FTIR, XPS and EXAFS analyses, Pb(II), Cu(II) and Ni(II) were specifically adsorbed on CNFs via covalent bonding. These observations should provide an essential start in simultaneous removal of multiple heavy metals from aquatic environments by CNFs, and open the doorways for the application of CNFs.

  7. Phosphate effects on copper(II) and lead(II) sorption to ferrihydrite

    NASA Astrophysics Data System (ADS)

    Tiberg, Charlotta; Sjöstedt, Carin; Persson, Ingmar; Gustafsson, Jon Petter

    2013-11-01

    Transport of lead(II) and copper(II) ions in soil is affected by the soil phosphorus status. Part of the explanation may be that phosphate increases the adsorption of copper(II) and lead(II) to iron (hydr)oxides in soil, but the details of these interactions are poorly known. Knowledge about such mechanisms is important, for example, in risk assessments of contaminated sites and development of remediation methods. We used a combination of batch experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy and surface complexation modeling with the three-plane CD-MUSIC model to study the effect of phosphate on sorption of copper(II) and lead(II) to ferrihydrite. The aim was to identify the surface complexes formed and to derive constants for the surface complexation reactions. In the batch experiments phosphate greatly enhanced the adsorption of copper(II) and lead(II) to ferrihydrite at pH < 6. The largest effects were seen for lead(II).

  8. Cu(II) and Zn(II) adsorption capacity of three different clay liner materials.

    PubMed

    Musso, T B; Parolo, M E; Pettinari, G; Francisca, F M

    2014-12-15

    Sorption of Cu(II) and Zn(II) on three natural clays meeting the international requirements for use as liners was evaluated by means of batch tests. The purpose of this research was to determine the retention capacities of the clays for metal cations commonly present in urban solid waste leachates. The pH and ionic strength conditions were set at values frequently found in real leachates. The changes observed in the XRD patterns and FTIR spectra upon adsorption can be considered an evidence of clay-metal electrostatic interaction. The Langmuir model was found to best describe the sorption processes, offering maximum sorption capacities from 8.16 to 56.89 mg/g for Cu(II) and from 49.59 to 103.83 mg/g for Zn(II). All samples remove more Zn(II) than Cu(II), which may be related to the different geometry of the hydrated Cu(II) cation. The total amount of metal sorption was strongly influenced by the total specific surface area, the presence of carbonates and the smectite content of the clays. In addition to their known quality as physical barriers, the adsorbed amounts obtained indicate the suitability of the tested clays to contribute to the retardation of Cu(II) and Zn(II) transport through clay liners.

  9. Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent.

    PubMed

    Ren, Yueming; Wei, Xizhu; Zhang, Milin

    2008-10-01

    A novel magnetic Cu(II) ion imprinted composite adsorbent (Cu(II)-MICA) was synthesized, characterized and applied for the selective removal Cu(II) from aqueous solution in the batch system. The adsorption-desorption and selectivity characteristics were investigated. The maximum adsorption occurred at pH 5-6. The equilibrium time was 6.0h, and a pseudo-second-order model could best describe adsorption kinetics. The adsorption equilibrium data fit Langmuir isotherm equation well with a maximum adsorption capacity of 46.25mg/g and Langmuir adsorption equilibrium constant of 0.0956L/mg at 298K. Thermodynamic parameters analysis predicted an exothermic nature of adsorption and a spontaneous and favourable process that could be mainly governed by physisorption mechanism. The relative selectivity coefficients of Cu(II)-MICA for Cu(II)/Zn(II) and Cu(II)/Ni(II) were 2.31, 2.66 times greater than the magnetic non-imprinted composite adsorbent (MNICA). Results suggested that Cu(II)-MICA was a material of efficient, low-cost, convenient separation under magnetic field and could be reused five times with about 14% regeneration loss.

  10. STELLAR POPULATIONS AND THE STAR FORMATION HISTORIES OF LOW SURFACE BRIGHTNESS GALAXIES. II. H II REGIONS

    SciTech Connect

    Schombert, James; McGaugh, Stacy; Maciel, Tamela E-mail: stacy.mcgaugh@case.edu

    2013-08-01

    The luminosities, colors, and H{alpha} emission for 429 H II regions in 54 low surface brightness (LSB) galaxies are presented. While the number of H II regions per galaxy is lower in LSB galaxies compared to star-forming irregulars and spirals, there is no indication that the size or luminosity function of H II regions differs from other galaxy types. The lower number of H II regions per galaxy is consistent with their lower total star formation rates. The fraction of the total L{sub H{alpha}} contributed by H II regions varies from 10% to 90% in LSB galaxies (the rest of the H{alpha} emission being associated with a diffuse component) with no correlation with galaxy stellar or gas mass. Bright H II regions have bluer colors, similar to the trend in spirals; their number and luminosities are consistent with the hypothesis that they are produced by the same H II luminosity function as spirals. Comparison with stellar population models indicates that the brightest H II regions in LSB galaxies range in cluster mass from a few 10{sup 3} M{sub Sun} (e.g., {rho} Oph) to globular-cluster-sized systems (e.g., 30 Dor) and that their ages are consistent with clusters from 2 to 15 Myr old. The faintest H II regions are comparable to those in the LMC powered by a single O or B star. Thus, star formation in LSB galaxies covers the full range of stellar cluster mass.

  11. Determination of circulating levels of insulin-like growth factor II (IGF-II) in swine.

    PubMed

    Buonomo, F C; Grohs, D L; Baile, C A; Campion, D R

    1988-10-01

    A heterologous radioimmunoassay system was developed for the determination of circulating IGF-II concentrations in swine. The assay utilized a monoclonal antibody against human IGF-II (Amano Intl. Ez, VA) and bovine IGF-II (Monsanto Co., MO) as the cold standard and iodinated ligand. Serial dilutions of acid-ethanol extracted normal swine sera resulted in a curve which was parallel to the bovine IGF-II standard curve. Recovery of unlabeled standard added to extracted swine sera was 101%. Neither IGF-I nor insulin were capable of cross-reacting in this assay at levels up to 100-fold excess. Using this assay, serum IGF-II levels were determined to be significantly lower when subnormal growth hormone (GH) levels existed such as in hypophysectomized swine. However, in contrast to serum IGF-I concentrations, supranormal levels of porcine GH (pGH) did not elevate serum IGF-II concentrations after 13 wk of treatment in 25 kg hogs (initial body wt). In addition, serum IGF-II levels were reduced in fasted swine, despite a significant increase in circulating GH concentrations. Thus, although normal concentrations of GH are required for maintenance of physiological levels of IGF-II in swine, the mechanism for stimulation of IGF-II secretion is less GH-dependent than IGF-I.

  12. Radiative lifetimes, branching rations, and absolute transition probabilities in Cr II and Zn II

    NASA Technical Reports Server (NTRS)

    Bergeson, S. D.; Lawler, J. E.

    1993-01-01

    New absolute atomic transition probability measurements are reported for 12 transitions in Cr II and two transitions in Zn II. These transition probabilities are determined by combining branching ratios measured by classical techniques and radiative lifetimes measured by time-resolved laser-induced fluorescence. The measurements are compared with branching fractions, radiative lifetimes, and transition probabilities in the literature. The 206 nm resonance multiplets in Cr II and Zn II are included in this work. These multiplets are very useful in determining the distribution of the elements in the gas versus grain phases in the interstellar medium.

  13. Ion paired chromatography of iron (II,III), nickel (II) and copper (II) as their 4,7-Diphenyl-1,10-phenanthroline chelates.

    PubMed

    Mudasir; Yoshioka, N; Inoue, H

    1997-07-01

    A reversed phase ion-paired chromatographic method that can be used to determine trace amounts of iron (II,III), nickel (II) and copper (II) was developed and applied to the determination of iron (II) and iron (III) levels in natural water. The separation of these metal ions as their 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline) chelates on an Inertsil ODS column was investigated by using acetonitrile-water (80/20, v/v) containing 0.06 M perchloric acid as mobile phase and diode array spectrophotometric detection at 250-650 nm. Chromatographic parameters such as composition of mobile phase and concentration of perchloric acid in mobile phase were optimized. The calibration graphs of iron (II), nickel (II) and copper (II) ions were linear (r > 0.991) in the concentration range 0-0.5, 0-2.0 and 0-4.0 mug ml(-1), respectively. The detection limit of iron (II), nickel (II) and copper (II) were 2.67, 5.42 and 18.2 ng ml(-1) with relative standard deviation (n = 5) of 3.11, 5.81 and 7.16% at a concentration level of 10 ng ml(-1) for iron (II) and nickel (II) and 25 ng ml(-1) for copper (II), respectively. The proposed method was applied to the determination of iron(II) and iron(III) in tap water and sea water samples without any interference from other common metal ions.

