Science.gov

Sample records for iii d2-like dopamine

  1. Evidence for Noncanonical Neurotransmitter Activation: Norepinephrine as a Dopamine D2-Like Receptor Agonist

    PubMed Central

    Sánchez-Soto, Marta; Bonifazi, Alessandro; Cai, Ning Sheng; Ellenberger, Michael P.; Newman, Amy Hauck

    2016-01-01

    The Gαi/o-coupled dopamine D2-like receptor family comprises three subtypes: the D2 receptor (D2R), with short and long isoform variants (D2SR and D2LR), D3 receptor (D3R), and D4 receptor (D4R), with several polymorphic variants. The common overlap of norepinephrine innervation and D2-like receptor expression patterns prompts the question of a possible noncanonical action by norepinephrine. In fact, previous studies have suggested that norepinephrine can functionally interact with D4R. To our knowledge, significant interactions between norepinephrine and D2R or D3R receptors have not been demonstrated. By using radioligand binding and bioluminescent resonance energy transfer (BRET) assays in transfected cells, the present study attempted a careful comparison between dopamine and norepinephrine in their possible activation of all D2-like receptors, including the two D2R isoforms and the most common D4R polymorphic variants. Functional BRET assays included activation of G proteins with all Gαi/o subunits, adenylyl cyclase inhibition, and β arrestin recruitment. Norepinephrine acted as a potent agonist for all D2-like receptor subtypes, with the general rank order of potency of D3R > D4R ≥ D2SR ≥ D2L. However, for both dopamine and norepinephrine, differences depended on the Gαi/o protein subunit involved. The most striking differences were observed with Gαi2, where the rank order of potencies for both dopamine and norepinephrine were D4R > D2SR = D2LR >> D3R. Furthermore the results do not support the existence of differences in the ability of dopamine and norepinephrine to activate different human D4R variants. The potency of norepinephrine for adrenergic α2A receptor was only about 20-fold higher compared with D3R and D4R across the three functional assays. PMID:26843180

  2. Spatial reorganization of putaminal dopamine D2-like receptors in cranial and hand dystonia.

    PubMed

    Black, Kevin J; Snyder, Abraham Z; Mink, Jonathan W; Tolia, Veeral N; Revilla, Fredy J; Moerlein, Stephen M; Perlmutter, Joel S

    2014-01-01

    The putamen has a somatotopic organization of neurons identified by correspondence of firing rates with selected body part movements, as well as by complex, but organized, differential cortical projections onto putamen. In isolated focal dystonia, whole putaminal binding of dopamine D2-like receptor radioligands is quantitatively decreased, but it has not been known whether selected parts of the putamen are differentially affected depending upon the body part affected by dystonia. The radioligand [(18)F]spiperone binds predominantly to D2-like receptors in striatum. We hypothesized that the spatial location of [(18)F]spiperone binding within the putamen would differ in patients with dystonia limited to the hand versus the face, and we tested that hypothesis using positron emission tomography and magnetic resonance imaging. To address statistical and methodological concerns, we chose a straightforward but robust image analysis method. An automated algorithm located the peak location of [(18)F]spiperone binding within the striatum, relative to a brain atlas, in each of 14 patients with cranial dystonia and 8 patients with hand dystonia. The mean (left and right) |x|, y, and z coordinates of peak striatal binding for each patient were compared between groups by t test. The location of peak [(18)F]spiperone binding within the putamen differed significantly between groups (cranial dystonia zdopamine D2-like receptors are distributed differently in the putamen depending on the body part manifesting dystonia. PMID:24520350

  3. Pharmacological and signalling properties of a D2-like dopamine receptor (Dop3) in Tribolium castaneum.

    PubMed

    Verlinden, Heleen; Vleugels, Rut; Verdonck, Rik; Urlacher, Elodie; Vanden Broeck, Jozef; Mercer, Alison

    2015-01-01

    Dopamine is an important neurotransmitter in the central nervous system of vertebrates and invertebrates. Despite their evolutionary distance, striking parallels exist between deuterostomian and protostomian dopaminergic systems. In both, signalling is achieved via a complement of functionally distinct dopamine receptors. In this study, we investigated the sequence, pharmacology and tissue distribution of a D2-like dopamine receptor from the red flour beetle Tribolium castaneum (TricaDop3) and compared it with related G protein-coupled receptors in other invertebrate species. The TricaDop3 receptor-encoding cDNA shows considerable sequence similarity with members of the Dop3 receptor class. Real time qRT-PCR showed high expression in both the central brain and the optic lobes, consistent with the role of dopamine as neurotransmitter. Activation of TricaDop3 expressed in mammalian cells increased intracellular Ca(2+) signalling and decreased NKH-477 (a forskolin analogue)-stimulated cyclic AMP levels in a dose-dependent manner. We studied the pharmacological profile of the TricaDop3 receptor and demonstrated that the synthetic vertebrate dopamine receptor agonists, 2 - amino- 6,7 - dihydroxy - 1,2,3,4 - tetrahydronaphthalene hydrobromide (6,7-ADTN) and bromocriptine acted as agonists. Methysergide was the most potent of the antagonists tested and showed competitive inhibition in the presence of dopamine. This study offers important information on the Dop3 receptor from Tribolium castaneum that will facilitate functional analyses of dopamine receptors in insects and other invertebrates.

  4. Exposure to D2-like dopamine receptor agonists inhibits swimming in Daphnia magna.

    PubMed

    Barrozo, Enrico R; Fowler, David A; Beckman, Matthew L

    2015-10-01

    Daphnia are freshwater crustaceans that have been used for decades in ecotoxicology research. Despite the important role that Daphnia have played in environmental toxicology studies, very little is known about the neurobiology of Daphnia. Although many studies have investigated the swimming movements of these "water fleas", few studies have examined the underlying neurochemical basis for these movements. To characterize the locomotor effect of drugs in Daphnia, a two-dimensional video imaging tool was developed and animal tracking was performed with freely available software, CTRAX. Due to the central role that dopamine plays in the movement of animals, we sought to determine the role of dopamine receptor signaling in Daphnia movement by characterizing the effect of ten drugs that are agonists or antagonists of dopamine receptors. At 1, 2, and 6h of treatment with a 10μM drug, several dopamine receptor agonists with documented effects on the D2-like class of receptors decreased the movement. Further, we determined behavioral inhibition values (IC50) at 1h of treatment for (1R,3S)-1-(aminomethyl)-3-phenyl-3,4-dihydro-1H-isochromene-5,6-diol (A68930) to be 1.4μM and for bromocriptine to be 6.6μM. This study describes a new method to study Daphnia swimming and establishes this organism as a useful model for studies of dopaminergic signaling. Specifically, this study shows that a dopamine receptor signaling pathway, mediated by putative D2-like receptors, is involved in the control of Daphnia swimming behavior. Due to its ease of use and its rich motor program we propose that Daphnia should be considered for future studies of dopamine neuron toxicity and protection.

  5. Synthesis and binding profile of haloperidol-based bivalent ligands targeting dopamine D(2)-like receptors.

    PubMed

    Salama, Ismail; Löber, Stefan; Hübner, Harald; Gmeiner, Peter

    2014-08-15

    Homodimers of dopamine D2-like receptors are suggested to be of particular importance in the pathophysiology of schizophrenia and, thus, serve as promising targets for the discovery of atypical antipsychotics. This study describes the development of a series of novel bivalent molecules with a pharmacophore derived from the dopamine receptor antagonist haloperidol. These dimers were investigated in comparison to their monomeric analogues for their D2long, D2short, D3, and D4 receptor binding and the ability to bridge two neighboring receptor protomers. Radioligand binding studies provided diagnostic insights when Hill slopes close to two for the bivalent ligand 13 incorporating 22 spacer atoms and a comparative analysis with monovalent control ligands indicated a bivalent binding mode with a simultaneous occupancy of two neighboring binding sites. PMID:25047579

  6. Striatal dopamine D2-like receptor correlation patterns with human obesity and opportunistic eating behavior

    PubMed Central

    Guo, Juen; Simmons, W. Kyle; Herscovitch, Peter; Martin, Alex; Hall, Kevin D.

    2014-01-01

    The obesity epidemic is believed to be driven by a food environment that promotes consumption of inexpensive, convenient, high-calorie, palatable foods. Individual differences in obesity susceptibility or resistance to weight loss may arise due to alterations in the neurocircuitry supporting food reward and eating habits. In particular, dopamine signaling in the ventromedial striatum is thought to encode food reward and motivation, whereas dopamine in the dorsal and lateral striatum orchestrates the development of eating habits. We measured striatal dopamine D2-like receptor binding potential (D2BP) using positron emission tomography (PET) with [18F]fallypride in 43 human subjects with body mass indices (BMI) ranging from 18–45 kg/m2. Opportunistic eating behavior and BMI were both positively associated with D2BP in the dorsal and lateral striatum, whereas BMI was negatively associated with D2BP in the ventromedial striatum. These results suggest that obese people have alterations in dopamine neurocircuitry that may increase their susceptibility to opportunistic overeating while at the same time making food intake less rewarding, less goal-directed, and more habitual. Whether or not the observed neurocircuitry alterations pre-existed or occurred as a result of obesity development, they may perpetuate obesity given the omnipresence of palatable foods and their associated cues. PMID:25199919

  7. Synthesis and dopamine D2-like receptor binding affinity of substituted 5-phenyl-pyrrole-3-carboxamides.

    PubMed

    Pinna, G A; Curzu, M M; Sechi, M; Chelucci, G; Maciocco, E

    1999-08-30

    A series of 5-p-substituted phenyl-pyrrole-3-carboxamide derivatives was designed as hybrid analogs of the dopamine D2-like 5-phenyl-pyrrole and heterocyclic carboxamide antipsychotics. The title compounds were synthesized and evaluated for dopamine D2-like receptor by means of [3H]YM-09151-2 receptor binding assay. The compound bearing a 1-ethyl-2-methyl-pyrrolidine moiety as the basic part of 5-phenyl-pyrrole-3-carboxamide derivative 1a together with its 2-chloro analog 1f were found to possess affinity in the low micromolar range. Substituted phenyl-pyrrolecarboxamides containing groups such as F, Cl, NO2, CH3, at the 4-position of the phenyl ring, gave ligands with lower D2-like affinity.

  8. Effects of dopamine D2-like receptor agonists in mice trained to discriminate cocaine from saline: influence of feeding condition

    PubMed Central

    Collins, Gregory T.; Jackson, Jonathan A.; Koek, Wouter; France, Charles P.

    2014-01-01

    In rats, the discriminative stimulus effects of direct- and indirect-acting dopamine receptor agonists are mediated by multiple dopamine receptor subtypes and the relative contribution of dopamine D2 and D3 receptors to these effects varies as a function of feeding condition. In these studies, free-fed and food-restricted mice were trained to discriminate 10.0 mg/kg cocaine using a two-lever discrimination procedure in which responding was maintained by food. Both groups of mice acquired the discrimination; however, free-fed mice responded at lower rates than food-restricted mice. Dopamine D3 receptor agonists, pramipexole and quinpirole, increased cocaine-appropriate responding (>85%) in food-restricted, but not in free-fed mice. The dopamine D2 receptor agonist, sumanirole, and the nonselective dopamine receptor agonist, apomorphine, failed to increase cocaine-appropriate responding in either group. Free-fed mice were more sensitive than food-restricted mice to the rate-decreasing effects of dopamine receptor agonists and these effects could not be overcome by increasing the magnitude of reinforcement. Because feeding condition did not alter quinpirole-induced hypothermia, it is unlikely that differences in the discriminative stimulus or rate-decreasing effects of dopamine D2-like receptor agonists were due to differences in the pharmacokinetic properties of the drugs. Although these results suggest that the discriminative stimulus effects of cocaine are mediated by both dopamine D2 and D3 receptors in food-restricted mice, the increased sensitivity of free-fed mice to the rate-decreasing effects of dopamine D2-like receptor agonists limited conclusions about the impact of feeding conditions on the relative contribution of dopamine D2 and D3 receptors to the discriminative stimulus effects of cocaine. PMID:24561049

  9. Dual role of dopamine D(2)-like receptors in the mediation of conditioned and unconditioned fear.

    PubMed

    Brandão, Marcus Lira; de Oliveira, Amanda Ribeiro; Muthuraju, Sangu; Colombo, Ana Caroline; Saito, Viviane Mitsuko; Talbot, Teddy

    2015-11-14

    A reduction of dopamine release or D2 receptor blockade in the terminal fields of the mesolimbic system, particularly the amygdala, clearly reduces conditioned fear. Similar D2 receptor antagonism in the neural substrates of fear in the midbrain tectum attenuates the processing of unconditioned aversive information. However, the implications of the interplay between opposing actions of dopamine in the rostral and caudal segments of the dopaminergic system are still unclear. Previous studies from this laboratory have reported the effects of dopaminergic drugs on behavior in rats in the elevated plus maze, auditory-evoked potentials (AEPs) recorded from the midbrain tectum, fear-potentiated startle, and conditioned freezing. These findings led to an interesting framework on the functional roles of dopamine in both anxiety and fear states. Dopamine D2 receptor inhibition in the terminal fields of the mesolimbic dopamine system generally causes anxiolytic-like effects, whereas the activity of midbrain substrates of unconditioned fear are enhanced by D2 receptor antagonists, suggesting that D2 receptor-mediated mechanisms play opposing roles in fear/anxiety processes, depending on the brain region under study. Dopamine appears to mediate conditioned fear by acting at rostral levels of the brain and regulate unconditioned fear at the midbrain level, likely by reducing the sensorimotor gating of aversive events.

  10. The C. elegans D2-Like Dopamine Receptor DOP-3 Decreases Behavioral Sensitivity to the Olfactory Stimulus 1-Octanol

    PubMed Central

    Ezak, Meredith J.; Ferkey, Denise M.

    2010-01-01

    We previously found that dopamine signaling modulates the sensitivity of wild-type C. elegans to the aversive odorant 1-octanol. C. elegans lacking the CAT-2 tyrosine hydroxylase enzyme, which is required for dopamine biosynthesis, are hypersensitive in their behavioral avoidance of dilute concentrations of octanol. Dopamine can also modulate the context-dependent response of C. elegans lacking RGS-3 function, a negative regulator of Gα signaling. rgs-3 mutant animals are defective in their avoidance of 100% octanol when they are assayed in the absence of food (E. coli bacterial lawn), but their response is restored when they are assayed in the presence of food or exogenous dopamine. However, it is not known which receptor might be mediating dopamine's effects on octanol avoidance. Herein we describe a role for the C. elegans D2-like receptor DOP-3 in the regulation of olfactory sensitivity. We show that DOP-3 is required for the ability of food and exogenous dopamine to rescue the octanol avoidance defect of rgs-3 mutant animals. In addition, otherwise wild-type animals lacking DOP-3 function are hypersensitive to dilute octanol, reminiscent of cat-2 mutants. Furthermore, we demonstrate that DOP-3 function in the ASH sensory neurons is sufficient to rescue the hypersensitivity of dop-3 mutant animals, while dop-3 RNAi knockdown in ASH results in octanol hypersensitivity. Taken together, our data suggest that dopaminergic signaling through DOP-3 normally acts to dampen ASH signaling and behavioral sensitivity to octanol. PMID:20209143

  11. Systemic Blockade of D2-Like Dopamine Receptors Facilitates Extinction of Conditioned Fear in Mice

    ERIC Educational Resources Information Center

    Ponnusamy, Ravikumar; Nissim, Helen A.; Barad, Mark

    2005-01-01

    Extinction of conditioned fear in animals is the explicit model of behavior therapy for human anxiety disorders, including panic disorder, obsessive-compulsive disorder, and post-traumatic stress disorder. Based on previous data indicating that fear extinction in rats is blocked by quinpirole, an agonist of dopamine D2 receptors, we hypothesized…

  12. The protein arginine methyltransferase PRMT5 promotes D2-like dopamine receptor signaling.

    PubMed

    Likhite, Neah; Jackson, Christopher A; Liang, Mao-Shih; Krzyzanowski, Michelle C; Lei, Pedro; Wood, Jordan F; Birkaya, Barbara; Michaels, Kerry L; Andreadis, Stelios T; Clark, Stewart D; Yu, Michael C; Ferkey, Denise M

    2015-11-10

    Protein arginine methylation regulates diverse functions of eukaryotic cells, including gene expression, the DNA damage response, and circadian rhythms. We showed that arginine residues within the third intracellular loop of the human D2 dopamine receptor, which are conserved in the DOP-3 receptor in the nematode Caenorhabditis elegans, were methylated by protein arginine methyltransferase 5 (PRMT5). By mutating these arginine residues, we further showed that their methylation enhanced the D2 receptor-mediated inhibition of cyclic adenosine monophosphate (cAMP) signaling in cultured human embryonic kidney (HEK) 293T cells. Analysis of prmt-5-deficient worms indicated that methylation promoted the dopamine-mediated modulation of chemosensory and locomotory behaviors in C. elegans through the DOP-3 receptor. In addition to delineating a previously uncharacterized means of regulating GPCR (heterotrimeric guanine nucleotide-binding protein-coupled receptor) signaling, these findings may lead to the development of a new class of pharmacological therapies that modulate GPCR signaling by changing the methylation status of these key proteins. PMID:26554819

  13. Determinants of conditioned reinforcing effectiveness: Dopamine D2-like receptor agonist-stimulated responding for cocaine-associated stimuli.

    PubMed

    Collins, Gregory T; France, Charles P

    2015-12-15

    Environmental stimuli associated with drug use can take on conditioned properties capable of promoting drug-seeking behaviors during abstinence. This study investigated the relative importance of the amount of reinforced responding, number of cocaine-stimulus pairings, total cocaine intake, and reinforcing effectiveness of the self-administered dose of cocaine to the conditioned reinforcing effectiveness of cocaine-associated stimuli (CS). Male rats were trained to self-administer cocaine (0.1 [small] or 1.0mg/kg/inf [large]) under a fixed ratio schedule of reinforcement. A progressive ratio (PR) schedule was used to quantify the reinforcing effectiveness of each dose of cocaine, as well as the conditioned reinforcing effectiveness of the CS following treatment with saline or the dopamine D2-like receptor agonist pramipexole (0.1-3.2mg/kg). The large dose of cocaine maintained larger final ratios and greater levels of cocaine intake, whereas the small dose resulted in more cocaine-CS pairings. The total amount of responding was comparable between groups. During PR tests of conditioned reinforcement, pramipexole increased responding for CS presentations in both groups; however, the final ratio completed was significantly greater in large- as compared to small-dose group. In addition to highlighting a central role for dopamine D2-like receptors in modulating the effectiveness of cocaine-paired stimuli to reinforce behavior, these results suggest that conditioned reinforcing effectiveness is primarily determined by the reinforcing effectiveness of the self-administered dose of cocaine and/or total cocaine intake, and not the total amount of responding or number cocaine-stimulus pairings. These findings have implications for understanding how different patterns of drug-taking might impact vulnerability to relapse. PMID:26593427

  14. Determinants of conditioned reinforcing effectiveness: Dopamine D2-like receptor agonist-stimulated responding for cocaine-associated stimuli.

    PubMed

    Collins, Gregory T; France, Charles P

    2015-12-15

    Environmental stimuli associated with drug use can take on conditioned properties capable of promoting drug-seeking behaviors during abstinence. This study investigated the relative importance of the amount of reinforced responding, number of cocaine-stimulus pairings, total cocaine intake, and reinforcing effectiveness of the self-administered dose of cocaine to the conditioned reinforcing effectiveness of cocaine-associated stimuli (CS). Male rats were trained to self-administer cocaine (0.1 [small] or 1.0mg/kg/inf [large]) under a fixed ratio schedule of reinforcement. A progressive ratio (PR) schedule was used to quantify the reinforcing effectiveness of each dose of cocaine, as well as the conditioned reinforcing effectiveness of the CS following treatment with saline or the dopamine D2-like receptor agonist pramipexole (0.1-3.2mg/kg). The large dose of cocaine maintained larger final ratios and greater levels of cocaine intake, whereas the small dose resulted in more cocaine-CS pairings. The total amount of responding was comparable between groups. During PR tests of conditioned reinforcement, pramipexole increased responding for CS presentations in both groups; however, the final ratio completed was significantly greater in large- as compared to small-dose group. In addition to highlighting a central role for dopamine D2-like receptors in modulating the effectiveness of cocaine-paired stimuli to reinforce behavior, these results suggest that conditioned reinforcing effectiveness is primarily determined by the reinforcing effectiveness of the self-administered dose of cocaine and/or total cocaine intake, and not the total amount of responding or number cocaine-stimulus pairings. These findings have implications for understanding how different patterns of drug-taking might impact vulnerability to relapse.

  15. Berberine is a dopamine D1- and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses.

    PubMed

    Kawano, Masaaki; Takagi, Rie; Kaneko, Atsushi; Matsushita, Sho

    2015-12-15

    Berberine is an herbal alkaloid with various biological activities, including anti-inflammatory and antidepressant effects. Here, we examined the effects of berberine on dopamine receptors and the ensuing anti-inflammatory responses. Berberine was found to be an antagonist at both dopamine D1- and D2-like receptors and ameliorates the development of experimentally induced colitis in mice. In lipopolysaccharide-stimulated immune cells, berberine treatment modified cytokine levels, consistent with the effects of the dopamine receptor specific antagonists SCH23390 and L750667. Our findings indicate that dopamine receptor antagonists suppress innate and adaptive immune responses, providing a foundation for their use in combatting inflammatory diseases.

  16. In the blink of an eye: relating positive-feedback sensitivity to striatal dopamine D2-like receptors through blink rate.

    PubMed

    Groman, Stephanie M; James, Alex S; Seu, Emanuele; Tran, Steven; Clark, Taylor A; Harpster, Sandra N; Crawford, Maverick; Burtner, Joanna Lee; Feiler, Karen; Roth, Robert H; Elsworth, John D; London, Edythe D; Jentsch, James David

    2014-10-22

    For >30 years, positron emission tomography (PET) has proven to be a powerful approach for measuring aspects of dopaminergic transmission in the living human brain; this technique has revealed important relationships between dopamine D2-like receptors and dimensions of normal behavior, such as human impulsivity, and psychopathology, particularly behavioral addictions. Nevertheless, PET is an indirect estimate that lacks cellular and functional resolution and, in some cases, is not entirely pharmacologically specific. To identify the relationships between PET estimates of D2-like receptor availability and direct in vitro measures of receptor number, affinity, and function, we conducted neuroimaging and behavioral and molecular pharmacological assessments in a group of adult male vervet monkeys. Data gathered from these studies indicate that variation in D2-like receptor PET measurements is related to reversal-learning performance and sensitivity to positive feedback and is associated with in vitro estimates of the density of functional dopamine D2-like receptors. Furthermore, we report that a simple behavioral measure, eyeblink rate, reveals novel and crucial links between neuroimaging assessments and in vitro measures of dopamine D2 receptors.

  17. Possible role of dopamine D1-like and D2-like receptors in behavioural activation and evaluation of response efficacy in the forced swimming test.

    PubMed

    D'Aquila, Paolo S; Galistu, Adriana

    2012-03-01

    Based on the different effects of the dopamine D1-like and D2-like receptor antagonists SCH 23390 and raclopride on the measures of licking microstructure in rats ingesting a sucrose solution, we suggested that the behavioural activation of reward-associated responses depends on dopamine D1-like receptor stimulation, and its level is updated, or "reboosted", on the basis of a dopamine D2-like receptor-mediated evaluation process. The aim of this study was to test this hypothesis on the forced swimming test response. The effects of the dopamine D1-like and D2-like receptor antagonists SCH 23390 (0.01-0.04 mg/kg) and raclopride (0.025-0.25 mg/kg) administered before a 15-min exposure to forced swimming, and the response to a second session performed 24 h later, were examined. SCH 23390 dose-dependently reduced climbing scores in the first session and increased them in the second session, but the within-session decline of this measure was similar to that observed in the control group in both sessions. Raclopride-treated subjects showed a slightly reduced level of climbing scores at the beginning of the first session, but persisted in emitting this costly behavioural response up to the end of the session, while no effects were observed in the second session. These results, along with our results examining licking for sucrose, are consistent with the hypothesis that behavioural activation and response effort allocation are directly mediated by dopamine D1-like receptor stimulation, but the level of this activation is updated, or "reboosted", on the basis of a dopamine D2-like receptor-mediated mechanism of response efficacy evaluation.

  18. Differential Roles for Dopamine D1-Like and D2-Like Receptors in Mediating the Reinforcing Effects of Cocaine: Convergent Evidence from Pharmacological and Genetic Studies

    PubMed Central

    Hiranita, Takato; Collins, Gregory T

    2016-01-01

    A series of studies by Drs. Barak Caine, James Woods, Gregory Collins, Jonathan Katz and Takato Hiranita demonstrated a novel and unique reinforcing effect using dopamine (DA) D2-like receptor [D2-like R: D2, D3, and D4 receptor subtypes (respectively, D2R, D3R, and D4R)] agonists in rats and genetically modified mice. In order to understand how important their findings are, a comparison was made regarding the reinforcing effects of DA D2-like R full agonists with those of DA uptake inhibitors and of a DA D1-like receptor [D1-like R, D1 and D5 receptor subtypes (D1R and D5R)] full agonist (±)-SKF 82958. PMID:27390753

  19. Inhibition of titanium-particle-induced inflammatory osteolysis after local administration of dopamine and suppression of osteoclastogenesis via D2-like receptor signaling pathway.

    PubMed

    Yang, Huilin; Xu, Yaozeng; Zhu, Mo; Gu, Ye; Zhang, Wen; Shao, Hongguo; Wang, Yijun; Ping, Zichuan; Hu, Xuanyang; Wang, Liangliang; Geng, Dechun

    2016-02-01

    Chronic inflammation and extensive osteoclast formation play critical roles in wear-debris-induced peri-implant osteolysis. We investigated the potential impact of dopamine on titanium-particle-induced inflammatory osteolysis in vivo and in vitro. Twenty-eight C57BL/6J mice were randomly assigned to four groups: sham control (PBS treatment), titanium (titanium/PBS treatment), low- (titanium/2 μg kg(-1) day(-1) dopamine) and high-dopamine (titanium/10 μg kg(-1) day(-1) dopamine). After 2 weeks, mouse calvariae were collected for micro-computed tomography (micro-CT) and histomorphometry analysis. Bone-marrow-derived macrophages (BMMs) were isolated to assess osteoclast differentiation. Dopamine significantly reduced titanium-particle-induced osteolysis compared with the titanium group as confirmed by micro-CT and histomorphometric data. Osteoclast numbers were 34.9% and 59.7% (both p < 0.01) lower in the low- and high-dopamine-treatment groups, respectively, than in the titanium group. Additionally, low RANKL, tumor necrosis factor-α, interleukin-1β and interleukin-6 immunochemistry staining were noted in dopamine-treatment groups. Dopamine markedly inhibited osteoclast formation, osteoclastogenesis-related gene expression and pro-inflammatory cytokine expression in BMMs in a dose-dependent manner. Moreover, the resorption area was decreased with 10(-9) M and 10(-8) M dopamine to 40.0% and 14.5% (both p < 0.01), respectively. Furthermore, the inhibitory effect of dopamine was reversed by the D2-like-receptor antagonist haloperidol but not by the D1-like-receptor antagonist SCH23390. These results suggest that dopamine therapy could be developed into an effective and safe method for osteolysis-related disease caused by chronic inflammation and excessive osteoclast formation.

  20. Effects of Dopamine D2-Like Receptor Antagonists on Light Responses of Ganglion Cells in Wild-Type and P23H Rat Retinas.

    PubMed

    Jensen, Ralph

    2015-01-01

    In animal models of retinitis pigmentosa the dopaminergic system in the retina appears to be dysfunctional, which may contribute to the debilitated sight experienced by retinitis pigmentosa patients. Since dopamine D2-like receptors are known to modulate the activity of dopaminergic neurons, I examined the effects of dopamine D2-like receptor antagonists on the light responses of retinal ganglion cells (RGCs) in the P23H rat model of retinitis pigmentosa. Extracellular electrical recordings were made from RGCs in isolated transgenic P23H rat retinas and wild-type Sprague-Dawley rat retinas. Intensity-response curves to flashes of light were evaluated prior to and during bath application of a dopamine D2-like receptor antagonist. The dopamine D2/D3 receptor antagonists sulpiride and eticlopride and the D4 receptor antagonist L-745,870 increased light sensitivity of P23H rat RGCs but decreased light sensitivity in Sprague-Dawley rat RGCs. In addition, L-745,870, but not sulpiride or eticlopride, reduced the maximum peak responses of Sprague-Dawley rat RGCs. I describe for the first time ON-center RGCs in P23H rats that exhibit an abnormally long-latency (>200 ms) response to the onset of a small spot of light. Both sulpiride and eticlopride, but not L-745,870, reduced this ON response and brought out a short-latency OFF response, suggesting that these cells are in actuality OFF-center cells. Overall, the results show that the altered dopaminergic system in degenerate retinas contributes to the deteriorated light responses of RGCs. PMID:26717015

  1. High striatal occupancy of D2-like dopamine receptors by amisulpride in the brain of patients with schizophrenia.

    PubMed

    Vernaleken, Ingo; Siessmeier, Thomas; Buchholz, Hans-Georg; Härtter, Sebastian; Hiemke, Christoph; Stoeter, Peter; Rösch, Frank; Bartenstein, Peter; Gründer, Gerhard

    2004-12-01

    The 'atypicality' of the antipsychotic drug, amisulpride, has been attributed to preferential extrastriatal binding. Previous investigations of striatal D2 receptor occupancy by amisulpride revealed conflicting results. The aim of this PET study was to measure the striatal occupancy by amisulpride and to correlate it with the corresponding drug plasma concentrations. Nine amisulpride-treated patients and 12 healthy volunteers serving as controls were studied with PET and [18F]desmethoxyfallypride. Occupancy values and plasma concentrations were nonlinearly fitted to an E max model. Results showed 43-85% (putamen) and 67-90% (caudate) D2-like receptor occupancy. Plasma amisulpride concentrations at the time of tracer injection, but not administered doses, were significantly nonlinearly correlated to occupancy levels (putamen: rS=0.88, p=0.0017; caudate: r S=0.78, p=0.0127). Calculated Emax was similar in both caudate and putamen, but occupancy levels were lower in caudate at lower amisulpride plasma concentrations. Calculated plasma levels to attain 60-80% receptor occupancy ranged from 119 to 474 ng/ml (caudate) and from 241 to 732 ng/ml (putamen). This reveals a broad range of plasma concentrations producing less than 80% striatal receptor occupancy. However, our data show high striatal D2-like receptor occupancies under rising plasma concentrations. Using the full range of recommended amisulpride dosage, striatal occupancies up to 90% can be measured.

  2. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    PubMed

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-01

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. PMID:26874213

  3. Opposing effects of dopamine D1- and D2-like agonists on intracranial self-stimulation in male rats.

    PubMed

    Lazenka, Matthew F; Legakis, Luke P; Negus, S Stevens

    2016-06-01

    Dopamine acts through dopamine Type I receptors (comprising D1 and D5 subtypes) and dopamine Type II receptors (comprising D2, D3, and D4 subtypes). Intracranial self-stimulation (ICSS) is 1 experimental procedure that can be used to evaluate abuse-related effects of drugs targeting dopamine receptors. This study evaluated effects of dopamine receptor ligands on ICSS in rats using experimental procedures that have been used previously to examine abused indirect dopamine agonists such as cocaine and amphetamine. Male Sprague-Dawley rats responded under a fixed-ratio 1 schedule for electrical stimulation of the medial forebrain bundle, and frequency of stimulation varied from 56-158 Hz in 0.05 log increments during each experimental session. Drug potency and time course were determined for the D1 ligands A77636, SKF82958, SKF38393, fenoldopam, and SCH39166 and the D2/3 ligands sumanirole, apomorphine, quinpirole, PD128907, pramipexole, aripiprazole, eticlopride, and PG01037. The high-efficacy D1 agonists A77636 and SKF82958 produced dose-dependent, time-dependent, and abuse-related facilitation of ICSS. Lower efficacy D1 ligands and all D2/3 ligands failed to facilitate ICSS at any dose or pretreatment time. A mixture of SKF82958 and quinpirole produced a mixture of effects produced by each drug alone. Quinpirole also failed to facilitate ICSS after regimens of repeated treatment with either quinpirole or cocaine. These studies provide more evidence for divergent effects of dopamine D1- and D2-family agonists on ICSS procedure in rats and suggest that ICSS may be a useful complement to other approaches for preclinical abuse potential assessment, in part because of the reproducibility of results. (PsycINFO Database Record PMID:26987070

  4. Modulation of heroin and cocaine self-administration by dopamine D1- and D2-like receptor agonists in rhesus monkeys.

    PubMed

    Rowlett, James K; Platt, Donna M; Yao, Wei-Dong; Spealman, Roger D

    2007-06-01

    Cocaine-heroin combinations ("speedballs") are commonly self-administered by polydrug abusers. Speedball self-administration may reflect in part an enhancement of the reinforcing effects of the drug combination compared with either drug alone. The present study investigated the degree to which the dopamine receptor system plays a role in cocaine-induced enhancement of heroin self-administration. In rhesus monkeys trained under a progressive ratio schedule of i.v. drug injection, combining heroin with cocaine shifted the heroin dose-response function leftward, and isobolographic analysis indicated that the combined effects were dose-additive. Likewise, combining heroin with the D1-like receptor agonists 6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine HCl (SKF 81297) and 6-chloro-N-allyl-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-[1H]-3-benzazepine (SKF 82958) resulted in a leftward shift in the heroin dose-response function that was dose-additive. In contrast, combining heroin with the D2-like agonists R-(-)-propylnorapomorphine (NPA) and quinpirole shifted the heroin dose-response function to the right. Isobolographic analysis of the combined effects of heroin with NPA and quinpirole revealed infra-additive interactions in both cases. When combined with cocaine instead of heroin, both the D1-like receptor agonist SKF 81297 and the D2-like receptor agonist NPA enhanced cocaine self-administration. The combinations of SKF 81297 with cocaine were dose additive; however, the NPA-cocaine interaction was infra-additive. Together, the results suggest that D1- and D2-like receptor mechanisms may play qualitatively different roles in the combined self-administration of heroin and cocaine. In particular, stimulation of D1-like receptors enhances self-administration of heroin or cocaine individually, similar to the effects of combining cocaine with heroin, whereas stimulation of D2-like receptors seems to play primarily an inhibitory role. PMID:17351103

  5. Possible role of dopamine D1-like and D2-like receptors in behavioural activation and "contingent" reward evaluation in sodium-replete and sodium-depleted rats licking for NaCl solutions.

    PubMed

    D'Aquila, Paolo S; Rossi, Roberta; Rizzi, Antonella; Galistu, Adriana

    2012-03-01

    Based on the different effects of the dopamine D1-like and D2-like receptor antagonists SCH 23390 and raclopride on the measures of licking microstructure in rats, we suggested that the level of activation of reward-associated responses depends on dopamine D1-like receptor stimulation, and is updated, or "reboosted", on the basis of a dopamine D2-like receptor-mediated reward evaluation. To further test this hypothesis, we examined the effects of the dopamine D2-like receptor antagonist raclopride (0, 25, 125, 250μg/kg) and of the dopamine D1-like receptor antagonist SCH 23390 (0, 10, 20 and 40μg/kg) on the microstructure of licking for two different NaCl solutions (0.9% and 2.7%) in rats in sodium-replete status and in the sodium-depleted status induced by the diuretic drug furosemide. Rats were exposed to each solution for 180 seconds after the first lick. Both in sodium-replete and in sodium-depleted status, SCH 23390 produced a decrease of burst number, a measure of behavioural activation, without affecting their size, a measure of reward evaluation. Raclopride reduced burst number but appeared also to exert some effects on burst size. Sodium depletion resulted in an increased intake for both NaCl solutions due to an increase in burst number and size, and in a reduced sensitivity to the effect of raclopride on lick number. These results are not in contrast with the proposed hypothesis and are consistent with previous evidence suggesting a role for dopamine D2-like receptors in the increased NaCl appetite induced by sodium depletion.

  6. Colocalization of Mating-Induced Fos and D2-Like Dopamine Receptors in the Medial Preoptic Area: Influence of Sexual Experience

    PubMed Central

    Nutsch, Victoria L.; Will, Ryan G.; Robison, Christopher L.; Martz, Julia R.; Tobiansky, Daniel J.; Dominguez, Juan M.

    2016-01-01

    Dopamine in the medial preoptic area (mPOA) stimulates sexual activity in males. This is evidenced by microdialysis and microinjection experiments revealing that dopamine receptor antagonists in the mPOA inhibit sexual activity, whereas agonists facilitate behavior. Microdialysis experiments similarly show a facilitative role for dopamine, as levels of dopamine in the mPOA increase with mating. While the majority of evidence suggests an important role for dopamine receptors in the mPOA in the regulation of male sexual behaviors, whether sexual activity or sexual experience influence dopamine receptor function in the mPOA has not been previously shown. Here we used immunohistochemical assays to determine whether varying levels of sexual activity or experience influence the number of cells containing Fos or D2 receptor immunoreactivity. Results show that sexual experience facilitated subsequent behavior, namely experience decreased latencies. Moreover, the number of cells with immunoreactivity for Fos or D2 correlated with levels of sexual experience and sexual activity. Sexual activity increased Fos immunoreactivity. Sexually experienced animals also had significantly more D2-positive cells. Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals. Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate. These findings are noteworthy because sexually experienced animals display increased sexual efficiency. The differences in activation of D2 and changes in receptor density may play a role in this efficiency and other behavioral changes across sexual experience. PMID:27147996

  7. Colocalization of Mating-Induced Fos and D2-Like Dopamine Receptors in the Medial Preoptic Area: Influence of Sexual Experience.

    PubMed

    Nutsch, Victoria L; Will, Ryan G; Robison, Christopher L; Martz, Julia R; Tobiansky, Daniel J; Dominguez, Juan M

    2016-01-01

    Dopamine in the medial preoptic area (mPOA) stimulates sexual activity in males. This is evidenced by microdialysis and microinjection experiments revealing that dopamine receptor antagonists in the mPOA inhibit sexual activity, whereas agonists facilitate behavior. Microdialysis experiments similarly show a facilitative role for dopamine, as levels of dopamine in the mPOA increase with mating. While the majority of evidence suggests an important role for dopamine receptors in the mPOA in the regulation of male sexual behaviors, whether sexual activity or sexual experience influence dopamine receptor function in the mPOA has not been previously shown. Here we used immunohistochemical assays to determine whether varying levels of sexual activity or experience influence the number of cells containing Fos or D2 receptor immunoreactivity. Results show that sexual experience facilitated subsequent behavior, namely experience decreased latencies. Moreover, the number of cells with immunoreactivity for Fos or D2 correlated with levels of sexual experience and sexual activity. Sexual activity increased Fos immunoreactivity. Sexually experienced animals also had significantly more D2-positive cells. Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals. Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate. These findings are noteworthy because sexually experienced animals display increased sexual efficiency. The differences in activation of D2 and changes in receptor density may play a role in this efficiency and other behavioral changes across sexual experience.

  8. Role of Dopamine Receptors Subtypes, D1-Like and D2-Like, within the Nucleus Accumbens Subregions, Core and Shell, on Memory Consolidation in the One-Trial Inhibitory Avoidance Task

    ERIC Educational Resources Information Center

    Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…

  9. ISCCP-D2like-GEO Ed3A

    Atmospheric Science Data Center

    2016-10-12

    ISCCP-D2like-GEO Ed3A Project Title:  CERES Discipline:  ... Order Data Guide Documents:  GEO Description/Abstract Detailed CERES ISCCP-D2like Product ... Data Products Catalog:  DPC_ISCCP-D2like-GEO_R5V3  (PDF) Readme Files:  Readme GEO R5-987 ...

  10. ISCCP-D2like-GEO Ed2A

    Atmospheric Science Data Center

    2014-07-24

    ISCCP-D2like-GEO Ed2A Project Title:  CERES Discipline:  ... Order Data Guide Documents:  GEO Description/Abstract Detailed CERES ISCCP-D2like Product ... Data Products Catalog:  DPC_ISCCP-D2like-GEO_R5V3  (PDF) Readme Files:  Readme GEO R5-909 ...

  11. Dorsal striatal D2-like receptor availability covaries with sensitivity to positive reinforcement during discrimination learning.

    PubMed

    Groman, Stephanie M; Lee, Buyean; London, Edythe D; Mandelkern, Mark A; James, Alex S; Feiler, Karen; Rivera, Ronald; Dahlbom, Magnus; Sossi, Vesna; Vandervoort, Eric; Jentsch, J David

    2011-05-18

    Deviations in reward sensitivity and behavioral flexibility, particularly in the ability to change or stop behaviors in response to changing environmental contingencies, are important phenotypic dimensions of several neuropsychiatric disorders. Neuroimaging evidence suggests that variation in dopamine signaling through dopamine D(2)-like receptors may influence these phenotypes, as well as associated psychiatric conditions, but the specific neurocognitive mechanisms through which this influence is exerted are unknown. To address this question, we examined the relationship between behavioral sensitivity to reinforcement during discrimination learning and D(2)-like receptor availability in vervet monkeys. Monkeys were assessed for their ability to acquire, retain, and reverse three-choice, visual-discrimination problems, and once behavioral performance had stabilized, they received positron emission tomography (PET) scans. D(2)-like receptor availability in dorsal aspects of the striatum was not related to individual differences in the ability to acquire or retain visual discriminations but did relate to the number of trials required to reach criterion in the reversal phase of the task. D(2)-like receptor availability was also strongly correlated with behavioral sensitivity to positive, but not negative, feedback during learning. These results go beyond electrophysiological findings by demonstrating the involvement of a striatal dopaminergic marker in individual differences in feedback sensitivity and behavioral flexibility, providing insight into the neural mechanisms that are affected in neuropsychiatric disorders that feature these deficits.

  12. Dorsal Striatal D2-Like Receptor Availability Co-varies with Sensitivity to Positive Reinforcement during Discrimination Learning

    PubMed Central

    Groman, S.M.; Lee, B.; London, E.D.; Mandelkern, M.; James, A.S.; Feiler, K.; Rivera, R.; Dahlbom, M.; Sossi, V.; Vandervoort, E.; Jentsch, J.D.

    2011-01-01

    Deviations in reward sensitivity and behavioral flexibility, particularly in the ability to change or stop behaviors in response to changing environmental contingencies, are important phenotypic dimensions of several neuropsychiatric disorders. Neuroimaging evidence suggests that variation in dopamine signaling through dopamine D2-like receptors may influence these phenotypes, as well as associated psychiatric conditions, but the specific neurocognitive mechanisms through which this influence is exerted are unknown. To address this question, we examined the relationship between behavioral sensitivity to reinforcement during discrimination learning and D2-like receptor availability in vervet monkeys. Monkeys were assessed for their ability to acquire, retain and reverse three-choice, visual-discrimination problems, and once behavioral performance had stabilized, they received positron emission tomography (PET) scans. D2-like receptor availability in dorsal aspects of the striatum was not related to individual differences in the ability to acquire or retain visual discriminations but did relate to the number of trials required to reach criterion in the reversal phase of the task. D2-like receptor availability was also strongly correlated with behavioral sensitivity to positive, but not negative, feedback during learning. These results go beyond electrophysiological findings by demonstrating the involvement of a striatal dopaminergic marker in individual differences in feedback sensitivity and behavioral flexibility, providing insight into the neural mechanisms that are affected in neuropsychiatric disorders that feature these deficits. PMID:21593313

  13. Dopaminergic isoquinolines with hexahydrocyclopenta[ij]-isoquinolines as D2-like selective ligands.

    PubMed

    Párraga, Javier; Andujar, Sebastián A; Rojas, Sebastián; Gutierrez, Lucas J; El Aouad, Noureddine; Sanz, M Jesús; Enriz, Ricardo D; Cabedo, Nuria; Cortes, Diego

    2016-10-21

    Dopamine receptors (DR) ligands are potential drug candidates for treating neurological disorders including schizophrenia or Parkinson's disease. Three series of isoquinolines: (E)-1-styryl-1,2,3,4-tetrahydroisoquinolines (series 1), 7-phenyl-1,2,3,7,8,8a-hexahydrocyclopenta[ij]-IQs (HCPIQs) (series 2) and (E)-1-(prop-1-en-1-yl)-1,2,3,4- tetrahydroisoquinolines (series 3), were prepared to determine their affinity for both D1 and D2-like DR. The effect of different substituents on the nitrogen atom (methyl or allyl), the dioxygenated function (methoxyl or catechol), the substituent at the β-position of the THIQ skeleton, and the presence or absence of the cyclopentane motif, were studied. We observed that the most active compounds in the three series (2c, 2e, 3a, 3c, 3e, 5c and 5e) possessed a high affinity for D2-like DR and these remarkable features: a catechol group in the IQ-ring and the N-substitution (methyl or allyl). The series showed the following trend to D2-RD affinity: HCPIQs > 1-styryl > 1-propenyl. Therefore, the substituent at the β-position of the THIQ and the cyclopentane ring also modulated this affinity. Among these dopaminergic isoquinolines, HCPIQs stood out for unexpected selectivity to D2-DR since the Ki D1/D2 ratio reached values of 2465, 1010 and 382 for compounds 3a, 3c and 3e, respectively. None of the most active THIQs in D2 DR displayed relevant cytotoxicity in human neutrophils and HUVEC. Finally, and in agreement with the experimental data, molecular modeling studies on DRs of the most characteristic ligands of the three series revealed stronger molecular interactions with D2 DR than with D1 DR, which further supports to the encountered enhanced selectivity to D2 DR. PMID:27343851

  14. Dopaminergic isoquinolines with hexahydrocyclopenta[ij]-isoquinolines as D2-like selective ligands.

    PubMed

    Párraga, Javier; Andujar, Sebastián A; Rojas, Sebastián; Gutierrez, Lucas J; El Aouad, Noureddine; Sanz, M Jesús; Enriz, Ricardo D; Cabedo, Nuria; Cortes, Diego

    2016-10-21

    Dopamine receptors (DR) ligands are potential drug candidates for treating neurological disorders including schizophrenia or Parkinson's disease. Three series of isoquinolines: (E)-1-styryl-1,2,3,4-tetrahydroisoquinolines (series 1), 7-phenyl-1,2,3,7,8,8a-hexahydrocyclopenta[ij]-IQs (HCPIQs) (series 2) and (E)-1-(prop-1-en-1-yl)-1,2,3,4- tetrahydroisoquinolines (series 3), were prepared to determine their affinity for both D1 and D2-like DR. The effect of different substituents on the nitrogen atom (methyl or allyl), the dioxygenated function (methoxyl or catechol), the substituent at the β-position of the THIQ skeleton, and the presence or absence of the cyclopentane motif, were studied. We observed that the most active compounds in the three series (2c, 2e, 3a, 3c, 3e, 5c and 5e) possessed a high affinity for D2-like DR and these remarkable features: a catechol group in the IQ-ring and the N-substitution (methyl or allyl). The series showed the following trend to D2-RD affinity: HCPIQs > 1-styryl > 1-propenyl. Therefore, the substituent at the β-position of the THIQ and the cyclopentane ring also modulated this affinity. Among these dopaminergic isoquinolines, HCPIQs stood out for unexpected selectivity to D2-DR since the Ki D1/D2 ratio reached values of 2465, 1010 and 382 for compounds 3a, 3c and 3e, respectively. None of the most active THIQs in D2 DR displayed relevant cytotoxicity in human neutrophils and HUVEC. Finally, and in agreement with the experimental data, molecular modeling studies on DRs of the most characteristic ligands of the three series revealed stronger molecular interactions with D2 DR than with D1 DR, which further supports to the encountered enhanced selectivity to D2 DR.

  15. DOP-2 D2-Like Receptor Regulates UNC-7 Innexins to Attenuate Recurrent Sensory Motor Neurons during C. elegans Copulation

    PubMed Central

    Correa, Paola A.; Gruninger, Todd

    2015-01-01

    Neuromodulation of self-amplifying circuits directs context-dependent behavioral executions. Although recurrent networks are found throughout the Caenorhabditis elegans connectome, few reports describe the mechanisms that regulate reciprocal neural activity during complex behavior. We used C. elegans male copulation to dissect how a goal-oriented motor behavior is regulated by recurrently wired sensory-motor neurons. As the male tail presses against the hermaphrodite's vulva, cholinergic and glutamatergic reciprocal innervations of post cloaca sensilla (PCS) neurons (PCA, PCB, and PCC), hook neurons (HOA, HOB), and their postsynaptic sex muscles execute rhythmic copulatory spicule thrusts. These repetitive spicule movements continue until the male shifts off the vulva or genital penetration is accomplished. However, the signaling mechanism that temporally and spatially restricts repetitive intromission attempts to vulva cues was unclear. Here, we report that confinement of spicule insertion attempts to the vulva is facilitated by D2-like receptor modulation of gap-junctions between PCB and the hook sensillum. We isolated a missense mutation in the UNC-7(L) gap-junction isoform, which perturbs DOP-2 signaling in the PCB neuron and its electrical partner, HOA. The glutamate-gated chloride channel AVR-14 is expressed in HOA. Our analysis of the unc-7 mutant allele indicates that when DOP-2 promotes UNC-7 electrical communication, AVR-14-mediated inhibitory signals pass from HOA to PCB. As a consequence, PCB is less receptive to be stimulated by its recurrent synaptic partner, PCA. Behavioral observations suggest that dopamine neuromodulation of UNC-7 ensures attenuation of recursive intromission attempts when the male disengages or is dislodged from the hermaphrodite genitalia. SIGNIFICANCE STATEMENT Using C. elegans male copulation as a model, we found that the neurotransmitter dopamine stimulates D2-like receptors in two sensory circuits to terminate futile

  16. A D2-like receptor family agonist produces analgesia in mechanonociception but not in thermonociception at the spinal cord level in rats.

    PubMed

    Almanza, Angélica; Simón-Arceo, Karina; Coffeen, Ulises; Fuentes-García, Ruth; Contreras, Bernardo; Pellicer, Francisco; Mercado, Francisco

    2015-10-01

    The administration of dopaminergic drugs produces analgesia in individuals experiencing different types of pain. Analgesia induced by these drugs at the spinal cord level is mediated by D2-like agonists, which specifically inhibit the detection of nociceptive stimuli by sensory afferents. The extent of the analgesia provided by spinal dopamine agonists remains controversial, and the cellular mechanism of this analgesic process is poorly understood. The objective of this study was to evaluate the analgesic effect of quinpirole, a D2-like agonist, based on two nociceptive tests and at various doses that were selected to specifically activate dopamine receptors. We found that intrathecal quinpirole administration produces analgesia of mechanical but not thermal nociception and that the analgesic effect of quinpirole is reversed by a mix of D2, D3, and D4 receptor-specific antagonists, suggesting that the activation of all D2-like receptors is involved in the analgesia produced by intrathecal quinpirole. The differential effect on thermal and mechanical nociception was also tested upon the activation of μ-opioid receptors. As reported previously, low doses of the μ-opioid receptor agonist DAMGO produced analgesia of only thermonociception. This evidence shows that a D2-like receptor agonist administered at the spinal cord level produces analgesia specific to mechanonociception but not thermonociception.

  17. A D2-like receptor family agonist produces analgesia in mechanonociception but not in thermonociception at the spinal cord level in rats.

    PubMed

    Almanza, Angélica; Simón-Arceo, Karina; Coffeen, Ulises; Fuentes-García, Ruth; Contreras, Bernardo; Pellicer, Francisco; Mercado, Francisco

    2015-10-01

    The administration of dopaminergic drugs produces analgesia in individuals experiencing different types of pain. Analgesia induced by these drugs at the spinal cord level is mediated by D2-like agonists, which specifically inhibit the detection of nociceptive stimuli by sensory afferents. The extent of the analgesia provided by spinal dopamine agonists remains controversial, and the cellular mechanism of this analgesic process is poorly understood. The objective of this study was to evaluate the analgesic effect of quinpirole, a D2-like agonist, based on two nociceptive tests and at various doses that were selected to specifically activate dopamine receptors. We found that intrathecal quinpirole administration produces analgesia of mechanical but not thermal nociception and that the analgesic effect of quinpirole is reversed by a mix of D2, D3, and D4 receptor-specific antagonists, suggesting that the activation of all D2-like receptors is involved in the analgesia produced by intrathecal quinpirole. The differential effect on thermal and mechanical nociception was also tested upon the activation of μ-opioid receptors. As reported previously, low doses of the μ-opioid receptor agonist DAMGO produced analgesia of only thermonociception. This evidence shows that a D2-like receptor agonist administered at the spinal cord level produces analgesia specific to mechanonociception but not thermonociception. PMID:26303304

  18. Investigation on the co-luminescence effect of europium (III)-lanthanum(III)-dopamine-sodium dodecylbenzene sulfonate system and its application.

    PubMed

    Si, Hailin; Zhao, Fang; Cai, Huan

    2013-01-01

    A novel luminescence, enhancement phenomenon in the europium(III)-dopamine-sodium dodecylbenzene sulfonate system was observed when lanthanum(III) was added. Based on this, a sensitive co-luminescence method was established for the determination of dopamine. The luminescence signal for the europium (III)-lanthanum(III)-dopamine-sodium dodecylbenzene sulfonate system was monitored at λ(ex) = 300 nm, λ(em) = 618 nm and pH 8.3. Under optimized conditions, the enhanced luminescence signal responded linearly to the concentration of dopamine in the range 1.0 × 10(-10)-5.0 × 10(-7) mol/L with a correlation coefficient of 0.9993 (n = 11). The detection limit (3σ) was 2.7 × 10(-11) mol/L and the relative standard deviation for 11 parallel measurements of 3.0 × 10(-8) mol/L dopamine was 1.9%. The presented method was successfully applied for the estimation of dopamine in samples of pharmaceutical preparations, human serum and urine. The possible luminescence enhancement mechanism of the system is discussed briefly.

  19. Effect of D1-like and D2-like receptor antagonists on methamphetamine and 3,4-methylenedioxymethamphetamine self-administration in rats.

    PubMed

    Brennan, Katharine A; Carati, Caleb; Lea, Rod A; Fitzmaurice, Paul S; Schenk, Susan

    2009-12-01

    It has been suggested that activation of dopamine D1-like and D2-like receptors contribute equally to the maintenance of drug self-administration. This study compared the contribution of these receptor subtypes to 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (MA) self-administration. Effects of pretreatment with the D2-like receptor antagonist, eticlopride (0.0, 0.0125, 0.025 or 0.05 mg/kg, intraperitoneal), on responding maintained by several doses of MDMA (0.5, 1.0 and 2.0 mg/kg/infusion) and MA (0.05, 0.1 and 0.2 mg/kg/infusion) were determined. As we have published data showing the effects of the D1-like receptor antagonist, SCH23390 (0.0, 0.01 or 0.02 mg/kg, subcutaneous), on MDMA self-administration, effects of this dose range on the MA dose-response curve were determined. In our previous study, 0.02 mg/kg SCH23390 produced a rightward shift in the MDMA dose response curve, whereas in the present results, this dose decreased responding maintained by most doses of MA. Eticlopride increased the responding maintained by most doses of MDMA but failed to alter MA self-administration. The present results suggest that both D1-like and D2-like receptors contribute to the maintenance of MDMA self-administration, whereas MA self-administration was more sensitive to D1-like receptor blockade.

  20. Validation of the Reference Tissue Model for Estimation of Dopaminergic D2-Like Receptor Binding With [18 F] (N-Methyl)Benperidol in Humans

    PubMed Central

    Antenor-Dorsey, Jo Ann V.; Markham, Joanne; Moerlein, Stephen M.; Videen, Tom O.; Perlmutter, Joel S.

    2008-01-01

    PET measurements of dopaminergic D2-like receptors may provide important insights into disorders such as Parkinson's disease, schizophrenia, dystonia and Tourette's syndrome. The PET radioligand [18 F] (N-Methyl)Benperidol ([18F]-NMB) has high affinity and selectivity for D2-like receptors and is not displaced by endogenous dopamine. The goal of this study is to evaluate use of a graphical method utilizing a reference tissue region for ([18F]-NMB PET analysis by comparisons to an explicit three-compartment tracer kinetic model and graphical method that use arterial blood measurements. We estimated binding potential (BP) in the caudate and putamen using all three methods in 16 humans and found that the three-compartment tracer kinetic method provided the highest BP estimates while the graphical method using a reference region yielded the lowest estimates (p<0.0001 by repeated measures ANOVA). However, the three methods yielded highly correlated BP estimates for the two regions of interest. We conclude that the graphical method using a reference region still provides a useful estimate of BP comparable to methods using arterial blood sampling, especially since the reference region method is less invasive and computationally more straightforward; thereby simplifying these measurements. PMID:18355689

  1. Inhibition of the Fe(III)-catalyzed dopamine oxidation by ATP and its relevance to oxidative stress in Parkinson's disease.

    PubMed

    Jiang, Dianlu; Shi, Shuyun; Zhang, Lin; Liu, Lin; Ding, Bingrong; Zhao, Bingqing; Yagnik, Gargey; Zhou, Feimeng

    2013-09-18

    Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic cells, which implicates a role of dopamine (DA) in the etiology of PD. A possible DA degradation pathway is the Fe(III)-catalyzed oxidation of DA by oxygen, which produces neuronal toxins as side products. We investigated how ATP, an abundant and ubiquitous molecule in cellular milieu, affects the catalytic oxidation reaction of dopamine. For the first time, a unique, highly stable DA-Fe(III)-ATP ternary complex was formed and characterized in vitro. ATP as a ligand shifts the catecholate-Fe(III) ligand metal charge transfer (LMCT) band to a longer wavelength and the redox potentials of both DA and the Fe(III) center in the ternary complex. Remarkably, the additional ligation by ATP was found to significantly reverse the catalytic effect of the Fe(III) center on the DA oxidation. The reversal is attributed to the full occupation of the Fe(III) coordination sites by ATP and DA, which blocks O2 from accessing the Fe(III) center and its further reaction with DA. The biological relevance of this complex is strongly implicated by the identification of the ternary complex in the substantia nigra of rat brain and its attenuation of cytotoxicity of the Fe(III)-DA complex. Since ATP deficiency accompanies PD and neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) induced PD, deficiency of ATP and the resultant impairment toward the inhibition of the Fe(III)-catalyzed DA oxidation may contribute to the pathogenesis of PD. Our finding provides new insight into the pathways of DA oxidation and its relationship with synaptic activity. PMID:23823941

  2. A novel Schiff base bearing dopamine groups with tripodal structure. Synthesis and its salen/salophen-bridged Fe/Cr(III) capped complexes

    NASA Astrophysics Data System (ADS)

    Kocyigit, Ozcan

    2013-02-01

    This work presents the synthesis of a novel Schiff base and its complexation properties with Fe(III) and Cr(III). A Schiff base bearing dopamine (TRDPA) was synthesized using dopamine hydrochloride and 1,3,5-tris (formylphenoxymethyl)benzene in methanol media. The prepared TRDPA was then reacted with four new trinuclear Fe(III) and Cr(III) complexes involving tetradenta Schiff bases N,N-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(salophenH2). The structures of these compounds were characterized through 1H NMR, 13C NMR, FT-IR, thermal analysis (TG), elemental analysis, and magnetic susceptibility measurements. The complexes were also characterized as low-spin distorted octahedral Fe(III) and Cr(III) bridged by a catechol group.

  3. Synthesis and characterization of dopamine substitue tripodal trinuclear [(salen/salophen/salpropen)M] (Mdbnd Cr(III), Mn(III), Fe(III) ions) capped s-triazine complexes: Investigation of their thermal and magnetic properties

    NASA Astrophysics Data System (ADS)

    Uysal, Şaban; Koç, Ziya Erdem

    2016-04-01

    In this work, we aimed to synthesize and characterize a novel tridirectional ligand including three catechol groups and its novel tridirectional-trinuclear triazine core complexes. For this purpose, we used melamine (2,4,6-triamino-1,3,5-triazine) (MA) as starting material. 2,4,6-tris(4-carboxybenzimino)-1,3,5-triazine (II) was synthesized by the reaction of an equivalent melamine (I) and three equivalent 4-carboxybenzaldehyde. 4,4‧,4″-((1E,1‧E,1″E)-((1,3,5-triazine-2,4,6-triyl)tris(azanylylidene))tris(methanylylidene))tris(N-(3,4-dihydroxyphenethyl)benzamide) L (IV) was synthesized by the reaction of one equivalent (II) and three equivalent dopamine (3,4-dihydroxyphenethylamine) (DA) by using two different methods. (II, III, IV) and nine novel trinuclear Cr(III), Mn(III) and Fe(III) complexes of (IV) were characterized by means of elemental analyses, 1H NMR, FT-IR spectrometry, LC-MS (ESI+) and thermal analyses. The metal ratios of the prepared complexes were performed using Atomic Absorption Spectrophotometry (AAS). We also synthesized novel tridirectional-trinuclear systems and investigated their effects on magnetic behaviors of [salen, salophen, salpropen Cr(III)/Mn(III)/Fe(III)] capped complexes. The complexes were determined to be low-spin distorted octahedral Mn(III) and Fe(III), and distorted octahedral Cr(III) all bridged by catechol group.

  4. Silver nanoparticles-enhanced rare earth co-luminescence effect of Tb(III)-Y(III)-dopamine system.

    PubMed

    Li, Huihui; Wu, Xia

    2015-06-01

    It was found that silver nanoparticles (AgNPs) could enhance co-luminescence effect of rare earths ions Tb(3+) and Y(3+). Based on this, a sensitive fluorescence detection method for the determination of dopamine (DA) was proposed. Moreover, the detection limit for DA was very low (down to nM). This is because DA can remarkably enhance the luminescence intensity of the Tb(3+) ion by Y(3+) in the colloidal solution of AgNPs, forming a new co-luminescence system. Furthermore, based on the metal enhanced fluorescence (MEF), AgNPs can sensitize the co-luminescence effect of the complex of Tb(3+)-Y(3+)-DA. In a neutral buffer solution (pH 7.50), the luminescence intensity of the system was linearly related to the concentration of DA in the range of 2.0-100 nM, with a limit of detection as low as 0.57 nM. The proposed method was applied for the determination of DA in dopamine hydrochloride injections and human serum samples with good accuracy and satisfactory recovery.

  5. Dopaminergic D2-like agonists produce yawning in the myelin mutant taiep and Sprague-Dawley rats.

    PubMed

    Eguibar, Jose R; Cortes, Ma del Carmen; Lara-Lozano, Manuel; Mendiola, Diana M

    2012-07-01

    Systemic administration of D2-like dopaminergic-receptor agonists increases yawning behavior. However, only a few studies have been done in animals with pathological conditions. The taiep rat is a myelin mutant with an initial hypomyelination followed by progressive demyelination, being the brainstem one of the most affected areas. In our experiments, we analyzed the effects of systemic administration of the D2-family agonists and antagonists on yawning behavior, and correlated them with the lipid myelin content in the brainstem and other areas in the central nervous system (CNS) in 8 month old male taiep and Sprague-Dawley rats. Subjects were maintained under standard conditions in Plexiglas cages with a 12:12 light-dark cycle, lights on at 0700 and free access to rodent pellets and tap water. Drugs were freshly prepared injected ip at 0800 and subjects were observed for 60 min. When antagonists were used it was administered 15 min before the agonist. Sprague-Dawley and taiep rats significantly increased their yawning frequency after systemic injection of (-)-quinpirole hydrochloride, R(+)-7-Hydroxy-2-(dipropylamino)tetralin hydrobromide (7-OH-DPAT) or trans-(±)-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano [4,3-b]-1,4-oxazin-9-ol hydrochloride ((±)-PD 128,907). Among D2-like agonists used higher effects are obtained with (-)-quinpirole. The effects caused by (-)-quinpirole can be reduced by (-)-sulpiride; and yawning caused by 7-OH-DPAT was decreased by tiapride only in taiep rats. In Sprague-Dawley only (-)-sulpiride is able to decrease (-)-quinpirole-caused yawning. In conclusion, dopaminergic D2-like agonists are still able to cause yawning despite the severe myelin loss in taiep rats. Similarly, patients with various CNS illnesses that affect myelin, such as stroke or multiple sclerosis, are able to yawn suggesting that trigger neurons are still able to command this innate behavior.

  6. Synthesis and D(2)-like binding affinity of new derivatives of N-(1-ethyl-2-pyrrolidinylmethyl)-4,5-dihydro-1H-benzo[g]indole-3-carboxamide and related 4H-[1]benzothiopyrano[4,3-b]pyrrole and 5,6-dihydro-4H-benzo[6,7]cyclohepta[b]pyrrole-3-carboxamide analogues.

    PubMed

    Pinna, Gérard A; Pirisi, Maria A; Chelucci, Giorgio; Mussinu, Jean M; Murineddu, Gabriele; Loriga, Giovanni; D'Aquila, Paolo S; Serra, Gino

    2002-08-01

    Various new derivatives and structural analogues of N-(1-ethyl-2-pyrrolidinylmethyl)-4,5-dihydro-1H-benzo[g]indole-3-carboxamide (2a), a representative term of a series of 2-aminomethylpyrrolidinyl derived 4,5-dihydrobenzo[g]indolcarboxamides with good D(2)-like affinity, were synthesized and evaluated for their ability to bind to dopamine D(2)-like receptors in vitro. The structural contribution to D(2)-like receptor binding of the 4,5-dihydrobenzo[g]indole portion of the molecule was examined. From these studies, compound 2k, 2-chloro-N-(1-ethyl-2-pyrrolidinylmethyl)-5,6-dihydro-4H-benzo[6,7]cyclohepta[b]pyrrole-3-carboxamide, was found to possess a potent affinity for D(2)-like receptors. Behavioural tests in rats have shown that this compound reduces the hyperactivity induced by amphetamine, a property shared by all antipsychotic drugs, at a dose which failed to induce catalepsy, an effect which is predictive of extrapyramidal side effects in humans. The other compounds demonstrated moderate (2c, 2h, and 2j) or no affinity for D(2)-like receptors.