  14. Electrochemical studies of DNA interaction and antimicrobial activities of MnII, FeIII, CoII and NiII Schiff base tetraazamacrocyclic complexes

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Vashistha, Vinod Kumar; Tevatia, Prashant; Singh, Randhir

    2017-04-01

    Tetraazamacrocyclic complexes of MnII, FeIII, CoII and NiII have been synthesized by template method. These tetraazamacrocycles have been analyzed with various techniques like molar conductance, IR, UV-vis, mass spectral and cyclic voltammetric studies. On the basis of all these studies, octahedral geometry has been assigned to these tetraazamacrocyclic complexes. The DNA binding properties of these macrocyclic complexes have been investigated by electronic absorption spectra, fluorescence spectra, cyclic voltammetric and differential pulse voltammetric studies. The cyclic voltammetric data showed that ipc and ipa were effectively decreased in the presence of calf thymus DNA, which is a strong evidence for the interaction of these macrocyclic complexes with the calf thymus DNA (ct-DNA). The heterogeneous electron transfer rate constant found in the order: KCoII > KNiII > KMnII which indicates that CoII macrocyclic complex has formed a strong intercalated intermediate. The Stern-Volmer quenching constant (KSV) and voltammetric binding constant were found in the order KSV(CoII) > KSV(NiII) > KSV(MnII) and K+(CoII) > K+(NiII) > K+(MnII) which shows that CoII macrocyclic complex exhibits the high interaction affinity towards ct-DNA by the intercalation binding. Biological studies of the macrocyclic complexes compared with the standard drug like Gentamycin, have shown antibacterial activities against E. coli, P. aeruginosa, B. cereus, S. aureus and antifungal activity against C. albicans.

  15. [Angiotensin II receptor antagonists: different or equivalent?].

    PubMed

    Mounier-Vehier, C; Devos, P

    ARA-II: Angiotensin II receptor antagonists (ARA-II) belong to a recent class of antihypertensive drugs whose mechanism of action is similar to converting enzyme inhibitors (CEI). ARA-II are particularly interesting due to the excellent clinical and biological tolerance, similar to placebo, and their antihypertensive efficacy, comparable with classical drug classes. PUBLISHED TRIALS: A meta-analysis, published by Conlin in the American Journal of Hypertension, suggests that ARA-II, specifically losartan, valsartan, irbesartan and candesartan, have an equipotent blood pressure lowering effect. The careful lecture of this meta-analysis however discloses a faulty methodology from which no valid conclusion can be drawn. Since this early publication, several other comparative studies have been published. These multicentric, randomized double-blind studies enrolled a sufficient number of patients and demonstrated a clinical difference between certain ARA-II at usual dosages. CLINICAL PRACTICE: These studies do have an impact on everyday practice. For the practitioner, the goal is to obtain and then maintain a long-term and optimal reduction in the blood pressure level (reduction or prevention of target-organ disorders and cardiovascular complications of high blood pressure). This reduction in the cardiovascular risk will also depend directly on tolerance and compliance to the antihypertensive treatment. This element must also be considered in assessing treatment efficacy, independent of the blood pressure lowering effect. The results of several other studies will be published in 2001-2003. These large-scale studies on ARA-II related morbidity and mortality will be most useful in determining the role of these drugs in different therapeutic strategies compared with other drug classes.

  16. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium.

    PubMed

    Sen Gupta, Susmita; Bhattacharyya, Krishna G

    2008-04-01

    The present study investigates the immobilization of Pb(II), Cd(II) and Ni(II) on clays (kaolinite and montmorillonite) in aqueous medium through the process of adsorption under a set of variables (concentration of metal ion, amount of clay, pH, time and temperature of interaction). Increasing pH favours the removal of metal ions till they are precipitated as the insoluble hydroxides. The uptake is rapid with maximum adsorption being observed within 180 min for Pb(II) and Ni(II) and 240 min for Cd(II). A number of available models like the Lagergren pseudo first-order kinetics, second-order kinetics, Elovich equation, liquid film diffusion and intra-particle diffusion are utilized to evaluate the kinetics and the mechanism of the immobilization interactions. Two isotherm equations due to Langmuir and Freundlich showed good fits with the experimental data. Kaolinite and montmorillonite have considerable Langmuir monolayer capacity with respect to Pb(II), Cd(II) and Ni(II), the values being in the range of 6.8-11.5mg/g (kaolinite) and 21.1-31.1mg/g (montmorillonite). The Freundlich adsorption capacity follows a similar order. The thermodynamics of the immobilization process indicates the same to be exothermic with Pb(II) and Ni(II), but endothermic with Cd(II). The interactions with Pb(II) and Ni(II) are accompanied by decrease in entropy and Gibbs energy while the endothermic immobilization of Cd(II) is supported by an increase in entropy and an appreciable decrease in Gibbs energy. The results have established good potentiality for kaolinite and montmorillonite to remove heavy metals like Pb(II), Cd(II) and Ni(II) from aqueous medium through adsorption-mediated immobilization.

  17. Selective Hg(II) adsorption from aqueous solutions of Hg(II) and Pb(II) by hydrolyzed acrylamide-grafted PET films.

    PubMed

    Rahman, Nazia; Sato, Nobuhiro; Sugiyama, Masaaki; Hidaka, Yoshiki; Okabe, Hirotaka; Hara, Kazuhiro

    2014-01-01

    Selective Hg(II) adsorption from aqueous solutions of Hg(II) and Pb(II) using hydrolyzed acrylamide (AAm)-grafted polyethylene terephthalate (PET) films was examined to explore the potential reuse of waste PET materials. Selective recovery of Hg(II) from a mixture of soft acids with similar structure, such as Hg(II) and Pb(II), is important to allow the reuse of recovered Hg(II). An adsorbent for selective Hg(II) adsorption was prepared by γ-ray-induced grafting of AAm onto PET films followed by partial hydrolysis through KOH treatment. The adsorption capacity of the AAm-grafted PET films for Hg(II) ions increased from 15 to 70 mg/g after partial hydrolysis because of the reduction of hydrogen bonding between -CONH2 groups and the corresponding improved access of metal ions to the amide groups. The prepared adsorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The absorbent film showed high selectivity for the adsorption of Hg(II) over Pb(II) throughout the entire initial metal concentration range (100-500 mg/L) and pH range (2.2-5.6) studied. The high selectivity is attributed to the ability of Hg(II) ions to form covalent bonds with the amide groups. The calculated selectivity coefficient for the adsorbent binding Hg(II) over Pb(II) was 19.2 at pH 4.5 with an initial metal concentration of 100 mg/L. Selective Hg(II) adsorption equilibrium data followed the Langmuir model and kinetic data were well fitted by a pseudo-second-order equation. The adsorbed Hg(II) and Pb(II) ions were effectively desorbed from the adsorbent film by acid treatment, and the regenerated film showed no marked loss of adsorption capacity upon reuse for selective Hg(II) adsorption.

  18. Luminosity function of [O II] emission-line galaxies in the MassiveBlack-II simulation

    NASA Astrophysics Data System (ADS)

    Park, KwangHo; Di Matteo, Tiziana; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu; Khandai, Nishikanta

    2015-11-01

    We examine the luminosity function (LF) of [O II] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [O II] emission line luminosity L([O II]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [O II] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([O II]) = 1043.0 erg s-1 while the low redshifts (z ≤ 0.3) show an excess in the prediction of bright [O II] galaxies, but still displaying a good match with observations below L([O II]) = 1041.6 erg s-1. Based on the validity in reproducing the properties of [O II] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [O II] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from -3 to -2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)-1 at z ≤ 2 while the faint end evolves as ˜3(z + 1)-1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [O III] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. Finally, we show that the auto-correlation function of [O II] and [O III] emitting galaxies shows a rapid evolution from z = 2 to 1.

  19. Synthesis, physico-chemical studies of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes with some p-substituted acetophenone benzoylhydrazones and their antimicrobial activity.

    PubMed

    Singh, Vinod P; Singh, Shweta; Katiyar, Anshu

    2009-04-01

    Complexes of the type [M(pabh)(H2O)Cl], [M(pcbh)(H2O)Cl] and [M(Hpabh)(H2O)2 (SO4)] where, M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpabh = p-amino acetophenone benzoyl hydrazone and Hpcbh = p-chloro acetophenone benzoyl hydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra, thermal (TGA & DTA) and X-ray diffraction studies. Co(II), Ni(II) and Cu(II) chloride complexes are square planar, whereas their sulfate complexes have spin-free octahedral geometry. ESR spectra of Cu(II) complexes with Hpabh are axial and suggest d(x(2)-y(2) as the ground state. The ligand is bidentate bonding through > C = N--and deprotonated enolate group in all the chloro complexes, whereas, >C = N and >C = O groups in all the sulfato complexes. Thermal studies (TGA & DTA) on [Cu(Hpabh)(H2O)2(SO4)] indicate a multistep decomposition pattern, which are both exothermic and endothermic in nature. X-ray powder diffraction parameters for [Co(pabh)(H2O)Cl] and [Ni(Hpabh)(H2O)2(SO4)] correspond to tetragonal and orthorhombic crystal lattices, respectively. The ligands as well as their complexes show a significant antifungal and antibacterial activity. The metal complexes are more active than the ligand.