  7. Dopamine regulates body size in Caenorhabditis elegans.

    PubMed

    Nagashima, Takashi; Oami, Eitaro; Kutsuna, Natsumaro; Ishiura, Shoichi; Suo, Satoshi

    2016-04-01

    The nervous system plays a critical role in the regulation of animal body sizes. In Caenorhabditis elegans, an amine neurotransmitter, dopamine, is required for the tactile perception of food and food-dependent behavioral changes, while its role in development is unknown. In this study, we show that dopamine negatively regulates body size through a D2-like dopamine receptor, DOP-3, in C. elegans. Dopamine alters body size without affecting food intake or developmental rate. We also found that dopamine promotes egg-laying, although the regulation of body size by dopamine was not solely caused by this effect. Furthermore, dopamine negatively regulates body size through the suppression of signaling by octopamine and Gq-coupled octopamine receptors, SER-3 and SER-6. Our results demonstrate that dopamine and octopamine regulate the body size of C. elegans and suggest a potential role for perception in addition to ingestion of food for growth. PMID:26921458

  8. Dopamine regulates body size in Caenorhabditis elegans.

    PubMed

    Nagashima, Takashi; Oami, Eitaro; Kutsuna, Natsumaro; Ishiura, Shoichi; Suo, Satoshi

    2016-04-01

    The nervous system plays a critical role in the regulation of animal body sizes. In Caenorhabditis elegans, an amine neurotransmitter, dopamine, is required for the tactile perception of food and food-dependent behavioral changes, while its role in development is unknown. In this study, we show that dopamine negatively regulates body size through a D2-like dopamine receptor, DOP-3, in C. elegans. Dopamine alters body size without affecting food intake or developmental rate. We also found that dopamine promotes egg-laying, although the regulation of body size by dopamine was not solely caused by this effect. Furthermore, dopamine negatively regulates body size through the suppression of signaling by octopamine and Gq-coupled octopamine receptors, SER-3 and SER-6. Our results demonstrate that dopamine and octopamine regulate the body size of C. elegans and suggest a potential role for perception in addition to ingestion of food for growth.

  9. Dopamine facilitates long-term depression of glutamatergic transmission in rat prefrontal cortex.

    PubMed

    Otani, S; Blond, O; Desce, J M; Crépel, F

    1998-08-01

    Using sharp-electrode intracellular recordings, we studied the dopaminergic facilitation of synaptic plasticity in layer I-II afferents--layer V neuron glutamatergic synapses in rat prefrontal cortex in vitro. Tetanic stimulation (100 pulses at 50 Hz, four times at 0.1 Hz) to layer I-II afferents induced N-methyl-D-aspartate receptor-independent long-term depression (>40 min) of the glutamatergic synapses when the stimulation was coupled with a bath-application of dopamine. Tetanic stimulation alone did not induce lasting synaptic changes. Dopamine application alone transiently depressed synaptic responses, which fully recovered within 30 min. Pharmacological analyses with antagonists suggested that dopamine action on either D1-like or D2-like receptors can facilitate the induction of long-term depression. However, results with agonists were not fully consistent with the antagonist results: while a D2 agonist mimicked the facilitatory dopamine effect, D1 agonists failed to mimic the effect. We also analysed the synaptic responses during tetanus and found that dopamine prolongs membrane depolarization during high-frequency inputs. Postsynaptic membrane depolarization is indeed critical for long-term depression induction in the presence of dopamine, since postsynaptic hyperpolarization during tetanus blocked the dopaminergic facilitation of long-term depression induction. Postsynaptic injection of the Ca2+ chelator bis-(o-aminophenoxy)-N,N,N',N'-tetra-acetic acid (100 mM in the electrode) also blocked long-term depression induction. Our results show that dopamine lowers the threshold for long-term depression induction in rat prefrontal glutamatergic transmission. A possible underlying mechanism of this dopaminergic facilitation is the enhancement of postsynaptic depolarization during tetanus by dopamine, which may increase the amount of Ca2+ entry from voltage-gated channels to the level sufficient for plasticity induction.

  10. Dopamine abnormalities in the neocortex of patients with temporal lobe epilepsy.

    PubMed

    Rocha, Luisa; Alonso-Vanegas, Mario; Villeda-Hernández, Juana; Mújica, Mario; Cisneros-Franco, José Miguel; López-Gómez, Mario; Zavala-Tecuapetla, Cecilia; Frías-Soria, Christian Lizette; Segovia-Vila, José; Borsodi, Anna

    2012-01-01

    Experiments were designed to evaluate different variables of the dopaminergic system in the temporal cortex of surgically treated patients with temporal lobe epilepsy (TLE) associated with mesial sclerosis (MTLE, n=12) or with cerebral tumor or lesion (n=8). In addition, we sought to identify dopaminergic abnormalities in those patients with epilepsy that had comorbid anxiety and depression. Specifically, we investigated changes in dopamine and its metabolites, D1 and D2 receptors, tyrosine hydroxylase (TH) and dopamine transporter. Results obtained from patients with epilepsy were compared with those found in experiments using autopsy material. The neocortex of patients with MTLE demonstrated high D1 expression (1680%, p<0.05) and binding (layers I-II, 31%, p<0.05; layers V-VI, 28%, p<0.05), and decreased D2 expression (77%, p<0.05). The neocortex of patients with TLE secondary to cerebral tumor or lesion showed high expression of D1 receptors (1100%, p<0.05), and D2-like induced activation of G proteins (layers I-II, 503%; layers III-IV, 557%; layers V-VI, 964%, p<0.05). Both epileptic groups presented elevated binding to the dopamine transporter and low tissue content of dopamine and its metabolites. Analysis revealed the following correlations: a) D1 receptor binding correlated negatively with seizure onset age and seizure frequency, and positively with duration of epilepsy; b) D2 receptor binding correlated positively with age of seizure onset and negatively with duration of epilepsy; c) dopamine transporter binding correlated positively with duration of epilepsy and frequency of seizures; d) D2-like induced activation of G proteins correlated positively with the age of patients. When compared with autopsies and patients with anxiety and depression, patients without neuropsychiatric disorders showed high D2-like induced activation of G proteins, an effect that correlated positively with age of patient and seizure onset age, and negatively with duration of

  11. Dopamine D4 receptor exon III polymorphism, adverse life events and personality traits in a nonclinical German adult sample.

    PubMed

    Reiner, Iris; Spangler, Gottfried

    2011-01-01

    Personality and temperament embrace a wide area of both psychological and behavioral processes which are also based on disposition. A functional polymorphism in exon III of the dopamine D4 receptor gene (DRD4) has been a highly suspect genetic marker for personality in spite of ambiguous results. The present study aimed to further elucidate the relationship between DRD4, negative life events and personality in a representative nonclinical sample. Hundred sixty-seven Germans completed the NEO Five-Factor Inventory, the Tridimensional Personality Questionnaire and the California Adult Q-Sort. A factor analysis revealed 3 factors: emotional stability, social orientation and impulsivity. DNA from buccal cells was genotyped for the DRD4 variable-number tandem-repeat exon III polymorphism with respect to presence versus absence of the DRD4 7-repeat allele. Adverse life events were assessed by means of the Adverse Life Events Scale. Men carrying the DRD4 7-repeat allele were more impulsive than those without. Male 7-repeat carriers were more emotionally instable than others, but only when they experienced a large amount of negative life events. No genotype-personality relationships were found for women. The results indicate gender-specific influences of the DRD4 gene on human behavior and invite researchers to further investigate gene-environment correlations on personality traits.

  12. Inhibition of the Fe(III)-Catalyzed Dopamine Oxidation by ATP and Its Relevance to Oxidative Stress in Parkinson’s Disease

    PubMed Central

    2013-01-01

    Parkinson’s disease (PD) is characterized by the progressive degeneration of dopaminergic cells, which implicates a role of dopamine (DA) in the etiology of PD. A possible DA degradation pathway is the Fe(III)-catalyzed oxidation of DA by oxygen, which produces neuronal toxins as side products. We investigated how ATP, an abundant and ubiquitous molecule in cellular milieu, affects the catalytic oxidation reaction of dopamine. For the first time, a unique, highly stable DA–Fe(III)–ATP ternary complex was formed and characterized in vitro. ATP as a ligand shifts the catecholate–Fe(III) ligand metal charge transfer (LMCT) band to a longer wavelength and the redox potentials of both DA and the Fe(III) center in the ternary complex. Remarkably, the additional ligation by ATP was found to significantly reverse the catalytic effect of the Fe(III) center on the DA oxidation. The reversal is attributed to the full occupation of the Fe(III) coordination sites by ATP and DA, which blocks O2 from accessing the Fe(III) center and its further reaction with DA. The biological relevance of this complex is strongly implicated by the identification of the ternary complex in the substantia nigra of rat brain and its attenuation of cytotoxicity of the Fe(III)–DA complex. Since ATP deficiency accompanies PD and neurotoxin 1-methyl-4-phenylpyridinium (MPP+) induced PD, deficiency of ATP and the resultant impairment toward the inhibition of the Fe(III)-catalyzed DA oxidation may contribute to the pathogenesis of PD. Our finding provides new insight into the pathways of DA oxidation and its relationship with synaptic activity. PMID:23823941

  13. D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats

    PubMed Central

    Ohtani, Norimasa; Masaki, Eiji

    2016-01-01

    Background Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats. Methods Male Sprague-Dawley rats (250–300 g) were anesthetized with sevoflurane and an intrathecal (IT) catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole), or a D2-like receptor antagonist (sulpiride) was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision. Results Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect. Conclusion A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold. PMID:27799818

  14. Dopamine, vesicular transporters, and dopamine receptor expression in rat major salivary glands.

    PubMed

    Tomassoni, Daniele; Traini, Enea; Mancini, Manuele; Bramanti, Vincenzo; Mahdi, Syed Sarosh; Amenta, Francesco

    2015-09-01

    The localization of dopamine stores and the expression and localization of dopamine (DAT) and vesicular monoamine transporters (VMAT) type-1 and -2 and of dopamine D1-like and D2-like receptor subtypes were investigated in rat submandibular, sublingual, and parotid salivary glands by HPLC with electrochemical detection, as well as immunochemical and immunohistochemical techniques. Male Wistar rats of 2 mo of age were used. The highest dopamine levels were measured in the parotid gland, followed by the submandibular and sublingual glands. Western blot analysis revealed DAT, VMAT-1, VMAT-2, and dopamine receptors immunoreactivity in membrane preparations obtained from the three glands investigated. Immunostaining for dopamine and transporters was developed within striated ducts. Salivary glands processed for dopamine receptors immunohistochemistry developed an immunoreaction primarily in striated and excretory ducts. In the submandibular gland, acinar cells displayed strong immunoreactivity for the D2 receptor, while cells of the convoluted granular tubules were negative for both D1-like and D2-like receptors. Parotid glands acinar cells displayed the highest immunoreactivity for both D1 and D2 receptors compared with other salivary glands. The above localization of dopamine and dopaminergic markers investigated did not correspond closely with neuron-specific enolase (NSE) localization. This indicates that at least in part, catecholamine stores and dopaminergic markers are independent from glandular innervation. These findings suggest that rat major salivary glands express a dopaminergic system probably involved in salivary secretion. The stronger immunoreactivity for dopamine transporters and receptors in striated duct cells suggests that the dopaminergic system could regulate not only quality, but also volume and ionic concentration of saliva.

  15. Association between the dopamine D4 receptor gene exon III variable number of tandem repeats and political attitudes in female Han Chinese.

    PubMed

    Ebstein, Richard P; Monakhov, Mikhail V; Lu, Yunfeng; Jiang, Yushi; Lai, Poh San; Chew, Soo Hong

    2015-08-22

    Twin and family studies suggest that political attitudes are partially determined by an individual's genotype. The dopamine D4 receptor gene (DRD4) exon III repeat region that has been extensively studied in connection with human behaviour, is a plausible candidate to contribute to individual differences in political attitudes. A first United States study provisionally identified this gene with political attitude along a liberal-conservative axis albeit contingent upon number of friends. In a large sample of 1771 Han Chinese university students in Singapore, we observed a significant main effect of association between the DRD4 exon III variable number of tandem repeats and political attitude. Subjects with two copies of the 4-repeat allele (4R/4R) were significantly more conservative. Our results provided evidence for a role of the DRD4 gene variants in contributing to individual differences in political attitude particularly in females and more generally suggested that associations between individual genes, and neurochemical pathways, contributing to traits relevant to the social sciences can be provisionally identified. PMID:26246555

  16. Association between the dopamine D4 receptor gene exon III variable number of tandem repeats and political attitudes in female Han Chinese

    PubMed Central

    Ebstein, Richard P.; Monakhov, Mikhail V.; Lu, Yunfeng; Jiang, Yushi; Lai, Poh San; Chew, Soo Hong

    2015-01-01

    Twin and family studies suggest that political attitudes are partially determined by an individual's genotype. The dopamine D4 receptor gene (DRD4) exon III repeat region that has been extensively studied in connection with human behaviour, is a plausible candidate to contribute to individual differences in political attitudes. A first United States study provisionally identified this gene with political attitude along a liberal–conservative axis albeit contingent upon number of friends. In a large sample of 1771 Han Chinese university students in Singapore, we observed a significant main effect of association between the DRD4 exon III variable number of tandem repeats and political attitude. Subjects with two copies of the 4-repeat allele (4R/4R) were significantly more conservative. Our results provided evidence for a role of the DRD4 gene variants in contributing to individual differences in political attitude particularly in females and more generally suggested that associations between individual genes, and neurochemical pathways, contributing to traits relevant to the social sciences can be provisionally identified. PMID:26246555

  17. Association between the dopamine D4 receptor gene exon III variable number of tandem repeats and political attitudes in female Han Chinese.

    PubMed

    Ebstein, Richard P; Monakhov, Mikhail V; Lu, Yunfeng; Jiang, Yushi; Lai, Poh San; Chew, Soo Hong

    2015-08-22

    Twin and family studies suggest that political attitudes are partially determined by an individual's genotype. The dopamine D4 receptor gene (DRD4) exon III repeat region that has been extensively studied in connection with human behaviour, is a plausible candidate to contribute to individual differences in political attitudes. A first United States study provisionally identified this gene with political attitude along a liberal-conservative axis albeit contingent upon number of friends. In a large sample of 1771 Han Chinese university students in Singapore, we observed a significant main effect of association between the DRD4 exon III variable number of tandem repeats and political attitude. Subjects with two copies of the 4-repeat allele (4R/4R) were significantly more conservative. Our results provided evidence for a role of the DRD4 gene variants in contributing to individual differences in political attitude particularly in females and more generally suggested that associations between individual genes, and neurochemical pathways, contributing to traits relevant to the social sciences can be provisionally identified.

  18. Ultra-thin film composite mixed matrix membranes incorporating iron(III)-dopamine nanoparticles for CO2 separation.

    PubMed

    Kim, Jinguk; Fu, Qiang; Scofield, Joel M P; Kentish, Sandra E; Qiao, Greg G

    2016-04-21

    Iron dopamine nanoparticles (FeDA NPs) are incorporated into a nanoscale thick polyethylene glycol (PEG) matrix for the first time, to form ultra-thin film composite mixed matrix membranes (UTFC-MMMs) via a recently developed continuous assembly of polymers (CAP) nanotechnology. The FeDA NPs are prepared by in situ nano-complexation between Fe(3+) and DA and have a particle size that can be varied from 3 to 74 nanometers by adjusting the molar ratio of DA to Fe(3+) ion. The cross-linked selective layer with sub 100 nanometer thickness is prepared by atom transfer radical polymerisation of a mixture of PEG macrocross-linkers and FeDA NPs on top of a highly permeable poly(dimethyl siloxane) (PDMS) prelayer, which is spin-coated onto a porous polyacrylonitrile (PAN) substrate. The incorporation of the FeDA NPs within the PEG-based selective layer is confirmed by XPS analysis. The UTFC-MMMs (thickness: ∼45 nm) formed present excellent gas separation performance with a CO2 permeance of ∼1200 GPU (1 GPU = 10(-6) cm(3) (STP) cm(-2) s(-1) cmHg(-1)) and an enhanced CO2/N2 selectivity of over 35, which is the best performance for UTFC membranes in the reported literature.

  19. Elucidation of the interplay between Fe(II), Fe(III), and dopamine with relevance to iron solubilization and reactive oxygen species generation by catecholamines.

    PubMed

    Sun, Yingying; Pham, A Ninh; Waite, T David

    2016-06-01

    The non-enzymatically catalyzed oxidation of dopamine (DA) and the resultant formation of powerful oxidants such as the hydroxyl radical ((•) OH) through 'Fenton chemistry' in the presence of iron within dopaminergic neurons are thought to contribute to the damage of cells or even lead to neuronal degenerative diseases such as Parkinson's disease. An understanding of DA oxidation as well as the transformation of the intermediates that are formed in the presence of iron under physiological conditions is critical to understanding the mechanism of DA and iron induced oxidative stress. In this study, the generation of H2 O2 through the autoxidation and iron-catalyzed oxidation of DA, the formation of the dominant complex via the direct reaction with Fe(II) and Fe(III) in both oxygen saturated and deoxygenated conditions and the oxidation of Fe(II) in the presence of DA at physiological pH 7.4 were investigated. The oxidation of DA resulted in the generation of significant amounts of H2 O2 with this process accelerated significantly in the presence of Fe(II) and Fe(III). At high DA:Fe(II) ratios, the results from this study suggest that DA plays a protective role by complexing Fe(II) and preventing it from reacting with the generated H2 O2 . However, the accumulation of H2 O2 may result in cellular damage as high intracellular H2 O2 concentrations will result in the oxidation of remaining Fe(II) mainly through the peroxidation pathway. At low DA:Fe(II) ratios however, it is likely that DA will act as a pro-oxidant by generating H2 O2 which, in the presence of Fe(II), will result in the production of strongly oxidizing (•) OH radicals. Powerful oxidants such as the hydroxyl radical ((•) OH) have previously been thought to be generated through the interplay between dopamine (DA) and iron, contributing to damage to cells and, potentially, leading to neuronal degenerative diseases such as Parkinson's disease. Our results suggest that DA plays a dual role as high DA

  20. Ultra-thin film composite mixed matrix membranes incorporating iron(iii)-dopamine nanoparticles for CO2 separation

    NASA Astrophysics Data System (ADS)

    Kim, Jinguk; Fu, Qiang; Scofield, Joel M. P.; Kentish, Sandra E.; Qiao, Greg G.

    2016-04-01

    Iron dopamine nanoparticles (FeDA NPs) are incorporated into a nanoscale thick polyethylene glycol (PEG) matrix for the first time, to form ultra-thin film composite mixed matrix membranes (UTFC-MMMs) via a recently developed continuous assembly of polymers (CAP) nanotechnology. The FeDA NPs are prepared by in situ nano-complexation between Fe3+ and DA and have a particle size that can be varied from 3 to 74 nanometers by adjusting the molar ratio of DA to Fe3+ ion. The cross-linked selective layer with sub 100 nanometer thickness is prepared by atom transfer radical polymerisation of a mixture of PEG macrocross-linkers and FeDA NPs on top of a highly permeable poly(dimethyl siloxane) (PDMS) prelayer, which is spin-coated onto a porous polyacrylonitrile (PAN) substrate. The incorporation of the FeDA NPs within the PEG-based selective layer is confirmed by XPS analysis. The UTFC-MMMs (thickness: ~45 nm) formed present excellent gas separation performance with a CO2 permeance of ~1200 GPU (1 GPU = 10-6 cm3 (STP) cm-2 s-1 cmHg-1) and an enhanced CO2/N2 selectivity of over 35, which is the best performance for UTFC membranes in the reported literature.Iron dopamine nanoparticles (FeDA NPs) are incorporated into a nanoscale thick polyethylene glycol (PEG) matrix for the first time, to form ultra-thin film composite mixed matrix membranes (UTFC-MMMs) via a recently developed continuous assembly of polymers (CAP) nanotechnology. The FeDA NPs are prepared by in situ nano-complexation between Fe3+ and DA and have a particle size that can be varied from 3 to 74 nanometers by adjusting the molar ratio of DA to Fe3+ ion. The cross-linked selective layer with sub 100 nanometer thickness is prepared by atom transfer radical polymerisation of a mixture of PEG macrocross-linkers and FeDA NPs on top of a highly permeable poly(dimethyl siloxane) (PDMS) prelayer, which is spin-coated onto a porous polyacrylonitrile (PAN) substrate. The incorporation of the FeDA NPs within the PEG

  1. YM-50001: a novel, potent and selective dopamine D4 receptor antagonist.

    PubMed

    Hidaka, K; Tada, S; Matsumoto, M; Ohmori, J; Maeno, K; Yamaguchi, T

    1996-11-01

    We investigated some in vitro pharmacological properties of a novel human dopamine D2-like receptor antagonist, YM-50001 [(R)-5-chloro-4-cyclopropylacarbonylamino-2-methoxy-N-[1-(3-methox ybenzyl)- 3-pyrrolidinyl]benzamide monooxalate]. Receptor binding studies revealed that YM-50001 had a potent affinity for human D4 receptors (Ki = 5.62 nM). YM-50001 displayed weak or negligible affinity for other neurotransmitter receptors including human D2 and D3 receptors. YM-50001 shifted the dopamine response curve on each human D2-like receptor subtype-mediated low-Km GTPase activity to the right. YM-50001 also exhibited good D4 selectivity with respect to D2-like receptor antagonism in the functional assay. These results indicate that YM-50001 is a novel, potent and selective D4 receptor antagonist.

  2. Site-specific Relaxase Activity of a VirD2-like Protein Encoded within the tfs4 Genomic Island of Helicobacter pylori*

    PubMed Central

    Grove, Jane I.; Alandiyjany, Maher N.; Delahay, Robin M.

    2013-01-01

    Four different type IV secretion systems are variously represented in the genomes of different Helicobacter pylori strains. Two of these, encoded by tfs3 and tfs4 gene clusters are contained within self-transmissible genomic islands. Although chromosomal excision of tfs4 circular intermediates is reported to be dependent upon the function of a tfs4-encoded XerD tyrosine-like recombinase, other factors required for transfer to a recipient cell have not been demonstrated. Here, we characterize the functional activity of a putative tfs4-encoded VirD2-like relaxase protein. Tfs4 VirD2 was purified as a fusion to maltose-binding protein and demonstrated to bind and nick both supercoiled duplex DNA and oligonucleotides in vitro in a manner dependent upon the presence of Mg2+ but independently of any auxiliary proteins. Unusually, concentration-dependent nicking of duplex DNA appeared to require only transient protein-DNA interaction. Although phylogenetically distinct from established relaxase families, site-specific cleavage of oligonucleotides by Tfs4 VirD2 required the nick region sequence 5′-ATCCTG-3′ common to transfer origins (oriT) recognized by MOBP conjugative relaxases. Cleavage resulted in covalent attachment of MBP-VirD2 to the 5′-cleaved end, consistent with conventional relaxase activity. Identification of an oriT-like sequence upstream of tfs4 virD2 and demonstration of VirD2 protein-protein interaction with a putative VirC1 relaxosome component indicate that transfer initiation of the tfs4 genomic island is analogous to mechanisms underlying mobilization of other integrated mobile elements, such as integrating conjugative elements, requiring site-specific targeting of relaxase activity to a cognate oriT sequence. PMID:23900838

  3. Dopamine Receptors and Neurodegeneration

    PubMed Central

    Rangel-Barajas, Claudia; Coronel, Israel; Florán, Benjamín

    2015-01-01

    Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson’s disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases. PMID:26425390

  4. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  5. Synapsins differentially control dopamine and serotonin release.

    PubMed

    Kile, Brian M; Guillot, Thomas S; Venton, B Jill; Wetsel, William C; Augustine, George J; Wightman, R Mark

    2010-07-21

    Synapsins are a family of synaptic vesicle proteins that are important for neurotransmitter release. Here we have used triple knock-out (TKO) mice lacking all three synapsin genes to determine the roles of synapsins in the release of two monoamine neurotransmitters, dopamine and serotonin. Serotonin release evoked by electrical stimulation was identical in substantia nigra pars reticulata slices prepared from TKO and wild-type mice. In contrast, release of dopamine in response to electrical stimulation was approximately doubled in striatum of TKO mice, both in vivo and in striatal slices, in comparison to wild-type controls. This was due to loss of synapsin III, because deletion of synapsin III alone was sufficient to increase dopamine release. Deletion of synapsins also increased the sensitivity of dopamine release to extracellular calcium ions. Although cocaine did not affect the release of serotonin from nigral tissue, this drug did enhance dopamine release. Cocaine-induced facilitation of dopamine release was a function of external calcium, an effect that was reduced in TKO mice. We conclude that synapsins play different roles in the control of release of dopamine and serotonin, with release of dopamine being negatively regulated by synapsins, specifically synapsin III, while serotonin release appears to be relatively independent of synapsins. These results provide further support for the concept that synapsin function in presynaptic terminals varies according to the neurotransmitter being released. PMID:20660258

  6. Immunomodulatory Effects Mediated by Dopamine

    PubMed Central

    Alvarez-Herrera, Samantha; Pérez-Sánchez, Gilberto; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Flores-Gutierrez, Enrique Octavio; Quintero-Fabián, Saray

    2016-01-01

    Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers. PMID:27795960

  7. CERES ISCCP-D2like Legacy

    Atmospheric Science Data Center

    2014-07-24

    ... fluxes and clouds. Description : CERES-MODIS and GEO cloud properties stratified by ISCCP cloud types and in the similar D2 ... geostationary cloud retrievals for daytime only.  GEO : 3-hourly geostationary-only cloud retrievals for daytime only.  ...

  8. Fe/N/C hollow nanospheres by Fe(iii)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction.

    PubMed

    Zhou, Dan; Yang, Liping; Yu, Linghui; Kong, Junhua; Yao, Xiayin; Liu, Wanshuang; Xu, Zhichuan; Lu, Xuehong

    2015-01-28

    In this work, a series of hollow carbon nanospheres simultaneously doped with N and Fe-containing species are prepared by Fe(3+)-mediated polymerization of dopamine on SiO2 nanospheres, carbonization and subsequent KOH etching of the SiO2 template. The electrochemical properties of the hollow nanospheres as nonprecious-metal electrocatalysts for oxygen reduction reaction (ORR) are characterized. The results show that the hollow nanospheres with mesoporous N-doped carbon shells of ∼10 nm thickness and well-dispersed Fe3O4 nanoparticles prepared by annealing at 750 °C (Fe/N/C HNSs-750) exhibit remarkable ORR catalytic activity comparable to that of a commercial 20 wt% Pt/C catalyst, and high selectivity towards 4-electron reduction of O2 to H2O. Moreover, it displays better electrochemical durability and tolerance to methanol crossover effect in an alkaline medium than the Pt/C. The excellent catalytic performance of Fe/N/C HNSs-750 towards ORR can be ascribed to their high specific surface area, mesoporous morphology, homogeneous distribution of abundant active sites, high pyridinic nitrogen content, graphitic nitrogen and graphitic carbon, as well as the synergistic effect of nitrogen and iron species for catalyzing ORR.

  9. Fe/N/C hollow nanospheres by Fe(iii)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction.

    PubMed

    Zhou, Dan; Yang, Liping; Yu, Linghui; Kong, Junhua; Yao, Xiayin; Liu, Wanshuang; Xu, Zhichuan; Lu, Xuehong

    2015-01-28

    In this work, a series of hollow carbon nanospheres simultaneously doped with N and Fe-containing species are prepared by Fe(3+)-mediated polymerization of dopamine on SiO2 nanospheres, carbonization and subsequent KOH etching of the SiO2 template. The electrochemical properties of the hollow nanospheres as nonprecious-metal electrocatalysts for oxygen reduction reaction (ORR) are characterized. The results show that the hollow nanospheres with mesoporous N-doped carbon shells of ∼10 nm thickness and well-dispersed Fe3O4 nanoparticles prepared by annealing at 750 °C (Fe/N/C HNSs-750) exhibit remarkable ORR catalytic activity comparable to that of a commercial 20 wt% Pt/C catalyst, and high selectivity towards 4-electron reduction of O2 to H2O. Moreover, it displays better electrochemical durability and tolerance to methanol crossover effect in an alkaline medium than the Pt/C. The excellent catalytic performance of Fe/N/C HNSs-750 towards ORR can be ascribed to their high specific surface area, mesoporous morphology, homogeneous distribution of abundant active sites, high pyridinic nitrogen content, graphitic nitrogen and graphitic carbon, as well as the synergistic effect of nitrogen and iron species for catalyzing ORR. PMID:25500995

  10. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    PubMed

    Wani, Khursheed A; Catanese, Mary; Normantowicz, Robyn; Herd, Muriel; Maher, Kathryn N; Chase, Daniel L

    2012-01-01

    Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior. PMID:22629462

  11. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    PubMed

    Wani, Khursheed A; Catanese, Mary; Normantowicz, Robyn; Herd, Muriel; Maher, Kathryn N; Chase, Daniel L

    2012-01-01

    Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.

  12. Fe/N/C hollow nanospheres by Fe(iii)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Yang, Liping; Yu, Linghui; Kong, Junhua; Yao, Xiayin; Liu, Wanshuang; Xu, Zhichuan; Lu, Xuehong

    2015-01-01

    In this work, a series of hollow carbon nanospheres simultaneously doped with N and Fe-containing species are prepared by Fe3+-mediated polymerization of dopamine on SiO2 nanospheres, carbonization and subsequent KOH etching of the SiO2 template. The electrochemical properties of the hollow nanospheres as nonprecious-metal electrocatalysts for oxygen reduction reaction (ORR) are characterized. The results show that the hollow nanospheres with mesoporous N-doped carbon shells of ~10 nm thickness and well-dispersed Fe3O4 nanoparticles prepared by annealing at 750 °C (Fe/N/C HNSs-750) exhibit remarkable ORR catalytic activity comparable to that of a commercial 20 wt% Pt/C catalyst, and high selectivity towards 4-electron reduction of O2 to H2O. Moreover, it displays better electrochemical durability and tolerance to methanol crossover effect in an alkaline medium than the Pt/C. The excellent catalytic performance of Fe/N/C HNSs-750 towards ORR can be ascribed to their high specific surface area, mesoporous morphology, homogeneous distribution of abundant active sites, high pyridinic nitrogen content, graphitic nitrogen and graphitic carbon, as well as the synergistic effect of nitrogen and iron species for catalyzing ORR.In this work, a series of hollow carbon nanospheres simultaneously doped with N and Fe-containing species are prepared by Fe3+-mediated polymerization of dopamine on SiO2 nanospheres, carbonization and subsequent KOH etching of the SiO2 template. The electrochemical properties of the hollow nanospheres as nonprecious-metal electrocatalysts for oxygen reduction reaction (ORR) are characterized. The results show that the hollow nanospheres with mesoporous N-doped carbon shells of ~10 nm thickness and well-dispersed Fe3O4 nanoparticles prepared by annealing at 750 °C (Fe/N/C HNSs-750) exhibit remarkable ORR catalytic activity comparable to that of a commercial 20 wt% Pt/C catalyst, and high selectivity towards 4-electron reduction of O2 to H2O

  13. Reduction of Cocaine Self-Administration and D3 Receptor-Mediated Behavior by Two Novel Dopamine D3 Receptor-Selective Partial Agonists, OS-3-106 and WW-III-55

    PubMed Central

    Cheung, Timothy H. C.; Loriaux, Amy L.; Weber, Suzanne M.; Chandler, Kayla N.; Lenz, Jeffrey D.; Schaan, Romina F.; Mach, Robert H.; Luedtke, Robert R.

    2013-01-01

    Dopamine D3 receptor (D3R)-selective compounds may be useful medications for cocaine dependence. In this study, we identified two novel arylamide phenylpiperazines, OS-3-106 and WW-III-55, as partial agonists at the D3R in the adenylyl cyclase inhibition assay. OS-3-106 and WW-III-55 have 115- and 862-fold D3R:D2 receptor (D2R) binding selectivity, respectively. We investigated their effects (0, 3, 5.6, or 10 mg/kg) on operant responding by using a multiple variable-interval (VI) 60-second schedule that alternated components with sucrose reinforcement and components with intravenous cocaine reinforcement (0.375 mg/kg). Additionally, we evaluated the effect of OS-3-106 (10 mg/kg) on the dose-response function of cocaine self-administration and the effect of WW-III-55 (0–5.6 mg/kg) on a progressive ratio schedule with either cocaine or sucrose reinforcement. Both compounds were also examined for effects on locomotion and yawning induced by a D3R agonist. OS-3-106 decreased cocaine and sucrose reinforcement rates, increased latency to first response for cocaine but not sucrose, and downshifted the cocaine self-administration dose-response function. WW-III-55 did not affect cocaine self-administration on the multiple-variable interval schedule, but it reduced cocaine and sucrose intake on the progressive ratio schedule. Both compounds reduced locomotion at doses that reduced responding, and both compounds attenuated yawning induced by low doses of 7-OH-DPAT (a D3R-mediated behavior), but neither affected yawning on the descending limb of the 7-OH-DPAT dose-response function (a D2R-mediated behavior). Therefore, both compounds blocked a D3R-mediated behavior. However, OS-3-106 was more effective in reducing cocaine self-administration. These findings support D3Rs, and possibly D2Rs, as targets for medications aimed at reducing the motivation to seek cocaine. PMID:24018640

  14. Identification of Dopamine D2 Receptors in Gill of Crassostrea virginica

    PubMed Central

    Anador, Samuel; Brown, Cherryle; Adebesin, Damilola; Cilli, Noelia; Fleming, Renee; Carroll, Margaret A.; Catapane, Edward J.

    2011-01-01

    The lateral epithelial cells of gill of Crassostrea virginica are innervated by dopamine and serotonin nerves that regulate the beating rate of their lateral cilia. Terminal release of dopamine slows down the beating rate of the cilia, while serotonin release increases the beating rate. Previously, we showed that the dopaminergic, but not the serotonergic, mechanism regulating the beating rate of the lateral cilia was disrupted by manganese treatments and that this disruption was occurring postsynaptically, at the level of the dopamine receptor or further downstream in the signal transduction pathway. In humans manganese toxicity causes Manganism, a neurological disorder with clinical symptoms similar to Parkinson s disease. In this study we utilized pharmacological agents and an immunohistofluorescence technique to characterize the dopamine receptor type present on the lateral ciliated cells of C. virginica gill. Agonists and antagonists to dopamine D1 or dopamine D2 receptors were applied to gill sections and beating rates of the lateral cilia were measured by stroboscopic microscopy. The D2 agonists and D2 antagonists were effective in mimicking or blocking, respectively, the inhibitory actions of dopamine on lateral cilia beating, while application of either D1 agonists or D1 antagonists had no significant effect. In other experiments we used an epilume fluorescence microscopic fitted with FITC filters to view gill sections treated with a primary antibody against D2 receptors and a FITC-linked secondary antibody. Control gill sections without primary antibody exposure were similarly treated and viewed. The D2 antibody treated sections showed bright fluorescent receptor-antibody complexes present at the lateral ciliated cells and other areas of gill, when compared to controls. The results of our immunofluorescence study identify the presence of D2-like receptors on the lateral ciliated cells of C. virginica gill and our pharmacological results indicate that D2

  15. Identification of dopamine D2 receptors in gill of Crassostrea virginica.

    PubMed

    Anador, Samuel; Brown, Cherryle; Adebesin, Damilola; Cilli, Noelia; Fleming, Renee; Carroll, Margaret A; Catapane, Edward J

    2011-01-01

    The lateral epithelial cells of gill of Crassostrea virginica are innervated by dopamine and serotonin nerves that regulate the beating rate of their lateral cilia. Terminal release of dopamine slows down the beating rate of the cilia, while serotonin release increases the beating rate. Previously, we showed that the dopaminergic, but not the serotonergic, mechanism regulating the beating rate of the lateral cilia was disrupted by manganese treatments and that this disruption was occurring postsynaptically, at the level of the dopamine receptor or further downstream in the signal transduction pathway. In humans manganese toxicity causes Manganism, a neurological disorder with clinical symptoms similar to Parkinson s disease. In this study we utilized pharmacological agents and an immunohistofluorescence technique to characterize the dopamine receptor type present on the lateral ciliated cells of C. virginica gill. Agonists and antagonists to dopamine D1 or dopamine D2 receptors were applied to gill sections and beating rates of the lateral cilia were measured by stroboscopic microscopy. The D2 agonists and D2 antagonists were effective in mimicking or blocking, respectively, the inhibitory actions of dopamine on lateral cilia beating, while application of either D1 agonists or D1 antagonists had no significant effect. In other experiments we used an epilume fluorescence microscopic fitted with FITC filters to view gill sections treated with a primary antibody against D2 receptors and a FITC-linked secondary antibody. Control gill sections without primary antibody exposure were similarly treated and viewed. The D2 antibody treated sections showed bright fluorescent receptor-antibody complexes present at the lateral ciliated cells and other areas of gill, when compared to controls. The results of our immunofluorescence study identify the presence of D2-like receptors on the lateral ciliated cells of C. virginica gill and our pharmacological results indicate that D2

  16. Insights into the role of dopamine receptor systems in learning and memory.

    PubMed

    El-Ghundi, Mufida; O'Dowd, Brian F; George, Susan R

    2007-01-01

    It is well established that learning and memory are complex processes involving and recruiting different brain modulatory neurotransmitter systems. Considerable evidence points to the involvement of dopamine in various aspects of cognition, and interest has been focused on investigating the clinical relevance of dopamine systems to age-related cognitive decline and manifestations of cognitive impairment in schizophrenia, Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases. In the past decade or so, in spite of the molecular cloning of the five dopamine receptor subtypes, their specific roles in brain function remained inconclusive due to the lack of completely selective ligands that could distinguish between the members of the D1-like and D2-like dopamine receptor families. One of the most important advances in the field of dopamine research has been the generation of mutant mouse models permitting evaluation of the dopaminergic system using gene targeting technologies. These mouse models represent an important approach to explore the functional roles of closely related receptor subtypes. In this review, we present and discuss evidence on the role of dopamine receptors in different aspects of learning and memory at the cellular, molecular and behavioral levels. We compare evidence using conventional pharmacological, lesion or electrophysiological studies with results from mice with targeted deletions of different subtypes of dopamine receptor genes. We particularly focus on dopamine D1 and D2 receptors in an effort to delineate their specific roles in various aspects of cognitive function. We provide strong evidence, from our own recent work as well as others, that dopamine is part of the network that plays a very important role in cognitive function, and that although multiple dopamine receptor subtypes contribute to different aspects of learning and memory, the D1 receptor seems to play a more prominent role in mediating plasticity and

  17. Purification and characterization of the blue-green rat phaeochromocytoma (PC12) tyrosine hydroxylase with a dopamine-Fe(III) complex. Reversal of the endogenous feedback inhibition by phosphorylation of serine-40.

    PubMed Central

    Andersson, K K; Vassort, C; Brennan, B A; Que, L; Haavik, J; Flatmark, T; Gros, F; Thibault, J

    1992-01-01

    Tyrosine hydroxylase (TH) was purified from tumours of rat phaeochromocytoma (PC12) cells by a three-step purification procedure giving 30 mg of pure enzyme in 3 days. The enzyme sedimented with an S(eo),w value of 9.2 S and revealed an apparent subunit molecular mass of 62 kDa with a minor 60 kDa component. Two-dimensional gel isoelectric focusing/electrophoresis and tryptic digestion revealed that the heterogeneity could be accounted for by limited proteolysis of the 62 kDa component and the presence of covalently bound phosphate. The enzyme had a strong blue-green colour (epsilon 700 = 3.1 +/- 0.2 mM-iron-1.cm-1). The resonance Raman spectrum obtained with lambda excitation = 605 nm revealed the presence of an Fe(III)-catecholamine complex in the isolate enzyme, similar to that observed in the bovine adrenal enzyme [Andersson, Cox, Que, Flatmark & Haavik (1988) J. Biol. Chem. 263, 18621-18626]. In the rat PC12 enzyme, all of the iron present (0.53 +/- 0.03 atom per subunit) seems to be chelated by the feedback inhibitors (0.49 +/- 0.05 mol of dopamine and 0.10 +/- 0.03 mol of noradrenaline per mol of subunit). The e.p.r. spectra at 3.6 K show g-values at 7.0, 5.2 and 1.9 as observed for other catecholate-complexed enzymes. After phosphorylation of serine-40 and addition of L-tyrosine a new rhombic (magnitude of E/D = 0.33) e.p.r. species could be observed. Phosphorylation of serine-40 by cyclic AMP-dependent protein kinase increased the catalytic activity; depending on assay conditions, up to 80-110-fold activation could be observed when measured at high TH (i.e. high endogenous catecholamine) concentration. Images Fig. 1. Fig. 2. PMID:1352446

  18. Localization and function of dopamine receptors in the subthalamic nucleus of normal and parkinsonian monkeys

    PubMed Central

    Hu, Xing; Rommelfanger, Karen S.; Pare, Jean-Francois; Khan, Zafar U.; Smith, Yoland; Wichmann, Thomas

    2014-01-01

    The subthalamic nucleus (STN) receives a dopaminergic innervation from the substantia nigra pars compacta, but the role of this projection remains poorly understood, particularly in primates. To address this issue, we used immuno-electron microscopy to localize D1, D2, and D5 dopamine receptors in the STN of rhesus macaques and studied the electrophysiological effects of activating D1-like or D2-like receptors in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys. Labeling of D1 and D2 receptors was primarily found presynaptically, on preterminal axons and putative glutamatergic and GABAergic terminals, while D5 receptors were more significantly expressed postsynaptically, on dendritic shafts of STN neurons. The electrical spiking activity of STN neurons, recorded with standard extracellular recording methods, was studied before, during, and after intra-STN administration of the dopamine D1-like receptor agonist SKF82958, the D2-like receptor agonist quinpirole, or artificial cerebrospinal fluid (control injections). In normal animals, administration of SKF82958 significantly reduced the spontaneous firing but increased the rate of intraburst firing and the proportion of pause-burst sequences of firing. Quinpirole only increased the proportion of such pause-burst sequences in STN neurons of normal monkeys. In MPTP-treated monkeys, the D1-like receptor agonist also reduced the firing rate and increased the proportion of pause-burst sequences, while the D2-like receptor agonist did not change any of the chosen descriptors of the firing pattern of STN neurons. Our data suggest that dopamine receptor activation can directly modulate the electrical activity of STN neurons by pre- and postsynaptic mechanisms in both normal and parkinsonian states, predominantly via activation of D1 receptors. PMID:24760789

  19. Dopamine, depression and antidepressants.

    PubMed

    Dailly, Eric; Chenu, Franck; Renard, Caroline E; Bourin, Michel

    2004-12-01

    Abstract The relationship between depression and dopamine deficiency in the mesolimbic pathway has been hypothesized for many years. The experimental studies with animal models of depression and the human studies implicate the role of the dopamine system in depression. Not only do dopaminergic receptor agonists, but also antagonists such as olanzapine exhibit antidepressant effects associated with standard antidepressants in patients with treatment-resistant depression. This paradoxical result suggests that further investigations are necessary to understand the role played by dopamine in depression.

  20. Decoding dopamine signaling.

    PubMed

    Bibb, James A

    2005-07-29

    Dopamine is a key neurotransmitter that is important for many physiological functions including motor control, mood, and the reward pathway. In this issue of Cell, the laboratories of Marc Caron and Li-Huei Tsai identify two very different molecules--beta-arrestin 2 and Par-4, respectively--that unexpectedly are involved in dopamine signaling via the D2 receptor. These two new signaling pathways mediate the actions of dopamine on behavior and facilitate crosstalk between different signaling pathways that are activated by binding of dopamine to the D2 receptor.

  1. [Age-related changes in behavior, in monoamines and their metabolites content, and in density of D1 and D2 dopamine receptors in the brain structures of WAG/Rij rats with depression-like pathology].

    PubMed

    Sarkisova, K Yu; Kulikov, M A; Kudrin, V S; Midzyanovskaya, I S; Birioukova, L M

    2014-01-01

    Behavior in the light-dark choice, open field, sucrose consumption/preference and forced swimming tests, monoamines and their metabolites content in 5 brain structures (prefrontal cortex, nucleus accumbens, striatum, hypothalamus, hippocampus), and density of D1- and D2-like dopamine receptors in the prefrontal cortex, nucleus accumbens and ventral tegmental area were studied in WAG/Rij rats at age of 36 days, 3 and 6 months. It has been found that with age, as far as spike-wave discharges aggravate, behavioral symptoms of depression (enhanced immobility in the forced swimming test, reduced sucrose consumption/preference) as well as a hypo-function of the mesolimbic dopaminergic brain system increase in WAG/Rij rats. At age of 36 days, when phenotypic expression of absence epilepsy in WAG/Rij rats is absent, neurochemical alterations in the brain suggesting a hypo-function of the mesolimbic dopaminergic system (deficit of dopamine in the nucleus accumbens), as well as symptoms of depression-like behavior, are not detected. In WAG/Rij rats, as well as in control rats, density of D1-like dopamine receptors in the nucleus accumbens decreased with age. A tendency to a lower density of D1-like dopamine receptors was found in WAG/Rij rats compared with controls at age of 3 months. In contrast with control rats, in WAG/Rij rats, density of D2-like dopamine receptors in the nucleus accumbens increased with age. Higher density of D2-like dopamine receptors was observed in WAG/Rij rats compared with controls only at age of 6 months when a hypo-function of the mesolimbic dopaminergic bran system was extremely pronounced indicating that this increase is a compensatory response to a deficit of dopamine.

  2. [Age-related changes in behavior, in monoamines and their metabolites content, and in density of D1 and D2 dopamine receptors in the brain structures of WAG/Rij rats with depression-like pathology].

    PubMed

    Sarkisova, K Yu; Kulikov, M A; Kudrin, V S; Midzyanovskaya, I S; Birioukova, L M

    2014-01-01

    Behavior in the light-dark choice, open field, sucrose consumption/preference and forced swimming tests, monoamines and their metabolites content in 5 brain structures (prefrontal cortex, nucleus accumbens, striatum, hypothalamus, hippocampus), and density of D1- and D2-like dopamine receptors in the prefrontal cortex, nucleus accumbens and ventral tegmental area were studied in WAG/Rij rats at age of 36 days, 3 and 6 months. It has been found that with age, as far as spike-wave discharges aggravate, behavioral symptoms of depression (enhanced immobility in the forced swimming test, reduced sucrose consumption/preference) as well as a hypo-function of the mesolimbic dopaminergic brain system increase in WAG/Rij rats. At age of 36 days, when phenotypic expression of absence epilepsy in WAG/Rij rats is absent, neurochemical alterations in the brain suggesting a hypo-function of the mesolimbic dopaminergic system (deficit of dopamine in the nucleus accumbens), as well as symptoms of depression-like behavior, are not detected. In WAG/Rij rats, as well as in control rats, density of D1-like dopamine receptors in the nucleus accumbens decreased with age. A tendency to a lower density of D1-like dopamine receptors was found in WAG/Rij rats compared with controls at age of 3 months. In contrast with control rats, in WAG/Rij rats, density of D2-like dopamine receptors in the nucleus accumbens increased with age. Higher density of D2-like dopamine receptors was observed in WAG/Rij rats compared with controls only at age of 6 months when a hypo-function of the mesolimbic dopaminergic bran system was extremely pronounced indicating that this increase is a compensatory response to a deficit of dopamine. PMID:25975143

  3. Protein kinase C beta regulates the D₂-like dopamine autoreceptor.

    PubMed

    Luderman, Kathryn D; Chen, Rong; Ferris, Mark J; Jones, Sara R; Gnegy, Margaret E

    2015-02-01

    The focus of this study was the regulation of the D2-like dopamine autoreceptor (D2 autoreceptor) by protein kinase Cβ, a member of the protein kinase C (PKC) family. Together with the dopamine transporter, the D2 autoreceptor regulates the level of extracellular dopamine and thus dopaminergic signaling. PKC regulates neuronal signaling via several mechanisms, including desensitizing autoreceptors to increase the release of several different neurotransmitters. Here, using both PKCβ(-/-) mice and specific PKCβ inhibitors, we demonstrated that a lack of PKCβ activity enhanced the D2 autoreceptor-stimulated decrease in dopamine release following both chemical and electrical stimulations. Inhibition of PKCβ increased surface localization of D2R in mouse striatal synaptosomes, which could underlie the greater sensitivity to quinpirole following inhibition of PKCβ. PKCβ(-/-) mice displayed greater sensitivity to the quinpirole-induced suppression of locomotor activity, demonstrating that the regulation of the D2 autoreceptor by PKCβ is physiologically significant. Overall, we have found that PKCβ downregulates the D2 autoreceptor, providing an additional layer of regulation for dopaminergic signaling. We propose that in the absence of PKCβ activity, surface D2 autoreceptor localization and thus D2 autoreceptor signaling is increased, leading to less dopamine in the extracellular space and attenuated dopaminergic signaling. PMID:25446677

  4. PET evidence for a role for striatal dopamine in the attentional blink: functional implications.

    PubMed

    Slagter, Heleen A; Tomer, Rachel; Christian, Bradley T; Fox, Andrew S; Colzato, Lorenza S; King, Carlye R; Murali, Dhanabalan; Davidson, Richard J

    2012-09-01

    Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data. PMID:22663253

  5. Synthesis and characterization of selective dopamine D2 receptor ligands using aripiprazole as the lead compound

    PubMed Central

    Vangveravong, Suwanna; Zhang, Zhanbin; Taylor, Michelle; Bearden, Melissa; Xu, Jinbin; Cui, Jinquan; Wang, Wei; Luedtke, Robert R.; Mach, Robert H.

    2011-01-01

    A series of compounds structurally related to aripiprazole (1), an atypical antipsychotic and antidepressant used clinically for the treatment of schizophrenia, bipolar disorder, and depression, have been prepared and evaluated for affinity at D2-like dopamine receptors. These compounds also share structural elements with the classical D2-like dopamine receptor antagonists, haloperidol, N-methylspiperone, domperidone and benperidol. Two new compounds, 7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one oxalate (6) and 7-(4-(4-(2-(2-fluoroethoxy)phenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one oxalate (7) were found to (a) bind to the D2 receptor subtype with high affinity (Ki values <0.3 nM), (b) exhibit >50-fold D2 versus D3 receptor binding selectivity and (c) be partial agonists at both the D2 and D3 receptor subtype. PMID:21536445

  6. Role of the basolateral amygdala dopamine receptors in arachidonylcyclopropylamide-induced fear learning deficits.

    PubMed

    Nasehi, Mohammad; Hajian, Maryam; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-01-01

    There is much evidence suggesting that the mesoamygdala dopaminergic (DAergic) system plays a crucial role in the formation and expression of fear conditioning, with both D1 and D2 receptors being involved. In addition, cannabinoid CB1 receptor (CB1R) signaling modulates DAergic pathways. The present study sought to determine the involvement of basolateral amygdala (BLA) dopamine receptors in arachidonylcyclopropylamide (ACPA)-induced fear learning deficits. Context- and tone-dependent fear conditioning in adult male NMRI mice was evaluated. Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing in context- or tone-dependent fear conditioning, suggesting an acquisition impairment. Pre-training intra-BLA microinjection of a subthreshold dose of SKF38393 (D1-like receptor agonist), SCH23390 (D1-like receptor antagonist), quinpirole (D2-like receptor agonist), or sulpiride (D2-like receptor antagonist) did not alter the context-dependent fear learning deficit induced by ACPA, while SKF38393 or quinpirole restored ACPA effect on tone-dependent fear learning. Moreover, SKF38393 (1 μg/mouse), SCH23390 (0.04 and 0.08 μg/mouse), or quinpirole (0.1 μg/mouse) all impaired context-dependent fear learning. It is concluded that D1 or D2 dopamine (DA) receptor activation restores tone- but not context-dependent fear learning deficit induced by CB1 activation using ACPA.

  7. Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases.

    PubMed

    Levite, M

    2016-01-01

    Dopamine, a principal neurotransmitter, deserves upgrading to 'NeuroImmunotransmitter' thanks to its multiple, direct and powerful effects on most/all immune cells. Dopamine by itself is a potent activator of resting effector T cells (Teffs), via two independent ways: direct Teffs activation, and indirect Teffs activation by suppression of regulatory T cells (Tregs). The review covers the following findings: (i) T cells express functional dopamine receptors (DRs) D1R-D5R, but their level and function are dynamic and context-sensitive, (ii) DR membranal protein levels do not necessarily correlate with DR mRNA levels, (iii) different T cell types/subtypes have different DR levels and composition and different responses to dopamine, (iv) autoimmune and pro-inflammatory T cells and T cell leukaemia/lymphoma also express functional DRs, (v) dopamine (~10(-8) M) activates resting/naive Teffs (CD8(+) >CD4(+) ), (vi) dopamine affects Th1/Th2/Th17 differentiation, (vii) dopamine inhibits already activated Teffs (i.e. T cells that have been already activated by either antigen, mitogen, anti-CD3 antibodies cytokines or other molecules), (viii) dopamine inhibits activated Tregs in an autocrine/paracrine manner. Thus, dopamine 'suppresses the suppressors' and releases the inhibition they exert on Teffs, (ix) dopamine affects intracellular signalling molecules and cascades in T cells (e.g. ERK, Lck, Fyn, NF-κB, KLF2), (x) T cells produce dopamine (Tregs>Teffs), can release dopamine, mainly after activation (by antigen, mitogen, anti-CD3 antibodies, PKC activators or other), uptake extracellular dopamine, and most probably need dopamine, (xi) dopamine is important for antigen-specific interactions between T cells and dendritic cells, (xii) in few autoimmune diseases (e.g. multiple sclerosis/SLE/rheumatoid arthritis), and neurological/psychiatric diseases (e.g. Parkinson disease, Alzheimer's disease, Schizophrenia and Tourette), patient's T cells seem to have abnormal DRs

  8. Dopamine triggers heterosynaptic plasticity.

    PubMed

    Ishikawa, Masago; Otaka, Mami; Huang, Yanhua H; Neumann, Peter A; Winters, Bradley D; Grace, Anthony A; Schlüter, Oliver M; Dong, Yan

    2013-04-17

    As a classic neuromodulator, dopamine has long been thought to modulate, rather than trigger, synaptic plasticity. In contrast, our present results demonstrate that within the parallel projections of dopaminergic and GABAergic terminals from the ventral tegmental area to the nucleus accumbens core (NAcCo), action-potential-activated release of dopamine heterosynaptically triggers LTD at GABAergic synapses, which is likely mediated by activating presynaptically located dopamine D1 class receptors and expressed by inhibiting presynaptic release of GABA. Moreover, this dopamine-mediated heterosynaptic LTD is abolished after withdrawal from cocaine exposure. These results suggest that action-potential-dependent dopamine release triggers very different cellular consequences from those induced by volume release or pharmacological manipulation. Activation of the ventral tegmental area to NAcCo projections is essential for emotional and motivational responses. This dopamine-mediated LTD allows a flexible output of NAcCo neurons, whereas disruption of this LTD may contribute to the rigid emotional and motivational state observed in addicts during cocaine withdrawal.

  9. Topographical evaluation of behavioural phenotype in a line of mice with targeted gene deletion of the D2 dopamine receptor.

    PubMed

    Clifford, J J; Usiello, A; Vallone, D; Kinsella, A; Borrelli, E; Waddington, J L

    2000-01-28

    The phenotype of spontaneous and dopamine D2-like agonist-induced behaviour was assessed topographically in a line of mice with targeted gene deletion of the D1 receptor. An ethologically-based, rapid time-sampling behavioural check-list technique was used to resolve and quantify all behaviours in the natural repertoire of the mouse. Relative to wildtypes [D2+/+], D2-null [D2-/-] mice evidenced over a 1 h period of initial exploration modest but significant reductions in locomotion, grooming, rearing free and rearing to wall; rearing seated, sniffing, sifting and stillness were not altered. Individual elements of behaviour habituated similarly over a 6 h period for both genotypes. The dose-dependent induction of stereotyped sniffing and ponderous locomotion by the D2-like agonist RU 24213 (0.1-12.5 mg/kg) in wildtypes was essentially absent in D2-null mice. The ethogram of spontaneous behaviour in D2-null mice was characterised by only modest reductions in, and topographical shifts between, certain individual elements of behaviour. Essential abolition of D2-like agonist responsivity in D2-null mice vis-à-vis considerable preservation of spontaneous behavioural topography suggests compensatory processes subsequent to developmental absence of the D2 receptor that are able to sustain function under naturalistic, tonic conditions but not during phasic challenge. PMID:10698004

  10. N-allyl epiderpride: An extremely potent SPECT radioligand for the dopamine D2 receptor

    SciTech Connect

    Kessler, R.M.; Mason, N.S.; Ansari, M.S.

    1994-05-01

    We have previously reported that epidepride is a potent (K{sub D} 24pM) and specific SPECT radioligand for the dopamine D2 receptor which can be used to study striatal and extrastriatal dopamine D2 receptors in man. We have synthesized and evaluated the N-allyl analogue of epiderpride (APID) as a potential SPECT radioligand for the dopamine D2 receptor. In comparison to epidepride it is even more potent at the dopamine D2 receptor, the K{sub D} for APID being 11 frontal cortical homogenate. The lipophilicity, evaluated using the log kw pH 7.5, was 2.9 versus 2.05 for epidepride. Competitive binding studies using rat striatal, hippocampal and frontal cortical homogenates showed high affinity for only dopamine D2 like cerebellar ratio of 275:1 at 320 minutes post injection-similar to that seen with epidepride, but with nearly four times higher brain uptake. Of interest was the off-rate from the dopamine D2 receptor; it was 0.0046 min{sup -1} in vitro at 25{degrees}C-corresponding to an t 1/2 of 150 minutes. Studies in rhesus monkeys show an in vivo off rate (following 2.5 mg/kg raclopride IV) of about 0.0082 min{sup -1} seen that with epidepride. SPECT studies in rhesus monkeys reveal APID is a promising SPECT radioligand that appears to be similar to epidepride, but with higher brain uptake due to its more optimal lipophilicity for entry into brain.

  11. Disruption of hippocampal–prefrontal cortex activity by dopamine D2R-dependent LTD of NMDAR transmission

    PubMed Central

    Banks, Paul James; Burroughs, Amelia Caroline; Barker, Gareth Robert Isaac; Brown, Jon Thomas; Warburton, Elizabeth Clea; Bashir, Zafar Iqbal

    2015-01-01

    Functional connectivity between the hippocampus and prefrontal cortex (PFC) is essential for associative recognition memory and working memory. Disruption of hippocampal–PFC synchrony occurs in schizophrenia, which is characterized by hypofunction of NMDA receptor (NMDAR)-mediated transmission. We demonstrate that activity of dopamine D2-like receptors (D2Rs) leads selectively to long-term depression (LTD) of hippocampal–PFC NMDAR-mediated synaptic transmission. We show that dopamine-dependent LTD of NMDAR-mediated transmission profoundly disrupts normal synaptic transmission between hippocampus and PFC. These results show how dopaminergic activation induces long-term hypofunction of NMDARs, which can contribute to disordered functional connectivity, a characteristic that is a hallmark of psychiatric disorders such as schizophrenia. PMID:26286993

  12. Disruption of hippocampal-prefrontal cortex activity by dopamine D2R-dependent LTD of NMDAR transmission.

    PubMed

    Banks, Paul James; Burroughs, Amelia Caroline; Barker, Gareth Robert Isaac; Brown, Jon Thomas; Warburton, Elizabeth Clea; Bashir, Zafar Iqbal

    2015-09-01

    Functional connectivity between the hippocampus and prefrontal cortex (PFC) is essential for associative recognition memory and working memory. Disruption of hippocampal-PFC synchrony occurs in schizophrenia, which is characterized by hypofunction of NMDA receptor (NMDAR)-mediated transmission. We demonstrate that activity of dopamine D2-like receptors (D2Rs) leads selectively to long-term depression (LTD) of hippocampal-PFC NMDAR-mediated synaptic transmission. We show that dopamine-dependent LTD of NMDAR-mediated transmission profoundly disrupts normal synaptic transmission between hippocampus and PFC. These results show how dopaminergic activation induces long-term hypofunction of NMDARs, which can contribute to disordered functional connectivity, a characteristic that is a hallmark of psychiatric disorders such as schizophrenia.

  13. Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals.

    PubMed

    Daberkow, D P; Brown, H D; Bunner, K D; Kraniotis, S A; Doellman, M A; Ragozzino, M E; Garris, P A; Roitman, M F

    2013-01-01

    Drugs of abuse hijack brain-reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting nonexocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties, which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to 2 h. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration, and frequency of spontaneous dopamine transients, the naturally occurring, nonelectrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sugar reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sugar-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify upregulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  14. Dopamine and anorexia nervosa.

    PubMed

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes.

  15. The effects of rearing environment and chronic methylphenidate administration on behavior and dopamine receptors in adolescent rats.

    PubMed

    Gill, Kathryn E; Beveridge, Thomas J R; Smith, Hilary R; Porrino, Linda J

    2013-08-21

    Rearing young rodents in socially isolated or environmentally enriched conditions has been shown to affect numerous components of the dopamine system as well as behavior. Methylphenidate (MPH), a commonly used dopaminergic agent, may affect animals differently based on rearing environment. Here we examined the interaction between environment and chronic MPH treatment at clinically relevant doses, administered via osmotic minipump. Young Sprague Dawley rats (PND 21) were assigned to environmentally enriched, pair-housed, or socially isolated rearing conditions, and treated with either 0, 2, 4, or 8 mg/kg/day MPH for 3 weeks. At the end of the treatment period, animals were tested for locomotor activity and anxiety-like behavior. The densities of D1-like and D2-like receptors were measured in the striatum using in vitro receptor autoradiography. Locomotor activity and anxiety-like behavior were increased in isolated animals compared to pair-housed and enriched animals. The density of D1-like receptors was greater in isolated animals, but there were no differences between groups in D2-like receptor density. Finally, there were no effects of MPH administration on any reported measure. This study provides evidence for an effect of early rearing environment on the dopamine system and behavior, and also suggests that MPH administration may not have long-term consequences.

  16. Dopamine D₂-Like Receptors and Behavioral Economics of Food Reinforcement.

    PubMed

    Soto, Paul L; Hiranita, Takato; Xu, Ming; Hursh, Steven R; Grandy, David K; Katz, Jonathan L

    2016-03-01

    Previous studies suggest dopamine (DA) D2-like receptor involvement in the reinforcing effects of food. To determine contributions of the three D2-like receptor subtypes, knockout (KO) mice completely lacking DA D2, D3, or D4 receptors (D2R, D3R, or D4R KO mice) and their wild-type (WT) littermates were exposed to a series of fixed-ratio (FR) food-reinforcement schedules in two contexts: an open economy with additional food provided outside the experimental setting and a closed economy with all food earned within the experimental setting. A behavioral economic model was used to quantify reinforcer effectiveness with food pellets obtained as a function of price (FR schedule value) plotted to assess elasticity of demand. Under both economies, as price increased, food pellets obtained decreased more rapidly (ie, food demand was more elastic) in DA D2R KO mice compared with WT littermates. Extinction of responding was studied in two contexts: by eliminating food deliveries and by delivering food independently of responding. A hyperbolic model quantified rates of extinction. Extinction in DA D2R KO mice occurred less rapidly compared with WT mice in both contexts. Elasticity of food demand was higher in DA D4R KO than WT mice in the open, but not closed, economy. Extinction of responding in DA D4R KO mice was not different from that in WT littermates in either context. No differences in elasticity of food demand or extinction rate were obtained in D3R KO mice and WT littermates. These results indicate that the D2R is the primary DA D2-like receptor subtype mediating the reinforcing effectiveness of food. PMID:26205210

  17. Dopamine D₂-Like Receptors and Behavioral Economics of Food Reinforcement.

    PubMed

    Soto, Paul L; Hiranita, Takato; Xu, Ming; Hursh, Steven R; Grandy, David K; Katz, Jonathan L

    2016-03-01

    Previous studies suggest dopamine (DA) D2-like receptor involvement in the reinforcing effects of food. To determine contributions of the three D2-like receptor subtypes, knockout (KO) mice completely lacking DA D2, D3, or D4 receptors (D2R, D3R, or D4R KO mice) and their wild-type (WT) littermates were exposed to a series of fixed-ratio (FR) food-reinforcement schedules in two contexts: an open economy with additional food provided outside the experimental setting and a closed economy with all food earned within the experimental setting. A behavioral economic model was used to quantify reinforcer effectiveness with food pellets obtained as a function of price (FR schedule value) plotted to assess elasticity of demand. Under both economies, as price increased, food pellets obtained decreased more rapidly (ie, food demand was more elastic) in DA D2R KO mice compared with WT littermates. Extinction of responding was studied in two contexts: by eliminating food deliveries and by delivering food independently of responding. A hyperbolic model quantified rates of extinction. Extinction in DA D2R KO mice occurred less rapidly compared with WT mice in both contexts. Elasticity of food demand was higher in DA D4R KO than WT mice in the open, but not closed, economy. Extinction of responding in DA D4R KO mice was not different from that in WT littermates in either context. No differences in elasticity of food demand or extinction rate were obtained in D3R KO mice and WT littermates. These results indicate that the D2R is the primary DA D2-like receptor subtype mediating the reinforcing effectiveness of food.

  18. Functional Genetic Variation in Dopamine Signaling Moderates Prefrontal Cortical Activity During Risky Decision Making.

    PubMed

    Kohno, Milky; Nurmi, Erika L; Laughlin, Christopher P; Morales, Angelica M; Gail, Emma H; Hellemann, Gerhard S; London, Edythe D

    2016-02-01

    Brain imaging has revealed links between prefrontal activity during risky decision-making and striatal dopamine receptors. Specifically, striatal dopamine D2-like receptor availability is correlated with risk-taking behavior and sensitivity of prefrontal activation to risk in the Balloon Analogue Risk Task (BART). The extent to which these associations, involving a single neurochemical measure, reflect more general effects of dopaminergic functioning on risky decision making, however, is unknown. Here, 65 healthy participants provided genotypes and performed the BART during functional magnetic resonance imaging. For each participant, dopamine function was assessed using a gene composite score combining known functional variation across five genes involved in dopaminergic signaling: DRD2, DRD3, DRD4, DAT1, and COMT. The gene composite score was negatively related to dorsolateral prefrontal cortical function during risky decision making, and nonlinearly related to earnings on the task. Iterative permutations of all possible allelic variations (7777 allelic combinations) was tested on brain function in an independently defined region of the prefrontal cortex and confirmed empirical validity of the composite score, which yielded stronger association than 95% of all other possible combinations. The gene composite score also accounted for a greater proportion of variability in neural and behavioral measures than the independent effects of each gene variant, indicating that the combined effects of functional dopamine pathway genes can provide a robust assessment, presumably reflecting the cumulative and potentially interactive effects on brain function. Our findings support the view that the links between dopaminergic signaling, prefrontal function, and decision making vary as a function of dopamine signaling capacity. PMID:26119471

  19. New approaches to the management of schizophrenia: focus on aberrant hippocampal drive of dopamine pathways.

    PubMed

    Perez, Stephanie M; Lodge, Daniel J

    2014-01-01

    Schizophrenia is a disease affecting up to 1% of the population. Current therapies are based on the efficacy of chlorpromazine, discovered over 50 years ago. These drugs block dopamine D2-like receptors and are effective at primarily treating positive symptoms in a subset of patients. Unfortunately, current therapies are far from adequate, and novel treatments require a better understanding of disease pathophysiology. Here we review the dopamine, gamma-aminobutyric acid (GABA), and glutamate hypotheses of schizophrenia and describe a pathway whereby a loss of inhibitory signaling in ventral regions of the hippocampus actually drives a dopamine hyperfunction. Moreover, we discuss novel therapeutic approaches aimed at attenuating ventral hippocampal activity in a preclinical model of schizophrenia, namely the MAM GD17 rat. Specifically, pharmacological (allosteric modulators of the α5 GABAA receptor), neurosurgical (deep brain stimulation), and cell-based (GABAergic precursor transplants) therapies are discussed. By better understanding the underlying circuit level dysfunctions in schizophrenia, novel treatments can be advanced that may provide better efficacy and a superior side effect profile to conventional antipsychotic medications.