  20. Dinuclear cadmium(II), zinc(II), and manganese(II), trinuclear nickel(II), and pentanuclear copper(II) complexes with novel macrocyclic and acyclic Schiff-base ligands having enantiopure or racemic camphoric diamine components.

    PubMed

    Jiang, Jue-Chao; Chu, Zhao-Lian; Huang, Wei; Wang, Gang; You, Xiao-Zeng

    2010-07-05

    Four novel [3 + 3] Schiff-base macrocyclic ligands I-IV condensed from 2,6-diformyl-4-substituted phenols (R = CH(3) or Cl) and enantiopure or racemic camphoric diamines have been synthesized and characterized. Metal-ion complexations of these enantiopure and racemic [3 + 3] macrocyclic ligands with different cadmium(II), zinc(II), manganese(II), nickel(II), and copper(II) salts lead to the cleavage of Schiff-base C horizontal lineN double bonds and subsequent ring contraction of the macrocyclic ligands due to the size effects and the spatial restrictions of the coordination geometry of the central metals, the steric hindrance of ligands, and the counterions used. As a result, five [2 + 2] and one [1 + 2] dinuclear cadmium(II) complexes (1-6), two [2 + 2] dinuclear zinc(II) (7 and 8), and two [2 + 2] dinuclear manganese(II) (9 and 10) complexes together with one [1 + 1] trinuclear nickel(II) complex (11) and one [1 + 2] pentanuclear copper(II) complex (12), bearing enantiopure or racemic ligands, different substituent groups in the phenyl rings, and different anionic ligands (Cl(-), Br(-), OAc(-), and SCN(-)), have been obtained in which the chiral carbon atoms in the camphoric backbones are arranged in different ways (RRSS for the enantiopure ligands in 1, 2, 4, 5, and 7-10 and RSRS for the racemic ligands in 3, 6, 11, and 12). The steric hindrance effects of the methyl group bonded to one of the chiral carbon atoms of camphoric diamine units are believed to play important roles in the formation of the acyclic [1 + 1] trinuclear complex 11 and [1 + 2] dinuclear and pentanuclear complexes 6 and 12. In dinuclear cadmium(II), zinc(II), and manganese(II) complexes 1-10, the sequence of separations between the metal centers is consistent with that of the ionic radii shortened from cadmium(II) to manganese(II) to zinc(II) ions. Furthermore, UV-vis, circular dichroism, (1)H NMR, and fluorescence spectra have been used to characterize and compare the structural

  1. Spectroscopic evaluation of Co(II), Ni(II) and Cu(II) complexes derived from thiosemicarbazone and semicarbazone.

    PubMed

    Chandra, Sulekh; Kumar, Anil

    2007-12-31

    Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L(1)) and semicarbazone (L(2)) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L)(2)(SO(4)) and Cu(L)(2)(SO(4)) [where L=L(1) and L(2)] which are of five coordinated square pyramidal geometry.

  2. Heterotrimetallic Ru(II)/Pd(II)/Ru(II) complexes: synthesis, crystalstructure, spectral characterization, DFT calculation and antimicrobial study.

    PubMed

    Al-Noaimi, Mousa; Nafady, Ayman; Warad, Ismail; Alshwafy, Rwaida; Husein, Ahmad; Talib, Wamidh H; Hadda, Taibi Ben

    2014-03-25

    New ruthenium(II) mononuclear complexes of the type [RuCl2(PPh3)2(η(2)-triamine)] (2) [RuCl(PPh3)2(η(3)-triamine)]Cl (5) (triemine=N(1)-(2-aminoethyl)-1,2-ethanediamine) have been synthesized by reacting [RuCl2(PPh3)3] (1) with one mole equivalent of N(1)-(2-aminoethyl)-1,2-ethanediamine in dichloromethane. Reaction of (2) with half-equivalent of (PhCN)2PdCl2 or Pd(OAc)2 in dichloromethane as a solvent afforded two novel heterotrimetallic Ru(II)-Pd(II)-Ru(II) complexes, [Ru(II)Cl2(PPh3)2(triamine)]2[Pd(II)X2](X=Cl, OAc) (3 and 4), bearing bioactive ligand. The progress of the undertaken reactions was monitored by (31)P{1H} NMR and FTIR. Crystal structure of complex 2 was confirmed by X-ray diffraction. The absorption spectrum of 2 in dichloromethane was modeled by time-dependent density functional theory (TD-DFT). The in vitro antimicrobial studies of complex 2-5 against an array of microorganisms (bacteria and fungi) were conducted. Complexes 3 and 4 exhibit high dual antibacterial and antifungal activity inhibiting microorganisms possibly via hydrolytic pathway which further evidenced by electrochemical analyses. The complexes 3 and 4 show a high inhibitory activity at 200 μg/ml concentration, suggesting that complexes 3 and 4 are two efficient catalytic inhibitor of microorganisms and further, they should be tested against cancer strains.

  3. From Ultracompact to Extended H II Regions

    NASA Astrophysics Data System (ADS)

    Garcia-Segura, Guillermo; Franco, Jose

    1996-09-01

    The dynamical evolution of H II regions and wind-driven bubbles in dense clouds is studied. In particular, we address two different issues: (1) the conditions under which ultracompact H II (UCHII) regions can reach pressure equilibrium with their surrounding medium (and thereby stall their expansion) and (2) the appearance of a powerful dynamic instability in expanding H II regions. At pressure equilibrium, the ionized regions become static, and as long as the ionization sources and the ambient gas densities remain about constant, the resulting UCHII regions are stable and long-lived. The equilibrium sizes and densities, Rs,eq ˜3 X 10-2F⅓48T⅔H II, 4P-⅔7 pc and ni,eq ˜4 × 104P7T-1H II, 4 cm-3 (where Fβ8 is the photoionizing flux in units of 1048 s-11, P7 is the pressure in units of 10-7 dyne cm-2, and TH II,4 is the ion temperature in units of 104 K), are similar to those actually observed in UCHII regions. Similarly, ultra- compact wind-driven bubbles can reach pressure equilibrium, and the resulting final sizes are similar to those of UCHII'S. The same is true for a combined ultracompact structure consisting of an interior wind- driven cavity and an external H II region. For nonmoving stars in a constant-density medium, the lifetimes for all types of ultracompact objects only depend on the stellar lifetimes. For cases with a density gradient, depending on the core size and slope of the density distribution, some regions never reach the static equilibrium condition. A powerful dynamic instability appears when cooling is included in the neutral gas swept up by an H II region or a combined wind-H II region structure. This instability was first studied by Giuliani and is associated with the thin-shell instability described by Vishniac. The internal ionization front exacerbates the growth of the thin-shell instability, creating a rapid shell fragmentation, and our numerical simulations confirm the linear analysis of Giuliani. The fragments tend to merge as

  4. 20 CFR 226.32 - Spouse tier II.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Spouse tier II. 226.32 Section 226.32... Spouse tier II. The spouse tier II benefit is computed as follows: (a) The employee's tier II amount as... before reduction for the railroad retirement family maximum, is multiplied by 45 percent. The spouse...

  5. 20 CFR 226.32 - Spouse tier II.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Spouse tier II. 226.32 Section 226.32... Spouse tier II. The spouse tier II benefit is computed as follows: (a) The employee's tier II amount as... before reduction for the railroad retirement family maximum, is multiplied by 45 percent. The spouse...

  6. 20 CFR 226.32 - Spouse tier II.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Spouse tier II. 226.32 Section 226.32... Spouse tier II. The spouse tier II benefit is computed as follows: (a) The employee's tier II amount as... before reduction for the railroad retirement family maximum, is multiplied by 45 percent. The spouse...

  7. 20 CFR 226.32 - Spouse tier II.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Spouse tier II. 226.32 Section 226.32... Spouse tier II. The spouse tier II benefit is computed as follows: (a) The employee's tier II amount as... before reduction for the railroad retirement family maximum, is multiplied by 45 percent. The spouse...

  8. 20 CFR 226.32 - Spouse tier II.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Spouse tier II. 226.32 Section 226.32... Spouse tier II. The spouse tier II benefit is computed as follows: (a) The employee's tier II amount as... before reduction for the railroad retirement family maximum, is multiplied by 45 percent. The spouse...