  20. Updating dopamine reward signals.

    PubMed

    Schultz, Wolfram

    2013-04-01

    Recent work has advanced our knowledge of phasic dopamine reward prediction error signals. The error signal is bidirectional, reflects well the higher order prediction error described by temporal difference learning models, is compatible with model-free and model-based reinforcement learning, reports the subjective rather than physical reward value during temporal discounting and reflects subjective stimulus perception rather than physical stimulus aspects. Dopamine activations are primarily driven by reward, and to some extent risk, whereas punishment and salience have only limited activating effects when appropriate controls are respected. The signal is homogeneous in terms of time course but heterogeneous in many other aspects. It is essential for synaptic plasticity and a range of behavioural learning situations.

  1. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  2. Pre- and Postsynaptic Role of Dopamine D2 Receptor DD2R in Drosophila Olfactory Associative Learning.

    PubMed

    Qi, Cheng; Lee, Daewoo

    2014-01-01

    Dopaminergic neurons in Drosophila play critical roles in diverse brain functions such as motor control, arousal, learning, and memory. Using genetic and behavioral approaches, it has been firmly established that proper dopamine signaling is required for olfactory classical conditioning (e.g., aversive and appetitive learning). Dopamine mediates its functions through interaction with its receptors. There are two different types of dopamine receptors in Drosophila: D1-like (dDA1, DAMB) and D2-like receptors (DD2R). Currently, no study has attempted to characterize the role of DD2R in Drosophila learning and memory. Using a DD2R-RNAi transgenic line, we have examined the role of DD2R, expressed in dopamine neurons (i.e., the presynaptic DD2R autoreceptor), in larval olfactory learning. The function of postsynaptic DD2R expressed in mushroom body (MB) was also studied as MB is the center for Drosophila learning, with a function analogous to that of the mammalian hippocampus. Our results showed that suppression of presynaptic DD2R autoreceptors impairs both appetitive and aversive learning. Similarly, postsynaptic DD2R in MB neurons appears to be involved in both appetitive and aversive learning. The data confirm, for the first time, that DD2R plays an important role in Drosophila olfactory learning. PMID:25422852

  3. Pre- and Postsynaptic Role of Dopamine D2 Receptor DD2R in Drosophila Olfactory Associative Learning

    PubMed Central

    Qi, Cheng; Lee, Daewoo

    2014-01-01

    Dopaminergic neurons in Drosophila play critical roles in diverse brain functions such as motor control, arousal, learning, and memory. Using genetic and behavioral approaches, it has been firmly established that proper dopamine signaling is required for olfactory classical conditioning (e.g., aversive and appetitive learning). Dopamine mediates its functions through interaction with its receptors. There are two different types of dopamine receptors in Drosophila: D1-like (dDA1, DAMB) and D2-like receptors (DD2R). Currently, no study has attempted to characterize the role of DD2R in Drosophila learning and memory. Using a DD2R-RNAi transgenic line, we have examined the role of DD2R, expressed in dopamine neurons (i.e., the presynaptic DD2R autoreceptor), in larval olfactory learning. The function of postsynaptic DD2R expressed in mushroom body (MB) was also studied as MB is the center for Drosophila learning, with a function analogous to that of the mammalian hippocampus. Our results showed that suppression of presynaptic DD2R autoreceptors impairs both appetitive and aversive learning. Similarly, postsynaptic DD2R in MB neurons appears to be involved in both appetitive and aversive learning. The data confirm, for the first time, that DD2R plays an important role in Drosophila olfactory learning. PMID:25422852

  4. CERES ISCCP-D2like Data Products

    Atmospheric Science Data Center

    2014-07-24

    ... fluxes and clouds. Description : CERES-MODIS and GEO cloud properties stratified by ISCCP cloud types and in the similar D2 ... geostationary cloud retrievals for daytime only.  GEO : 3-hourly geostationary-only cloud retrievals for daytime only.  ...

  5. Identification of a 2-phenyl-substituted octahydrobenzo[f]quinoline as a dopamine D3 receptor-selective full agonist ligand

    PubMed Central

    Clark, Alia H.; McCorvy, John D.; Conley, Jason M.; Williams, Whitney K.; Bekkam, Markondaiah; Watts, Val J.

    2012-01-01

    This work describes the identification of a novel class of octahydrobenzo[f]quinolines as dopamine D3-selective full agonists. We developed a facile method that utilizes Suzuki coupling for easy incorporations of various substituted pendant rings into the scaffold. A small focused library of octahydrobenzo[f]quinolines 5 was synthesized, and these compounds demonstrated at least 14-fold D2-like selectivity over D1 in native porcine striatal tissue. Furthermore, n-propyl analog 5f was found to be a high affinity (ki = 1.1 nM) D3 dopamine full agonist with 145-fold selectivity over the D2 receptor and about 840-fold selectivity over the D1 receptor. 1. PMID:23018094

  6. Cocaine Drives Aversive Conditioning via Delayed Activation of Dopamine-Responsive Habenular and Midbrain Pathways

    PubMed Central

    Good, Cameron H.; Rowley, Courtney S.; Xu, Sheng-ping; Wang, Huikun; Burnham, Nathan W.; Hoffman, Alexander F.; Lupica, Carl R.; Ikemoto, Satoshi

    2013-01-01

    Many strong rewards, including abused drugs, also produce aversive effects that are poorly understood. For example, cocaine can produce aversive conditioning after its rewarding effects have dissipated, consistent with opponent process theory, but the neural mechanisms involved are not well known. Using electrophysiological recordings in awake rats, we found that some neurons in the lateral habenula (LHb), where activation produces aversive conditioning, exhibited biphasic responses to single doses of intravenous cocaine, with an initial inhibition followed by delayed excitation paralleling cocaine's shift from rewarding to aversive. Recordings in LHb slice preparations revealed similar cocaine-induced biphasic responses and further demonstrated that biphasic responses were mimicked by dopamine, that the inhibitory phase depended on dopamine D2-like receptors, and that the delayed excitation persisted after drug washout for prolonged durations consistent with findings in vivo. c-Fos experiments further showed that cocaine-activated LHb neurons preferentially projected to and activated neurons in the rostromedial tegmental nucleus (RMTg), a recently identified target of LHb axons that is activated by negative motivational stimuli and inhibits dopamine neurons. Finally, pharmacological excitation of the RMTg produced conditioned place aversion, whereas cocaine-induced avoidance behaviors in a runway operant paradigm were abolished by lesions of LHb efferents, lesions of the RMTg, or by optogenetic inactivation of the RMTg selectively during the period when LHb neurons are activated by cocaine. Together, these results indicate that LHb/RMTg pathways contribute critically to cocaine-induced avoidance behaviors, while also participating in reciprocally inhibitory interactions with dopamine neurons. PMID:23616555

  7. Lack of self-administration of cocaine in dopamine D1 receptor knock-out mice.

    PubMed

    Caine, S Barak; Thomsen, Morgane; Gabriel, Kara I; Berkowitz, Jill S; Gold, Lisa H; Koob, George F; Tonegawa, Susumu; Zhang, Jianhua; Xu, Ming

    2007-11-28

    Evidence suggests a critical role for dopamine in the reinforcing effects of cocaine in rats and primates. However, self-administration has been less often studied in the mouse species, and, to date, "knock-out" of individual dopamine-related genes in mice has not been reported to reduce the reinforcing effects of cocaine. We studied the dopamine D1 receptor and cocaine self-administration in mice using a combination of gene-targeted mutation and pharmacological tools. Two cohorts with varied breeding and experimental histories were tested, and, in both cohorts, there was a significant decrease in the number of D1 receptor knock-out mice that met criteria for acquisition of cocaine self-administration (2 of 23) relative to wild-type mice (27 of 32). After extinction of responding with saline self-administration, dose-response studies showed that cocaine reliably and dose dependently maintained responding greater than saline in all wild-type mice but in none of the D1 receptor knock-out mice. The D1-like agonist SKF 82958 (2,3,4,5,-tetrahydro-6-chloro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine hydrobromide) and the D2-like agonist quinelorane both functioned as positive reinforcers in wild-type mice but not in D1 receptor mutant mice, whereas food and intravenous injections of the opioid agonist remifentanil functioned as positive reinforcers in both genotypes. Finally, pretreatment with the D1-like antagonist SCH 23390 [R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-01] produced surmountable antagonism of the reinforcing effects of cocaine in the commonly used strain C57BL/6J. We conclude that D1 receptor knock-out mice do not reliably self-administer cocaine and that the D1 receptor is critical for the reinforcing effects of cocaine and other dopamine agonists, but not food or opioids, in mice.

  8. Dopamine-dependent responses to morphine depend on glucocorticoid receptors

    PubMed Central

    Marinelli, Michela; Aouizerate, Bruno; Barrot, Michel; Le Moal, Michel; Piazza, Pier Vincenzo

    1998-01-01

    Previous work has shown that glucocorticoid hormones facilitate the behavioral and dopaminergic effects of morphine. In this study we examined the possible role in these effects of the two central corticosteroid receptor types: mineralocorticoid receptor (MR), and glucocorticoid receptor (GR). To accomplish this, specific antagonists of these receptors were infused intracerebroventricularly and 2 hr later we measured: (i) locomotor activity induced by a systemic injection of morphine (2 mg/kg); (ii) locomotor activity induced by an infusion of morphine (1 μg per side) into the ventral tegmental area, which is a dopamine-dependent behavioral response to morphine; (iii) morphine-induced dopamine release in the nucleus accumbens, a dopaminergic projection site mediating the locomotor and reinforcing effects of drugs of abuse. Blockade of MRs by spironolactone had no significant effects on locomotion induced by systemic morphine. In contrast, blockade of GRs by either RU38486 or RU39305, which is devoid of antiprogesterone effects, reduced the locomotor response to morphine, and this effect was dose dependent. GR antagonists also reduced the locomotor response to intraventral tegmental area morphine as well as the basal and morphine-induced increase in accumbens dopamine, as measured by microdialysis in freely moving rats. In contrast, spironolactone did not modify dopamine release. In conclusion, glucocorticoids, via GRs, facilitate the dopamine-dependent behavioral effects of morphine, probably by facilitating dopamine release. The possibility of decreasing the behavioral and dopaminergic effects of opioids by an acute administration of GR antagonists may open new therapeutic strategies for treatment of drug addiction. PMID:9636221

  9. Dopamine reward prediction error coding.

    PubMed

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  10. Dopamine reward prediction error coding

    PubMed Central

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377

  11. Dopamine, affordance and active inference.

    PubMed

    Friston, Karl J; Shiner, Tamara; FitzGerald, Thomas; Galea, Joseph M; Adams, Rick; Brown, Harriet; Dolan, Raymond J; Moran, Rosalyn; Stephan, Klaas Enno; Bestmann, Sven

    2012-01-01

    The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal) model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level.

  12. Differential effects of oxycodone, hydrocodone, and morphine on the responses of D2/D3 dopamine receptors.

    PubMed

    Emery, Michael A; Bates, M L Shawn; Wellman, Paul J; Eitan, Shoshana

    2015-05-01

    Oxycodone and hydrocodone are opioids which are widely used for pain management and are also commonly misused and abused. The exposure to opioid analgesics has been associated with altered responses of D2-like dopamine receptors (D2DRs). Our recent results suggest that various opioids will differentially modulate the responses of D2DRs. The D2DRs are known to be involved in the pathology of addiction and other mental illnesses, indicating the need to improve our understanding of the effects of opioid analgesics on the responses of the D2DRs. Thus, in this study, we first established equianalgesic oral doses of oxycodone, hydrocodone, and morphine using the tail withdrawal assay. Then, mice were orally administered (gavage) with the various opioids or saline once daily for 6 days. Twenty-four hours later, the mice were tested for their locomotor response to quinpirole, a D2/D3 dopamine receptor agonist. Mice pretreated with oxycodone showed significantly greater locomotor supersensitivity to quinpirole than did morphine-pretreated mice, while hydrocodone-pretreated mice showed sensitivity in between that of mice treated with morphine and oxycodone. This finding suggests that various opioids differentially modulate the responses of D2DRs. It provides further evidence supporting of the notion that various opioids carry differential risks to the dopamine reward system. PMID:25617530

  13. Mesolimbic dopamine signals the value of work.

    PubMed

    Hamid, Arif A; Pettibone, Jeffrey R; Mabrouk, Omar S; Hetrick, Vaughn L; Schmidt, Robert; Vander Weele, Caitlin M; Kennedy, Robert T; Aragona, Brandon J; Berke, Joshua D

    2016-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (phasic) dopamine fluctuations support learning, whereas much slower (tonic) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We found that minute-by-minute dopamine levels covaried with reward rate and motivational vigor. Second-by-second dopamine release encoded an estimate of temporally discounted future reward (a value function). Changing dopamine immediately altered willingness to work and reinforced preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly evolving decision variable, the available reward for investment of effort, which is employed for both learning and motivational functions.

  14. Determination of dopamine in pharmaceutical formulation using enhanced luminescence from europium complex

    NASA Astrophysics Data System (ADS)

    Wabaidur, Saikh Mohammad; ALOthman, Zeid Abdullah; Naushad, Mu.

    Biologically important compound dopamine plays an important role in the central and peripheral nervous systems. Insufficient dopamine level due to the loss of dopamine producing cells may lead to disease called Schizophrenia and Parkinson's disease. Hence, a simple and fast detection of dopamine is necessary to study in the fields of neurophysiology and clinical medicine. An enhanced fluorimetric determination of dopamine in the presence of ascorbic acid is achieved using photoluminescence of europium complex, Eu(III)-dipicolinic acid. In order to obtain better responses, several operational parameters have been investigated. Under the optimum conditions, the method showed good stability and reproducibility. The application of this method for the determination of dopamine neurotransmitters was satisfactory. Linear response was found down to 3.0 × 10-7 M with limit of detection 1.0 × 10-8 M. The relative standard deviation was found to be 3.33% from 20 independent measurements for 1.0 × 10-5 M of dopamine.

  15. Analogues of doxanthrine reveal differences between the dopamine D1 receptor binding properties of chromanoisoquinolines and hexahydrobenzo[a]phenanthridines

    PubMed Central

    Cueva, Juan Pablo; Chemel, Benjamin R.; Juncosa, Jose I.; Lill, Markus A.; Watts, Val J.; Nichols, David E.

    2012-01-01

    Efforts to develop selective agonists for dopamine D1-like receptors led to the discovery of dihydrexidine and doxanthrine, two bioisosteric β-phenyldopamine-type full agonist ligands that display selectivity and potency at D1-like receptors. We report herein an improved methodology for the synthesis of substituted chromanoisoquinolines (doxanthrine derivatives) and the evaluation of several new compounds for their ability to bind to D1- and D2-like receptors. Identical pendant phenyl ring substitutions on the dihydrexidine and doxanthrine templates surprisingly led to different effects on D1-like receptor binding, suggesting important differences between the interactions of these ligands with the D1 receptor. We propose, based on the biological results and molecular modeling studies, that slight conformational differences between the tetralin and chroman-based compounds lead to a shift in the location of the pendant ring substituents within the receptor. PMID:22204903

  16. Analogues of doxanthrine reveal differences between the dopamine D 1 receptor binding properties of chromanoisoquinolines and hexahydrobenzo[a]phenanthridines

    USGS Publications Warehouse

    Cueva, J.P.; Chemel, B.R.; Juncosa, J.I.; Lill, M.A.; Watts, V.J.; Nichols, D.E.

    2012-01-01

    Efforts to develop selective agonists for dopamine D 1-like receptors led to the discovery of dihydrexidine and doxanthrine, two bioisosteric ??-phenyldopamine-type full agonist ligands that display selectivity and potency at D 1-like receptors. We report herein an improved methodology for the synthesis of substituted chromanoisoquinolines (doxanthrine derivatives) and the evaluation of several new compounds for their ability to bind to D 1- and D 2-like receptors. Identical pendant phenyl ring substitutions on the dihydrexidine and doxanthrine templates surprisingly led to different effects on D 1-like receptor binding, suggesting important differences between the interactions of these ligands with the D 1 receptor. We propose, based on the biological results and molecular modeling studies, that slight conformational differences between the tetralin and chroman-based compounds lead to a shift in the location of the pendant ring substituents within the receptor. ?? 2011 Elsevier Ltd. All rights reserved.

  17. Dopamine, reward learning, and active inference

    PubMed Central

    FitzGerald, Thomas H. B.; Dolan, Raymond J.; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings. PMID:26581305

  18. Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury

    PubMed Central

    Hou, Shaoping; Carson, David M.; Wu, Di; Klaw, Michelle C.; Houlé, John D.; Tom, Veronica J.

    2016-01-01

    Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH)+ neurons in the autonomic nuclei and superficial dorsal horn in L6–S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH)− and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH+ neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D2-like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH+ neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH+ cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH+ neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. PMID:26655672

  19. [Dopamine-dependent character of depressive-like behavior in WAG/Rij rats with genetic absence epilepsy].

    PubMed

    Sarkisova, K Iu; Kulikov, M A; Midzianovskaia, I S; Folomkina, A A

    2007-01-01

    Placebo-treated WAG/Rij rats (as compared to normal Wistar rats without seizure pathology) exhibited depressive-like behavior similar to that of intact rats of the same strain: decreased exploratory activity in the open field test, increased immobility in the forced swimming test, decreased sucrose consumption and preference (anhedonia). Chronic injection of tricyclic antidepressant imipramine (15 mg/kg. i.p., for 15 days) exerted a therapeutic (antidepressant) effect on depressive-like behavior in WAG/Rij rats. After cessation of antidepressant therapy, the behavior of WAG/Rij rats didn't significantly differ from that of Wistar rats. Acute (single) injection of selective D2/D3 dopamine receptor antagonist raclopride (100 microg/kg, i.p., 15 min prior to behavioral testing) aggravated the symptoms of depressive-like behavior and suppressed antidepressant effect of chronic injection of imipramine in WAG/Rij rats, whereas it didn't exert a substantial effect on behavior of Wistar rats. Injection of D2/D3 dopamine receptor agonist Parlodel (bromocriptine) counteracted the depressive-like behavior in WAG/Rij rats and didn't exert substantial influence on behavior of Wistar rats with the exception of a decrease in immobility time in the forced swimming test. Injections of imipramine and raclopride didn't exert significant influences on the level of general locomotor activity and anxiety both in WAG/Rij and Wistar rats. The results demonstrate the dopamine-dependent character of depressive-like behavior in WAG/Rij rats, and indicate possible involvement of dopamine D2-like receptors in mediation of the antidepressant effect of imipramine on genetically determined depressive-like behavior in WAG/Rij rats. PMID:17432322

  20. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    PubMed Central

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  1. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    PubMed

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  2. Adolescent Maturation of Dopamine D1 and D2 Receptor Function and Interactions in Rodents.

    PubMed

    Dwyer, Jennifer B; Leslie, Frances M

    2016-01-01

    Adolescence is a developmental period characterized by heightened vulnerability to illicit drug use and the onset of neuropsychiatric disorders. These clinical phenomena likely share common neurobiological substrates, as mesocorticolimbic dopamine systems actively mature during this period. Whereas prior studies have examined age-dependent changes in dopamine receptor binding, there have been fewer functional analyses. The aim of the present study was therefore to determine whether the functional consequences of D1 and D2-like activation are age-dependent. Adolescent and adult rats were given direct D1 and D2 agonists, alone and in combination. Locomotor and stereotypic behaviors were measured, and brains were collected for analysis of mRNA expression for the immediate early genes (IEGs), cfos and arc. Adolescents showed enhanced D2-like receptor control of locomotor and repetitive behaviors, which transitioned to dominant D1-like mechanisms in adulthood. When low doses of agonists were co-administered, adults showed supra-additive behavioral responses to D1/D2 combinations, whereas adolescents did not, which may suggest age differences in D1/D2 synergy. D1/D2-stimulated IEG expression was particularly prominent in the bed nucleus of the stria terminalis (BNST). Given the BNST's function as an integrator of corticostriatal, hippocampal, and stress-related circuitry, and the importance of neural network dynamics in producing behavior, an exploratory functional network analysis of regional IEG expression was performed. This data-driven analysis demonstrated similar developmental trajectories as those described in humans and suggested that dopaminergic drugs alter forebrain coordinated gene expression age dependently. D1/D2 recruitment of stress nuclei into functional networks was associated with low behavioral output in adolescents. Network analysis presents a novel tool to assess pharmacological action, and highlights critical developmental changes in functional

  3. Adolescent Maturation of Dopamine D1 and D2 Receptor Function and Interactions in Rodents

    PubMed Central

    Dwyer, Jennifer B.; Leslie, Frances M.

    2016-01-01

    Adolescence is a developmental period characterized by heightened vulnerability to illicit drug use and the onset of neuropsychiatric disorders. These clinical phenomena likely share common neurobiological substrates, as mesocorticolimbic dopamine systems actively mature during this period. Whereas prior studies have examined age-dependent changes in dopamine receptor binding, there have been fewer functional analyses. The aim of the present study was therefore to determine whether the functional consequences of D1 and D2-like activation are age-dependent. Adolescent and adult rats were given direct D1 and D2 agonists, alone and in combination. Locomotor and stereotypic behaviors were measured, and brains were collected for analysis of mRNA expression for the immediate early genes (IEGs), cfos and arc. Adolescents showed enhanced D2-like receptor control of locomotor and repetitive behaviors, which transitioned to dominant D1-like mechanisms in adulthood. When low doses of agonists were co-administered, adults showed supra-additive behavioral responses to D1/D2 combinations, whereas adolescents did not, which may suggest age differences in D1/D2 synergy. D1/D2-stimulated IEG expression was particularly prominent in the bed nucleus of the stria terminalis (BNST). Given the BNST’s function as an integrator of corticostriatal, hippocampal, and stress-related circuitry, and the importance of neural network dynamics in producing behavior, an exploratory functional network analysis of regional IEG expression was performed. This data-driven analysis demonstrated similar developmental trajectories as those described in humans and suggested that dopaminergic drugs alter forebrain coordinated gene expression age dependently. D1/D2 recruitment of stress nuclei into functional networks was associated with low behavioral output in adolescents. Network analysis presents a novel tool to assess pharmacological action, and highlights critical developmental changes in functional

  4. Increased brain dopamine and dopamine receptors in schizophrenia

    SciTech Connect

    Mackay, A.V.; Iversen, L.L.; Rossor, M.; Spokes, E.; Bird, E.; Arregui, A.; Creese, I.; Synder, S.H.

    1982-09-01

    In postmortem samples of caudate nucleus and nucleus accumbens from 48 schizophrenic patients, there were significant increases in both the maximum number of binding sites (Bmax) and the apparent dissociation constant (KD) for tritiated spiperone. The increase in apparent KD probably reflects the presence of residual neuroleptic drugs, but changes in Bmax for tritiated spiperone reflect genuine changes in receptor numbers. The increases in receptors were seen only in patients in whom neuroleptic medication had been maintained until the time of death, indicating that they may be entirely iatrogenic. Dopamine measurements for a larger series of schizophrenic and control cases (n greater than 60) show significantly increased concentrations in both the nucleus accumbens and caudate nucleus. The changes in dopamine were not obviously related to neuroleptic medication and, unlike the receptor changes, were most severe in younger patients.

  5. Self-administration of agonists selective for dopamine D2, D3, and D4 receptors by rhesus monkeys.

    PubMed

    Koffarnus, Mikhail N; Collins, Gregory T; Rice, Kenner C; Chen, Jianyong; Woods, James H; Winger, Gail

    2012-08-01

    Dopamine receptor mechanisms are believed to play a role in the reinforcing effects of cocaine and other drugs of abuse. The lack of receptor-selective agonists has made it difficult to determine the role of the individual dopamine receptors in mediating these reinforcing effects. In this study, rhesus monkeys with a history of intravenous cocaine self-administration were tested for the reinforcing effects of several D(3)-preferring agonists, a D(2)-preferring agonist, and a D(4) agonist. The D(2)-preferring agonist did not maintain responding in any monkeys, and the D(4) agonist was self-administered at low rates, just above those maintained by saline, in one monkey. The D(3)-preferring agonists were self-administered by approximately half of the animals, although at lower rates than cocaine. These results indicate that the apparent limited reinforcing effectiveness of D(2)-like agonists requires activity at D(3) receptors. Previous data from this laboratory and others also suggest that these drugs may not serve as reinforcers directly; the behavior may be maintained by response-contingent delivery of stimuli previously paired with cocaine. The ability of drug-related stimuli to maintain responding apparently differs among monkeys and other organisms, and may be related to individual differences in drug-taking behavior in humans. PMID:22785383

  6. Dopamine and aging: intersecting facets.

    PubMed

    Rollo, C David

    2009-04-01

    Aging encompasses life itself so understanding requires frameworks that forge unity amidst complexity. The free radical theory of aging is one example. The original focus on damage was augmented recently by appreciation that reactive oxygen and nitrogen species are essential to normal signaling and cell function. This paradigm is currently undergoing an explosive expansion fueled by the discovery that regulatory organization is a merry-go-round of redox cycling seamlessly fused to endogenous clocks. This might best be described as an "Electroplasmic Cycle." This is certainly applicable to dopaminergic neurons with their exceptional metabolic, electrical and rhythmic properties. Here I review normal aging of dopamine systems to highlight them as a valuable model. I then examine the possible integration of free radical and ion channel theories of aging. Finally, I incorporate clocks and explore the multifaceted implications of electroplasmic cycles with special emphasis on dopamine.

  7. Dopamine, uncertainty and TD learning

    PubMed Central

    Niv, Yael; Duff, Michael O; Dayan, Peter

    2005-01-01

    Substantial evidence suggests that the phasic activities of dopaminergic neurons in the primate midbrain represent a temporal difference (TD) error in predictions of future reward, with increases above and decreases below baseline consequent on positive and negative prediction errors, respectively. However, dopamine cells have very low baseline activity, which implies that the representation of these two sorts of error is asymmetric. We explore the implications of this seemingly innocuous asymmetry for the interpretation of dopaminergic firing patterns in experiments with probabilistic rewards which bring about persistent prediction errors. In particular, we show that when averaging the non-stationary prediction errors across trials, a ramping in the activity of the dopamine neurons should be apparent, whose magnitude is dependent on the learning rate. This exact phenomenon was observed in a recent experiment, though being interpreted there in antipodal terms as a within-trial encoding of uncertainty. PMID:15953384

  8. Dopamine favours the emergence of long-term depression versus long-term potentiation in slices of rat prefrontal cortex.

    PubMed

    Law-Tho, D; Desce, J M; Crepel, F

    1995-03-24

    In the present study, we have investigated possible interactions between dopamine and long-term changes in synaptic efficacy induced in layer V pyramidal cells by tetanization of afferents from layer I-II. In the absence of dopamine, we confirmed that high frequency stimulation of excitatory afferents induced long-term potentiation, long-term depression or no change. Inversely, in the presence of dopamine, we have found that the same tetanus led to long-term depression in synaptic transmission in a majority of cells, but no more long-term potentiation. These results suggest that in rat prefrontal cortex, dopamine may determine the direction of activity dependent changes in synaptic efficacy and therefore, plays a functional role in the physiology of this structure.

  9. Surface-enhanced resonance Raman spectroscopy of iron-dopamine complexes

    NASA Astrophysics Data System (ADS)

    Kowalchyk, Will K.; Davis, Kevin L.; Morris, Michael D.

    1995-01-01

    Surface-enhanced resonance Raman spectroscopy (SERRS) at silver colloids is used to detect the catecholamines, 3-hydroxytyramine (dopamine) and 3,4-dihydroxyphenylacetic acid (DOPAC), in a modified Ringer's solution. Catecholamines form very strong complexes with iron(III) in solution ( Kf > 10 40) and exhibit a broad ligand-to-metal charge-transfer (LMCT) absorption in the visible (˜ 500 nm). Resonance enhancement is achieved by excitation at 532 nm from a frequency doubled Nd:YAG laser with high quality spectra attainable in 1 s. Maximum SERRS signal is observed when basic buffer is added to a dopamine sample containing 50 × 10 -6 M ferric ion. Dopamine concentrations in the nanomolar (resting level) range are obtained using this technique.

  10. Dopamine receptors – IUPHAR Review 13

    PubMed Central

    Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R

    2015-01-01

    The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228

  11. Mesolimbic Dopamine Signals the Value of Work

    PubMed Central

    Hamid, Arif A.; Pettibone, Jeffrey R.; Mabrouk, Omar S.; Hetrick, Vaughn L.; Schmidt, Robert; Vander Weele, Caitlin M.; Kennedy, Robert T.; Aragona, Brandon J.; Berke, Joshua D.

    2015-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We first show that minute-by-minute dopamine levels covary with reward rate and motivational vigor. We then show that second-by-second dopamine release encodes an estimate of temporally-discounted future reward (a value function). We demonstrate that changing dopamine immediately alters willingness to work, and reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available reward for investment of effort, that is employed for both learning and motivational functions. PMID:26595651

  12. SAGE III

    Atmospheric Science Data Center

    2016-06-15

    SAGE III Data and Information The Stratospheric Aerosol and Gas ... on the spacecraft. SAGE III produced L1 and L2 scientific data from 5/07/2002 until 12/31/2005. The flight of the second instrument is as ... Guide Documents:  Project Guide Data Products User's Guide  (PDF) Relevant Documents:  ...

  13. Dopamine release from transplanted neural stem cells in Parkinsonian rat striatum in vivo.

    PubMed

    Kang, Xinjiang; Xu, Huadong; Teng, Sasa; Zhang, Xiaoyu; Deng, Zijun; Zhou, Li; Zuo, Panli; Liu, Bing; Liu, Bin; Wu, Qihui; Wang, Li; Hu, Meiqin; Dou, Haiqiang; Liu, Wei; Zhu, Feipeng; Li, Qing; Guo, Shu; Gu, Jingli; Lei, Qian; Lü, Jing; Mu, Yu; Jin, Mu; Wang, Shirong; Jiang, Wei; Liu, Kun; Wang, Changhe; Li, Wenlin; Zhang, Kang; Zhou, Zhuan

    2014-11-01

    Embryonic stem cell-based therapies exhibit great potential for the treatment of Parkinson's disease (PD) because they can significantly rescue PD-like behaviors. However, whether the transplanted cells themselves release dopamine in vivo remains elusive. We and others have recently induced human embryonic stem cells into primitive neural stem cells (pNSCs) that are self-renewable for massive/transplantable production and can efficiently differentiate into dopamine-like neurons (pNSC-DAn) in culture. Here, we showed that after the striatal transplantation of pNSC-DAn, (i) pNSC-DAn retained tyrosine hydroxylase expression and reduced PD-like asymmetric rotation; (ii) depolarization-evoked dopamine release and reuptake were significantly rescued in the striatum both in vitro (brain slices) and in vivo, as determined jointly by microdialysis-based HPLC and electrochemical carbon fiber electrodes; and (iii) the rescued dopamine was released directly from the grafted pNSC-DAn (and not from injured original cells). Thus, pNSC-DAn grafts release and reuptake dopamine in the striatum in vivo and alleviate PD symptoms in rats, providing proof-of-concept for human clinical translation.

  14. Dopamine D2 Receptor Is Involved in Alleviation of Type II Collagen-Induced Arthritis in Mice.

    PubMed

    Lu, Jian-Hua; Liu, Yi-Qian; Deng, Qiao-Wen; Peng, Yu-Ping; Qiu, Yi-Hua

    2015-01-01

    Human and murine lymphocytes express dopamine (DA) D2-like receptors including DRD2, DRD3, and DRD4. However, their roles in rheumatoid arthritis (RA) are less clear. Here we showed that lymphocyte DRD2 activation alleviates both imbalance of T-helper (Th)17/T-regulatory (Treg) cells and inflamed symptoms in a mouse arthritis model of RA. Collagen-induced arthritis (CIA) was prepared by intradermal injection of chicken collagen type II (CII) in tail base of DBA/1 mice or Drd2 (-/-) C57BL/6 mice. D2-like receptor agonist quinpirole downregulated expression of proinflammatory Th17-related cytokines interleukin- (IL-) 17 and IL-22 but further upregulated expression of anti-inflammatory Treg-related cytokines transforming growth factor- (TGF-) β and IL-10 in lymphocytes in vitro and in ankle joints in vivo in CIA mice. Quinpirole intraperitoneal administration reduced both clinical arthritis score and serum anti-CII IgG level in CIA mice. However, Drd2 (-/-) CIA mice manifested more severe limb inflammation and higher serum anti-CII IgG level and further upregulated IL-17 and IL-22 expression and downregulated TGF-β and IL-10 expression than wild-type CIA mice. In contrast, Drd1 (-/-) CIA mice did not alter limb inflammation or anti-CII IgG level compared with wild-type CIA mice. These results suggest that DRD2 activation is involved in alleviation of CIA symptoms by amelioration of Th17/Treg imbalance. PMID:26693483

  15. D(3) and D(2) dopamine receptor agonists differentially modulate isolation-induced social-emotional reactivity in mice.

    PubMed

    Gendreau, P L; Petitto, J M; Petrova, A; Gariépy, J; Lewis, M H

    2000-09-01

    Following isolation housing, mice typically exhibit heightened emotional reactivity to mild social stimulation. Aggression, social avoidance and a variety of defensive behaviors that differ in terms of motor activation (e.g. freezing, escape) can be observed depending on strain. Previous studies suggested that D(2)-like dopamine (DA) receptors play an important, albeit strain specific, role in the mediation of particular forms of defensive behavior. D(3) receptors are subtypes of D(2)-like receptors that are highly expressed in limbic areas of the brain and, therefore, they have been hypothesized to mediate emotional behavior. This study examined the effects of the putative D(3) receptor agonists 7-OH-DPAT and PD128907 on social-emotional behavior in isolated C57BL/6J and A/J mice. These effects were compared with those of the selective D(2) receptor agonist PNU91356A. All three DA agonists increased non-locomotor forms of defensive behavior (e.g. freezing, upright defensive posture). These effects were observed at low doses in C57BL/6J and at higher doses in A/J mice. Only the D(3) receptor agonists were effective in increasing locomotor forms of defensive behavior (i.e. escape, jump) at higher doses. These effects were more pronounced in C57BL/6J mice than A/J mice. The increases in stationary and locomotor defensive behavior were accompanied by marked reduction in social investigation in both the strains. Aggressive behavior was also abolished in the aggressive C57BL/6J strain. These results support previous findings and suggest that DA agonists potentiate defensive behavior and/or social fearfulness. They also suggest that D(3) and D(2) DA receptors differentially modulate the expression of social-emotional reactivity and indicate the importance of strain in examining the effects of DA ligands on emotional behavior.

  16. Dopamine agonist-induced penile erection and yawning: a comparative study in outbred Roman high- and low-avoidance rats.

    PubMed

    Sanna, Fabrizio; Corda, Maria Giuseppa; Melis, Maria Rosaria; Piludu, Maria Antonietta; Löber, Stefan; Hübner, Harald; Gmeiner, Peter; Argiolas, Antonio; Giorgi, Osvaldo

    2013-08-01

    The effects on penile erection and yawning of subcutaneous (SC) injections of the mixed dopamine D1/D2-like agonist apomorphine (0.02-0.2 mg/kg) were studied in outbred Roman high- (RHA) and low-avoidance (RLA) male rats, two lines selectively bred for their respectively rapid versus poor acquisition of the active avoidance response in the shuttle-box, and compared with the effects observed in male Sprague-Dawley (SD) rats. Apomorphine dose-response curves were bell-shaped in all rat lines/strains. Notably, more penile erections and yawns were recorded mainly in the ascending part of these curves (e.g., apomorphine 0.02-0.08 mg/kg) in both RLA and RHA rats compared to SD rats, with RLA rats showing the higher response (especially for yawning) with respect to RHA rats. Similar results were found with PD-168,077 (0.02-0.2 mg/kg SC), a D4 receptor agonist, which induced penile erection but not yawning. In all rat lines/strains, apomorphine responses were markedly reduced by the D2 antagonist L-741,626, but not by the D3 antagonist, SB277011A, whereas the D4 antagonists L-745,870 and FAUC213 elicited a partial, yet statistically significant, inhibitory effect. In contrast, the pro-erectile effect of PD-168,077 was completely abolished by L-745,870 and FAUC213, as expected. The present study confirms and extends previously reported differences in dopamine transmission between RLA and RHA rats and between the SD strain and the Roman lines. Moreover, it confirms previous studies supporting the view that dopamine receptors of the D2 subtype play a predominant role in the pro-yawning and pro-erectile effect of apomorphine, and that the selective stimulation of D4 receptors induces penile erection.

  17. Dopamine: burning the candle at both ends.

    PubMed

    Pearson, John M; Platt, Michael L

    2013-09-01

    Dopamine neurons are well known for signaling reward-prediction errors. In this issue, Matsumoto and Takada (2013) show that some dopamine neurons also signal salient events during progression through a visual search task requiring working memory and sustained attention. PMID:24011998

  18. The role of dopamine D2, but not D3 or D4, receptor subtypes, in quinpirole-induced inhibition of the cardioaccelerator sympathetic outflow in pithed rats

    PubMed Central

    Altamirano-Espinoza, A H; González-Hernández, A; Manrique-Maldonado, G; Marichal-Cancino, B A; Ruiz-Salinas, I; Villalón, C M

    2013-01-01

    Background and Purpose Quinpirole (a dopamine D2-like receptor agonist) inhibits the cardioaccelerator sympathetic outflow in pithed rats by sympathoinhibitory D2-like receptors. The present study was designed to identify pharmacologically the specific D2-like receptor subtypes (i.e. D2, D3 and D4) involved in this sympathoinhibition by quinpirole. Experimental Approach One hundred fourteen male Wistar rats were pithed, artificially ventilated with room air and prepared for either preganglionic spinal (C7-T1) stimulation of the cardioaccelerator sympathetic outflow (n = 102) or i.v. bolus injections of exogenous noradrenaline (n = 12). This approach resulted in frequency-dependent and dose-dependent tachycardic responses, respectively, as previously reported by our group. Key Results I.v. continuous infusions of quinpirole (0.1–10 μg kg−1 min−1), but not of saline (0.02 mL min−1), dose-dependently inhibited the sympathetically induced tachycardic responses. Moreover, the cardiac sympathoinhibition induced by 3 μg kg−1 min−1 quinpirole (which failed to affect the tachycardic responses to i.v. noradrenaline) was: (i) unchanged after i.v. injections of the antagonists SB-277011-A (D3; 100–300 μg kg−1) or L-745,870 (D4; 30–100 μg kg−1); and (ii) markedly blocked and abolished by, respectively, 100 and 300 μg kg−1 of the D2 preferring receptor subtype antagonist L-741,626. These doses of antagonists, which did not affect per se the sympathetically induced tachycardic responses, were high enough to completely block their respective receptors. Conclusions and Implications The cardiac sympathoinhibition induced by 3 μg kg−1 min−1 quinpirole involves the dopamine D2 receptor subtype, with no evidence for the involvement of the D3 or D4 subtypes. This provides new evidence for understanding the modulation of the cardioaccelerator sympathetic outflow. PMID:24032529

  19. Molecular Mechanism of Dopamine Transport by Human Dopamine Transporter.

    PubMed

    Cheng, Mary Hongying; Bahar, Ivet

    2015-11-01

    Dopamine transporters (DATs) control neurotransmitter dopamine (DA) homeostasis by reuptake of excess DA, assisted by sodium and chloride ions. The recent resolution of DAT structure (dDAT) from Drosophila permits us for the first time to directly view the sequence of events involved in DA reuptake in human DAT (hDAT) using homology modeling and full-atomic microseconds accelerated simulations. Major observations are spontaneous closure of extracellular gates prompted by DA binding; stabilization of a holo-occluded intermediate; disruption of N82-N353 hydrogen bond and exposure to intracellular (IC) water triggered by Na2 dislocation; redistribution of a network of salt bridges at the IC surface in the inward-facing state; concerted tilting of IC-exposed helices to enable the release of Na(+) and Cl(-) ions; and DA release after protonation of D79. The observed time-resolved interactions confirm the conserved dynamics of LeuT-fold family, while providing insights into the mechanistic role of specific residues in hDAT.

  20. THE MYSTERIOUS MOTIVATIONAL FUNCTIONS OF MESOLIMBIC DOPAMINE

    PubMed Central

    Salamone, John D.; Correa, Mercè

    2012-01-01

    Summary Nucleus accumbens dopamine is known to play a role in motivational processes, and dysfunctions of mesolimbic dopamine may contribute to motivational symptoms of depression and other disorders, as well as features of substance abuse. Although it has become traditional to label dopamine neurons as “reward” neurons, this is an over-generalization, and it is important to distinguish between aspects of motivation that are differentially affected by dopaminergic manipulations. For example, accumbens dopamine does not mediate primary food motivation or appetite, but is involved in appetitive and aversive motivational processes including behavioral activation, exertion of effort, approach behavior, sustained task engagement, Pavlovian processes and instrumental learning. In this review, we discuss the complex roles of dopamine in behavioral functions related to motivation. PMID:23141060

  1. Polypharmacology of dopamine receptor ligands.

    PubMed

    Butini, S; Nikolic, K; Kassel, S; Brückmann, H; Filipic, S; Agbaba, D; Gemma, S; Brogi, S; Brindisi, M; Campiani, G; Stark, H

    2016-07-01

    Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular. PMID:27234980

  2. D1-like dopamine receptors downregulate Na+-K+-ATPase activity and increase cAMP production in the posterior gills of the blue crab Callinectes sapidus.

    PubMed

    Arnaldo, Francis B; Villar, Van Anthony M; Konkalmatt, Prasad R; Owens, Shaun A; Asico, Laureano D; Jones, John E; Yang, Jian; Lovett, Donald L; Armando, Ines; Jose, Pedro A; Concepcion, Gisela P

    2014-09-15

    Dopamine-mediated regulation of Na(+)-K(+)-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na(+)-K(+)-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1βR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1βR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na(+)-K(+)-ATPase and D1βR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na(+)-K(+)-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na(+)-K(+)-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na(+)-K(+)-ATPase activity by itself. Fenoldopam minimally decreased D1βR protein expression (10%) but did not affect Na(+)-K(+)-ATPase α-subunit protein expression. This study shows the presence of functional D1βR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis.

  3. D1-like dopamine receptors downregulate Na+-K+-ATPase activity and increase cAMP production in the posterior gills of the blue crab Callinectes sapidus

    PubMed Central

    Arnaldo, Francis B.; Villar, Van Anthony M.; Konkalmatt, Prasad R.; Owens, Shaun A.; Asico, Laureano D.; Jones, John E.; Yang, Jian; Lovett, Donald L.; Armando, Ines; Concepcion, Gisela P.

    2014-01-01

    Dopamine-mediated regulation of Na+-K+-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na+-K+-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1βR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1βR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na+-K+-ATPase and D1βR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na+-K+-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na+-K+-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na+-K+-ATPase activity by itself. Fenoldopam minimally decreased D1βR protein expression (10%) but did not affect Na+-K+-ATPase α-subunit protein expression. This study shows the presence of functional D1βR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis. PMID:25080496

  4. Does the dopamine hypothesis explain schizophrenia?

    PubMed

    Lau, Chi-Ieong; Wang, Han-Cheng; Hsu, Jung-Lung; Liu, Mu-En

    2013-01-01

    The dopamine hypothesis has been the cornerstone in the research and clinical practice of schizophrenia. With the initial emphasis on the role of excessive dopamine, the hypothesis has evolved to a concept of combining prefrontal hypodopaminergia and striatal hyperdopaminergia, and subsequently to the present aberrant salience hypothesis. This article provides a brief overview of the development and evidence of the dopamine hypothesis. It will argue that the current model of aberrant salience explains psychosis in schizophrenia and provides a plausible linkage between the pharmacological and cognitive aspects of the disease. Despite the privileged role of dopamine hypothesis in psychosis, its pathophysiological rather than etiological basis, its limitations in defining symptoms other than psychosis, as well as the evidence of other neurotransmitters such as glutamate and adenosine, prompt us to a wider perspective of the disease. Finally, dopamine does explain the pathophysiology of schizophrenia, but not necessarily the cause per se. Rather, dopamine acts as the common final pathway of a wide variety of predisposing factors, either environmental, genetic, or both, that lead to the disease. Other neurotransmitters, such as glutamate and adenosine, may also collaborate with dopamine to give rise to the entire picture of schizophrenia. PMID:23843581

  5. Dopamine receptor partial agonists and addiction.

    PubMed

    Moreira, Fabricio A; Dalley, Jeffrey W

    2015-04-01

    Many drugs abused by humans acutely facilitate, either directly or indirectly, dopamine neurotransmission in the mesolimbic pathway. As a consequence dopamine receptor agonists and antagonists have been widely investigated as putative pharmacological therapies for addiction. This general strategy, however, has had only limited success due in part to poor treatment adherence and efficacy and the significant adverse effects of dopaminergic medications. In this perspective, we discuss the potential therapeutic use of dopamine receptor partial agonists in addiction, developed initially as antipsychotic agents. Recent research indicates that the dopamine D2 receptor partial agonists, such as aripiprazole, also shows useful ancillary efficacy in several animal models of psychostimulant and opioid addiction. Notably, these findings suggest that unlike full dopamine receptor agonists and antagonists these compounds have low abuse liability and are generally well tolerated. Indeed, partial dopamine agonists attenuate the rewarding properties of opioids without interfering with their analgesic effects. Herein we discuss the utility and potential of dopamine receptor partial agonists as treatments for both stimulant and non-stimulant drug addiction.

  6. Dopamine receptors in human gastrointestinal mucosa

    SciTech Connect

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-12-21

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using /sup 3/H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of /sup 3/H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures.

  7. Predictive reward signal of dopamine neurons.

    PubMed

    Schultz, W

    1998-07-01

    The effects of lesions, receptor blocking, electrical self-stimulation, and drugs of abuse suggest that midbrain dopamine systems are involved in processing reward information and learning approach behavior. Most dopamine neurons show phasic activations after primary liquid and food rewards and conditioned, reward-predicting visual and auditory stimuli. They show biphasic, activation-depression responses after stimuli that resemble reward-predicting stimuli or are novel or particularly salient. However, only few phasic activations follow aversive stimuli. Thus dopamine neurons label environmental stimuli with appetitive value, predict and detect rewards and signal alerting and motivating events. By failing to discriminate between different rewards, dopamine neurons appear to emit an alerting message about the surprising presence or absence of rewards. All responses to rewards and reward-predicting stimuli depend on event predictability. Dopamine neurons are activated by rewarding events that are better than predicted, remain uninfluenced by events that are as good as predicted, and are depressed by events that are worse than predicted. By signaling rewards according to a prediction error, dopamine responses have the formal characteristics of a teaching signal postulated by reinforcement learning theories. Dopamine responses transfer during learning from primary rewards to reward-predicting stimuli. This may contribute to neuronal mechanisms underlying the retrograde action of rewards, one of the main puzzles in reinforcement learning. The impulse response releases a short pulse of dopamine onto many dendrites, thus broadcasting a rather global reinforcement signal to postsynaptic neurons. This signal may improve approach behavior by providing advance reward information before the behavior occurs, and may contribute to learning by modifying synaptic transmission. The dopamine reward signal is supplemented by activity in neurons in striatum, frontal cortex, and

  8. Human dopamine receptor and its uses

    DOEpatents

    Civelli, Olivier; Van Tol, Hubert Henri-Marie

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  9. Identification of a null mutation in the human dopamine D4 receptor gene

    SciTech Connect

    Noethen, M.M.; Cichon, S.; Hebebrand, J.

    1994-09-01

    Dopamine receptors belong to the family of G protein-coupled receptors. Five different dopamine receptor genes have thus far been identified. These receptors are classified into two main subfamilies: D1, which includes the D1 and D5 receptors, and D2, which includes the D2, D3, and D4 receptors. The dopamine D4 receptor is of great interest for research into neuropsychiatric disorders and psychopharmacology in light of the fact that it binds the antipsychotic medication clozapine with higher affinity than does any other dopamine receptor. In addition, among the dopamine receptors, the D4 receptor shows a uniquely high degree of genetic variation in the human population. We identified a new 13 bp deletion in exon 1 of the D4 gene. This frameshift creates a terminator codon at amino acid position 98. mRNA isolated from brain tissue of two heterozygous persons showed both alleles to be expressed. The deletion occurs with a frequency of 2% in the German population. One person was identified to be homozygous for the deletion. Interestingly, he has a normal intelligence and did not exhibit a major psychiatric disorder as defined by DSM III-R. The 13 bp deletion is the first mutation resulting in premature translation termination reported for a dopamine receptor gene so far. This mutation is a good candidate to test for potential effects on disease and/or individual response to pharmacotherapy. Association studies in patients with various psychiatric illnesses and differences in response to clozapine are underway.

  10. Welding III.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding III, an advanced course in arc welding offered at the Community College of Allegheny County to provide students with the proficiency necessary for industrial certification. The course objectives, which are outlined first, specify that students will…

  11. Glutamate neurons within the midbrain dopamine regions.

    PubMed

    Morales, M; Root, D H

    2014-12-12

    Midbrain dopamine systems play important roles in Parkinson's disease, schizophrenia, addiction, and depression. The participation of midbrain dopamine systems in diverse clinical contexts suggests these systems are highly complex. Midbrain dopamine regions contain at least three neuronal phenotypes: dopaminergic, GABAergic, and glutamatergic. Here, we review the locations, subtypes, and functions of glutamatergic neurons within midbrain dopamine regions. Vesicular glutamate transporter 2 (VGluT2) mRNA-expressing neurons are observed within each midbrain dopamine system. Within rat retrorubral field (RRF), large populations of VGluT2 neurons are observed throughout its anteroposterior extent. Within rat substantia nigra pars compacta (SNC), VGluT2 neurons are observed centrally and caudally, and are most dense within the laterodorsal subdivision. RRF and SNC rat VGluT2 neurons lack tyrosine hydroxylase (TH), making them an entirely distinct population of neurons from dopaminergic neurons. The rat ventral tegmental area (VTA) contains the most heterogeneous populations of VGluT2 neurons. VGluT2 neurons are found in each VTA subnucleus but are most dense within the anterior midline subnuclei. Some subpopulations of rat VGluT2 neurons co-express TH or glutamic acid decarboxylase (GAD), but most of the VGluT2 neurons lack TH or GAD. Different subsets of rat VGluT2-TH neurons exist based on the presence or absence of vesicular monoamine transporter 2, dopamine transporter, or D2 dopamine receptor. Thus, the capacity by which VGluT2-TH neurons may release dopamine will differ based on their capacity to accumulate vesicular dopamine, uptake extracellular dopamine, or be autoregulated by dopamine. Rat VTA VGluT2 neurons exhibit intrinsic VTA projections and extrinsic projections to the accumbens and to the prefrontal cortex. Mouse VTA VGluT2 neurons project to accumbens shell, prefrontal cortex, ventral pallidum, amygdala, and lateral habenula. Given their molecular

  12. The Dopamine Hypothesis of Schizophrenia: Version III—The Final Common Pathway

    PubMed Central

    Howes, Oliver D.; Kapur, Shitij

    2009-01-01

    The dopamine hypothesis of schizophrenia has been one of the most enduring ideas in psychiatry. Initially, the emphasis was on a role of hyperdopaminergia in the etiology of schizophrenia (version I), but it was subsequently reconceptualized to specify subcortical hyperdopaminergia with prefrontal hypodopaminergia (version II). However, these hypotheses focused too narrowly on dopamine itself, conflated psychosis and schizophrenia, and predated advances in the genetics, molecular biology, and imaging research in schizophrenia. Since version II, there have been over 6700 articles about dopamine and schizophrenia. We selectively review these data to provide an overview of the 5 critical streams of new evidence: neurochemical imaging studies, genetic evidence, findings on environmental risk factors, research into the extended phenotype, and animal studies. We synthesize this evidence into a new dopamine hypothesis of schizophrenia—version III: the final common pathway. This hypothesis seeks to be comprehensive in providing a framework that links risk factors, including pregnancy and obstetric complications, stress and trauma, drug use, and genes, to increased presynaptic striatal dopaminergic function. It explains how a complex array of pathological, positron emission tomography, magnetic resonance imaging, and other findings, such as frontotemporal structural and functional abnormalities and cognitive impairments, may converge neurochemically to cause psychosis through aberrant salience and lead to a diagnosis of schizophrenia. The hypothesis has one major implication for treatment approaches. Current treatments are acting downstream of the critical neurotransmitter abnormality. Future drug development and research into etiopathogenesis should focus on identifying and manipulating the upstream factors that converge on the dopaminergic funnel point. PMID:19325164

  13. Association of attention-deficit disorder and the dopamine transporter gene

    SciTech Connect

    Cook, E.H. Jr.; Stein, M.A.; Krasowski, M.D.; Cox, N.J.; Olkon, D.M.; Kieffer, J.E.; Leventhal, B.L.

    1995-04-01

    Attention-deficit hyperactivity disorder (ADHD) has been shown to be familial and heritable, in previous studies. As with most psychiatric disorders, examination of pedigrees has not revealed a consistent Mendelian mode of transmission. The response of ADHD patients to medications that inhibit the dopamine transporter, including methylphenidate, amphetamine, pemoline, and bupropion, led us to consider the dopamine transporter as a primary candidate gene for ADHD. To avoid effects of population stratification and to avoid the problem of classification of relatives with other psychiatric disorders as affected or unaffected, we used the haplotype-based haplotype relative risk (HHRR) method to test for association between a VNTR polymorphism at the dopamine transporter locus (DAT1) and DSM-III-R-diagnosed ADHD (N = 49) and undifferentiated attention-deficit disorder (UADD) (N = 8) in trios composed of father, mother, and affected offspring. HHRR analysis revealed significant association between ADHS/UADD and the 480-bp DAT1 allele (X{sup 2} 7.51, 1 df, P = .006). When cases of UADD were dropped from the analysis, similar results were found (X{sup 2} 7.29, 1 df, P = .007). If these findings are replicated, molecular analysis of the dopamine transporter gene may identify mutations that increase susceptibility to ADHD/UADD. Biochemical analysis of such mutations may lead to development of more effective therapeutic interventions. 36 refs., 4 tabs.

  14. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393.

    PubMed

    Saigusa, Tadashi; Aono, Yuri; Sekino, Reiko; Uchida, Takuya; Takada, Koji; Oi, Yoshiyuki; Koshikawa, Noriaki; Cools, Alexander R

    2009-12-10

    Like dexamphetamine, SKF38393 induces an increase in striatal dopamine efflux which is insensitive for tetrodotoxin, Ca(2+) independent and prevented by a dopamine transporter inhibitor. The dexamphetamine-induced striatal dopamine efflux originates from both the reserpine-sensitive vesicular dopamine pool and the alpha-methyl-para-tyrosine-sensitive cytosolic dopamine pool. Given the similarities between dexamphetamine and SKF38393, we hypothesized that both types of pool also contribute to the striatally applied SKF38393-induced dopamine efflux. Using in vivo microdialysis technique, we analysed the contribution of these pools to the SKF38393-induced striatal dopamine efflux in freely moving rats. The increase of dopamine efflux induced by 1.5 microg SKF38393 was largely prevented by either reserpine (5mg/kg i.p., given 24h earlier) or alpha-methyl-para-tyrosine (250 mg/kg i.p., given 2h earlier), showing that both the vesicular dopamine pool and the cytosolic dopamine pool contribute to the SKF38393-induced increase in striatal dopamine efflux. The sum of the amounts of dopamine that was sensitive to either reserpine or alpha-methyl-para-tyrosine, was greater than 100%, namely 137.6% of the basal dopamine level and 143.9% of the SKF38393-induced dopamine level, suggesting that striatally applied SKF38393 promotes the redistribution of dopamine from vesicles to the cytosol, and vice versa. The finding that the combined treatment of reserpine and alpha-methyl-para-tyrosine only inhibited the SKF38393-induced striatal dopamine efflux till 86.0% of the control, is ascribed to the notion that SKF38393 can also inhibit the re-uptake of dopamine. The latter conclusion has far-reaching consequences for studies in which the effects of SKF38393 are simply ascribed to its dopamine D1 receptor stimulation capacity.

  15. A new dopamine-β-hydroxylase inhibitor

    PubMed Central

    Andén, N. -E.; Fuxe, K.

    1971-01-01

    1. The dopamine-β-hydroxylase inhibitor bis(4-methyl-1-homopiperazinyl-thiocarbonyl) disulphide (FLA-63; 25 mg/kg i.p.) caused within 4 h a 65% loss of noradrenaline throughout the intact rat spinal cord and also cranial to a transection of the cut spinal cord. Caudal to the lesion, there was only an insignificant depletion of 17% indicating the importance of nerve impulses for the disappearance of noradrenaline. 2. Dopamine accumulated in the spinal cord after treatment with FLA-63 although the amounts were not sufficient to replace the missing noradrenaline. Even after treatment with L-3,4-dihydroxyphenylalanine (L-DOPA), the catecholamine store was incompletely replenished by dopamine. 3. After a large depletion of the noradrenaline stores, induced by repeated doses of FLA-63 or by reserpine plus FLA-63, the L-DOPA-induced increase in flexor reflex activity of the hind limbs of spinal rats was inhibited much more than after pretreatment with α-methyl-tyrosine or reserpine. FLA-63 blocked the formation of noradrenaline but not of dopamine from L-DOPA. 4. The increase in flexor reflex activity induced by the noradrenaline receptor stimulating agent clonidine was not changed by FLA-63, indicating that the noradrenaline receptor sensitivity was not influenced. 5. After depletion of the noradrenaline stores, the small formation of noradrenaline from L-DOPA may be of greater functional significance for the noradrenaline receptor stimulation than the greater formation of dopamine, but the dopamine formed also has a slight action. With intact noradrenaline stores, displacement of endogenous noradrenaline by newly formed dopamine contributes, at least after monoamine oxidase inhibition, to the increase in the flexor reflex activity caused by L-DOPA. PMID:4339882

  16. Dopamine, Behavioral Economics, and Effort

    PubMed Central

    Salamone, John D.; Correa, Merce; Farrar, Andrew M.; Nunes, Eric J.; Pardo, Marta

    2009-01-01

    There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders. PMID:19826615

  17. Dopamine, behavioral economics, and effort.

    PubMed

    Salamone, John D; Correa, Merce; Farrar, Andrew M; Nunes, Eric J; Pardo, Marta

    2009-01-01

    There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders. PMID:19826615

  18. Addiction: Beyond dopamine reward circuitry

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  19. Dopamine, behavioral economics, and effort.

    PubMed

    Salamone, John D; Correa, Merce; Farrar, Andrew M; Nunes, Eric J; Pardo, Marta

    2009-01-01

    There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.

  20. Genetic disruption of dopamine production results in pituitary adenomas and severe prolactinemia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dopamine release from tuberoinfundibular dopamine neurons into the median eminence activates dopamine-D2 receptors in the pituitary gland where it inhibits lactotroph function. We have previously described genetic dopamine-deficient mouse models which lack the ability to synthesize dopamine. Because...

  1. Dopamine decreases NMDA currents in the oval bed nucleus of the stria terminalis of cocaine self-administering rats☆

    PubMed Central

    Krawczyk, Michal; deBacker, Julian; Mason, Xenos; Jones, Andrea A.; Dumont, Éric C.

    2014-01-01

    Dopamine (DA) and N-methyl-D-aspartate receptors (NMDARs) contribute in the neural processes underlying drug-driven behaviors. DA is a potent modulator of NMDAR, but few studies have investigated the functional interaction between DA and NMDAR in the context of substance abuse. We combined the rat model of cocaine self-administration with brain slice electrophysiology to study DA modulation of NMDA currents in the oval bed nucleus of the stria terminalis (ovBNST), a dense DA terminal field involved in maintenance of cocaine self-administration amongst other drug related behaviors. Long-Evans rats self-administered intravenous cocaine (0.75 mg/kg/injection) on a progressive ratio (PR) schedule of reinforcement for 15 days and whole-cell patch-clamp recordings were done on the 16th day. DA reduced NMDA currents in brain-slices from cocaine self-administering rats, but not in those of drug-naïve and sucrose self-administering, or when cocaine exposure was passive (yoked), revealing a mechanism unique to voluntary cocaine intake. DA reduced NMDA currents by activating G-protein-coupled D1- and D2-like receptors that converged on phospholipase C and protein phosphatases. Accordingly, our study reveals a mechanism that may contribute to dysfunctional synaptic plasticity associated with drug-driven behaviors during acute withdrawal. PMID:24472317

  2. Characterization of [(3) H]LS-3-134, a novel arylamide phenylpiperazine D3 dopamine receptor selective radioligand.

    PubMed

    Rangel-Barajas, Claudia; Malik, Maninder; Taylor, Michelle; Neve, Kim A; Mach, Robert H; Luedtke, Robert R

    2014-11-01

    LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit: (i) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, (ii) > 100-fold D3 versus D2 dopamine receptor subtype binding selectivity, and (iii) low-affinity binding (Ki  > 5000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [(3) H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd  = 0.06 ± 0.01 nM) and rat (Kd  = 0.2 ± 0.02 nM) D3 receptors expressed in HEK293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [(3) H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies, we propose that [(3) H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype.

  3. Abstinence from chronic cocaine self-administration alters striatal dopamine systems in rhesus monkeys.

    PubMed

    Beveridge, Thomas J R; Smith, Hilary R; Nader, Michael A; Porrino, Linda J

    2009-04-01

    Although dysregulation within the dopamine (DA) system is a hallmark feature of chronic cocaine exposure, the question of whether these alterations persist into abstinence remains largely unanswered. Nonhuman primates represent an ideal model in which to assess the effects of abstinence on the DA system following chronic cocaine exposure. In this study, male rhesus monkeys self-administered cocaine (0.3 mg/kg per injection, 30 reinforcers per session) under a fixed-interval 3-min schedule for 100 days followed by either 30 or 90 days abstinence. This duration of cocaine self-administration has been previously shown to decrease DA D2-like receptor densities and increase levels of D1-like receptors and DA transporters (DAT). Responding by control monkeys was maintained by food presentation under an identical protocol and the same abstinence periods. [(3)H]SCH 23390 binding to DA D1 receptors following 30 days of abstinence was significantly higher in all portions of the striatum, compared to control animals, whereas [(3)H]raclopride binding to DA D2 receptors was not different between groups. [(3)H]WIN 35 428 binding to DAT was also significantly higher throughout virtually all portions of the dorsal and ventral striatum following 30 days of abstinence. Following 90 days of abstinence, however, levels of DA D1 receptors and DAT were not different from control values. Although these results indicate that there is eventual recovery of the separate elements of the DA system, they also highlight the dynamic nature of these components during the initial phases of abstinence from chronic cocaine self-administration. PMID:18769473

  4. Intrarenal dopamine inhibits progression of diabetic nephropathy.

    PubMed

    Zhang, Ming-Zhi; Yao, Bing; Yang, Shilin; Yang, Haichun; Wang, Suwan; Fan, Xiaofeng; Yin, Huiyong; Fogo, Agnes B; Moeckel, Gilbert W; Harris, Raymond C

    2012-10-01

    The kidney has a local intrarenal dopaminergic system, and in the kidney, dopamine modulates renal hemodynamics, inhibits salt and fluid reabsorption, antagonizes the renin-angiotensin system, and inhibits oxidative stress. The current study examined the effects of alterations in the intrarenal dopaminergic system on kidney structure and function in models of type 1 diabetes. We studied catechol-O-methyl-transferase (COMT)(-/-) mice, which have increased renal dopamine production due to decreased dopamine metabolism, and renal transplantation was used to determine whether the effects seen with COMT deficiency were kidney-specific. To determine the effects of selective inhibition of intrarenal dopamine production, we used mice with proximal tubule deletion of aromatic amino acid decarboxylase (ptAADC(-/-)). Compared with wild-type diabetic mice, COMT(-/-) mice had decreased hyperfiltration, decreased macula densa cyclooxygenase-2 expression, decreased albuminuria, decreased glomerulopathy, and inhibition of expression of markers of inflammation, oxidative stress, and fibrosis. These differences were also seen in diabetic mice with a transplanted kidney from COMT(-/-) mice. In contrast, diabetic ptAADC(-/-) mice had increased nephropathy. Our study demonstrates an important role of the intrarenal dopaminergic system to modulate the development and progression of diabetic kidney injury and indicate that the decreased renal dopamine production may have important consequences in the underlying pathogenesis of diabetic nephropathy. PMID:22688335

  5. Neuroeconomics: a formal test of dopamine's role in reinforcement learning.

    PubMed

    DeWitt, Eric E J

    2014-04-14

    Over the last two decades, dopamine and reinforcement learning have been increasingly linked. Using a novel, axiomatic approach, a recent study shows that dopamine meets the necessary and sufficient conditions required by the theory to encode a reward prediction error.

  6. Genetics Home Reference: dopamine beta-hydroxylase deficiency

    MedlinePlus

    ... CONGENITAL Sources for This Page Cubells JF, Zabetian CP. Human genetics of plasma dopamine beta-hydroxylase activity: ... GeneReview: Dopamine Beta-Hydroxylase Deficiency Kim CH, Zabetian CP, Cubells JF, Cho S, Biaggioni I, Cohen BM, Robertson ...

  7. Brain May Compensate for Dopamine Neuron Loss Early in Parkinson's

    MedlinePlus

    ... More Science News Brain May Compensate for Dopamine Neuron Loss Early in Parkinson’s - May 09 2014 Scientists ... at least 25 percent of the brain’s dopamine neurons already have been lost. So why do symptoms ...

  8. Ring Substituents on Substituted Benzamide Ligands Indirectly Mediate Interactions with Position 7.39 of Transmembrane Helix 7 of the D4 Dopamine Receptor

    PubMed Central

    Ericksen, Spencer S.; Cummings, David F.; Teer, Michael E.; Amdani, Shahnawaz

    2012-01-01

    In an effort to delineate how specific molecular interactions of dopamine receptor ligand classes vary between D2-like dopamine receptor subtypes, a conserved threonine in transmembrane (TM) helix 7 (Thr7.39), implicated as a key ligand interaction site with biogenic amine G protein-coupled receptors, was substituted with alanine in D2 and D4 receptors. Interrogation of different ligand chemotypes for sensitivity to this substitution revealed enhanced affinity in the D4, but not the D2 receptor, specifically for substituted benzamides (SBAs) having polar 4- (para) and/or 5- (meta) benzamide ring substituents. D4-T7.39A was fully functional, and the mutation did not alter the sodium-mediated positive and negative allostery observed with SBAs and agonists, respectively. With the exception of the non-SBA ligand (+)-butaclamol, which, in contrast to certain SBAs, had decreased affinity for the D4-T7.39A mutant, the interactions of numerous other ligands were unaffected by this mutation. SBAs were docked into D4 models in the same mode as observed for eticlopride in the D3 crystal structure. In this mode, interactions with TM5 and TM6 residues constrain the SBA ring position that produces distal steric crowding between pyrrolidinyl/diethylamine moieties and D4-Thr7.39. Ligand-residue interaction energy profiles suggest this crowding is mitigated by substitution with a smaller alanine. The profiles indicate sites that contribute to the SBA binding interaction and site-specific energy changes imparted by the D4-T7.39A mutation. Substantial interaction energy changes are observed at only a few positions, some of which are not conserved among the dopamine receptor subtypes and thus seem to account for this D4 subtype-specific structure-activity relationship. PMID:22588261

  9. Diversity and Bias through Receptor-Receptor Interactions in GPCR Heteroreceptor Complexes. Focus on Examples from Dopamine D2 Receptor Heteromerization.

    PubMed

    Fuxe, Kjell; Tarakanov, Alexander; Romero Fernandez, Wilber; Ferraro, Luca; Tanganelli, Sergio; Filip, Malgorzata; Agnati, Luigi F; Garriga, Pere; Diaz-Cabiale, Zaida; Borroto-Escuela, Dasiel O

    2014-01-01

    Allosteric receptor-receptor interactions in GPCR heteromers appeared to introduce an intermolecular allosteric mechanism contributing to the diversity and bias in the protomers. Examples of dopamine D2R heteromerization are given to show how such allosteric mechanisms significantly change the receptor protomer repertoire leading to diversity and biased recognition and signaling. In 1980s and 1990s, it was shown that neurotensin (NT) through selective antagonistic NTR-D2 like receptor interactions increased the diversity of DA signaling by reducing D2R-mediated dopamine signaling over D1R-mediated dopamine signaling. Furthermore, D2R protomer appeared to bias the specificity of the NTR orthosteric binding site toward neuromedin N vs. NT in the heteroreceptor complex. Complex CCK2R-D1R-D2R interactions in possible heteroreceptor complexes were also demonstrated further increasing receptor diversity. In D2R-5-HT2AR heteroreceptor complexes, the hallucinogenic 5-HT2AR agonists LSD and DOI were recently found to exert a biased agonist action on the orthosteric site of the 5-HT2AR protomer leading to the development of an active conformational state different from the one produced by 5-HT. Furthermore, as recently demonstrated allosteric A2A-D2R receptor-receptor interaction brought about not only a reduced affinity of the D2R agonist binding site but also a biased modulation of the D2R protomer signaling in A2A-D2R heteroreceptor complexes. A conformational state of the D2R was induced, which moved away from Gi/o signaling and instead favored β-arrestin2-mediated signaling. These examples on allosteric receptor-receptor interactions obtained over several decades serve to illustrate the significant increase in diversity and biased recognition and signaling that develop through such mechanisms.

  10. Diversity and Bias through Receptor–Receptor Interactions in GPCR Heteroreceptor Complexes. Focus on Examples from Dopamine D2 Receptor Heteromerization

    PubMed Central

    Fuxe, Kjell; Tarakanov, Alexander; Romero Fernandez, Wilber; Ferraro, Luca; Tanganelli, Sergio; Filip, Malgorzata; Agnati, Luigi F.; Garriga, Pere; Diaz-Cabiale, Zaida; Borroto-Escuela, Dasiel O.

    2014-01-01

    Allosteric receptor–receptor interactions in GPCR heteromers appeared to introduce an intermolecular allosteric mechanism contributing to the diversity and bias in the protomers. Examples of dopamine D2R heteromerization are given to show how such allosteric mechanisms significantly change the receptor protomer repertoire leading to diversity and biased recognition and signaling. In 1980s and 1990s, it was shown that neurotensin (NT) through selective antagonistic NTR–D2 like receptor interactions increased the diversity of DA signaling by reducing D2R-mediated dopamine signaling over D1R-mediated dopamine signaling. Furthermore, D2R protomer appeared to bias the specificity of the NTR orthosteric binding site toward neuromedin N vs. NT in the heteroreceptor complex. Complex CCK2R–D1R–D2R interactions in possible heteroreceptor complexes were also demonstrated further increasing receptor diversity. In D2R–5-HT2AR heteroreceptor complexes, the hallucinogenic 5-HT2AR agonists LSD and DOI were recently found to exert a biased agonist action on the orthosteric site of the 5-HT2AR protomer leading to the development of an active conformational state different from the one produced by 5-HT. Furthermore, as recently demonstrated allosteric A2A–D2R receptor–receptor interaction brought about not only a reduced affinity of the D2R agonist binding site but also a biased modulation of the D2R protomer signaling in A2A–D2R heteroreceptor complexes. A conformational state of the D2R was induced, which moved away from Gi/o signaling and instead favored β-arrestin2-mediated signaling. These examples on allosteric receptor–receptor interactions obtained over several decades serve to illustrate the significant increase in diversity and biased recognition and signaling that develop through such mechanisms. PMID:24860548

  11. DRD4 dopamine receptor genotype and CSF monoamine metabolites in Finnish alcoholics and controls

    SciTech Connect

    Adamson, M.D.; Dean, M.; Goldman, D.

    1995-06-19

    The DRD4 dopamine receptor is thus far unique among neurotransmitter receptors in having a highly polymorphic gene structure that has been reported to produce altered receptor functioning. These allelic variations are caused by a 48-bp segment in exon III of the coding region which may be repeated from 2-10 times. Varying the numbers of repeated segments changes the length, structure, and, possibly, the functional efficiency of the receptor, which makes this gene an intriguing candidate for variations in dopamine-related behaviors, such as alcoholism and drug abuse. Thus far, these DRD4 alleles have been investigated for association with schizophrenia, bipolar disorder, Parkinson`s disease, and chronic alcoholism, and all have been largely negative for a direct association. We evaluated the DRD4 genotype in 226 Finish adult males, 113 of whom were alcoholics, many of the early onset type with features of impulsivity and antisocial traits. Genotype frequencies were compared to 113 Finnish controls who were free of alcohol abuse, substance abuse, and major mental illness. In 70 alcoholics and 20 controls, we measured CSF homovanillic acid (HVA), the major metabolite of dopamine, and 5-hydroxyindoleacetic acid (5-HIAA). No association was found between a particular DRD4 dopamine receptor allele and alcoholism. CSF concentrations of the monoamine metabolites showed no significant difference among the DRD4 genotypes. This study of the DRD4 dopamine receptor in alcoholics is the first to be conducted in a clinically and ethnically homogeneous population and to relate the DRD4 genotype to CSF monoamine concentrations. The results indicate that there is no association of the DRD4 receptor with alcoholism. 52 refs., 3 figs., 1 tab.

  12. Behavioral expression of opiate withdrawal is altered after prefrontocortical dopamine depletion in rats: monoaminergic correlates.

    PubMed

    Espejo, E F; Serrano, M I; Caillé, S; Stinus, L

    2001-08-01

    The objective of this study was to establish the effects of prefrontocortical dopamine depletion on opiate withdrawal and prefrontocortical neurochemical changes elicited by morphine dependence and withdrawal. The dopaminergic content was also measured in the nucleus accumbens during withdrawal, in order to detect reactive changes induced by prefrontocortical lesion. Withdrawal was induced by naloxone in morphine-dependent rats. Monoamine levels were analyzed post-mortem by high performance liquid cromatography. The results showed that chronic morphine dependence did not modify basal levels of monoamines in sham rats, revealing neuroadaptation of prefrontocortical dopamine, noradrenaline and serotonin systems to chronic morphine. The neuroadaptive phenomenon remained after prefrontocortical lesion (> 79% dopamine depletion). On the other hand, a strong increase of dopamine, noradrenaline, and serotonin contents in the medial prefrontal cortex of sham rats was detected during opiate withdrawal. However, in lesioned rats, the increase of prefrontocortical dopamine and serotonin content, but not that of noradrenaline, was much lower. In the nucleus accumbens, prefrontocortical lesion reactively enhanced the dopaminergic tone and, although opiate withdrawal reduced dopaminergic activity in both sham and lesioned rats, this reduction was less intense in the latter group. At a behavioral level, some symptoms of physical opiate withdrawal were exacerbated in lesioned rats (writhing, mastication, teeth-chattering, global score) and exploration was reduced. The findings hence indicate that: (i) prefrontocortical monoaminergic changes play a role in the behavioral expression of opiate withdrawal; (ii) the severity of some withdrawal signs are related to the dopaminergic and serotonergic tone of the medial prefrontal cortex rather than to the noradrenergic one, and (iii) an inverse relationship between mesocortical and mesolimbic dopaminergic systems exists.

  13. Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.

    PubMed

    MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D

    2016-07-01

    Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists. PMID:26942320

  14. Differential dopamine function in fibromyalgia.

    PubMed

    Albrecht, Daniel S; MacKie, Palmer J; Kareken, David A; Hutchins, Gary D; Chumin, Evgeny J; Christian, Bradley T; Yoder, Karmen K

    2016-09-01

    Approximately 30 % of Americans suffer from chronic pain disorders, such as fibromyalgia (FM), which can cause debilitating pain. Many pain-killing drugs prescribed for chronic pain disorders are highly addictive, have limited clinical efficacy, and do not treat the cognitive symptoms reported by many patients. The neurobiological substrates of chronic pain are largely unknown, but evidence points to altered dopaminergic transmission in aberrant pain perception. We sought to characterize the dopamine (DA) system in individuals with FM. Positron emission tomography (PET) with [(18)F]fallypride (FAL) was used to assess changes in DA during a working memory challenge relative to a baseline task, and to test for associations between baseline D2/D3 availability and experimental pain measures. Twelve female subjects with FM and 11 female controls completed study procedures. Subjects received one FAL PET scan while performing a "2-back" task, and one while performing a "0-back" (attentional control, "baseline") task. FM subjects had lower baseline FAL binding potential (BP) in several cortical regions relative to controls, including anterior cingulate cortex. In FM subjects, self-reported spontaneous pain negatively correlated with FAL BP in the left orbitofrontal cortex and parahippocampal gyrus. Baseline BP was significantly negatively correlated with experimental pain sensitivity and tolerance in both FM and CON subjects, although spatial patterns of these associations differed between groups. The data suggest that abnormal DA function may be associated with differential processing of pain perception in FM. Further studies are needed to explore the functional significance of DA in nociception and cognitive processing in chronic pain.

  15. Plasma dopamine: regulation and significance.

    PubMed

    Van Loon, G R

    1983-10-01

    Dopamine (DA) normally circulates in plasma. The plasma concentration of the free form of DA is approximately equivalent to that of epinephrine (E) and 20% that of norepinephrine (NE). The free form constitutes less than 2% of total plasma DA, and the remainder exists predominantly as sulfate or glucuronide conjugates. DA is found in adrenal medulla and cortex, peripheral nerves, sympathetic ganglia, carotid body, and kidney, but quantitatively the origin of circulating DA remains poorly understood. Plasma concentrations of free DA increase in association with events that increase sympathetic tone, although to a much lesser degree than seen for NE or E. Thus, upright posture, bicycle exercise, a variety of emotional and physical stresses, and hypoglycemia may be associated with increases in plasma free DA. Plasma DA decreases during the course of dietary sodium depletion in humans, in contrast to the plasma NE response, and consistent with a physiological role for DA in the regulation of aldosterone secretion. Plasma DA increases after administration of its precursor L-dihydroxyphenylalanine, together with the decarboxylase inhibitor carbidopa. Plasma NE and (in some studies) plasma DA decrease after administration of the DA receptor agonist bromocriptine. In contrast, plasma DA and one of its major metabolites, homovanillic acid, increase after administration of the DA receptor antagonist haloperidol. Administration of the endogenous opioid peptide beta-endorphin into the brain increases central sympathetic outflow, thus increasing plasma DA concentration, although to a lesser extent than for NE or E. Disordered basal concentrations of DA in plasma or disordered responses of plasma DA have been reported in a number of disease states. Clear understanding of physiological roles of DA in plasma and of its pathophysiology awaits definition. PMID:6413258

  16. Theoretical determinations of ionization potentials of dopamine

    NASA Astrophysics Data System (ADS)

    Lu, J. F.; Yu, Z. Y.

    2013-04-01

    Adiabatic and vertical ionization potentials (IPs) of nine conformers of dopamine in the gas phase are determined using density functional theory (DFT) B3LYP, B3P86, B3PW91 methods and high level ab initio HF method with 6-311++G** basis set, respectively. And the nine stable cationic states have been found in the ionization process of dopamine. Vertical ionization potentials of nine conformers of dopamine are calculated using the older outer-valence Green's function (OVGF) calculations at 6-311++G** basis set. Vibrational frequencies and infrared spectrum intensities of G1b and G1b+ at B3LYP/6-311++G** level are discussed.

  17. How Addictive Drugs Disrupt Presynaptic Dopamine Neurotransmission

    PubMed Central

    Sulzer, David

    2011-01-01

    The fundamental principle that unites addictive drugs appears to be that each enhances synaptic dopamine by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. This occurs via the modulation of synaptic mechanisms involved in learning, including enhanced excitation or disinhibition of dopamine neuron activity, blockade of dopamine reuptake, and altering the state of the presynaptic terminal to enhance evoked over basal transmission. Amphetamines offer an exception to such modulation in that they combine multiple effects to produce non-exocytic stimulation-independent release of neurotransmitter via reverse transport independent from normal presynaptic function. Questions on the molecular actions of addictive drugs, prominently including the actions of alcohol and solvents, remain unresolved, but their ability to co-opt normal presynaptic functions helps to explain why treatment for addiction has been challenging. PMID:21338876

  18. Dopamine and the Biology of Creativity: Lessons from Parkinson’s Disease

    PubMed Central

    Lhommée, Eugénie; Batir, Alina; Quesada, Jean-Louis; Ardouin, Claire; Fraix, Valérie; Seigneuret, Eric; Chabardès, Stéphan; Benabid, Alim-Louis; Pollak, Pierre; Krack, Paul

    2014-01-01

    Background: Parkinson’s disease (PD) is characterized by reduced flexibility, conceptualization, and visuo-spatial abilities. Although these are essential to creativity, case studies show emergence of creativity during PD. Knowledge about the role of dopamine in creativity so far only stems from a few case reports. We aim at demonstrating that creativity can be induced by dopaminergic treatments in PD, and tends to disappear after withdrawal of dopamine agonists. Methods: Eleven consecutive creative PD patients were selected from candidates for subthalamic nucleus deep brain stimulation (STN DBS) surgery, and compared to 22 non-creative control PD patients. Motor disability (UPDRS III), cognition (Frontal score, Mattis scale), and behavior (Ardouin scale) were assessed before surgery and 1 year after. Results: Before surgery, whereas cognitive and motor assessments were similar between groups, dopamine agonist (but not levodopa) dosages were higher in creative patients (p = 0.01). The Ardouin scale revealed also a specific psycho-behavioral profile of creative patients which had higher scores for mania (p < 0.001), hobbyism (p = 0.001), nocturnal hyperactivity (p = 0.041), appetitive functioning (p = 0.003), and ON euphoria (p = 0.007) and lower scores for apathy and OFF dysphoria (p = 0.04 for each). Post-operative motor, cognitive, and behavioral scores as dopaminergic treatment dosages were equivalent between groups. Motor improvement allowed for a 68.6% decrease in dopaminergic treatment. Only 1 of the 11 patients remained creative after surgery. Reduction of dopamine agonist was significantly correlated to the decrease in creativity in the whole population of study (Spearman correlation coefficient ρ = 0.47 with confidence index of 95% = 0.16; 0.70, p = 0.0053). Conclusion: Creativity in PD is linked to dopamine agonist therapy, and tends to disappear after STN DBS in parallel to reduction of dopamine agonists

  19. PET evaluation of the dopamine system of the human brain

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Gatley, S. |

    1996-07-01

    Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors, dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.

  20. DRD4 dopamine receptor allelic diversity in various primate species

    SciTech Connect

    Adamson, M.; Higley, D.; O`Brien, S.

    1994-09-01

    The DRD4 dopamine receptor is uniquely characterized by a 48 bp repeating segment within the coding region, located in exon III. Different DRD4 alleles are produced by the presence of additional 48 bp repeats, each of which adds 16 amino acids to the length of the 3rd intracytoplasmic loop of the receptor. The DRD4 receptor is therefore an intriguing candidate gene for behaviors which are influenced by dopamine function. In several human populations, DRD4 alleles with 2-8 and 10 repeats have previously been identified, and the 4 and 7 repeat alleles are the most abundant. We have determined DRD4 genotypes in the following nonhuman primate species: chimpanzee N=2, pygmy chimpanzee N=2, gorilla N=4, siamang N=2, Gelada baboon N=1, gibbon N=1, orangutan (Bornean and Sumatran) N=62, spider monkey N=4, owl monkey N=1, Colobus monkey N=1, Patas monkey N=1, ruffed lemur N=1, rhesus macaque N=8, and vervet monkey N=28. The degree of DRD4 polymorphism and which DRD4 alleles were present both showed considerable variation across primate species. In contrast to the human, rhesus macaque monkeys were monomorphic. The 4 and 7 repeat allels, highly abundant in the human, may not be present in certain other primates. For example, the four spider monkeys we studied showed the 7, 8 and 9 repeat length alleles and the only gibbon we analyzed was homozygous for the 9 repeat allele (thus far not observed in the human). Genotyping of other primate species and sequencing of the individual DRD4 repeat alleles in different species may help us determine the ancestral DRD4 repeat length and identify connections between DRD4 genotype and phenotype.

  1. Selective Hyposmia in Parkinson Disease: Association with Hippocampal Dopamine Activity

    PubMed Central

    Bohnen, Nicolaas I.; Gedela, Satyanarayana; Herath, Priyantha; Constantine, Gregory M.; Moore, Robert Y.

    2008-01-01

    Olfactory dysfunction is common in patients with Parkinson disease (PD) and has been attributed to early pathological deposition of Lewy bodies and Lewy neurites in primary olfactory centers. However, olfactory deficits do not always worsen over time despite progression of disease raising the possibility of additional pathobiological mechanisms contributing to olfactory functions in PD, such as changes in olfactory neurotransmitter functions. Neurotransmitter changes, such as altered dopaminergic status, may also better explain the selective nature of odor identification deficits in PD. Proper odor identification depends on higher order structures, such as the hippocampus, for olfactory cognitive or memory processing. Using the University of Pennsylvania Smell Identification Test (UPSIT), we previously identified 3 odors (banana, licorice, dill pickle, labeled as UPSIT-3) that PD subjects most frequently failed to recognize compared to age- and gender matched controls. We also identified 6 odors that were equally successfully identified by controls and PD subjects (NPD-Olf6). A ratio of UPSIT-3 divided by NPD-Olf6 scores provides another descriptor of selective hyposmia in PD (“olfactory ratio”). In this study we investigated the pathophysiology of hyposmia in PD using dopamine transporter (DAT) PET. Twenty-nine PD patients (Hoehn and Yahr stages I-III; 7f/22m; age 60.2±10.8) underwent olfactory testing using the UPSIT and [11C]β-CFT DAT PET. DAT binding potentials (BP) were assessed in the hippocampus, amygdala, ventral and dorsal striatum. We found that correlation coefficients between total UPSIT scores and regional brain DAT BP were highest for the hippocampus (Rs=0.54, P=0.002) and lower for the amygdala (Rs=0.44, P=0.02), ventral (Rs=0.48, P=0.008) and dorsal striatum (Rs=0.39, P=0.03). Correlations were most significant for the selective hyposmia measures and hippocampal DAT: UPSIT-3 (Rs=0.65, P=0.0001) and the olfactory ratio (Rs=0.74, P<0.0001). We

  2. Chromatographic analysis of dopamine metabolism in a Parkinsonian model.

    PubMed

    Baranyi, Mária; Milusheva, Elisaveta; Vizi, E Sylvester; Sperlágh, Beáta

    2006-07-01

    The present study examined the metabolism of released dopamine from rat striatum upon chronic rotenone exposure. The sample separation was carried out by two-dimensional, reversed-phase and ion pair reversed-phase chromatography using on-line solid phase extraction enrichment. Reduced dopamine content and decreased extracellular level of [(3)H] and endogenous dopamine evoked by electrical stimulation indicated the injury of dopaminergic pathway. Sensitivity of dopaminergic neurons were increased to oxidative stress with enhanced release of dopamine and formation of oxidized metabolite dopamine quinone (DAQ). Utilizing multidimensional detection, EC at -100 mV reduction potential, the method has been applied for identification of DAQ and aminochrome (DAC).

  3. Quadruplex Integrated DNA (QuID) Nanosensors for Monitoring Dopamine

    PubMed Central

    Morales, Jennifer M.; Skipwith, Christopher G.; Clark, Heather A.

    2015-01-01

    Dopamine is widely innervated throughout the brain and critical for many cognitive and motor functions. Imbalances or loss in dopamine transmission underlie various psychiatric disorders and degenerative diseases. Research involving cellular studies and disease states would benefit from a tool for measuring dopamine transmission. Here we show a Quadruplex Integrated DNA (QuID) nanosensor platform for selective and dynamic detection of dopamine. This nanosensor exploits DNA technology and enzyme recognition systems to optically image dopamine levels. The DNA quadruplex architecture is designed to be compatible in physically constrained environments (110 nm) with high flexibility, homogeneity, and a lower detection limit of 110 µM. PMID:26287196

  4. MicroRNAs in Schizophrenia: Implications for Synaptic Plasticity and Dopamine-Glutamate Interaction at the Postsynaptic Density. New Avenues for Antipsychotic Treatment Under a Theranostic Perspective.

    PubMed

    de Bartolomeis, Andrea; Iasevoli, Felice; Tomasetti, Carmine; Buonaguro, Elisabetta F

    2015-12-01

    Despite dopamine-glutamate aberrant interaction that has long been considered a relevant landmark of psychosis pathophysiology, several aspects of these two neurotransmitters reciprocal interaction remain to be defined. The emerging role of postsynaptic density (PSD) proteins at glutamate synapse as a molecular "lego" making a functional hub where different signals converge may add a new piece of information to understand how dopamine-glutamate interaction may work with regard to schizophrenia pathophysiology and treatment. More recently, compelling evidence suggests a relevant role for microRNA (miRNA) as a new class of dopamine and glutamate modulators with regulatory functions in the reciprocal interaction of these two neurotransmitters. Here, we aimed at addressing the following issues: (i) Do miRNAs have a role in schizophrenia pathophysiology in the context of dopamine-glutamate aberrant interaction? (ii) If miRNAs are relevant for dopamine-glutamate interaction, at what level this modulation takes place? (iii) Finally, will this knowledge open the door to innovative diagnostic and therapeutic tools? The biogenesis of miRNAs and their role in synaptic plasticity with relevance to schizophrenia will be considered in the context of dopamine-glutamate interaction, with special focus on miRNA interaction with PSD elements. From this framework, implications both for biomarkers identification and potential innovative interventions will be considered.

  5. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    PubMed Central

    Gironacci, M. M.

    2016-01-01

    Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP) and Ang-(1-7) may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7) was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7) and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7)-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7) stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide) did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7) on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7) was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7) on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7) enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  6. Dopamine-melanin nanofilms for biomimetic structural coloration.

    PubMed

    Wu, Tong-Fei; Hong, Jong-Dal

    2015-02-01

    This article describes the formation of dopamine-melanin thin films (50-200 nm thick) at an air/dopamine solution interface under static conditions. Beneath these films, spherical melanin granules formed in bulk liquid phase. The thickness of dopamine-melanin films at the interface relied mainly on the concentration of dopamine solution and the reaction time. A plausible mechanism underlining dopamine-melanin thin film formation was proposed based on the hydrophobicity of dopamine-melanin aggregates and the mass transport of the aggregates to the air/solution interface as a result of convective flow. The thickness of the interfacial films increased linearly with the dopamine concentration and the reaction time. The dopamine-melanin thin film and granules (formed in bulk liquid phase) with a double-layered structure were transferred onto a solid substrate to mimic the (keratin layer)/(melanin granules) structure present in bird plumage, thereby preparing full dopamine-melanin thin-film reflectors. The reflected color of the thin-film reflectors depended on the film thickness, which could be adjusted according to the dopamine concentration. The reflectance of the resulted reflectors exhibited a maximal reflectance value of 8-11%, comparable to that of bird plumage (∼11%). This study provides a useful, simple, and low-cost approach to the fabrication of biomimetic thin-film reflectors using full dopamine-melanin materials.

  7. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    PubMed Central

    Gironacci, M. M.

    2016-01-01

    Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP) and Ang-(1-7) may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7) was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7) and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7)-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7) stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide) did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7) on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7) was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7) on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7) enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects. PMID:27635280

  8. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney.

    PubMed

    Rukavina Mikusic, N L; Kouyoumdzian, N M; Rouvier, E; Gironacci, M M; Toblli, J E; Fernández, B E; Choi, M R

    2016-01-01

    Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP) and Ang-(1-7) may regulate renal dopamine availability in tubular cells, contributing to Na(+), K(+)-ATPase inhibition. Present results show that CNP did not affect either (3)H-dopamine uptake in renal tissue or Na(+), K(+)-ATPase activity; meanwhile, Ang-(1-7) was able to increase (3)H-dopamine uptake and decreased Na(+), K(+)-ATPase activity in renal cortex. Ang-(1-7) and dopamine together decreased further Na(+), K(+)-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7)-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7) stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide) did not modify CNP effects on (3)H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7) on (3)H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7) was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7) on AT1 receptors on (3)H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7) enhances Na(+), K(+)-ATPase activity inhibition, contributing to its natriuretic and diuretic effects. PMID:27635280

  9. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    PubMed

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice.

  10. How does angiotensin II increase cardiac dopamine-beta-hydroxylation?

    PubMed

    Chevillard, C; Duchene, N; Alexandre, J M

    1975-03-01

    The potent accelerating effect of angiotensin II (Ang II) on caridac dopamine beta-hydroxylation was studied on slices of rat heart. Ang II did not affect the kinetics of beta-hydroxylation but it increased the axonal uptake of dopamine, and, concomitant with the acceleration of biosynthesis, it enhanced the accumulation of dopamine into tissue. Puromycin, in contrast to actinomycin D, antagonized the stimulation of dopamine beta-hydroxylation by Ang II, but did not suppress the rise in cardiac dopamine. Therefore, to promote the acceleration of dopamine beta-hydroxylation, (i) the rise in tissue dopamine available for conversion appeared to be insufficient, (ii) the formation of new proteins by activation of traduction seemed to constitute the basic mechanism of Ang II action.

  11. Oscillating from Neurosecretion to Multitasking Dopamine Neurons.

    PubMed

    Grattan, David R; Akopian, Armen N

    2016-04-26

    In this issue of Cell Reports, Stagkourakis et al. (2016) report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits.

  12. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    PubMed Central

    Grattan, David R.; Akopian, Armen N.

    2016-01-01

    In this issue of Cell Reports, Stagkourakis et al. (2016) report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits. PMID:27119847

  13. Impulsivity, Stimulant Abuse, and Dopamine Receptor Signaling.

    PubMed

    London, E D

    2016-01-01

    The nonmedical use of amphetamine-type stimulants is a worldwide problem, with substantial medical and social consequences. Nonetheless, the identification of a pharmacological treatment for amphetamine use disorder remains elusive. Stimulant users exhibit neurochemical evidence of dopamine-system dysfunction as well as impulsive behaviors that may interfere with the success of treatments for their addiction. This review focuses on the potential role of dopaminergic neurotransmission in impulsivity, both in healthy individuals and chronic stimulant users who meet criteria for methamphetamine dependence. Presented are findings related to the potential contributions of signaling through dopamine D1- and D2-type receptors to self-control impulsivity in methamphetamine- dependent users. The information available points to signaling through striatal D2-type dopamine receptors as a potential therapeutic target for stimulant use disorders, but medications that target D2-type dopamine receptors have not been successful in treating stimulant-use disorders, possibly because D2-type receptors are downregulated. Other means to augment D2-type receptor signaling are therefore under consideration, and one promising approach is the addition of exercise training as an adjunct to behavioral treatment for addiction. PMID:27288074

  14. Oscillating from Neurosecretion to Multitasking Dopamine Neurons.

    PubMed

    Grattan, David R; Akopian, Armen N

    2016-04-26

    In this issue of Cell Reports, Stagkourakis et al. (2016) report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits. PMID:27119847

  15. Pharmacological characterization of the dopamine-sensitive adenylate cyclase in cockroach brain: evidence for a distinct dopamine receptor

    SciTech Connect

    Orr, G.L.; Gole, J.W.D.; Notman, H.J.; Downer, R.G.H.

    1987-12-21

    Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 ..mu..M and 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 ..mu..M and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 ..mu..M respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D/sub 2/-dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 ..mu..M. Other dopamine agonists have no stimulatory effects. With the exception of mianserin, /sup 3/H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D/sup 1/- and D/sup 2/-dopamine receptors. 33 references, 3 figures, 2 tables.

  16. Heterogeneity of dopamine neuron activity across traits and states

    PubMed Central

    Marinelli, Michela; McCutcheon, James E.

    2014-01-01

    Midbrain dopamine neurons fire irregularly, with interspersed clusters of high-frequency spikes, commonly called ‘bursts’. In this review we examine such heterogeneity in activity, and provide insight into how it can participate in psychiatric conditions such as drug addiction. We first describe several techniques used to evaluate dopamine neuron activity, and comment on the different measures that each provides. We next describe the activity of dopamine neurons in ‘basal’ conditions. Specifically, we discuss how the use of anesthesia and reduced preparations may alter aspects of dopamine cell activity, and how there is heterogeneity across species and regions. We also describe how dopamine cell firing changes throughout the peri-adolescent period and how dopamine neuron activity differs across the population. In the final section, we discuss how dopamine neuron activity changes in response to life events. First, we focus attention on drugs of abuse. Drugs themselves change firing activity through a variety of mechanisms, with effects on firing while drug is present differing from those seen after drug discontinuation. We then review how stimuli that are rewarding, aversive, or salient can evoke changes in firing rate and discharge pattern of dopamine neurons, and provide behavioral relevance of dopamine signaling. Finally, we discuss how stress can modulate dopamine neuron firing and how this may contribute to the role that stressful experiences play in psychiatric disorders such as addiction and depression. PMID:25084048

  17. Optical suppression of drug-evoked phasic dopamine release.

    PubMed

    McCutcheon, James E; Cone, Jackson J; Sinon, Christopher G; Fortin, Samantha M; Kantak, Pranish A; Witten, Ilana B; Deisseroth, Karl; Stuber, Garret D; Roitman, Mitchell F

    2014-01-01

    Brief fluctuations in dopamine concentration (dopamine transients) play a key role in behavior towards rewards, including drugs of abuse. Drug-evoked dopamine transients may result from actions at both dopamine cell bodies and dopamine terminals. Inhibitory opsins can be targeted to dopamine neurons permitting their firing activity to be suppressed. However, as dopamine transients can become uncoupled from firing, it is unknown whether optogenetic hyperpolarization at the level of the soma is able to suppress dopamine transients. Here, we used in vivo fast-scan cyclic voltammetry to record transients evoked by cocaine and raclopride in nucleus accumbens (NAc) of urethane-anesthetized rats. We targeted halorhodopsin (NpHR) specifically to dopamine cells by injecting Cre-inducible virus into ventral tegmental area (VTA) of transgenic rats that expressed Cre recombinase under control of the tyrosine hydroxylase promoter (TH-Cre(+) rats). Consistent with previous work, co-administration of cocaine and raclopride led to the generation of dopamine transients in NAc shell. Illumination of VTA with laser strongly suppressed the frequency of transients in NpHR-expressing rats, but not in control rats. Laser did not have any effect on amplitude of transients. Thus, optogenetics can effectively reduce the occurrence of drug-evoked transients and is therefore a suitable approach for studying the functional role of such transients in drug-associated behavior.

  18. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    DOE PAGES

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S.; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-07-21

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [11C]cocaine to measure DAT, and with [11C]raclopride to measure dopamine release (assessed as changes in specific binding of [11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15).more » In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less

  19. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    SciTech Connect

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S.; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-07-21

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [11C]cocaine to measure DAT, and with [11C]raclopride to measure dopamine release (assessed as changes in specific binding of [11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of

  20. Axiomatic methods, dopamine and reward prediction error.

    PubMed

    Caplin, Andrew; Dean, Mark

    2008-04-01

    The phasic firing rate of midbrain dopamine neurons has been shown to respond both to the receipt of rewarding stimuli, and the degree to which such stimuli are anticipated by the recipient. This has led to the hypothesis that these neurons encode reward prediction error (RPE)-the difference between how rewarding an event is, and how rewarding it was expected to be. However, the RPE model is one of a number of competing explanations for dopamine activity that have proved hard to disentangle, mainly because they are couched in terms of latent, or unobservable, variables. This article describes techniques for dealing with latent variables common in economics and decision theory, and reviews work that uses these techniques to provide simple, non-parametric tests of the RPE hypothesis, allowing clear differentiation between competing explanations.

  1. Dopamine neurons share common response function for reward prediction error

    PubMed Central

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-01-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  2. Dopamine in motivational control: rewarding, aversive, and alerting

    PubMed Central

    Bromberg-Martin, Ethan S.; Matsumoto, Masayuki; Hikosaka, Okihide

    2010-01-01

    SUMMARY Midbrain dopamine neurons are well known for their strong responses to rewards and their critical role in positive motivation. It has become increasingly clear, however, that dopamine neurons also transmit signals related to salient but non-rewarding experiences such as aversive and alerting events. Here we review recent advances in understanding the reward and non-reward functions of dopamine. Based on this data, we propose that dopamine neurons come in multiple types that are connected with distinct brain networks and have distinct roles in motivational control. Some dopamine neurons encode motivational value, supporting brain networks for seeking, evaluation, and value learning. Others encode motivational salience, supporting brain networks for orienting, cognition, and general motivation. Both types of dopamine neurons are augmented by an alerting signal involved in rapid detection of potentially important sensory cues. We hypothesize that these dopaminergic pathways for value, salience, and alerting cooperate to support adaptive behavior. PMID:21144997

  3. Dopamine neurons share common response function for reward prediction error.

    PubMed

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-03-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found marked homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we were able to describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  4. Redox reactivity of cerium oxide nanoparticles against dopamine.

    PubMed

    Hayat, Akhtar; Andreescu, Daniel; Bulbul, Gonca; Andreescu, Silvana

    2014-03-15

    The interaction between dopamine and the redox active cerium oxide nanoparticles, or nanoceria was studied using a suite of spectroscopic and surface characterization methods. Changes in the chemical reactivity and concentration of dopamine upon exposure to nanoceria was assessed in aqueous solutions and a human physiological fluid--human serum. The results indicate strong attachment of dopamine to the nanoparticle surface through oxidation followed by chemisorption of the oxidative product with formation of a charge transfer complex. Such oxidation/surface adsorption processes between nanoceria and dopamine lead to a reduction of the concentration of free dopamine in aqueous environments. These findings suggest that the redox reactivity of nanoceria may alter dopamine levels in biological systems exposed to these particles and indicate the need for a comprehensive assessment of the potential neurological consequences that might result from intended or unintended exposure to these particles. PMID:24461841

  5. Alcohol-induced alterations in dopamine modulation of prefrontal activity.

    PubMed

    Trantham-Davidson, Heather; Chandler, L Judson

    2015-12-01

    Long-term alcohol use leads to persistent cognitive deficits that may be associated with maladaptive changes in the neurocircuitry that mediates executive functions. Impairments caused by these changes can persist well into abstinence and have a negative impact on quality of life and job performance, and can increase the probability of relapse. Many of the changes that affect cognitive function appear to involve dysregulation of the mesocortical dopamine system. This includes changes in dopamine release and alterations in dopamine receptor expression and function in the medial prefrontal cortex (PFC). This review summarizes the cellular effects of acute and chronic ethanol exposure on dopamine release and dopamine receptor function in the PFC with the goal of providing greater understanding of the effects of alcohol-use disorders on the dopamine system and how this relates to deficits in the executive function of the PFC. PMID:26558348

  6. Dopamine neurons share common response function for reward prediction error.

    PubMed

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-03-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found marked homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we were able to describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal.

  7. Structural studies of dopamine. beta. -hydroxylase

    SciTech Connect

    Papadopoulos, N.J.

    1985-01-01

    Dopamine ..beta..-hydroxylase catalyzes the conversion of dopamine to norepinephrine, a ..beta..-hydroxylation reaction, utilizing ascorbic acid as reducing agent and molecular oxygen as cosubstrate. Modifications of the previously published purification procedure for D..beta..H have produced findings which show that (1) enzyme is inactivated by ascorbate autooxidation during the isolation procedure, (2) active as well as inactive D..beta..H co-purify throughout the entire purification procedure and (3) beef liver catalase totally protects against this time dependent inactivation. The stoichiometry of copper binding to the active sites of D..beta..H has been investigated using /sup 19/F-NMR and radioactive binding experiments. The data unequivocally show that homogeneous D..beta..H (isolated in the presence of catalase) specifically binds up to approx.8 copper atoms per enzyme tetramer. Distance determinations done using NMR relaxation rate theory show that anion activators of the catalytic reaction are bound at a fairly far distance from the Cu/sup 2 +/ centers. Spin-echo electron paramagnetic resonance spectroscopy indicates that at least one, possibly two, histidines are bound as equatorial ligands to each Cu/sup 2 +/ ion. The combined data indicate that highly purified dopamine ..beta..-hydroxylase contains a 2 copper atom active site, composed of magnetically non-interacting metal centers. Active site components are distant from the Cu/sup 2 +/ centers, suggesting a possible movement of active site residues or components after reduction of enzyme bound copper in order to achieve the insertion of 1 atom of oxygen into the benzylic C-H bond of dopamine.

  8. DOPAMINE AND FOOD ADDICTION: LEXICON BADLY NEEDED

    PubMed Central

    Salamone, John D.; Correa, Mercè

    2012-01-01

    Over the last few years, the concept of food addiction has become a common feature in the scientific literature, as well as the popular press. Nevertheless, the use of the term “addiction” to describe pathological aspects of food intake in humans remains controversial, and even among those who affirm the validity of the concept, there is considerable disagreement about its utility for explaining the increasing prevalence of obesity throughout much of the world. An examination of the literature on food addiction indicates that mesolimbic and nigrostriatal dopamine systems often are cited as mechanisms that contribute to the establishment of food addiction. However, in reviewing this literature, it is important to have a detailed consideration of the complex nature of dopaminergic involvement in motivational processes. For example, although it is often stated that mesolimbic dopamine mediates “reward”, there is no standard or consistent technical meaning of this term. Moreover, there is a persistent tendency to link dopamine transmission with pleasure or hedonia, as opposed to other aspects of motivation or learning. The present paper provides a critical discussion of some aspects of the food addiction literature, viewed through the lens of recent findings and current theoretical views of dopaminergic involvement in food motivation. Furthermore, compulsive food intake and binge eating will be considered from an evolutionary perspective, in terms of the motivational subsystems that are involved in adaptive patterns of food consumption and seeking behaviors, and a consideration of how these could be altered in pathological conditions. PMID:23177385

  9. Linking unfounded beliefs to genetic dopamine availability

    PubMed Central

    Schmack, Katharina; Rössler, Hannes; Sekutowicz, Maria; Brandl, Eva J.; Müller, Daniel J.; Petrovic, Predrag; Sterzer, Philipp

    2015-01-01

    Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity toward unfounded beliefs. One hundred two healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818, and rs4680, also known as val158met) that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioral experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity toward unfounded beliefs, and that this effect was statistically mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world. PMID:26483654

  10. Action Initiation Shapes Mesolimbic Dopamine Encoding of Future Rewards

    PubMed Central

    Syed, Emilie C.J.; Grima, Laura L.; Magill, Peter J.; Bogacz, Rafal; Brown, Peter; Walton, Mark E.

    2015-01-01

    It is widely held that dopamine signaling encodes predictions of future rewards and such predictions are regularly used to drive behavior, but the relationship between these two is poorly defined. Here, we demonstrate in rats that nucleus accumbens dopamine following a reward-predicting cue is attenuated unless movement is correctly initiated. These results demonstrate that dopamine release in this region is contingent upon correct action initiation and not just reward prediction. PMID:26642087

  11. Dopamine Does Double Duty in Motivating Cognitive Effort.

    PubMed

    Westbrook, Andrew; Braver, Todd S

    2016-02-17

    Cognitive control is subjectively costly, suggesting that engagement is modulated in relationship to incentive state. Dopamine appears to play key roles. In particular, dopamine may mediate cognitive effort by two broad classes of functions: (1) modulating the functional parameters of working memory circuits subserving effortful cognition, and (2) mediating value-learning and decision-making about effortful cognitive action. Here, we tie together these two lines of research, proposing how dopamine serves "double duty", translating incentive information into cognitive motivation. PMID:26889810

  12. The dopamine transporter: role in neurotoxicity and human disease

    SciTech Connect

    Bannon, Michael J. . E-mail: mbannon@med.wayne.edu

    2005-05-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  13. Atypical Dopamine Uptake Inhibitors that Provide Clues About Cocaine's Mechanism at the Dopamine Transporter

    NASA Astrophysics Data System (ADS)

    Hauck Newman, Amy; Katz, Jonathan L.

    The dopamine transporter (DAT) has been a primary target for cocaine abuse/addiction medication discovery. However predicted addiction liability and limited clinical evaluation has provided a formidable challenge for development of these agents for human use. The unique and atypical pharmacological profile of the benztropine (BZT) class of dopamine uptake inhibitors, in preclinical models of cocaine effects and abuse, has encouraged further development of these agents. Moreover, in vivo studies have challenged the original DAT hypothesis and demonstrated that DAT occupancy and subsequent increases in dopamine produced by BZT analogues are significantly delayed and long lasting, as compared to cocaine. These important and distinctive elements are critical to the lack of abuse liability among BZT analogues, and improve their potential for development as treatments for cocaine abuse and possibly other neuropsychiatric disorders.

  14. Dopamine release in rat striatum - Physiological coupling to tyrosine supply

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1989-01-01

    Intracerebral microdialysis was used to monitor dopamine release in rat striatal extracellular fluid following the intraperitoneal administration of dopamine's precursor amino acid, L-tyrosine. Dopamine concentrations in dialysates increased transiently after tyrosine (50-100 mg/kg) administration. Pretreatment with haloperidol or the partial lesioning of nigrostriatal neurons enhanced the effect of tyrosine on dopamine release, and haloperidol also prolonged this effect. These data suggest that nigrostriatal dopaminergic neurons are responsive to changes in precursor availability under basal conditions, but that receptor-mediated feedback mechanisms limit the magnitude and duration of this effect.

  15. Cloning of the cocaine-sensitive bovine dopamine transporter

    SciTech Connect

    Usdin, T.B.; Chen, C.; Brownstein, M.J.; Hoffman, B.J. ); Mezey, E. )

    1991-12-15

    A cDNA encoding the dopamine transporter from bovine brain substantia nigra was identified on the basis of its structural homology to other, recently cloned, neurotransmitter transporters. The sequence of the 693-amino acid protein is quite similar to those of the rat {gamma}-aminobutyric acid, human norepinephrine, and rat serotonin transporters. Dopamine transporter mRNA was detected by in situ hybridization in the substantia nigra but not in the locus coeruleus, raphe, caudate, or other brain areas. ({sup 3}H)Dopamine accumulation in tissue culture cells transfected with the cDNA was inhibited by amphetamine, cocaine, and specific inhibitors of dopamine transports, including GBR12909.

  16. Reinforcement signalling in Drosophila; dopamine does it all after all.

    PubMed

    Waddell, Scott

    2013-06-01

    Reinforcement systems are believed to drive synaptic plasticity within neural circuits that store memories. Recent evidence from the fruit fly suggests that anatomically distinct dopaminergic neurons ultimately provide the key instructive signals for both appetitive and aversive learning. This dual role for dopamine overturns the previous model that octopamine signalled reward and dopamine punishment. More importantly, this anatomically segregated double role for dopamine in reward and aversion mirrors that emerging in mammals. Therefore, an antagonistic organization of distinct reinforcing dopaminegic neurons is a conserved feature of brains. It now seems crucial to understand how the dopaminergic neurons are controlled and what the released dopamine does to the underlying circuits to convey opposite valence.

  17. Cocaine-seeking is associated with PKC-dependent reduction of excitatory signaling in accumbens shell D2 dopamine receptor-expressing neurons

    PubMed Central

    Ortinski, Pavel I.; Briand, Lisa A.; Pierce, R. Christopher; Schmidt, Heath D.

    2015-01-01

    Stimulation of D1-like dopamine receptors (D1DRs) or D2-like dopamine receptors (D2DRs) in the nucleus accumbens (NAc) shell reinstates cocaine seeking in rats, an animal model of relapse. D2DRs and D1DRs activate protein kinase C (PKC) and recent studies indicate that activation of PKC in the NAc plays an important role in the reinstatement of drug seeking induced by a systemic cocaine priming injection. In the present study, pharmacological inhibition of PKC in the NAc shell attenuated cocaine seeking induced by intra-accumbens shell microinjection of a D2DR agonist, but not a D1DR agonist. D1DRs and D2DRs are primarily expressed on different accumbens medium spiny (MSN) neurons. Neuronal signaling and activity were assessed in these two populations of NAc neurons with transgenic mice expressing fluorescent labels under the control of D1DR and D2DR promoters. Following the extinction of cocaine self-administration, bath application of a PKC inhibitor produced similar effects on single evoked excitatory and inhibitory post-synaptic currents in D1DR- and D2DR-positive MSNs in the NAc shell. However, inhibition of PKC preferentially improved the ability of excitatory, but not inhibitory, synapses to sustain responding to brief train of stimuli specifically in D2DR-positive MSNs. This effect did not appear to involve modulation of presynaptic release mechanisms. Taken together, these findings indicate that the reinstatement of cocaine seeking is at least partially due to D2DR-dependent increases in PKC signaling in the NAc shell, which reduce excitatory synaptic efficacy in D2DR-expressing MSNs. PMID:25596492

  18. Cocaine-seeking is associated with PKC-dependent reduction of excitatory signaling in accumbens shell D2 dopamine receptor-expressing neurons.

    PubMed

    Ortinski, Pavel I; Briand, Lisa A; Pierce, R Christopher; Schmidt, Heath D

    2015-05-01

    Stimulation of D1-like dopamine receptors (D1DRs) or D2-like dopamine receptors (D2DRs) in the nucleus accumbens (NAc) shell reinstates cocaine seeking in rats, an animal model of relapse. D2DRs and D1DRs activate protein kinase C (PKC) and recent studies indicate that activation of PKC in the NAc plays an important role in the reinstatement of drug seeking induced by a systemic cocaine priming injection. In the present study, pharmacological inhibition of PKC in the NAc shell attenuated cocaine seeking induced by intra-accumbens shell microinjection of a D2DR agonist, but not a D1DR agonist. D1DRs and D2DRs are primarily expressed on different accumbens medium spiny (MSN) neurons. Neuronal signaling and activity were assessed in these two populations of NAc neurons with transgenic mice expressing fluorescent labels under the control of D1DR and D2DR promoters. Following the extinction of cocaine self-administration, bath application of a PKC inhibitor produced similar effects on single evoked excitatory and inhibitory post-synaptic currents in D1DR- and D2DR-positive MSNs in the NAc shell. However, inhibition of PKC preferentially improved the ability of excitatory, but not inhibitory, synapses to sustain responding to brief train of stimuli specifically in D2DR-positive MSNs. This effect did not appear to involve modulation of presynaptic release mechanisms. Taken together, these findings indicate that the reinstatement of cocaine seeking is at least partially due to D2DR-dependent increases in PKC signaling in the NAc shell, which reduce excitatory synaptic efficacy in D2DR-expressing MSNs. PMID:25596492

  19. Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning.

    PubMed

    Parker, Jones G; Zweifel, Larry S; Clark, Jeremy J; Evans, Scott B; Phillips, Paul E M; Palmiter, Richard D

    2010-07-27

    During Pavlovian conditioning, phasic dopamine (DA) responses emerge to reward-predictive stimuli as the subject learns to anticipate reward delivery. This observation has led to the hypothesis that phasic dopamine signaling is important for learning. To assess the ability of mice to develop anticipatory behavior and to characterize the contribution of dopamine, we used a food-reinforced Pavlovian conditioning paradigm. As mice learned the cue-reward association, they increased their head entries to the food receptacle in a pattern that was consistent with conditioned anticipatory behavior. D1-receptor knockout (D1R-KO) mice had impaired acquisition, and systemic administration of a D1R antagonist blocked both the acquisition and expression of conditioned approach in wild-type mice. To assess the specific contribution of phasic dopamine transmission, we tested mice lacking NMDA-type glutamate receptors (NMDARs) exclusively in dopamine neurons (NR1-KO mice). Surprisingly, NR1-KO mice learned at the same rate as their littermate controls. To evaluate the contribution of NMDARs to phasic dopamine release in this paradigm, we performed fast-scan cyclic voltammetry in the nucleus accumbens of awake mice. Despite having significantly attenuated phasic dopamine release following reward delivery, KO mice developed cue-evoked dopamine release at the same rate as controls. We conclude that NMDARs in dopamine neurons enhance but are not critical for phasic dopamine release to behaviorally relevant stimuli; furthermore, their contribution to phasic dopamine signaling is not necessary for the development of cue-evoked dopamine or anticipatory activity in a D1R-dependent Pavlovian conditioning paradigm.

  20. Presence and Function of Dopamine Transporter (DAT) in Stallion Sperm: Dopamine Modulates Sperm Motility and Acrosomal Integrity

    PubMed Central

    Covarrubias, Alejandra A.; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I.

    2014-01-01

    Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP+), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility. PMID:25402186

  1. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures.

    PubMed

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-04-12

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  2. Central actions of a novel and selective dopamine antagonist

    SciTech Connect

    Schulz, D.W.

    1985-01-01

    Receptors for the neurotransmitter dopamine traditionally have been divided into two subgroups: the D/sub 1/ class, which is linked to the stimulation of adenylate cyclase-activity, and the D/sub 2/ class which is not. There is much evidence suggesting that it is the D/sub 2/ class which is not. There is much evidence suggesting that it is the D/sub 2/ dopamine receptor that mediates the physiological and behavioral actions of dopamine in the intact animal. However, the benzazepine SCH23390 is a dopamine antagonist which has potent behavioral actions while displaying apparent neurochemical selectivity for the D/sub 1/ class of dopamine receptors. The purpose of this dissertation was to (1) confirm and characterize this selectivity, and (2) test certain hypothesis related to possible modes of action of SCH233390. The inhibition of adenylate cyclase by SCH23390 occurred via an action at the dopamine receptor only. A radiolabeled analog of SCH23390 displayed the receptor binding properties of a specific high-affinity ligand, and regional receptor densities were highly correlated with dopamine levels. The subcellular distribution of (/sup 3/H)-SCH23390 binding did not correspond completely with that of dopamine-stimulated adenylate cyclase. The neurochemical potency of SCH23390 as a D/sub 1/ receptor antagonist was preserved following parental administration. A variety of dopamine agonists and antagonists displayed a high correlation between their abilities to compete for (/sup 3/H)-SCH23390 binding in vitro and to act at an adenylate cyclase-linked receptor. Finally, the relative affinities of dopamine and SCH23390 for both D/sub 1/ receptors and (/sup 3/H)-SCH23390 binding sites were comparable. It is concluded that the behavioral effects of SCH23390 are mediated by actions at D/sub 1/ dopamine receptors only, and that the physiological importance of this class of receptors should be reevaluated.

  3. Responses of in vivo renal microvessels to dopamine.

    PubMed

    Steinhausen, M; Weis, S; Fleming, J; Dussel, R; Parekh, N

    1986-09-01

    The split hydronephrotic kidney preparation was used to directly observe the effects of locally applied dopamine on the in vivo diameters of renal vessels. Dopamine (1 X 10(-6) to 3 X 10(-5) M) produced a concentration-dependent dilation of the arcuate and interlobular arteries and afferent arterioles. Efferent arterioles near the glomeruli also dilated to dopamine but the dilation was less than that of the preglomerular vessels. Higher dopamine concentrations (3 X 10(-4) and 1 X 10(-3) M) produced more variable effects, with a tendency for the arcuate and interlobular arteries and the afferent and efferent arterioles away from the glomeruli to decrease in diameter. After pretreatment with haloperidol, dopamine (1 X 10(-6) to 1 X 10(-4) M) did not dilate any pre- or postglomerular vascular segment, but the tendency for pre- and postglomerular constrictions with higher dopamine concentrations were not abolished. Pretreatment with phentolamine and propranolol enhanced the dilator response of the pre- and postglomerular vessels (except the afferent arterioles near glomeruli and efferent arterioles near welling points) to dopamine (3 X 10(-5) and 1 X 10(-4) M), and abolished the reductions in diameter produced by the high dopamine levels. These data indicate that the dilator effect of dopamine is mediated by interactions with specific dopaminergic receptors, while alpha and beta adrenergic receptors appear to mediate a constrictor influence observed with high dopamine concentrations. The overall effect of dopamine on the renal vessel diameters thus appears to depend on the balance of dilator and constrictor stimuli mediated by multiple receptors.

  4. The involvement of dopamine in the modulation of sleep and waking.

    PubMed

    Monti, Jaime M; Monti, Daniel

    2007-04-01

    Dopamine (DA)-containing neurons involved in the regulation of sleep and waking (W) arise in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc). The VTA and SNc cells have efferent and afferent connections with the dorsal raphe nucleus (DRN), the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT), the locus coeruleus (LC), the lateral and posterior hypothalamus (LH), the basal forebrain (BFB), and the thalamus. Molecular cloning techniques have enabled the characterization of two distinct groups of DA receptors, D(1)-like and D(2)-like receptors. The D(1) subfamily includes the D(1) and D(5) receptors, whereas the D(2) subfamily comprises the D(2), D(3), and D(4) receptors. Systemic administration of a selective D(1) receptor agonist induces behavioral arousal, together with an increase of W and a reduction of slow wave sleep (SWS) and REM sleep (REMS). Systemic injection of a DA D(2) receptor agonist induces biphasic effects, such that low doses reduce W and increase SWS and REMS (predominant activation of the D(2) autoreceptor), whereas large doses induce the opposite effect (predominant facilitation of the D(2) postsynaptic receptor). Compounds with DA D(1) or D(2) receptor blocking properties augment non-REMS and reduce W. Preliminary findings tend to indicate that the administration of a DA D(3)-preferring agonist induces somnolence and sleep in laboratory animals and man. DA neurons in the VTA and the SNc do not change their mean firing rate across the sleep-wake cycle. It has been proposed that DA cells in the midbrain show a change in temporal pattern rather than firing rate during the sleep-wake cycle. The available evidence tends to indicate that during W there occurs an increase of burst firing activity of DA neurons, and an enhanced release of DA in the VTA, the nucleus accumbens (NAc), and a number of forebrain structures. A series of structures relevant for the regulation of the behavioral state, including the DRN

  5. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    SciTech Connect

    Brann, M.R.

    1985-12-31

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor.

  6. Opening the black box: dopamine, predictions, and learning

    PubMed Central

    Eshel, Neir; Tian, Ju; Uchida, Naoshige

    2013-01-01

    Dopamine neurons are thought to promote learning by signaling prediction errors, that is, the difference between actual and expected outcomes. Whether these signals are sufficient for associative learning, however, remains untested. A recent study used optogenetics in a classic behavioral paradigm to confirm the role of dopamine prediction errors in learning. PMID:23830895

  7. Time, Not Size, Matters for Striatal Reward Predictions to Dopamine.

    PubMed

    Burke, Christopher J; Tobler, Philippe N

    2016-07-01

    Midbrain dopamine neurons encode reward prediction errors. In this issue of Neuron, Takahashi et al. (2016) show that the ventral striatum provides dopamine neurons with prediction information specific to the timing, but not the quantity, of reward, suggesting a surprisingly nuanced neural implementation of reward prediction errors. PMID:27387646

  8. Decreased brain dopamine cell numbers in human cocaine users.

    PubMed

    Little, Karley Y; Ramssen, Eric; Welchko, Ryan; Volberg, Vitaly; Roland, Courtney J; Cassin, Bader

    2009-08-15

    Cocaine use diminishes striatal and midbrain dopamine neuronal components in both post-mortem and in vivo human experiments. The diffuse nature of these declines suggests the possibility that cocaine use might cause a loss of dopamine neurons in humans. Previous rodent studies have not detected cocaine-induced dopamine cell damage. The present experiment involved counting midbrain dopamine neurons utilizing both melanin and tyrosine hydroxylase immunoreactivity. Well-preserved blocks ranging from +38 mm obex to +45 mm obex were examined in 10 cocaine users and 9 controls. Sections were also examined for signs of acute pathological injury by counting activated macrophages and microglia. Melanized cells at six midbrain levels were significantly reduced in cocaine users by both drug exposures. The estimated total number of melanized dopamine cells in the anterior midbrain was significantly reduced in cocaine users by 16%. Results with tyrosine hydroxylase immunoreactivity were less conclusive because of variability in staining. Both activated macrophages and activated microglia were significantly increased among cocaine users. Cocaine exposure may have neurotoxic effects on dopamine neurons in humans. The infiltration of phagocytic cells suggests that the lower number of dopamine cells found in cocaine users was a relatively recent effect. The loss of dopamine cells could contribute to and intensify cocaine dependence, as well as anhedonic and depressive symptoms, in some cocaine users. Further efforts at clarifying the pathophysiological mechanisms involved may help explain treatment refractoriness, and identify targets for therapeutic intervention. PMID:19233481

  9. Imaging dopamine receptors in the human brain by position tomography

    SciTech Connect

    Wagner, H.N. Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstrom, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.

    1983-01-01

    Neurotransmitter receptors may be involved in a number of neuropsychiatric disease states. The ligand 3-N-(/sup 11/C)methylspiperone, which preferentially binds to dopamine receptors in vivo, was used to image the receptors by positron emission tomography scanning in baboons and in humans. This technique holds promise for noninvasive clinical studies of dopamine receptors in humans.

  10. Opening the black box: dopamine, predictions, and learning.

    PubMed

    Eshel, Neir; Tian, Ju; Uchida, Naoshige

    2013-09-01

    Dopamine neurons are thought to promote learning by signaling prediction errors, that is, the difference between actual and expected outcomes. Whether these signals are sufficient for associative learning, however, remains untested. A recent study used optogenetics in a classic behavioral paradigm to confirm the role of dopamine prediction errors in learning.

  11. Mesolimbic dopamine and its neuromodulators in obesity and binge eating.

    PubMed

    Naef, Lindsay; Pitman, Kimberley A; Borgland, Stephanie L

    2015-12-01

    Obesity has reached epidemic prevalence, and much research has focused on homeostatic and nonhomeostatic mechanisms underlying overconsumption of food. Mesocorticolimbic circuitry, including dopamine neurons of the ventral tegmental area (VTA), is a key substrate for nonhomeostatic feeding. The goal of the present review is to compare changes in mesolimbic dopamine function in human obesity with diet-induced obesity in rodents. Additionally, we will review the literature to determine if dopamine signaling is altered with binge eating disorder in humans or binge eating modeled in rodents. Finally, we assess modulation of dopamine neurons by neuropeptides and peripheral peptidergic signals that occur with obesity or binge eating. We find that while decreased dopamine concentration is observed with obesity, there is inconsistency outside the human literature on the relationship between striatal D2 receptor expression and obesity. Finally, few studies have explored how orexigenic or anorexigenic peptides modulate dopamine neuronal activity or striatal dopamine in obese models. However, ghrelin modulation of dopamine neurons may be an important factor for driving binge feeding in rodents.

  12. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits.

    PubMed

    Masoud, S T; Vecchio, L M; Bergeron, Y; Hossain, M M; Nguyen, L T; Bermejo, M K; Kile, B; Sotnikova, T D; Siesser, W B; Gainetdinov, R R; Wightman, R M; Caron, M G; Richardson, J R; Miller, G W; Ramsey, A J; Cyr, M; Salahpour, A

    2015-02-01

    The dopamine transporter is a key protein responsible for regulating dopamine homeostasis. Its function is to transport dopamine from the extracellular space into the presynaptic neuron. Studies have suggested that accumulation of dopamine in the cytosol can trigger oxidative stress and neurotoxicity. Previously, ectopic expression of the dopamine transporter was shown to cause damage in non-dopaminergic neurons due to their inability to handle cytosolic dopamine. However, it is unknown whether increasing dopamine transporter activity will be detrimental to dopamine neurons that are inherently capable of storing and degrading dopamine. To address this issue, we characterized transgenic mice that over-express the dopamine transporter selectively in dopamine neurons. We report that dopamine transporter over-expressing (DAT-tg) mice display spontaneous loss of midbrain dopamine neurons that is accompanied by increases in oxidative stress markers, 5-S-cysteinyl-dopamine and 5-S-cysteinyl-DOPAC. In addition, metabolite-to-dopamine ratios are increased and VMAT2 protein expression is decreased in the striatum of these animals. Furthermore, DAT-tg mice also show fine motor deficits on challenging beam traversal that are reversed with l-DOPA treatment. Collectively, our findings demonstrate that even in neurons that routinely handle dopamine, increased uptake of this neurotransmitter through the dopamine transporter results in oxidative damage, neuronal loss and l-DOPA reversible motor deficits. In addition, DAT over-expressing animals are highly sensitive to MPTP-induced neurotoxicity. The effects of increased dopamine uptake in these transgenic mice could shed light on the unique vulnerability of dopamine neurons in Parkinson's disease.

  13. Dopamine modulates egalitarian behavior in humans.

    PubMed

    Sáez, Ignacio; Zhu, Lusha; Set, Eric; Kayser, Andrew; Hsu, Ming

    2015-03-30

    Egalitarian motives form a powerful force in promoting prosocial behavior and enabling large-scale cooperation in the human species [1]. At the neural level, there is substantial, albeit correlational, evidence suggesting a link between dopamine and such behavior [2, 3]. However, important questions remain about the specific role of dopamine in setting or modulating behavioral sensitivity to prosocial concerns. Here, using a combination of pharmacological tools and economic games, we provide critical evidence for a causal involvement of dopamine in human egalitarian tendencies. Specifically, using the brain penetrant catechol-O-methyl transferase (COMT) inhibitor tolcapone [4, 5], we investigated the causal relationship between dopaminergic mechanisms and two prosocial concerns at the core of a number of widely used economic games: (1) the extent to which individuals directly value the material payoffs of others, i.e., generosity, and (2) the extent to which they are averse to differences between their own payoffs and those of others, i.e., inequity. We found that dopaminergic augmentation via COMT inhibition increased egalitarian tendencies in participants who played an extended version of the dictator game [6]. Strikingly, computational modeling of choice behavior [7] revealed that tolcapone exerted selective effects on inequity aversion, and not on other computational components such as the extent to which individuals directly value the material payoffs of others. Together, these data shed light on the causal relationship between neurochemical systems and human prosocial behavior and have potential implications for our understanding of the complex array of social impairments accompanying neuropsychiatric disorders involving dopaminergic dysregulation. PMID:25802148

  14. Conformational changes in dopamine transporter intracellular regions upon cocaine binding and dopamine translocation

    PubMed Central

    Dehnes, Yvette; Shan, Jufang; Beuming, Thijs; Shi, Lei; Weinstein, Harel; Javitch, Jonathan A.