  9. 10 CFR Appendix II to Part 504 - Fuel Price Computation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... equations II-1 and II-2. This table contains annual fuel price indices for distillate oil, residual oil... i = MPB where: FPB i = Price of the proposed fuel (distillate oil, residual oil, or natural gas) in... 10 Energy 4 2014-01-01 2014-01-01 false Fuel Price Computation II Appendix II to Part 504...

  10. 10 CFR Appendix II to Part 504 - Fuel Price Computation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Fuel Price Computation II Appendix II to Part 504 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS Pt. 504, App. II Appendix II to Part 504—Fuel Price Computation (a) Introduction. This appendix provides the equations and...

  11. 10 CFR Appendix II to Part 504 - Fuel Price Computation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Fuel Price Computation II Appendix II to Part 504 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS Pt. 504, App. II Appendix II to Part 504—Fuel Price Computation (a) Introduction. This appendix provides the equations and...

  12. 10 CFR Appendix II to Part 504 - Fuel Price Computation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Fuel Price Computation II Appendix II to Part 504 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS Pt. 504, App. II Appendix II to Part... example fuel price and inflation indices based on the latest data appearing in the Energy...

  13. Stenogyria - not only in Chiari II malformation.

    PubMed

    Bekiesinska-Figatowska, Monika; Duczkowska, Agnieszka; Brągoszewska, Hanna; Duczkowski, Marek; Mierzewska, Hanna

    2014-12-15

    Stenogyria, meaning multiple small compacted gyri separated by shallow sulci, is reported in the literature in association with Chiari II malformation (CM II) which in turn is reported in association with myelomeningocele (MMC). The authors present five cases of stenogyria (and other abnormalities found in CM II, like callosal hypoplasia/dysplasia, agenesis of the anterior commissure, hypoplasia of the falx cerebri) in children without the history of MMC or any other form of open spinal dysraphism. In these cases stenogyria was associated with Chiari I malformation, rhombencephalosynapsis and spina bifida. Stenogyria, which is not a true neuronal migration disorder, should not be mistaken for polymicrogyria which is also present in CM II. It is histologically different from polymicrogyria because the cortex is normally organized. Also on MRI, the general sulcal pattern is preserved in stenogyria, while it is completely distorted in polymicrogyria. The authors conclude that features traditionally attributed to CM II, like stenogyria, occur not only in the population of patients with MMC as opposed to the widely accepted theory.

  14. THE ARECIBO H II REGION DISCOVERY SURVEY

    SciTech Connect

    Bania, T. M.; Anderson, L. D.; Balser, Dana S.

    2012-11-10

    We report the detection of radio recombination line (RRL) emission using the Arecibo Observatory at X band (9 GHz, 3 cm) from 37 previously unknown H II regions in the Galactic zone 66 Degree-Sign {>=} l {>=} 31 Degree-Sign and | b | {<=} 1 Degree-Sign . This Arecibo H II Region Discovery Survey (Arecibo HRDS) is a continuation of the Green Bank Telescope (GBT) HRDS. The targets for the Arecibo HRDS have spatially coincident 24 {mu}m and 20 cm emission of a similar angular morphology and extent. To take advantage of Arecibo's sensitivity and small beam size, sources in this sample are fainter, smaller in angle, or in more crowded fields compared to those of the GBT HRDS. These Arecibo nebulae are some of the faintest H II regions ever detected in RRL emission. Our detection rate is 58%, which is low compared to the 95% detection rate for GBT HRDS targets. We derive kinematic distances to 23 of the Arecibo HRDS detections. Four nebulae have negative local standard of rest velocities and are thus unambiguously in the outer Galaxy. The remaining sources are at the tangent-point distance or farther. We identify a large, diffuse H II region complex that has an associated H I and {sup 13}CO shell. The {approx}90 pc diameter of the G52L nebula in this complex may be the largest Galactic H II region known, and yet it has escaped previous detection.

  15. Star formation in H II galaxies

    NASA Astrophysics Data System (ADS)

    Torres-Campos, A.; Díaz, A. I.; Terlevich, E.; Rosa-González, D.; Telles, E.; Terlevich, R.

    2013-05-01

    H II galaxies integrated properties have been widely studied. However, little is known about the individual H II regions and their photoionizing stellar clusters. To broaden our knowledge on star formation in low mass star-forming galaxies (like H II galaxies) it is necessary to answer questions like: How does the star formation distributes along the galaxy? Is it possible for them to form super stellar clusters? How does the star formation history on them looks like? To answer those questions the goal of this thesis work is to map (at tens of parsecs resolution) the recent star formation in six H II galaxies with extremely young star-forming bursts (Rosa-González et al. 2007, ApJ, 654, 226). The preliminary results obtained have allowed us to develop a catalog of H II regions (identified for the first time) in these galaxies and the characterization of the young stellar clusters responsible for their photoionization using POPSTAR (Mollá, García-Vargas, & Bressan 2009, MNRAS, 398, 451) stellar populations models.

  16. Photosystem II: the engine of life.

    PubMed

    Barber, James

    2003-02-01

    Photosystem II (PS II) is a multisubunit membrane protein complex, which uses light energy to oxidize water and reduce plastoquinone. High-resolution electron cryomicroscopy and X-ray crystallography are revealing the structure of this important molecular machine. Both approaches have contributed to our understanding of the organization of the transmembrane helices of higher plant and cyanobacterial PS II and both indicate that PS II normally functions as a dimer. However the high-resolution electron density maps derived from X-ray crystallography currently at 3.7/3.8 A, have allowed assignments to be made to the redox active cofactors involved in the light-driven water-plastoquinone oxidoreductase activity and to the chlorophyll molecules that absorb and transfer energy to the reaction centre. In particular the X-ray work has identified density that can accommodate the four manganese atoms which catalyse the water-oxidation process. The Mn cluster is located at the lumenal surface of the DI protein and approximately 7 A from the redox active tyrosine residue (YZ) which acts an electron/proton transfer link to the primary oxidant P680.+. The lower resolution electron microscopy studies, however, are providing structural models of larger PS II supercomplexes that are ideal frameworks in which to incorporate the X-ray derived structures.

  17. COSMIC DUST IN Mg II ABSORBERS

    SciTech Connect

    Menard, Brice; Fukugita, Masataka

    2012-08-01

    Mg II absorbers induce reddening on background quasars. We measure this effect and infer the cosmic density of dust residing in these systems to be {Omega} Almost-Equal-To 2 Multiplication-Sign 10{sup -6}, in units of the critical density of the universe, which is comparable to the amount of dust found in galactic disks or about half the amount inferred to exist outside galaxies. We also estimate the neutral hydrogen abundance in Mg II clouds to be {Omega} Almost-Equal-To 1.5 Multiplication-Sign 10{sup -4}, which is approximately 5% of hydrogen in stars in galaxies. This implies a dust-to-gas mass ratio for Mg II clouds of about 1/100, which is similar to the value for normal galaxies. This would support the hypothesis of the outflow origin of Mg II clouds, which are intrinsically devoid of stars and hence have no sources of dust. Considerations of the dust abundance imply that the presence of Mg II absorbers around galaxies lasts effectively for a few Gyr. High-redshift absorbers allow us to measure the rest-frame extinction curve to 900 A, at which the absorption by the Lyman edge dominates over scattering by dust in the extinction opacity.

  18. Mesospheric ozone measurements by SAGE II

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Cunnold, D. M.

    1994-01-01

    SAGE II observations of ozone at sunrise and sunset (solar zenith angle = 90 deg) at approximately the same tropical latitude and on the same day exhibit larger concentrations at sunrise than at sunset between 55 and 65 km. Because of the rapid conversion between atomic oxygen and ozone, the onion-peeling scheme used in SAGE II retrievals, which is based on an assumption of constant ozone, is invalid. A one-dimensional photochemical model is used to simulate the diurnal variation of ozone particularly within the solar zenith angle of 80 deg - 100 deg. This model indicates that the retrieved SAGE II sunrise and sunset ozone values are both overestimated. The Chapman reactions produce an adequate simulation of the ozone sunrise/sunset ratio only below 60 km, while above 60 km this ratio is highly affected by the odd oxygen loss due to odd hydrogen reactions, particularly OH. The SAGE II ozone measurements are in excellent agreement with model results to which an onion peeling procedure is applied. The SAGE II ozone observations provide information on the mesospheric chemistry not only through the ozone profile averages but also from the sunrise/sunset ratio.