    2014-01-01

    The dopamine transporter (DAT), a member of the neurotransmitter:sodium symporter family, mediates the reuptake of dopamine at the synaptic cleft. DAT is the primary target for psychostimulants such as cocaine and amphetamine. We previously demonstrated that cocaine binding and dopamine transport alter the accessibility of Cys342 in the third intracellular loop (IL3). To study the conformational changes associated with the functional mechanism of the transporter, we made cysteine substitution mutants, one at a time, from Phe332 to Ser351 in IL3 of the background DAT construct, X7C, in which 7 endogenous cysteines were mutated. The accessibility of the 20 engineered cysteines to polar charged sulfhydryl reagents was studied in the absence and presence of cocaine or dopamine. Of the 11 positions that reacted with methanethiosulfonate ethyl ammonium, as evidenced by inhibition of ligand binding, 5 were protected against this inhibition by cocaine and dopamine (S333C, S334C, N336C, M342C and T349C), indicating that reagent accessibility is affected by conformational changes associated with inhibitor and substrate binding. In some of the cysteine mutants, transport activity is disrupted, but can be rescued by the presence of zinc, most likely because the distribution between inward- and outward-facing conformations is restored by zinc binding. The experimental data were interpreted in the context of molecular models of DAT in both the inward- and outward-facing conformations. Differences in the solvent accessible surface area for individual IL3 residues calculated for these states correlate well with the experimental accessibility data, and suggest that protection by ligand binding results from the stabilization of the outward-facing configuration. Changes in the residue interaction networks observed from the molecular dynamics simulations also revealed the critical roles of several positions during the conformational transitions. We conclude that the IL3 region of DAT

  15. Dopamine and epistemic curiosity in music listening.

    PubMed

    Omigie, Diana

    2015-01-01

    Elucidating the cognitive, affective, and reward processes that take place during music listening is the aim of a growing number of researchers. Several authors have used the Bayesian brain framework and existing models of reward to interpret neural activity observed during musical listening. The claims from Friston and colleagues regarding the role of dopamine, as well as the demonstration that salience-seeking behavior naturally emerges from minimizing free energy, will be of potential interest to those seeking to understand the general principles underlying our motivation to hear music. PMID:26073880

  16. A descending dopamine pathway conserved from basal vertebrates to mammals

    PubMed Central

    Ryczko, Dimitri; Cone, Jackson J.; Alpert, Michael H.; Goetz, Laurent; Auclair, François; Dubé, Catherine; Parent, Martin; Roitman, Mitchell F.; Alford, Simon; Dubuc, Réjean

    2016-01-01

    Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine’s role in locomotion. PMID:27071118

  17. Dopamine encoding of Pavlovian incentive stimuli diminishes with extended training.

    PubMed

    Clark, Jeremy J; Collins, Anne L; Sanford, Christina Akers; Phillips, Paul E M

    2013-02-20

    Dopamine is highly implicated both as a teaching signal in reinforcement learning and in motivating actions to obtain rewards. However, theoretical disconnects remain between the temporal encoding properties of dopamine neurons and the behavioral consequences of its release. Here, we demonstrate in rats that dopamine evoked by Pavlovian cues increases during acquisition, but dissociates from stable conditioned appetitive behavior as this signal returns to preconditioning levels with extended training. Experimental manipulation of the statistical parameters of the behavioral paradigm revealed that this attenuation of cue-evoked dopamine release during the postasymptotic period was attributable to acquired knowledge of the temporal structure of the task. In parallel, conditioned behavior became less dopamine dependent after extended training. Thus, the current work demonstrates that as the presentation of reward-predictive stimuli becomes anticipated through the acquisition of task information, there is a shift in the neurobiological substrates that mediate the motivational properties of these incentive stimuli. PMID:23426680

  18. Arithmetic and local circuitry underlying dopamine prediction errors

    PubMed Central

    Eshel, Neir; Bukwich, Michael; Rao, Vinod; Hemmelder, Vivian; Tian, Ju; Uchida, Naoshige

    2015-01-01

    Dopamine neurons are thought to facilitate learning by comparing actual and expected reward1,2. Despite two decades of investigation, little is known about how this comparison is made. To determine how dopamine neurons calculate prediction error, we combined optogenetic manipulations with extracellular recordings in the ventral tegmental area (VTA) while mice engaged in classical conditioning. By manipulating the temporal expectation of reward, we demonstrate that dopamine neurons perform subtraction, a computation that is ideal for reinforcement learning but rarely observed in the brain. Furthermore, selectively exciting and inhibiting neighbouring GABA neurons in the VTA reveals that these neurons are a source of subtraction: they inhibit dopamine neurons when reward is expected, causally contributing to prediction error calculations. Finally, bilaterally stimulating VTA GABA neurons dramatically reduces anticipatory licking to conditioned odours, consistent with an important role for these neurons in reinforcement learning. Together, our results uncover the arithmetic and local circuitry underlying dopamine prediction errors. PMID:26322583

  19. Label-free dopamine imaging in live rat brain slices.

    PubMed

    Sarkar, Bidyut; Banerjee, Arkarup; Das, Anand Kant; Nag, Suman; Kaushalya, Sanjeev Kumar; Tripathy, Umakanta; Shameem, Mohammad; Shukla, Shubha; Maiti, Sudipta

    2014-05-21

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ~270 nm, emission < 320 nm) for label-free imaging of native molecules in live tissue.

  20. Label-Free Dopamine Imaging in Live Rat Brain Slices

    PubMed Central

    2014-01-01

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ∼ 270 nm, emission < 320 nm) for label-free imaging of native molecules in live tissue. PMID:24661118

  1. Arithmetic and local circuitry underlying dopamine prediction errors.

    PubMed

    Eshel, Neir; Bukwich, Michael; Rao, Vinod; Hemmelder, Vivian; Tian, Ju; Uchida, Naoshige

    2015-09-10

    Dopamine neurons are thought to facilitate learning by comparing actual and expected reward. Despite two decades of investigation, little is known about how this comparison is made. To determine how dopamine neurons calculate prediction error, we combined optogenetic manipulations with extracellular recordings in the ventral tegmental area while mice engaged in classical conditioning. Here we demonstrate, by manipulating the temporal expectation of reward, that dopamine neurons perform subtraction, a computation that is ideal for reinforcement learning but rarely observed in the brain. Furthermore, selectively exciting and inhibiting neighbouring GABA (γ-aminobutyric acid) neurons in the ventral tegmental area reveals that these neurons are a source of subtraction: they inhibit dopamine neurons when reward is expected, causally contributing to prediction-error calculations. Finally, bilaterally stimulating ventral tegmental area GABA neurons dramatically reduces anticipatory licking to conditioned odours, consistent with an important role for these neurons in reinforcement learning. Together, our results uncover the arithmetic and local circuitry underlying dopamine prediction errors.

  2. A causal link between prediction errors, dopamine neurons and learning.

    PubMed

    Steinberg, Elizabeth E; Keiflin, Ronald; Boivin, Josiah R; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2013-07-01

    Situations in which rewards are unexpectedly obtained or withheld represent opportunities for new learning. Often, this learning includes identifying cues that predict reward availability. Unexpected rewards strongly activate midbrain dopamine neurons. This phasic signal is proposed to support learning about antecedent cues by signaling discrepancies between actual and expected outcomes, termed a reward prediction error. However, it is unknown whether dopamine neuron prediction error signaling and cue-reward learning are causally linked. To test this hypothesis, we manipulated dopamine neuron activity in rats in two behavioral procedures, associative blocking and extinction, that illustrate the essential function of prediction errors in learning. We observed that optogenetic activation of dopamine neurons concurrent with reward delivery, mimicking a prediction error, was sufficient to cause long-lasting increases in cue-elicited reward-seeking behavior. Our findings establish a causal role for temporally precise dopamine neuron signaling in cue-reward learning, bridging a critical gap between experimental evidence and influential theoretical frameworks.

  3. BASAL GANGLIA PATHOLOGY IN SCHIZOPHRENIA: DOPAMINE CONNECTIONS and ANOMALIES

    PubMed Central

    Perez-Costas, Emma; Melendez-Ferro, Miguel; Roberts, Rosalinda C.

    2010-01-01

    Schizophrenia is a severe mental illness that affects 1% of the world population. The disease usually manifests itself in early adulthood with hallucinations, delusions, cognitive and emotional disturbances and disorganized thought and behavior. Dopamine was the first neurotransmitter to be implicated in the disease, and though no longer the only suspect in schizophrenia pathophysiology, it obviously plays an important role. The basal ganglia are the site of most of the dopamine neurons in the brain and the target of antipsychotic drugs. In this review we will start with an overview of basal ganglia anatomy emphasizing dopamine circuitry. Then, we will review the major deficits in dopamine function in schizophrenia, emphasizing the role of excessive dopamine in the basal ganglia and the link to psychosis. PMID:20089137

  4. Dopamine and lipophilic derivates protect cardiomyocytes against cold preservation injury.

    PubMed

    Vettel, Christiane; Hottenrott, Maximilia C; Spindler, Rahel; Benck, Urs; Schnuelle, Peter; Tsagogiorgas, Charalambos; Krämer, Bernhard K; Hoeger, Simone; El-Armouche, Ali; Wieland, Thomas; Yard, Benito A

    2014-01-01

    Donor heart allografts are extremely susceptible to prolonged static cold storage. Because donor treatment with low-dose dopamine improves clinical outcome after heart transplantation, we tested the hypothesis that dopamine and its lipophilic derivate, N-octanoyl dopamine (NOD), protect cardiomyocytes from cold storage injury. Neonatal rat cardiomyocytes were treated with dopamine or NOD or left untreated and subsequently subjected to static cold storage (8-12 hours). Dopamine- and NOD-treated cardiomyocytes displayed a better viability compared with untreated cells after hypothermia. In untreated cardiomyocytes, cell damage was reflected by lactate dehydrogenase (LDH) release and a decrease in intracellular ATP. NOD was approximately 20-fold more potent than dopamine. Similarly to cardiomyocytes in vitro, rat hearts perfused with NOD before explantation showed significantly lower LDH release after static cold storage. ATP regeneration and spontaneous contractions after cold storage and rewarming only occurred in treated cardiomyocytes. Hypothermia severely attenuated isoprenaline-induced cAMP formation in control but not in dopamine- or NOD-treated cells. Esterified derivates of NOD with redox potential and lipophilic side chains reduced cell damage during cold storage similarly to NOD. In contrast to dopamine, neither NOD nor its derivates induced a significant β-adrenoceptor-mediated elevation of cellular cAMP levels. The β1-adrenoceptor antagonist atenolol and D1/D2 receptor antagonist fluphenazine had no impact on the protective effect of NOD or dopamine. We conclude that dopamine as well as NOD treatment mitigates cold preservation injury to cardiomyocytes. The beneficial effects are independent of β-adrenoceptor or dopaminergic receptor stimulation but correlate with redox potential and lipophilic properties.

  5. Reduced Presynaptic Dopamine Activity in Adolescent Dorsal Striatum

    PubMed Central

    Matthews, Marguerite; Bondi, Corina; Torres, Gonzalo; Moghaddam, Bita

    2013-01-01

    Adolescence coincides with symptomatic onset of several psychiatric illnesses including schizophrenia and addiction. Excess limbic dopamine activity has been implicated in these vulnerabilities. We combined molecular and dynamic indices of dopamine neurotransmission to assess dopamine function in adolescent rats in two functionally distinct striatal subregions: nucleus accumbens (NAc) and dorsal striatum (DS). In adolescents, we find an overall reduction in dopamine availability selective to the DS. Dopamine release in the DS, but not in the NAc, was less responsive to amphetamine in adolescents compared to adults. The dopamine transporter (DAT) inhibitor, nomifensine, similarly inhibited basal and amphetamine-induced dopamine release in either regions of both the age groups, suggesting that the reduced effectiveness of amphetamine is not due to differences in DAT function. Furthermore, DAT and vesicular monoamine transporter-2 expressions were similar in the DS and NAc of adolescent rats. In contrast, expression of tyrosine hydroxylase (TH) was reduced in the DS, but not in the NAc, of adolescents compared to adults. Behaviorally, adolescents were less sensitive to amphetamine but more sensitive to a TH inhibitor. These data indicate that, in contrast to the general notion that dopamine is hyperactive in adolescents, there is diminished presynaptic dopamine activity in adolescents that is selective to the DS and may result from attenuated TH activity. Given recent reports of altered dopamine activity in associative/dorsal striatum of individuals at a clinically high risk of psychosis, our data further support the idea that dorsal, as opposed to ventral, regions of the striatum are a locus of vulnerability for psychosis. PMID:23358239

  6. Reduced presynaptic dopamine activity in adolescent dorsal striatum.

    PubMed

    Matthews, Marguerite; Bondi, Corina; Torres, Gonzalo; Moghaddam, Bita

    2013-06-01

    Adolescence coincides with symptomatic onset of several psychiatric illnesses including schizophrenia and addiction. Excess limbic dopamine activity has been implicated in these vulnerabilities. We combined molecular and dynamic indices of dopamine neurotransmission to assess dopamine function in adolescent rats in two functionally distinct striatal subregions: nucleus accumbens (NAc) and dorsal striatum (DS). In adolescents, we find an overall reduction in dopamine availability selective to the DS. Dopamine release in the DS, but not in the NAc, was less responsive to amphetamine in adolescents compared to adults. The dopamine transporter (DAT) inhibitor, nomifensine, similarly inhibited basal and amphetamine-induced dopamine release in either regions of both the age groups, suggesting that the reduced effectiveness of amphetamine is not due to differences in DAT function. Furthermore, DAT and vesicular monoamine transporter-2 expressions were similar in the DS and NAc of adolescent rats. In contrast, expression of tyrosine hydroxylase (TH) was reduced in the DS, but not in the NAc, of adolescents compared to adults. Behaviorally, adolescents were less sensitive to amphetamine but more sensitive to a TH inhibitor. These data indicate that, in contrast to the general notion that dopamine is hyperactive in adolescents, there is diminished presynaptic dopamine activity in adolescents that is selective to the DS and may result from attenuated TH activity. Given recent reports of altered dopamine activity in associative/dorsal striatum of individuals at a clinically high risk of psychosis, our data further support the idea that dorsal, as opposed to ventral, regions of the striatum are a locus of vulnerability for psychosis.

  7. Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia.

    PubMed

    Hnasko, Thomas S; Perez, Francisco A; Scouras, Alex D; Stoll, Elizabeth A; Gale, Samuel D; Luquet, Serge; Phillips, Paul E M; Kremer, Eric J; Palmiter, Richard D

    2006-06-01

    A line of dopamine-deficient (DD) mice was generated to allow selective restoration of normal dopamine signaling to specific brain regions. These DD floxed stop (DDfs) mice have a nonfunctional Tyrosine hydroxylase (Th) gene because of insertion of a NeoR gene flanked by lox P sites targeted to the first intron of the Th gene. DDfs mice have trace brain dopamine content, severe hypoactivity, and aphagia, and they die without intervention. However, they can be maintained by daily treatment with l-3,4-dihydroxyphenylalanine (L-dopa). Injection of a canine adenovirus (CAV-2) engineered to express Cre recombinase into the central caudate putamen restores normal Th gene expression to the midbrain dopamine neurons that project there because CAV-2 efficiently transduces axon terminals and is retrogradely transported to neuronal cell bodies. Bilateral injection of Cre recombinase into the central caudate putamen restores feeding and normalizes locomotion in DDfs mice. Analysis of feeding behavior by using lickometer cages revealed that virally rescued DDfs mice are hyperphagic and have modified meal structures compared with control mice. The virally rescued DDfs mice are also hyperactive at night, have reduced motor coordination, and are thigmotactic compared with controls. These results highlight the critical role for dopamine signaling in the dorsal striatum for most dopamine-dependent behaviors but suggest that dopamine signaling in other brain regions is important to fine-tune these behaviors. This approach offers numerous advantages compared with previous models aimed at examining dopamine signaling in discrete dopaminergic circuits.

  8. Neurotransmission in Parkinson's disease: beyond dopamine.

    PubMed

    Barone, P

    2010-03-01

    Parkinson's disease (PD) is most frequently associated with characteristic motor symptoms that are known to arise with degeneration of dopaminergic neurons. However, patients with this disease also experience a multitude of non-motor symptoms, such as sleep disturbances, fatigue, apathy, anxiety, depression, cognitive impairment, dementia, olfactory dysfunction, pain, sweating and constipation, some of which can be at least as debilitating as the movement disorders and have a major impact on patients' quality of life. Many of these non-motor symptoms may be evident prior to the onset of motor dysfunction. The neuropathology of PD has shown that complex, interconnected neuronal systems, regulated by a number of different neurotransmitters in addition to dopamine, are involved in the aetiology of motor and non-motor symptoms. This review focuses on the non-dopaminergic neurotransmission systems associated with PD with particular reference to the effect that their modulation and interaction with dopamine has on the non-motor symptoms of the disease. PD treatments that focus on the dopaminergic system alone are unable to alleviate both motor and non-motor symptoms, particularly those that develop at early stages of the disease. The development of agents that interact with several of the affected neurotransmission systems could prove invaluable for the treatment of this disease.

  9. [Scans without Evidence of Dopamine Deficit (SWEDDs)].

    PubMed

    Mukai, Yohei; Murata, Miho

    2016-01-01

    Dopamine transporter (DaT) single-photon emission computed tomography (SPECT) and [18F]fluoro-L-DOPA ([18F]DOPA) positron emission tomography (PET) facilitate the investigation of dopaminergic hypofunction in neurodegenerative diseases. DaT SPECT and [18F]DOPA PET have been adopted as survey tools in clinical trials. In a large study on Parkinson's disease, 4-15% of subjects clinically diagnosed with early-stage Parkinson's disease had normal dopaminergic functional imaging scans. These are called Scans without Evidence of Dopamine Deficit (SWEDDs), and are considered to represent a state different from Parkinson's disease. Neurological diseases that exhibit parkinsonism and have normal dopaminergic cells in the nigrostriatal system (e.g., essential tremor, psychogenic parkinsonism, DOPA-responsive dystonia, vascular parkinsonism, drug-induced parkinsonism, manganism, brain tumor, myoclonus-dystonia (DYT11), and fragile X syndrome) might be diagnosed with SWEDDs. True bradykinesia with fatigue or decrement may be useful for distinguishing between Parkinson's disease and SWEDDs. However, because SWEDDs encompass many diseases, their properties may not be uniform. In this review, we discuss DaT SPECT, the concept of SWEDDs, and differential diagnosis. PMID:26764301

  10. Elevated dopamine concentration in light-adapted zebrafish retinas is correlated with increased dopamine synthesis and metabolism.

    PubMed

    Connaughton, Victoria P; Wetzell, Bradley; Arneson, Lynne S; DeLucia, Vittoria; Riley, Anthony L

    2015-10-01

    Probing zebrafish (Danio rerio) retinal cryostat sections, collected either 8 h into the light or dark cycle, with an antibody against tyrosine hydroxylase (TH) identified a single population of immunopositive cells in the inner retina. However, the observed labeling patterns were not identical in both sets of tissues - label intensity was brighter in light-adapted tissue. This difference was quantified by probing western blots of retinal homogenates with the same TH antibody, which showed that TH expression increased by 42% in light-adapted tissue. High-performance liquid chromatography with electrochemical detection revealed that the concentrations of both dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) are also elevated in light-adapted zebrafish retinal tissue. Dopamine levels increased by 14% and DOPAC levels increased by 25% when measured in retinal homogenates harvested during the light cycle. These results indicate that dopamine levels in zebrafish retina are significantly increased in light-adapted tissue. The increase in dopamine content is correlated with an increase in both TH and DOPAC, suggesting that changes in dopamine concentration are due to light-adaptive changes in the synthesis, release and metabolism of dopamine. Dopamine concentration is elevated in lighted-adapted zebrafish retinas. This increase is correlated with an increase in both tyrosine hydroxylase (TH) and DOPAC (3,4-dihydroxyphenylacetic acid), suggesting that changes in dopamine concentration are due to light-adaptive changes in the synthesis, release and metabolism of dopamine. This is applicable to studies examining retinal mutants, the role of dopamine in disease or visual system development.

  11. Stimulus-Dependent Dopamine Release in Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Sikstrom, Sverker; Soderlund, Goran

    2007-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is related to an attenuated and dysfunctional dopamine system. Normally, a high extracellular dopamine level yields a tonic dopaminergic input that down-regulates stimuli-evoked phasic dopamine responses through autoreceptors. Abnormally low tonic extracellular dopamine in ADHD up-regulates the…

  12. The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking.

    PubMed

    Monti, Jaime M; Jantos, Héctor

    2008-01-01

    whereas large doses induce the opposite effects. Not much is known about dopamine-serotonin interaction in the regulation of sleep and W. It has been shown that VTA and SNc DA neurons and DRN 5-HT neurons influence each other. Thus, depending on the receptor subtype involved, 5-HT either facilitates or inhibits the functioning of DA cells. On the other hand, activation of DA D(2)-like receptors in the DRN increases the activity of 5-HT neurons. Thus, it can be speculated that local microinjection of DA and 5-HT ligands into the DRN and the VTA/SNc, respectively, would affect the actions of the corresponding neurons on sleep and W. PMID:18772053

  13. Maternal Immune Activation Disrupts Dopamine System in the Offspring

    PubMed Central

    Luchicchi, Antonio; Lecca, Salvatore; Melis, Miriam; De Felice, Marta; Cadeddu, Francesca; Frau, Roberto; Muntoni, Anna Lisa; Fadda, Paola; Devoto, Paola

    2016-01-01

    Background: In utero exposure to maternal viral infections is associated with a higher incidence of psychiatric disorders with a supposed neurodevelopmental origin, including schizophrenia. Hence, immune response factors exert a negative impact on brain maturation that predisposes the offspring to the emergence of pathological phenotypes later in life. Although ventral tegmental area dopamine neurons and their target regions play essential roles in the pathophysiology of psychoses, it remains to be fully elucidated how dopamine activity and functionality are disrupted in maternal immune activation models of schizophrenia. Methods: Here, we used an immune-mediated neurodevelopmental disruption model based on prenatal administration of the polyriboinosinic-polyribocytidilic acid in rats, which mimics a viral infection and recapitulates behavioral abnormalities relevant to psychiatric disorders in the offspring. Extracellular dopamine levels were measured by brain microdialysis in both the nucleus accumbens shell and the medial prefrontal cortex, whereas dopamine neurons in ventral tegmental area were studied by in vivo electrophysiology. Results: Polyriboinosinic-polyribocytidilic acid-treated animals, at adulthood, displayed deficits in sensorimotor gating, memory, and social interaction and increased baseline extracellular dopamine levels in the nucleus accumbens, but not in the prefrontal cortex. In polyriboinosinic-polyribocytidilic acid rats, dopamine neurons showed reduced spontaneously firing rate and population activity. Conclusions: These results confirm that maternal immune activation severely impairs dopamine system and that the polyriboinosinic-polyribocytidilic acid model can be considered a proper animal model of a psychiatric condition that fulfills a multidimensional set of validity criteria predictive of a human pathology. PMID:26819283

  14. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    PubMed

    Ueno, Taro; Tomita, Jun; Kume, Shoen; Kume, Kazuhiko

    2012-01-01

    Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts) induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine), which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  15. Dopamine receptor signaling and current and future antipsychotic drugs

    PubMed Central

    Boyd, Kevin N.; Mailman, Richard B.

    2015-01-01

    All currently efficacious antipsychotic drugs have as part of their mechanism the ability to attenuate some or all of their signaling through the dopamine D2 receptor. More recently, the dopamine D1 receptor has been hypothesized to be a promising target for the treatment of negative and/or cognitive aspects of schizophrenia that are not improved by current antipsychotics. Although cAMP has been presumed to be the primary messenger for signaling through the dopamine receptors, the last decade has unveiled a complexity that has provided exciting avenues for the future discovery of antipsychotic drugs (APDs). We review the signaling mechanisms of currently approved APDs at dopamine D2 receptors, and note that aripiprazole is a compound that is clearly differentiated from other approved drugs. Although aripiprazole has been postulated to cause dopamine stabilization due to its partial D2 agonist properties, a body of literature suggests that an alternate mechanism, functional selectivity, is of primary importance. Finally, we review the signaling at dopamine D1 receptors, and the idea that drugs that activate D1 receptors may have use as APDs for improving negative and cognitive symptoms. We address the current state of drug discovery in the D1 area, and its relationship to novel signaling mechanisms. Our conclusion is that although the first APD targeting dopamine receptors was discovered more than a half-century ago, recent research advances offer the possibility that novel and/or improved drugs will emerge in the next decade. PMID:23129328

  16. Dopamine modulates novelty seeking behavior during decision making.

    PubMed

    Costa, Vincent D; Tran, Valery L; Turchi, Janita; Averbeck, Bruno B

    2014-10-01

    Novelty seeking refers to the tendency of humans and animals to explore novel and unfamiliar stimuli and environments. The idea that dopamine modulates novelty seeking is supported by evidence that novel stimuli excite dopamine neurons and activate brain regions receiving dopaminergic input. In addition, dopamine is shown to drive exploratory behavior in novel environments. It is not clear whether dopamine promotes novelty seeking when it is framed as the decision to explore novel options versus the exploitation of familiar options. To test this hypothesis, we administered systemic injections of saline or GBR-12909, a selective dopamine transporter (DAT) inhibitor, to monkeys and assessed their novelty seeking behavior during a probabilistic decision making task. The task involved pseudorandom introductions of novel choice options. This allowed monkeys the opportunity to explore novel options or to exploit familiar options that they had already sampled. We found that DAT blockade increased the monkeys' preference for novel options. A reinforcement learning (RL) model fit to the monkeys' choice data showed that increased novelty seeking after DAT blockade was driven by an increase in the initial value the monkeys assigned to novel options. However, blocking DAT did not modulate the rate at which the monkeys learned which cues were most predictive of reward or their tendency to exploit that knowledge. These data demonstrate that dopamine enhances novelty-driven value and imply that excessive novelty seeking-characteristic of impulsivity and behavioral addictions-might be caused by increases in dopamine, stemming from less reuptake.

  17. Prefrontal cortical dopamine transmission is decreased in alcoholism

    PubMed Central

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L.; Douaihy, Antoine B.; Frankle, W. Gordon

    2014-01-01

    Objective Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such working memory, attention, inhibitory control and risk/reward decisions--all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies in alcoholics that have demonstrated less dopamine in the striatum, we hypothesized decreased dopamine transmission in the prefrontal cortex in alcoholism. To test this hypothesis, we used amphetamine and [11C]FLB 457 positron emission tomography (PET) to measure cortical dopamine transmission in a group of 21 recently abstinent alcoholics and matched healthy controls. Methods [11C]FLB 457 binding potential (BPND) was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg−1 of d-amphetamine. Results Amphetamine-induced displacement of [11C]FLB 457 binding potential (Δ BPND) was significantly smaller in the cortical regions in alcoholics compared to healthy controls. Cortical regions that demonstrated lower dopamine transmission in alcoholics included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex and medial temporal lobe. Conclusions The results of this study for the first time unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism. PMID:24874293

  18. Dopamine uptake dynamics are preserved under isoflurane anesthesia.

    PubMed

    Brodnik, Zachary D; España, Rodrigo A

    2015-10-01

    Fast scan cyclic voltammetry is commonly used for measuring the kinetics of dopamine release and uptake. For experiments using an anesthetized preparation, urethane is preferentially used because it does not alter dopamine uptake kinetics compared to freely moving animals. Unfortunately, urethane is highly toxic, can induce premature death during experiments, and cannot be used for recovery surgeries. Isoflurane is an alternative anesthetic that is less toxic than urethane, produces a stable level of anesthesia over extended periods, and is often used for recovery surgeries. Despite these benefits, the effects of isoflurane on dopamine release and uptake have not been directly characterized. In the present studies, we assessed the utility of isoflurane for voltammetry experiments by testing dopamine signaling parameters under baseline conditions, after treatment with the dopamine uptake inhibitor cocaine, and after exposure to increasing concentrations of isoflurane. Our results indicate that surgical levels of isoflurane do not significantly alter terminal mechanisms of dopamine release and uptake over prolonged periods of time. Consequently, we propose that isoflurane is an acceptable anesthetic for voltammetry experiments, which in turn permits the design of studies in which dopamine signaling is examined under anesthesia prior to recovery and subsequent experimentation in the same animals. PMID:26321152

  19. Dopamine alleviates salt-induced stress in Malus hupehensis.

    PubMed

    Li, Chao; Sun, Xiangkai; Chang, Cong; Jia, Dongfeng; Wei, Zhiwei; Li, Cuiying; Ma, Fengwang

    2015-04-01

    Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, ion homeostasis and the response to salinity in Malus hupehensis Rehd. Both hydroponics and field-pot experiments were conducted under saline conditions. Salt-stressed plants had reduced growth and a marked decline in their net photosynthetic rates, values for Fv /Fm and chlorophyll contents. However, pretreatment with 100 or 200 μM dopamine significantly alleviated this inhibition and enabled plants to maintain their photosynthetic capacity. In addition to changing stomatal behavior, supplementation with dopamine positively influenced the uptake of K, N, P, S, Cu and Mn ions but had an inhibitory effect on Na and Cl uptake, the balance of which is responsible for managing the response to salinity by Malus plants. Dopamine pretreatment also controlled the burst of hydrogen peroxide, possibly through direct scavenging and by enhancing the activities of antioxidative enzymes and the capacity of the ascorbate-glutathione cycle. We also investigated whether dopamine might regulate salt overly sensitive pathway genes under salinity. Here, MdHKT1, MdNHX1 and MdSOS1 were greatly upregulated in roots and leaves, which possibly contributed to the maintenance of ion homeostasis and, thus, improved salinity resistance in plants exposed earlier to exogenous dopamine. These results support our conclusion that dopamine alleviates salt-induced stress not only at the level of antioxidant defense but also by regulating other mechanisms of ion homeostasis.

  20. Effect of dopamine on viability of BHK-21 cells.

    PubMed

    Moshkov, D A; Abramova, M B; Shubina, V S; Lavrovskaya, V P; Pavlik, L L; Lezhnev, E I

    2010-09-01

    We studied the effects of dopamine added to culture medium on survival of floating or adherent BHK-21 cells differing by organization of actin cytoskeleton. The viability of floating cells more drastically decreased with increasing dopamine concentration and duration of exposure than that of adherent cells. The cells worse adhered to the substrate and formed a monolayer. The formed monolayer degrades, cell borders become blurred, cells, polygonal in the control, are rounded. Preliminary blockade of dopamine receptors with haloperidol, inessential for cell survival and morphology, does not prevent the destructive effect of dopamine on the cells. Ultrastructural study revealed increased density of filamentous actin threads in deep compartments of cell cytoplasm after dopamine treatment, this increase being more pronounced in cells grown in suspension. Bearing in mind the polymerizing effect of dopamine on globular actin in vitro and the fact that the content of this protein in floating cells is higher than in adherent cells, we can conclude that the decrease in viability of BHK-21 cells is caused by interaction of dopamine with cytoplasmic globular actin. PMID:21246101

  1. The primate thalamus is a key target for brain dopamine.

    PubMed

    Sánchez-González, Miguel Angel; García-Cabezas, Miguel Angel; Rico, Beatriz; Cavada, Carmen

    2005-06-29

    The thalamus relays information to the cerebral cortex from subcortical centers or other cortices; in addition, it projects to the striatum and amygdala. The thalamic relay function is subject to modulation, so the flow of information to the target regions may change depending on behavioral demands. Modulation of thalamic relay by dopamine is not currently acknowledged, perhaps because dopamine innervation is reportedly scant in the rodent thalamus. We show that dopaminergic axons profusely target the human and macaque monkey thalamus using immunolabeling with three markers of the dopaminergic phenotype (tyrosine hydroxylase, dopamine, and the dopamine transporter). The dopamine innervation is especially prominent in specific association, limbic, and motor thalamic nuclei, where the densities of dopaminergic axons are as high as or higher than in the cortical area with the densest dopamine innervation. We also identified the dopaminergic neurons projecting to the macaque thalamus using retrograde tract-tracing combined with immunohistochemistry. The origin of thalamic dopamine is multiple, and thus more complex, than in any other dopaminergic system defined to date: dopaminergic neurons of the hypothalamus, periaqueductal gray matter, ventral mesencephalon, and the lateral parabrachial nucleus project bilaterally to the monkey thalamus. We propose a novel dopaminergic system that targets the primate thalamus and is independent from the previously defined nigrostriatal, mesocortical, and mesolimbic dopaminergic systems. Investigating this "thalamic dopaminergic system" should further our understanding of higher brain functions and conditions such as Parkinson's disease, schizophrenia, and drug addiction.

  2. The nature of interactions involving prefrontal and striatal dopamine systems.

    PubMed

    Wilkinson, L S

    1997-01-01

    A number of converging lines of evidence from work in rodents suggest that dopamine (DA) function in the prefrontal cortex (PFC) and striatal terminal fields may be linked, possibly in an 'inverse' manner, whereby a change in prefrontal dopamine transmission in one direction occasions an opposite change in dopamine function in striatal territories. The present article considers the possible functional importance of this concept in the light of recent neuroanatomical data and new data from our own laboratory indicating that, at the neurochemical level, the basic finding of an inverse relationship between dopamine function in prefrontal and striatal regions also holds good in the non-human primate. The main conclusion is that the simple idea of an inverse relationship between prefrontal and striatal dopamine systems emphasizing presynaptic release mechanisms is unlikely to underlie, solely, the full repertoire of functional interactions. Whilst there is evidence consistent with dynamic interactions between prefrontal and striatal dopamine release under some circumstances, specifically, during the early phases of aversive learning, a complete account of possible interactions between prefrontal and striatal dopamine systems requires consideration of additional factors. Such factors include: (1) the precise nature of the psychological function investigated, (2) the possibility of acute, localized changes in striatal postsynaptic function secondary to changes in presynaptic function and (3) the possibility of manipulations of prefrontal cortex leading to adaptive changes in striatal function, at a diffuse, neural systems level.

  3. Cannabinoid receptor activation shifts temporally engendered patterns of dopamine release.

    PubMed

    Oleson, Erik B; Cachope, Roger; Fitoussi, Aurelie; Tsutsui, Kimberly; Wu, Sharon; Gallegos, Jacqueline A; Cheer, Joseph F

    2014-05-01

    The ability to discern temporally pertinent environmental events is essential for the generation of adaptive behavior in conventional tasks, and our overall survival. Cannabinoids are thought to disrupt temporally controlled behaviors by interfering with dedicated brain timing networks. Cannabinoids also increase dopamine release within the mesolimbic system, a neural pathway generally implicated in timing behavior. Timing can be assessed using fixed-interval (FI) schedules, which reinforce behavior on the basis of time. To date, it remains unknown how cannabinoids modulate dopamine release when responding under FI conditions, and for that matter, how subsecond dopamine release is related to time in these tasks. In the present study, we hypothesized that cannabinoids would accelerate timing behavior in an FI task while concurrently augmenting a temporally relevant pattern of dopamine release. To assess this possibility, we measured subsecond dopamine concentrations in the nucleus accumbens while mice responded for food under the influence of the cannabinoid agonist WIN 55,212-2 in an FI task. Our data reveal that accumbal dopamine concentrations decrease proportionally to interval duration--suggesting that dopamine encodes time in FI tasks. We further demonstrate that WIN 55,212-2 dose-dependently increases dopamine release and accelerates a temporal behavioral response pattern in a CB1 receptor-dependent manner--suggesting that cannabinoid receptor activation modifies timing behavior, in part, by augmenting time-engendered patterns of dopamine release. Additional investigation uncovered a specific role for endogenous cannabinoid tone in timing behavior, as elevations in 2-arachidonoylglycerol, but not anandamide, significantly accelerated the temporal response pattern in a manner akin to WIN 55,212-2. PMID:24345819

  4. Metformin Prevents Nigrostriatal Dopamine Degeneration Independent of AMPK Activation in Dopamine Neurons

    PubMed Central

    Bayliss, Jacqueline A.; Lemus, Moyra B.; Santos, Vanessa V.; Deo, Minh; Davies, Jeffrey S.; Kemp, Bruce E.; Elsworth, John D.

    2016-01-01

    Metformin is a widely prescribed drug used to treat type-2 diabetes, although recent studies show it has wide ranging effects to treat other diseases. Animal and retrospective human studies indicate that Metformin treatment is neuroprotective in Parkinson’s Disease (PD), although the neuroprotective mechanism is unknown, numerous studies suggest the beneficial effects on glucose homeostasis may be through AMPK activation. In this study we tested whether or not AMPK activation in dopamine neurons was required for the neuroprotective effects of Metformin in PD. We generated transgenic mice in which AMPK activity in dopamine neurons was ablated by removing AMPK beta 1 and beta 2 subunits from dopamine transporter expressing neurons. These AMPK WT and KO mice were then chronically exposed to Metformin in the drinking water then exposed to MPTP, the mouse model of PD. Chronic Metformin treatment significantly attenuated the MPTP-induced loss of Tyrosine Hydroxylase (TH) neuronal number and volume and TH protein concentration in the nigrostriatal pathway. Additionally, Metformin treatment prevented the MPTP-induced elevation of the DOPAC:DA ratio regardless of genotype. Metformin also prevented MPTP induced gliosis in the Substantia Nigra. These neuroprotective actions were independent of genotype and occurred in both AMPK WT and AMPK KO mice. Overall, our studies suggest that Metformin’s neuroprotective effects are not due to AMPK activation in dopaminergic neurons and that more research is required to determine how metformin acts to restrict the development of PD. PMID:27467571

  5. Prepuberal subchronic methylphenidate and atomoxetine induce different long-term effects on adult behaviour and forebrain dopamine, norepinephrine and serotonin in Naples high-excitability rats.

    PubMed

    Ruocco, L A; Carnevale, U A Gironi; Treno, C; Sadile, A G; Melisi, D; Arra, C; Ibba, M; Schirru, C; Carboni, E

    2010-06-26

    The psychostimulant methylphenidate and the non-stimulant atomoxetine are two approved drugs for attention-deficit hyperactivity disorder (ADHD) therapy. The aim of this study was to investigate the long-term effects of prepuberal subchronic methylphenidate and atomoxetine on adult behaviour and the forebrain neurotransmitter and metabolite content of Naples High-Excitability (NHE) rats, a genetic model for the mesocortical variant of ADHD. Male NHE rats were given a daily intraperitoneal injection (1.0mg/kg) of methylphenidate, atomoxetine or vehicle from postnatal day 29 to 42. At postnatal day 70-75, rats were exposed to spatial novelty in the Làt and radial (Olton) mazes. Behavioural analysis for indices of horizontal, vertical, non-selective (NSA) and selective spatial attention (SSA) indicated that only methylphenidate significantly reduced horizontal activity to a different extent, i.e., 39 and 16% respectively. Moreover methylphenidate increased NSA as assessed by higher leaning duration. The high-performance liquid chromatography (HPLC) tissue content assessment of dopamine, norepinephrine, serotonin and relative metabolites in the prefrontal cortex (PFC), cortical motor area (MC), dorsal striatum (DS), ventral striatum (VS), hippocampus and mesencephalon indicated that methylphenidate decreased (i) dopamine, DOPAC, norepinephrine, MHPG, 5-HT and 5-HIAA in the PFC, (ii) dopamine, DOPAC, HVA, serotonin, 5-HIAA in the DS, (iii) dopamine, DOPAC, HVA and MHPG (but increased norepinephrine) in the VS and (iv) norepinephrine, MHPG, serotonin and 5-HIAA in the hippocampus. Atomoxetine increased dopamine and decreased MHPG in the PFC. Like methylphenidate, atomoxetine decreased dopamine, DOPAC, HVA, serotonin and 5-HIAA in the DS, but decreased MHPG in the VS. These results suggest that methylphenidate determined long-term effects on behavioural and neurochemical parameters, whereas atomoxetine affected only the latter.

  6. Dopamine receptors and groups I and II mGluRs cooperate for long-term depression induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases.

    PubMed

    Otani, S; Auclair, N; Desce, J M; Roisin, M P; Crépel, F

    1999-11-15

    Tetanic stimuli to layer I-II afferents in rat prefrontal cortex induced long-term depression (LTD) of layer I-II to layer V pyramidal neuron glutamatergic synapses when tetani were coupled to bath application of dopamine. This LTD was blocked by the following metabotropic glutamate receptor (mGluR) antagonists coapplied with dopamine: (S)-alpha-methyl-4-carboxyphenylglycine (MCPG; group I and II antagonist), (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA; group I antagonist), or (RS)-alpha-methylserine-O-phosphate monophenyl ester (MSOPPE; group II antagonist). This suggests that the dopamine-facilitated LTD requires synaptic activation of groups I and II mGluRs during tetanus. LTD could also be induced by coupling tetani to bath application of groups I and II mGluR agonist (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD). In the next series of experiments, coapplication of dopamine and 1S,3R-ACPD, but not application of either drug alone, consistently induced LTD without tetani or even single test stimuli during drug application, suggesting that coactivation of dopamine receptors and the mGluRs is sufficient for LTD induction. Immunoblot analyses with anti-active mitogen-activated protein kinases (MAP-Ks) revealed that D1 receptors, D2 receptors, group I mGluRs, and group II mGluRs all contribute to MAP-K activation in prefrontal cortex, and that combined activation of dopamine receptors and mGluRs synergistically or additively activate MAP-Ks. Consistently, LTD by dopamine + 1S, 3R-ACPD coapplication, as well as the two other forms of LTD (LTD by dopamine + tetani and LTD by 1S,3R-ACPD + tetani), was blocked by bath application of MAP-K kinase inhibitor PD98059. LTD by dopamine + 1S,3R-ACPD coapplication was also blocked by postsynaptic injection of synthetic MAP-K substrate peptide. Our results suggest that dopamine receptors and groups I and II mGluRs cooperate to induce LTD through converging postsynaptic activation of MAP-Ks.

  7. Acrylamide increases dopamine levels by affecting dopamine transport and metabolism related genes in the striatal dopaminergic system.

    PubMed

    Pan, Xiaoqi; Guo, Xiongxiong; Xiong, Fei; Cheng, Guihong; Lu, Qing; Yan, Hong

    2015-07-01

    Dopaminergic system dysfunction is proved to be a possible mechanism in acrylamide (ACR) -induced neurotoxicity. The neurotransmitter dopamine (DA) has an increasingly important role in the dopaminergic system. Thus, the goal of this study is to evaluate effects of ACR on dopamine and its metabolite levels, dopamine transport and metabolic gene expression in dopaminergic neurons. Male Sprague-Dawley (SD) rats were dosed orally with ACR at 0 (saline), 20, 30, and 40 mg/kg/day for 20 days. Splayed hind limbs, reduced tail flick time and abnormal gait which preceded other neurologic parameters were observed in the above rats. ACR significantly increased dopamine levels, decreased 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) contents in an area dependent manner in rat striatum. Immunohistochemical staining of the striatum revealed that the number of tyrosine hydroxylase (TH) positive cells significantly increased, while monoamine oxidase (MAO) positive cells were drastically reduced, which was consistent with changes in their mRNA and protein expressions. In addition, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) expression levels were both down-regulated in the striatum. These results suggest that dopamine levels increase significantly in response to ACR, presumably due to changes in the dopamine transport and metabolism related genes expression in the striatal dopaminergic neurons.

  8. Role of Histidine 547 of Human Dopamine Transporter in Molecular Interaction with HIV-1 Tat and Dopamine Uptake

    PubMed Central

    Yuan, Yaxia; Quizon, Pamela M.; Sun, Wei-Lun; Yao, Jianzhuang; Zhu, Jun; Zhan, Chang-Guo

    2016-01-01

    HIV-1 Tat plays an important role in HIV-associated neurocognitive disorders (HAND) by disrupting neurotransmission including dopamine uptake by human dopamine transporter (hDAT). Previous studies have demonstrated that HIV-1 Tat directly binds to hDAT and some amino-acid mutations that attenuate the hDAT-Tat binding also significantly decreased dopamine uptake activity of hDAT. This combined computational-experimental study demonstrates that histidine-547 (H547) of hDAT plays a crucial role in the hDAT-Tat binding and dopamine uptake by hDAT, and that the H547A mutation can not only considerably attenuate Tat-induced inhibition of dopamine uptake, but also significantly increase the Vmax of hDAT for dopamine uptake. The finding of such an unusual hDAT mutant capable of both increasing the Vmax of hDAT for dopamine uptake and disrupting the hDAT-Tat binding may provide an exciting knowledge basis for development of novel concepts for therapeutic treatment of the HAND. PMID:27250920

  9. Dopamine function in Lesch-Nyhan disease.

    PubMed

    Nyhan, W L

    2000-06-01

    Lesch-Nyhan disease is a disorder of purine metabolism resulting from mutations in the gene for hypoxanthine guanine phosphoribosyl transferase on the X chromosome. It is characterized by hyperuricemia and all of its consequences, as in gout; but in addition, patients have impressive disease of the central nervous system. This includes spasticity, involuntary movements, and retardation of motor development. The behavioral phenotype is best remembered by self-injurious biting behavior with attendant destruction of tissue. The connection between aberrant metabolism of purines and these neurologic and behavioral features of the disease is not clear. Increasing evidence points to imbalance of neurotransmitters. There is increased excretion of the serotonin metabolite 5-hydroxyindoleacetic acid in the urine. There are decreased quantities and activities of a number of dopaminergic functions. Positron emission tomography scanning has indicated deficiency in the dopamine transporter.

  10. Prefrontal cortical dopamine from an evolutionary perspective.

    PubMed

    Lee, Young-A; Goto, Yukiori

    2015-04-01

    In this article, we propose the hypothesis that the prefrontal cortex (PFC) acquired neotenic development as a consequence of mesocortical dopamine (DA) innervation, which in turn drove evolution of the PFC into becoming a complex functional system. Accordingly, from the evolutionary perspective, decreased DA signaling in the PFC associated with such adverse conditions as chronic stress may be considered as an environmental adaptation strategy. Psychiatric disorders such as schizophrenia and attention deficit/hyperactivity disorder may also be understood as environmental adaptation or a by-product of such a process that has emerged through evolution in humans. To investigate the evolutionary perspective of DA signaling in the PFC, domestic animals such as dogs may be a useful model. PMID:25617024

  11. Dopamine signaling in reward-related behaviors.

    PubMed

    Baik, Ja-Hyun

    2013-01-01

    Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  12. Dissecting the diversity of midbrain dopamine neurons.

    PubMed

    Roeper, Jochen

    2013-06-01

    Midbrain dopamine (DA) neurons are essential for controlling key functions of the brain, such as voluntary movement, reward processing, and working memory. The largest populations of midbrain DA neurons are localized in two neighboring nuclei, the substantia nigra (SN) and the ventral tegmental area (VTA). Regardless of their different axonal projections to subcortical and cortical targets, midbrain DA neurons have traditionally been regarded as a relatively homogeneous group of neurons, with a stereotypical set of intrinsic electrophysiological properties and in vivo pattern of activity. In this review, I highlight recent data supporting an unexpected degree of diversity among these midbrain DA neurons in the mammalian brain, ranging from their developmental lineages and different synaptic connectivity to their electrophysiological properties and behavioral functions.

  13. Two dopamine receptors: biochemistry, physiology and pharmacology.

    PubMed

    Stoof, J C; Kebabian, J W

    1984-12-01

    In 1979, two categories of dopamine (DA) receptors (designated as D-1 and D-2) were identified on the basis of the ability of a limited number of agonists and antagonists to discriminate between these two entities. In the past 5 years agonists and antagonists selective for each category of receptor have been identified. Using these selective drugs it has been possible to attribute the effects of DA upon physiological and biochemical processes to the stimulation of either a D-1 or a D-2 receptor. Thus, DA-induced enhancement of both hormone release from bovine parathyroid gland and firing of neurosecretory cells in the CNS of Lymnaea stagnalis has been attributed to stimulation of a D-1 receptor. Likewise, the DA-induced inhibition of the release of prolactin and alpha-MSH from the pituitary gland, as well as of acetylcholine, DA and beta-endorphin from brain, the DA-induced inhibition of chemo-sensory discharge in rabbit carotid body and the DA-induced hyperpolarization of neurosecretory cells in the CNS of Lymnaea stagnalis have been attributed to stimulation of a D-2 receptor. Independently two categories of DA receptors (designated as DA-1 and DA-2) were identified in the cardiovascular system. Stimulation of a DA-1 receptor increases the vascular cyclic AMP content and causes a relaxation of vascular smooth muscle in renal blood vessels, whereas stimulation of a DA-2 receptor inhibits the release of norepinephrine from certain postganglionic sympathetic neurons. Recent studies with the newly developed drugs discriminating between D-1 and D-2 receptors suggest however that the independently developed schemata for classification of dopamine receptors in either the central nervous and endocrine systems or the cardiovascular system are similar although maybe not completely identical. PMID:6390056

  14. CNS Dopamine Transmission Mediated by Noradrenergic Innervation

    PubMed Central

    Smith, Caroline C.; Greene, Robert W.

    2012-01-01

    The pre-synaptic source of dopamine in the CA1 field of dorsal hippocampus is uncertain due to an anatomical mismatch between dopaminergic terminals and receptors. We show, in an in vitro slice preparation from C57BL6 male mice, that a dopamine (DA) D1 receptor (D1R) mediated enhancement in glutamate synaptic transmission occurs following release of endogenous DA with amphetamine exposure. It is assumed DA is released from terminals innervating from the ventral tegmental area (VTA) even though DA transporter (DAT) positive fibers are absent in hippocampus, a region with abundant D1Rs. It has been suggested this results from a lack of DAT expression on VTA terminals rather than a lack of these terminals per se. Neither a knockdown of tyrosine hydroxylase (TH) expression in the VTA by THsiRNA, delivered locally, by adeno-associated viral vector, nor localized pharmacological blockade of DAT to prevent amphetamine uptake into DA terminals, has any effect on the D1R synaptic, enhancement response to amphetamine. However, either a decrease in TH expression in the locus coeruleus (LC) or a blockade of the norepinephrine (NE) transporter prevents the DA mediated response, indicating LC terminals can release both NE and DA. These findings suggest noradrenergic fibers may be the primary source of DA release in hippocampus and corresponding DA mediated increase in synaptic transmission. Accordingly, these data imply the LC may have a role in DA transmission in the CNS in response to drugs of abuse, and potentially, under physiological conditions. PMID:22553014

  15. Dopamine D3 autoreceptor inhibition enhances cocaine potency at the dopamine transporter.

    PubMed

    McGinnis, Molly M; Siciliano, Cody A; Jones, Sara R

    2016-09-01

    Cocaine is a commonly abused central nervous system stimulant that enhances dopamine (DA) neurotransmission through its ability to block dopamine transporters (DATs). Recent evidence suggests there may be an interaction between DATs and D2/D3 autoreceptors that modulates cocaine's effects. The purpose of this study was to explore how D2/D3 autoreceptors modulate the ability of cocaine to inhibit DA uptake through DATs on pre-synaptic DA terminals. Using fast-scan cyclic voltammetry in brain slices containing the nucleus accumbens core from male and female C57BL/6J mice, we first sought to examine the effects of global autoreceptor blockade using the non-selective D2/D3 autoreceptor antagonist, raclopride. We found that the ability of cocaine to inhibit DA uptake was increased by raclopride and that this effect was consistent across sexes. Furthermore, using D2 (L-741,626) or D3 (SB-277011-A) autoreceptor selective antagonists, we discovered that blockade of D3, but not D2, autoreceptors was responsible for the increased cocaine potency. Alterations in cocaine potency were attributable to alterations in uptake inhibition, rather than cocaine effects on vesicular DA release, suggesting that these results may be a product of a functional D3/DAT interaction apart from the canonical inhibitory actions of D3 autoreceptors on DA release. In addition, application of D2 (sumanirole) and D3 (PD 128907) autoreceptor-specific agonists had inverse effects, whereby D2 autoreceptor activation decreased cocaine potency and D3 autoreceptor activation had no effect. Together, these data show that DA autoreceptors dynamically regulate cocaine potency at the DAT, which is important for understanding cocaine's rewarding and addictive properties. We propose a model whereby presynaptic dopamine autoreceptors dynamically modulate cocaine potency through two separate mechanisms. We demonstrate that D2 agonists decrease cocaine potency, whereas D3 antagonists increase cocaine potency

  16. Dopamine Increases a Value-Independent Gambling Propensity.

    PubMed

    Rigoli, Francesco; Rutledge, Robb B; Chew, Benjamin; Ousdal, Olga T; Dayan, Peter; Dolan, Raymond J

    2016-10-01

    Although the impact of dopamine on reward learning is well documented, its influence on other aspects of behavior remains the subject of much ongoing work. Dopaminergic drugs are known to increase risk-taking behavior, but the underlying mechanisms for this effect are not clear. We probed dopamine's role by examining the effect of its precursor L-DOPA on the choices of healthy human participants in an experimental paradigm that allowed particular components of risk to be distinguished. We show that choice behavior depended on a baseline (ie, value-independent) gambling propensity, a gambling preference scaling with the amount/variance, and a value normalization factor. Boosting dopamine levels specifically increased just the value-independent baseline gambling propensity, leaving the other components unaffected. Our results indicate that the influence of dopamine on choice behavior involves a specific modulation of the attractiveness of risky options-a finding with implications for understanding a range of reward-related psychopathologies including addiction.

  17. Formation and occurrence of dopamine-derived betacyanins.

    PubMed

    Kobayashi, N; Schmidt, J; Wray, V; Schliemann, W

    2001-03-01

    In light of the fact that the main betaxanthin (miraxanthin V) and the major betacyanin (2-descarboxy-betanidin) in hairy root cultures of yellow beet (Beta vulgaris L.) are both dopamine-derived, the occurrence of similar structures for the minor betacyanins was also suggested. By HPLC comparison with the betacyanins obtained by dopamine administration to beet seedlings, enzymatic hydrolysis, LCMS and 1H NMR analyses, the minor betacyanins from hairy roots were identified as 2-descarboxy-betanin and its 6'-O-malonyl derivative. A short-term dopamine administration experiment with fodder beet seedlings revealed that the condensation step between 2-descarboxy-cyclo-Dopa and betalamic acid is the decisive reaction, followed by glucosylation and acylation. From these data a pathway for the biosynthesis of dopamine-derived betalains is proposed. Furthermore, the occurrence of these compounds in various cell and hairy root cultures as well as beet plants (Fodder and Garden Beet Group) is shown.

  18. Association study between the dopamine D4 receptor gene and schizophrenia

    SciTech Connect

    Petronis, A.; Macciardi, F.; Athanassiades, A.; Paterson, A.D.

    1995-10-09

    The dopamine D4 receptor is of major interest in schizophrenia research due to its high affinity for the atypical neuroleptic clozapine and a high degree of variability in the receptor gene (DRD4). Although several genetic linkage analyses performed on schizophrenia multiplex families from different regions of the world have either excluded or failed to prove that DRD4 is a major genetic factor for the development of schizophrenia, analyses for moderate predisposing effects are still of significant interest. We performed a study examining differences in allele frequencies of 4 different DRD4 polymorphisms in schizophrenia patients and age, sex, and ethnic origin matched controls. None of these 4 polymorphisms showed evidence for genetic association with schizophrenia, although a trend towards excess of the allele with 7 repeats in the (48){sub n} bp exon III polymorphism was observed. Complexities in the DRD4 genetic investigation and further analytic approaches are discussed. 18 refs., 2 tabs.

  19. The Role of Dopamine in Reinforcement: Changes in Reinforcement Sensitivity Induced by D[subscript 1]-Type, D[subscript 2]-Type, and Nonselective Dopamine Receptor Agonists

    ERIC Educational Resources Information Center

    Bratcher, Natalie A.; Farmer-Dougan, Valeri; Dougan, James D.; Heidenreich, Byron A.; Garris, Paul A.

    2005-01-01

    Dose-dependent changes in sensitivity to reinforcement were found when rats were treated with low, moderate, and high doses of the partial dopamine D[subscript 1]-type receptor agonist SKF38393 and with the nonselective dopamine agonist apomorphine, but did not change when rats were treated with similar doses of the selective dopamine D[subscript…

  20. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    PubMed Central

    Frank, Guido K. W.

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways. PMID:25988121

  1. Dopamine metabolism in characterised neurones of Planorbis corneus.

    PubMed

    Osborne, N N; Priggemeier, E; Neuhoff, V

    1975-06-13

    A sensitive chromatographic procedure was used to study the metabolism of [14C]tyrosine, [3H]DOPA and [3H]dopamine in 3 defined cell-types situated in the nervous system of Planorbis corneus. One of the cell-types contains dopamine (GDC), the other serotonin (GSC) and the other neither amine (GC). The GDCs metabolise [14C]tyrosine to form DOPA and dopamine while the other two cells lack this ability. In contrast, the GDCs and the GSC, but not the GCs, metabolise [3H]DOPA to form dopamine. In addition the GDCs incorporate radioactivity from [3H]DOPA into DOPAC, homovanillic acid and methoxytyramine. After incubation of cells in [3H]dopamine, only the GDCs metabolise it to form DOPAC, homovanillic acid and methoxytyramine. In no instance did the GDCs form significant amounts of noradrenaline from the incorporated radioactive substances. These results, together with data on the amine histochemistry of the individual cell-types following pretretment of animals with drugs known to affect specific enzymes in the synthesis of amine transmitter substances, clearly demonstrate that the GDCs alone have the enzymes requisite for the biosynthesis and catabolism of dopamine, but not noradrenaline.

  2. Selective modulation of excitatory and inhibitory microcircuits by dopamine

    NASA Astrophysics Data System (ADS)

    Gao, Wen-Jun; Goldman-Rakic, Patricia S.

    2003-03-01

    Dopamine plays an important role in the working memory functions of the prefrontal cortex, functions that are impacted in age-related memory decline, drug abuse, and a wide variety of disorders, including schizophrenia and Parkinson's disease. We have previously reported that dopamine depresses excitatory transmission between pyramidal neurons in the prefrontal cortex. Here, using paired recordings, we have investigated dopaminergic modulation of excitatory transmission from pyramidal neurons to fast-spiking (FS) interneurons. In contrast to its effect on recurrent excitation, dopamine was without effect on excitatory transmission to FS interneurons. However, dopamine has directly enhanced the excitability of the FS interneurons to the extent that even a single excitatory postsynaptic potential could initiate spiking with great temporal precision in some of them. These results indicate that dopamine's effects on excitatory transmission are target-specific and that the axon terminals of pyramidal neurons can be selectively regulated at the level of individual synapses. Thus, dopamine's net inhibitory effect on cortical function is remarkably constrained by the nature of the microcircuit elements on which it acts.

  3. Extrasynaptic release of GABA and dopamine by retinal dopaminergic neurons

    PubMed Central

    Hirasawa, Hajime; Contini, Massimo; Raviola, Elio

    2015-01-01

    In the mouse retina, dopaminergic amacrine (DA) cells synthesize both dopamine and GABA. Both transmitters are released extrasynaptically and act on neighbouring and distant retinal neurons by volume transmission. In simultaneous recordings of dopamine and GABA release from isolated perikarya of DA cells, a proportion of the events of dopamine and GABA exocytosis were simultaneous, suggesting co-release. In addition, DA cells establish GABAergic synapses onto AII amacrine cells, the neurons that transfer rod bipolar signals to cone bipolars. GABAA but not dopamine receptors are clustered in the postsynaptic membrane. Therefore, dopamine, irrespective of its site of release—synaptic or extrasynaptic—exclusively acts by volume transmission. Dopamine is released upon illumination and sets the gain of retinal neurons for vision in bright light. The GABA released at DA cells' synapses probably prevents signals from the saturated rods from entering the cone pathway when the dark-adapted retina is exposed to bright illumination. The GABA released extrasynaptically by DA and other amacrine cells may set a ‘GABAergic tone’ in the inner plexiform layer and thus counteract the effects of a spillover of glutamate released at the bipolar cell synapses of adjacent OFF and ON strata, thus preserving segregation of signals between ON and OFF pathways. PMID:26009765

  4. Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum.

    PubMed

    Bossong, Matthijs G; van Berckel, Bart N M; Boellaard, Ronald; Zuurman, Lineke; Schuit, Robert C; Windhorst, Albert D; van Gerven, Joop M A; Ramsey, Nick F; Lammertsma, Adriaan A; Kahn, René S

    2009-02-01

    The influence of cannabis on mental health receives growing scientific and political attention. An increasing demand for treatment of cannabis dependence has refueled the discussion about the addictive potential of cannabis. A key feature of all addictive drugs is the ability to increase synaptic dopamine levels in the striatum, a mechanism involved in their rewarding and motivating effects. However, it is currently unknown if cannabis can stimulate striatal dopamine neurotransmission in humans. Here we show that Delta 9-tetrahydrocannabinol (THC), the main psychoactive component in cannabis, induces dopamine release in the human striatum. Using the dopamine D(2)/D(3) receptor tracer [(11)C]raclopride and positron emission tomography in seven healthy subjects, we demonstrate that THC inhalation reduces [(11)C]raclopride binding in the ventral striatum and the precommissural dorsal putamen but not in other striatal subregions. This is consistent with an increase in dopamine levels in these regions. These results suggest that THC shares a potentially addictive property with other drugs of abuse. Further, it implies that the endogenous cannabinoid system is involved in regulating striatal dopamine release. This allows new directions in research on the effects of THC in neuropsychiatric disorders, such as schizophrenia. PMID:18754005

  5. Subsecond regulation of striatal dopamine release by presynaptic KATP channels

    PubMed Central

    Patel, Jyoti C.; Witkovsky, Paul; Coetzee, William A.; Rice, Margaret E.

    2011-01-01

    ATP-sensitive K+ (KATP) channels are composed of pore-forming subunits, typically Kir6.2 in neurons, and regulatory sulfonylurea receptor subunits. In dorsal striatum, activity-dependent H2O2 produced from glutamatergic AMPA-receptor activation inhibits dopamine release via KATP channels. Sources of modulatory H2O2 include medium spiny neurons, but not dopaminergic axons. Using fast-scan cyclic voltammetry in guinea-pig striatal slices and immunohistochemistry, we determined the time window for H2O2/KATP-channel-mediated inhibition and assessed whether modulatory KATP channels are on dopaminergic axons. Comparison of paired-pulse suppression of dopamine release in the absence and presence of glibenclamide, a KATP-channel blocker, or mercaptosuccinate, a glutathione peroxidase inhibitor that enhances endogenous H2O2 levels, revealed a time window for inhibition of 500 to 1000 ms after stimulation. Immunohistochemistry demonstrated localization of Kir6.2 KATP-channel subunits on dopaminergic axons. Consistent with the presence of functional KATP channels on dopaminergic axons, KATP-channel openers, diazoxide and cromakalim, suppressed single-pulse evoked dopamine release. Although cholinergic interneurons that tonically regulate dopamine release also express KATP channels, diazoxide did not induce the enhanced frequency responsiveness of dopamine release seen with nicotinic-receptor blockade. Together, these studies reveal subsecond regulation of striatal dopamine release by endogenous H2O2 acting at KATP channels on dopaminergic axons, including a role in paired-pulse suppression. PMID:21689107

  6. Differential tonic influence of lateral habenula on prefrontal cortex and nucleus accumbens dopamine release.

    PubMed

    Lecourtier, Lucas; Defrancesco, Alicia; Moghaddam, Bita

    2008-04-01

    Conditions of increased cognitive or emotional demand activate dopamine release in a regionally selective manner. Whereas the brief millisecond response of dopamine neurons to salient stimuli suggests that dopamine's influence on behaviour may be limited to signalling certain cues, the prolonged availability of dopamine in regions such as the prefrontal cortex and nucleus accumbens is consistent with the well described role of dopamine in maintaining motivation states, associative learning and working memory. The behaviourally elicited terminal release of dopamine is generally attributed to increased excitatory drive on dopamine neurons. Our findings here, however, indicate that this increase may involve active removal of a tonic inhibitory control on dopamine neurons exerted by the lateral habenula (LHb). Inhibition of LHb in behaving animals transiently increased dopamine release in the prefrontal cortex, nucleus accumbens and dorsolateral striatum. The inhibitory influence was more pronounced in the nucleus accumbens and striatum than in the prefrontal cortex. This pattern of regional dopamine activation after LHb inhibition mimicked conditions of reward availability but not increased cognitive demand. Electrical or chemical stimulation of LHb produced minimal reduction of extracellular dopamine, suggesting that in an awake brain the inhibition associated with tonic LHb activity represents a near-maximal influence on dopamine neurotransmission. These data indicate that LHb may be critical for functional differences in dopamine neurons by preferentially modulating dopamine neurons that project to the nucleus accumbens over those neurons that primarily project to the prefrontal cortex.

  7. CITY III Operator's Manual.

    ERIC Educational Resources Information Center

    Envirometrics, Inc., Washington, DC.

    CITY III is a computer-assisted simulation game of an urban system involving player operation of and interaction with economic, social, and government components. The role of operator in the game is to take the handwritten inputs (decisions) from the CITY III participants, process them, and return output which initiates the next round of…

  8. SUPERSTARS III: K-2.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Education, Raleigh.

    SUPERSTARS III is a K-8 program designed as an enrichment opportunity for self-directed learners in mathematics. The basic purpose of SUPERSTARS III is to provide the extra challenge that self-motivated students need in mathematics and to do so in a structured, long-term program that does not impinge on the normal classroom routine or the…

  9. A heterocyclic compound CE-103 inhibits dopamine reuptake and modulates dopamine transporter and dopamine D1-D3 containing receptor complexes.

    PubMed

    Sase, Ajinkya; Aher, Yogesh D; Saroja, Sivaprakasam R; Ganesan, Minu Karthika; Sase, Sunetra; Holy, Marion; Höger, Harald; Bakulev, Vasiliy; Ecker, Gerhard F; Langer, Thierry; Sitte, Harald H; Leban, Johann; Lubec, Gert

    2016-03-01

    A series of compounds have been reported to enhance memory via the DA system and herein a heterocyclic compound was tested for working memory (WM) enhancement. 2-((benzhydrylsulfinyl)methyl)thiazole (CE-103) was synthesized in a six-step synthesis. Binding of CE-103 to the dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters and dopamine reuptake inhibition was tested as well as blood brain permeation and a screen for GPCR targets. 60 male Sprague Dawley rats were divided into six groups: CE-103 treated 1-10 mg/kg body weight, trained (TDI) and yoked (YDI) and vehicle treated, trained (TVI) and yoked (YVI) rats. Daily single intraperitoneal injections for a period of 10 days were administered and rats were tested in a radial arm maze (RAM). Hippocampi were taken 6 h following the last day of training and complexes containing the unphosphorylated or phosphorylated dopamine transporter (DAT) and complexes containing the D1-3 dopamine receptor subunits were determined. CE-103 was binding to the DAT but insignificantly to SERT or NET and dopamine reuptake was blocked specifically (IC50 = 14.73 μM). From day eight the compound was decreasing WM errors in the RAM significantly at both doses tested as compared to the vehicle controls. In the trained CE-103-treated group levels of the complex containing the phosphorylated dopamine transporter (pDAT) as well as D1R were decreased while levels of complexes containing D2R and D3R were significantly increased. CE-103 was shown to enhance spatial WM and DA reuptake inhibition with subsequent modulation of D1-3 receptors is proposed as a possible mechanism of action. PMID:26407764

  10. Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine.