  19. Belle-II Experiment Network Requirements

    SciTech Connect

    Asner, David; Bell, Greg; Carlson, Tim; Cowley, David; Dart, Eli; Erwin, Brock; Godang, Romulus; Hara, Takanori; Johnson, Jerry; Johnson, Ron; Johnston, Bill; Dam, Kerstin Kleese-van; Kaneko, Toshiaki; Kubota, Yoshihiro; Kuhr, Thomas; McCoy, John; Miyake, Hideki; Monga, Inder; Nakamura, Motonori; Piilonen, Leo; Pordes, Ruth; Ray, Douglas; Russell, Richard; Schram, Malachi; Schroeder, Jim; Sevior, Martin; Singh, Surya; Suzuki, Soh; Sasaki, Takashi; Williams, Jim

    2013-05-28

    The Belle experiment, part of a broad-based search for new physics, is a collaboration of ~400 physicists from 55 institutions across four continents. The Belle detector is located at the KEKB accelerator in Tsukuba, Japan. The Belle detector was operated at the asymmetric electron-positron collider KEKB from 1999-2010. The detector accumulated more than 1 ab-1 of integrated luminosity, corresponding to more than 2 PB of data near 10 GeV center-of-mass energy. Recently, KEK has initiated a $400 million accelerator upgrade to be called SuperKEKB, designed to produce instantaneous and integrated luminosity two orders of magnitude greater than KEKB. The new international collaboration at SuperKEKB is called Belle II. The first data from Belle II/SuperKEKB is expected in 2015. In October 2012, senior members of the Belle-II collaboration gathered at PNNL to discuss the computing and neworking requirements of the Belle-II experiment with ESnet staff and other computing and networking experts. The day-and-a-half-long workshop characterized the instruments and facilities used in the experiment, the process of science for Belle-II, and the computing and networking equipment and configuration requirements to realize the full scientific potential of the collaboration's work.

  20. Centrifuge workers study. Phase II, completion report

    SciTech Connect

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  1. PIP-II Status and Strategy

    SciTech Connect

    Holmes, Stephen; Derwent, Paul; Lebedev, Valeri; Mishra, Shekhar; Mitchell, Donald; Yakovlev, Vyacheslav P.

    2015-06-01

    Proton Improvement Plan-II (PIP-II) is the centerpiece of Fermilab's plan for upgrading the accelerator complex to establish the leading facility in the world for particle physics research based on intense proton beams. PIP-II has been developed to provide 1.2 MW of proton beam power at the start of operations of the Long Baseline Neutrino Facility (LBNF), while simultaneously providing a platform for eventual extension of LBNE beam power to >2MW and enabling future initiatives in rare processes research based on high duty factor/higher beam power operations. PIP-II is based on the construction of a new 800 MeV superconducting linac, augmented by improvements to the existing Booster, Recycler, and Main Injector complex. PIP-II is currently in the development stage with an R&D program underway targeting the front end and superconducting RF acceleration technologies. This paper will describe the status of the PIPII conceptual development, the associated technology R&D programs, and the strategy for project implementation.

  2. Summary of CPAS Gen II Parachute Analysis

    NASA Technical Reports Server (NTRS)

    Morris, Aaron L.; Bledsoe, Kristin J.; Fraire, Usbaldo, Jr.; Moore, James W.; Olson, Leah M.; Ray, Eric

    2011-01-01

    The Orion spacecraft is currently under development by NASA and Lockheed Martin. Like Apollo, Orion will use a series of parachutes to slow its descent and splashdown safely. The Orion parachute system, known as the CEV Parachute Assembly System (CPAS), is being designed by NASA, the Engineering and Science Contract Group (ESCG), and Airborne Systems. The first generation (Gen I) of CPAS testing consisted of thirteen tests and was executed in the 2007-2008 timeframe. The Gen I tests provided an initial understanding of the CPAS parachutes. Knowledge gained from Gen I testing was used to plan the second generation of testing (Gen II). Gen II consisted of six tests: three singleparachute tests, designated as Main Development Tests, and three Cluster Development Tests. Gen II required a more thorough investigation into parachute performance than Gen I. Higher fidelity instrumentation, enhanced analysis methods and tools, and advanced test techniques were developed. The results of the Gen II test series are being incorporated into the CPAS design. Further testing and refinement of the design and model of parachute performance will occur during the upcoming third generation of testing (Gen III). This paper will provide an overview of the developments in CPAS analysis following the end of Gen I, including descriptions of new tools and techniques as well as overviews of the Gen II tests.

  3. 30 CFR Appendix II to Subpart D of... - Appendix II to Subpart D of Part 18

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ACCESSORIES Machines Assembled With Certified or Explosion-Proof Components, Field Modifications of Approved Machines, and Permits To Use Experimental Equipment Pt. 18, Subpt. D, App. II Appendix II to Subpart D of Part 18 LIST OF FIGURES Figure No. Title 1 Typical layout drawing of a machine. 2 Sample bill...

  4. Trident II (D-5) Sea Launched Ballistic Missile UGM 133A (Trident II Missile)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-178 Trident II (D-5) Sea-Launched Ballistic Missile UGM 133A (Trident II Missile) As of FY...Executive Officer PM - Program Manager POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition

  5. Synthesis, characterization, and photoactivated DNA cleavage by copper (II)/cobalt (II) mediated macrocyclic complexes.

    PubMed

    Naik, H R Prakash; Naik, H S Bhojya; Aravinda, T; Lamani, D S

    2010-01-01

    We report the synthesis of new photonuclease consisting of two Co(II)/Cu(II) complexes of macrocyclic fused quinoline. Metal complexes are [MLX(2)], type where M = Co(II) (5), Cu(II) (6), and X = Cl, and are well characterized by elemental analysis, Fourier transform infrared spectroscopy, (1)H-NMR and electronic spectra. We have shown that photocleavage of plasmid DNA is markedly enhanced when this ligand is irradiated in the presence of Cu(II), and more so than that of cobalt. The chemistry of ternary and binary Co(II) complexes showing efficient light induced (360 nm) DNA cleavage activity is summarized. The role of the metal in photoinduced DNA cleavage reactions is explored by designing complex molecules having macrocyclic structure. The mechanistic pathways are found to be concentration dependent on Co(II)/Cu(II) complexes and the photoexcitation energy photoredox chemistry. Highly effective DNA cleavage ability of 6 is attributed to the effective cooperation of the metal moiety.

  6. On Cu(II) Cu(II) distance measurements using pulsed electron electron double resonance

    NASA Astrophysics Data System (ADS)

    Yang, Zhongyu; Becker, James; Saxena, Sunil

    2007-10-01

    The effects of orientational selectivity on the 4-pulse electron electron double resonance (PELDOR) ESR spectra of coupled Cu(II)-Cu(II) spins are presented. The data were collected at four magnetic fields on a poly-proline peptide containing two Cu(II) centers. The Cu(II)-PELDOR spectra of this peptide do not change appreciably with magnetic field at X-band. The data were analyzed by adapting the theory of Maryasov, Tsvetkov, and Raap [A.G. Maryasov, Y.D. Tsvetkov, J. Raap, Weakly coupled radical pairs in solids:ELDOR in ESE structure studies, Appl. Magn. Reson. 14 (1998) 101-113]. Simulations indicate that orientational effects are important for Cu(II)-PELDOR. Based on simulations, the field-independence of the PELDOR data for this peptide is likely due to two effects. First, for this peptide, the Cu(II) g-tensor(s) are in a very specific orientation with respect to the interspin vector. Second, the flexibility of the peptide washes out the orientation effects. These effects reduce the suitability of the poly-proline based peptide as a good model system to experimentally probe orientational effects in such experiments. An average Cu(II)-Cu(II) distance of 2.1-2.2 nm was determined, which is consistent with earlier double quantum coherence ESR results.

  7. Nickel(II) and copper(II) complexes with humic acid anions and their derivatives

    SciTech Connect

    Ryabova, I.N.

    2008-01-15

    Complexation of Ni(II) and Cu(II) in aqueous solutions with anions of humic acids, extracted from naturally oxidized coal, and with their hydroxymethyl derivatives is studied spectrophotometrically and potentiometrically. The complexation stoichiometry and the stability constants of the complexes are determined.

  8. 30 CFR Appendix II to Subpart D of... - Appendix II to Subpart D of Part 18

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ACCESSORIES Machines Assembled With Certified or Explosion-Proof Components, Field Modifications of Approved Machines, and Permits To Use Experimental Equipment Pt. 18, Subpt. D, App. II Appendix II to Subpart D of Part 18 LIST OF FIGURES Figure No. Title 1 Typical layout drawing of a machine. 2 Sample bill...

  9. The vibrational spectra of the Ni(II) and Cu(II) complexes with oxamic hydrazide

    NASA Astrophysics Data System (ADS)

    Quaeyhaegens, Frank; Hofmans, Hendrik; Desseyn, H. O.

    The infrared-, Raman- and u.v./vis spectra as well as the thermal analysis ofthe Ni(II)and Cu(II) complexes with oxamic hydrazide (H 2NCOCONHNH 2) are discussed. We assume 2/1 planar complexes and a coordination via the four amide nitrogen atoms as visualised in Fig. 1.

  10. Employability Planning Process. STIP II (Skill Training Improvement Programs Round II).

    ERIC Educational Resources Information Center

    Los Angeles Community Coll. District, CA.