    PubMed

    Dal Bo, Gregory; St-Gelais, Fannie; Danik, Marc; Williams, Sylvain; Cotton, Mathieu; Trudeau, Louis-Eric

    2004-03-01

    Dopamine neurons have been suggested to use glutamate as a cotransmitter. To identify the basis of such a phenotype, we have examined the expression of the three recently identified vesicular glutamate transporters (VGLUT1-3) in postnatal rat dopamine neurons in culture. We found that the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3. In comparison, serotonin neurons express only VGLUT3. Single-cell RT-PCR experiments confirmed the presence of VGLUT2 mRNA in dopamine neurons. Arguing for phenotypic heterogeneity among axon terminals, we find that only a proportion of terminals established by dopamine neurons are VGLUT2-positive. Taken together, our results provide a basis for the ability of dopamine neurons to release glutamate as a cotransmitter. A detailed analysis of the conditions under which DA neurons gain or loose a glutamatergic phenotype may provide novel insight into pathophysiological processes that underlie diseases such as schizophrenia, Parkinson's disease and drug dependence. PMID:15009640

  11. Expression of dopamine D2 receptor in PC-12 cells and regulation of membrane conductances by dopamine.

    PubMed

    Zhu, W H; Conforti, L; Millhorn, D E

    1997-10-01

    PC-12 cells depolarize during hypoxia and release dopamine. The hypoxia-induced depolarization is due to inhibition of an O2-sensitive K+ current. The role of dopamine released during hypoxia is uncertain, but it could act as an autocrine to modulate membrane conductance during hypoxia. The current study was undertaken to investigate this possibility. Reverse transcription-polymerase chain reaction and sequence analysis revealed that the D2 isoform of the dopamine receptor is expressed in rat PC-12 cells. Exogenously applied dopamine and the D2 agonist quinpirole elicited inhibition of a voltage-dependent K+ current (I(K)) that was prevented by sulpiride, a D2 receptor antagonist. Dopamine and quinpirole applied during hypoxia potentiated the inhibitory effect of hypoxia on I(K). We also found that quinpirole caused reversible inhibition of a voltage-dependent Ca2+ current (I(Ca)) and attenuation of the increase in intracellular free Ca2+ during hypoxia. Our results indicate that dopamine released from PC-12 cells during hypoxia acts via a D2 receptor to "autoregulate" I(K) and I(Ca). PMID:9357757

  12. Striatal dopamine D2/3 receptor binding following dopamine depletion in subjects at Ultra High Risk for psychosis.

    PubMed

    Bloemen, Oswald J N; de Koning, Mariken B; Gleich, Tobias; Meijer, Julia; de Haan, Lieuwe; Linszen, Don H; Booij, Jan; van Amelsvoort, Thérèse A M J

    2013-02-01

    Altered striatal dopaminergic neurotransmission is thought to be fundamental to schizophrenia. Increased presynaptic dopaminergic activity ([18F]-DOPA PET) may predate the onset of psychotic symptoms and correlates to clinical symptoms in subjects at Ultra High Risk (UHR) for developing psychosis. Postsynaptic dopaminergic neurotransmission has not been investigated yet in UHR patients. We hypothesized that synaptic dopamine concentration would be increased in UHR patients, and that synaptic dopamine concentration would be related to symptom severity. 14 UHR patients and 15 age and IQ matched controls completed an [123I]-IBZM SPECT scan at baseline and again after dopamine depletion with alpha-methyl-para-tyrosine (AMPT). We measured changes in radiotracer binding potential, compared these between UHR patients and controls, and correlated these to symptom severity. The UHR group as a whole did not differ significantly from controls. AMPT significantly reduced symptom severity in the UHR group (p=0.014). Higher synaptic dopamine concentration predicted larger reduction of positive symptoms following depletion in the UHR group (p=0.01). In UHR patients, positive symptoms responded to dopamine depletion, comparable to observations in schizophrenia, suggesting a similar mechanism. Higher synaptic dopamine concentration was associated with more severe positive symptoms and a greater reduction of these symptoms following depletion.

  13. Visualizing dopamine released from living cells using a nanoplasmonic probe

    NASA Astrophysics Data System (ADS)

    Qin, W. W.; Wang, S. P.; Li, J.; Peng, T. H.; Xu, Y.; Wang, K.; Shi, J. Y.; Fan, C. H.; Li, D.

    2015-09-01

    We report the development of an ultrasensitive nanoplasmonic probe for discriminative detection and imaging of dopamine released from living cells. The sensing mechanism is based on the dopamine-induced seeded-growth of Au nanoparticles (Au NPs) that leads to the shift of the plasmon band. This platform allows for the detection of dopamine with a detection limit down to 0.25 pM within 1 min. This nanoplasmonic assay is further applied to visualize the release of dopamine from living rat pheochromocytoma (PC12) cells under ATP-stimulation with dark-field microscopy (DFM). The DFM results together with real time fluorescence imaging of PC12 cells stained with the Fluo calcium indicator, suggested that ATP stimulated-release of dopamine is concomitant with the Ca2+ influx, and the influx of Ca2+ is through ATP-activated channels instead of the voltage-gated Ca2+ channel (VGC).We report the development of an ultrasensitive nanoplasmonic probe for discriminative detection and imaging of dopamine released from living cells. The sensing mechanism is based on the dopamine-induced seeded-growth of Au nanoparticles (Au NPs) that leads to the shift of the plasmon band. This platform allows for the detection of dopamine with a detection limit down to 0.25 pM within 1 min. This nanoplasmonic assay is further applied to visualize the release of dopamine from living rat pheochromocytoma (PC12) cells under ATP-stimulation with dark-field microscopy (DFM). The DFM results together with real time fluorescence imaging of PC12 cells stained with the Fluo calcium indicator, suggested that ATP stimulated-release of dopamine is concomitant with the Ca2+ influx, and the influx of Ca2+ is through ATP-activated channels instead of the voltage-gated Ca2+ channel (VGC). Electronic supplementary information (ESI) available: Fig. S1-S4 and Table S1. See DOI: 10.1039/c5nr04433b

  14. The binding sites for benztropines and dopamine in the dopamine transporter overlap.

    PubMed

    Bisgaard, Heidi; Larsen, M Andreas B; Mazier, Sonia; Beuming, Thijs; Newman, Amy Hauck; Weinstein, Harel; Shi, Lei; Loland, Claus J; Gether, Ulrik

    2011-01-01

    Analogs of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational modeling together with site-directed mutagenesis to characterize the binding site for BZTs in DAT. Docking into molecular models based on the structure of the bacterial homolog LeuT supported a BZT binding site that overlaps with the substrate-binding pocket. In agreement, mutations of residues within the pocket, including(2) Val152(3.46) to Ala or Ile, Ser422(8.60) to Ala and Asn157(3.51) to Cys or Ala, resulted in decreased affinity for BZT and the analog JHW007, as assessed in [(3)H]dopamine uptake inhibition assays and/or [(3)H]CFT competition binding assay. A putative polar interaction of one of the phenyl ring fluorine substituents in JHW007 with Asn157(3.51) was used as a criterion for determining likely binding poses and establish a structural context for the mutagenesis findings. The analysis positioned the other fluorine-substituted phenyl ring of JHW007 in close proximity to Ala479(10.51)/Ala480(10.52) in transmembrane segment (TM) 10. The lack of such an interaction for BZT led to a more tilted orientation, as compared to JHW007, bringing one of the phenyl rings even closer to Ala479(10.51)/Ala480(10.52). Mutation of Ala479(10.51) and Ala480(10.52) to valines supported these predictions with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine.

  15. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    PubMed Central

    Bisgaard, Heidi; Larsen, M. Andreas B.; Mazier, Sonia; Beuming, Thijs; Newman, Amy Hauck; Weinstein, Harel; Shi, Lei; Loland, Claus J.; Gether, Ulrik

    2013-01-01

    Analogues of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational modeling together with site-directed mutagenesis to characterize the binding site for BZTs in DAT. Docking into molecular models based on the structure of the bacterial homologue LeuT supported a BZT binding site that overlaps with the substrate binding pocket. In agreement, mutations of residues within the pocket, including Val1523.46* to Ala or Ile, Ser4228.60 to Ala and Asn1573.51 to Cys or Ala, resulted in decreased affinity for BZT and the analog JHW007, as assessed in [3H]dopamine uptake inhibition assays and/or [3H]CFT competition binding assay. A putative polar interaction of one of the phenyl ring fluorine substituents in JHW007 with Asn1573.51 was used as a criterion for determining likely binding poses and establish a structural context for the mutagenesis findings. The analysis positioned the other fluorine substituted phenyl ring of JHW007 in close proximity to Ala47910.51/Ala48010.52 in transmembrane segment (TM) 10. The lack of such an interaction for BZT led to a more tilted orientation, as compared to JHW007, bringing one of the phenyl rings even closer to Ala47910.51/Ala48010.52. Mutation of Ala47910.51 and Ala48010.52 to valines supported these predictions with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine. PMID:20816875

  16. Dopamine Function and the Efficiency of Human Movement

    PubMed Central

    Gepshtein, Sergei; Li, Xiaoyan; Snider, Joseph; Plank, Markus; Lee, Dongpyo; Poizner, Howard

    2016-01-01

    To sustain successful behavior in dynamic environments, active organisms must be able to learn from the consequences of their actions and predict action outcomes. One of the most important discoveries in systems neuroscience over the last 15 years has been about the key role of the neurotransmitter dopamine in mediating such active behavior. Dopamine cell firing was found to encode differences between the expected and obtained outcomes of actions. Although activity of dopamine cells does not specify movements themselves, a recent study in humans has suggested that tonic levels of dopamine in the dorsal striatum may in part enable normal movement by encoding sensitivity to the energy cost of a movement, providing an implicit “motor motivational” signal for movement. We investigated the motivational hypothesis of dopamine by studying motor performance of patients with Parkinson disease who have marked dopamine depletion in the dorsal striatum and compared their performance with that of elderly healthy adults. All participants performed rapid sequential movements to visual targets associated with different risk and different energy costs, countered or assisted by gravity. In conditions of low energy cost, patients performed surprisingly well, similar to prescriptions of an ideal planner and healthy participants. As energy costs increased, however, performance of patients with Parkinson disease dropped markedly below the prescriptions for action by an ideal planner and below performance of healthy elderly participants. The results indicate that the ability for efficient planning depends on the energy cost of action and that the effect of energy cost on action is mediated by dopamine. PMID:24144250

  17. Increased dopamine tone during meditation-induced change of consciousness.

    PubMed

    Kjaer, Troels W; Bertelsen, Camilla; Piccini, Paola; Brooks, David; Alving, Jørgen; Lou, Hans C

    2002-04-01

    This is the first in vivo demonstration of an association between endogenous neurotransmitter release and conscious experience. Using 11C-raclopride PET we demonstrated increased endogenous dopamine release in the ventral striatum during Yoga Nidra meditation. Yoga Nidra is characterized by a depressed level of desire for action, associated with decreased blood flow in prefrontal, cerebellar and subcortical regions, structures thought to be organized in open loops subserving executive control. In the striatum, dopamine modulates excitatory glutamatergic synapses of the projections from the frontal cortex to striatal neurons, which in turn project back to the frontal cortex via the pallidum and ventral thalamus. The present study was designed to investigate whether endogenous dopamine release increases during loss of executive control in meditation. Participants underwent two 11C-raclopride PET scans: one while attending to speech with eyes closed, and one during active meditation. The tracer competes with endogenous dopamine for access to dopamine D2 receptors predominantly found in the basal ganglia. During meditation, 11C-raclopride binding in ventral striatum decreased by 7.9%. This corresponds to a 65% increase in endogenous dopamine release. The reduced raclopride binding correlated significantly with a concomitant increase in EEG theta activity, a characteristic feature of meditation. All participants reported a decreased desire for action during meditation, along with heightened sensory imagery. The level of gratification and the depth of relaxation did not differ between the attention and meditation conditions. Here we show increased striatal dopamine release during meditation associated with the experience of reduced readiness for action. It is suggested that being in the conscious state of meditation causes a suppression of cortico-striatal glutamatergic transmission. To our knowledge this is the first time in vivo evidence has been provided for

  18. Dopamine and Effort-Based Decision Making

    PubMed Central

    Kurniawan, Irma Triasih; Guitart-Masip, Marc; Dolan, Ray J.

    2011-01-01

    Motivational theories of choice focus on the influence of goal values and strength of reinforcement to explain behavior. By contrast relatively little is known concerning how the cost of an action, such as effort expended, contributes to a decision to act. Effort-based decision making addresses how we make an action choice based on an integration of action and goal values. Here we review behavioral and neurobiological data regarding the representation of effort as action cost, and how this impacts on decision making. Although organisms expend effort to obtain a desired reward there is a striking sensitivity to the amount of effort required, such that the net preference for an action decreases as effort cost increases. We discuss the contribution of the neurotransmitter dopamine (DA) toward overcoming response costs and in enhancing an animal's motivation toward effortful actions. We also consider the contribution of brain structures, including the basal ganglia and anterior cingulate cortex, in the internal generation of action involving a translation of reward expectation into effortful action. PMID:21734862

  19. Biophysically realistic minimal model of dopamine neuron

    NASA Astrophysics Data System (ADS)

    Oprisan, Sorinel

    2008-03-01

    We proposed and studied a new biophysically relevant computational model of dopaminergic neurons. Midbrain dopamine neurons are involved in motivation and the control of movement, and have been implicated in various pathologies such as Parkinson's disease, schizophrenia, and drug abuse. The model we developed is a single-compartment Hodgkin-Huxley (HH)-type parallel conductance membrane model. The model captures the essential mechanisms underlying the slow oscillatory potentials and plateau potential oscillations. The main currents involved are: 1) a voltage-dependent fast calcium current, 2) a small conductance potassium current that is modulated by the cytosolic concentration of calcium, and 3) a slow voltage-activated potassium current. We developed multidimensional bifurcation diagrams and extracted the effective domains of sustained oscillations. The model includes a calcium balance due to the fundamental importance of calcium influx as proved by simultaneous electrophysiological and calcium imaging procedure. Although there are significant evidences to suggest a partially electrogenic calcium pump, all previous models considered only elecrtogenic pumps. We investigated the effect of the electrogenic calcium pump on the bifurcation diagram of the model and compared our findings against the experimental results.

  20. Prefrontal dopamine in associative learning and memory.

    PubMed

    Puig, M V; Antzoulatos, E G; Miller, E K

    2014-12-12

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems. PMID:25241063

  1. "Is dopamine involved in Alzheimer's disease?".

    PubMed

    Martorana, Alessandro; Koch, Giacomo

    2014-01-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and dementia. Recent advances indicate that AD pathogenesis appears more complex than its mere neuropathology. Changes in synaptic plasticity, neuronal disarray and cell death are pathways commonly recognized as pathogenic mechanisms of AD. It is thought that the altered metabolism of certain membrane proteins may lead to the production of amyloid (Aβ) oligomers that are characterized by an highly toxic effect on neurotransmission pathways, such as those mediated by Acetylcholine. The interaction of Aβ oligomers with these neurotansmitters systems would in turn induce cell dysfunction, neurotransmitters signaling imbalance and finally lead to the appearance of neurological signs. In this perspective, it is still debated how and if these mechanisms may also engage the dopaminergic system in AD. Recent experimental work revealed that the dopaminergic system may well be involved in the occurrence of cognitive decline, often being predictive of rapidly progressive forms of AD. However, a clear idea on the role of the dopamine system in AD is still missing. Here we review the more recent evidences supporting the notion that the dopaminergic dysfunction has a pathogenic role in cognitive decline symptoms of AD. PMID:25309431

  2. Somatodendritic dopamine release: recent mechanistic insights

    PubMed Central

    Rice, Margaret E.; Patel, Jyoti C.

    2015-01-01

    Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K+ channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca2+ dependence of release and the potential role of exocytotic proteins. PMID:26009764

  3. Sustained N-methyl-D-aspartate receptor hypofunction remodels the dopamine system and impairs phasic signaling

    PubMed Central

    Ferris, Mark J.; Milenkovic, Marija; Liu, Shuai; Mielnik, Catharine A.; Beerepoot, Pieter; John, Carrie E.; España, Rodrigo A.; Sotnikova, Tatyana D.; Gainetdinov, Raul R.; Borgland, Stephanie L.; Jones, Sara R.; Ramsey, Amy J.

    2014-01-01

    Chronic N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed as a contributing factor to symptoms of schizophrenia. However, it is unclear how sustained NMDAR hypofunction throughout development affects other neurotransmitter systems that have been implicated in the disease. Dopamine neuron biochemistry and activity were examined to determine whether sustained NMDAR hypofunction causes a state of hyperdopaminergia. We report that a global, genetic reduction in NMDARs led to a remodeling of dopamine neurons, substantially affecting two key regulators of dopamine homeostasis, i.e. tyrosine hydroxylase and the dopamine transporter. In NR1 knockdown mice, dopamine synthesis and release were attenuated, and dopamine clearance was increased. Although these changes would have the effect of reducing dopamine transmission, we demonstrated that a state of hyperdopaminergia existed in these mice because dopamine D2 autoreceptors were desensitized. In support of this conclusion, NR1 knockdown dopamine neurons have higher tonic firing rates. Although the tonic firing rates are higher, phasic signaling is impaired, and dopamine overflow cannot be achieved with exogenous high-frequency stimulation that models phasic firing. Through the examination of several parameters of dopamine neurotransmission, we provide evidence that chronic NMDAR hypofunction leads to a state of elevated synaptic dopamine. Compensatory mechanisms to attenuate hyperdopaminergia also impact the ability to generate dopamine surges through phasic firing. PMID:24754704

  4. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    PubMed Central

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  5. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons.

    PubMed

    Romero-Fernandez, W; Borroto-Escuela, D O; Vargas-Barroso, V; Narváez, M; Di Palma, M; Agnati, L F; Larriva Sahd, J; Fuxe, K

    2014-07-18

    Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tubero-infundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region.  Dopamine D1 and D2 receptors may therefore directly and differentially

  6. Dopamine D1 and D2 Receptor Immunoreactivities in the Arcuate-Median Eminence Complex and their Link to the Tubero-Infundibular Dopamine Neurons

    PubMed Central

    Romero-Fernandez, W.; Borroto-Escuela, D.O.; Vargas-Barroso, V.; Narváez, M.; Di Palma, M.; Agnati, L.F.; Sahd, J. Larriva

    2014-01-01

    Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tuberoinfundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region. Dopamine D1 and D2 receptors may therefore directly and differentially

  7. Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation

    PubMed Central

    Morita, Kenji

    2016-01-01

    It has been suggested that dopamine (DA) represents reward-prediction-error (RPE) defined in reinforcement learning and therefore DA responds to unpredicted but not predicted reward. However, recent studies have found DA response sustained towards predictable reward in tasks involving self-paced behavior, and suggested that this response represents a motivational signal. We have previously shown that RPE can sustain if there is decay/forgetting of learned-values, which can be implemented as decay of synaptic strengths storing learned-values. This account, however, did not explain the suggested link between tonic/sustained DA and motivation. In the present work, we explored the motivational effects of the value-decay in self-paced approach behavior, modeled as a series of ‘Go’ or ‘No-Go’ selections towards a goal. Through simulations, we found that the value-decay can enhance motivation, specifically, facilitate fast goal-reaching, albeit counterintuitively. Mathematical analyses revealed that underlying potential mechanisms are twofold: (1) decay-induced sustained RPE creates a gradient of ‘Go’ values towards a goal, and (2) value-contrasts between ‘Go’ and ‘No-Go’ are generated because while chosen values are continually updated, unchosen values simply decay. Our model provides potential explanations for the key experimental findings that suggest DA's roles in motivation: (i) slowdown of behavior by post-training blockade of DA signaling, (ii) observations that DA blockade severely impairs effortful actions to obtain rewards while largely sparing seeking of easily obtainable rewards, and (iii) relationships between the reward amount, the level of motivation reflected in the speed of behavior, and the average level of DA. These results indicate that reinforcement learning with value-decay, or forgetting, provides a parsimonious mechanistic account for the DA's roles in value-learning and motivation. Our results also suggest that when biological

  8. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder

    PubMed Central

    Hamilton, Peter J.; Campbell, Nicholas G.; Sharma, Shruti; Erreger, Kevin; Hansen, Freja Herborg; Saunders, Christine; Belovich, Andrea N.; Sahai, Michelle A.; Cook, Edwin H.; Gether, Ulrik; Mchaourab, Hassane S.; Matthies, Heinrich J.G.; Sutcliffe, James S.; Galli, Aurelio

    2014-01-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution at site 356 (hDAT T356M). The dopamine transporter (DAT) is a presynaptic membrane protein that regulates dopaminergic tone in the central nervous system by mediating the high-affinity re-uptake of synaptically released DA, making it a crucial regulator of DA homeostasis. Here, we report the first functional, structural, and behavioral characterization of an ASD-associated de novo mutation in the hDAT. We demonstrate that the hDAT T356M displays anomalous function, characterized as a persistent reverse transport of DA (substrate efflux). Importantly, in the bacterial homolog leucine transporter, substitution of A289 (the homologous site to T356) with a Met promotes an outward-facing conformation upon substrate binding. In the substrate-bound state, an outward-facing transporter conformation is a required for substrate efflux. In Drosophila melanogaster, expression of hDAT T356M in DA neurons lacking Drosophila DAT leads to hyperlocomotion, a trait associated with DA dysfunction and ASD. Taken together, our findings demonstrate that alterations in DA homeostasis, mediated by aberrant DAT function, may confer risk for ASD and related neuropsychiatric conditions. PMID:23979605

  9. Dopamine D4 receptor polymorphism and sex interact to predict children's affective knowledge.

    PubMed

    Ben-Israel, Sharon; Uzefovsky, Florina; Ebstein, Richard P; Knafo-Noam, Ariel

    2015-01-01

    Affective knowledge, the ability to understand others' emotional states, is considered to be a fundamental part in efficient social interaction. Affective knowledge can be seen as related to cognitive empathy, and in the framework of theory of mind (ToM) as affective ToM. Previous studies found that cognitive empathy and ToM are heritable, yet little is known regarding the specific genes involved in individual variability in affective knowledge. Investigating the genetic basis of affective knowledge is important for understanding brain mechanisms underlying socio-cognitive abilities. The 7-repeat (7R) allele within the third exon of the dopamine D4 receptor gene (DRD4-III) has been a focus of interest, due to accumulated knowledge regarding its relevance to individual differences in social behavior. A recent study suggests that an interaction between the DRD4-III polymorphism and sex is associated with cognitive empathy among adults. We aimed to examine the same association in two childhood age groups. Children (N = 280, age 3.5 years, N = 283, age 5 years) participated as part of the Longitudinal Israel Study of Twins. Affective knowledge was assessed through children's responses to an illustrated story describing different emotional situations, told in a laboratory setting. The findings suggest a significant interaction between sex and the DRD4-III polymorphism, replicated in both age groups. Boy carriers of the 7R allele had higher affective knowledge scores than girls, whereas in the absence of the 7R there was no significant sex effect on affective knowledge. The results support the importance of DRD4-III polymorphism and sex differences to social development. Possible explanations for differences from adult findings are discussed, as are pathways for future studies.

  10. Dopamine D4 receptor polymorphism and sex interact to predict children's affective knowledge.

    PubMed

    Ben-Israel, Sharon; Uzefovsky, Florina; Ebstein, Richard P; Knafo-Noam, Ariel

    2015-01-01

    Affective knowledge, the ability to understand others' emotional states, is considered to be a fundamental part in efficient social interaction. Affective knowledge can be seen as related to cognitive empathy, and in the framework of theory of mind (ToM) as affective ToM. Previous studies found that cognitive empathy and ToM are heritable, yet little is known regarding the specific genes involved in individual variability in affective knowledge. Investigating the genetic basis of affective knowledge is important for understanding brain mechanisms underlying socio-cognitive abilities. The 7-repeat (7R) allele within the third exon of the dopamine D4 receptor gene (DRD4-III) has been a focus of interest, due to accumulated knowledge regarding its relevance to individual differences in social behavior. A recent study suggests that an interaction between the DRD4-III polymorphism and sex is associated with cognitive empathy among adults. We aimed to examine the same association in two childhood age groups. Children (N = 280, age 3.5 years, N = 283, age 5 years) participated as part of the Longitudinal Israel Study of Twins. Affective knowledge was assessed through children's responses to an illustrated story describing different emotional situations, told in a laboratory setting. The findings suggest a significant interaction between sex and the DRD4-III polymorphism, replicated in both age groups. Boy carriers of the 7R allele had higher affective knowledge scores than girls, whereas in the absence of the 7R there was no significant sex effect on affective knowledge. The results support the importance of DRD4-III polymorphism and sex differences to social development. Possible explanations for differences from adult findings are discussed, as are pathways for future studies. PMID:26157401

  11. Dopamine D4 receptor polymorphism and sex interact to predict children’s affective knowledge

    PubMed Central

    Ben-Israel, Sharon; Uzefovsky, Florina; Ebstein, Richard P.; Knafo-Noam, Ariel

    2015-01-01

    Affective knowledge, the ability to understand others’ emotional states, is considered to be a fundamental part in efficient social interaction. Affective knowledge can be seen as related to cognitive empathy, and in the framework of theory of mind (ToM) as affective ToM. Previous studies found that cognitive empathy and ToM are heritable, yet little is known regarding the specific genes involved in individual variability in affective knowledge. Investigating the genetic basis of affective knowledge is important for understanding brain mechanisms underlying socio-cognitive abilities. The 7-repeat (7R) allele within the third exon of the dopamine D4 receptor gene (DRD4-III) has been a focus of interest, due to accumulated knowledge regarding its relevance to individual differences in social behavior. A recent study suggests that an interaction between the DRD4-III polymorphism and sex is associated with cognitive empathy among adults. We aimed to examine the same association in two childhood age groups. Children (N = 280, age 3.5 years, N = 283, age 5 years) participated as part of the Longitudinal Israel Study of Twins. Affective knowledge was assessed through children’s responses to an illustrated story describing different emotional situations, told in a laboratory setting. The findings suggest a significant interaction between sex and the DRD4-III polymorphism, replicated in both age groups. Boy carriers of the 7R allele had higher affective knowledge scores than girls, whereas in the absence of the 7R there was no significant sex effect on affective knowledge. The results support the importance of DRD4-III polymorphism and sex differences to social development. Possible explanations for differences from adult findings are discussed, as are pathways for future studies. PMID:26157401

  12. Prolonged treatment with pramipexole promotes physical interaction of striatal dopamine D3 autoreceptors with dopamine transporters to reduce dopamine uptake.

    PubMed

    Castro-Hernández, Javier; Afonso-Oramas, Domingo; Cruz-Muros, Ignacio; Salas-Hernández, Josmar; Barroso-Chinea, Pedro; Moratalla, Rosario; Millan, Mark J; González-Hernández, Tomás

    2015-02-01

    The dopamine (DA) transporter (DAT), a membrane glycoprotein expressed in dopaminergic neurons, clears DA from extracellular space and is regulated by diverse presynaptic proteins like protein kinases, α-synuclein, D2 and D3 autoreceptors. DAT dysfunction is implicated in Parkinson's disease and depression, which are therapeutically treated by dopaminergic D2/D3 receptor (D2/D3R) agonists. It is, then, important to improve our understanding of interactions between D3R and DAT. We show that prolonged administration of pramipexole (0.1mg/kg/day, 6 to 21 days), a preferential D3R agonist, leads to a decrease in DA uptake in mouse striatum that reflects a reduction in DAT affinity for DA in the absence of any change in DAT density or subcellular distribution. The effect of pramipexole was absent in mice with genetically-deleted D3R (D3R(-/-)), yet unaffected in mice genetically deprived of D2R (D2R(-/-)). Pramipexole treatment induced a physical interaction between D3R and DAT, as assessed by co-immunoprecipitation and in situ proximity ligation assay. Furthermore, it promoted the formation of DAT dimers and DAT association with both D2R and α-synuclein, effects that were abolished in D3R(-/-) mice, yet unaffected in D2R(-/-) mice, indicating dependence upon D3R. Collectively, these data suggest that prolonged treatment with dopaminergic D3 agonists provokes a reduction in DA reuptake by dopaminergic neurons related to a hitherto-unsuspected modification of the DAT interactome. These observations provide novel insights into the long-term antiparkinson, antidepressant and additional clinical actions of pramipexole and other D3R agonists. PMID:25511804

  13. Ambient illuminance, retinal dopamine release and refractive development in chicks.

    PubMed

    Cohen, Yuval; Peleg, Edna; Belkin, Michael; Polat, Uri; Solomon, Arieh S

    2012-10-01

    Form deprivation and low illuminance of ambient light are known to induce myopia in chicks. Low concentrations of retinal dopamine, a light-driven neurohormone, was previously shown to be associated with form deprivation myopia. In the present study we examined the dependence of retinal dopamine release in chicks on illuminance during light-dark cycles and in continuous light, and the role of retinal dopamine release in illuminance dependent refractive development. Newly hatched chicks (n = 166) were divided into two experimental groups, a dopamine (n = 88) and a refraction group (n = 78). Both groups were further divided into six illumination groups for exposure of chicks to illuminances of 50, 500 or 10,000 lux of incandescent illumination (referred to throughout as low, medium, and high illuminance, respectively), either under a light-dark cycle with lights on between 7 AM and 7 PM or under continuous illumination. For the dopamine experiment, chicks were euthanized and vitreous was extracted on day 14 post-hatching at 7, 8 AM and 1 PM. Vitreal dihydroxyphenylacetic acid (DOPAC) and dopamine concentrations were quantified by high-performance liquid chromatography coupled to electrochemical detection. For the refraction experiment, chicks underwent refraction, keratometry and A-scan ultrasonography on days 30, 60 and 90 post-hatching, and each of those measurements was correlated with vitreal DOPAC concentration measured at 1 PM (representing the index of retinal dopamine release). The results showed that under light-dark cycles, vitreal DOPAC concentration was strongly correlated with log illuminance, and was significantly correlated with the developing refraction, corneal radius of curvature, and axial length values. On day 90, low vitreal DOPAC concentrations were associated with myopia (-2.41 ± 1.23 D), flat cornea, deep anterior and vitreous chambers, and thin lens. Under continuous light, vitreal DOPAC concentrations measured at 1 PM in the low, medium

  14. Transient receptor potential vanilloid 3 (TRPV3) in the ventral tegmental area of rat: Role in modulation of the mesolimbic-dopamine reward pathway.

    PubMed

    Singh, Uday; Kumar, Santosh; Shelkar, Gajanan P; Yadav, Manoj; Kokare, Dadasaheb M; Goswami, Chandan; Lechan, Ronald M; Singru, Praful S

    2016-11-01

    While dopamine (DA) neurons in the ventral tegmental area (VTA) drive the mesolimbic-reward pathway, confluent lines of evidence underscore the importance of transient receptor potential vanilloid (TRPV) channels as novel regulators of these neurons. Among the TRPV-subfamily, TRPV3 is of particular interest in reward, since active ingredients of flavour-enhancing spices in food serve as TRPV3 agonists and modulate DAergic neurotransmission. The nature of TRPV3 elements in the VTA and their role in driving the mesolimbic-DA-reward pathway has however, remained unexplored. We observed TRPV3 mRNA as well as TRPV3-immunoreactive neurons in the VTA of Wistar rats. We therefore explored whether these ion channels participate in modulating mesolimbic-DA reward pathway. In the posterior VTA (pVTA), 82 ± 2.6% of the TRPV3 neurons co-express tyrosine hydroxylase and 68 ± 5.5% of these neurons project to the nucleus accumbens shell (Acb shell). While ex vivo treatment of midbrain slices with TRPV3-agonist, thymol increased [Ca(2+)]i-activity in pVTA neurons, intra-pVTA injections of thymol in freely-moving, satiated rats enhanced positive reinforcement for active lever pressings in an operant chamber to self-administer sweet pellets. This behavior was attenuated by prior treatment with intra-Acb shell DA D1- and D2-like receptor antagonists. These results demonstrate a role for TRPV3 in driving mesolimbic-DA food-reward pathway, and underscores the importance of these channels in the VTA as key components processing reward. PMID:27084697

  15. Dopamine and corticotropin-releasing factor synergistically alter basolateral amygdala-to-medial prefrontal cortex synaptic transmission: functional switch after chronic cocaine administration.

    PubMed

    Orozco-Cabal, Luis; Liu, Jie; Pollandt, Sebastian; Schmidt, Kady; Shinnick-Gallagher, Patricia; Gallagher, Joel P

    2008-01-01

    Basolateral amygdala (BLA) neurons provide a major excitatory input to medial prefrontal cortex (mPFC)-layer V pyramidal neurons. Under stressful conditions, commonly associated with chronic cocaine abuse, altered BLA-to-mPFC synaptic transmission could lead to defective emotional information processing and decision making within the mPFC and result in misguided and inappropriate behaviors. We examined the effects of cocaine administered chronically in vivo on EPSCs recorded from a putative BLA-mPFC pathway in vitro and their modulation by dopamine (DA), corticotropin-releasing factor (CRF), and their combination (DA plus CRF). In saline-treated animals, activation of D(1/5) receptors depressed BLA-mPFC EPSCs, whereas CRF1 receptor activation alone had no effect on EPSCs. Activating D(1/5) and CRF1 receptors in combination, however, worked synergistically through presynaptic and postsynaptic mechanisms to depress EPSCs to levels greater than D(1/5) receptor activation alone. After chronic cocaine administration, the function of DA(1/5) and CRF receptors switched from inhibitory to excitatory. In slices from cocaine-treated animals, putative BLA-mPFC EPSCs were depressed through a presynaptic mechanism. Now, activation of either D(1/5) or CRF2 receptors increased the cocaine-induced, depressed EPSCs. Additionally, simultaneous activation of presynaptic D(1/5) and CRF2 receptors led to further enhancement of EPSCs. These data indicate that CRF acting synergistically with DA normally potentiates D(1/5)-induced synaptic depression. However, after chronic cocaine, the combined synergistic actions of DA and CRF switched polarity to enhance facilitation of BLA-mPFC glutamatergic transmission. Also unmasked after acute withdrawal from chronic cocaine are endogenous, tonic-inhibitory D2-like and tonic-facilitatory CRF2 receptor actions. These multiple functional and receptor changes may underlie the altered, possibly aberrant, decision-making process after chronic cocaine.

  16. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    PubMed

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-01

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists.

  17. Decreased striatal dopamine receptor binding in primary focal dystonia: a D2 or D3 defect?

    PubMed Central

    Karimi, Morvarid; Moerlein, Stephen M.; Videen, Tom O.; Luedtke, Robert R.; Taylor, Michelle; Mach, Robert H.; Perlmutter, Joel S.

    2010-01-01

    Dystonia is an involuntary movement disorder characterized by repetitive patterned or sustained muscle contractions causing twisting or abnormal postures. Several lines of evidence suggest that abnormalities of dopaminergic pathways contribute to the pathophysiology of dystonia. In particular dysfunction of D2-like receptors that mediate function of the indirect pathway in the basal ganglia may play a key role. We have demonstrated with positron emission tomography (PET) that patients with primary focal cranial or hand dystonia have reduced putamenal specific binding of [18F]spiperone a non-selective D2-like radioligand with nearly equal affinity for serotonergic 5-HT(2A) sites. We then repeated the study with [18F]N-methyl-benperidol (NMB), a more selective D2-like receptor radioligand with minimal affinity for 5-HT(2A). Surprisingly, there was no decrease in NMB binding in the putamen of subjects with dystonia. Our findings excluded reductions of putamenal uptake greater than 20% with 95% confidence intervals. Following analysis of the in vitro selectivity of NMB and spiperone demonstrated that NMB was highly selective for D2 receptors relative to D3 receptors (200-fold difference in affinity), whereas spiperone has similar affinity for all three of the D2-like receptor subtypes. These findings coupled with other literature suggest that a defect in D3, rather than D2, receptor expression may be associated with primary focal dystonia. PMID:20960437

  18. Antithrombin III blood test

    MedlinePlus

    ... be due to: Bone marrow transplant Disseminated intravascular coagulation (DIC) AT III deficiency, an inherited condition Liver ... Schmaier AH, Miller JL. Coagulation and fibrinolysis. In: McPherson ... Management by Laboratory Methods . 22nd ed. Philadelphia, PA: ...

  19. Role of dimerization in dopamine D(4) receptor biogenesis.

    PubMed

    Van Craenenbroeck, Kathleen; Borroto-Escuela, Dasiel O; Skieterska, Kamila; Duchou, Jolien; Romero-Fernandez, Wilber; Fuxe, Kjell

    2014-01-01

    Dopamine receptors are G protein-coupled receptors critically involved in locomotion, reward, and cognitive processes. Export of dopamine receptors to the plasma membrane is thought to follow the default secretory pathway, whereby proteins travel from the endoplasmatic reticulum (ER), through the Golgi apparatus, to arrive at the cell surface. Several observations indicate that trafficking from the ER to the plasma membrane is tightly regulated, and that correct folding in the ER acts as a bottle neck to the maturation of the dopamine D4 receptors. The dopamine D(4) receptor is an interesting receptor since it has a polymorphic region in its third intracellular loop, resulting in receptor isoforms of varying length and amino acid composition. Correct folding is enhanced by: (1) interaction with specific proteins, such as ER resident chaperones, (2) interaction with pharmacological chaperones, for example, ligands that are membrane permeable and can bind to the receptor in the ER, and (3) receptor dimerization; the assembly of multisubunit proteins into a quaternary structure is started in the ER before cell surface delivery, which helps in correct folding and subsequent expression. These interactions help the process of GPCR folding, but more importantly they ensure that only properly folded proteins proceed from the ER to the trans-Golgi network. In this review we will mainly focus on the role of receptor dimerization in dopamine D(4) receptor maturation. PMID:25175456

  20. Olfactory modulation by dopamine in the context of aversive learning

    PubMed Central

    Riffell, Jeffrey A.; Martin, Joshua P.; Gage, Stephanie L.; Nighorn, Alan J.

    2012-01-01

    The need to detect and process sensory cues varies in different behavioral contexts. Plasticity in sensory coding can be achieved by the context-specific release of neuromodulators in restricted brain areas. The context of aversion triggers the release of dopamine in the insect brain, yet the effects of dopamine on sensory coding are unknown. In this study, we characterize the morphology of dopaminergic neurons that innervate each of the antennal lobes (ALs; the first synaptic neuropils of the olfactory system) of the moth Manduca sexta and demonstrate with electrophysiology that dopamine enhances odor-evoked responses of the majority of AL neurons while reducing the responses of a small minority. Because dopamine release in higher brain areas mediates aversive learning we developed a naturalistic, ecologically inspired aversive learning paradigm in which an innately appetitive host plant floral odor is paired with a mimic of the aversive nectar of herbivorized host plants. This pairing resulted in a decrease in feeding behavior that was blocked when dopamine receptor antagonists were injected directly into the ALs. These results suggest that a transient dopaminergic enhancement of sensory output from the AL contributes to the formation of aversive memories. We propose a model of olfactory modulation in which specific contexts trigger the release of different neuromodulators in the AL to increase olfactory output to downstream areas of processing. PMID:22552185

  1. Conformation and interactions of dopamine hydrochloride in solution

    SciTech Connect

    Callear, Samantha K.; Imberti, Silvia; Johnston, Andrew; McLain, Sylvia E.

    2015-01-07

    The aqueous solution of dopamine hydrochloride has been investigated using neutron and X-ray total scattering data together with Monte-Carlo based modelling using Empirical Potential Structure Refinement. The conformation of the protonated dopamine molecule is presented and the results compared to the conformations found in crystal structures, dopamine-complexed protein crystal structures and predicted from theoretical calculations and pharmacophoric models. It is found that protonated dopamine adopts a range of conformations in solution, highlighting the low rotational energy barrier between different conformations, with the preferred conformation being trans-perpendicular. The interactions between each of the species present (protonated dopamine molecules, water molecules, and chloride anions) have been determined and are discussed with reference to interactions observed in similar systems both in the liquid and crystalline state, and predicted from theoretical calculations. The expected strong hydrogen bonds between the strong hydrogen bond donors and acceptors are observed, together with evidence of weaker CH hydrogen bonds and π interactions also playing a significant role in determining the arrangement of adjacent molecules.

  2. Differential effects of dopamine-directed treatments on cognition

    PubMed Central

    Ashby, F Gregory; Valentin, Vivian V; von Meer, Stella S

    2015-01-01

    Dopamine, a prominent neuromodulator, is implicated in many neuropsychiatric disorders. It has wide-ranging effects on both cortical and subcortical brain regions and on many types of cognitive tasks that rely on a variety of different learning and memory systems. As neuroscience and behavioral evidence for the existence of multiple memory systems and their corresponding neural networks accumulated, so did the notion that dopamine’s role is markedly different depending on which memory system is engaged. As a result, dopamine-directed treatments will have different effects on different types of cognitive behaviors. To predict what these effects will be, it is critical to understand: which memory system is mediating the behavior; the neural basis of the mediating memory system; the nature of the dopamine projections into that system; and the time course of dopamine after its release into the relevant brain regions. Consideration of these questions leads to different predictions for how changes in brain dopamine levels will affect automatic behaviors and behaviors mediated by declarative, procedural, and perceptual representation memory systems. PMID:26251602

  3. Real-time dopamine measurement in awake monkeys.

    PubMed

    Schluter, Erik W; Mitz, Andrew R; Cheer, Joseph F; Averbeck, Bruno B

    2014-01-01

    Fast-scan cyclic voltammetry (FSCV) is often used to measure real-time dopamine (DA) concentrations in awake, behaving rodents. Extending this technique to work in monkeys would provide a platform for advanced behavioral studies and a primate model for preclinical research. The present study demonstrates the feasibility of DA recordings in two awake monkeys (Macaca mulatta) using a mixture of techniques adapted from rodent, primate and brain slice work. We developed a long carbon fiber electrode to operate in the larger primate brain. This electrode was lowered into the striatum each day using a recording chamber and a detachable micromanipulator system. A manipulator also moved one or more tungsten stimulating electrodes into either the nearby striatum or the ventral tegmental area/substantia nigra pars compacta (VTA/SNc). We developed an electrical stimulation controller to reduce artifacts during electrical stimulation. We also introduce a stimulation-based methodology for estimating distances between electrodes in the brain. Dopamine responses within the striatum were evoked by either stimulation of the striatum near the FSCV electrode, or stimulation within the VTA/SNc. Unexpected juice rewards also evoked dopamine responses in the ventral striatum. Thus, we demonstrate that robust dopamine responses can be recorded from awake, behaving primates with FSCV. In addition, we describe how a stimulation technique borrowed from the neuroprosthetics field can activate the distributed monkey midbrain dopamine system in a way that mimics rodent VTA stimulation. PMID:24921937

  4. Real-Time Dopamine Measurement in Awake Monkeys

    PubMed Central

    Schluter, Erik W.; Mitz, Andrew R.; Cheer, Joseph F.; Averbeck, Bruno B.

    2014-01-01

    Fast-scan cyclic voltammetry (FSCV) is often used to measure real-time dopamine (DA) concentrations in awake, behaving rodents. Extending this technique to work in monkeys would provide a platform for advanced behavioral studies and a primate model for preclinical research. The present study demonstrates the feasibility of DA recordings in two awake monkeys (Macaca mulatta) using a mixture of techniques adapted from rodent, primate and brain slice work. We developed a long carbon fiber electrode to operate in the larger primate brain. This electrode was lowered into the striatum each day using a recording chamber and a detachable micromanipulator system. A manipulator also moved one or more tungsten stimulating electrodes into either the nearby striatum or the ventral tegmental area/substantia nigra pars compacta (VTA/SNc). We developed an electrical stimulation controller to reduce artifacts during electrical stimulation. We also introduce a stimulation-based methodology for estimating distances between electrodes in the brain. Dopamine responses within the striatum were evoked by either stimulation of the striatum near the FSCV electrode, or stimulation within the VTA/SNc. Unexpected juice rewards also evoked dopamine responses in the ventral striatum. Thus, we demonstrate that robust dopamine responses can be recorded from awake, behaving primates with FSCV. In addition, we describe how a stimulation technique borrowed from the neuroprosthetics field can activate the distributed monkey midbrain dopamine system in a way that mimics rodent VTA stimulation. PMID:24921937

  5. Dopamine Autoreceptor Regulation of a Hypothalamic Dopaminergic Network

    PubMed Central

    Stagkourakis, Stefanos; Kim, Hoseok; Lyons, David J.; Broberger, Christian

    2016-01-01

    Summary How autoreceptors contribute to maintaining a stable output of rhythmically active neuronal circuits is poorly understood. Here, we examine this issue in a dopamine population, spontaneously oscillating hypothalamic rat (TIDA) neurons, that underlie neuroendocrine control of reproduction and neuroleptic side effects. Activation of dopamine receptors of the type 2 family (D2Rs) at the cell-body level slowed TIDA oscillations through two mechanisms. First, they prolonged the depolarizing phase through a combination of presynaptic increases in inhibition and postsynaptic hyperpolarization. Second, they extended the discharge phase through presynaptic attenuation of calcium currents and decreased synaptic inhibition. Dopamine reuptake blockade similarly reconfigured the oscillation, indicating that ambient somatodendritic transmitter concentration determines electrical behavior. In the absence of D2R feedback, however, discharge was abolished by depolarization block. These results indicate the existence of an ultra-short feedback loop whereby neuroendocrine dopamine neurons tune network behavior to echoes of their own activity, reflected in ambient somatodendritic dopamine, and also suggest a mechanism for antipsychotic side effects. PMID:27149844

  6. Does human presynaptic striatal dopamine function predict social conformity?

    PubMed

    Stokes, Paul R A; Benecke, Aaf; Puraite, Julita; Bloomfield, Michael A P; Shotbolt, Paul; Reeves, Suzanne J; Lingford-Hughes, Anne R; Howes, Oliver; Egerton, Alice

    2014-03-01

    Socially desirable responding (SDR) is a personality trait which reflects either a tendency to present oneself in an overly positive manner to others, consistent with social conformity (impression management (IM)), or the tendency to view one's own behaviour in an overly positive light (self-deceptive enhancement (SDE)). Neurochemical imaging studies report an inverse relationship between SDR and dorsal striatal dopamine D₂/₃ receptor availability. This may reflect an association between SDR and D₂/₃ receptor expression, synaptic dopamine levels or a combination of the two. In this study, we used a [¹⁸F]-DOPA positron emission tomography (PET) image database to investigate whether SDR is associated with presynaptic dopamine function. Striatal [¹⁸F]-DOPA uptake, (k(i)(cer), min⁻¹), was determined in two independent healthy participant cohorts (n=27 and 19), by Patlak analysis using a cerebellar reference region. SDR was assessed using the revised Eysenck Personality Questionnaire (EPQ-R) Lie scale, and IM and SDE were measured using the Paulhus Deception Scales. No significant associations were detected between Lie, SDE or IM scores and striatal [¹⁸F]-DOPA k(i)(cer). These results indicate that presynaptic striatal dopamine function is not associated with social conformity and suggests that social conformity may be associated with striatal D₂/₃ receptor expression rather than with synaptic dopamine levels.

  7. Electroanalysis of dopamine at a gold electrode modified with N-acetylcysteine self-assembled monolayer.

    PubMed

    Liu, Ting; Li, Meixian; Li, Qianyuan

    2004-07-01

    Voltammetric behavior of dopamine (DA) on a gold electrode modified with the self-assembled monolayer (SAM) of N-acetylcysteine has been investigated, and one pair of well-defined redox peaks of dopamine is obtained at the SAM modified gold electrode. The oxidation peak current increases linearly with the concentration of dopamine in the range of 1.0x10 (-6)to 2.0x10 (-4)moll(-1). The detection limit is 8.0x10(-7)moll(-1). This method will be applicable to the determination of dopamine in injection of dopamine hydrochloride, and the good recovery of dopamine is obtained. Furthermore, The SAM modified gold electrode can resolve well the voltammetric responses of dopamine and ascorbic acid (AA), so it can also be applied to the determination of dopamine in the presence of ascorbic acid.

  8. Genetic Variation in Dopamine Pathways Differentially Associated with Smoking Progression in Adolescence

    ERIC Educational Resources Information Center

    Laucht, Manfred; Becker, Katja; Frank, Josef; Schmidt, Martin H.; Esser, Gunter; Treutlein, Jens; Skowronek, Markus H.; Schumann, Gunter

    2008-01-01

    A study examines whether genetic variation in dopamine pathways differentially associate with smoking progression in adolescence. Results indicate the influence of specific dopamine genes in different stages of smoking progression in adolescents.

  9. Group III metabotropic glutamate receptors and drug addiction

    PubMed Central

    Mao, Limin; Guo, Minglei; Jin, Daozhong; Xue, Bing; Wang, John Q.

    2014-01-01

    Neuroadaptations of glutamatergic transmission in the limbic reward circuitry are linked to persistent drug addiction. Accumulating data have demonstrated roles of ionotropic glutamate receptors and group I and II metabotropic glutamate receptors (mGluRs) in this event. Emerging evidence also identifies Gαi/o-coupled group III mGluRs (mGluR4/7/8 subtypes enriched in the limbic system) as direct substrates of drugs of abuse and active regulators of drug action. Auto- and heteroreceptors of mGluR4/7/8 reside predominantly on nerve terminals of glutamatergic corticostriatal and GABAergic striatopallidal pathways, respectively. These presynaptic receptors regulate basal and/or phasic release of respective transmitters to maintain basal ganglia homeostasis. In response to operant administration of common addictive drugs, such as psychostimulants (cocaine and amphetamine), alcohol and opiates, limbic group III mGluRs undergo drastic adaptations to contribute to the enduring remodeling of excitatory synapses and to usually suppress drug seeking behavior. As a result, a loss-of-function mutation (knockout) of individual group III receptor subtypes often promotes drug seeking. This review summarizes the data from recent studies on three group III receptor subtypes (mGluR4/7/8) expressed in the basal ganglia and analyzes their roles in the regulation of dopamine and glutamate signaling in the striatum and their participation in the addictive properties of three major classes of drugs (psychostimulants, alcohol, and opiates). PMID:24078068

  10. Reduced insulin-receptor mediated modulation of striatal dopamine release by basal insulin as a possible contributing factor to hyperdopaminergia in schizophrenia.

    PubMed

    Caravaggio, Fernando; Hahn, Margaret; Nakajima, Shinichiro; Gerretsen, Philip; Remington, Gary; Graff-Guerrero, Ariel

    2015-10-01

    Schizophrenia is a severe and chronic neuropsychiatric disorder which affects 1% of the world population. Using the brain imaging technique positron emission tomography (PET) it has been demonstrated that persons with schizophrenia have greater dopamine transmission in the striatum compared to healthy controls. However, little progress has been made as to elucidating other biological mechanisms which may account for this hyperdopaminergic state in this disease. Studies in animals have demonstrated that insulin receptors are expressed on midbrain dopamine neurons, and that insulin from the periphery acts on these receptors to modify dopamine transmission in the striatum. This is pertinent given that several lines of evidence suggest that insulin receptor functioning may be abnormal in the brains of persons with schizophrenia. Post-mortem studies have shown that persons with schizophrenia have less than half the number of cortical insulin receptors compared to healthy persons. Moreover, these post-mortem findings are unlikely due to the effects of antipsychotic treatment; studies in cell lines and animals suggest antipsychotics enhance insulin receptor functioning. Further, hyperinsulinemia - even prior to antipsychotic use - seems to be related to less psychotic symptoms in patients with schizophrenia. Collectively, these data suggest that midbrain insulin receptor functioning may be abnormal in persons with schizophrenia, resulting in reduced insulin-mediated regulation of dopamine transmission in the striatum. Such a deficit may account for the hyperdopaminergic state observed in these patients and would help guide the development of novel treatment strategies. We hypothesize that, (i) insulin receptor expression and/or function is reduced in midbrain dopamine neurons in persons with schizophrenia, (ii) basal insulin should reduce dopaminergic transmission in the striatum via these receptors, and (iii) this modulation of dopaminergic transmission by basal insulin

  11. Putting desire on a budget: dopamine and energy expenditure, reconciling reward and resources

    PubMed Central

    Beeler, Jeff A.; Frazier, Cristianne R. M.; Zhuang, Xiaoxi

    2012-01-01

    Accumulating evidence indicates integration of dopamine function with metabolic signals, highlighting a potential role for dopamine in energy balance, frequently construed as modulating reward in response to homeostatic state. Though its precise role remains controversial, the reward perspective of dopamine has dominated investigation of motivational disorders, including obesity. In the hypothesis outlined here, we suggest instead that the primary role of dopamine in behavior is to modulate activity to adapt behavioral energy expenditure to the prevailing environmental energy conditions, with the role of dopamine in reward and motivated behaviors derived from its primary role in energy balance. Dopamine has long been known to modulate activity, exemplified by psychostimulants that act via dopamine. More recently, there has been nascent investigation into the role of dopamine in modulating voluntary activity, with some investigators suggesting that dopamine may serve as a final common pathway that couples energy sensing to regulated voluntary energy expenditure. We suggest that interposed between input from both the internal and external world, dopamine modulates behavioral energy expenditure along two axes: a conserve-expend axis that regulates generalized activity and an explore-exploit axes that regulates the degree to which reward value biases the distribution of activity. In this view, increased dopamine does not promote consumption of tasty food. Instead increased dopamine promotes energy expenditure and exploration while decreased dopamine favors energy conservation and exploitation. This hypothesis provides a mechanistic interpretation to an apparent paradox: the well-established role of dopamine in food seeking and the findings that low dopaminergic functions are associated with obesity. Our hypothesis provides an alternative perspective on the role of dopamine in obesity and reinterprets the “reward deficiency hypothesis” as a perceived energy deficit

  12. The Evolution of Dopamine Systems in Chordates

    PubMed Central

    Yamamoto, Kei; Vernier, Philippe

    2011-01-01

    Dopamine (DA) neurotransmission in the central nervous system (CNS) is found throughout chordates, and its emergence predates the divergence of chordates. Many of the molecular components of DA systems, such as biosynthetic enzymes, transporters, and receptors, are shared with those of other monoamine systems, suggesting the common origin of these systems. In the mammalian CNS, the DA neurotransmitter systems are diversified and serve for visual and olfactory perception, sensory–motor programming, motivation, memory, emotion, and endocrine regulations. Some of the functions are conserved among different vertebrate groups, while others are not, and this is reflected in the anatomical aspects of DA systems in the forebrain and midbrain. Recent findings concerning a second tyrosine hydroxylase gene (TH2) revealed new populations of DA-synthesizing cells, as evidenced in the periventricular hypothalamic zones of teleost fish. It is likely that the ancestor of vertebrates possessed TH2 DA-synthesizing cells, and the TH2 gene has been lost secondarily in placental mammals. All the vertebrates possess DA cells in the olfactory bulb, retina, and in the diencephalon. Midbrain DA cells are abundant in amniotes while absent in some groups, e.g., teleosts. Studies of protochordate DA cells suggest that the diencephalic DA cells were present before the divergence of the chordate lineage. In contrast, the midbrain cell populations have probably emerged in the vertebrate lineage following the development of the midbrain–hindbrain boundary. The functional flexibility of the DA systems, and the evolvability provided by duplication of the corresponding genes permitted a large diversification of these systems. These features were instrumental in the adaptation of brain functions to the very variable way of life of vertebrates. PMID:21483723

  13. Feeding behavior in dopamine-deficient mice

    PubMed Central

    Szczypka, Mark S.; Rainey, Mark A.; Kim, Douglas S.; Alaynick, William A.; Marck, Brett T.; Matsumoto, Alvin M.; Palmiter, Richard D.

    1999-01-01

    Mice that cannot make dopamine (DA), a condition caused by the selective inactivation of tyrosine hydroxylase in dopaminergic neurons, are born normal but gradually become hypoactive and hypophagic, and die at 3 weeks of age. We characterized the feeding and locomotor responses of these DA-deficient (DA−/−) mice to 3,4-dihyroxy-l-phenylalanine (l-DOPA) to investigate the relationship between brain DA levels and these complex behaviors. Daily administration of l-DOPA to DA−/− mice stimulated locomotor activity that lasted 6 to 9 hr; during that time the mice consumed most of their daily food and water. The minimal dose of l-DOPA that was sufficient to elicit normal feeding behavior in the DA−/− mice also restored their striatal DA to 9.1% of that in the wild-type (WT) mice at 3 hr; then DA content declined to <1% of WT levels by 24 hr. This dose of l-DOPA induced locomotor activity that exceeded that of treated WT mice by 5- to 7-fold, suggesting that DA−/− mice are supersensitive to DA. Unexpectedly, DA−/− mice manifested a second wave of activity 24 to 48 hr after l-DOPA treatment that was equivalent in magnitude to that of WT mice and independent of DA receptor activation. The DA−/− mice approached, sniffed, and chewed food during this second period of activity, but they ate <10% of that required for sustenance. Therefore, DA−/− mice can execute behaviors necessary to seek and ingest food, but they do not eat enough to survive. PMID:10518589

  14. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration.

    PubMed

    Bass, Caroline E; Grinevich, Valentina P; Gioia, Dominic; Day-Brown, Jonathan D; Bonin, Keith D; Stuber, Garret D; Weiner, Jeff L; Budygin, Evgeny A

    2013-01-01

    There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA) dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2) on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  15. Dopamine Neuron-Specific Optogenetic Stimulation in Rhesus Macaques.

    PubMed

    Stauffer, William R; Lak, Armin; Yang, Aimei; Borel, Melodie; Paulsen, Ole; Boyden, Edward S; Schultz, Wolfram

    2016-09-01

    Optogenetic studies in mice have revealed new relationships between well-defined neurons and brain functions. However, there are currently no means to achieve the same cell-type specificity in monkeys, which possess an expanded behavioral repertoire and closer anatomical homology to humans. Here, we present a resource for cell-type-specific channelrhodopsin expression in Rhesus monkeys and apply this technique to modulate dopamine activity and monkey choice behavior. These data show that two viral vectors label dopamine neurons with greater than 95% specificity. Infected neurons were activated by light pulses, indicating functional expression. The addition of optical stimulation to reward outcomes promoted the learning of reward-predicting stimuli at the neuronal and behavioral level. Together, these results demonstrate the feasibility of effective and selective stimulation of dopamine neurons in non-human primates and a resource that could be applied to other cell types in the monkey brain. PMID:27610576

  16. Striatal dopamine, reward, and decision making in schizophrenia.

    PubMed

    Deserno, Lorenz; Schlagenhauf, Florian; Heinz, Andreas

    2016-03-01

    Elevated striatal dopamine function is one of the best-established findings in schizophrenia. In this review, we discuss causes and consequences of this striata! dopamine alteration. We first summarize earlier findings regarding striatal reward processing and anticipation using functional neuroimaging. Secondly, we present a series of recent studies that are exemplary for a particular research approach: a combination of theory-driven reinforcement learning and decision-making tasks in combination with computational modeling and functional neuroimaging. We discuss why this approach represents a promising tool to understand underlying mechanisms of symptom dimensions by dissecting the contribution of multiple behavioral control systems working in parallel. We also discuss how it can advance our understanding of the neurobiological implementation of such functions. Thirdly, we review evidence regarding the topography of dopamine dysfunction within the striatum. Finally, we present conclusions and outline important aspects to be considered in future studies.

  17. Developmental origins of brain disorders: roles for dopamine

    PubMed Central

    Money, Kelli M.; Stanwood, Gregg D.

    2013-01-01

    Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders. PMID:24391541

  18. Striatal dopamine, reward, and decision making in schizophrenia.

    PubMed

    Deserno, Lorenz; Schlagenhauf, Florian; Heinz, Andreas

    2016-03-01

    Elevated striatal dopamine function is one of the best-established findings in schizophrenia. In this review, we discuss causes and consequences of this striata! dopamine alteration. We first summarize earlier findings regarding striatal reward processing and anticipation using functional neuroimaging. Secondly, we present a series of recent studies that are exemplary for a particular research approach: a combination of theory-driven reinforcement learning and decision-making tasks in combination with computational modeling and functional neuroimaging. We discuss why this approach represents a promising tool to understand underlying mechanisms of symptom dimensions by dissecting the contribution of multiple behavioral control systems working in parallel. We also discuss how it can advance our understanding of the neurobiological implementation of such functions. Thirdly, we review evidence regarding the topography of dopamine dysfunction within the striatum. Finally, we present conclusions and outline important aspects to be considered in future studies. PMID:27069382

  19. Components and characteristics of the dopamine reward utility signal.

    PubMed

    Stauffer, William R; Lak, Armin; Kobayashi, Shunsuke; Schultz, Wolfram

    2016-06-01

    Rewards are defined by their behavioral functions in learning (positive reinforcement), approach behavior, economic choices, and emotions. Dopamine neurons respond to rewards with two components, similar to higher order sensory and cognitive neurons. The initial, rapid, unselective dopamine detection component reports all salient environmental events irrespective of their reward association. It is highly sensitive to factors related to reward and thus detects a maximal number of potential rewards. It also senses aversive stimuli but reports their physical impact rather than their aversiveness. The second response component processes reward value accurately and starts early enough to prevent confusion with unrewarded stimuli and objects. It codes reward value as a numeric, quantitative utility prediction error, consistent with formal concepts of economic decision theory. Thus, the dopamine reward signal is fast, highly sensitive and appropriate for driving and updating economic decisions. PMID:26272220

  20. Striatal dopamine, reward, and decision making in schizophrenia

    PubMed Central

    Deserno, Lorenz; Schlagenhauf, Florian; Heinz, Andreas

    2016-01-01

    Elevated striatal dopamine function is one of the best-established findings in schizophrenia. In this review, we discuss causes and consequences of this striata! dopamine alteration. We first summarize earlier findings regarding striatal reward processing and anticipation using functional neuroimaging. Secondly, we present a series of recent studies that are exemplary for a particular research approach: a combination of theory-driven reinforcement learning and decision-making tasks in combination with computational modeling and functional neuroimaging. We discuss why this approach represents a promising tool to understand underlying mechanisms of symptom dimensions by dissecting the contribution of multiple behavioral control systems working in parallel. We also discuss how it can advance our understanding of the neurobiological implementation of such functions. Thirdly, we review evidence regarding the topography of dopamine dysfunction within the striatum. Finally, we present conclusions and outline important aspects to be considered in future studies. PMID:27069382

  1. Components and characteristics of the dopamine reward utility signal.

    PubMed

    Stauffer, William R; Lak, Armin; Kobayashi, Shunsuke; Schultz, Wolfram

    2016-06-01

    Rewards are defined by their behavioral functions in learning (positive reinforcement), approach behavior, economic choices, and emotions. Dopamine neurons respond to rewards with two components, similar to higher order sensory and cognitive neurons. The initial, rapid, unselective dopamine detection component reports all salient environmental events irrespective of their reward association. It is highly sensitive to factors related to reward and thus detects a maximal number of potential rewards. It also senses aversive stimuli but reports their physical impact rather than their aversiveness. The second response component processes reward value accurately and starts early enough to prevent confusion with unrewarded stimuli and objects. It codes reward value as a numeric, quantitative utility prediction error, consistent with formal concepts of economic decision theory. Thus, the dopamine reward signal is fast, highly sensitive and appropriate for driving and updating economic decisions.

  2. Increased dopamine level enhances male-male courtship in Drosophila.

    PubMed

    Liu, Tong; Dartevelle, Laurence; Yuan, Chunyan; Wei, Hongping; Wang, Ying; Ferveur, Jean-François; Guo, Aike

    2008-05-21

    Sexual behavior between males is observed in many species, but the biological factors involved are poorly known. In mammals, manipulation of dopamine has revealed the role of this neuromodulator on male sexual behavior. We used genetic and pharmacological approaches to manipulate the dopamine level in dopaminergic cells in Drosophila and investigated the consequence of this manipulation on male-male courtship behavior. Males with increased dopamine level showed enhanced propensity to court other males but did not change their courtship toward virgin females, general olfactory response, general gustatory response, or locomotor activity. Our results indicate that the high intensity of male-male interaction shown by these manipulated males was related to their altered sensory perception of other males.

  3. Increased dopamine level enhances male-male courtship in Drosophila.

    PubMed

    Liu, Tong; Dartevelle, Laurence; Yuan, Chunyan; Wei, Hongping; Wang, Ying; Ferveur, Jean-François; Guo, Aike

    2008-05-21

    Sexual behavior between males is observed in many species, but the biological factors involved are poorly known. In mammals, manipulation of dopamine has revealed the role of this neuromodulator on male sexual behavior. We used genetic and pharmacological approaches to manipulate the dopamine level in dopaminergic cells in Drosophila and investigated the consequence of this manipulation on male-male courtship behavior. Males with increased dopamine level showed enhanced propensity to court other males but did not change their courtship toward virgin females, general olfactory response, general gustatory response, or locomotor activity. Our results indicate that the high intensity of male-male interaction shown by these manipulated males was related to their altered sensory perception of other males. PMID:18495888

  4. Readministration of adenoviral gene delivery to dopamine neurons.

    PubMed

    Gonzalez, Sarah C; McMenamin, Margaret M; Charlton, Harry M; Goodman, James; Lantos, Tibor; Simpson, Christine; Wood, Matthew J A

    2007-10-01

    An approach currently being explored as treatment for Parkinson's disease is gene therapy. An important question concerns the duration of transgene expression in dopamine neurons and the issues of vector persistence, neuronal damage and the feasibility of readministering vector to the same neuronal population. We show, using an adenoviral vector expressing the LacZ reporter gene, that transgene expression declined over time but with minimal loss of dopamine neurons or vector DNA. Readministration of vector resulted in low levels of transgene delivery to the neurons. Moreover, the neurons to which vector had already been delivered were unable to transport the retrograde tracer fluorogold. Our findings indicate that transgene expression declined in dopamine neurons despite the persistence of virus, and the capacity to readminister vector to these neurons was limited. PMID:17885611

  5. A Novel Restricted Diffusion Model of Evoked Dopamine

    PubMed Central

    2015-01-01

    In vivo fast-scan cyclic voltammetry provides high-fidelity recordings of electrically evoked dopamine release in the rat striatum. The evoked responses are suitable targets for numerical modeling because the frequency and duration of the stimulus are exactly known. Responses recorded in the dorsal and ventral striatum of the rat do not bear out the predictions of a numerical model that assumes the presence of a diffusion gap interposed between the recording electrode and nearby dopamine terminals. Recent findings, however, suggest that dopamine may be subject to restricted diffusion processes in brain extracellular space. A numerical model cast to account for restricted diffusion produces excellent agreement between simulated and observed responses recorded under a broad range of anatomical, stimulus, and pharmacological conditions. The numerical model requires four, and in some cases only three, adjustable parameters and produces meaningful kinetic parameter values. PMID:24983330

  6. Taste pathways that mediate accumbens dopamine release by sapid sucrose.

    PubMed

    Hajnal, Andras; Norgren, Ralph

    2005-03-16

    Although it has been associated with the release of dopamine in the forebrain, reward remains a conundrum in neuroscience. Sucrose is inherently rewarding and its sensory message reaches the brain via the gustatory system. In rodents, the central gustatory system bifurcates in the pontine parabrachial nuclei, one arm forming a standard thalamocortical axis, the other distributing widely in the limbic forebrain. We report here that lesions of the gustatory thalamus fail to affect dopamine overflow during sucrose licking (149+/-5% vs. 149+/-4% for controls). Similar damage to the parabrachial nuclei, which severs the limbic taste projection, substantially reduces dopamine release from the nucleus accumbens (121+/-4% vs. 168+/-9% for sham operated controls; p<0.02). This represents the first demonstration that the affective character of a sensory stimulus might separate from the thalamocortical system as early as the second central synapse. PMID:15763573

  7. Dopamine D1 signaling organizes network dynamics underlying working memory

    PubMed Central

    Roffman, Joshua L.; Tanner, Alexandra S.; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J.; Ho, New Fei; Nitenson, Adam Z.; Chonde, Daniel B.; Greve, Douglas N.; Abi-Dargham, Anissa; Buckner, Randy L.; Manoach, Dara S.; Rosen, Bruce R.; Hooker, Jacob M.; Catana, Ciprian

    2016-01-01

    Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory–emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits. PMID:27386561

  8. Striatal cholinergic interneurons Drive GABA release from dopamine terminals.

    PubMed

    Nelson, Alexandra B; Hammack, Nora; Yang, Cindy F; Shah, Nirao M; Seal, Rebecca P; Kreitzer, Anatol C

    2014-04-01

    Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically driven IPSCs were not affected by ablation of striatal fast-spiking interneurons but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons.