    Four reports are presented detailing procedures for improving the employability of students enrolled in the Los Angeles Community College District's Skill Training Improvement Programs (STIP II). Each report was submitted by one of the four STIP II programs: Los Angeles Southwest College's program for computer programming; the programs for…

  11. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study.

    PubMed

    Vimala, R; Das, Nilanjana

    2009-08-30

    Sorption capacity of oyster mushroom (Pleurotus platypus), button mushroom (Agaricus bisporus) and milky mushroom (Calocybe indica) were evaluated on biosorption of heavy metals, viz. cadmium (II) and lead (II) from aqueous solutions. The optimum sorption conditions were studied for each metal separately. The desired pH of the aqueous solution was found to be 6.0 for the removal of cadmium (II) and 5.0 for removal of lead (II) for all the mushrooms. The percent removal of both the metals was found to increase with the increase in biosorbent dosage and contact time. The fitness of the biosorption data for Langmuir and Freundlich adsorption models was investigated. It was found that biosorption of cadmium (II) and lead (II) ions onto the biomass of the three mushrooms were better suitable to Langmuir than Freundlich adsorption model. P. platypus showed the highest metal uptake potential for cadmium (q(max) 34.96 mg/g) whereas A. bisporus exhibited maximum potential for lead (q(max) 33.78 mg/g). Milky mushroom showed the lowest metal uptake capacity for both the metals. The present data confirms that mushrooms may be used as efficient biosorbent for the removal of cadmium (II) and lead (II) ions from aqueous solution.

  12. Type II achondrogenesis-hypochondrogenesis: identification of abnormal type II collagen.

    PubMed

    Godfrey, M; Hollister, D W

    1988-12-01

    We have extended the study of a mild case of type II achondrogenesis-hypochondrogenesis to include biochemical analyses of cartilage, bone, and the collagens produced by dermal fibroblasts. Type I collagen extracted from bone and types I and III collagen produced by dermal fibroblasts were normal, as was the hexosamine ratio of cartilage proteoglycans. Hyaline cartilage, however, contained approximately equal amounts of types I and II collagen and decreased amounts of type XI collagen. Unlike the normal SDS-PAGE mobility. Two-dimensional SDS-PAGE revealed extensive overmodification of all type II cyanogen bromide peptides in a pattern consistent with heterozygosity for an abnormal pro alpha 1(II) chain which impaired the assembly and/or folding of type II collagen. This interpretation implies that dominant mutations of the COL2A1 gene may cause type II achondrogenesis-hypochondrogenesis. More generally, emerging data implicating defects of type II collagen in the type II achondrogenesis-hypochondrogenesis-spondyloepiphyseal dysplasia congenita spectrum and in the Kniest-Stickler syndrome spectrum suggest that diverse mutations of this gene may be associated with widely differing phenotypic outcome.

  13. Better prognostic marker in ICU - APACHE II, SOFA or SAP II!

    PubMed Central

    Naqvi, Iftikhar Haider; Mahmood, Khalid; Ziaullaha, Syed; Kashif, Syed Mohammad; Sharif, Asim

    2016-01-01

    Objectives: This study was designed to determine the comparative efficacy of different scoring system in assessing the prognosis of critically ill patients. Methods: This was a retrospective study conducted in medical intensive care unit (MICU) and high dependency unit (HDU) Medical Unit III, Civil Hospital, from April 2012 to August 2012. All patients over age 16 years old who have fulfilled the criteria for MICU admission were included. Predictive mortality of APACHE II, SAP II and SOFA were calculated. Calibration and discrimination were used for validity of each scoring model. Results: A total of 96 patients with equal gender distribution were enrolled. The average APACHE II score in non-survivors (27.97+8.53) was higher than survivors (15.82+8.79) with statistically significant p value (<0.001). The average SOFA score in non-survivors (9.68+4.88) was higher than survivors (5.63+3.63) with statistically significant p value (<0.001). SAP II average score in non-survivors (53.71+19.05) was higher than survivors (30.18+16.24) with statistically significant p value (<0.001). Conclusion: All three tested scoring models (APACHE II, SAP II and SOFA) would be accurate enough for a general description of our ICU patients. APACHE II has showed better calibration and discrimination power than SAP II and SOFA. PMID:27882011

  14. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    SciTech Connect

    2010-12-17

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  15. Light scattering of human skin: a comparison between zinc (II)-phthalocyanine and photofrin II.

    PubMed

    Ochsner, M

    1996-01-01

    Zinc(II)-phthalocyanine is the active component of the liposomal formulation CGP 55847 which showed a highly activity in photodynamic therapy studies on a variety of animal tumours (K. Schieweck et al., SPIE Conf. Proc., 2078 (1994) 107-118). The photophysical properties of zinc(II)-phthalocyanine have been studied in detail and compared with those of Photofrin II(R), the only sensitizing agent approved so far for Phase III and IV clinical trials (M. Ochsner-Bruderer, Inaugural Dissertation, University of Basle, 1994). As will be shown in a series of papers, the main photophysical properties of zinc(II)-phthalocyanine are significantly better than those of Photofrin II(R) (M. Ochsner-Bruderer, Inaugural Dissertation, University of Basle, 1994). In this paper we especially consider the effect of the absorption wavelength on the penetration of light into the human skin. The results clearly show that the longer absorption wavelength of zinc(II)-phthalocyanine causes a deeper penetration of light into the human skin as compared with Photofrin II(R). In addition to this, the higher extinction coefficient (epsilon S) lowers the zinc(II)-phthalocyanine dose required to induce a tumour necrosis.

  16. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    ScienceCinema

    None

    2016-07-12

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  17. Synthesis, characterization and cyclic voltammetric study of copper(II) and nickel(II) polymer chelates.

    PubMed

    Azmeera, Venkanna; Rastogi, Pankaj Kumar; Adhikary, Pubali; Ganesan, Vellaichamy; Krishnamoorthi, S

    2014-09-22

    Graft copolymers based on dextran (Dx) and 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS) were synthesized by free radical initiated solution polymerization technique using ceric ammonium nitrate as initiator. These graft copolymers were used to prepare Cu(II) and Ni(II) chelates by reactions with Cu(II) and Ni(II) metal ions respectively. Graft copolymer and metal chelates were characterized by elemental analysis, intrinsic viscosity, FT-IR, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and powder X-ray diffraction (XRD). Elemental analysis, intrinsic viscosity and FT-IR studies revealed the incorporation of metal ions to form metal chelates. SEM studies showed the change in morphology due to metal incorporation. From AFM studies it was observed that there was increase in Root mean square (RMS) roughness values in case of metal complexes. Metal chelates were observed to be thermally more stable than graft copolymer from TGA. UV-vis spectroscopy study revealed increase in absorbance values and cyclic voltammetric (CV) studies showed more than tenfold increase in redox current due to formation of Cu(II) and Ni(II) metal chelates. The binding constants of each complex determined by using UV-visible spectroscopy revealed that Cu(II) has more binding ability than Ni(II).

  18. Type II supernovae as probes of environment metallicity: observations of host H II regions

    NASA Astrophysics Data System (ADS)

    Anderson, J. P.; Gutiérrez, C. P.; Dessart, L.; Hamuy, M.; Galbany, L.; Morrell, N. I.; Stritzinger, M. D.; Phillips, M. M.; Folatelli, G.; Boffin, H. M. J.; de Jaeger, T.; Kuncarayakti, H.; Prieto, J. L.

    2016-05-01

    Context. Spectral modelling of type II supernova atmospheres indicates a clear dependence of metal line strengths on progenitor metallicity. This dependence motivates further work to evaluate the accuracy with which these supernovae can be used as environment metallicity indicators. Aims: To assess this accuracy we present a sample of type II supernova host H ii-region spectroscopy, from which environment oxygen abundances have been derived. These environment abundances are compared to the observed strength of metal lines in supernova spectra. Methods: Combining our sample with measurements from the literature, we present oxygen abundances of 119 host H ii regions by extracting emission line fluxes and using abundance diagnostics. These abundances are then compared to equivalent widths of Fe ii 5018 Å at various time and colour epochs. Results: Our distribution of inferred type II supernova host H ii-region abundances has a range of ~0.6 dex. We confirm the dearth of type II supernovae exploding at metallicities lower than those found (on average) in the Large Magellanic Cloud. The equivalent width of Fe ii 5018 Å at 50 days post-explosion shows a statistically significant correlation with host H ii-region oxygen abundance. The strength of this correlation increases if one excludes abundance measurements derived far from supernova explosion sites. The correlation significance also increases if we only analyse a "gold" IIP sample, and if a colour epoch is used in place of time. In addition, no evidence is found of a correlation between progenitor metallicity and supernova light-curve or spectral properties - except for that stated above with respect to Fe ii 5018 Å equivalent widths - suggesting progenitor metallicity is not a driving factor in producing the diversity that is observed in our sample. Conclusions: This study provides observational evidence of the usefulness of type II supernovae as metallicity indicators. We finish with a discussion of the

  19. Morphological Properties of Slender Ca ii H Fibrils Observed by Sunrise II

    NASA Astrophysics Data System (ADS)

    Gafeira, R.; Lagg, A.; Solanki, S. K.; Jafarzadeh, S.; van Noort, M.; Barthol, P.; Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Knölker, M.; Orozco Suárez, D.; Riethmüller, T. L.; Schmidt, W.

    2017-03-01

    We use seeing-free high spatial resolution Ca ii H data obtained by the Sunrise observatory to determine properties of slender fibrils in the lower solar chromosphere. In this work we use intensity images taken with the SuFI instrument in the Ca ii H line during the second scientific flight of the Sunrise observatory to identify and track elongated bright structures. After identification, we analyze theses structures to extract their morphological properties. We identify 598 slender Ca ii H fibrils (SCFs) with an average width of around 180 km, length between 500 and 4000 km, average lifetime of ≈400 s, and average curvature of 0.002 arcsec‑1. The maximum lifetime of the SCFs within our time series of 57 minutes is ≈2000 s. We discuss similarities and differences of the SCFs with other small-scale, chromospheric structures such as spicules of type I and II, or Ca ii K fibrils.

  20. [Anti Shiga-like toxin II(SLT-II) humanized monoclonal antibody].

    PubMed

    Matsumoto, Yoh-ichi

    2002-03-01

    Anti-Shiga-Like Toxin II(SLT-II) Humanized Monoclonal Antibody(TMA-15) was constructed from Mouse Monoclonal Antibody(MuVTm1.1) recognizing the same antigen using recombinant and CDR grafting technology. TMA-15 had almost the same affinity to SLT-II as MuVTm1.1 and showed the good protective activity of mice challenged either with SLT-II or with SLT-II secreting Shiga-like Toxin producing E. coli(STEC). TMA-15 showed no acute toxicity to monkeys and no cross-reactivity to human tissues in pre-clinical safety studies. From the preliminary results of Phase 1 clinical trial using healthy adult volunteers, doses up to planned maximum dose were well tolerated and TMA-15 showed long half life in blood almost comparable to gamma globulin preparations. Therefore, TMA-15 is expected to show clinical efficacy in coming clinical trial using pediatric STEC patients.

  1. Validation of the Sexual Assault Symptom Scale II (SASS II) using a panel research design.

    PubMed

    Ruch, Libby O; Wang, Chang-Hwai

    2006-11-01

    To examine the utility of a self-report scale of sexual assault trauma, 223 female victims were interviewed with the 43-item Sexual Assault Symptom Scale II (SASS II) at 1, 3, 7, 11, and 15 months postassault. Factor analyses using principal-components extraction with an oblimin rotation yielded 7 common factors with 31 items. The internal consistency was high for 4 factors and moderate for 2 factors. The multitrait-multimethod matrix, correlating the factor subscale scores of self-reported trauma and clinical assessment ratings, demonstrated both convergent and discriminant validity, indicating that the SASS II has construct validity. Correlations between the SASS II subscales and the intrusion subscale of the Impact of Events Scale also indicated the convergent and discriminant validity of the SASS II. Significant positive correlations between current and prior trauma levels further evidence the validity of the SASS.

  2. XAFS studies of Pb(II)-chloro and Hg(II)-chloro ternary complexes on goethite

    USGS Publications Warehouse

    Bargar, J.R.; Persson, Petra; Brown, Gordon E.

    1997-01-01

    EXAFS spectroscopy was used to study Pb(II) and Hg(II) adsorption complexes on goethite (??-FeOOH) in the presence of Cl-. At pH 7, the dominant Pb(II) species are bonded to edges of FeO6 octahedra and are similar to complexes that occur in the absence of Cl-. At pH ??? 6, Pb(II)-chloro ternary complexes predominate and are bonded to corners of FeO6 octahedra. At pH 6.5, linear Hg(OH)Cl ternary complexes predominate that are bonded to goethite through surface oxygens in a bent Hg-O-Fe geometry. In the absence of Cl-, the Hg(II) surface complexes retain this basic geometry, but an OH group replaces the chloride ion in the first coordination shell.

  3. Spectroscopic and thermal degradation behavior of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes with thiopental sodium anesthesia drug

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2013-04-01

    A new series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized with thiopental sodium anesthesia drug. The elemental analyses of the complexes are confined to stoichiometry of the formulas [M(TPL)3]ṡnH2O (M = Cr(III) or Fe(III); n = 6 or 5), [M(TPL)2(H2O)2]ṡnH2O (M = Mn(II), Co(II) or Ni(II); n = 0 or 4), and [M(TPL)2] (M = Cu(II) or Zn(II); n = 2 or 0) respectively, where TPL is thiopental chelating agent. Structures have been discussed and suggested upon elemental analyses, infrared, Raman, electronic, electron spin resonance, 1H NMR spectral data and magnetic studies. The X-ray powder diffraction (XRD) was performed of metal complexes. The XRD patterns indicate crystalline nature for the complexes. The measured low molar conductance values in dimethylsulfoxide indicate that the complexes are non-electrolyte nature. Spectroscopic discussion refer that coordination take place through three types: Cdbnd N (pyrimidine moiety) nitrogen and C2sbnd S (2-thiolate group) for Cr(III), Mn(II) and Fe(III), C6dbnd O (amido group) oxygen and C2sbnd S (2-thiolate group) for Co(II) and Ni(II), and Cu(II) and Zn(II) ions coordinated via Cdbnd N (pyrimidine moiety) nitrogen, C2dbnd S (2-thiolate group) and C6dbnd O (amido group) oxygen, respectively. The thermal behavior (TG/DTG/DTA) of the complexes was studied and kinetic parameters were determined by Horowitz-Metzger and Coats-Redfern methods. The thiopental and its complexes have been screened for their antimicrobial (G+ and G-) bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa) and fungi (Aspergillus flavus and Candida albicans) activities by minimum inhibitory concentration (MIC) method.

  4. ORION II bus demonstration. Demonstration report (Final)

    SciTech Connect

    Shanley, J.

    1989-02-01

    The Central New York Regional Transportation Authority conducted an 18-month demonstration to determine how the ORION II bus operates in actual service. The ORION II vehicle is a small low floor, accessible heavy duty, diesel-powered transit bus designed to meet the needs of the elderly and handicapped. It has the capacity to seat 26 passengers with 4 wheelchair lockdowns. Side and rear doors are equipped with electrically powered ramps. Eight Thomas vehicles (22-foot, 11,500 lbs, wheelchair equipped, gasoline fueled) were also tested during the demonstration period. Operations (fuel and oil usage) and maintenance (scheduled and unscheduled) data were collected and charted-out in the report as well as driver, passenger, and maintenance surveys. This report provides descriptions, photographs, and comparison charts of both the diesel-fueled ORION II transit bus and the gasoline-fueled Thomas vehicles along with the demonstration test plan, evaluations, conclusions, and survey results.

  5. SHIELD II: WSRT HI Spectral Line Observations

    NASA Astrophysics Data System (ADS)

    Gordon, Alex Jonah Robert; Cannon, John M.; Adams, Elizabeth A.; SHIELD II Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs II" ("SHIELD II") is a multiwavelength, legacy-class observational campaign that is facilitating the study of both internal and global evolutionary processes in low-mass dwarf galaxies discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We present new results from WSRT HI spectral line observations of 22 galaxies in the SHIELD II sample. We explore the morphology and kinematics by comparing images of the HI surface densities and the intensity weighted velocity fields with optical images from HST, SDSS, and WIYN. In most cases the HI and stellar populations are cospatial; projected rotation velocities range from less than 10 km/s to roughly 30 km/s.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College, and by NASA through grant GO-13750 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  6. TRUPACT-II residue pipe payload container

    SciTech Connect

    Geinitz, R.; Gregory, P.

    1995-06-01

    This paper summarizes the project to develop, test and certify a new payload container for the TRUPACT-II, a Type B packaging for the shipment of transuranic waste. The new payload container will provide segregation of plutonium waste materials within the TRUPACT-II. This segregation of fissile contents will support a new criticality safety analysis that may allow an increase in the TRUPACT-II Pu-239 Fissile Gram Equivalent (FGE) limit from 325 grams to 2800 grams. The need for this project was brought about by the end of the Cold War and the resulting shift in value of plutonium residues from providing recoverable Defense Program material to being considered disposable waste. This paper will not cover many of the details of the project but will instead aim to provide a general picture of all the project activities.