  9. Functional characterization of dopamine transporter in vivo using Drosophila melanogaster behavioral assays.

    PubMed

    Ueno, Taro; Kume, Kazuhiko

    2014-01-01

    Dopamine mediates diverse functions such as motivation, reward, attention, learning/memory and sleep/arousal. Recent studies using model organisms including the fruit fly, have elucidated various physiological functions of dopamine, and identified specific neural circuits for these functions. Flies with mutations in the Drosophila dopamine transporter (dDAT) gene show enhanced dopamine signaling, and short sleep and memory impairment phenotypes. However, understanding the mechanism by which dopamine signaling causes these phenotypes requires an understanding of the dynamics of dopamine release. Here we report the effects of dDAT expression on behavioral traits. We show that dDAT expression in a subset of dopaminergic neurons is sufficient for normal sleep. dDAT expression in other cell types such as Kenyon cells and glial cells can also rescue the short sleep phenotype of dDAT mutants. dDAT mutants also show a down-regulation of the D1-like dopamine receptor dDA1, and this phenotype is rescued when dDAT is expressed in the same cell types in which it rescues sleep. On the other hand, dDAT overexpression in mushroom bodies, which are the target of memory forming dopamine neurons, abolishes olfactory aversive memory. Our data demonstrate that expression of extrasynaptic dopamine transporters can rescue some aspects of dopamine signaling in dopamine transporter mutants. These results provide novel insights into regulatory systems that modulate dopamine signaling. PMID:25232310

  10. Fast Phasic Release Properties of Dopamine Studied with a Channel Biosensor

    PubMed Central

    Kress, Geraldine J.; Shu, Hong-Jin; Yu, Andrew; Taylor, Amanda; Benz, Ann; Harmon, Steve

    2014-01-01

    Few other neurotransmitters are of as intense interest to neuropsychiatry and neurology as dopamine, yet existing techniques to monitor dopamine release leave an important spatiotemporal gap in our understanding. Electrochemistry and fluorescence imaging tools have been developed to fill the gap, but these methods have important limitations. We circumvent these limitations by introducing a dopamine-gated chloride channel into rat dorsal striatal medium spiny neurons, targets of strong dopamine innervation, thereby transforming dopamine from a slow transmitter into a fast transmitter and revealing new opportunities for studying moment-to-moment regulation of dopamine release. We demonstrate pharmacological and biophysical properties of the channel that make it suitable for fast, local dopamine measurements, and we demonstrate for the first time spontaneous and evoked responses to vesicular dopamine release in the dorsal striatum. Evoked dopamine currents were separated into a fast, monosynaptic component and a slower-rising and decaying disynaptic component mediated by nicotinic receptor activation. In summary, LGC-53 represents a dopamine biosensor with properties suitable for temporal separation of distinct dopamine signals in targets of dopamine innervation. PMID:25164674

  11. Research Review: Dopamine Transfer Deficit: A Neurobiological Theory of Altered Reinforcement Mechanisms in ADHD

    ERIC Educational Resources Information Center

    Tripp, Gail; Wickens, Jeff R.

    2008-01-01

    This review considers the hypothesis that changes in dopamine signalling might account for altered sensitivity to positive reinforcement in children with ADHD. The existing evidence regarding dopamine cell activity in relation to positive reinforcement is reviewed. We focus on the anticipatory firing of dopamine cells brought about by a transfer…

  12. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    SciTech Connect

    Fox, Donald A.; Hamilton, W. Ryan; Johnson, Jerry E.; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B.; O'Callaghan, James P.

    2011-11-15

    -Right-Pointing-Pointer Gestational lead exposure dose-dependently decreased the number of TH-immunoreactive dopaminergic amacrine cells Black-Right-Pointing-Pointer Gestational lead exposure selectively decreased dopaminergic, but not GABAergic, glycinergic or cholinergic, amacrine cells Black-Right-Pointing-Pointer Gestational lead exposure dose-dependently decreased retinal dopamine content, its metabolites and dopamine utilization Black-Right-Pointing-Pointer A decrease in dopamine can alter ERG amplitudes, circadian rhythms, dark/light adaptation and spatial contrast sensitivity.

  13. Pyrethroid pesticide-induced alterations in dopamine transporter function

    PubMed Central

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W.

    2016-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM–100 μM) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 μM) or 24 h (1, 5, and 10 μM) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD. PMID:16005927

  14. Inhibitory and excitatory effects of dopamine on Aplysia neurones

    PubMed Central

    Ascher, P.

    1972-01-01

    1. Electrophoretic application of dopamine (DA) on Aplysia neurones elicits both excitatory and inhibitory effects, which in many cases are observed in the same neurone, and often result in a biphasic response. 2. The DA receptors are localized predominantly on the axons. Desensitization, which occurs after repeated injections or with bath application of DA, is more marked for excitatory responses. 3. Tubocurarine and strychnine block the DA excitatory responses without affecting the inhibitory ones, which can be selectively blocked by ergot derivatives. It is concluded that the excitatory and inhibitory effects are mediated by two distinct receptors. 4. The two DA receptors can be pharmacologically separated from the three ACh receptors described in the same nervous system. 5. In some neurones the dopamine inhibitory responses can be inverted by artificial hyperpolarization of the membrane at the potassium equilibrium potential, EK, indicating that dopamine causes a selective increase in potassium permeability. 6. In other neurones the reversal potential of dopamine inhibitory responses is at a more depolarized level than EK, but can be brought to EK by pharmacological agents known to block the receptors mediating the excitatory effects of DA. 7. In still other neurones, the hyperpolarization induced by DA cannot be inverted in normal conditions, but a reversal can be induced by ouabain or by the substitution of external sodium by lithium. These results are discussed in terms of an hypothesis in which dopamine increases the potassium permeability of a limited region of the axonal membrane. 8. It is concluded that a selective increase in potassium permeability probably accounts for all dopamine inhibitory effects in the neurones studied. PMID:4679683

  15. The ventral tegmentum and dopamine: A new wave of diversity.

    PubMed

    Barrot, M

    2014-12-12

    Projection systems arising from the ventral tegmental area (VTA) and the substantia nigra (SN) have a critical role in a broad range of functions, as well as in the etiology, symptoms and treatment of neurological and psychiatric diseases. Mostly studied for its dopamine neurons, the ventral tegmentum is in fact heterogeneous at cellular and functional levels. This special issue of Neuroscience gathered some experts in the field to review the connectivity of the ventral mesencephalic dopaminergic complex, its cellular heterogeneity with attention given to glutamate neurons, the D2 autoreceptor and the cholinergic controls of dopamine activity, the influence of neurotrophins, the controls of bursting activity and the heterogeneity of neuronal activity across traits and states, the pedunculopontine tegmental and the sensory controls of dopamine activity, the sex-dependent diversity, the links between circadian and dopamine systems, the functional antero-posterior heterogeneity of the VTA and the role of its GABA tail (tVTA/rostromedial tegmental nucleus (RMTg)), the functional heterogeneity of the VTA outputs, the place of dopamine in cortico-basal ganglia circuitry, the different roles of the D1 and D2 striatal pathways and the role of dopamine in associative learning and memory. Recent progress also highlights the need for molecular markers of functional subpopulations within the ventral tegmentum, for deeper developmental knowledge of this region, and for a single cell level of connectomic. It also raises the question of inter-individual, sex, strain and species heterogeneity, and conversely the question of data generalization in a context of human pathology models, which warrant comparative studies and translational effort. PMID:25453764

  16. Seasonal effects on human striatal presynaptic dopamine synthesis.

    PubMed

    Eisenberg, Daniel P; Kohn, Philip D; Baller, Erica B; Bronstein, Joel A; Masdeu, Joseph C; Berman, Karen F

    2010-11-01

    Past studies in rodents have demonstrated circannual variation in central dopaminergic activity as well as a host of compelling interactions between melatonin--a scotoperiod-responsive neurohormone closely tied to seasonal adaptation--and dopamine in the striatum and in midbrain neuronal populations with striatal projections. In humans, seasonal effects have been described for dopaminergic markers in CSF and postmortem brain, and there exists a range of affective, psychotic, and substance abuse disorders that have been associated with both seasonal symptomatic fluctuations and dopamine neurotransmission abnormalities. Together, these data indirectly suggest a potentially crucial link between circannual biorhythms and central dopamine systems. However, seasonal effects on dopamine function in the living, healthy human brain have never been tested. For this study, 86 healthy adults underwent (18)F-DOPA positron emission tomography scanning, each at a different time throughout the year. Striatal regions of interest (ROIs) were evaluated for differences in presynaptic dopamine synthesis, measured by the kinetic rate constant, K(i), between fall-winter and spring-summer scans. Analyses comparing ROI average K(i) values showed significantly greater putamen (18)F-DOPA K(i) in the fall-winter relative to the spring-summer group (p = 0.038). Analyses comparing voxelwise K(i) values confirmed this finding and evidenced intrastriatal localization of seasonal effects to the caudal putamen (p < 0.05, false-discovery rate corrected), a region that receives dopaminergic input predominantly from the substantia nigra. These data are the first to directly demonstrate a seasonal effect on striatal presynaptic dopamine synthesis and merit future research aimed at elucidating underlying mechanisms and implications for neuropsychiatric disease and new treatment approaches.

  17. Pyrethroid pesticide-induced alterations in dopamine transporter function

    SciTech Connect

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W. . E-mail: gary.miller@emory.edu

    2006-03-15

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM-100 {mu}M) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 {mu}M) or 24 h (1, 5, and 10 {mu}M) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD.

  18. Encoding of aversion by dopamine and the nucleus accumbens.

    PubMed

    McCutcheon, James E; Ebner, Stephanie R; Loriaux, Amy L; Roitman, Mitchell F

    2012-01-01

    Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc) and the dopamine projection to it are considered an integral part of the brain's reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias toward reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus - intra-oral infusion of sucrose - has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion vs. reward. PMID:23055953

  19. Glutamate-dopamine-GABA interactions in the aging basal ganglia.

    PubMed

    Mora, Francisco; Segovia, Gregorio; Del Arco, Alberto

    2008-08-01

    The study of neurotransmitter interactions gives a better understanding of the physiology of specific circuits in the brain. In this review we focus mostly on our own results on the interaction of the neurotransmitters glutamate, dopamine and GABA in the basal ganglia during the normal process of aging. We review first the studies on the action of endogenous glutamate on the extracellular concentrations of dopamine and GABA in the neostriatum and nucleus accumbens during aging. It was found that there exists an age-related change in the interaction of glutamate, dopamine and GABA and that these effects of aging exhibit a dorsal-to-ventral pattern of effects with no changes in the dorsal parts (dorsal striatum) and changes in the most ventral parts (nucleus accumbens). Second we reviewed the data on the effects of different ionotropic and metabotropic glutamate receptor agonists on the extracellular concentrations of dopamine and GABA in the nucleus accumbens. The results obtained clearly show the different contribution of each glutamate receptor subtype in the age-related changes produced on the interaction of glutamate, dopamine and GABA in this area of the brain. Third the effects of an enriched environment on the action of AMPA and NMDA-receptor agonists in the nucleus accumbens of rats during aging are also evaluated. Finally, and since the nucleus accumbens has been suggested to play a role in emotion and motivation and also motor behaviour, we speculated on the possibility of a specific contribution for the different glutamatergic pathways terminating in the nucleus accumbens and their interaction with a decreased dopamine playing a relevant role in motor behaviour during aging.

  20. Diet-induced obesity: dopamine transporter function, impulsivity and motivation

    PubMed Central

    Narayanaswami, V; Thompson, AC; Cassis, LA; Bardo, MT; Dwoskin, LP

    2013-01-01

    OBJECTIVE A rat model of diet-induced obesity (DIO) was used to determine dopamine transporter (DAT) function, impulsivity and motivation as neurobehavioral outcomes and predictors of obesity. DESIGN To evaluate neurobehavioral alterations following the development of DIO induced by an 8-week high-fat diet (HF) exposure, striatal D2-receptor density, DAT function and expression, extracellular dopamine concentrations, impulsivity, and motivation for high- and low-fat reinforcers were determined. To determine predictors of DIO, neurobehavioral antecedents including impulsivity, motivation for high-fat reinforcers, DAT function and extracellular dopamine were evaluated before the 8-week HF exposure. METHODS Striatal D2-receptor density was determined by in vitro kinetic analysis of [3H]raclopride binding. DAT function was determined using in vitro kinetic analysis of [3H]dopamine uptake, methamphetamine-evoked [3H]dopamine overflow and no-net flux in vivo microdialysis. DAT cell-surface expression was determined using biotinylation and western blotting. Impulsivity and food-motivated behavior were determined using a delay discounting task and progressive ratio schedule, respectively. RESULTS Relative to obesity-resistant (OR) rats, obesity-prone (OP) rats exhibited 18% greater body weight following an 8-week HF-diet exposure, 42% lower striatal D2-receptor density, 30% lower total DAT expression, 40% lower in vitro and in vivo DAT function, 45% greater extracellular dopamine and twofold greater methamphetamine-evoked [3H]dopamine overflow. OP rats exhibited higher motivation for food, and surprisingly, were less impulsive relative to OR rats. Impulsivity, in vivo DAT function and extracellular dopamine concentration did not predict DIO. Importantly, motivation for high-fat reinforcers predicted the development of DIO. CONCLUSION Human studies are limited by their ability to determine if impulsivity, motivation and DAT function are causes or consequences of DIO. The

  1. Effects of chronic cocaine abuse on postsynaptic dopamine receptors

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Wolf, A.P.; Schlyer, D.; Shiue, C.Y.; Alpert, R.; Dewey, S.L.; Logan, J.; Bendriem, B.; Christman, D. )

    1990-06-01

    To assess the effects of chronic cocaine intoxication on dopamine receptors in human subjects, the authors evaluated ({sup 18}F)N-methylspiroperidol binding using positron emission tomography in 10 cocaine abusers and 10 normal control subjects. Cocaine abusers who had been detoxified for 1 week or less showed significantly lower values for uptake of ({sup 18}F)N-methylspiroperidol in striatum than the normal subjects, whereas the cocaine abusers who had been detoxified for 1 month showed values comparable to those obtained from normal subjects. The authors conclude that postsynaptic dopamine receptor availability decreases with chronic cocaine abuse but may recover after a drug-free interval.

  2. Strontium vanadate nanoribbons: Synthesis, characterization and detection of dopamine

    SciTech Connect

    Zhou, Qing; Shao, Mingwang; Chen, Tao; Xu, Hongyan

    2010-09-15

    Large-scale, high-purity and uniform strontium vanadate (Sr{sub 2}V{sub 2}O{sub 7}) nanoribbons were easily synthesized via a hydrothermal process without any surfactants. The as-prepared products were up to hundreds of micrometers in length, 200-600 nm in width, and 20 nm in thickness. These nanomaterials were employed to modify glassy carbon electrode, which displayed excellent electrochemical sensitivity in detecting dopamine in the presence of ascorbic acid. A linear relationship between the concentrations of dopamine and its oxidation peak currents was obtained. The modified electrode exhibited high reproducibility and stability, which might be found potential application in the biosensors.

  3. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis.

    PubMed

    Glimcher, Paul W

    2011-09-13

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modifications, in turn, provide the mechanistic underpinning for a specific class of reinforcement learning mechanisms that now seem to underlie much of human and animal behavior. This review describes both the critical empirical findings that are at the root of this conclusion and the fantastic theoretical advances from which this conclusion is drawn.

  4. Understanding dopamine and reinforcement learning: The dopamine reward prediction error hypothesis

    PubMed Central

    Glimcher, Paul W.

    2011-01-01

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modifications, in turn, provide the mechanistic underpinning for a specific class of reinforcement learning mechanisms that now seem to underlie much of human and animal behavior. This review describes both the critical empirical findings that are at the root of this conclusion and the fantastic theoretical advances from which this conclusion is drawn. PMID:21389268

  5. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis.

    PubMed

    Glimcher, Paul W

    2011-09-13

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modifications, in turn, provide the mechanistic underpinning for a specific class of reinforcement learning mechanisms that now seem to underlie much of human and animal behavior. This review describes both the critical empirical findings that are at the root of this conclusion and the fantastic theoretical advances from which this conclusion is drawn. PMID:21389268

  6. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila

    PubMed Central

    van der Voet, M; Harich, B; Franke, B; Schenck, A

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neuropsychiatric disorder with hyperactivity as one of the hallmarks. Aberrant dopamine signaling is thought to be a major theme in ADHD, but how this relates to the vast majority of ADHD candidate genes is illusive. Here we report a Drosophila dopamine-related locomotor endophenotype that is shared by pan-neuronal knockdown of orthologs of the ADHD-associated genes Dopamine transporter (DAT1) and Latrophilin (LPHN3), and of a gene causing a monogenic disorder with frequent ADHD comorbidity: Neurofibromin (NF1). The locomotor signature was not found in control models and could be ameliorated by methylphenidate, validating its relevance to symptoms of the disorder. The Drosophila ADHD endophenotype can be further exploited in high throughput to characterize the growing number of candidate genes. It represents an equally useful outcome measure for testing chemical compounds to define novel treatment options. PMID:25962619

  7. Surface plasmon resonance biosensor for dopamine using D3 dopamine receptor as a biorecognition molecule.

    PubMed

    Kumbhat, Sunita; Shankaran, Dhesingh Ravi; Kim, Sook Jin; Gobi, K Vengatajalabathy; Joshi, Vinod; Miura, Norio

    2007-10-31

    In modern biomedical technology, development of high performance sensing methods for dopamine (DA) is a critical issue because of its vital role in human metabolism. We report here, a new kind of bioaffinity sensor for DA based on surface plasmon resonance (SPR) using a D(3) dopamine receptor (DA-RC) as a recognition element. A conjugate of DA was synthesized using bovine serum albumin (BSA) protein and was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The biosensor surface was constructed by the immobilization of the DA-BSA conjugate onto an SPR gold surface by physical adsorption. Atomic force microscopy (AFM) investigations revealed that the DA-BSA conjugate was homogeneously distributed over the sensor surface. Specific interaction of the DA-RC with the immobilized DA-BSA conjugate was studied by SPR. Based on the principle of indirect competitive inhibition, the biosensor could detect DA in a linear dynamic range from 85 pg/ml (ppt) to 700 ng/ml (ppb). The biosensor was highly specific for DA and showed no significant interference from potent interferences such as ascorbic acid (AA), uric acid (UA) and other DA analogues viz., 3,4 dihydroxyphenyl acetic acid (DOPAC) and 3-(3,4 dihydroxyphenyl)-alanine (DOPA). The sensor surface displayed a high level of stability during repeated regeneration and affinity reaction cycles. Since this biosensor is simple, effective and is based on utilization of natural receptor, our study presents an encouraging scope for development of portable detection systems for in-vitro and in-vivo measurement of DA in clinical and medical diagnostics.

  8. Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor.

    PubMed

    Ng, G Y; Mouillac, B; George, S R; Caron, M; Dennis, M; Bouvier, M; O'Dowd, B F

    1994-03-15

    The regulation and post-translational modifications of the human dopamine D1 receptor were studied in the baculovirus-eukaryotic cell expression system. Baculovirus constructs containing either the DNA encoding the dopamine D1 receptor or a DNA encoding a c-myc epitope tagged dopamine D1 receptor (c-myc-dopamine D1 receptor) were used to infect Spodoptera frugiperda (Sf9) insect cells. Expressed dopamine D1 and c-myc-dopamine D1 receptors bound agonists and antagonists with affinities and a rank order of potency characteristic of a classical dopamine D1 receptor pharmacological profile. In membrane preparations from cells expressing c-myc-dopamine D1 receptor, the photoaffinity label [125I](3-methyl-2-[4'-azidophenyl]-2,3,5-tetrahydro-2H-3-benzazepine) ([125I]MAB) bound specifically upon photolysis. A major broad band of approximately 48 kDa was detected. This species was identified in immunoblots by the monoclonal antibody raised against the c-myc epitope of c-myc-dopamine D1 receptor was isolated by immunoprecipitation from whole cells and was shown to be post-translationally modified by phosphorylation and palmitoylation. Exposure of cells expressing c-myc-dopamine D1 receptor to dopamine for 15 min resulted in a reduction in the maximal dopamine stimulated adenylyl cyclase activity, which was accompanied by an increased phosphorylation of the receptor and a rapid redistribution of surface c-myc-dopamine D1 receptor as detected by in situ immunofluorescence. Dopamine exposure also resulted in an increased level of incorporation of [3H]palmitic acid into the receptor. Thus, we provide the first evidence that the human dopamine D1 receptor undergoes agonist-dependent desensitization, phosphorylation and palmitoylation.

  9. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area.

    PubMed

    Roseberry, Aaron G

    2015-08-01

    Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active.

  10. Dopamine system: manager of neural pathways.

    PubMed

    Hong, Simon

    2013-01-01

    There are a growing number of roles that midbrain dopamine (DA) neurons assume, such as, reward, aversion, alerting and vigor. Here I propose a theory that may be able to explain why the suggested functions of DA came about. It has been suggested that largely parallel cortico-basal ganglia-thalamo-cortico loops exist to control different aspects of behavior. I propose that (1) the midbrain DA system is organized in a similar manner, with different groups of DA neurons corresponding to these parallel neural pathways (NPs). The DA system can be viewed as the "manager" of these parallel NPs in that it recruits and activates only the task-relevant NPs when they are needed. It is likely that the functions of those NPs that have been consistently activated by the corresponding DA groups are facilitated. I also propose that (2) there are two levels of DA roles: the How and What roles. The How role is encoded in tonic and phasic DA neuron firing patterns and gives a directive to its target NP: how vigorously its function needs to be carried out. The tonic DA firing is to provide the needed level of DA in the target NPs to support their expected behavioral and mental functions; it is only when a sudden unexpected boost or suppression of activity is required by the relevant target NP that DA neurons in the corresponding NP act in a phasic manner. The What role is the implementational aspect of the role of DA in the target NP, such as binding to D1 receptors to boost working memory. This What aspect of DA explains why DA seems to assume different functions depending on the region of the brain in which it is involved. In terms of the role of the lateral habenula (LHb), the LHb is expected to suppress maladaptive behaviors and mental processes by controlling the DA system. The demand-based smart management by the DA system may have given animals an edge in evolution with adaptive behaviors and a better survival rate in resource-scarce situations. PMID:24367324

  11. Tuberoinfundibular transport of intrahypothalamic-administered dopamine in normo- and hypertensive rats

    SciTech Connect

    Sim, M.K.

    1988-01-01

    The dopamine transport system in the tuberoinfundibular tract of the spontaneously hypertensive (SHR), Wistar Kyoto (WKY) and Sprague-Dawley (SD) rats was investigated. The results show that the rate of dopamine transport in this tract is strain-specific. SD rats transported twice as much dopamine (in 30 minutes) as WKY and SHR. The dopamine transport system in the SHR, being at par with that of the WKY, remained intact. These findings suggest that hypertension and the alleged reduced central dopaminergic activity in the SHR is not related to the transport of dopamine in the tuberoinfundibular tract.

  12. Determination of the stability of dopamine in aqueous solutions by high performance liquid chromatography

    SciTech Connect

    Shen, Y. . Dept. of Veterinary Physiology and Pharmacology); Ye, M.Y. . Dept. of Biology and Chemistry ManTech Environmental Technology, Inc., Ada, OK )

    1994-01-01

    Methods for the analysis of dopamine and its degradation products in aqueous solutions are described. The technique of reverse phase chromatography with electrochemical detection is used to investigate the stability of dopamine in various aqueous solutions. In neutral and basic solutions, dopamine is rapidly oxidized by dissolved oxygen to form degradation products. The results demonstrate that dopamine is stable in 0.1 N HCl solution, pH < 1. The study indicates that EDTA can slow down the oxidation process. The detection limit for the analysis of dopamine is 0.1 [mu]M with 100 [mu]l injection.

  13. Dopamine agonist-induced substance addiction: the next piece of the puzzle.

    PubMed

    Evans, Andrew

    2011-02-01

    Traditional antiparkinson treatment strategies strive to balance the antiparkinson effects of dopaminergic drugs with the avoidance of motor response complications. Dopamine agonists have an established role in delaying the emergence of motor response complications or reducing motor "off" periods. The recent recognition of a range of "behavioural addictions" that are linked to dopamine agonist use has highlighted the role of dopamine in brain reward function and addiction disorders in general. Dopamine agonists have now even been linked occasionally to new substance addictions. The challenge now for the Parkinsonologist is to also balance the net benefits of using dopamine agonists for their motor effects with avoiding the harm from behavioural compulsions. PMID:20980151

  14. Enhanced striatal dopamine release during food stimulation in binge eating disorder.

    PubMed

    Wang, Gene-Jack; Geliebter, Allan; Volkow, Nora D; Telang, Frank W; Logan, Jean; Jayne, Millard C; Galanti, Kochavi; Selig, Peter A; Han, Hao; Zhu, Wei; Wong, Christopher T; Fowler, Joanna S

    2011-08-01

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [(11)C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  15. Enhanced Striatal Dopamine Release During Food Stimulation in Binge Eating Disorder

    PubMed Central

    Wang, Gene-Jack; Geliebter, Allan; Volkow, Nora D.; Telang, Frank W.; Logan, Jean; Jayne, Millard C.; Galanti, Kochavi; Selig, Peter A.; Han, Hao; Zhu, Wei; Wong, Christopher T.; Fowler, Joanna S.

    2011-01-01

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [11C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating. PMID:21350434

  16. Dopamine Receptor Antagonists Enhance Proliferation and Neurogenesis of Midbrain Lmx1a-expressing Progenitors

    PubMed Central

    Hedlund, Eva; Belnoue, Laure; Theofilopoulos, Spyridon; Salto, Carmen; Bye, Chris; Parish, Clare; Deng, Qiaolin; Kadkhodaei, Banafsheh; Ericson, Johan; Arenas, Ernest; Perlmann, Thomas; Simon, András

    2016-01-01

    Degeneration of dopamine neurons in the midbrain causes symptoms of the movement disorder, Parkinson disease. Dopamine neurons are generated from proliferating progenitor cells localized in the embryonic ventral midbrain. However, it remains unclear for how long cells with dopamine progenitor character are retained and if there is any potential for reactivation of such cells after cessation of normal dopamine neurogenesis. We show here that cells expressing Lmx1a and other progenitor markers remain in the midbrain aqueductal zone beyond the major dopamine neurogenic period. These cells express dopamine receptors, are located in regions heavily innervated by midbrain dopamine fibres and their proliferation can be stimulated by antagonizing dopamine receptors, ultimately leading to increased neurogenesis in vivo. Furthermore, treatment with dopamine receptor antagonists enhances neurogenesis in vitro, both from embryonic midbrain progenitors as well as from embryonic stem cells. Altogether our results indicate a potential for reactivation of resident midbrain cells with dopamine progenitor potential beyond the normal period of dopamine neurogenesis. PMID:27246266

  17. Nicotinic receptors regulate the dynamic range of dopamine release in vivo.

    PubMed

    Koranda, Jessica L; Cone, Jackson J; McGehee, Daniel S; Roitman, Mitchell F; Beeler, Jeff A; Zhuang, Xiaoxi

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed presynaptically on dopamine axon terminals, and their activation by endogenous acetylcholine from striatal cholinergic interneurons enhances dopamine release both independently of and in concert with dopamine neuron activity. Acute nAChR inactivation is believed to enhance the contrast between low- and high-frequency dopamine cell activity. Although these studies reveal a key role for acute activation and inactivation of nAChRs in striatal microcircuitry, it remains unknown if chronic inactivation/desensitization of nAChRs can alter dopamine release dynamics. Using in vivo cyclic voltammetry in anaesthetized mice, we examined whether chronic inactivation of nAChRs modulates dopamine release across a parametric range of stimulation, varying both frequency and pulse number. Deletion of β2*nAChRs and chronic nicotine exposure greatly diminished dopamine release across the entire range of stimulation parameters. In addition, we observed a facilitation of dopamine release at low frequency and pulse number in wild-type mice that is absent in the β2* knockout and chronic nicotine mice. These data suggest that deletion or chronic desensitization of nAChRs reduces the dynamic range of dopamine release in response to dopamine cell activity, decreasing rather than increasing contrast between high and low dopamine activity.

  18. Enhanced striatal dopamine release during food stimulation in binge eating disorder

    SciTech Connect

    Wang, g.j.; Wang, G.-J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, Jaynbe, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; Wong, C.T.; Fowler, J.S.

    2011-01-13

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [{sup 11}C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  19. Dopamine transporters are involved in the onset of hypoxia-induced dopamine efflux in striatum as revealed by in vivo microdialysis.

    PubMed

    Orset, Cyrille; Parrot, Sandrine; Sauvinet, Valérie; Cottet-Emard, Jean-Marie; Bérod, Anne; Pequignot, Jean-Marc; Denoroy, Luc

    2005-06-01

    Although many studies have revealed alterations in neurotransmission during ischaemia, few works have been devoted to the neurochemical effects of mild hypoxia, a situation encountered during life in altitude or in several pathologies. In that context, the present work was undertaken to determine the in vivo mechanisms underlying the striatal dopamine efflux induced by mild hypoxaemic hypoxia. For that purpose, the extracellular concentrations of dopamine and its metabolite 3,4-dihydroxyphenyl acetic acid were simultaneously measured using brain microdialysis during acute hypoxic exposure (10% O(2), 1h) in awake rats. Hypoxia induced a +80% increase in dopamine. Application of the dopamine transporters inhibitor, nomifensine (10 microM), just before the hypoxia prevented the rise in dopamine during the early part of hypoxia; in contrast the application of nomifensine after the beginning of hypoxia, failed to alter the increase in dopamine. Application of the voltage-dependent Na(+) channel blocker tetrodotoxin abolished the increase in dopamine, whether administered just before or after the beginning of hypoxia. These data show that the neurochemical mechanisms of the dopamine efflux may change over the course of the hypoxic exposure, dopamine transporters being involved only at the beginning of hypoxia.

  20. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia

    PubMed Central

    Abi-Dargham, Anissa; Rodenhiser, Janine; Printz, David; Zea-Ponce, Yolanda; Gil, Roberto; Kegeles, Lawrence S.; Weiss, Richard; Cooper, Thomas B.; Mann, J. John; Van Heertum, Ronald L.; Gorman, Jack M.; Laruelle, Marc

    2000-01-01

    The classical dopamine hypothesis of schizophrenia postulates a hyperactivity of dopaminergic transmission at the D2 receptor. We measured in vivo occupancy of striatal D2 receptors by dopamine in 18 untreated patients with schizophrenia and 18 matched controls, by comparing D2 receptor availability before and during pharmacologically induced acute dopamine depletion. Acute depletion of intrasynaptic dopamine resulted in a larger increase in D2 receptor availability in patients with schizophrenia (19% ± 11%) compared with control subjects (9% ± 7%, P = 0.003). The increased occupancy of D2 receptors by dopamine occurred both in first-episode neuroleptic-naive patients and in previously treated chronic patients experiencing an episode of illness exacerbation. In addition, elevated synaptic dopamine was predictive of good treatment response of positive symptoms to antipsychotic drugs. This finding provides direct evidence of increased stimulation of D2 receptors by dopamine in schizophrenia, consistent with increased phasic activity of dopaminergic neurons. PMID:10884434

  1. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  2. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry.

    PubMed

    Ikemoto, Satoshi; Yang, Chen; Tan, Aaron

    2015-09-01

    Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine's role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders. PMID:25907747

  3. The dopamine theory of addiction: 40 years of highs and lows.

    PubMed

    Nutt, David J; Lingford-Hughes, Anne; Erritzoe, David; Stokes, Paul R A

    2015-05-01

    For several decades, addiction has come to be viewed as a disorder of the dopamine neurotransmitter system; however, this view has not led to new treatments. In this Opinion article, we review the origins of the dopamine theory of addiction and discuss the ability of addictive drugs to elicit the release of dopamine in the human striatum. There is robust evidence that stimulants increase striatal dopamine levels and some evidence that alcohol may have such an effect, but little evidence, if any, that cannabis and opiates increase dopamine levels. Moreover, there is good evidence that striatal dopamine receptor availability and dopamine release are diminished in individuals with stimulant or alcohol dependence but not in individuals with opiate, nicotine or cannabis dependence. These observations have implications for understanding reward and treatment responses in various addictions. PMID:25873042

  4. Excessive cocaine use results from decreased phasic dopamine signaling in the striatum

    PubMed Central

    Willuhn, Ingo; Burgeno, Lauren M.; Groblewski, Peter A.; Phillips, Paul E. M.

    2014-01-01

    Drug addiction is a neuropsychiatric disorder marked by escalating drug use. Dopamine neurotransmission in the ventromedial striatum (VMS) mediates acute reinforcing effects of abused drugs, but with protracted use the dorsolateral striatum (DLS) is thought to assume control over drug seeking. We measured striatal dopamine release during a cocaine self-administration regimen that produced escalation of drug taking in rats. Surprisingly, we found that phasic dopamine decreased in both regions as the rate of cocaine intake increased; with the decrement in dopamine in the VMS significantly correlated with the rate of escalation. Administration of the dopamine precursor L-DOPA at a dose that replenished dopamine signaling in the VMS reversed escalation, thereby demonstrating the causal relationship between diminished dopamine transmission and excessive drug use. Thus, together these data provide mechanistic and therapeutic insight into the excessive drug intake that emerges following protracted use. PMID:24705184

  5. The dopamine theory of addiction: 40 years of highs and lows.

    PubMed

    Nutt, David J; Lingford-Hughes, Anne; Erritzoe, David; Stokes, Paul R A

    2015-05-01

    For several decades, addiction has come to be viewed as a disorder of the dopamine neurotransmitter system; however, this view has not led to new treatments. In this Opinion article, we review the origins of the dopamine theory of addiction and discuss the ability of addictive drugs to elicit the release of dopamine in the human striatum. There is robust evidence that stimulants increase striatal dopamine levels and some evidence that alcohol may have such an effect, but little evidence, if any, that cannabis and opiates increase dopamine levels. Moreover, there is good evidence that striatal dopamine receptor availability and dopamine release are diminished in individuals with stimulant or alcohol dependence but not in individuals with opiate, nicotine or cannabis dependence. These observations have implications for understanding reward and treatment responses in various addictions.

  6. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry.

    PubMed

    Ikemoto, Satoshi; Yang, Chen; Tan, Aaron

    2015-09-01

    Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine's role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders.

  7. Trafficking properties of the D5 dopamine receptor.

    PubMed

    Thompson, Dawn; Whistler, Jennifer L

    2011-05-01

    Dopamine receptors are important for diverse biological functions and are important pharmacological targets in human medicine. Signal transduction from the dopamine receptors is controlled at many levels, including by the process of receptor trafficking. Little is known regarding the endocytic and postendocytic trafficking properties of the D5 dopamine receptor. Here, we show that endocytosis of the D5 receptor can be achieved both homologously, through direct receptor activation by agonist, and also heterologously, due to independent activation of protein kinase C (PKC). In contrast, the D1 receptor is endocytosed only in response to agonist but not PKC activation. We have identified the residue in the third intracellular loop of the D5 receptor that is both necessary for PKC-mediated endocytosis of the D5 receptor and sufficient to induce PKC-mediated endocytosis when introduced to the D1 receptor. In addition, we show that endocytosis of D5 through both pathways is dependent on clathrin and dynamin but that only agonist-induced endocytosis engages β-arrestin 2. Together, these data show that the D5 receptor shows a trafficking profile distinct from that of any of the other dopamine receptors.

  8. Dopamine-induced silica-polydopamine hybrids with controllable morphology.

    PubMed

    Ho, Chia-Che; Ding, Shinn-Jyh

    2014-04-01

    Novel silica-polydopamine hybrids, with controllable morphology, are facilely fabricated in an emulsion system consisting of tetraethyl orthosilicate, dopamine, water, and NaOH under weakly basic conditions (pH 8.5-10). An increase in initial pH favors the formation of nano-structured spherical silica-PDA hybrids from a flocculated structure.

  9. Postsynaptic nigrostriatal dopamine receptors and their role in movement regulation

    PubMed Central

    Meyer, Michael F.; Krasnianski, Michael

    2010-01-01

    The article presents the hypothesis that nigrostriatal dopamine may regulate movement by modulation of tone and contraction in skeletal muscles through a concentration-dependent influence on the postsynaptic D1 and D2 receptors on the follow manner: nigrostriatal axons innervate both receptor types within the striatal locus somatotopically responsible for motor control in agonist/antagonist muscle pair around a given joint. D1 receptors interact with lower and D2 receptors with higher dopamine concentrations. Synaptic dopamine concentration increases immediately before movement starts. We hypothesize that increasing dopamine concentrations stimulate first the D1 receptors and reduce muscle tone in the antagonist muscle and than stimulate D2 receptors and induce contraction in the agonist muscle. The preceded muscle tone reduction in the antagonist muscle eases the efficient contraction of the agonist. Our hypothesis is applicable for an explanation of physiological movement regulation, different forms of movement pathology and therapeutic drug effects. Further, this hypothesis provides a theoretical basis for experimental investigation of dopaminergic motor control and development of new strategies for treatment of movement disorders. PMID:21076988

  10. Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning.

    PubMed

    Hart, Andrew S; Clark, Jeremy J; Phillips, Paul E M

    2015-01-01

    Cue- and reward-evoked phasic dopamine activity during Pavlovian and operant conditioning paradigms is well correlated with reward-prediction errors from formal reinforcement learning models, which feature teaching signals in the form of discrepancies between actual and expected reward outcomes. Additionally, in learning tasks where conditioned cues probabilistically predict rewards, dopamine neurons show sustained cue-evoked responses that are correlated with the variance of reward and are maximal to cues predicting rewards with a probability of 0.5. Therefore, it has been suggested that sustained dopamine activity after cue presentation encodes the uncertainty of impending reward delivery. In the current study we examined the acquisition and maintenance of these neural correlates using fast-scan cyclic voltammetry in rats implanted with carbon fiber electrodes in the nucleus accumbens core during probabilistic Pavlovian conditioning. The advantage of this technique is that we can sample from the same animal and recording location throughout learning with single trial resolution. We report that dopamine release in the nucleus accumbens core contains correlates of both expected value and variance. A quantitative analysis of these signals throughout learning, and during the ongoing updating process after learning in probabilistic conditions, demonstrates that these correlates are dynamically encoded during these phases. Peak CS-evoked responses are correlated with expected value and predominate during early learning while a variance-correlated sustained CS signal develops during the post-asymptotic updating phase.

  11. Reward contexts extend dopamine signals to unrewarded stimuli.

    PubMed

    Kobayashi, Shunsuke; Schultz, Wolfram

    2014-01-01

    Basic tenets of sensory processing emphasize the importance of accurate identification and discrimination of environmental objects [1]. Although this principle holds also for reward, the crucial acquisition of reward for survival would be aided by the capacity to detect objects whose rewarding properties may not be immediately apparent. Animal learning theory conceptualizes how unrewarded stimuli induce behavioral reactions in rewarded contexts due to pseudoconditioning and higher-order context conditioning [2-6]. We hypothesized that the underlying mechanisms may involve context-sensitive reward neurons. We studied short-latency activations of dopamine neurons to unrewarded, physically salient stimuli while systematically changing reward context. Dopamine neurons showed substantial activations to unrewarded stimuli and their conditioned stimuli in highly rewarded contexts. The activations decreased and often disappeared entirely with stepwise separation from rewarded contexts. The influence of reward context suggests that dopamine neurons respond to real and potential reward. The influence of reward context is compatible with the reward nature of phasic dopamine responses. The responses may facilitate rapid, default initiation of behavioral reactions in environments usually containing reward. Agents would encounter more and miss less reward, resulting in survival advantage and enhanced evolutionary fitness.

  12. Dopamine and reward: the anhedonia hypothesis 30 years on.

    PubMed

    Wise, Roy A

    2008-10-01

    The anhedonia hypothesis--that brain dopamine plays a critical role in the subjective pleasure associated with positive rewards--was intended to draw the attention of psychiatrists to the growing evidence that dopamine plays a critical role in the objective reinforcement and incentive motivation associated with food and water, brain stimulation reward, and psychomotor stimulant and opiate reward. The hypothesis called to attention the apparent paradox that neuroleptics, drugs used to treat a condition involving anhedonia (schizophrenia), attenuated in laboratory animals the positive reinforcement that we normally associate with pleasure. The hypothesis held only brief interest for psychiatrists, who pointed out that the animal studies reflected acute actions of neuroleptics whereas the treatment of schizophrenia appears to result from neuroadaptations to chronic neuroleptic administration, and that it is the positive symptoms of schizophrenia that neuroleptics alleviate, rather than the negative symptoms that include anhedonia. Perhaps for these reasons, the hypothesis has had minimal impact in the psychiatric literature. Despite its limited heuristic value for the understanding of schizophrenia, however, the anhedonia hypothesis has had major impact on biological theories of reinforcement, motivation, and addiction. Brain dopamine plays a very important role in reinforcement of response habits, conditioned preferences, and synaptic plasticity in cellular models of learning and memory. The notion that dopamine plays a dominant role in reinforcement is fundamental to the psychomotor stimulant theory of addiction, to most neuroadaptation theories of addiction, and to current theories of conditioned reinforcement and reward prediction. Properly understood, it is also fundamental to recent theories of incentive motivation.

  13. Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning

    PubMed Central

    Phillips, Paul E. M.

    2014-01-01

    Cue- and reward-evoked phasic dopamine activity during Pavlovian and operant conditioning paradigms is well correlated with reward-prediction errors from formal reinforcement learning models, which feature teaching signals in the form of discrepancies between actual and expected reward outcomes. Additionally, in learning tasks where conditioned cues probabilistically predict rewards, dopamine neurons show sustained cue-evoked responses that are correlated with the variance of reward and are maximal to cues predicting rewards with a probability of 0.5. Therefore, it has been suggested that sustained dopamine activity after cue presentation encodes the uncertainty of impending reward delivery. In the current study we examined the acquisition and maintenance of these neural correlates using fast-scan cyclic voltammetry in rats implanted with carbon fiber electrodes in the nucleus accumbens core during probabilistic Pavlovian conditioning. The advantage of this technique is that we can sample from the same animal and recording location throughout learning with single trial resolution. We report that dopamine release in the nucleus accumbens core contains correlates of both expected value and variance. A quantitative analysis of these signals throughout learning, and during the ongoing updating process after learning in probabilistic conditions, demonstrates that these correlates are dynamically encoded during these phases. Peak CS-evoked responses are correlated with expected value and predominate during early learning while a variance-correlated sustained CS signal develops during the post-asymptotic updating phase. PMID:25172480

  14. Dopamine Transporter Genotype Predicts Attentional Asymmetry in Healthy Adults

    ERIC Educational Resources Information Center

    Newman, Daniel P.; O'Connell, Redmond G.; Nathan, Pradeep J.; Bellgrove, Mark A.

    2012-01-01

    A number of recent studies suggest that DNA variation in the dopamine transporter gene (DAT1) influences spatial attention asymmetry in clinical populations such as ADHD, but confirmation in non-clinical samples is required. Since non-spatial factors such as attentional load have been shown to influence spatial biases in clinical conditions, here…

  15. Missense dopamine transporter mutations associate with adult parkinsonism and ADHD

    PubMed Central

    Hansen, Freja H.; Skjørringe, Tina; Yasmeen, Saiqa; Arends, Natascha V.; Sahai, Michelle A.; Erreger, Kevin; Andreassen, Thorvald F.; Holy, Marion; Hamilton, Peter J.; Neergheen, Viruna; Karlsborg, Merete; Newman, Amy H.; Pope, Simon; Heales, Simon J.R.; Friberg, Lars; Law, Ian; Pinborg, Lars H.; Sitte, Harald H.; Loland, Claus; Shi, Lei; Weinstein, Harel; Galli, Aurelio; Hjermind, Lena E.; Møller, Lisbeth B.; Gether, Ulrik

    2014-01-01

    Parkinsonism and attention deficit hyperactivity disorder (ADHD) are widespread brain disorders that involve disturbances of dopaminergic signaling. The sodium-coupled dopamine transporter (DAT) controls dopamine homeostasis, but its contribution to disease remains poorly understood. Here, we analyzed a cohort of patients with atypical movement disorder and identified 2 DAT coding variants, DAT-Ile312Phe and a presumed de novo mutant DAT-Asp421Asn, in an adult male with early-onset parkinsonism and ADHD. According to DAT single-photon emission computed tomography (DAT-SPECT) scans and a fluoro-deoxy-glucose-PET/MRI (FDG-PET/MRI) scan, the patient suffered from progressive dopaminergic neurodegeneration. In heterologous cells, both DAT variants exhibited markedly reduced dopamine uptake capacity but preserved membrane targeting, consistent with impaired catalytic activity. Computational simulations and uptake experiments suggested that the disrupted function of the DAT-Asp421Asn mutant is the result of compromised sodium binding, in agreement with Asp421 coordinating sodium at the second sodium site. For DAT-Asp421Asn, substrate efflux experiments revealed a constitutive, anomalous efflux of dopamine, and electrophysiological analyses identified a large cation leak that might further perturb dopaminergic neurotransmission. Our results link specific DAT missense mutations to neurodegenerative early-onset parkinsonism. Moreover, the neuropsychiatric comorbidity provides additional support for the idea that DAT missense mutations are an ADHD risk factor and suggests that complex DAT genotype and phenotype correlations contribute to different dopaminergic pathologies. PMID:24911152

  16. Effect of desipramine on dopamine receptor binding in vivo

    SciTech Connect

    Suhara, Tetsuya Jikei Univ., Tokyo ); Inoue, Osamu; Kobayasi, Kaoru )

    1990-01-01

    Effect of desipramine on the in vivo binding of {sup 3}H-SCH23390 and {sup 3}H-N-methylspiperone ({sup 3}H-NMSP) in mouse striatum was studied. The ratio of radioactivity in the striatum to that in the cerebellum at 15 min after i.v. injection of {sup 3}H-SCH23390 or 45 min after injection of {sup 3}H-NMSP were used as indices of dopamine D1 or D2 receptor binding in vivo, respectively. In vivo binding of D1 and D2 receptors was decreased in a dose-dependent manner by acute treatment with desipramine (DMI). A saturation experiment suggested that the DMI-induced reduction in the binding was mainly due to the decrease in the affinity of both receptors. No direct interactions between the dopamine receptors and DMI were observed in vitro by the addition of 1 mM of DMI into striatal homogenate. Other antidepressants such as imipramine, clomipramine, maprotiline and mianserin also decreased the binding of dopamine D1 and D2 receptors. The results indicated an important role of dopamine receptors in the pharmacological effect of antidepressants.

  17. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The common parasite Toxoplasma gondii induces behavioral alterations in its hosts including phenotypes increasing the likelihood of its transmission in rodents and reports of psychobehavioral alterations in humans. We have found that elevated levels of dopamine are associated with the encysted stage...

  18. Serum Dopamine Beta Hydroxylase and Maltreatment in Psychiatrically Hospitalized Boys.

    ERIC Educational Resources Information Center

    Galvin, Matthew; And Others

    1995-01-01

    Males (ages 7 to 17) in a psychiatric hospital were studied while off psychoactive medication to determine how serum dopamine beta hydroxylase (DBH) activity varies with childhood maltreatment experiences. Lowest DBH levels were found in boys maltreated before 72 months of age or with the principal diagnosis of conduct disorder solitary aggressive…

  19. The costs and benefits of brain dopamine for cognitive control.

    PubMed

    Cools, Roshan

    2016-09-01

    Cognitive control helps us attain our goals by resisting distraction and temptations. Dopaminergic drugs are well known to enhance cognitive control. However, there is great variability in the effects of dopaminergic drugs across different contexts, with beneficial effects on some tasks but detrimental effects on other tasks. The mechanisms underlying this variability across cognitive task demands remain unclear. I aim to elucidate this across-task variability in dopaminergic drug efficacy by going beyond classic models that emphasize the importance of dopamine in the prefrontal cortex for cognitive control and working memory. To this end, I build on recent advances in cognitive neuroscience that highlight a role for dopamine in cost-benefit decision making. Specifically, I reconceptualize cognitive control as involving not just prefrontal dopamine but also modulation of cost-benefit decision making by striatal dopamine. This approach will help us understand why we sometimes fail to (choose to) exert cognitive control while also identifying mechanistic factors that predict dopaminergic drug effects on cognitive control. WIREs Cogn Sci 2016, 7:317-329. doi: 10.1002/wcs.1401 For further resources related to this article, please visit the WIREs website. PMID:27507774

  20. Dopamine Increases a Value-Independent Gambling Propensity.

    PubMed

    Rigoli, Francesco; Rutledge, Robb B; Chew, Benjamin; Ousdal, Olga T; Dayan, Peter; Dolan, Raymond J

    2016-10-01

    Although the impact of dopamine on reward learning is well documented, its influence on other aspects of behavior remains the subject of much ongoing work. Dopaminergic drugs are known to increase risk-taking behavior, but the underlying mechanisms for this effect are not clear. We probed dopamine's role by examining the effect of its precursor L-DOPA on the choices of healthy human participants in an experimental paradigm that allowed particular components of risk to be distinguished. We show that choice behavior depended on a baseline (ie, value-independent) gambling propensity, a gambling preference scaling with the amount/variance, and a value normalization factor. Boosting dopamine levels specifically increased just the value-independent baseline gambling propensity, leaving the other components unaffected. Our results indicate that the influence of dopamine on choice behavior involves a specific modulation of the attractiveness of risky options-a finding with implications for understanding a range of reward-related psychopathologies including addiction. PMID:27149935

  1. Dopamine Increases a Value-Independent Gambling Propensity

    PubMed Central

    Rigoli, Francesco; Rutledge, Robb B; Chew, Benjamin; Ousdal, Olga T; Dayan, Peter; Dolan, Raymond J

    2016-01-01

    Although the impact of dopamine on reward learning is well documented, its influence on other aspects of behavior remains the subject of much ongoing work. Dopaminergic drugs are known to increase risk-taking behavior, but the underlying mechanisms for this effect are not clear. We probed dopamine's role by examining the effect of its precursor L-DOPA on the choices of healthy human participants in an experimental paradigm that allowed particular components of risk to be distinguished. We show that choice behavior depended on a baseline (ie, value-independent) gambling propensity, a gambling preference scaling with the amount/variance, and a value normalization factor. Boosting dopamine levels specifically increased just the value-independent baseline gambling propensity, leaving the other components unaffected. Our results indicate that the influence of dopamine on choice behavior involves a specific modulation of the attractiveness of risky options—a finding with implications for understanding a range of reward-related psychopathologies including addiction. PMID:27149935

  2. Regulation of EphB1 expression by dopamine signaling.

    PubMed

    Halladay, A K; Yue, Y; Michna, L; Widmer, D A; Wagner, G C; Zhou, R

    2000-12-28

    The Eph family tyrosine kinase receptors and their ligands have been implicated in axon guidance and neuronal migration during development of the nervous system. In the current study, we aim to characterize the nature of changes in EphB1 receptor expression following increases or decreases in dopamine activity. Neonatal mice (P3) were injected with 6-hydroxydopamine and allowed 13 days to recover. These animals show a profound depletion of dopamine in all areas assayed, with a corresponding dose-dependent decrease in EphB1 expression. Day 3 pups were also injected either chronically (P3-P16) or acutely (P3 only) with cocaine to determine how enhancing dopamine signaling would affect EphB1 signal density. It was found that both treatments significantly increased expression of EphB1 in the cortex, striatum and substantia nigra. Finally, animals were treated prenatally (E15-E17) with cocaine and sacrificed on P7. These animals also showed an increase in EphB1 signal density, but only in the dopaminergic terminal areas in the cortex and striatum. These studies indicate that dopamine activity regulates developmental expression of the tyrosine kinase receptor EphB1. PMID:11146119

  3. Heteromeric Dopamine Receptor Signaling Complexes: Emerging Neurobiology and Disease Relevance

    PubMed Central

    Perreault, Melissa L; Hasbi, Ahmed; O'Dowd, Brian F; George, Susan R

    2014-01-01

    The pharmacological modification of dopamine transmission has long been employed as a therapeutic tool in the treatment of many mental health disorders. However, as many of the pharmacotherapies today are not without significant side effects, or they alleviate only a particular subset of symptoms, the identification of novel therapeutic targets is imperative. In light of these challenges, the recognition that dopamine receptors can form heteromers has significantly expanded the range of physiologically relevant signaling complexes as well as potential drug targets. Furthermore, as the physiology and disease relevance of these receptor heteromers is further understood, their ability to exhibit pharmacological and functional properties distinct from their constituent receptors, or modulate the function of endogenous homomeric receptor complexes, may allow for the development of alternate therapeutic strategies and provide new avenues for drug design. In this review, we describe the emerging neurobiology of the known dopamine receptor heteromers, their physiological relevance in brain, and discuss the potential role of these receptor complexes in neuropsychiatric disease. We highlight their value as targets for future drug development and discuss innovative research strategies designed to selectively target these dopamine receptor heteromers in the search for novel and clinically efficacious pharmacotherapies. PMID:23774533

  4. Prefrontal D1 dopamine signaling is required for temporal control.

    PubMed

    Narayanan, Nandakumar S; Land, Benjamin B; Solder, John E; Deisseroth, Karl; DiLeone, Ralph J

    2012-12-11

    Temporal control, or how organisms guide movements in time to achieve behavioral goals, depends on dopamine signaling. The medial prefrontal cortex controls many goal-directed behaviors and receives dopaminergic input primarily from the midbrain ventral tegmental area. However, this system has never been linked with temporal control. Here, we test the hypothesis that dopaminergic projections from the ventral tegmental area to the prefrontal cortex influence temporal control. Rodents were trained to perform a fixed-interval timing task with an interval of 20 s. We report several results: first, that decreasing dopaminergic neurotransmission using virally mediated RNA interference of tyrosine hydroxylase impaired temporal control, and second that pharmacological disruption of prefrontal D1 dopamine receptors, but not D2 dopamine receptors, impaired temporal control. We then used optogenetics to specifically and selectively manipulate prefrontal neurons expressing D1 dopamine receptors during fixed-interval timing performance. Selective inhibition of D1-expressing prefrontal neurons impaired fixed-interval timing, whereas stimulation made animals more efficient during task performance. These data provide evidence that ventral tegmental dopaminergic projections to the prefrontal cortex influence temporal control via D1 receptors. The results identify a critical circuit for temporal control of behavior that could serve as a target for the treatment of dopaminergic diseases.

  5. Dopamine and glucose, obesity, and reward deficiency syndrome.

    PubMed

    Blum, Kenneth; Thanos, Panayotis K; Gold, Mark S

    2014-01-01

    Obesity as a result of overeating as well as a number of well described eating disorders has been accurately considered to be a world-wide epidemic. Recently a number of theories backed by a plethora of scientifically sound neurochemical and genetic studies provide strong evidence that food addiction is similar to psychoactive drug addiction. Our laboratory has published on the concept known as Reward Deficiency Syndrome (RDS) which is a genetic and epigenetic phenomena leading to impairment of the brain reward circuitry resulting in a hypo-dopaminergic function. RDS involves the interactions of powerful neurotransmitters and results in abnormal craving behavior. A number of important facts which could help translate to potential therapeutic targets espoused in this focused review include: (1) consumption of alcohol in large quantities or carbohydrates binging stimulates the brain's production of and utilization of dopamine; (2) in the meso-limbic system the enkephalinergic neurons are in close proximity, to glucose receptors; (3) highly concentrated glucose activates the calcium channel to stimulate dopamine release from P12 cells; (4) a significant correlation between blood glucose and cerebrospinal fluid concentrations of homovanillic acid the dopamine metabolite; (5) 2-deoxyglucose (2DG), the glucose analog, in pharmacological doses is associated with enhanced dopamine turnover and causes acute glucoprivation. Evidence from animal studies and fMRI in humans support the hypothesis that multiple, but similar brain circuits are disrupted in obesity and drug dependence and for the most part, implicate the involvement of DA-modulated reward circuits in pathologic eating behaviors. Based on a consensus of neuroscience research treatment of both glucose and drug like cocaine, opiates should incorporate dopamine agonist therapy in contrast to current theories and practices that utilizes dopamine antagonistic therapy. Considering that up until now clinical utilization

  6. Dopamine and glucose, obesity, and reward deficiency syndrome

    PubMed Central

    Blum, Kenneth; Thanos, Panayotis K.; Gold, Mark S.

    2014-01-01

    Obesity as a result of overeating as well as a number of well described eating disorders has been accurately considered to be a world-wide epidemic. Recently a number of theories backed by a plethora of scientifically sound neurochemical and genetic studies provide strong evidence that food addiction is similar to psychoactive drug addiction. Our laboratory has published on the concept known as Reward Deficiency Syndrome (RDS) which is a genetic and epigenetic phenomena leading to impairment of the brain reward circuitry resulting in a hypo-dopaminergic function. RDS involves the interactions of powerful neurotransmitters and results in abnormal craving behavior. A number of important facts which could help translate to potential therapeutic targets espoused in this focused review include: (1) consumption of alcohol in large quantities or carbohydrates binging stimulates the brain’s production of and utilization of dopamine; (2) in the meso-limbic system the enkephalinergic neurons are in close proximity, to glucose receptors; (3) highly concentrated glucose activates the calcium channel to stimulate dopamine release from P12 cells; (4) a significant correlation between blood glucose and cerebrospinal fluid concentrations of homovanillic acid the dopamine metabolite; (5) 2-deoxyglucose (2DG), the glucose analog, in pharmacological doses is associated with enhanced dopamine turnover and causes acute glucoprivation. Evidence from animal studies and fMRI in humans support the hypothesis that multiple, but similar brain circuits are disrupted in obesity and drug dependence and for the most part, implicate the involvement of DA-modulated reward circuits in pathologic eating behaviors. Based on a consensus of neuroscience research treatment of both glucose and drug like cocaine, opiates should incorporate dopamine agonist therapy in contrast to current theories and practices that utilizes dopamine antagonistic therapy. Considering that up until now clinical utilization

  7. Developmental imaging genetics: linking dopamine function to adolescent behavior.

    PubMed

    Padmanabhan, Aarthi; Luna, Beatriz

    2014-08-01

    Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to non-invasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach. PMID:24139694

  8. Developmental imaging genetics: linking dopamine function to adolescent behavior

    PubMed Central

    Padmanabhan, Aarthi; Luna, Beatriz

    2014-01-01

    Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to noninvasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach. PMID:24139694

  9. Prenatal L-DOPA exposure produces lasting changes in brain dopamine content, cocaine-induced dopamine release and cocaine conditioned place preference

    PubMed Central

    Ren, Jia-Qian; Jiang, Yan; Wang, Zhihui; McCarthy, Deirdre; Rajadhyaksha, Anjali M.; Tropea, Thomas F.; Kosofsky, Barry E.; Bhide, Pradeep G.

    2010-01-01

    Dopamine, its receptors and transporter are present in the brain beginning from early in the embryonic period. Dopamine receptor activation can influence developmental events including neurogenesis, neuronal migration and differentiation raising the possibility that dopamine imbalance in the fetal brain can alter development of the brain and behavior. We examined whether elevated dopamine levels during gestation can produce persisting changes in brain dopamine content and dopamine-mediated behaviors. We administered L-3,4-dihydroxyphenylalanine (L-DOPA) in drinking water to timed-pregnant CD1 mice from the 11th day of gestation until the day of parturition. The prenatal L-DOPA exposure led to significantly lower cocaine conditioned place preference, a behavioral test of reward, at postnatal day 60 (P60). However, in vivo microdialysis measurements showed significant increases in cocaine-induced dopamine release in the caudate putamen of P26 and P60 mice exposed to L-DOPA prenatally, ruling out attenuated dopamine release in the caudate putamen as a contributor to decreased conditioned place preference. Although dopamine release was induced in the nucleus accumbens of prenatally L-DOPA exposed mice at P60 by cocaine, the dopamine release in the nucleus accumbens was not significantly different between the L-DOPA and control groups. However, basal dopamine release was significantly higher in the prenatally L-DOPA exposed mice at P60 suggesting that the L-DOPA exposed mice may require a higher dose of cocaine for induction of cocaine place preference than the controls. The prenatal L-DOPA exposure did not alter cocaine-induced locomotor response, suggesting dissociation between the effects of prenatal L-DOPA exposure on conditioned place preference and locomotor activity. Tissue concentration of dopamine and its metabolites in the striatum and ventral midbrain were significantly affected by the L-DOPA exposure as well as by developmental changes over the P14 to P60

  10. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward.

    PubMed

    Kishida, Kenneth T; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R; Laxton, Adrian W; Tatter, Stephen B; White, Jason P; Ellis, Thomas L; Phillips, Paul E M; Montague, P Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson's disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson's disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  11. Neuronal release of endogenous dopamine from corpus of guinea pig stomach.

    PubMed

    Shichijo, K; Sakurai-Yamashita, Y; Sekine, I; Taniyama, K

    1997-11-01

    Neuronal release of endogenous dopamine was identified in mucosa-free preparations (muscle layer including intramural plexus) from guinea pig stomach corpus by measuring tissue dopamine content and dopamine release and by immunohistochemical methods using a dopamine antiserum. Dopamine content in mucosa-free preparations of guinea pig gastric corpus was one-tenth of norepinephrine content. Electrical transmural stimulation of mucosa-free preparations of gastric corpus increased the release of endogenous dopamine in a frequency-dependent (3-20 Hz) manner. The stimulated release of dopamine was prevented by either removal of external Ca2+ or treatment with tetrodotoxin. Dopamine-immunopositive nerve fibers surrounding choline acetyltransferase-immunopositive ganglion cells were seen in the myenteric plexus of whole mount preparations of gastric corpus even after bilateral transection of the splanchnic nerve proximal to the junction with the vagal nerve (section of nerves between the celiac ganglion and stomach). Domperidone and sulpiride potentiated the stimulated release of acetylcholine and reversed the dopamine-induced inhibition of acetylcholine release from mucosa-free preparations. These results indicate that dopamine is physiologically released from neurons and from possible dopaminergic nerve terminals and regulates cholinergic neuronal activity in the corpus of guinea pig stomach. PMID:9374701

  12. Dopamine and extinction: a convergence of theory with fear and reward circuitry.

    PubMed

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2014-02-01

    Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes.

  13. The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation

    PubMed Central

    Jennings, Katie A.; Platt, Nicola J.; Cragg, Stephanie J.

    2015-01-01

    Dopamine function is disturbed in Parkinson's disease (PD), but whether and how release of dopamine from surviving neurons is altered has long been debated. Nicotinic acetylcholine receptors (nAChRs) on dopamine axons powerfully govern dopamine release and could be critical contributing factors. We revisited whether fundamental properties of dopamine transmission are changed in a parkinsonian brain and tested the potentially profound masking effects of nAChRs. Using real-time detection of dopamine in mouse striatum after a partial 6-hydroxydopamine lesion and under nAChR inhibition, we reveal that dopamine signals show diminished sensitivity to presynaptic activity. This effect manifested as diminished contrast between DA release evoked by the lowest versus highest frequencies. This reduced activity-dependence was underpinned by loss of short-term facilitation of dopamine release, consistent with an increase in release probability (Pr). With nAChRs active, the reduced activity-dependence of dopamine release after a parkinsonian lesion was masked. Consequently, moment-by-moment variation in activity of nAChRs may lead to dynamic co-variation in dopamine signal impairments in PD. PMID:26117304

  14. Neuronal release of endogenous dopamine from corpus of guinea pig stomach.

    PubMed

    Shichijo, K; Sakurai-Yamashita, Y; Sekine, I; Taniyama, K

    1997-11-01

    Neuronal release of endogenous dopamine was identified in mucosa-free preparations (muscle layer including intramural plexus) from guinea pig stomach corpus by measuring tissue dopamine content and dopamine release and by immunohistochemical methods using a dopamine antiserum. Dopamine content in mucosa-free preparations of guinea pig gastric corpus was one-tenth of norepinephrine content. Electrical transmural stimulation of mucosa-free preparations of gastric corpus increased the release of endogenous dopamine in a frequency-dependent (3-20 Hz) manner. The stimulated release of dopamine was prevented by either removal of external Ca2+ or treatment with tetrodotoxin. Dopamine-immunopositive nerve fibers surrounding choline acetyltransferase-immunopositive ganglion cells were seen in the myenteric plexus of whole mount preparations of gastric corpus even after bilateral transection of the splanchnic nerve proximal to the junction with the vagal nerve (section of nerves between the celiac ganglion and stomach). Domperidone and sulpiride potentiated the stimulated release of acetylcholine and reversed the dopamine-induced inhibition of acetylcholine release from mucosa-free preparations. These results indicate that dopamine is physiologically released from neurons and from possible dopaminergic nerve terminals and regulates cholinergic neuronal activity in the corpus of guinea pig stomach.

  15. Dopamine and extinction: a convergence of theory with fear and reward circuitry.

    PubMed

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2014-02-01

    Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. PMID:24269353

  16. Aversive stimuli drive drug seeking in a state of low dopamine tone

    PubMed Central

    Twining, Robert C.; Wheeler, Daniel S.; Ebben, Amanda L.; Jacobsen, Andre J.; Robble, Mykel A.; Mantsch, John R.; Wheeler, Robert A.

    2014-01-01

    Background Stressors negatively impact emotional state and drive drug seeking, in part, by modulating the activity of the mesolimbic dopamine system. Unfortunately, the rapid regulation of dopamine signaling by the aversive stimuli that cause drug seeking is not well characterized. In a series of experiments we scrutinized the subsecond regulation of dopamine signaling by the aversive stimulus, quinine, and tested its ability to cause cocaine seeking. Additionally, we examined the midbrain regulation of both dopamine signaling and cocaine seeking by the stress-sensitive peptide, corticotropin releasing factor (CRF). Methods Combining fast-scan cyclic voltammetry with behavioral pharmacology, we examined the effect of intraoral quinine administration on nucleus accumbens dopamine signaling and hedonic expression in twenty-one male, Sprague-Dawley rats. We tested the role of CRF in modulating aversion-induced changes in dopamine concentration and cocaine seeking by bilaterally infusing the CRF antagonist, CP-376395, into the ventral tegmental area (VTA). Results We found that quinine rapidly reduced dopamine signaling on two distinct timescales. We determined that CRF acted in the VTA to mediate this reduction on only one of these timescales. Further, we found that the reduction of dopamine tone and quinine-induced cocaine seeking were eliminated by blocking the actions of CRF in the VTA during the experience of the aversive stimulus. Conclusions These data demonstrate that stress-induced drug seeking can occur in a terminal environment of low dopamine tone that is dependent on a CRF-induced decrease in midbrain dopamine activity. PMID:25442790

  17. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.