  7. Type II seesaw dominance in SO(10)

    SciTech Connect

    Melfo, Alejandra; Ramirez, Alba; Senjanovic, Goran

    2010-10-01

    Grand unified theories where the neutrino mass is given by type II seesaw have the potential to provide interesting connections between the neutrino and charged fermion sectors. We explore the possibility of having a dominant type II seesaw contribution in supersymmetric SO(10). We show that this can be achieved in the model where symmetry breaking is triggered by 54 and 45 dimensional representations, without the need for additional fields other than those already required to have a realistic charged fermion mass spectrum. Physical consequences, such as the implementation of the Bajc, Senjanovic, and Vissani mechanism, the possibility of the fields responsible for type II seesaw dominance being messengers of supersymmetry breaking, and the realization of baryo and leptogenesis in these theories, are discussed.

  8. SHIELD II: VLA HI Spectral Line Observations

    NASA Astrophysics Data System (ADS)

    Lee, Eojin; Cannon, John M.; McNichols, Andrew; Teich, Yaron; SHIELD II Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs II" ("SHIELD II") is a multiwavelength, legacy-class observational campaign that is facilitating the study of both internal and global evolutionary processes in low-mass dwarf galaxies discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We present new results from low-resolution D-configuration VLA HI spectral line observations of 6 galaxies in the SHIELD II sample. We explore the morphology and kinematics by comparing images of the HI surface densities and the intensity weighted velocity fields with optical images from SDSS and WIYN. These data allow us to localize the HI gas and to study the bulk neutral gas kinematics.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  9. Validation of SAGE II NO2 measurements

    NASA Technical Reports Server (NTRS)

    Cunnold, D. M.; Zawodny, J. M.; Chu, W. P.; Mccormick, M. P.; Pommereau, J. P.; Goutail, F.

    1991-01-01

    The validity of NO2 measurements from the stratospheric aerosol and gas experiment (SAGE) II is examined by comparing the data with climatological distributions of NO2 and by examining the consistency of the observations themselves. The precision at high altitudes is found to be 5 percent, which is also the case at specific low altitudes for certain latitudes where the mixing ratio is 4 ppbv, and the precision is 0.2 ppbv at low altitudes. The autocorrelation distance of the smoothed profile measurement noise is 3-5 km and 10 km for 1-km and 5-km smoothing, respectively. The SAGE II measurements agree with spectroscopic measurements to within 10 percent, and the SAGE measurements are about 20 percent smaller than average limb monitor measurements at the mixing ratio peak. SAGE I and SAGE II measurements are slightly different, but the difference is not attributed to changes in atmospheric NO2.

  10. Intrafibrillar Mineral May be Absent in Dentinogenesis Imperfecta Type II (DI-II)

    SciTech Connect

    Pople, John A.

    2001-03-29

    High-resolution synchrotron radiation computed tomography (SRCT) and small angle x-ray scattering (SAXS) were performed on normal and dentinogenesis imperfecta type II (DI-II) teeth. Three normal and three DI-II human third molars were used in this study. The normal molars were unerupted and had intact enamel; donors were female and ranged in age from 18-21y. The DI-II specimens, which were also unerupted with intact enamel, came from a single female donor age 20y. SRCT showed that the mineral concentration was 33% lower on average in the DI-II dentin with respect to normal dentin. The SAXS spectra from normal dentin exhibited low-angle diffraction peaks at harmonics of 67.6 nm, consistent with nucleation and growth of the apatite phase within gaps in the collagen fibrils (intrafibrillar mineralization). In contrast, the low-angle peaks were almost nonexistent in the DI-II dentin. Crystallite thickness was independent of location in both DI-II and normal dentin, although the crystallites were significantly thicker in DI-II dentin (6.8 nm (s.d. = 0.5) vs 5.1 nm (s.d. = 0.6)). The shape factor of the crystallites, as determined by SAXS, showed a continuous progression in normal dentin from roughly one-dimensional (needle-like) near the pulp to two-dimensional (plate-like) near the dentin-enamel junction. The crystallites in DI-II dentin, on the other hand, remained needle-like throughout. The above observations are consistent with an absence of intrafibrillar mineral in DI-II dentin.

  11. Competitive adsorption of Cu(II)-EDTA and Cd(II)-EDTA onto TiO{sub 2}

    SciTech Connect

    Yang, J.K.; Davis, A.P.

    1999-08-01

    Cu(II), EDTA, Cu(II)-EDTA, Cd(II)-EDTA, and Cu(II)/Cd(II) and Cu(II)-EDTA/Cd(II)-EDTA competitive adsorption onto TiO{sub 2} has been studied with variation of pH and concentration. For Cu(II) and EDTA, typical cationic and anionic types of adsorption are noted, respectively. Ligand-type adsorption is found for Cu(II)-EDTA and Cd(II)-EDTA under both single and competitive conditions. Surface complexation modeling considered inner-sphere complexation and the diffuse layer model employing MINTEQA2; surface complexes used include Ti-(OH{sub 2})O-Cu{sup +}, Ti-(OH)EDTAH{sub 2}{sup {minus}2}, Ti-(OH)EDTA-Cu{sup {minus}2}, and Ti-(OH)EDTA-Cd{sup {minus}2}. Experimental and model predictions suggest no competitive adsorption between Cu(II) and Cd(II) at 5 {times} 10{sup {minus}5} M. On the other hand, adsorption data and model predictions indicate that Cd(II)-EDTA adsorption is favored over that of Cu(II)-EDTA with some competition for adsorption sites. Cd(II)-EDTA Adsorption was only slightly affected by the presence of Cu(II)-EDTA; however, Cu(II)-EDTA adsorption was strongly influenced by the presence of Cd(II)-EDTA, especially as the molar ratio of Cd(II)-EDTA/Cu(II)-EDTA increased. A modified surface complexation constant for Cd(II)-EDTA is required to explain the competitive data, suggesting surface site heterogeneity.

  12. Testicular gonadotropin-releasing hormone II receptor (GnRHR-II) knockdown constitutively impairs diurnal testosterone secretion in the boar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The second mammalian GnRH isoform (GnRH-II) and its specific receptor (GnRHR-II) are highly expressed in the testis, suggesting an important role in testis biology. Gene coding errors prevent the production of GnRH-II and GnRHR-II in many species, but both genes are functional in swine. We have demo...

  13. Psychometric Properties of the Beck Depression Inventory-II (BDI-II) among Community-Dwelling Older Adults

    ERIC Educational Resources Information Center

    Segal, Daniel L.; Coolidge, Frederick L.; Cahill, Brian S.; O'Riley, Alisa A.

    2008-01-01

    The psychometric properties of the Beck Depression Inventory-II (BDI-II) as a self-administered screening tool for depressive symptoms were examined in a sample of community-dwelling older and younger adults. Participants completed the BDI-II, the Center for Epidemiologic Studies Depression Scale, the Coolidge Axis II Inventory, the Perceived…

  14. VizieR Online Data Catalog: Parity-forbidden [Co II] and [V II] lines (Ruffoni+, 2013)

    NASA Astrophysics Data System (ADS)

    Ruffoni, M. P.; Pickering, J. C.

    2013-09-01

    The Ritz wavelengths of the parity-forbidden [Co II] and [V II] lines reported here were calculated, respectively, from the accurate Co II energy levels reported by Pickering et al. (1998ApJS..117..261P) and the revised accurate V II energy levels measured by Thorne et al. (2013, Cat. J/ApJS/207/13). (4 data files).

  15. DO GIANT PLANETS SURVIVE TYPE II MIGRATION?

    SciTech Connect

    Hasegawa, Yasuhiro; Ida, Shigeru E-mail: ida@geo.titech.ac.jp

    2013-09-10

    Planetary migration is one of the most serious problems to systematically understand the observations of exoplanets. We clarify that the theoretically predicted type II, migration (like type I migration) is too fast, by developing detailed analytical arguments in which the timescale of type II migration is compared with the disk lifetime. In the disk-dominated regime, the type II migration timescale is characterized by a local viscous diffusion timescale, while the disk lifetime is characterized by a global diffusion timescale that is much longer than the local one. Even in the planet-dominated regime where the inertia of the planet mass reduces the migration speed, the timescale is still shorter than the disk lifetime except in the final disk evolution stage where the total disk mass decays below the planet mass. This suggests that most giant planets plunge into the central stars within the disk lifetime, and it contradicts the exoplanet observations that gas giants are piled up at r {approx}> 1 AU. We examine additional processes that may arise in protoplanetary disks: dead zones, photoevaporation of gas, and gas flow across a gap formed by a type II migrator. Although they make the type II migration timescale closer to the disk lifetime, we show that none of them can act as an effective barrier for rapid type II migration with the current knowledge of these processes. We point out that gas flow across a gap and the fraction of the flow accreted onto the planets are uncertain and they may have the potential to solve the problem. Much more detailed investigation for each process may be needed to explain the observed distribution of gas giants in extrasolar planetary systems.

  16. Five coordinate M(