    PubMed

    Mikhailova, Maria A; Bass, Caroline E; Grinevich, Valentina P; Chappell, Ann M; Deal, Alex L; Bonin, Keith D; Weiner, Jeff L; Gainetdinov, Raul R; Budygin, Evgeny A

    2016-10-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors.

  18. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    PubMed Central

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  19. Dopamine-prolactin pathway potentially contributes to the schizophrenia and type 2 diabetes comorbidity.

    PubMed

    Gragnoli, C; Reeves, G M; Reazer, J; Postolache, T T

    2016-01-01

    Schizophrenia (SCZ) and type 2 diabetes (T2D) are clinically associated, and common knowledge attributes this association to side effects of antipsychotic treatment. However, even drug-naive patients with SCZ are at increased risk for T2D. Dopamine dysfunction has a central role in SCZ. It is well-known that dopamine constitutively inhibits prolactin (PRL) secretion via the dopamine receptor 2 (DR2D). If dopamine is increased or if dopamine receptors hyperfunction, PRL may be reduced. During the first SCZ episode, low PRL levels are associated with worse symptoms. PRL is essential in human and social bonding, as well as it is implicated in glucose homeostasis. Dopamine dysfunction, beyond contributing to SCZ symptoms, may lead to altered appetite and T2D. To our knowledge, there are no studies of the genetics of the SCZ-T2D comorbidity focusing jointly on the dopamine and PRL pathway in the attempt to capture molecular heterogeneity correlated to possible disease manifestation heterogeneity. In this dopamine-PRL pathway-focused-hypothesis-driven review on the association of SCZ with T2D, we report a specific revision of what it is known about PRL and dopamine in relation to what we theorize is one of the missing links between the two disorders. We suggest that new studies are necessary to establish the genetic role of PRL and dopamine pathway in SCZ-T2D comorbidity. PMID:27093067

  20. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.

    PubMed

    Mikhailova, Maria A; Bass, Caroline E; Grinevich, Valentina P; Chappell, Ann M; Deal, Alex L; Bonin, Keith D; Weiner, Jeff L; Gainetdinov, Raul R; Budygin, Evgeny A

    2016-10-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors. PMID:27421228

  1. Cytochrome P450 mediates dopamine formation in the brain in vivo.

    PubMed

    Bromek, Ewa; Haduch, Anna; Gołembiowska, Krystyna; Daniel, Władysława A

    2011-09-01

    The cytochrome P450-mediated synthesis of dopamine from tyramine has been shown in vitro. The aim of the present study was to demonstrate the ability of rat cytochrome P450 (CYP) 2D to synthesize dopamine from tyramine in the brain in vivo. We employed two experimental models using reserpinized rats with a blockade of the classical pathway of dopamine synthesis from tyrosine. Model A estimated dopamine production from endogenous tyramine in brain structures in vivo (ex vivo measurement of a tissue dopamine level), while Model B measured extracellular dopamine produced from exogenous tyramine (an in vivo microdialysis). In Model A, quinine (a CYP2D inhibitor) given intraperitoneally caused a significant decrease in dopamine level in the striatum and nucleus accumbens and tended to fall in the substantia nigra and frontal cortex. In Model B, an increase in extracellular dopamine level was observed after tyramine given intrastructurally (the striatum). After joint administration of tyramine and quinine, the amount of the dopamine formed was significantly lower compared to the group receiving tyramine only. The results of the two complementary experimental models indicate that the hydroxylation of tyramine to dopamine may take place in rat brain in vivo, and that CYP2D catalyzes this reaction.

  2. Amphetamine and methamphetamine reduce striatal dopamine transporter function without concurrent dopamine transporter relocalization.

    PubMed

    German, Christopher L; Hanson, Glen R; Fleckenstein, Annette E

    2012-10-01

    Amphetamine (AMPH) and methamphetamine (METH) alter dopamine transporter (DAT) function. In vitro heterologous cell line and synaptosome studies demonstrate AMPH-induced DAT internalization, implicating relocalization in reduced DAT uptake following drug exposure. However, few studies have evaluated DAT localization following in vivo AMPH/METH administration. To determine DAT subcellular localization following drug administration, a centrifugation technique was developed to isolate striatal synaptosomal membrane and vesicle fractions. DAT was distributed between the synaptosomal membrane (60%) and endosomal vesicles (40%), and in vitro application of the protein kinase C activator phorbol 12-myristate 13-acetate to striatal synaptosomes caused DAT internalization into the vesicle fractions. In contrast, neither single nor repeated in vivo AMPH and/or METH administrations altered DAT localization 5, 15, 30, or 60 min post-treatment, despite reduced DAT uptake. Importantly, repeated METH injections uniformly decreased total DAT immunoreactivity within all fractions 7 days post-treatment. These findings suggest that factors other than internalization can contribute to the observed acute and persistent DAT dysfunction and dopaminergic deficits following in vivo AMPH or METH administration.

  3. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice

    PubMed Central

    Zhang, Hai-Ying; Gao, Ming; Liu, Qing-Rong; Bi, Guo-Hua; Li, Xia; Yang, Hong-Ju; Gardner, Eliot L.; Wu, Jie

    2014-01-01

    Cannabinoid CB2 receptors (CB2Rs) have been recently reported to modulate brain dopamine (DA)-related behaviors; however, the cellular mechanisms underlying these actions are unclear. Here we report that CB2Rs are expressed in ventral tegmental area (VTA) DA neurons and functionally modulate DA neuronal excitability and DA-related behavior. In situ hybridization and immunohistochemical assays detected CB2 mRNA and CB2R immunostaining in VTA DA neurons. Electrophysiological studies demonstrated that activation of CB2Rs by JWH133 or other CB2R agonists inhibited VTA DA neuronal firing in vivo and ex vivo, whereas microinjections of JWH133 into the VTA inhibited cocaine self-administration. Importantly, all of the above findings observed in WT or CB1−/− mice are blocked by CB2R antagonist and absent in CB2−/− mice. These data suggest that CB2R-mediated reduction of VTA DA neuronal activity may underlie JWH133's modulation of DA-regulated behaviors. PMID:25368177

  4. Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation.

    PubMed

    Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping

    2015-07-24

    One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.

  5. Dual Control of Dopamine Synthesis and Release by Presynaptic and Postsynaptic Dopamine D2 Receptors

    PubMed Central

    Anzalone, Andrea; Lizardi-Ortiz, José E.; Ramos, Maria; De Mei, Claudia; Hopf, F. Woodward; Iaccarino, Ciro; Halbout, Briac; Jacobsen, Jacob; Kinoshita, Chisato; Welter, Marc; Caron, Marc G.; Bonci, Antonello; Sulzer, David

    2012-01-01

    Dysfunctions of dopaminergic homeostasis leading to either low or high dopamine (DA) levels are causally linked to Parkinson's disease, schizophrenia, and addiction. Major sites of DA synthesis are the mesencephalic neurons originating in the substantia nigra and ventral tegmental area; these structures send major projections to the dorsal striatum (DSt) and nucleus accumbens (NAcc), respectively. DA finely tunes its own synthesis and release by activating DA D2 receptors (D2R). To date, this critical D2R-dependent function was thought to be solely due to activation of D2Rs on dopaminergic neurons (D2 autoreceptors); instead, using site-specific D2R knock-out mice, we uncover that D2 heteroreceptors located on non-DAergic medium spiny neurons participate in the control of DA levels. This D2 heteroreceptor-mediated mechanism is more efficient in the DSt than in NAcc, indicating that D2R signaling differentially regulates mesolimbic- versus nigrostriatal-mediated functions. This study reveals previously unappreciated control of DA signaling, shedding new light on region-specific regulation of DA-mediated effects. PMID:22745501

  6. Pharmacological differences between the D-2 autoreceptor and the D-1 dopamine receptor in rabbit retina

    SciTech Connect

    Dubocovich, M.L.; Weiner, N.

    1985-06-01

    The effect of dopamine receptor agonists and antagonists was studied on the calcium-dependent release of (/sup 3/H)dopamine elicited by field stimulation at 3 Hz for a duration of 1 min (20 mA, 2 msec) from the rabbit retina in vitro and on adenylate cyclase activity in homogenates of rabbit retina. The relative order of potency of dopamine receptor agonists to inhibit the stimulation-evoked (/sup 3/H)dopamine release was pergolide greater than bromocriptine greater than apomorphine greater than LY 141865 greater than N,N-di-n-propyldopamine greater than or equal to dopamine. The relative order of potencies of dopamine receptor antagonists to increase (/sup 3/H)dopamine release was: S-sulpiride greater than or equal to domperidone greater than or equal to spiroperidol greater than metoclopramide greater than fluphenazine greater than or equal to R-sulpiride. alpha-Flupenthixol (0.01-1 microM) and (+)-butaclamol (0.01-1 microM) did not increase (/sup 3/H)dopamine overflow when added alone, but they antagonized the concentration-dependent inhibitory effect of apomorphine (0.1-10 microM). These results suggest that the dopamine inhibitory autoreceptor involved in the modulation of dopamine release from the rabbit retina possesses the pharmacological characteristics of a D-2 dopamine receptor. Maximal stimulation by 30 microM dopamine resulted in a 3-fold increase in adenylate cyclase activity with half-maximal stimulation occurring at a concentration of 2.46 microM. Apomorphine and pergolide elicited a partial stimulation of adenylate cyclase activity. However, at low concentrations both compounds were more potent than dopamine.

  7. Plutonium (III) and uranium (III) nitrile complexes

    SciTech Connect

    Enriquez, A. E.; Matonic, J. H.; Scott, B. L.; Neu, M. P.

    2002-01-01

    Iodine oxidation of uranium and plutonium metals in tetrahydrofuran and pyridine form AnI{sub 3}(THF){sub 4} and AnI{sub 3}(py){sub 4} (An = Pu, U). These compounds represent convenient entries Into solution An(III) chemistry in organic solvents. Extensions of the actinide metal oxidation methodology in nitrile solvents by I{sub 2}, AgPF{sub 6}, and TIPF{sub 6} are presented here. Treatment of Pu{sup 0} in acetonitrile with iodine yields a putative PuI{sub 3}(NCMe){sub x} intermediate which can be trapped with the tripodal nitrogen donor ligand tpza (tpza = (tris[(2-pyrazinyl)methyl]amine)) and forms the eight-coordinate complex (tpza)PuI{sub 3}(NCMe). Treatment of excess U{sup 0} metal by iodine in acetonitrile afforded a brown crystalline mixed valence complex, [U(NCMe){sub 9}][UI{sub 6}][I], instead of UI{sub 3}(NCMe){sub 4}. The analogous reaction in bezonitrile forms red crystalline UI{sub 4}(NCPh){sub 4}. In contrast, treatment of UI{sub 3}(THF){sub 4} with excess acetonitrile cleanly generates [U(NCMe){sub 9}][I]{sub 3}. Oxidation of Pu{sup 0} by either TI(I) or Ag(I) hexafluorophosphate salts generates a nine-coordinate homoleptic acetonitrile adduct [Pu(NCMe){sub 9}][PF{sub 6}]{sub 3}. Attempts to oxidize U{sub 0} with these salts were unsuccessful.

  8. Oxidatively Generated DNA Damage Following Cu(II)-Catalysis of Dopamine and Related Catecholamine Neurotransmitters and Neurotoxins: Role of Reactive Oxygen Species1

    PubMed Central

    Spencer, Wendy A.; Jeyabalan, Jeyaprakash; Kichambre, Sunita; Gupta, Ramesh C.

    2012-01-01

    There is increasing evidence supporting a causal role of oxidatively damaged DNA in neurodegeneration during the natural aging process and neurodegenerative diseases such as Parkinson’s and Alzheimer’s. The presence of redox-active catecholamine neurotransmitters coupled with the localization of catalytic copper to DNA suggests a plausible role for these agents in the induction of oxidatively generated DNA damage. In this study we have investigated the role of Cu(II)-catalyzed oxidation of several catecholamine neurotransmitters and related neurotoxins to induce oxidatively generated DNA damage. Auto-oxidation of all catechol neurotransmitters and related congeners tested resulted in the formation of nearly a dozen oxidation DNA products resulting in a decomposition pattern that was essentially identical for all agents tested. The presence of Cu(II), and to a lesser extent Fe(III), had no effect on the decomposition pattern but substantially enhanced the DNA product levels by up to 75 fold, with dopamine producing the highest levels of unidentified oxidation DNA products (383 ± 46 adducts/106 nucleotides), comparable to 8-oxo-7,8-dihydro-2′-deoxyguanosine levels under the same conditions (122 ± 19 adducts/106 nucleotides). The addition of sodium azide, 2,2,6,6-tetramethyl-4-piperidone, tiron, catalase, bathocuproine or methional to the dopamine/Cu(II) reaction mixture resulted in a substantial decrease (>90%) in oxidation DNA product levels, indicating a role of singlet oxygen, superoxide, H2O2, Cu(I) and Cu(I)OOH in their formation. While the addition of N-tert-butyl-α-phenylnitrone significantly decreased (67%) dopamine-mediated oxidatively damaged DNA, three other hydroxyl radical scavengers, ascorbic acid, sodium benzoate and mannitol, had little to no effect on these oxidation DNA product levels, suggesting that free hydroxyl radicals may have limited involvement in this dopamine/Cu(II)-mediated oxidatively generated DNA damage. These studies suggest

  9. Oxidatively generated DNA damage after Cu(II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: Role of reactive oxygen species.

    PubMed

    Spencer, Wendy A; Jeyabalan, Jeyaprakash; Kichambre, Sunita; Gupta, Ramesh C

    2011-01-01

    There is increasing evidence supporting a causal role for oxidatively damaged DNA in neurodegeneration during the natural aging process and in neurodegenerative diseases such as Parkinson and Alzheimer. The presence of redox-active catecholamine neurotransmitters coupled with the localization of catalytic copper to DNA suggests a plausible role for these agents in the induction of oxidatively generated DNA damage. In this study we have investigated the role of Cu(II)-catalyzed oxidation of several catecholamine neurotransmitters and related neurotoxins in inducing oxidatively generated DNA damage. Autoxidation of all catechol neurotransmitters and related congeners tested resulted in the formation of nearly a dozen oxidation DNA products resulting in a decomposition pattern that was essentially identical for all agents tested. The presence of Cu(II), and to a lesser extent Fe(III), had no effect on the decomposition pattern but substantially enhanced the DNA product levels by up to 75-fold, with dopamine producing the highest levels of unidentified oxidation DNA products (383±46 adducts/10(6) nucleotides), nearly 3-fold greater than 8-oxo-7,8-dihydro-2'-deoxyguanosine (122±19 adducts/10(6) nucleotides) under the same conditions. The addition of sodium azide, 2,2,6,6-tetramethyl-4-piperidone, tiron, catalase, bathocuproine, or methional to the dopamine/Cu(II) reaction mixture resulted in a substantial decrease (>90%) in oxidation DNA product levels, indicating a role for singlet oxygen, superoxide, H(2)O(2), Cu(I), and Cu(I)OOH in their formation. Whereas the addition of N-tert-butyl-α-phenylnitrone significantly decreased (67%) dopamine-mediated oxidatively damaged DNA, three other hydroxyl radical scavengers, ascorbic acid, sodium benzoate, and mannitol, had little to no effect on these oxidation DNA product levels, suggesting that free hydroxyl radicals may have limited involvement in this dopamine/Cu(II)-mediated oxidatively generated DNA damage. These

  10. Dopamine Transporter Blockade Increases LTP in the CA1 Region of the Rat Hippocampus via Activation of the D3 Dopamine Receptor

    ERIC Educational Resources Information Center

    Swant, Jarod; Wagner, John J.

    2006-01-01

    Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic…

  11. Cranial mononeuropathy III - diabetic type

    MedlinePlus

    ... gov/ency/article/000692.htm Cranial mononeuropathy III - diabetic type To use the sharing features on this page, please enable JavaScript. Cranial mononeuropathy III -- diabetic type -- is usually a complication of diabetes that causes ...

  12. Occupancy of dopamine D2/3 receptors in rat brain by endogenous dopamine measured with the agonist positron emission tomography radioligand [11C]MNPA.

    PubMed

    Seneca, Nicholas; Zoghbi, Sami S; Skinbjerg, Mette; Liow, Jeih-San; Hong, Jinsoo; Sibley, David R; Pike, Victor W; Halldin, Christer; Innis, Robert B

    2008-10-01

    Estimates of dopamine D(2/3) receptor occupancy by endogenous dopamine using positron emission tomography (PET) in animals have varied almost threefold. This variability may have been caused by incomplete depletion of dopamine or by the use of antagonist radioligands, which appear less sensitive than agonist radioligands to changes in endogenous dopamine. PET scans were performed in rats with the agonist PET radioligand [(11)C]MNPA ([O-methyl-(11)C]2-methoxy-N-propylnorapomorphine). [(11)C]MNPA was injected as a bolus plus constant infusion to achieve steady-state concentration in the body and equilibrium receptor binding in the brain. Radioligand binding was compared at baseline and after treatment with reserpine plus alpha-methyl-para-tyrosine, which cause approximately 95% depletion of endogenous dopamine. Depletion of dopamine increased radioligand binding in striatum but had little effect in cerebellum. Striatal [(11)C]MNPA binding potential was 0.93 +/- 0.12 at baseline and increased to 1.99 +/- 0.25 after dopamine depletion. Occupancy of D(2/3) receptors by endogenous dopamine at baseline was calculated to be approximately 53%. Striatal binding was displaceable with raclopride, but not with BP 897 (a selective D(3) compound), thus confirming the D(2) receptor specificity of [(11)C]MNPA binding. Radioactivity extracted from rat brain contained only 8-10% radiometabolites and was insignificantly altered by administration of reserpine plus alpha-methyl-para-tyrosine. Hence, dopamine depletion did not increase the PET measurements via an effect on radiotracer metabolism. Our in vivo estimate of dopamine's occupancy of D(2/3) receptors at baseline is higher than that previously reported using antagonist radioligands and PET, but is similar to that reported using agonist radioligands and ex vivo measurements.

  13. Neurotransmitter and psychostimulant recognition by the dopamine transporter.

    PubMed

    Wang, Kevin H; Penmatsa, Aravind; Gouaux, Eric

    2015-05-21

    Na(+)/Cl(-)-coupled biogenic amine transporters are the primary targets of therapeutic and abused drugs, ranging from antidepressants to the psychostimulants cocaine and amphetamines, and to their cognate substrates. Here we determine X-ray crystal structures of the Drosophila melanogaster dopamine transporter (dDAT) bound to its substrate dopamine, a substrate analogue 3,4-dichlorophenethylamine, the psychostimulants d-amphetamine and methamphetamine, or to cocaine and cocaine analogues. All ligands bind to the central binding site, located approximately halfway across the membrane bilayer, in close proximity to bound sodium and chloride ions. The central binding site recognizes three chemically distinct classes of ligands via conformational changes that accommodate varying sizes and shapes, thus illustrating molecular principles that distinguish substrates from inhibitors in biogenic amine transporters.

  14. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation

    PubMed Central

    Matthews, Gillian A.; Nieh, Edward H.; Vander Weele, Caitlin M.; Halbert, Sarah A.; Pradhan, Roma V.; Yosafat, Ariella S.; Glober, Gordon F.; Izadmehr, Ehsan M.; Thomas, Rain E.; Lacy, Gabrielle D.; Wildes, Craig P.; Ungless, Mark A.; Tye, Kay M.

    2016-01-01

    Summary The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PaperClip PMID:26871628

  15. Neurobehavioral Evidence for Changes in Dopamine System Activity During Adolescence

    PubMed Central

    Wahlstrom, Dustin; White, Tonya; Luciana, Monica

    2010-01-01

    Human adolescence has been characterized by increases in risk-taking, emotional lability, and deficient patterns of behavioral regulation. These behaviors have often been attributed to changes in brain structure that occur during this developmental period, notably alterations in gray and white matter that impact synaptic architecture in frontal, limbic, and striatal regions. In this review, we provide a rationale for considering that these behaviors may be due to changes in dopamine system activity, particularly overactivity, during adolescence relative to either childhood or adulthood. This rationale relies on animal data due to limitations in assessing neurochemical activity more directly in juveniles. Accordingly, we also present a strategy that incorporates molecular genetic techniques to infer the status of the underlying tone of the dopamine system across developmental groups. Implications for the understanding of adolescent behavioral development are discussed. PMID:20026110

  16. Effects of dopamine blockade on gonadotropins and testosterone in men.

    PubMed

    Siris, S G; Siris, E S; van Kammen, D P; Docherty, J P; Alexander, P E; Bunney, W E

    1980-02-01

    The authors found that plasma luteinizing hormone (LH), prolactin, and testosterone were initially normal in nine acutely psychotic males with schizophrenia or schizo-affective disorder; follicle-stimulating hormone (FSH) was normal in eight of the nine. When patients were treated with pimozide, a relatively specific dopamine receptor blocker, there were statistically significant declines in FSH and LH, although levels remained within normal limits. Prolactin rose significantly, but testosterone did not change. The observed reductions in FSH and LH concentrations are consistent with the hypotheses that dopamine and/or prolactin play a role in gonadotropin secretion. The maintenance of normal levels of gonadotropins and testosterone, however, suggests that these patients possessed relatively normal hypothalamic-pituitary-gonadal axis function before and during a course of neuroleptic treatment.

  17. Dopamine responses comply with basic assumptions of formal learning theory.

    PubMed

    Waelti, P; Dickinson, A; Schultz, W

    2001-07-01

    According to contemporary learning theories, the discrepancy, or error, between the actual and predicted reward determines whether learning occurs when a stimulus is paired with a reward. The role of prediction errors is directly demonstrated by the observation that learning is blocked when the stimulus is paired with a fully predicted reward. By using this blocking procedure, we show that the responses of dopamine neurons to conditioned stimuli was governed differentially by the occurrence of reward prediction errors rather than stimulus-reward associations alone, as was the learning of behavioural reactions. Both behavioural and neuronal learning occurred predominantly when dopamine neurons registered a reward prediction error at the time of the reward. Our data indicate that the use of analytical tests derived from formal behavioural learning theory provides a powerful approach for studying the role of single neurons in learning.

  18. Presynaptic control of dopamine release by BETA-phenylethylamine

    SciTech Connect

    Zharikova, A.D.; Godukhin, O.V.

    1985-04-01

    The authors study the effect of extracellular ions (Ca/sup 2 +/, Na/sup 2 +/) on the beta-phenylethylamine (beta-PEA) releasing effect, dependence of this effect on the membrane potential of dopaminergic endings, and the participation of dopamine presynaptic autoreceptors in the realization of the effects of beta-PEA on dopamine (DA) release. Experi ments were carried out on noninbred male albino rats. By means of a microsyringe, (/sup 3/H)-DA hydrochloride was injected. The significance of the difference in levels of (/sup 3/H)-DA release during analogous periods of perfusion in the groups of animals compared was estimated by Student's test. These experiments in vivo thus demonstrated the ability of beta-PEA to regulate DA release in different directions depending on the functional state of the dopaminergic neuron.

  19. Neurotransmitter and psychostimulant recognition by the dopamine transporter

    PubMed Central

    Wang, Kevin H.; Penmatsa, Aravind; Gouaux, Eric

    2015-01-01

    Na+/Cl−-coupled biogenic amine transporters are the primary targets of therapeutic and abused drugs, ranging from antidepressants to the psychostimulants cocaine and amphetamines, and to their cognate substrates. Here we determine x-ray crystal structures of the Drosophila melanogaster dopamine transporter (dDAT) bound to its substrate dopamine (DA), a substrate analogue 3,4-dichlorophenethylamine, the psychostimulants D-amphetamine, methamphetamine, or to cocaine and cocaine analogues. All ligands bind to the central binding site, located approximately halfway across the membrane bilayer, in close proximity to bound sodium and chloride ions. The central binding site recognizes three chemically distinct classes of ligands via conformational changes that accommodate varying sizes and shapes, thus illustrating molecular principles that distinguish substrates from inhibitors in biogenic amine transporters. PMID:25970245

  20. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films.

    PubMed

    Kim, Semin; Jang, Lindy K; Park, Hyun S; Lee, Jae Young

    2016-01-01

    Electrode surfaces have been widely modified with electrically conductive polymers, including polypyrrole (PPY), to improve the performance of electrodes. To utilize conductive polymers for electrode modification, strong adhesion between the polymer films and electrode substrates should be ensured with high electrical/electrochemical activities. In this study, PPY films were electrochemically polymerized on electrodes (e.g., indium tin oxide (ITO)) with dopamine as a bio-inspired adhesive molecule. Efficient and fast PPY electrodeposition with dopamine (PDA/PPY) was found; the resultant PDA/PPY films exhibited greatly increased adhesion strengths of up to 3.7 ± 0.8 MPa and the modified electrodes had electrochemical impedances two to three orders of magnitude lower than that of an unmodified electrode. This electrochemical deposition of adhesive and conductive PDA/PPY offers a facile and versatile electrode modification for various applications, such as biosensors and batteries.

  1. Dopamine drives Drosophila sechellia adaptation to its toxic host.

    PubMed

    Lavista-Llanos, Sofía; Svatoš, Aleš; Kai, Marco; Riemensperger, Thomas; Birman, Serge; Stensmyr, Marcus C; Hansson, Bill S

    2014-01-01

    Many insect species are host-obligate specialists. The evolutionary mechanism driving the adaptation of a species to a toxic host is, however, intriguing. We analyzed the tight association of Drosophila sechellia to its sole host, the fruit of Morinda citrifolia, which is toxic to other members of the melanogaster species group. Molecular polymorphisms in the dopamine regulatory protein Catsup cause infertility in D. sechellia due to maternal arrest of oogenesis. In its natural host, the fruit compensates for the impaired maternal dopamine metabolism with the precursor l-DOPA, resuming oogenesis and stimulating egg production. l-DOPA present in morinda additionally increases the size of D. sechellia eggs, what in turn enhances early fitness. We argue that the need of l-DOPA for successful reproduction has driven D. sechellia to become an M. citrifolia obligate specialist. This study illustrates how an insect's dopaminergic system can sustain ecological adaptations by modulating ontogenesis and development.

  2. Deep and beautiful. The reward prediction error hypothesis of dopamine.

    PubMed

    Colombo, Matteo

    2014-03-01

    According to the reward-prediction error hypothesis (RPEH) of dopamine, the phasic activity of dopaminergic neurons in the midbrain signals a discrepancy between the predicted and currently experienced reward of a particular event. It can be claimed that this hypothesis is deep, elegant and beautiful, representing one of the largest successes of computational neuroscience. This paper examines this claim, making two contributions to existing literature. First, it draws a comprehensive historical account of the main steps that led to the formulation and subsequent success of the RPEH. Second, in light of this historical account, it explains in which sense the RPEH is explanatory and under which conditions it can be justifiably deemed deeper than the incentive salience hypothesis of dopamine, which is arguably the most prominent contemporary alternative to the RPEH. PMID:24252364

  3. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films

    PubMed Central

    Kim, Semin; Jang, Lindy K.; Park, Hyun S.; Lee, Jae Young

    2016-01-01

    Electrode surfaces have been widely modified with electrically conductive polymers, including polypyrrole (PPY), to improve the performance of electrodes. To utilize conductive polymers for electrode modification, strong adhesion between the polymer films and electrode substrates should be ensured with high electrical/electrochemical activities. In this study, PPY films were electrochemically polymerized on electrodes (e.g., indium tin oxide (ITO)) with dopamine as a bio-inspired adhesive molecule. Efficient and fast PPY electrodeposition with dopamine (PDA/PPY) was found; the resultant PDA/PPY films exhibited greatly increased adhesion strengths of up to 3.7 ± 0.8 MPa and the modified electrodes had electrochemical impedances two to three orders of magnitude lower than that of an unmodified electrode. This electrochemical deposition of adhesive and conductive PDA/PPY offers a facile and versatile electrode modification for various applications, such as biosensors and batteries. PMID:27459901

  4. Opponency Revisited: Competition and Cooperation Between Dopamine and Serotonin

    PubMed Central

    Boureau, Y-Lan; Dayan, Peter

    2011-01-01

    Affective valence lies on a spectrum ranging from punishment to reward. The coding of such spectra in the brain almost always involves opponency between pairs of systems or structures. There is ample evidence for the role of dopamine in the appetitive half of this spectrum, but little agreement about the existence, nature, or role of putative aversive opponents such as serotonin. In this review, we consider the structure of opponency in terms of previous biases about the nature of the decision problems that animals face, the conflicts that may thus arise between Pavlovian and instrumental responses, and an additional spectrum joining invigoration to inhibition. We use this analysis to shed light on aspects of the role of serotonin and its interactions with dopamine. PMID:20881948

  5. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films.

    PubMed

    Kim, Semin; Jang, Lindy K; Park, Hyun S; Lee, Jae Young

    2016-01-01

    Electrode surfaces have been widely modified with electrically conductive polymers, including polypyrrole (PPY), to improve the performance of electrodes. To utilize conductive polymers for electrode modification, strong adhesion between the polymer films and electrode substrates should be ensured with high electrical/electrochemical activities. In this study, PPY films were electrochemically polymerized on electrodes (e.g., indium tin oxide (ITO)) with dopamine as a bio-inspired adhesive molecule. Efficient and fast PPY electrodeposition with dopamine (PDA/PPY) was found; the resultant PDA/PPY films exhibited greatly increased adhesion strengths of up to 3.7 ± 0.8 MPa and the modified electrodes had electrochemical impedances two to three orders of magnitude lower than that of an unmodified electrode. This electrochemical deposition of adhesive and conductive PDA/PPY offers a facile and versatile electrode modification for various applications, such as biosensors and batteries. PMID:27459901

  6. Deep and beautiful. The reward prediction error hypothesis of dopamine.

    PubMed

    Colombo, Matteo

    2014-03-01

    According to the reward-prediction error hypothesis (RPEH) of dopamine, the phasic activity of dopaminergic neurons in the midbrain signals a discrepancy between the predicted and currently experienced reward of a particular event. It can be claimed that this hypothesis is deep, elegant and beautiful, representing one of the largest successes of computational neuroscience. This paper examines this claim, making two contributions to existing literature. First, it draws a comprehensive historical account of the main steps that led to the formulation and subsequent success of the RPEH. Second, in light of this historical account, it explains in which sense the RPEH is explanatory and under which conditions it can be justifiably deemed deeper than the incentive salience hypothesis of dopamine, which is arguably the most prominent contemporary alternative to the RPEH.

  7. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films

    NASA Astrophysics Data System (ADS)

    Kim, Semin; Jang, Lindy K.; Park, Hyun S.; Lee, Jae Young

    2016-07-01

    Electrode surfaces have been widely modified with electrically conductive polymers, including polypyrrole (PPY), to improve the performance of electrodes. To utilize conductive polymers for electrode modification, strong adhesion between the polymer films and electrode substrates should be ensured with high electrical/electrochemical activities. In this study, PPY films were electrochemically polymerized on electrodes (e.g., indium tin oxide (ITO)) with dopamine as a bio-inspired adhesive molecule. Efficient and fast PPY electrodeposition with dopamine (PDA/PPY) was found; the resultant PDA/PPY films exhibited greatly increased adhesion strengths of up to 3.7 ± 0.8 MPa and the modified electrodes had electrochemical impedances two to three orders of magnitude lower than that of an unmodified electrode. This electrochemical deposition of adhesive and conductive PDA/PPY offers a facile and versatile electrode modification for various applications, such as biosensors and batteries.

  8. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation.

    PubMed

    Matthews, Gillian A; Nieh, Edward H; Vander Weele, Caitlin M; Halbert, Sarah A; Pradhan, Roma V; Yosafat, Ariella S; Glober, Gordon F; Izadmehr, Ehsan M; Thomas, Rain E; Lacy, Gabrielle D; Wildes, Craig P; Ungless, Mark A; Tye, Kay M

    2016-02-11

    The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PAPERCLIP. PMID:26871628

  9. Effects of dopamine agonists on hypothalamic defensive attack in cats.

    PubMed

    Maeda, H; Sato, T; Maki, S

    1985-07-01

    The effects of methamphetamine (MAT) and apomorphine (APO), dopamine agonists, were studied in 16 cats to evaluate their effects on threshold for defensive attack behavior elicited by electrical stimulation of the ventromedial hypothalamic nucleus (VMH). Directed attack and hissing were selected from elementary responses as constituting a defensive attack. Hissing threshold was measured in two situations, one with human provocation and the other without provocation. MAT administered systemically lowered the thresholds for all three types of responses in a dose-related manner (0.5, 1.0, and 3.0 mg/kg). The effects of 1.0 mg/kg of APO were almost identical to those observed with 0.5 or 1.0 mg/kg of MAT. These results suggest that MAT-induced aggressive behavior may be mediated by a dopamine-induced increase in the excitability of the VMH. PMID:4059404

  10. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors.

    PubMed

    de Kloet, Sybren F; Mansvelder, Huibert D; De Vries, Taco J

    2015-10-15

    Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are found in most brain regions, many studies on addiction have focused on the mesolimbic system and its reported behavioral correlates such as reward processing and reinforcement learning. Profound modulatory cholinergic input from the pedunculopontine and laterodorsal tegmentum to dopaminergic midbrain nuclei as well as local cholinergic interneuron projections to dopamine neuron axons in the striatum may play a major role in the effects of nicotine. Moreover, an indirect mesocorticolimbic feedback loop involving the medial prefrontal cortex may be involved in behavioral characteristics of nicotine addiction. Therefore, this review will highlight current understanding of the effects of nicotine on the function of mesolimbic and mesocortical dopamine projections in the mesocorticolimbic circuit. PMID:26208783

  11. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation.

    PubMed

    Matthews, Gillian A; Nieh, Edward H; Vander Weele, Caitlin M; Halbert, Sarah A; Pradhan, Roma V; Yosafat, Ariella S; Glober, Gordon F; Izadmehr, Ehsan M; Thomas, Rain E; Lacy, Gabrielle D; Wildes, Craig P; Ungless, Mark A; Tye, Kay M

    2016-02-11

    The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PAPERCLIP.

  12. Distributed and Mixed Information in Monosynaptic Inputs to Dopamine Neurons.

    PubMed

    Tian, Ju; Huang, Ryan; Cohen, Jeremiah Y; Osakada, Fumitaka; Kobak, Dmitry; Machens, Christian K; Callaway, Edward M; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2016-09-21

    Dopamine neurons encode the difference between actual and predicted reward, or reward prediction error (RPE). Although many models have been proposed to account for this computation, it has been difficult to test these models experimentally. Here we established an awake electrophysiological recording system, combined with rabies virus and optogenetic cell-type identification, to characterize the firing patterns of monosynaptic inputs to dopamine neurons while mice performed classical conditioning tasks. We found that each variable required to compute RPE, including actual and predicted reward, was distributed in input neurons in multiple brain areas. Further, many input neurons across brain areas signaled combinations of these variables. These results demonstrate that even simple arithmetic computations such as RPE are not localized in specific brain areas but, rather, distributed across multiple nodes in a brain-wide network. Our systematic method to examine both activity and connectivity revealed unexpected redundancy for a simple computation in the brain. PMID:27618675

  13. Hypothyroidism leads to increased dopamine receptor sensitivity and concentration

    SciTech Connect

    Crocker, A.D.; Overstreet, D.H.; Crocker, J.M.

    1986-06-01

    Rats treated with iodine-131 were confirmed to be hypothyroid by their reduced baseline core body temperatures, reduced serum thyroxine concentrations and elevated serum thyroid stimulating hormone concentrations. When hypothyroid rats were compared to euthyroid controls they were more sensitive to the effects of apomorphine (1.0 mumol/kg) on stereotypy, operant responding and body temperature and showed a smaller reduction in locomotor activity after injection of haloperidol (0.25 mumol/kg). Receptor binding studies on striatal homogenates indicated that hypothyroid rats had increased concentrations of D2 dopamine receptors but there was no change in the affinity. It is concluded that hypothyroidism increases dopamine receptor sensitivity by increasing receptor concentration.

  14. Beyond cAMP: The Regulation of Akt and GSK3 by Dopamine Receptors

    PubMed Central

    Beaulieu, Jean-Martin; Del’Guidice, Thomas; Sotnikova, Tatyana D.; Lemasson, Morgane; Gainetdinov, Raul R.

    2011-01-01

    Brain dopamine receptors have been preferred targets for numerous pharmacological compounds developed for the treatment of various neuropsychiatric disorders. Recent discovery that D2 dopamine receptors, in addition to cAMP pathways, can engage also in Akt/GSK3 signaling cascade provided a new framework to understand intracellular signaling mechanisms involved in dopamine-related behaviors and pathologies. Here we review a recent progress in understanding the role of Akt, GSK3, and related signaling molecules in dopamine receptor signaling and functions. Particularly, we focus on the molecular mechanisms involved, interacting partners, role of these signaling events in the action of antipsychotics, psychostimulants, and antidepressants as well as involvement in pathophysiology of schizophrenia, bipolar disorder, and Parkinson’s disease. Further understanding of the role of Akt/GSK3 signaling in dopamine receptor functions could provide novel targets for pharmacological interventions in dopamine-related disorders. PMID:22065948

  15. Dopamine Signaling Regulates Fat Content through β-Oxidation in Caenorhabditis elegans

    PubMed Central

    Barros, Alexandre Guimarães de Almeida; Bridi, Jessika Cristina; de Souza, Bruno Rezende; de Castro Júnior, Célio; de Lima Torres, Karen Cecília; Malard, Leandro; Jorio, Ado; de Miranda, Débora Marques; Ashrafi, Kaveh; Romano-Silva, Marco Aurélio

    2014-01-01

    The regulation of energy balance involves an intricate interplay between neural mechanisms that respond to internal and external cues of energy demand and food availability. Compelling data have implicated the neurotransmitter dopamine as an important part of body weight regulation. However, the precise mechanisms through which dopamine regulates energy homeostasis remain poorly understood. Here, we investigate mechanisms through which dopamine modulates energy storage. We showed that dopamine signaling regulates fat reservoirs in Caenorhabditis elegans. We found that the fat reducing effects of dopamine were dependent on dopaminergic receptors and a set of fat oxidation enzymes. Our findings reveal an ancient role for dopaminergic regulation of fat and suggest that dopamine signaling elicits this outcome through cascades that ultimately mobilize peripheral fat depots. PMID:24465759

  16. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry

    PubMed Central

    Ikemoto, Satoshi; Yang, Chen; Tan, Aaron

    2015-01-01

    Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine’s role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders. PMID:25907747

  17. Classic Studies on the Interaction of Cocaine and the Dopamine Transporter.

    PubMed

    Verma, Vivek

    2015-12-31

    The dopamine transporter is responsible for recycling dopamine after release. Inhibitors of the dopamine transporter, such as cocaine, will stop the reuptake of dopamine and allow it to stay extracellularly, causing prominent changes at the molecular, cellular, and behavioral levels. There is much left to be known about the mechanism and site(s) of binding, as well as the effect that cocaine administration does to dopamine transporter-cocaine binding sites and gene expression which also plays a strong role in cocaine abusers and their behavioral characteristics. Thus, if more light is shed on the dopamine transporter-cocaine interaction, treatments for addiction and even other diseases of the dopaminergic system may not be too far ahead. As today's ongoing research expands on the shoulders of classic research done in the 1990s and 2000s, the foundation of core research done in that time period will be reviewed, which forms the basis of today's work and tomorrow's therapies. PMID:26598579

  18. Nicotine decreases ethanol-induced dopamine signaling and increases self-administration via stress hormones.

    PubMed

    Doyon, William M; Dong, Yu; Ostroumov, Alexey; Thomas, Alyse M; Zhang, Tao A; Dani, John A

    2013-08-01

    Tobacco smoking is a well-known risk factor for subsequent alcohol abuse, but the neural events underlying this risk remain largely unknown. Alcohol and nicotine reinforcement involve common neural circuitry, including the mesolimbic dopamine system. We demonstrate in rodents that pre-exposure to nicotine increases alcohol self-administration and decreases alcohol-induced dopamine responses. The blunted dopamine response was due to increased inhibitory synaptic transmission onto dopamine neurons. Blocking stress hormone receptors prior to nicotine exposure prevented all interactions with alcohol that we measured, including the increased inhibition onto dopamine neurons, the decreased dopamine responses, and the increased alcohol self-administration. These results indicate that nicotine recruits neuroendocrine systems to influence neurotransmission and behavior associated with alcohol reinforcement.

  19. Research review: dopamine transfer deficit: a neurobiological theory of altered reinforcement mechanisms in ADHD.

    PubMed

    Tripp, Gail; Wickens, Jeff R

    2008-07-01

    This review considers the hypothesis that changes in dopamine signalling might account for altered sensitivity to positive reinforcement in children with ADHD. The existing evidence regarding dopamine cell activity in relation to positive reinforcement is reviewed. We focus on the anticipatory firing of dopamine cells brought about by a transfer of dopamine cell responses to cues that precede reinforcers. It is proposed that in children with ADHD there is diminished anticipatory dopamine cell firing, which we call the dopamine transfer deficit (DTD). The DTD theory leads to specific and testable predictions for human and animal research. The extent to which DTD explains symptoms of ADHD and effects of pharmacological interventions is discussed. We conclude by considering the neural changes underlying the etiology of DTD. PMID:18081766

  20. Quantum chemical study of TiO{sub 2}/dopamine-DNA triads.

    SciTech Connect

    Vega-Arroyo, M.; LeBreton, P. R.; Zapol, P.; Curtiss, L. A.; Rajh, T.; Univ. Illinois at Chicago

    2007-10-15

    Photoinduced charge separation in triads of DNA covalently linked to an anatase nanoparticle via a dopamine bridge was studied by ab initio calculations of the oxidation potentials of carboxyl-DNA trimers and the TiO2/dopamine complex. Conjugation of dopamine to the TiO2 surface results in a lower oxidation potential of the complex relative to the surface and in localization of photogenerated holes on dopamine, while photogenerated electrons are excited into the conduction band of TiO2. Linking dopamine to the DNA trimers at the 5? end of the oligonucleotide may lead to further hole migration to the DNA. Calculations show that for several different sequences hole migration is favorable in double stranded DNA and unfavorable in single-stranded DNA. This extended charge separation was shown to follow from the redox properties of DNA sequence rather than from the modification of DNA's electron donating properties by the dopamine linker, which explains experimental observations.

  1. Mesolimbic Dopamine Encodes Prediction Errors in a State-Dependent Manner

    PubMed Central

    Papageorgiou, Georgios K.; Baudonnat, Mathieu; Cucca, Flavia; Walton, Mark E.

    2016-01-01

    Summary Mesolimbic dopamine encodes the benefits of a course of action. However, the value of an appetitive reward depends strongly on an animal’s current state. To investigate the relationship between dopamine, value, and physiological state, we monitored sub-second dopamine release in the nucleus accumbens core while rats made choices between food and sucrose solution following selective satiation on one of these reinforcers. Dopamine signals reflected preference for the reinforcers in the new state, decreasing to the devalued reward and, after satiation on food, increasing for the valued sucrose solution. These changes were rapid and selective, with dopamine release returning to pre-satiation patterns when the animals were re-tested in a standard food-restricted state. Such rapid and selective adaptation of dopamine-associated value signals could provide an important signal to promote efficient foraging for a varied diet. PMID:27050518

  2. Research review: dopamine transfer deficit: a neurobiological theory of altered reinforcement mechanisms in ADHD.

    PubMed

    Tripp, Gail; Wickens, Jeff R

    2008-07-01

    This review considers the hypothesis that changes in dopamine signalling might account for altered sensitivity to positive reinforcement in children with ADHD. The existing evidence regarding dopamine cell activity in relation to positive reinforcement is reviewed. We focus on the anticipatory firing of dopamine cells brought about by a transfer of dopamine cell responses to cues that precede reinforcers. It is proposed that in children with ADHD there is diminished anticipatory dopamine cell firing, which we call the dopamine transfer deficit (DTD). The DTD theory leads to specific and testable predictions for human and animal research. The extent to which DTD explains symptoms of ADHD and effects of pharmacological interventions is discussed. We conclude by considering the neural changes underlying the etiology of DTD.

  3. Vascular Effects of Diphenylmethoxypiperidine-derived Dopamine Uptake Inhibitors

    PubMed Central

    Pulgar, Victor M.; Harp, Jill Keith

    2014-01-01

    Vascular effects of 4-aryl methoxypiperidinol compounds previously shown to share with cocaine the ability to inhibit the dopamine transporter are described. All the compounds tested inhibit KCl-induced and noradrenaline-dependent contractions in mesenteric arteries ex vivo. Thus, diphenylpyraline and its analogs may have a role as therapeutic options for the treatment of some of the cardiotoxic effects of cocaine intoxications. PMID:24792462

  4. On the role of subsecond dopamine release in conditioned avoidance.

    PubMed

    Oleson, Erik B; Cheer, Joseph F

    2013-01-01

    Using shock avoidance procedures to study conditioned behavioral responses has a rich history within the field of experimental psychology. Such experiments led to the formulation of the general concept of negative reinforcement and specific theories attempting to explain escape and avoidance behavior, or why animals choose to either terminate or prevent the presentation of an aversive event. For example, the two-factor theory of avoidance holds that cues preceding an aversive event begin to evoke conditioned fear responses, and these conditioned fear responses reinforce the instrumental avoidance response. Current neuroscientific advances are providing new perspectives into this historical literature. Due to its well-established role in reinforcement processes and behavioral control, the mesolimbic dopamine system presented itself as a logical starting point in the search for neural correlates of avoidance and escape behavior. We recently demonstrated that phasic dopamine release events are inhibited by stimuli associated with aversive events but increased by stimuli preceding the successful avoidance of the aversive event. The latter observation is inconsistent with the second component of the two-factor theory of avoidance and; therefore, led us propose a new theoretical explanation of conditioned avoidance: (1) fear is initially conditioned to the warning signal and dopamine computes this fear association as a decrease in release, (2) the warning signal, now capable of producing a negative emotional state, suppresses dopamine release and behavior, (3) over repeated trials the warning signal becomes associated with safety rather than fear; dopaminergic neurons already compute safety as an increase in release and begin to encode the warning signal as the earliest predictor of safety (4) the warning signal now promotes conditioned avoidance via dopaminergic modulation of the brain's incentive-motivational circuitry.

  5. Chlorophenylpiperazine analogues as high affinity dopamine transporter ligands.

    PubMed

    Motel, William C; Healy, Jason R; Viard, Eddy; Pouw, Buddy; Martin, Kelly E; Matsumoto, Rae R; Coop, Andrew

    2013-12-15

    Selective σ2 ligands continue to be an active target for medications to attenuate the effects of psychostimulants. In the course of our studies to determine the optimal substituents in the σ2-selective phenyl piperazines analogues with reduced activity at other neurotransmitter systems, we discovered that 1-(3-chlorophenyl)-4-phenethylpiperazine actually had preferentially increased affinity for dopamine transporters (DAT), yielding a highly selective DAT ligand. PMID:24211020

  6. Deficits in striatal dopamine release in cannabis dependence

    PubMed Central

    van de Giessen, Elsmarieke; Weinstein, Jodi J.; Cassidy, Clifford M.; Haney, Margaret; Dong, Zhengchao; Ghazzaoui, Rassil; Ojeil, Najate; Kegeles, Lawrence S.; Xu, Xiaoyan; Vadhan, Nehal P.; Volkow, Nora D.; Slifstein, Mark; Abi-Dargham, Anissa

    2016-01-01

    Most drugs of abuse lead to a general blunting of dopamine release in the chronic phase of dependence, which contributes to poor outcome. To test whether cannabis dependence is associated with a similar dopaminergic deficit, we examined striatal and extrastriatal dopamine release in severely cannabis dependent participants (CD), free of any comorbid conditions, including nicotine use. Eleven CD and twelve healthy controls (HC) completed two positron emission tomography scans with [11C]-(+)-PHNO, before and after oral administration of d-amphetamine. CD stayed inpatient for 5–7 days prior to the scans to standardize abstinence. Magnetic Resonance Imaging (MRS) measures of glutamate in the striatum and hippocampus were obtained in the same subjects. Percent change in [11C]-(+)-PHNO binding potential (ΔBPND) was compared between groups and correlations with MRS glutamate, subclinical psychopathological and neurocognitive parameters were examined. CD had significantly lower ΔBPND in the striatum (p=0.002, effect size (ES)=1.48), including the associative striatum (p=0.003, ES=1.39), sensorimotor striatum (p=0.003, ES=1.41), and the pallidus (p=0.012, ES=1.16). Lower dopamine release in the associative striatum correlated with inattention and negative symptoms in CD, and with poorer working memory and probabilistic category learning performance in both CD and HC. No relationships to MRS glutamate and amphetamine-induced subclinical positive symptoms were detected. In conclusion, this study provides evidence that severe cannabis dependence -without the confounds of any comorbidity- is associated with a deficit in striatal dopamine release. This deficit extends to other extrastriatal areas and predicts subclinical psychopathology. PMID:27001613

  7. Dopamine and Reward: The Anhedonia Hypothesis 30 years on

    PubMed Central

    Wise, Roy A.

    2011-01-01

    The anhedonia hypothesis – that brain dopamine plays a critical role in the subjective pleasure associated with positive rewards – was intended to draw the attention of psychiatrists to the growing evidence that dopamine plays a critical role in the objective reinforcement and incentive motivation associated with food and water, brain stimulation reward, and psychomotor stimulant and opiate reward. The hypothesis called to attention the apparent paradox that neuroleptics, drugs used to treat a condition involving anhedonia (schizophrenia), attenuated in laboratory animals the positive reinforcement that we normally associate with pleasure. The hypothesis held only brief interest for psychiatrists, who pointed out that the animal studies reflected acute actions of neuroleptics whereas the treatment of schizophrenia appears to result from neuroadaptations to chronic neuroleptic administration, and that it is the positive symptoms of schizophrenia that neuroleptics alleviate, rather than the negative symptoms that include anhedonia. Perhaps for these reasons, the hypothesis has had minimal impact in the psychiatric literature. Despite its limited heuristic value for the understanding of schizophrenia, however, the anhedonia hypothesis has had major impact on biological theories of reinforcement, motivation, and addiction. Brain dopamine plays a very important role in reinforcement of response habits, conditioned preferences, and synaptic plasticity in cellular models of learning and memory. The notion that dopamine plays a dominant role in reinforcement is fundamental to the psychomotor stimulant theory of addiction, to most neuroadaptation theories of addiction, and to current theories of conditioned reinforcement and reward prediction. Properly understood, it is also fundamental to recent theories of incentive motivation. PMID:19073424

  8. Antipsychotic Induced Symptomatic Hyperprolactinemia: Are Dopamine Agonists Safe?

    PubMed Central

    Lertxundi, Unax; Domingo-Echaburu, Saioa; Peral, Javier; García, Montserrat

    2011-01-01

    Published literature shows that dopamine agonists can reverse antipsychotic-induced hyperprolactinemia without worsening psychotic symptoms in the majority of schizophrenic patients. However, psychiatrists have been reluctant to use drugs with dopaminergic properties for fear of exacerbating psychiatric symptoms. There are reported cases of psychosis worsening published for both cabergoline and bromocriptine. Cabergoline has proven to be more effective and safe when used to treat hyperprolactinemia, but whether cabergoline is also safer than bromocriptine in antipsychotic induced hyperprolactinemia remains unproven.

  9. On the role of subsecond dopamine release in conditioned avoidance

    PubMed Central

    Oleson, Erik B.; Cheer, Joseph F.

    2013-01-01

    Using shock avoidance procedures to study conditioned behavioral responses has a rich history within the field of experimental psychology. Such experiments led to the formulation of the general concept of negative reinforcement and specific theories attempting to explain escape and avoidance behavior, or why animals choose to either terminate or prevent the presentation of an aversive event. For example, the two-factor theory of avoidance holds that cues preceding an aversive event begin to evoke conditioned fear responses, and these conditioned fear responses reinforce the instrumental avoidance response. Current neuroscientific advances are providing new perspectives into this historical literature. Due to its well-established role in reinforcement processes and behavioral control, the mesolimbic dopamine system presented itself as a logical starting point in the search for neural correlates of avoidance and escape behavior. We recently demonstrated that phasic dopamine release events are inhibited by stimuli associated with aversive events but increased by stimuli preceding the successful avoidance of the aversive event. The latter observation is inconsistent with the second component of the two-factor theory of avoidance and; therefore, led us propose a new theoretical explanation of conditioned avoidance: (1) fear is initially conditioned to the warning signal and dopamine computes this fear association as a decrease in release, (2) the warning signal, now capable of producing a negative emotional state, suppresses dopamine release and behavior, (3) over repeated trials the warning signal becomes associated with safety rather than fear; dopaminergic neurons already compute safety as an increase in release and begin to encode the warning signal as the earliest predictor of safety (4) the warning signal now promotes conditioned avoidance via dopaminergic modulation of the brain's incentive-motivational circuitry. PMID:23759871

  10. Optogenetic Control of Serotonin and Dopamine Release in Drosophila Larvae

    PubMed Central

    2014-01-01

    Optogenetic control of neurotransmitter release is an elegant method to investigate neurobiological mechanisms with millisecond precision and cell type-specific resolution. Channelrhodopsin-2 (ChR2) can be expressed in specific neurons, and blue light used to activate those neurons. Previously, in Drosophila, neurotransmitter release and uptake have been studied after continuous optical illumination. In this study, we investigated the effects of pulsed optical stimulation trains on serotonin or dopamine release in larval ventral nerve cords. In larvae with ChR2 expressed in serotonergic neurons, low-frequency stimulations produced a distinct, steady-state response while high-frequency patterns were peak shaped. Evoked serotonin release increased with increasing stimulation frequency and then plateaued. The steady-state response and the frequency dependence disappeared after administering the uptake inhibitor fluoxetine, indicating that uptake plays a significant role in regulating the extracellular serotonin concentration. Pulsed stimulations were also used to evoke dopamine release in flies expressing ChR2 in dopaminergic neurons and similar frequency dependence was observed. Release due to pulsed optical stimulations was modeled to determine the uptake kinetics. For serotonin, Vmax was 0.54 ± 0.07 μM/s and Km was 0.61 ± 0.04 μM; and for dopamine, Vmax was 0.12 ± 0.03 μM/s and Km was 0.45 ± 0.13 μM. The amount of serotonin released per stimulation pulse was 4.4 ± 1.0 nM, and the amount of dopamine was 1.6 ± 0.3 nM. Thus, pulsed optical stimulations can be used to mimic neuronal firing patterns and will allow Drosophila to be used as a model system for studying mechanisms underlying neurotransmission. PMID:24849718

  11. Striatal serotonin depletion facilitates rat egocentric learning via dopamine modulation.

    PubMed

    Anguiano-Rodríguez, Patricia B; Gaytán-Tocavén, Lorena; Olvera-Cortés, María Esther

    2007-02-01

    Egocentric spatial learning has been defined as the ability to navigate in an environment using only proprioceptive information, thereby performing a motor response based on one's own movement. This form of learning has been associated with the neural memory system, including the striatum body. Cerebral serotonin depletion induces better performance, both in tasks with strong egocentric components and in egocentric navigation in the Morris' maze. Based on this, we propose that the striatal serotonergic depletion must facilitate egocentric learning. Fifteen female Sprague Dawley rats weighing 250-350 g and maintained under standard conditions were chronically implanted with infusion cannulas for bilateral application of drugs into the striatum. The animals were evaluated for egocentric navigation using the Morris' maze, under different conditions: saline solution infusion, serotonin depletion by infusion of 5,7-Dihydroxytryptamine (25 microg of free base solved in 2.5 microl of ascorbic acid 1% in saline solution), infusion of mixed dopamine D(1) and D(2) receptor antagonists (0.5 microl/min during 5 min of mixed spiperone 20 microM and SCH23390 10 microM), or serotonin depletion and dopamine blockade simultaneously. Striatal serotonin depletion facilitated egocentric learning, which was demonstrated as shorter escape latencies and the display of a defined sequence of movements for reaching the platform. The facilitation was not observed under condition of simultaneous dopamine blockade. Striatal serotonin depletion produced a dopamine-dependent facilitation of egocentric learning. A role for serotonin in the inhibition of striatal-mediated learning strategies is proposed. PMID:17126827

  12. Optogenetic control of serotonin and dopamine release in Drosophila larvae.

    PubMed

    Xiao, Ning; Privman, Eve; Venton, B Jill

    2014-08-20

    Optogenetic control of neurotransmitter release is an elegant method to investigate neurobiological mechanisms with millisecond precision and cell type-specific resolution. Channelrhodopsin-2 (ChR2) can be expressed in specific neurons, and blue light used to activate those neurons. Previously, in Drosophila, neurotransmitter release and uptake have been studied after continuous optical illumination. In this study, we investigated the effects of pulsed optical stimulation trains on serotonin or dopamine release in larval ventral nerve cords. In larvae with ChR2 expressed in serotonergic neurons, low-frequency stimulations produced a distinct, steady-state response while high-frequency patterns were peak shaped. Evoked serotonin release increased with increasing stimulation frequency and then plateaued. The steady-state response and the frequency dependence disappeared after administering the uptake inhibitor fluoxetine, indicating that uptake plays a significant role in regulating the extracellular serotonin concentration. Pulsed stimulations were also used to evoke dopamine release in flies expressing ChR2 in dopaminergic neurons and similar frequency dependence was observed. Release due to pulsed optical stimulations was modeled to determine the uptake kinetics. For serotonin, Vmax was 0.54 ± 0.07 μM/s and Km was 0.61 ± 0.04 μM; and for dopamine, Vmax was 0.12 ± 0.03 μM/s and Km was 0.45 ± 0.13 μM. The amount of serotonin released per stimulation pulse was 4.4 ± 1.0 nM, and the amount of dopamine was 1.6 ± 0.3 nM. Thus, pulsed optical stimulations can be used to mimic neuronal firing patterns and will allow Drosophila to be used as a model system for studying mechanisms underlying neurotransmission.

  13. Dopamine Transporter Imaging Using 99mTc-TRODAT-1 SPECT in Parkinson’s Disease

    PubMed Central

    Bor-Seng-Shu, Edson; Felicio, Andre C.; Braga-Neto, Pedro; Batista, Ilza Rosa; Paiva, Wellingson Silva; de Andrade, Daniel Ciampi; Teixeira, Manoel Jacobsen; de Andrade, Luiz Augusto Franco; Barsottini, Orlando Graziani Povoas; Shih, Ming Chi; Bressan, Rodrigo A.; Ferraz, Henrique Ballalai

    2014-01-01

    Background Although the decrease in striatal dopamine transporter (DAT) density has been described in North American, European, and Asian Parkinson’s disease (PD) patients, studies on this issue are required in the rest of the world. This study examined the diagnostic utility of DAT imaging in Brazilian PD patients. Material/Methods Twenty PD patients (13 males, 7 females, median age: 62 years, median age at disease onset: 56 years, median disease duration: 5 years, and median UPDRS-III score: 29) and 9 age- and sex-matched healthy subjects underwent single-photon emission computerized tomography (SPECT) using 99mTc-TRODAT-1. Results PD patients showed a significant decrease in the striatum, caudate nucleus, and putamen DAT densities compared with data from healthy subjects. Striatal 99mTc-TRODAT-1 bindings had the highest diagnostic accuracy compared to those estimates from caudate nucleus and putamen. For the diagnosis of PD, a striatal 99mTc-TRODAT-1 binding cut-off value of 0.90 was associated with a sensitivity of 100% and a specificity of 89%. There was no significant difference between striatal 99mTc-TRODAT-1 binding values provided by different readers, contrary to 99mTc-TRODAT-1 binding estimates in the caudate nucleus. Conclusions Striatal DAT imaging using 99mTc-TRODAT-1 can be considered a marker for differentiating PD patients from healthy individuals, with a good interobserver reproducibility. PMID:25109468

  14. Dopamine D3 receptor gene locus: Association with schizophrenia, as well age of onset

    SciTech Connect

    Nimgsonkar, V.L.; Zhang, X.R.; Brar, J.S.

    1994-09-01

    Genetic factors are clearly involved in the etiology of schizophrenia, but their specific nature is unknown. If the genetic etiology is multifactorial or polygenic, the role of specific genes as susceptibility factors can be directly evaluated by examining allelic variation at these loci among cases in comparison with controls. Two studies have independently demonstrated an association of schizophrenia with homozygosity at the dopamine D3 receptor gene (D3RG) locus, using a biallelic polymorphism in the first exon of D3RG. These results are important because D3RG is a favored candidate gene. Three other studies have identified associations among sub-groups of patients, but the majority were negative. The present study involved patients with schizophrenia (DSM-III-R criteria) of Caucasian or African-American ethnicity (n=130). Two groups of controls, matched for ethnicity, were used: adults screened for schizophrenia (n=128) and unselected neonates (n=160). Multivariate analysis revealed an association between allele no. 1 homozygosity and schizophrenia in comparison with adult, but not neonatal controls. The association was most marked among Caucasian patients with a family history of schizophrenia (odds ratio 13.7, C.I. 1.8, 104.3). An association of the D3RG locus with age of onset (AOO) was also noted. The discrepancies in earlier studies may due to variations in control groups, differencies in mean AOO among different cohorts, or ethnic variations in susceptibility attributable to D3RG.

  15. X-ray structure of dopamine transporter elucidates antidepressant mechanism.

    PubMed

    Penmatsa, Aravind; Wang, Kevin H; Gouaux, Eric

    2013-11-01

    Antidepressants targeting Na(+)/Cl(-)-coupled neurotransmitter uptake define a key therapeutic strategy to treat clinical depression and neuropathic pain. However, identifying the molecular interactions that underlie the pharmacological activity of these transport inhibitors, and thus the mechanism by which the inhibitors lead to increased synaptic neurotransmitter levels, has proven elusive. Here we present the crystal structure of the Drosophila melanogaster dopamine transporter at 3.0 Å resolution bound to the tricyclic antidepressant nortriptyline. The transporter is locked in an outward-open conformation with nortriptyline wedged between transmembrane helices 1, 3, 6 and 8, blocking the transporter from binding substrate and from isomerizing to an inward-facing conformation. Although the overall structure of the dopamine transporter is similar to that of its prokaryotic relative LeuT, there are multiple distinctions, including a kink in transmembrane helix 12 halfway across the membrane bilayer, a latch-like carboxy-terminal helix that caps the cytoplasmic gate, and a cholesterol molecule wedged within a groove formed by transmembrane helices 1a, 5 and 7. Taken together, the dopamine transporter structure reveals the molecular basis for antidepressant action on sodium-coupled neurotransmitter symporters and elucidates critical elements of eukaryotic transporter structure and modulation by lipids, thus expanding our understanding of the mechanism and regulation of neurotransmitter uptake at chemical synapses.

  16. Dopamine-Dependent Tuning of Striatal Inhibitory Synaptogenesis

    PubMed Central

    Goffin, Darren; Ali, Afia B.; Rampersaud, Nazir; Harkavyi, Alexander; Fuchs, Celine; Whitton, Peter S.; Nairn, Angus C.

    2010-01-01

    Dopaminergic projections to the striatum, crucial for the correct functioning of this brain region in adulthood, are known to be established early in development, but their role is currently uncharacterized. We demonstrate here that dopamine, by activating D1- and/or D2-dopamine receptors, decreases the number of functional GABAergic synapses formed between the embryonic precursors of the medium spiny neurons, the principal output neurons of the striatum, with associated changes in spontaneous synaptic activity. Activation of these receptors reduces the size of postsynaptic GABAA receptor clusters and their overall cell-surface expression, without affecting the total number of clusters or the size or number of GABAergic nerve terminals. These changes result from an increased internalization of GABAA receptors, and are mediated by distinct signaling pathways converging at the level of GABAA receptors to cause a transient PP2A/PP1-dependent dephosphorylation. Thus, tonic D1- and D2-receptor activity limits the extent of collateral inhibitory synaptogenesis between medium spiny neurons, revealing a novel role of dopamine in controlling the development of intrinsic striatal microcircuits. PMID:20181591

  17. Dopamine modulates excitability of basolateral amygdala neurons in vitro.

    PubMed

    Kröner, Sven; Rosenkranz, J Amiel; Grace, Anthony A; Barrionuevo, German

    2005-03-01

    The amygdala plays a role in affective behaviors, which are modulated by the dopamine (DA) innervation of the basolateral amygdala complex (BLA). Although in vivo studies indicate that activation of DA receptors alters BLA neuronal activity, it is unclear whether DA exerts direct effects on BLA neurons or whether it acts via indirect effects on BLA afferents. Using whole cell patch-clamp recordings in rat brain slices, we investigated the site and mechanisms through which DA regulates the excitability of BLA neurons. Dopamine enhanced the excitability of BLA projection neurons in response to somatic current injections via a postsynaptic effect. Dopamine D1 receptor activation increased excitability and evoked firing, whereas D2 receptor activation increased input resistance. Current- and voltage-clamp experiments in projection neurons showed that D1 receptor activation enhanced excitability by modulating a 4-aminopyridine- and alpha-dendrotoxin-sensitive, slowly inactivating K+ current. Furthermore, DA and D1 receptor activation increased evoked firing in fast-spiking BLA interneurons. Consistent with a postsynaptic modulation of interneuron excitability, DA also increased the frequency of spontaneous inhibitory postsynaptic currents recorded in projection neurons without changing release of GABA. These data demonstrate that DA exerts direct effects on BLA projection neurons and indirect actions via modulation of interneurons that may work in concert to enhance the neuronal response to large, suprathreshold inputs, while suppressing weaker inputs. PMID:15537813

  18. Pathological Gambling Associated With Aripiprazole or Dopamine Replacement Therapy

    PubMed Central

    Grall-Bronnec, Marie; Sauvaget, Anne; Perrouin, Fanny; Leboucher, Juliette; Etcheverrigaray, François; Challet-Bouju, Gaëlle; Gaboriau, Louise; Derkinderen, Pascal; Jolliet, Pascale; Victorri-Vigneau, Caroline

    2016-01-01

    Background In the last 10 years, dopamine replacement therapy (DRT) has become a well-known risk factor for developing an impulse control disorder, such as gambling disorder (GD). Another medication, aripiprazole (ARI), has been more recently identified as another risk factor. Dopamine replacement therapy and ARI share a dopamine agonist action. Our work aimed at comparing patients with PG according to their treatment with DRT or ARI. Methods Two methods were combined—a systematic review concentrated on case reports and the analysis of a French disordered gamblers cohort focused on patients using ARI or DRT at inclusion. Results We reported 4